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Abstract

This thesis presents Genetic Algorithm for Deriving Software (Gads), a new 
technique for genetic programming. Gads combines a conventional genetic 
algorithm with a context-sensitive grammar. The key to Gads is the 
ontogenic mapping, which converts a genome from an array of integers to a 
correctly typed program in the phenotype language defined by the 
grammar. A new type of grammar, the reflective attribute grammar (rag), is 
introduced. The rag is an extension of the conventional attribute grammar, 
which is designed to produce valid sentences, not to recognise or parse 
them. Together, Gads and rags provide a scalable solution for evolving 
type-correct software in independently-chosen context-sensitive languages. 
The statistics of performance comparison is investigated. A method for 
representing a set of genetic programming systems or problems on a 
cladogram is presented. A method for comparing genetic programming 
systems or problems on a single rational scale is proposed.
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Acronyms & notations
But the scene o f  this narrative is laid in the South o f England and takes place in and around 
Knotacentinum Towers (pronounced as if written Nosham Taws), the seat o f Lord Knotacent 
(pronounced as if written Nosh).

But it is not necessary to pronounce either of these names in reading them.

Nonsense Novels, Stephen Leacock, 1911.

The following acronyms and notations are used without further elaboration 
throughout this thesis. I have tried to adopt the rule that acronym letters 
are named individually if in upper case, and pronounced phonetically if in 
lower case.
a

Ô

ADF

Probability of a type 1 error; level of significance.

Least d which can be detected 95% reliably.

Automatically defined function. A function whose definition is 
evolved automatically, and which may be used by other parts of the 
individual it is part of.

anova
Analysis of variance.

BNF
Backus-Naur form or Backus Normal form.

CFG
Context free grammar.

CSG
Context sensitive grammar.

d
Displacement; difference in means of two simulated populations.

ECJ
A Java-based evolutionary computation and GP research system [Luke, 
2001 ].

ES

EPF

ET

GA

Evolution strategy.

Empirical (or estimated) power function.

Expression tree. A tree showing an expression such as a Lisp S- 
expression. All nodes are terminal symbols. Internal nodes have arity 
greater than 0. Leaf nodes have arity equal to 0. Contrast with PT.

Genetic algorithm.
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Gads
Genetic algorithm for deriving software. Two editions of Gads are 
presented in this thesis. Gads 1 was previously described in [Paterson, 
1996]. Gads 2 is described in this thesis for the first time. When 
neither edition is specified. Gads is a more general reference to any- 
edition in the series.

GE

GCL

GEP

GP

LHS

PT

rag

RHS

RMS

RNG

SA

sag

SGP

STGP

V

Grammatical Evolution, a GP system desribed in [Ryan, 1998a].
Historically, GE lies between Gads 1 and Gads 2.

Global confidence level, 95%.

Gene Expression Programming [Ferreira, 2001].

Genetic programming.

Left hand side (of a BNF production).

Parse tree. A tree showing the derivation or structure of a sentence 
according to a grammar. Internal nodes are nonterminal symbols and 
leaf nodes are termmal symbols. Also called derivation tree or syntax 
tree. Contrast with ET. !

.1
Reflective attribute grammar. I

Right hand side (of a BNF production).

Root mean square.

Random number generator.

Simulated annealing.

Standard (ie non-reflective) attribute grammar.

Standard (ie Koza-style) genetic programming.

Strongly Typed GP [Montana, 1995] and [Clack, 1997].

Coefficient of variation = standard deviation -f- mean.
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Introduction

Genetic programming (GP) is a method for automatically developing 
computer programs. Automatic means that programs are produced by 
specifying what they are to do, not how they are to do it. For example, a 
function f  which computes the square root of its argument may be specified 
by

This describes what f  does, but it says nothing about how it might do it.

The current explosion of interest in GP was triggered by the publication of 
Genetic Programming: on the programming o f computers by means o f 
natural selection [Koza, 1992], and most work in GP since then has been a 
development of Koza's ideas. Koza's approach is the GP mainstream, and as 
the de facto standard it is sometimes referred to as standard genetic 
programming (SGP).

The remaining subsections of this introduction summarise this thesis and 
place it the context of other GP work, as follows:
§1.1 Outline of GP

Presents a general description of GP.
§1.2 Outline of Genetic Algorithm for Deriving Software (Gads)

Introduces the main topic of this thesis: Gads.
§1.3 Related work

Places this thesis in context of current GP systems.
§1.4 Motivation

Explains the aim of this work.
§1.5 Contribution

Summarises the main contributions of this thesis.
§1.6 Reading guide

Summarises the main sections of this thesis.



1.1 Outline of GP

GP is a child of the genetic algorithm (GA). The seminal work on GAs is 
Adaptation in natural and artificial systems [Holland, 1992]. In outline, GAs 
work as follows.
1 Initialisation

Generate an initial population at random.
2 Evaluation

Compute the fitness of each individual in the population, which is a 
measure of how well it meets the requirements.

3 Breeding
Breed a new population, favouring fitter individuals as parents.

4 Termination
If the population contains an individual which meets the requirements, 
or if some other limit is reached, then stop. Otherwise continue from 
step 2.

For example, suppose we wish to design a roof truss in the form of a 
triangle with 2 braces on each side:

Figure 1-1: R oof tiuss

We can reasonably expect the truss to be symmetrical, so for a given height 
and width there are 4 variables, shown in the figure as a, h, c and d. These 
are real values within a limited range. We can thus represent any individual 
design by a real array of length 4, and an initial population of designs could 
easily be generated with a random number generator (RNG). An array of 4 
reals permits designs where the braces cross each other or cross the centre 
of the truss. If we want to exclude these or similar possibilities, then a 
different representation might be necessary.



The fitness of an individual design is computed by means of a fitness 
function. The fitness function is problem-specific, and is essentially a 
definition of the problem to be solved. Continuing with the truss example, 
the fitness function could be a procedure which takes the 4 real numbers as 
arguments and computes properties such as cost, weight, or strength. 
Which properties are computed depends on the aim of the exercise. The 
result is a scalar value representing how good the individual is. The 
individuals in the initial population can be expected to be of poor quality, 
but they will not all be equally poor. By chance, some will be better than 
others.

Parents are chosen to breed a new generation in such a way that fitter 
parents are more likely to be selected. The crossover technique is used to 
produce children. Each parent is split in two at some position along its 
length, and a child is formed by joining the first part of one parent with the 
second part of the other. By joining the other two parts, a second child can 
be produced at the same time for little extra effort. If the representation is 
fixed length, then both parents m ust be split at the same position. Various 
modifications of this simple form of crossover, and various other genetic 
operations such as mutation, are used. With the truss example, since a 
parent consists of only 4 reals, there are only 3 internal crossover points.

Notice that GA does not guarantee to find a solution or stop within any 
specified number of steps. In practice it continues until a satisfactory 
solution is found, or some resource is exhausted.

For evolution to work, two things are necessary: the fitness of the children 
must correlate with the fitness of the parents, and there m ust be variation 
in the children's fitness. These two conditions result in a situation where 
cliildren sometimes outperform their parents. In this environment, selective 
breeding acts like a ratchet, evolving ever fitter individuals.

There are countless possible variations to each step. For example, the data 
type of individuals is not limited to one-dimensional arrays; multi­
dimensional arrays, graphs and other data types have been used 
[Michalewicz, 1994]. Fitness may be a single scalar value, or there may be 
multiple objectives. There may be multiple subpopulations, with migration 
from one subpopulation to another. There may be different species in 
competition with each other. The best individuals may be guaranteed a 
place in the new population (elitism). Crossover need not be hmited to word 
boundaries. A degree of random mutation may be introduced. The 
probability of an individual being selected for breeding may be proportional 
to its fitness value (roulette or fitness-proportionate selection) or the fitness 
values may only be used for ranking (tournament selection). The entire 
population may be replaced on each cycle (generational) or one individual at 
a time (steady state).



To apply the GA model to the evolution of programs, some changes are 
needed. If programs were represented as character strings, it would be 
possible to use the GA model directly, with an array of characters rather 
than real numbers. But in such a scheme, children would very rarely be 
syntactically valid. For example, the probabihty that even the opening and 
closing parentheses would match in a child formed by concatenating parts 
of two parent programs split at random would be infeasibly small. SGP 
therefore uses a different form of representation for its individuals: the 
expression tree (FT). Figure 1-2 shows the FT for the Lisp expression "(GT X 
(+ X V))". In this expression, "GT" stands for greater than, and the whole 
expression is Lisp for x > (x + v). All nodes of the FT are terminal symbols 
of the grammar. Internal nodes are functions or operators which take 
arguments. External nodes are variables or constants which take no 
arguments. Crossover in SGP is defined to swap whole subtrees between 
two parents. Mutation can also be redefined in terms of subtrees. The 
language of the individuals can be defined in such a way that this form of 
crossover always produces children which are syntactically and semantically 
valid.

X V

Figure 1-2: Expression tree for "(GT X (4- X V))"

SGP programs are usually S-expressions in a first-order subset of Lisp 
augmented with special-purpose functions relevant to the problem domain. 
Lisp has the advantage that S-expressions are themselves Lisp objects. It is 
therefore possible to manipulate individuals for operations such as 
crossover, and then to evaluate them to compute their fitness.

An example of a fitness function for a square root function is as follows. 
We first define the root mean square (RMS) error in fas:

where X is a sample of real values x. RMS ranges from 0 to infinity, with 0 
corresponding to the ideal For fitness-proportionate or fitness-ranked 
selection we need a fitness function in which higher values are better.



This can be done by an expression such as:

1
f i tness[f)

\ + R M S ( f )

It should be noted that applying a GA to a data type other than a linear list 
or array — even to trees — is not peculiar to SGP. [Michalewicz, 1994] 
describes the application of GAs to many different data types. What is 
unique to GP in general and SGP in particular is the principle that the 
individual — however represented — represents an executable program.

Given the above outline it is perhaps not surprising that GA and GP are 
often described with reference to On the origin o f species by means of 
natural selection [Darwin, 1859]. Although this is understandable, it is not 
accurate, because neither GA nor GP are concerned with the evolution of 
new species, nor do they use natural selection. Even multi-species GP 
systems do not aim to produce new species. So far from using natural 
selection, in which there is no distant goal, both GA and GP require an 
explicit fitness function to be provided by the user to direct the selection 
towards the user's goal. It follows that GA and GP are based not so much 
on Darwin as on the selective breeding programmes for animals and plants 
which date from prehistorical times. [Koza, 1996a] refers to animal 
husbandry. What is different is that following Darwin we have a better 
understanding of the principles by which such programmes work. Genesis 
chapter 30 verses 37-42 describes a selective breeding programme in 
existence before the principles were understood.

1.2 Outline of Gads

Gads evolves type-correct sentences in a given context-sensitive language. 
The language is defined by a formal grammar which is separate from the 
underlying evolutionary system. If the grammar defines a programming 
language such as Lisp, C or Java, then Gads evolves type-correct programs.
If the grammar defines a language for describing electronic circuits, neural 
nets, or bin packing, then Gads evolves electronic circuits, neural nets, or 
bin packing solutions. However, this thesis only demonstrates the evolution 
of programs in one context-sensitive programming language.



The main components of a Gads system are:
1 An evolutionary system such as a GA;
2 A formal grammar for the desired language;
3 An ontogenic mapping from genotype to phenotype;
4 A fitness function which defines the problem to be solved.

Of these, the evolutionary system and the fitness function are standard and 
are not explained further here. The use of a formal grammar and the 
ontogenic mapping from genotype to phenotype require explanation. An 
outline explanation is given below.

Formal granunars have been used to specify programming languages for 
many years. [Naur, 1963] introduced Backus-Naur form (BNF) to give a 
context-free definition of Algol 60. Context-free grammars (CFGs) are 
simple to understand, but to represent the context-sensitive aspects of a 
language, it is necessary to use a context-sensitive grammar (CSG). The 
most commonly used type of CSG is the sag [Pagan, 1981].

