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Abstract

We present a new approach for applying ge-

netic programming to lossless data compres-

sion. Unlike programmatic compression the

evolved programs are preprocessors. These

preprocessors aim at enhancing the compres-

sion rate of the given data by transform-

ing it. The entropy based �tness function

is both fast and independent of the type of

information being processed. The obtained

results are encouraging in sense that signi�-

cant improvements can be achieved. Further-

more the required computation time is much

smaller than in the case of programmatic

compression, making the presented approach

more viable. We used a strongly typed GP

kernel. The kernel o�ers the extra advan-

tage of being able to exploit parallel execu-

tion through the island model.

1 Introduction

Compression has been a research topic for many years.

In 1940 Claude Shannon already studied what later be-

came information theory. His research has determined

the theoretical limits of data compression. Current re-

search focuses mainly on the development of applica-

tion speci�c compression algorithms. Generic lossless

compression algorithms can however be considered at a

stand still. A recent algorithm is the Burrows-Wheeler

transform (1993) [1] which is used in the bzip2 com-

pression program.

Record compression rates can be achieved using a good

model of the data, e.g. true color images. Here we in-

vestigate how a program can be evolved to transform

the data so that it matches the model used by a given

compression algorithm. The exact transformation is

not explicitly known but one can formulate certain

conditions the latter should possess (see section 3).

Our attention goes toward lossless compression algo-

rithms. Examples of popular lossless compression pro-

grams are gzip [8] and Winzip [2].

This document is structured as follows. In section 2

related research is presented. The problem and the

chosen approach are described in section 3. Section

4 details the experimental setup. Sections 5 and 6

present the results and the conclusion respectively.

2 Related work

Evolutionary algorithms have been used in the past

for data compression purposes. Two approaches can

be distinguished.

Genetic algorithms were used to �nd parameters for

a compression algorithm in order to maximize com-

pression Driesen [4]. Feiel and Ramakrishnan [6] have

used genetic algorithms to optimize the compression

of color images using vector quantization.

Genetic programming was used for what is called pro-

grammatic compression. This approach is closely re-

lated to algorithmic complexity were one looks for the

shortest program that produces the given data [13].

De Falco et al. [5] have used genetic programming for

string compression. Fukunaga and Stechert [7] have

used genetic programming for lossless compression of

gray-scale images. Nordin and Banzhaf [10] achieved

lossy programmatic compression of images and sound.

Noteworthy is the fact that [10] [7] both used a geno-

compiler for their experiments. This software elimi-

nates the function call overhead incurred by other sys-

tems during the evaluation of the individuals. Luke

[9] reports on a relative improvement in speed of 2000

times compared to LISP code and of 100 times com-

pared to interpreted C (like used for this experiment).
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3 Preprocessing

Data compression is already a highly specialized do-

main. Therefore it seems too far fetched to use genetic

programming to generate an algorithm that would

compress data and do so in a competitive way.

We formulate our objective as follows: instead of aim-

ing for a program that recodes the data we seek a

transformation.

This transformation is applied to the data before com-

pressing it. It is used as a preprocessing step in the

entire compression process. Of course, after decom-

pressing the data the transformation needs to be re-

versed in order to obtain the original data (since we

focus on lossless compression).
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P
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Figure 1: The preprocessing takes place before the ac-

tual compression and is reverserd after decompression.

Such a preprocessing program can be formalized as a

function P that works on a string S over an alphabet.

The length of a string S is denoted as jSj. C repre-

sents a data compression algorithm. The result we are

looking for is a transformation P , so that the condition

denoted in equation 1 holds.

jC(P (S))j < jC(S)j (1)

Stating the problem in these terms makes it easy to

fold it into the genetic programming framework since

both the program we are looking for, being P , and the

�tness function are easily identi�ed. Formulating the

problem in this way has some serious disadvantages

though. First, computing the result of equation1 is

rather expensive. The compression algorithm has to

be applied to the transformed data for every individ-

ual in the population. Second, the transformation will

depend on the compression algorithm used. To avoid

this problem we reformulated it using a metric from

information theory, the entropy.

1Notwithstanding the increase in computation speed [7]
[10] report runs lasting several tens of hours on powerful
workstations. The results presented here required far less
time while working on a bigger amount of data.