Grammars are commonly said to generate sentences in the language they 
define, but in practice, they are more often used to parse sentences, in the 
process of compiling or interpreting them. Each sentence in a language has 
a parse tree (PT). Figure 1-3 shows a PT for the same Lisp expression used 
for the ET in figure 1-2. In the PT, internal nodes are nonterminal symbols, 
and leaf nodes are terminal symbols, of the language. (The actual grammar 
is not given here. There are infinitely many possible grammars for a given 
language. An example of a grammar corresponding to this PT is syntax A in 
table 2-3.)



sexp

application

arity 2 sexp sexp

GT input application

arity 2 sexp sexp

input Input

X V

Figure 1-3: Parse tree for "(GT X  (+  X  V))"

Using a grammar to generate a sentence involves growing a PT, starting 
from a single node for the language start symbol, and repeatedly using the 
grammar rules to expand nonterminal nodes, until all the leaves of the PT 
are terrninal symbols. With a CFG this is relatively straightforward, but with 
a sag it is so inefficient as to be Infeasible. This thesis introduces the 
reflective attribute grammar, which is an enhanced attribute grammar that 
can be used to generate sentences in a context-sensitive language efficiently.

Generating a PT is a matter of choosing which rules to apply and which 
order to apply them in. This choice can be represented as a list of rules. 
Since a grammar can only have a finite number of rules, it is possible to 
number them, so a list of rules can be represented as a list of rule numbers. 
A list or array of numbers is precisely the kind of data that GAs operate on. 
Thus, we have a route from GA individuals, as lists of numbers, to type- 
correct sentences in any context-sensitive language we can define by means 
of a reflective attribute grammar (rag). This is called the ontogenic mapping.

In fact it is not quite as simple as the above outline suggests. The numbers 
in a GA individual are gene values; the numbers which direct the grammar 
to grow a PT are rule numbers. Although these are both numbers, they have 
different ranges, and a translation step is necessary. Beginning with the 
translation from gene values to rule numbers, the ontogenic mapping uses 
the gene values to select rules from the grammar and construct a PT, from 
which a type-correct sentence can be extracted.

Also, although the ontogenic mapping cannot produce invalid sentences, 
because it uses the grammar which defines the language in question, it can



fail to complete the process, resulting in a PT in which one or more leaves 
are nonterminals. This can happen if the GA individual does not have 
sufficient genes, or if the gene values select rules which lead to further PT 
growth instead of PT termination. However it happens, a repair mechanism 
is necessary. This is implemented by specifying a default rule for each - 
nonterminal in the grammar.

Gads therefore makes a clear distinction between an individual's genotype, 
which is the list or array of numbers by which the individual is represented 
inside a GA or other evolutionary system, and the phenotype, which is the 
sentence (ie program or other object) that is the desired solution. The 
phenotype language is the language in which the phenotype is written. Key 
properties of the ontogenic mapping appear to be (1) whether it supports 
neutral evolution, and (2) whether it is many-to-one.

1.3 Related work

[Ryan, 1998a] describes Grammatical Evolution (GE), which is closely related 
to Gads. GE develops the idea of Gads 1 and addresses some of its 
shortcomings. This thesis, in turn, adopts some of the GE ideas to develop 
Gads 2. The relationship between Gads and GE is described more fully in §5 
Gads2.

1.3.1 Using formai languages

There is a progression of phenotype languages from SGP's original small 
untyped expression languages to large context-sensitive languages now 
possible with Gads.

In the original form of SGP [Koza, 1992], there is only one data type (usually 
floating point), and there are no unbound variables. Steps m ust be taken to 
force all calculations into this mould. For example, to avoid divide-by-zero 
exceptions, a protected division operator {%) is used which always returns a 
valid floating point value even if its denominator is zero; to obtain Boolean 
values, floating point values are compared to zero; and so on. The net 
effect is that SGP produces programs in an untyped expression language.

This phenotype language is simple enough to describe by a CFG. Syntax A 
(table 2-3) is an example of a CFG which defines the language of the cart- 
centering problem.

Although untyped expression languages are versatile, there has been much 
interest in extending SGP beyond the limitations of untyped expression 
languages. Sequencing, iteration, abstraction (automatically defined 
functions, or ADFs) and data types have been added to the basic model. But



the methods of achieving these extensions have been inelegant, incomplete 
and restrictive, especially when compared with the facilities available to 
human programmers using everyday programming languages. For example, 
sequencing [Koza, 1992] was initially achieved by having a sequence 
operator PR0GN2 that took two arguments. It evaluated the arguments'in 
order. This allowed a two-step sequence; for a longer sequence it was 
necessary to nest or cascade the two-step operator. In [Koza, 1994] 
abstraction was initially achieved by having the user prescribe how many 
procedures and how many parameters each should take, in advance of any 
evolution; in chapters 21-25 a method of evolving this architecture Is 
presented. However, it is still within the context of an untyped expression 
language.

Despite their simplicity, untyped expression languages are versatile. As well 
as solutions to numerical or symbolic problems, untyped expressions can 
represent the construction of neural nets, electronic circuits and other 
objects [Whitley, 1995], [Koza, 1998c]. Thus it has been possible to apply 
SGP to a surprisingly wide range of problems.

[Montana, 1995] and [Clack, 1997] introduce Strongly Typed GP (STGP), an 
enhanced form of SGP which supports multiple data types. STGP uses 
protective crossover to enforce data type constraints. The types are 
specified by the user, not evolved by the system. Specifying these details 
requires that the user has insight into how the problem might best be 
solved, which slightly weakens any claim to be an automatic programming 
method.

A criticism of these extensions to the original untyped expression language 
is that they are all somewhat ad hoc. Each extension addresses one 
particular aspect. Although abstraction, sequencing, iteration, data types 
etc have been exhaustively studied as part of programming language design, 
it is difficult to take advantage of this by piecemeal extensions. Several 
researchers have integrated formal grammars with SGP.

[Whigham, 1996] introduces CFG-GP, which uses an explicit CFG so that the 
phenotype may be in any desired context free language. The tree is a PT 
rather than an ET. Crossover is modified so that only subtrees with the 
same nonterminal root may be swapped. Mutation is modified in a similar 
way. The effect of this is to advance GP's range from untyped expression 
languages to context free languages.

[Florner, 1996] describes a system which is similar to [Whigham, 1996].

[Bruhn, 2002] describes a system also based on PT representation but for a 
tiny language (3 nonterminals) specialised for the knapsack problem. The 
PT is extended by adding attributes to the PT nodes which represent the 
linear constraints of the knapsack problem. The usual SGP genetic



operators are extended to ensure not only that the context-free grammar is 
satisfied but also that the linear constraints are satisfied. In effect this is a 
special-purpose attribute grammar, though it is not named as such. Bruhn's 
system performs better than the corresponding GA in [Michalewicz, 1994].

These systems maintain SGP's approach of representing individuals as trees, 
but use PTs rather than ETs. The parsing information in a PT is used by the 
genetic operators such as crossover to ensure that only valid offspring are 
produced. This extends the range of phenotype language to context-free 
languages. However, it is not obvious how these systems could be extended 
to CSGs. If a formal grammar is not used, it would be difficult to represent 
the rules of the language that m ust be enforced if the individual is to be 
valid; and while a CFG can be used to construct and maintain the integrity of 
PTs, the requirements of a CSG would be difficult to implement as a form of 
protected crossover.

Gads evolves type-correct sentences in a given context-sensitive language. It 
is thus a major step in the direction of increasing the range of phenotype 
languages which can be evolved.

1.3.2 Mapping genotype to phenotype

In most GP systems, the ontogenic mapping is one-to-one, and is so simple 
that it is easily overlooked. It is commonly said that in SGP, genotype and 
phenotype are not distinguished. Strictly speaking this is not correct. The 
SGP genotype is a Lisp ET, while the phenotype is a Lisp program. The 
ontogenic mapping in SGP is therefore a tree traversal, which is a one-to-one 
mapping.

In Compiling Genetic Programming System [Nordin, 1994a], individuals are 
arrays of machine code instructions. This system is unusual in that 
genotype and phenotype truly are not distinguished, even by a one-to-one 
mapping. The genotype and phenotype are one and the same. Since 
machine code does not have the complexity of a high level language, simple 
GA crossover can be used. However, minor modifications to the crossover 
and mutation are introduced to ensure that individual instructions are 
viable and do not, for example, have invalid operation codes. This approach 
offers great advantages in efficiency, since no translation or interpretation 
of the phenotype is necessary.

[Keller, 1996] describes a system with an ontogenic mapping. The mapping 
is initially from codons (small integers) to the terminal symbols of the 
phenotype language. A repair method is needed to repair any invalid 
sequences that result. The system does not use formal grammars.
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[Ferreira, 2001] introduces Gene Expression Programming (GEP), in which 
genotype and phenotype are separate, in that the genotype and phenotype 
operators can be partitioned. The genotype is essentially tree-structured, 
but it is not a PT or a conventional ET. There is no translation process 
which maps genotype elements into phenotype elements. (Section 3.4.1 ibid 
emphasises this), ie phenotype elements are present in their final form in 
the genotype. Ontogenesis consists of a breadth-first traversal of the 
genotype tree. The main difference between GEP and SGP is in the genotype 
representation, which allows unused elements to accumulate in the 
genotype without appearing in the phenotype. While GEP is shown to 
perform well on some problems, it is not obvious how it might be scaled to 
provide sequencing, iteration, abstraction or data types.

1.4 Motivation

The aim of this work is to address some of the limitations identified in §1.3 
Related work.

1.4.1 Formal grammars

In the early days of programming, languages were defined by their 
compilers. This led to so many inconsistencies that the benefit of a 
separate formal definition of the language was quite obvious, and nowadays 
languages are almost always defined by formal grammars. Given that the 
business of GP is to produce programs, it is something of an anomaly that 
the phenotype language is not represented by a formal grammar in SGP.
SGP embodies mechanisms to define a language but which have little 
resemblance to a formal grammar. Those GP systems that have 
incorporated grammars have used CFGs, which are not powerful enough to 
represent the full complexity of a programming language.

By incorporating full-size CSGs into GP, I hope to make the benefits of 
programming language design such as abstraction, sequencing, iteration, 
data types — not to mention future programming language developments — 
available to GP at a stroke. Further, by separating the language from the GP 
system, it should be easy to change the language to evolve programs in any 
language. By using languages for timetables, electric circuits, or molecules, 
we should be able to evolve these kinds of object, using the same underlying 
evolutionary engine. Decoupling the language from the evolution should 
make many different kinds of GP simpler to achieve.

1.4.2 Simple genotype

SGP and most GP systems use a tree-based genotype. Although this was a ij
key development which made GP possible, it has some disadvantages. It 4
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makes GP so distinct from other forms of evolutionary programming that 
advances in one field may not be so easily transferable to another.

By using a genotype which is a simple list or array of integers, Gads brings 
GP back to the GA. This makes it possible to use existing GA software, to 
use existing GA theory, and to avoid existing patents on tree-based systems.

1.4.3 Change in representation

It is well known that changes in the representation of the genotype can have 
a major effect on the performance of GP, even with the same problem and 
fitness function. The Travelling Salesman Problem is an example of this 
[Michalewicz, 1994]. Indeed, the basis of SGP is to represent programs as 
ETs and not as character strings [Koza, 1992].

Therefore, it is reasonable to expect that Gads would offer improved 
performance for at least some classes of problem, simply by virtue of a 
change of representation; although by the same reasoning. Gads should 
have worse performance on others. An example of improved performance 
is given in §2 Gads i, where solutions to the cart-centering problem are 
found in generation 0 — that is, by random search.

1.5 Contribution

The main contributions of this thesis are:
Extending the range of GP to context-sensitive phenotype languages

Gads technique involves a formal grammar as part of the specification 
of the ontogenic mapping. By changing the grammar, the phenotype 
may be produced in Lisp, Java or any other language. The range of 
languages need not be limited to programming languages. For 
example, if it is possible to devise a language for electronic circuits, 
timetables or bin packing, then it should be possible for Gads to find 
solutions to these problems.

Exporting GP to other evolutionary systems
The Gads genotype is a list or array of integers. The simplicity of this 
data structure means that Gads could be fitted on to a range of base 
technologies, such as GAs, simulated annealing (SA), or even evolution 
strategies (ESs), though to date, only GAs have been used. Thus, Gads 
is not closely coupled to any particular underlying technology. This 
brings several advantages. One, Gads is able to leverage existing 
technologies. Two, Gads is able to draw on existing theories. Three, 
since Gads does not use tree-based representations, existing GP 
patents are avoidable.
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1.6 Reading guide

The main sections of this thesis are as follows. §2 Gads 1 describes the first 
implementation of Gads, which used a small CFG and a primitive ontogenic 
mapping. §3 Statistics and §4 Grammars address the main limitations of §2 
Gads 1. §5 Gads 2 describes the second implementation of Gads, which 
uses a full-size CSG and a more advanced ontogenic mapping. §6 
Conclusions discusses the strengths and weaknesses of the work, and where 
it leads.
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Gads 1

This section describes Gads 1. Much of the material in this section is taken 
from [Paterson, 1996], which reports the results of the first experiments to 
investigate the Gads technique.

The aim of the investigation was to decide whether Gads was feasible. For 
this reason, many aspects of the implementation are far from optimal. A 
teclmique that only works with careful tuning is not as valuable as one 
which works, however inefficiently, without it. Also, having found that Gads 
work without careful tuning suggests that there is room to improve its 
performance at a later date.

2.1 Introduction

Gads 1 is an implementation of GP that uses array genotypes. The Gads 1 
genotype is fbced-length array of integers which, when read by a suitable 
generator, causes that generator to write the program that is the 
corresponding phenotype. There is therefore a clear distinction between the 
genotype and the phenotype. The mapping from genotype to phenotype is 
called the ontogenic mapping. The genotype is operated on by the genetic 
operators — crossover, mutation and so on — in the usual range of ways 
available to GAs. To evaluate the fitness of a genotype, Gads 1 tests the 
phenotype in the environment in which it is to operate. The result of the 
testing gives the fitness of the phenotype, and by implication, of the 
underlying genotype.

Using an array genotype has the immediate advantage that conventional GA 
engines can be used. Using a generator to convert from genotypes to 
phenotypes is not new. [Michalewicz, 1994] gives many examples, though 
not using the terms genotype and phenotype.

The reason for investigating alternatives to FT genotypes is that the 
behaviour of a GA system (and GA is taken here to include GP as a particular 
case) depends greatly on the way the genotypes represent the phenotypes. 
Thus, we should expect some change in performance to result from a 
change of design. Whether the change is for the better or worse is only to 
be found by experiment, but it would be reasonable to expect that there are 
some classes of problem for which one approach is more suitable than the 
other. The range of programs that can be produced by list- or tree-based GP 
should, however, be identical.
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2.2 Principles of Gads 1

2.2,1 The phenotype language

The phenotype language is the programming language in which the 
phenotypes produced by Gads 1 are written. The choice of phenotype 
language therefore depends on the problem domain which Gads 1 is 
addressing. Lisp is an obvious candidate to begin with, because so much GP 
has already been done using it, and results are available for comparison; but 
Gads 1 is not limited to Lisp.

2.2.2 The ontogenic mapping

There are many candidates for the ontogenic mapping. For example, a 
feature common among text editors is the ability to accept a sequence of 
mark-up commands to apply to a file. We can assign an identifying integer 
to each mark-up command, so that an editing sequence can be coded as a 
list of integers. Given an initial file to edit, the editor is then an 
implementation of an ontogenic mapping. [Keller, 1996] describes a many- 
to-one mapping from genes to the terminal symbols of the phenotype 
language. Program transformations offer yet another possible class of 
genotype mappings. Gads 1 uses a BNF definition of the phenotype language 
syntax as the basis of the ontogenic mapping. The syntax of the phenotype 
language is written in BNF as a set of productions of the form:

LHS ::= RHS

where the left hand side (LHS) is one nonterminal symbol of the language, 
and the right hand side (RHS) is a concatenation of zero or more symbols 
(terminal or nonterminal) of the language. The productions are numbered 
from 0 to n, so that any production can be represented by a number in the 
range [0, n]. For example:

production
<input>0 <sexp>

1 <sexp>
2 <sexp>
3 <sexp>
4 <input>
5 <inout>

(GT <sexp> <sexp>) 
(+ <sexp> <sexp>) 
(- <sexp> <sexp>)
X
V
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Thus, beginning with the start symbol <sexp>, a production sequence 
results in a particular program. For example, the sequence 1,0, 4, 2, 0,4, 0, 
5 progressively transforms the start symbol <sexp> into the expression - 
( GT  X ( +  X V )  ):

<sexp>
1 , (GT <sexp> <sexp>)
0 (GT <input> <sexp>)
4 (GT X <sexp>)
2 (GT X (+ <sexp> <sexp>))
0 (GT X (+ <input> <sexp>))
4 (GT X (+ X <sexp>))
0 (GT X (+ X <input>))
5 (GT X (+ X V) )

Every well-formed program in a language has a derivation according to the 
syntax of that language. A derivation is a sequence of productions which, 
when applied in turn, transform the language's start symbol into the 
program. Thus, any program can be represented by a derivation, and any 
derivation can be represented by the sequence of integers which correspond 
to the productions in its derivation. In short, any program can be 
represented as a sequence of integers in the range [0, n]. This is the basis 
for representation of programs in Gads 1.

Provded the phenotype language is context-free, using BNF brings many 
benefits;

BNF is well-established.
The BNF syntax for many languages is readily available.
A BNF generator produces all programs in a language. There are no 
programs which, due to some unintentional peculiarity of the 
generator, cannot be produced.
A BNF generator produces only well-formed programs. Unviable 
genotypes do not occur. Expensive repair mechanisms are not 
necessary.
It is feasible to include the BNF syntax of the phenotype as part of the 
input to Gads 1. Thus the phenotype language need not be hard 
coded into Gads 1.

The use of | to indicate alternatives in the RHS is a commonly-used BNF 
shorthand for several productions which have the same LHS. In Gads 1, this 
shorthand notation is not used. Each RHS consists of a single 
concatenation.
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2.2.3 The initial population

Each gene in the initial population is generated as a random number, 
distributed uniformly over the range [0, n\. This means that each 
production in the phenotype syntax is equally likely to occur at each gene in 
the genotype.

There are, however, infinitely many syntaxes for a given phenotype 
language. One syntax may be a simple renaming of another, or the 
relationship between them may be more subtle. Distinct syntaxes give rise 
in general to different distributions of programs in the initial population. 
The initial distribution can be controlled by the choice of syntax. The 
question of using a distribution other than uniform to generate the initial 
population, so that certain productions are favoured at the expense of 
others, is not discussed here. Nor is the question of using different 
distributions for different gene positions along the chromosome.

2.2.4 Generating the phenotype

A BNF definition of the phenotype language is needed. For this 
investigation, simple BNF definitions of Lisp were used, with about 10 
productions. Phenotypes may be generated as strings or ETs. Gads 1 uses 
ETs.

A string phenotype is a character string containing embedded nonterminal 
symbols. Applying a production involves searching the string for an 
occurrence of the nonterminal which is the left hand side of the current 
production. Although simple, this involves much linear searching, and care 
is needed to avoid creating spurious nonterminals by the juxtaposition of 
terminals. A data structure can be used to keep a record of the position and 
type of all nonterminals in the string, removing the need for linear searches 
and so improving performance.

An ET phenotype requires a data structure for ET nodes. Each node of the 
ET represents one symbol of the phenotype language, and has links to zero 
or more child nodes. The number of links a node has depends on the 
symbol it represents. When a nonterminal node is expanded, links to child 
nodes are added, depending on the RHS of the production. For example, the 
partially developed phenotype

(GT {- X <sexp>) <sexp>)
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is represented by the ET shown below:

GT

<se>9>

X <sexp>
Figure 2-1 : A  partially developed ET

Whichever form of phenotype is used, the generator begins by initialising a 
new phenotype, and then applies the productions identified by the genes in 
the order they occur along the chromosome. The initial value of the 
phenotype is usually the start symbol of the language; for Lisp, this is 
<sexp>. In more general terms, the initial value may be any partially- 
generated program such as

(GT <sexp> <sexp>)

Using a partially generated program limits Gads 1 phenotypes to a subset of 
the programs in the phenotype language.

2.2.5 Inapplicable productions

As ontogenesis proceeds, each gene in turn identifies the next production to 
apply. But a given production can only be applied if the developing 
phenotype contains the nonterminal which is the production's LHS. For 
example, given the partially generated phenotype:

(GT <sexp> <numeral>)

only a production with <sexp> or <numeral> on its LHS can be applied. If a 
gene selects a production which cannot be applied, the generator passes 
over that gene, and moves on to the next gene.

2.2.6 Residual nonterminals

After all the productions in the genotype have been applied, there may still 
be some nonterminals in the phenotype. This could happen because the 
ontogenic mapping reached the end of the chromosome before all the 
nonterminals were expanded, or perhaps because the necessary genes for

18



the nonterminal were not present in the chromosome. However it happens, 
the end result is a phenotype which is not fully developed, and whose 
fitness therefore cannot be evaluated in the usual way.

There are several ways of dealing with this. The phenotype can be rejected 
as unviable, or penalised with a very low fitness, without further evaluation.

It is also possible to repair the phenotype. This has the advantage that the 
resulting phenotype is well-formed, so it can be evaluated in the ordinary 
way, and can contribute to the search for a good solution. Gads 1 uses a 
simple repair method, which is to expand remaining nonterminals to a 
default terminal value. For example, every remaining <sexp> can be 
replaced by 0, every <atom letter> by A, and so on. However, deciding what 
the default value should be for any given nonterminal would not be entirely 
trivial for a large language. The default could even be a random value, but 
this raises the question of endless iterations and non-repeatability.

2.2.7 Evaluation

Evaluating the individual requires either that it be compiled, linked and 
executed; or that it is interpreted.

Compiling and linking introduces a considerable overhead, but if the fitness 
evaluation involves much processing, the overhead is likely to be recovered 
in more efficient execution.

Given that Gads 1 phenotypes are ETs, it was simple to evaluate them by 
means of an ET interpreter. The interpreter was designed to give any 
residual nonterminals default values during interpretation, so that the 
repair mechanism was actually implemented in the interpreter.

2,3 Experimental design

This section describes an experiment to test the Gads 1 technique by 
applying it to the cart-centering problem. The aim of the experiment is 
firstly to discover whether Gads 1 works at all, and secondly to begin to 
discover how various conditions affect its performance.

2.3.1 The problem

The problem is to find a program to control the motion of a cart. The cart 
can move to left or right along a straight frictionless track. At any time f, 
the position of the cart is x and it is moving at velocity v. The cart is subject
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to a force applied either in the positive or negative direction, so that the cart 
accelerates uniformly to the left or right. The control program can control 
the direction of the force, but not its magnitude; in particular, it cannot be 
switched off. By choosing appropriate units of measurement, mass of cart 
and magnitude of force, we can arrange that the optimal solution has a - 
simple form.

The control program controls the motion of the cart by computing whether 
to apply the force to the left or to the right. That is, the program calculates 
a given x and v. The aim of the control program is to bring the cart to rest 
(ie V = 0) at the origin (ie x = 0) in the shortest possible time. This problem 
has an analytical solution, which is:

if (x < vx ab^v)) then a = +0.5 else a = -0.5

This problem is chosen as a test case for Gads 1 because it is well-known, 
and gives a basis for comparison with tree based GP. [Koza, 1992] refers to 
further details of this problem in [Macki, 1982] and [Bryson, 1975].