3.1 Entropy

Consider a message as a series of symbols. The entropy

can be thought of as a measure for the information

content of a message. The entropy gives the average

information content of a symbol 2, this is typically

expressed in bits per symbols. The formula for the

entropy is given below, note that Pi represents the

probability of symbol i in the message.3

H = �
X

n
Pi: logPi (2)

Using the entropy (equation 2) we have a means to

determine how much information is present in a given

message. The entropy is the theoretical lower bound

on the size of the data (in bits). Any representation

of the data with a size lower than the one predicted by

the entropy loses information. Important is the fact

that this measure is independent of the type of data

being represented.

3.2 Reducing the entropy

We will evolve a transformation for the given data us-

ing the entropy as an objective criterion. The pur-

pose of this transformation is: lowering the entropy

of a message (data). The information content can be

reduced without loss by exploiting redundancies that

might be hidden in the data (as will be shown in sec-

tion 5.2). By lowering the entropy we reduce the in-

formation content, this means that the data can be

recoded to occupy less space. This property is inde-

pendent of any compression algorithm. Compression

algorithms are designed so as to recode data in order

to match the real size of the data.

The instruction set of the genetic programming soft-

ware is designed to reduce the entropy, albeit under

the good circumstances. It is up to the evolutionary

pressure to bring forth the best transformation. Using

the entropy we now can de�ne a new condition for the

transformation we wish to evolve.

Hout � Lout

Hin � Lin

< 1 (3)

Equation 3 is a computationally cheaper �tness func-

tion. It is furthermore independent of any data com-

2Entropy has a much more rigorous mathematical foun-
dation but the description given here suÆces for the pur-
pose of this text.

3The model used here is a �rst order model (marginal
probability). Higher order models are based on conditional
probabilities.



pression algorithm. Since on the average a symbol rep-

resents H bits of information, a message with length L

gives H � L bits of information in total. The formula

expresses that the total information of the transformed

data has to be lower than the information of the initial

data. Note that we impose no limit on the length of

the transformed data. Since we do not immediately

compress the data, Lout can either be greater than or

equal to Lin.

4 Experimental setup

The setup used for the experiments will now be pre-

sented. The transformation one seeks is represented by

an S-expression. The function and terminal set used

here relies on a simple virtual machine. The use of

a virtual machine gives a limited function and termi-

nal set with clear semantics without sacri�cing perfor-

mance or introducing limits on the data size.

The instruction set of the virtual machine has been

wrapped to form the function and terminal set used by

the genetic programming software. To structure the

S-expressions strong typing has been used.

4.1 Input data

For the experiments the Canterbury Corpus [3] as well

as various bitmaps and word processor �les were used.

This means that the size of the input tape usually

exceeded the order of several kilobytes and grew even

up to more than 1 megabyte.

4.2 Parallel and strongly typed

The approach presented here uses a strongly typed ge-

netic programming kernel written in C that produces

LISP-like programs. This package is a modi�ed ver-

sion of the Lil-gp package [12]. This modi�ed version

can run on parallel using multi processor machines and

clusters of workstations [11].

4.3 Virtual machine

The virtual machine bears some resemblance with an

automaton as it uses an input and an output tape. The

instruction set can be divided into two categories. In-

structions that control the input tape and instructions

that process the data read from it. Note that there

are no operations that directly in
uence the output

tape in the instruction set. The output tape is ma-

nipulated implicitly whenever new data is read from

the input tape. This is done through two bu�ers inside

the machine as depicted in the �gure 2. The processed

data, which is stored in the output bu�er, is copied to

the output tape when new data is loaded in the input

bu�er.
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Figure 2: A simple virtual machine has been de�ned

which bears some resemblance with an automaton.

The internal bu�ers are resized to accommodate the

data read from the tape.

A status variable is used in order to control the correct

operation of the virtual machine. In certain circum-

stances the execution of an instruction can be illegal.

In this case the status of the virtual machine is set

accordingly. Whenever an attempt has been made to

perform an illegal instruction the execution of subse-

quent instructions is aborted. The execution of the

program is thereby limited to the correct portion of

the program.

4.3.1 Tape operations

The machine needs to read data from the input tape.