2.3.2 Experimental conditions

This section outlines which conditions are held constant, and which are 
varied.

The experimental conditions which are held constant are outlined in table 
2 - 1 .

Value Description
GAGS-0.95 A conventional GA engine is used. See §2.3.3.
500 The population is fixed at 500 individuals.
uniform The genes of the initial population are randomly generated 

with a uniform distribution over [0, n] where n is the number 
of the last production in the syntax.

best of run The best individual found in the course of the run is 
designated as the solution. If several individuals have the 
same best fitness, the first one found is kept.

full term The run terminates after 50 generations.
ET Phenotypes are generated as ETs which can be interpreted. 

See §2.3.4.
Simulation Phenotypes are evaluated by simulating control of a cart for 

20 test cases. See §2.3.5
Table 2-1: Experimental constants
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The experimental conditions which are varied are outlined in table 2-2.

Name Values Description
Syn A, B Two syntaxes (ie genotype mappings) 

for the same phenotype language are 
compared. See §2.3.6.

Init <sexp>,
<application>

Two initial values for generating the 
phenotype are compared. See §2.3.7.

Sel ELITE 10%, 
ROULETTE

Two selection methods for the GA are 
compared. See §2.3.8.

Len 50,200 Two chromosome lengths are compared. 
See §2.3.9.

Table 2-2; Experimental variables

The above four experimental variables give a total of 16 sets of 
experimental conditions. The experimental variables are described in more 
detail below.

In addition to the experimental variables, three different sets of test data 
are used for each of the 16 conditions, making 48 runs in all. A different 
random seed is used to generate the test data in each of the 48 runs.

2.3.3 The GA engine

The GA engine used for this experiment is GAGS-0.95 [Merelo, 1994]. GAGS- 
0.95 was initially selected partly because it supports variable-length 
chromosomes. However, this facility is not used in the experiments.

GAGS is a conventional genetic algorithm, not especially tailored or 
customised for Gads 1. In fact it is in some ways less than ideal because the 
genes are real numbers rather than integers. They m ust be mapped from 
the real range [0,1] into the integer range [0, u] to identify a production. 
However, this illustrates an advantage of Gads 1 over tree-based systems, 
namely that it does not need a specialised GP engine.

2.3.4 Generating the phenotype
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The phenotype is generated as an EX. Each node of the EX Is implemented 
as a tuple of 3 integers:

(SYMBOL, LINKl, LINK2)

SYMBOL is a simple encoding which specifies a terminal or nonterminal of 
the phenotype language, l i n k i  and l i n k 2 are pointers to other nodes in 
the tree. The n i l  value is used when an actual pointer is not required. 
Zero, one or two of the links in a node may actually be used, depending on 
SYMBOL. For example, the partially developed phenotype

(GT (- X <sexp>) <sexp>)

is implemented as shown below:

<sexp> NIL NIL

<sexp> NIL NIL

Figure 2-2: Implementation o f an EX

This is the same example as is used in figure 2-1. The structure of the EX is 
identical, but in figure 2-2 more of the implementation is apparent. Since 
the nodes have three fields, the EX can be written as triples:

(GT,
(-, (X, NIL, NIL), (<sexp>, NIL, NIL) ),
(<sexp>, NIL, NIL)

The generator begins by creating a new EX as a single node. The first field 
of the node, s y m b o l , is specified by the experimental variables. The second
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and third fields, l i n k i  and l i n k 2 , are set to n i l . Generation then 
continues by applying the productions corresponding to the genes along the 
chromosome in turn. To apply a production, the generator traverses the ET 
from the root, in infix order, looking for a node whose s y m b o l  is the same 
as the LHS of the production. If no such node can be found, the production 
is ignored and the generator passes on to the next gene.

Once a suitable gene has been found, the s y m b o l  of the node is updated. If 
the production has only one symbol in its RHS this application is complete. 
If the production has more than one symbol in its RHS, one or both of the 
link fields are also used. For example, consider productions 5 and 6 of 
syntax A (table 2-3 below) being applied to the following node:

{<application>,
NIL,
NIL

)

For production 5, the result is:

(<arityl>,
(<sexp>, NIL, NIL), 
NIL

)

That is, a new <sexp> node is created, and connected to the tree by the first 
link in the node being updated. For production 6, the result is:

(<arity2>,
(<sexp>, NIL, NIL), 
(<sexp>, NIL, NIL)

)

That is, two new <sexp> nodes are created and connected to the tree.

2.3.5 Evaluating the phenotype

The fitness of the phenotype ET is measured by simulating control of the 
cart for 20 random (x, v) starting conditions uniformly distributed over the 
range [(-0.75, -0.75), (4-0.75, +0.75)]. A different random seed is used for 
each of the 48 runs. The same test cases are used throughout each run.

The repair mechanism for residual nonterminals (which are discovered 
during evaluation of the ET) is to Interpret them as 0. If the residual 
nonterminal occupies the s y m b o l  field of a node, then the entire subtree of
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the ET is interpreted as 0, whether the linlcs are nonterminals or not. If the 
residual nonterminal occupies the LINKI or L1NK2 field of a node, then that 
field is interpreted as 0.

Simulation requires a wrapper to convert the real number returned from the 
evaluation of the phenotype into an acceleration of +0.5 or -0.5. The 
wrapper used is:

if ( e v a l u a t e  > 0.0) then +0.5 else -0.5

where e v a l u a t e  is the result of evaluating the phenotype in the 
environment of x and v.

The simulation equations of motion are:

v(t+ r) = v(t)+m{t) (1)

x(t + t) = XO + Tv(r) + r^a{t) / 2 (2)

Equation (1) says that the velocity at time (f + x) Is the same as the velocity 
at time (f), plus any change due to acceleration a at time (f) for the duration 
X. If the acceleration is zero, there is no change in velocity. If the 
acceleration is greater than zero, the velocity at time (t + x) is greater than 
the velocity at time (f), and if the acceleration is less than zero, the velocity 
at time (f + x) is less than the velocity at time (f).

Equation (2) says that the position at time (t + x) is the same as the position 
at time (t), plus any change due to velocity v at time (f) for the duration x, 
and for the acceleration a at time (f) for the duration x. Of course if there is 
a non-zero acceleration, the velocity at the start of the time quantum will 
not be the same as the velocity at the end, but by making the time quantum 
small enough this error can be kept to an acceptable limit.

Taken together, the equations compute the velocity v and the position x of 
the cart at time (t + x) in terms of its velocity and position at time (t). The 
symbol x is the time quantum, which is set at 0.02 s. By computing these 
equations repeatedly the simulation computes the velocity and position of 
the cart at any desired time.

Simulation continues until either the simulated time runs out (at 10 s) or the 
cart is close enough to the origin of the (x, v) plane (ie x̂  + \^ < ?̂ ), where r 
is the target radius, set at 0.1 m.
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Thus it is not necessary for the simulated cart to come exactly to rest 
exactly at the origin. An approximate solution will do; the degree of 
approximation being controlled by the target radius r and the time quantum 
T. By contrast, the theoretical solution to this problem, given below in 
§2.3.9 Chromosome length, is the exact solution. The exact solution 
satisfies the approximate problem, but the converse is not true. The 
importance of this is that if the GP system is left to evolve after the 
theoretical solution has been found, it can go on to find solutions which are 
better than the theoretical optimum, which is puzzling unless you realize 
that GP and theory are not solving precisely the same problem.

The raw fitness is the sum of the simulated time over all 20 test cases, 
adjusted fitness is 1.0/(1.0+raw fitness).

The

2.3.6 Syntax

Two syntaxes are compared: A and B. They are shown in tables 2-3 and 2-4.

# production
0 <sexp> : : = <input>
1 <sexp> : : = <application>
2 <input> : = X
3 <input> : = V
4 <input> : = -1
5 <application> :;= {<arityl> <sexp>)
6 <application> ::= {<arity2> <sexp> <sexp>)
7 <arityl> = ABS
8 <arity2> = +
9 <arity2> = -
10 <arity2> =  *
11 <arity2> = %
12 <arity2> = GT

Table 2-3: Syntax A

# production
0 <sexp> <input>
1 <sexp> ::= <application>
2 <input> ::= X
3 <input> : V
4 <input> ::= -1
5 <application> = (ABS <sexp>)
6 <application> = (+ <sexp> <sexp>)
7 <application> = (- <sexp> <sexp>)
8 <application> = (* <sexp> <sexp>)
9 <application> = (% <sexp> <sexp>)
10 <application> = (GT <sexp> <sexp>)

Table 2-4: Syntax B
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Both syntaxes define the same phenotype language: a stripped-down first- 
order Lisp, containing only nested arithmetic expressions. All values are 
real numbers. The meaning of the terminal symbols is as follows:
X

V

-1

ABS

+

%

GT

A variable whose value is the position of the cart.

A variable whose value is the velocity of the cart.

The constant -1.

A function of one argument, which returns its absolute value.

A function of two arguments, which returns their sum.

A function of two arguments, which returns the first less the second.

A function of two arguments, which returns their product.

A function of two arguments, which returns the first divided by the 
second. If the second is within ±0.000001, the value 1 is returned. 
This avoids the risk of dividing by zero.

A function of two arguments, which returns 1 if the first is greater 
than the second, and 0 otherwise.

Although both syntaxes define the same phenotype language, the 
probability of any given program being produced varies between the two 
syntaxes. The difference in program probabilities can be shown for the case 
of function applications. The relative frequency of the various functions in 
programs generated using the two syntaxes is shown in table 2-5.

Function Syntax A Syntax B
ABS 50% 17%
+ 10% 17%
— 10% 17%
* 10% 17%
% 10% 17%
GT 10% 17%

Table 2-5: R elative frequency o f functions

Syntax A is skewed towards ABS, at the expense of the other functions. 
Although ABS is involved in the optimal solution, it does not comprise 50%  
of the functions. Syntax B's phenotype distribution should be richer in 
likely solutions to the cart-centering problem.
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2.3.7 Initial value

Two initial values for generating the phenotype are compared: <sexp> and 
<application>.

<sexp> is the start symbol of Lisp. Using this as the initial value for 
phenotype generation means that the whole of the stripped-down Lisp is the 
range of phenotypes that can be generated. In particular, x, v and - i  are 
possible phenotypes.

In order to avoid these over-simple phenotypes, and force Gads 1 to 
generate at least one function application, we use <application> as an 
alternative initial value for program generation. This nonterminal occurs in 
both syntaxes, with the same syntactic meaning, although the resulting 
phenotype distribution is different.

2.3.8 Selection method

GAGS supports a range of selection methods. Two methods are compared. 
ROULETTE

GAGS forms a gene pool by selecting individuals from the old 
population in proportion to their fitness, using the roulette wheel 
algorithm. Pairs of parents are chosen at random from the gene pool 
and mated using uniform crossover. The offspring form the new 
population.

ELITE 10%
GAGS removes the worst 10% of the population, and replaces them by 
breeding. For each breeding pair, one parent is chosen by fitness 
proportionate selection, and the second is chosen by uniform random 
selection. The parents are mated using uniform crossover and added 
to the population.

2.3.9 Crossover

GAGS uses uniform crossover. Given that the Gads 1 chromosome is an 
array, with a definite beginning and a clear ordering of the genes along its 
length, one-point crossover might be expected to produce much better 
results. However, this is not an option in GAGS 0.95. Rather than develop 
yet another GA, it was decided to stick with GAGS, with the intention of 
discovering whether Gads would work with a less-than-optimal GA.

If uniform crossover is actually counter-productive, in the sense that it 
disrupts useful gene subsequences, then roulette selection is likely to
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perform badly. Elitism is likely to take more generations to produce any 
result at all, although the meaning of generation is different.