To that end two instructions were de�ned. Note that

the size of the internal bu�ers is adjusted so that it

can contain all the symbols read from tape.

� load : this instruction takes 1 parameter, an inte-

ger. This instruction reads the speci�ed number

of symbols from the input tape and copies them in

the input bu�er. This operation is always valid.

� fwd : is identical to load except that it does not

take any parameter. Instead it uses the value of

the parameter passed to the last load instruction.

If there was no load instruction preceding the fwd

this operation is invalid.

A third rewind instruction makes it possible to apply

several operations on data read from the input tape.

� rew : no new data is read or written from or to the

tapes. Instead the previously read and processed

data is processed again. The content of the output

bu�er is simply copied in the input bu�er.

4.3.2 Data operations

Next to operations for reading data, operations were

de�ned for processing the data. The data operations



are performed on the data present in the input bu�er.

Data produced by data operation is stored in the out-

put bu�er.

Since we are working with lossless compression each

of the data operations needs to be reversible. Each of

these operations needs to be reversible in order to be

useful within the lossless compression context. Hence,

for each data operation there is a reverse operation

de�ned in the virtual machine. These operations are

however not made available in the instruction set of

the genetic programming software.

The choice of the data operations was guided by their

capability to reduce the entropy of the data. This is

typical done by exploiting patterns that exist in the

data. A stride parameter was introduced for some op-

erations. The stride speci�es the step size when going

over the data. For example all the symbols 3 positions

apart (in this case the stride would be 3). The stride

allows data operations to work on patterns that may

be spread within the data.

� dpcm : stands for di�erential pulse code modula-

tion. fx0; x1; x2; x3; . . . , xng ) fx0; x1�x0; x2�
x1; x3 � x2; . . . , xn � xn�1g This operation has a

stride parameter.

� min : This operation uses the average of all

the symbols (binary representation) in the input

bu�er. A symbol is replaced by the di�erence be-

tween the average and the symbol. This operation

does expand the data by 1 symbol, the symbol

which represents the average4.

fx0; x1; x2; x3; . . . , xng ) fxavg ; x0 � xavg ; x1 �
xavg ; x2 � xavg ; x3 � xavg ; . . . , xn � xavgg This

operation has a stride parameter.

� raw : no transformation is applied at all to the

data. fx0; x1; x2; x3; . . . , xng ) fx0; x1; x2; x3;
. . . , xng This may seem like a quite useless in-

struction. But it allows for jumps in the data

processing since we maybe do not need to trans-

form the entire tape. An alternative would be the

de�nition of a jump tape instruction.

� pec : pseudo exponential code. This operation

produces an output with double size of the input.

The output data represents an input symbol as

a couple of numbers. The output is based on the

number of the input symbol. A couple is a pseudo

exponent and a pseudo remainder. The pseudo

exponent is the largest exponent used as a power

4min (stride=1) changes the series 2 5 3 2 5 6 7 to -
2 1 -1 1 2 3 + 4 (the average)

of 2 which doesn't exceed the input number, e.g.

3 for 10. The remainder is the di�erence between

the power of two and the input number, in the

previous example this would be 2 (10 - 2 3). The

reason for calling this pseudo5 is that it has been

modi�ed for numbers bigger than 128.

� mtf : move to front. This operation is a stan-

dard encoding scheme which uses a map of all

the possible symbols. The symbols are replaced

by their position in the map. Each time a sym-

bol is replaced by its current position in the map

the latter is updated. The symbol is put in front

of the map thereby assigning it a small number.

This allows to encode the symbols that appeared

recently with small numbers.

� inv : inversion. fx0; x1; x2; x3; . . . , xng
) fMAX(x) � x0;MAX(x) � x1;MAX(x) �
x2;MAX(x) � x3; . . . , MAX(x) � xng Here

MAX(x) represents the maximum value that can

be represent by the data type used to represent

the symbols. This operation has a stride parame-

ter.

� sub : substitution. This operation substitutes the

symbol that appears most frequently in the in-

put bu�er with the most frequent symbol in the

output tape so far. This operation has a stride

parameter.

4.4 Types

Typing is used in the �rst place to structure the pro-

grams that can be evolved. Evaluating the functions

and terminals corresponds to the execution of an in-

struction by the virtual machine. For the experiments

four types were used for the functions and terminals

of the genetic programming software. The �rst two

types are integer types, int and num. The num type

represents small integers in the range [0,20]. In order

to integrate the instruction of the machine two types

were de�ned for the operations: tape and data.

The reason for the de�nition of two separate types for

the instruction is the need to combine these instruc-

tions to make correct programs. Indeed, the data op-

erations are invalid when no data has been read from

the tape. And for the same reason tape operations

make no sense if the data is not processed afterwards.

5pec The symbols 1 123 250 are replaced by
(3,4) (6,59) (13,58). The last couple allows to repre-
sent 250 with two smaller numbers ( 27 + 26 +58) where
as log 2 would give the couple (7,122).



4.5 Function and terminal set

Here we present the function and terminal set provided

to the genetic programming system. Apart from the

operations provided by the virtual machine a few other

functionalities have been introduced.

The programs one can evolve consist of series of tape

operations. In order to obtain those series a special

function called SEQ has been used. The SEQ func-

tion will evaluate its �rst then its second arguments.

Arguments which in turn can be other SEQ functions

or real operations on the data.

The ERC INT and ERC NUM are used to create

ephemeral random constants. These values are either

used for the stride parameter expected by some data

operations or for the number of symbols to read from

tape using load. Related to this is the terminal END.

This terminal returns the number of symbols remain-

ing on the input tape. The introduction of this termi-

nal made it possible to evolve programs that processed

the entire input tape.

Table 1: Overview of the return types of the terminal

and function set.

Name ret type type arg1 type arg2

LOAD tape int data

FWD tape data /

REW tape data /

SEQ tape tape tape

END int / /

DPCM data num /

INV data num /

MIN data num /

SUB data num /

MTF data / /

RAW data / /

PEC data / /

DIV int int num

ERC INT int / /

ERC NUM num / /

4.6 Parameter settings

The experiments presented here were done using 2

populations of 500 individuals. The selection prob-

abilities of the di�erent genetic operations were:

� standard uniform subtree crossover 75%

� standard uniform mutation 20%

� reproduction 5%

� no depth or node count limit

� The selection strategy for the 3 genetic operators

was tournament selection with a tournament size

of 4

The island model requires additional parameters:

� exchange rate of 3 individuals every 10 genera-

tions

� the exchanged individuals (the ones being ex-

ported) were selected using tournament selection

� The worst individuals in destination subpopula-

tion were replaced by the imported ones

5 Results

5.1 Tool-box and decoder

To validate the presented results a set of software tools

have been implemented. The functions and terminals

needed by the gp software are provided by an imple-

mentation of the virtual machine.

In order to reverse the transformation an encoding for-

mat has also been designed. When executing an in-

struction, the data produced by the virtual machine

actually comprises a header and the processed input

data. This header describes the instruction used to

produce the data, the length of the data as well as

possible parameters required by the instruction. In

the present implementation this header is 9 bytes in

size. It is important to point out that the program

that produced the transformed data is encoded in the

output data. The entropy used as an objective crite-

rion in the �tness function, is thus the entropy of the

data and the program that created it.

Of course a decoder is required to reconstruct the orig-

inal data. Using the headers present in the data the

di�erent transformations can be reversed one by one.

One can decode the preprocessed �les and compare

them with the original data with a program such as

di�. The size of the statically linked decoder is 23534

bytes on a Linux x86 platform. Both the data and the

decoder should be transmitted to obtain the original

data. The gain in compression should exceed the size

of the decoder.

5.2 Entropy reduction

Files from the Canterbury Corpus were used as input

data and a separate preprocessor evolved for each of

them. The reduction of the entropy obtained for some



of the �les is given in table 2. The standard image

compression image lena, for example, has been trans-

formed so that is retains only 68.3% of its original

entropy. And this without any loss of information.