2,3.10 Chromosome length

Two chromosome lengths are compared: 50 genes and 200 genes.

The optimal program can be represented as:

(GT (* -1 X) (* V (ABS V) ) )

and can be represented (using syntax A) by as few as 21 genes:

<sexp>
1 <application>
6 (<arity2> <sexp> <sexp>)
12 (GT <sexp> <sexp>)
1 (GT <application> <sexp>)
6 (GT (<arity2> <sexp> <sexp>) <sexp>)
10 (GT ( * <sexp> <sexp>) <sexp>)
0 (GT / 'k <input> <sexp>) <sexp>)
4 (GT -1 <sexp>) <sexp>)
0 (GT -1 <input>) <sexp>)
2 (GT / k -1 X) <sexp>)
1 (GT ( * -1 X) <application>)
6 (GT / k -1 X) (<arity2> <sexp> <sexp>))
10 (GT -1 X) (* <sexp> <sexp>))
0 (GT / k -1 X) (* <input> <sexp>))
3 (GT ( * -1 X) (* V <sexp>))
1 (GT / k -1 X) (* V <application>))
5 (GT -1 X) (* V (<arityl> <sexp>)))
7 (GT ( * -1 X) (* V (ABS < s e x p > ) ) )
0 (GT ( * -1 X) (* V (ABS <input>) ) )
3 (GT ( * -1 X) (* V (ABS V ) ) )

However, it might not be reasonable to expect such a compact chromosome 
to arise in practice. The question is, how long m ust the chromosome be? In 
general, the shorter the chromosome the better, since shorter chromosomes 
require fewer computing resources.

A few simple experiments were carried out to show the relation between 
chromosome length and program length. 1 000 chromosomes of length 50, 
100 and 200 uniformly random genes were generated, and used to generate 
programs, beginning with <sexp>. The lengths of the programs were 
measured by counting the symbols (ie variables, constants and functions, 
but not parentheses or spaces).
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This question can also be answered analytically by the following method. 
Suppose we have an infinite chromosome with a uniform distribution of 
gene values. Rewrite the CFG as a set of simultaneous equations, according 
to these rules;
1 Merge rules which have the same LHS into a single rule using the bar 

symbol (1) to separate alternatives. For example, rewrite syntax A as:

<sexp>
<input>
<application>

<input> I <application>
X I V I - 1  
(<arityl> <sexp>)

I (<arity2> <sexp> <sexp>)
<arityl> ; :== ABS
<arity2> + | - | * | % | G T

2 Convert each rule into an equation by making the following
substitutions:

2.1 Replace each nonterminal by an algebraic unknown which represents 
the expected length of sentences derived from the nonterminal. (The 
simplest way to do this is to remove the angled brackets and italicise 
the name.)

2.2 Replace each terminal by the value 1 (which is its expected length). If 
you don't want to count a certain terminal, replace it by the value 0. 
This is done below with the terminal symbols ( and ).

2.3 Replace each : : = with =.

2.4 Replace concatenation in the RHS by addition.
2.5 Replace alternation by an averaging function; for example, replace:

P  I  Q I R  

by:

average (P , Q , R)
or:

(P + 0  + R) /  3

The substitutions must be done with care to avoid accidentally confusing 
terminal symbols and variable names. Rewriting syntax A leads to the 
following system of simultaneous linear equations:

s e x p  = a v e r a g e { i n p u t f  a p p l i c a t i o n )
i n p u t  = averaged, 1, 1)
a p p l i c a t i o n  = average(0 + a r i t y l  + s e x p  + 0,

0 + a r i t y 2  + s e x p + s e x p  + 0) 
a r i t y l  = 1
a r i t y 2  = averaged, 1, 1, 1, 1)
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which can be solved for sexp to give:

s e x p

Table 2-6 shows the mean program length for both syntaxes, both 
theoretical and empirical:

Genes Syntax A Syntax B
50 2.669 3.934
100 3.345 5.206
200 3.648 6.718
Theoretical 4 12

Table 2-6: Mean program length

In both syntaxes, the empirical programs are well short of the theoretical 
limit. This implies that the ontogenic mapping runs out of genes before all 
nonterminals have been expanded. Given that we are dealing with very 
small grammars, the fact that 200 genes only generates programs half as 
long as they could be is cause for concern. It suggests that the ontogenic 
mapping uses genes inefficiently, and would not scale to larger grammars.

With a slight modification, the method of converting the CFG to a system of 
equations can compute the expected number of genes needed to produce a 
program in a given language. The first method, given above, works by 
computing the expected number of leaf nodes in a FT. Each leaf is a 
terminal symbol and is given the value 1 (unless it is a terminal you don't 
wish to count, in which case it is given the value 0). To compute the 
expected number of genes needed we modify the equations to count 
internal nodes instead of leaves, since each internal node requires one gene 
to expand it.

The modifcations are (1) the RHS of each equation begins with "i + " to 
count the gene for the nonterminal being expanded, and (2) each terminal 
symbol is replaced by 0. The system of equations for syntax A is:

s e x p
i n p u t
a p p l i c a t i o n

a r i t y l  
a r i t y 2

1 + a v e r a g e { i n p u t ,  a p p l i c a t i o n )
1 + a v e r a g e {0, 0, 0)
1 + a v e r a g e {0 + a r i t y l  + s e x p  + 0,
0 + arity2 + s e x p + s e x p + 0)
1 + 0
1 + a v e r a g e  {0, 0, 0, 0, 0)
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which can be solved for sexp  to give:

s e x p  = 10

That is, it takes on average 10 genes to derive a program from <sexp>. This 
is low compared to the chromosome lengths of 50, 100 and 200 that are 
investigated empirically above, which is consistent with the conclusion that 
the ontogenic mapping is inefficient.

The maximum length of program produced increases with the chromosome 
length. It is also apparent that syntax B produces noticeably longer 
programs than syntax A.

The number of residual nonterminals drops as the chromosome length 
increases. This is of interest, since it suggests an upper bound on 
chromosome length, which there is no advantage in passing.

It m ust be remembered that the above discussion applies only to the first 
generation. After that, the effect of evolution — selection and 
recombination — change the average lengths of programs in the 
population., as shown below in table 2-8. For the purposes of the 
experiment, chromosome lengths of 50 and 200 genes are used.

2.4 Experimental results

Several measurements were made for each of the 48 runs, and other 
quantities can be calculated from them. The effect of the experimental 
parameters on each of these is discussed in a separate section below. Table 
2-7 summarises the measurements and the effect of the experimental 
parameters on them.
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Value Description
Phenotype length (Sym) The size of the best-of-run's phenotype, as 

generated, measured by counting symbols. 
Major factors: Len and Syn.
See §2.4.1.

Number of generations (Gen) The generation (starting at 0) where the best 
individual was found.
Major factors: Syn and Sel.
See §2.4.2.

Number of individuals (Ind) The number of individuals generated up to 
the best-of-run.
Major factors: Sel; others minor.
See §2.4.3.

Time to center the cart (Std) The best individuars average time to center 
the cart, in simulated seconds.
Minor factors: Sel and Init.
See §2.4.4.

Optimal program Gads 1 finds the optimal program. 
See §2.4.5.

Table 2-1 \ Experimental measurements

To gauge the effect of an experimental variable on a measurement, we 
divide the 48 runs into two groups, one group for each value of the variable. 
We then compare the mean measurement value of both groups. This is as 
much statistical analysis as seems justified, given the small population size 
and our ignorance of the underlying distributions.

2.4.1 Phenotype length (Sym)

The length of generated programs measured as the number of nodes of the 
ET. This ignores parentheses, and counts each name, constant or non­
terminal as one symbol. The shortest best-of-run program, with length 4 
symbols, is:

(GT (ABS X) V)

The mean program length has clearly increased, as can be seen by 
comparing tables 2-6 and 2-8. Short length helps reduce the load of 
calculating fitness, because there is less computation necessary to evaluate 
a smaller ET than a larger one. Short length also makes programs easier for 
a person to understand, as can be seen by examining the three equivalent 
programs shown in §2.4.5 Optimal program below. But longer length is 
necessary to represent more complicated algorithms. The distribution of 
program length over all 48 runs is shown in figure 2-3.
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Figure 2-3: Distribution o f  phenotype length (Sym )

The effect of experimental variables on program length is shown in table 
2 - 8 .

Var Value Mean Value Mean
Syn A 7.5 B 11.3
Init <sexp> 9.0 <application> 9.7
Sel ELITE 10% 8.8 ROULETTE 9.9
Len 50 6.6 200 12.1

Table 2-8: Factors affecting phenotype length (Sym )

Chromosome length and syntax have the greatest effect on Sym. Initial 
symbol and selection method do not appear to affect length significantly.

2.4.2 Number of generations (Gen)

By itself, Gen gives an idea of how much evolution is taking place. The 
number of generations necessary to find the solution in each run is 
relatively small. On average overall 48 runs only 8 generations are needed, 
and in 25% of runs, the best result is found in generation 0. This suggests 
that the population does not evolve particularly well.

On the other hand, the optimal solution was found in generation 0 of run 
30. This is very much at odds with tree-based chromosomes. Chapters 7 
and 9 of [Koza, 1992] suggest (but do not state explicitly) that SGP very
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rarely solves the cart-centring problem in generation 0. That one run in 30 
of Gads 1 should do is therefore intriguing, and worth investigating further.

The distribution of Gen over all 48 runs is shown in figure 2-4.

cr

Gen range

Figure 2-4: Distribution o f  number o f  generations (Gen) 

The effect of experimental variables on Gen is shown in table 2-9.

Var Value Mean Value Mean
Syn A 6.9 B 9.0
Init <sexp> 8.1 <application> 7.8
Sel ELITE 10% 6.9 ROULETTE 9.0
Len 50 7.8 200 8.1

Table 2-9: Factors affecting number o f  generations (Gen)

Syntax and selection method have the greatest effect on Gen. Initial symbol 
and chromosome length do not appear to affect Gen significantly.

2.4.3 Number of individuals (Ind)

The number of individuals generated up to and including the best of the run 
gives an idea of how efficient the search is.
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The number depends on the selection method and the generation in which 
the best individual was found. The actual number of evaluations is not 
available from GAGS, so we assume that on average half of the new 
individuals in the successful generation are generated before the best is 
discovered. However, even a pessimistic assumption here (ie that the entire 
population is evaluated before the best is discovered) makes little difference 
to the number of evaluations.
ROULETTE

Each generation is completely new. The number of individuals
considered is:

GgMx500 + 250
ELITE 10%

Only 10% of the population is replaced at each generation after the 
first. The total number of individuals considered is:

i f  G en  =  0  th en  2 5 0  e lse  5 0 0  +  G en  x  5 0

The distribution of Ind over all 48 runs is shown in figure 2-5.
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Figure 2-5: Distribution o f  number o f individuals (Ind)
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The effect of experimental variables on Ind is shown in table 2-10.

Var Value Mean Value Mean
Syn A 26TA5 B 2852J
Init <sexp> 2829C2 <application> 2660.4
Sel ELITE 10% 739.6 ROULETTE 4750.0
Len 50 2568.8 200 2920.8

Table 2-10; Factors affecting number o f  individuals (Ind)

As might be expected, selection method has the most significant effect on 
Ind, but all four experimental parameters appear to affect Ind significantly.

2.4.4 Time to center the cart (Std)

Since every run used a different random seed for its 20 test cases, the time 
from the runs has a large random component, and is not useful for 
comparison. Instead, a fixed sample of 1 000 random test points was 
generated and used to compare phenotypes after all runs were complete. 
The time to center the cart using the standard test data is called the 
standard time, or Std.

Two outlying values of Std (5.7 s and 5.8 s) are excluded from the following 
analysis. The distribution of Std over the remaining 46 runs is shown in 
figure 2-6. The m ost frequent time is 2.418 s, corresponding to the 
phenotype:

(GT (* X -1) V)

36



40

35

30

25 

3  20

15

10

[2 ,2 .1) [2 .1,2 .2 ) [2 .2 ,2 .3 ) [2 .3 ,2 .4 ) [2 .4 ,2 .5) [2 .5 ,2 .6 ) [ 2 .6 ,2 .7 ) [2 .7 ,2 .8 )

Std range

Figui'e 2-6: Distribution o f  time to center (Std)

The effect of experimental variables on the 46 values of Std is shown in 
table 2-11.

Var Value Mean Value Mean
Syn A 2363 B 2.368
Init <sexp> 2.404 <application> 2.327
Sel ELITE 10% 2.406 ROULETTE 2325
Len 50 2389 200 2.342

Table 2-11: Factors affecting time to center (Std)

Selection method and initial symbol have the greatest effect on Std, but the 
effect is slight. The other experimental variables do not appear to affect Std 
significantly.

2.4.5 Optima! program

A vital question is whether Gads 1 discovers the optimal program. The 
optimal program can be written as:

(GT (* -1 X) (* V (ABS V) ) )
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Gads 1 finds the optimal program in runs 10, 22 and 30. The run details are 
shown in table 2-12.

NO Syn Init Sel Len Gen Std
10 A appl roul 200 7 2.019
22 A sexp roul 200 28 2.019
30 B appl elit 200 0 2.019

Table 2-12: Runs leading to optimal program

The phenotypes are as follows:

Run 10

(GT (* V -1) (% X (ABS V) ) )

Run 22

(- (- -1 - 1 )  (% X X ) )  (+ (% X (ABS V ) )  V ) )

Run 30

(% (* X X) (+ -1 (- (- (GT (* (- (GT V (- (* (- V (+ X - D )  
(GT V (ABS ( - X X ) ) )  V)) V)) V) (ABS V)) X) (GT (* <sexp> 
<sexp>) <sexp>)) (- <sexp> <sexp>))))

Although these phenotypes are syntactically quite different from each other 
and from the optimal program, the fact that they all have the same Std value 
over a sample of 20 initial conditions, and that they are all arithmetic 
expressions without any mechanism such as conditionals to define special 
cases in their input, strongly suggests that they are functionally identical. 
Based on Std values we claim that 14 different algorithms are discovered in 
the 48 runs.

2.5 Comparisons

The experiment was designed partly with the aim of comparing the 
performance of Gads 1 with that of SGP. The cart-centering problem is the 
first example of GP described in [Koza, 1992].
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2.5.1 Phenotype length

On the whole the Gads 1 phenotypes do not resemble those of [Koza, 1992]. 
Koza's phenotypes are around 60 symbols long, Gads 1 phenotypes are 
around 10 symbols long.

2.5.2 Number of Individuals

Koza’s optimal solution is found in generation 33. With the same principles 
used to calculate Ind, the number of individuals is:

500 + 33 X 450 = 15350 individuals

The comparable Gads 1 figures from runs that lead to the optimal program 
are 3 750, 14 250 and 250 individuals (table 2-12). Run 30 can reasonably 
be discounted as a fluke that could only occur with an extremely simple 
problem.

2.5.3 Initial population

The discovery of the optimal program by pure chance in generation 0 of run 
30 is noteworthy. Tree-based GP experimenters do not generally expect 
anything of value to arise in generation 0.

It is not obvious what, if anything, to make of this case. Clearly, no 
evolution was involved, because the effect is in the initial population. A 
possible explanation is that the discovery is connected with the relatively 
short length of programs Gads 1 generates. But the phenotype in run 30 is 
41 symbols long — the longest phenotype over all runs.

2.6 Questions raised

The study has raised a number of interesting questions. These are outlined 
below. As well as these issues, it is clear that Gads 1 should be applied to a 
further range of problems.

2.6.1 Specifying sentence distribution

Many grammars exist for the same language. Gads 1 used different 
grammars as a way to specify the distribution of language strings. There
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are other ways of doing this; for example, by specifying a probability or 
weight for each alternative in a rule.

However, Gads 1 can achieve the same effect with a grammar in which the 
rules are replicated in proportion to their relative probabilities. A purist 
might object that a grammar is a set of rules so that replicating set 
members is futile, but this can easily be overcome by renaming each of the 
duplicates. The point is that both methods are equivalent, in terms of the 
distributions they can produce. Are all 'sensible' methods equivalent? 
Which is the m ost efficient in terms of programmer effort?

2.6.2 Moving away from Lisp

Much work has been done using Lisp as the phenotype language. The use of 
other languages should be investigated. A possible difficulty here would be 
the cost of evaluating fitness.

2.6.3 Functions, work variables etc

The definition of re-usable functions has been shown to increase the 
effectiveness of genetic programming. Methods for doing this with Gads 1 
should be investigated. In addition, the use of variables other than input 
variables should be investigated. Such work variables are essential in real 
programs.

2.6.4 Choosing sentence distribution

Given a method of specifying a sentence distribution, how do we choose a 
good sentence distribution? A study of the rule frequencies used to 
produce real programs would be of interest.

2.6.5 Statistical analysis

The extent to which a statistical analysis of the result can be carried out is 
limited because we do not yet know much about the distribution the 
measurements are likely to have. For example, an analysis of variance to 
discover the relative importance of the experimental variables in 
determining the experimental measurements would be of value. This I
requires that the distribution of the measurements is known to be 1
approximately normal. We hope to collect sufficient data to be able to use i
more powerful statistical tools in future analyses. i

1Ï
!

40



2.6.6 Sequential chromosomes

The essence of a sequence is that earlier genes can affect later ones but not 
vice-versa. However, this only becomes visible during the evaluation of 
fitness. Thus, in some sense, sequentiality is in the eye of the beholder. Is 
there an objective way to measure the amount of sequentiahty in a 
chromosome?

2.6.7 Gene effectiveness

In the Gads 1 experiment, chromosomes of 200 genes were used, but 
nothing like that length of program was generated. It would appear that 
many of the genes are unused. Why is this? Is there a way to increase gene 
effectiveness? Is it a good thing to do?

As the population evolves, how does the pattern of active and inactive genes 
change? We might expect that as evolution proceeds, convergence advances 
along the length of the chromosome. Does this actually happen?

2.6.8 Genetic operations

GAGS uses uniform crossover, where each parent has an equal chance to 
contribute each gene to a child. We might expect that one-point crossover 
would be much more effective for Gads 1, given that it has a sequential i
chromosome. This may be related to the observation that many of the Gads |
1 runs did not find a better solution than was found by random search in I
generation 0. One-point and other crossover techniques should be i
investigated. I

2.6.9 Initiai distribution

Gads 1 was able to discover the optimal solution in one of its initial 
generations. It would be interesting to compare the initial population 
produced by Gads 1 to that produced by [Koza, 1992].

2.7 Conclusions

This section draws conclusions from the experiment.

The experiment was to decide (i) whether Gads 1 is feasible and (ii) whether 
Gads 1 is worth developing further.
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Gads 1 was implemented using a general-purpose GA engine that was not 
customised for Gads 1 in any way. In some ways it was far from what might 
be expected to be optimally tuned to Gads 1 requirements. The 
implementation of Gads 1 was about 520 lines of C, including comments 
and cpp directives. The implementation shows that the technique is simple 
and feasible.

The performance of Gads 1 on the cart-centering problem is good enough to 
confirm the feasibility of Gads 1. The three runs which discovered the 
optimal solution were reasonably efficient.

The conclusion is that Gads 1 is feasible and is worth developing further. 
The main limitations revealed by the investigation are in the areas of 
statistics and scalability to full-size languages. These issues are dealt with 
in §3 Statistics and §4 Grammars.
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Statistics

This section deals with issues of statistical analysis which are raised in §'2 
Gads 1. The aim of this section is to identify and develop the statistical 
tools necessary for designing GP experiments and analysing their results. It 
is in 3 main sections.

The first section, §3.1 Statistical perspective, analyses GP from a statistical 
perspective, leading to a correspondence between statistical notions such as 
experiment, population, sample and random variable and GP notions such as 
run, population, individual and fitness. The criteria for a well-formed GP 
experiment are thereby established.

The second section, §3.2 Performance comparison, uses a conventional 
approach to investigate whether standard statistical techniques can reliably 
be used to compare performance measurements produced by GP systems. 
This puts performance comparison on a sound footing. It also reveals that 
the most im portant factor affecting performance is the problem.

The third section, §3.3 Visualisation, develops a technique for visualising a 
collection of points in a multi dimensional space. The points can represent 
problems or GP system configurations. The technique, which is adapted 
from biology, uses path-length trees known as cladograms.

3.1 Statistical perspective

3.1.1 Introduction

This section presents a description of the key GP features in statistical 
terms. This is a necessary prerequisite to being able to apply statistical 
techniques to GP experiments, and it leads to some important conclusions. 
The introductory statistics presented here can be found in any statistics 
textbook, and is taken mostly from [Freund, 1979].

3.1.2 Populations and samples

In statistical terms, a population is a set of all conceivable or hypothetically 
possible observations of a phenomenon. Measures of populations (eg mean, 
standard deviation) are called population parameters. A sample is part of a 
population. Measures of samples (corresponding to population parameters) 
are called sample statistics.

43



A sample design is a scheme by which members of a population are selected 
for a sample. The simplest sample design is the random sample, where 
every member of the population has the same chance of being selected. 
Random samples need about 30 members to avoid the need for small 
sample techniques when comparing sample means. An important property 
of sample designs is that the members must be chosen independently of 
one another.

Where there is no theoretical basis for a sample design, the best that can be 
done is to select members of the population by educated guesswork. This 
produces a sample which can be called a benchmark suite. Random samples 
and benchmark suites are at opposite ends of a range of sample designs.

In GP terms the terms population and generation are used interchangeably, 
except when generation refers to the activity of creating new individuals. To 
avoid confusion, we henceforth use the term population only in its statistical 
sense, and use generation for the GP notion.

There are several populations of interest in this investigation: 
Configurations 
Runs
Individuals in generation 0 
Individuals in generation n> 0

They are described below in more detail,

3.1.2.1 Configurations

3.1.2.1.1 Populations

The population of configurations is the population of GP engines and 
problems, in all their variety, with all their parameters. The extent, even the 
precise definition, of this population is unknown.

3.1.2.1.2 Samples

In choosing a sample of configurations, the best that can be done is to make 
an educated guess.
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3.1.2.2 Runs

3.1.2.2.1 Populations

Given a configuration, each run is characterized by its RNG seed. The 
population of runs for a given configuration is thus equivalent to the 
population of RNG seeds. This is very convenient, since the population of 
RNG seeds is the natural numbers from 1 to whatever limit the RNG 
imposes.

3.1.2.2.2 Samples

It is thus simple to choose a random sample of runs for any given 
configuration. All that is needed is to seed the RNG for each run with a 
value derived, say, from the system clock.

3.1.2.3 Individuals in generation 0

3.1.2.3.1 Populations

The population of which generation 0 of a run is a subset is typically the set 
of all programs in a certain language (eg first-order Lisp) which satisfy 
certain properties (eg the number of nodes is in a certain range, the atoms 
are in a certain set, and so on). Individuals in GP are said to be generated 
rather than selected, typically according to a scheme such as ramped half- 
and-half.

Ramped half-and-half (chapter 6.2 in [Koza, 1992]) generates Lisp ETs. The 
term ramped means that equal numbers of ETs are generated with depths 
from 2 to the specified maximum. (The depth of a tree is the number of 
arcs from root to furthest leaf.) For example, if the maximum depth is 6, 
then there are equal numbers of ETs with depths 2, 3, 4, 5 and 6. The term 
half-and-half means that within the ETs of each depth, half are generated by 
the full method, and half by the grow method. The full method generates 
ETs in which all leaves are at the same depth. The grow method generates 
ETs in which leaves may be at any depth up to the maximum. The reason 
for choosing a scheme such as ramped half-and-half is pragmatic: it 
produces a wide variety of trees of various shapes and sizes.