Table 2: Comparison between the initial entropy and

the entropy after preprocessing

File original H new H % reduction

kennedy.xls 3.57 0.7 78.4

laptop.bmp 7.76 3.3 56.5

lena std.ppm 7.75 5.2 31.7

mosaic.pnm 7.78 4.1 46.6

peppers.ppm 7.66 5.3 30.1

This reduction in entropy without loss of information

is not impossible. The evolved preprocessor exploits

the redundancy that is present in the data. This can

not be modeled by the formula for the entropy given by

equation 2. One would have to use conditional proba-

bilities when computing the entropy to account for this

kind of redundancy. This higher order redundancy is

however very much there and is (partially) exposed by

transforming the data. Although reducing the entropy

of given data is not an easy task, it is of no immedi-

ate use as such. The idea behind reducing the entropy

is to improve the compression rate. To illustrate this

table 3 gives a comparison between the compression

ratio of the data with and without preprocessing. The

compression algorithm used here is bzip2. 6

Table 3: Di�erence in compression ratio after prepro-

cessing. Initially the lena could be compressed to 74%

of its initial size. After preprocessing the compression

ration is 68% of the size.

File ratio new ratio % reduction

kennedy.coded 0.12 0.02 80.8

laptop.coded 0.53 0.43 19.1

lena std.coded 0.74 0.68 7.9

mosaic.coded 0.72 0.52 28.3

peppers.coded 0.80 0.69 14.3

One can notice some di�erence between the gain in

entropy and the gain in compression size. The gain in

compressed size can be smaller than the reduction in

6Bzip2 is free implementation of the Burrows-Wheeler
transform. Bzip2 was invoked with the maximum compres-
sion parameter -9.

entropy because Burrows Wheeler transform [1] used

by bzip2 can to some extent model the redundancy be-

yond the single symbol probabilities. In other words,

bzip2 already breaks the theoretical limit computed

using the entropy formula in equation 2. That is why

the gain is somewhat lower in this case.

5.3 Filters

It was initially expected that, given the operations

which can process chunks of data, the evolved pro-

grams would process the entire input data in a piece-

wise manner. That is, the programs would consist of a

sequence of operations on contiguous parts of the data.

The function set provided to the genetic programming

framework certainly would allow for such programs to

be evolved.

This was however not the case, in the �rst experiments

only small fractions of the data were being processed.

In their experiments Nordin and Banzhaf [10] have

chosen to evolve separate programs for segments of

�xed size, chunking, to avoid a similar problem.

The reason behind this phenomenon is that the en-

tropy is a global measure over the entire output tape.

Initial programs may indeed reduce the entropy. But

the growth of these programs can adversely a�ect the

initial changes to the entropy. Thereby making the

results of the genetic operations like crossover less �t.

This has been observed even when the initial popula-

tion was seeded with full grown trees.

(SEQ (SEQ (SEQ (LOAD (DIV 67 2)(DPCM 1))

(SEQ (LOAD END (DPCM 1))

(REW (DPCM 3))))

(SEQ (REW (SUB 1))

(REW (DPCM 3))))

(SEQ (REW (SUB 1))

(REW (DPCM 3))))

However with the introduction of the special END

terminal in the set an interesting result showed up.

This dynamic terminal returns the number of symbols

left on the input tape. The evolved programs became

�lters. Most of the data goes through several trans-

formations. In the example above, the program can

be divided in 2 parts. First, 33 symbols are load into

the machine and DPCM coded using the (LOAD (DIV

67 2) (DPCM 1)) instruction. The second part of the

program processes far more symbols. The instruction

(LOAD END (DPCM 1)) instruction loads all the sym-

bols remaining on the input tape and DPCM codes

these. Using the (REW (DPCM 3)) instruction the

DPCM coded data is used again as input. This time

the data is DPCM coded again but only every 3-th



symbol is being processed. The data will undergo 4

more transformation after this step. The remain trans-

formation are in order: SUB, DPCM, SUB, DPCM.
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Figure 3: Evolution of the adjusted �tness of the best

individual for the di�erent data �les, average of 8 runs.

6 Conclusion

This experiment presents a new approach for combin-

ing genetic programming and lossless data compres-

sion. The chosen approach develops preprocessing pro-

grams which are tailored to the data one wishes to

compress. The obtained results are encouraging both

in terms of gain in compression as for the computation

time required to evolve the programs. One should note

that, although the experiments were done using a par-

allel software package, the speed improvement results

from the �tness function as well as the fact that we

focus on preprocessors. Surprisingly the evolved pro-

grams were mostly �lters although the provided func-

tions and terminals allowed to evolve to more complex

preprocessors.
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