3.1.2.3.2 Samples

In the case of generation 0 populations, the sample design is a generative 
technique such as ramped half-and-half. Generation 0 is therefore not a
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random sample, and it is not valid, for example, to use the mean fitness of 
generation 0 as an estimate of the mean fitness of the population. It is hard 
to estimate population parameters on the basis of a sample drawn with an 
intricate sample design such as half-and-half.

A way round this difficulty is as follows. We have a non-random sample 
drawn from a population by some sample design. This sample could 
equally well have been a random sample drawn from a different population. 
We can define this hypothetical population implicitly in terms of the 
generative technique. There is little point in describing the hypothetical 
population explicitly, because the only way we can actually draw samples 
from it is to generate them. This change of standpoint enables us to treat 
generation 0 as a random sample, provided we specify the generative 
technique.

The quality of the sample may be questioned on the grounds that all the 
individuals have been produced from one seed for the random number 
generator. There is some sense in this but ultimately it rests on a 
confusion. An RNG has two essential properties: one, that it is algorithmic 
and repeatable, and two, that the numbers it produces satisfy statistical 
tests for randomness. Consider simulating 1 000 throws of a die. We 
would not hesitate to use one seed to generate all 1 000 throws. It would 
make no sense to argue that each throw should have its own seed, since this 
would effectively mean doing without the RNG. The fact that each run 
starts from one seed is irrelevant: each call of an RNG returns a random 
number. The individuals in generation 0 are guaranteed to be statistically 
(but not algorithmically) independent of each other by the quality of the 
RNG.

An experiment comprises many runs, each of which has its own generation 
0. Each of these can be treated as a separate sample, or they can be 
combined into a single sample. There is a benefit in separate samples, 
because it is possible to test the claim that they are all drawn from the same 
population. This can be used, for example, to test the hypothesis that the 
generation software in the engine is working correctly.

3.1.2.4 Individuals In generation n > 0

3.1.2.4.1 Populations

Each successive generation of a run is generated from the previous one 
using various operators, involving the fitness of the individuals. The 
population of individuals of which the generation is a subset is, like the 
population for generation 0, typically the set of all programs in a certain 
language (eg first-order Lisp) which satisfy certain properties (eg the 
number of nodes is in a certain range, the atoms are in a certain set, and so 
on). However the individuals in generation n > 0 are not generated in the
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same way as those in generation 0, and the certain properties they satisfy 
need not be the same as those in generation 0. For example, individuals in 
generation n > 0 may be allowed to have more nodes than those in 
generation 0.

3.1.2.4.2 Samples

If we attempt to treat generation u > 0 as a sample in the same way as we 
did for generation 0, we run into serious problems, because the individuals 
are not independent of each other.

To see why this is so, consider two runs of a configuration, each of which 
converges completely by the same generation, but each run converging to a 
different genotype. If these generations are samples, what population are 
they drawn from?

One approach is to say they are drawn from the same population but the 
sample design is different in each case. This implies that we have a 
different sample design for each generation number and each RNG seed.

Another approach is to change our standpoint as we did for generation 0. 
We say that the populations are different, but the samples are random. This 
simplification lets us estimate population parameters; but the conclusion is 
not very useful, because we have a different population for each generation 
number and each RNG seed.

Analysis on the basis of either of these approaches would be difficult, to say 
the least. The source of the difficulty is that individuals after generation 0 
are not independent — no surprise, they have been interbreeding for n 
generations. We conclude that generation u > 0 is not a sample of any 
population we can deal with.

To deal with generation n > 0 as a sample it is necessary to treat each 
generation n > 0 as one individual, which is a random variable derived 
from the run's RNG seed. A study of a generation n > 0 is essentially a 
study of a sample of 1. It is possible to compute, say, the mean of the nth 
generation fitness, but that mean is not very informative, because another 
run will produce a different mean. To study the nth generation mean, the 
experimenter should produce a sample of nth generation means, and study 
them as a sample.
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3.1.3 Experim ents, ou tcom es, units and treatm ents

In statistical terms, any process of observation or measurement is referred 
to as an experiment, and the results, whether made through simple 
observations or extensive calculations, are the outcomes of the experiment. 
Experiments are often described in terms of applying treatments to units. 
(This terminology arose from agricultural experiments, for example, 
applying different levels of fertilizer were applied to plots of land.)

From the discussion of §3.1.2 Populations and samples, it is clear that the 
soundest choice for a statistical experiment is the run. A run is 
characterised by a configuration consisting of:

A GP engine, in a particular configuration. For example, Lil-GP, with a 
generation size of 50, ramped half-and-half initialisation, depth limit 
30, and genetic operators replicate 9%, crossover 90% and mutate 1%. 
The engine is the treatment.
A problem, defined by an objective (or fitness) function, in a particular 
configuration. For example, the lawmnower problem, for a particular 
size and shape of lawn. The problem is the unit.

A run also needs an RNG seed. The RNG seed is not considered to be part 
of the configuration. This is discussed in the next section.

A configuration is thus a collection of experimental conditions, which can 
be a data structure of arbitrary complexity. The work described in this 
thesis consists of many such experiments.

It is tempting to partition the configuration into a pair of sub­
configurations, one for the problem and one for the engine, perhaps by 
defining a parameter to be a problem parameter if it can be observed in the 
solution; and otherwise to be an engine parameter. For example, the 
terminal set is a problem parameter, but the genetic operators are not. But 
it is not always clear which parameters are associated with the problem and 
which with the engine. For example, it might seem natural to associate 
generation size with the engine. But even in [Koza, 1992], where there is a 
deliberate attem pt to use the same engine parameters for all of the 
examples (so that the same engine configuration is used throughout), it is 
necessary to give the Boolean 11-multiplexer a generation size of 4000 
instead of the usual 500. Does this mean that generation size is a problem 
parameter? Certainly not; using different technique we can solve the 
Boolean 11-multiplexer problem with no generation size parameter at all. 
For example, random search or human design are methods which have no 
generation size parameter. This parameter therefore belongs to the engine. 
Knowing what value to set it to requires a very special kind of knowledge 
about the problem, and this is one area of weakness in GP paradigm. The 
existence of these problem-specific engine parameters means that for the 
time being, we cannot usefully split a configuration into a problem part and
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an engine part. It is however reasonable to identify a configuration by the 
problem and engine involved.

In addition to the problem and engine, the operating system, hardware and 
so on may be necessary for a complete description of an experiment. These 
factors are constant for this investigation.

The termination criterion is an experimental condition, in that it affects the 
resulting observations, such as the fitness of the best-of-run individual. But 
it is unlike other experimental conditions, in that it does not alter the way a 
run progresses. If a run is like a sequence, then the termination criterion 
establishes how many terms there are, but it does not affect the rule for 
computing each term from the previous one. Ideally, therefore, termination 
criteria should not be treated in the same way as other configuration 
components, but it has not been given special treatment in published papers 
before now, so I do not give it special treatment here either. This is a topic 
for future investigation.

3.1.4 Random variation

Much of traditional statistics is concerned with the natural variation that 
occurs between units (problems, in GP) and treatments (engines, in GP). For 
example, if you apply the same level of fertilizer to two seeds, they won't 
produce the same yield. This is due both to differences in the treatment (it 
is not possible to get it exactly the same twice) and to differences in the unit 
(no two seeds are identical). Nor is it possible to apply a treatment to the 
same unit more than once.

These limitations do not apply to computer simulations such as GP. It is 
possible, for example, to re-use a sequence of random numbers. This 
technique is known as CRN and is one of several methods of variance 
reduction described in [Bratley, 1983]. When CRN is used, the experiment 
produces a sample of pairs rather than a pair of samples. A sample 
comprising the (signed) differences between the two values of each pair is 
computed, and tested against the null hypothesis that it is a sample from a 
population whose mean is zero. This form of testing is called a paired test.

For CRN to be of use certain pre-requisite conditions m ust be met, the main 
one being that the random numbers are used for the same purpose in the 
models being compared. This can require the use of multiple random 
number streams so that each stream is used for one purpose.

For example, consider the design of an experiment to investigate the effect 
of doubling chromosome length by comparing the performance of two GP 
engines over a range of problems, using one random number stream, with 
the same seed in each pair of configurations (one with double the
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chromosome length of the other). This experimental design is not sound, 
because the same random numbers are not used for the same purposes.
The first use of the random numbers is to produce generation 0. But the 
configuration with the double chromosome length must use twice as many 
random numbers as the other configuration. By the time the first individual 
in generation 0 has been produced, the random number streams are out of 
step. Despite using the same RNG seed the experiment is not a CRN design. 
In order to use CRN, this experiment would have to be redesigned, for 
example, by having one random number stream to produce genes, and 
another to drive the selection of individuals for breeding.

It can be seen that CRN is an option only if the model is well-understood, 
particularly in its use of the random numbers. The possibility of error is 
high because it depends on algorithmic analysis, which is a difficult subject, 
not least when analysing a system as complex as a GP engine developed by a 
third party. The chance of detecting error is low because an error of this 
sort does not manifest itself in output that is blatantly wrong. The effects 
are subtle and may be revealed only by careful testing.

In this thesis, CRN is not used. One RNG stream is used for both treatments 
and units. Provided the RNG works, and is being used correctly, this should 
not introduce any artifacts into the results. The function of an RNG is 
precisely to produce a stream of unrelated numbers. There is no advantage 
in using two RNG processes instead of one, and in fact, doing so introduces 
the risk of spurious results.

We therefore define the RNG seed as separate from the configuration.

3.1.5 Confidence level

Statistical results are generally not 100% certain because of the effects of 
random variation. For example, the mean of a sample can be calculated 
with 100% accuracy, but it is not the mean of the underlying population.
The most we can say about the population mean is that it probably lies 
within certain limits. We can be precise about the limits and about just how 
probable it is.

The measure of probability is the confidence level A confidence level of 95% 
is usual for experimental work in the natural sciences, where it is seen as a 
compromise between a desire for increased confidence and a desire to keep 
the confidence intervals small enough to be useful.

In order to make the results of different parts of this thesis compatible, we 
assume that the same confidence level applies to all observations and in all 
hypothesis testing. This level is called the global confidence level (GCL), and 
is set at 95%.
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3.2 Performance comparison

This section presents the results of an investigation mto the reliability of 
statistical tests. Much of the material in this section is taken from 
[Paterson, 2000].

3,2.1 Introduction

A weakness of the Gads 1 experimental analysis is the way in which the new 
technology is compared with the old, namely, by comparing the means of 
two rather small samples. While this may be sufficient to indicate that 
further investigation of Gads 1 is justified, it is not sufficient to enable us to 
draw reliable, quantified conclusions.

The reason for this weakness is that we know next to nothing about the 
statistical properties of performance as a random variable. In this section, 
we report the results of an investigation into the reliability of statistical 
tests (Student's, Smirnov's and Randomisation) when they are used to detect 
differences in GP performance data. LihGP and SGPC are used to provide 
test data. The main conclusions are: (a) that parametric tests perform 
better, and non-parametric tests worse, than expected; (b) that the reliability 
of the tests depends mostly on the problem being solved; and (c) that no 
test can reliably detect a difference less than 1.5 x coefficient of variation 
with GP data.

Performance comparison is central to research in GP. For example, 22 of the 
55 papers in [pp3-343, Koza, 1997a] compare performance of rival systems. 
In practice, performance comparison usually comes down to deciding 
whether the difference between the means of two samples of observations is 
significant. Many methods are used to reach this decision. Of the 22 papers 
mentioned above, 16 used visual comparison of graphs, two used Student’s 
T test, two used Koza's cumulative probability of success [Koza, 1992], 1 
used the 2-sample Z test, and 1 used the Mann-Whitney U test.

A common error is to compare sample means as if they were exact 
population means, not estimates of population means. There is a 95% 
probability that the interval sample mean ± (1.96 x standard error) contains 
the population mean. Standard error is described in statistics textbooks, eg 
[Freund, 1979]. Only two of the 22 papers gave standard error or enough 
information to work it out. Treating sample means as point estimates is the 
main flaw in Koza's metric cumulative probability o f success [Angeline, 
1996a].

4 of the 22 papers used recognised statistical tests. However, T and Z tests 
have preconditions. Student’s T test requires that the two populations have 
close to normal distributions, and that their variances are equal. The
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sample size can be small. The Z test requires a sample size of at least 30, 
that the two populations have close to normal distributions, and that their 
variances are equal.

We find that normal distributions are the exception. An example of a 
performance distribution is shown in figure 3-1. Performance is on the x- 
axis, and frequency with which that performance occurs, on the y-axis. The 
code LOAO identifies the engine and problem configuration, as explained in 
%3.2.2.2,Factors below. This configuration is at the mid-range of normality 
among the distributions we examined (see §3.2.3.1 Normality helow) and is 
rejected at the 5% level as non-normal.

Figure 3-1; A  non-normal distribution (LOAO)

Thus any result that depends on T or Z tests for GP data may be missing a 
foundation. Weak statistical technique is therefore not limited to the Gads 
1 experiment; it is widespread in the GP research field.

3.2.1.1 Related work

[Daida, 1997] addresses general issues of the difficulty of comparing results 
or repeating others' work. In their own comparison, they use the Mann- 
Whitney U test, which is not so dependent on population properties as the T 
or Z tests; but they do not attempt to investigate the population properties.

[Lawrence, 1997] considers distributions of performance in neural network 
simulations, and how to present results for a fair interpretation.
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[Luke, 1997] reports an Investigation of about 12 000 independent runs of a 
range of engine-problem configurations, with a sample size of 25. The 
configurations were chosen to compare crossover and mutation. The 
results are described as "nonlinear," and because the effects are shown to be 
significant by Student’s T test, the paper argues that they cannot be 
attributed to noise. However, the large number of comparisons means that 
some of the results (5% of them, if a confidence level of 95% is used) are 
almost certainly caused by noise. It is impossible to say whether the noisy 
results are the nonlinear results. However, their study does bequeath a 
large corpus of runs.

[Luke, 1998] is a revision of [Luke, 1997], in which a number of statistical 
flaws are put right.

3.2.2 Experimental design

The experimental design is at two levels. At the upper level we investigate 
the reliability of statistical tests. At the lower level we investigate GP 
performance data. The performance data is produced in such a way that we 
know what the results of the lower level investigation should be. The 
observed results of the lower level investigation are input to the upper level 
investigation. The two levels are summarized in table 3-1.

Upper level Lower level
Phenomenon Statistical testing. GP.
Factors Test, sample size. Engine, RNG, problem, 

parameters.
Trial Application of a 

statistical test.
Execution of a GP 
system.

Outcome Acceptance or rejection 
of a given null 
hypothesis.

Files summarizing 
evolution process.

Random variable Acceptor reject. Performance, ie raw 
fitness of solution.

Experiment 30 trials, same except 
for RNG seed.

10, 20 or 30 trials, same 
except for RNG seed.

Statistics a  and ô (none)
Table 3-1: Outline o f  Experimental D esign

The description in the following subsections starts at the upper level, drills 
down to the bottom  of the lower level, and then returns to the upper level to 
fit pieces together. The experiment involves several different kinds of 
sample, taken for different purposes. To help avoid confusion, these are 
referred to as type A-, B- or C-samples as follows. A-samples are size 100, 
and are used for bootstrapping as described in §3.2.2.5 Bootstrapping. B-
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samples are size 30, and are used for the upper level experiment. C- 
samples are size 10, 20 or 30 and are used for the lower level experiment.

The various components of the investigation are identified by codes, eg T 
for Student’s T test. These codes are given in parentheses in the next two 
subsections.

3.2.2.1 Tests and C-sample sizes

We chose to investigate 3 tests that span a range of statistical techniques:
Student’s T test (T)

The classic experimenter's tool for comparing small samples. The 
samples m ust be from approximately normal populations with the 
same variance.

Smirnov's 2-sample test (S)
A non-parametric test which does not assume that the populations 
have any particular distribution.

Randomisation test (R)
A modern computer-intensive test.

Each test was used to compare two equal-sized C-samples of 10, 20 or 30 
observations.

3 2.2.2 Factors

We chose to investigate the effect of the following factors on the tests: 
engine

Either LÜ-GP (L) or SGPC (S).
RNG

Either the engine's own (O), or the Solaris RNG (S). 
problem

One of the problems distributed with the engine. Lil-GP has Artificial 
Ant (A), Lawnmower (L), Multiplexer (M), Regression (R) and Two Box 
(T). SGPC has Classifier (C), Donut (D), Regression (R) and Sin (S). 
(Regression (R) occurs twice.)

parameters
Each engine's own default settings (0) were used where possible. In 
addition, a parameter set was devised with the aim of replicating the 
Regression problem in [Koza, 1992] on both Lil-GP and SGPC (K).

A complete set of all 4 factors is called a configuration. Each configuration 
has a 4-letter code, eg LOAO. A configuration specifies all the Information 
necessary to run a GP system, except the RNG seed. Although 64

54



configurations are possible, only 22 actually occur. This defines a relation 
between the factors, le the factors are not independent.

3.2.2 3 Trials and outcomes

One lower-level trial is the execution of one GP system with one 
configuration and one RNG seed. The outcome of a trial Is the collection of 
files which It produces. This varies from one engine to another, but 
typically contains a summary of the simulation which has been carried out.

For any given configuration, the C-sample space (ie population of possible 
outcomes) is therefore equivalent to the population of RNG seeds. It Is 
simple to choose a random C-sample of RNG seeds.

3.2.2.4 Random variables

We chose to investigate just one random variable at the lower level, namely 
performance. This term is defined as the raw fitness o f the first best-of-run 
individual It Is extracted from the outcome of each lower-level trial.

There is no deep theoretical basis for this choice. The decision to measure 
one thing or another as a performance variable is often intuitive, and rarely 
is a strong argument made for or against a particular metric. — [Cohen, 
1995]. We chose fitness because the fitness of the best individual found in a 
run is surely the primary goal of the run. Raw fitness is in some sense 
closest to the source.

3.2.2 5 Bootstrapping

Rather than use the experimental apparatus described above to produce C- 
samples directly, we chose to use bootstrapping to reduce the 
computational effort. Bootstrapping simulates C-sampling from a large or 
Infinite population by C-sampling-with-replacement from an A-sample of 
that population.

Bootstrapping has two advantages. One, the expense of producing C- 
samples is greatly reduced, since C-sampling-with-replacement re-uses 
values that are expensive to compute. Two, the properties of the simulated 
population can be manipulated and known with certainty. The disadvantage 
is that we are dealing with a simulation of a population, not with the real 
thing.
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To support the bootstrapping procedure, we made 100 trials for each 
configuration, and extracted the performance data from each. This gave us 
22 A-samples of 100 observations. These A-samples were named with the 
4-letter configuration code, eg LOAO. C-samples of 10, 20 or 30 
performance values were drawn with replacement from the A-samples.

3.2.2.6 Hypotheses

Each test was used to accept or reject the following null hypothesis at a 5% 
level of significance:
HO That there is no difference in the means o f the populations JTl and JT2 

from which the C-samples were drawn.

on the basis of two equal-sized C-samples of performance data. Note that 
HI and H2 refer to the simulated populations rather than the A-samples, 
since the use of bootstrapping is transparent to the tests.

The alternative hypothesis, HI, was always the simple negation of HO. We 
did not attempt to decide which of the populations has the larger mean, 
only that there is a difference. Thus, the two-tailed form of each test was 
always used. HI is a composite hypothesis, since there are many ways in 
which two populations can differ.

To produce a pair of C-samples for which HO is true, we draw them both 
from the same A-sample.

To produce a pair of C-samples for which HO is false, we first draw the first 
C-sample in the ordinary way. We draw the second C-sample from the same 
A-sample, but add a displacement d to each observation. The second C- 
sample is thus effectively from a population which is translated by a known 
amount. We measure d as a percentage of the mean of the A-sample. For 
example d = 5 implies that the C-samples are drawn from populations Hi 
and H2 whose means are \il and [x2 = jil x 1.05. If d = 0, then Hi = H2 
in all respects. Populations Hi and H2 always have equal variance. We 
chose the follov\4ng range of values for d: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 
30, 40, 50, 60, 70, 80, 90, 100}.

We chose only to investigate differences in means, because that is the 
difference researchers are most often interested in detecting. It is also the 
only difference that Student’s T test is intended to detect, and in some 
sense it is the simplest difference.

A combination of a test, a C-sample size, a configuration and a value for d is 
called a scenario. A scenario specifies everything that is needed to apply a
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test, except for an RNG seed to drive the bootstrapping process. A scenario 
is a trial at the upper level, the outcome of which is either acceptor reject

3.2.2.7 Power functions

There are two ways in which a test can fail. To reject HO when it is true (a 
false negative) is a type 1 error. To accept HO when it is false (a false 
positive) is a type 2 error. We chose to compare the tests on the basis of the 
occurrence of these errors.

The probability of a type 1 error is conventionally denoted a  and, if the 
test's preconditions are satisfied, is equal to the level of significance, in this 
case 5%. Since the test's preconditions are in doubt, we estimated the 
probability of a type 1 error empirically and compared it with the 
theoretical value of 5%.

The probability of a type 2 error is conventionally denoted (3. p is not a 
unique number, because HI is composite: there is a different value of p for 
each H2. However, since we restricted ourselves to H2s that are 
characterized by a parameter d, p reduces to a function of d. Such a 
function is called a power function [Conover, 1971]. Figure 3-2 shows a 
typical power function shape.

100%

9 0 %

60%

50%

3 0 %

20%

Figure 3-2: Typical power function shape

The power function shows the probability of rejecting HO as a function of d. 
For d = 0, the power function is a. For d > 0, the power function is 1 - p.

The power function is thus a single concept that describes the behaviour of 
a test over the range of conditions we are interested in. The true or 
theoretical power function is not within our grasp. We estimate the power 
functions empirically by executing each scenario 30 times (with different
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RNG seeds) and recording how often HO was rejected. The proportion of 
rejections, as a percentage in [0, 100], is the value of the EPF at that 
scenario.

3.2.2.S Alpha and delta

Power functions, though informative, do not make for simple comparison of 
tests. All the power functions examined are well-formed. They have 
approximately the same shape as figure 3-2, but may be more or less 
extended along the d-axis. It is therefore feasible to use a scalar metric to 
distinguish them. We introduce the metric ô, defined to be the least value of 
d for which p is less than or equal to S%. That is, as d increases from 0, the 
test becomes more reliable in detecting a difference of d% of the mean, ô is 
the value of d at which that reliability first reaches 95% (corresponding to a 
5% level of significance). Putting it the other way round, the test cannot 
reliably detect a difference of less than ô.

Thus, a  and Ô are the upper-level random variables. The aim of the 
investigation is to discover how they depend on the experimental factors.

3.2.3 Results

These results are necessarily a summary. Full details are at 
ftp.dcs.st-and.ac.uk/pub/norman/StatDist.tar.gz.

4 of the A-samples (SOCO, SORO, SSCO and SSRO) contained only zeroes. 
This appeared not to be a bug but arose because the perfect solution (with 
fitness 0) was discovered every time. Since this effectively removed the 
need for statistical analyses at the same time as rendering it impossible, we 
removed these A-samples from further consideration and continued with 
the remaining 18 configurations.

3.2.3.1 Normality

The Kolmogorov-Smirnov normality test was applied to each A-sample, 
against the alternative hypothesis that the sample was not drawn from a 
Normal population. Table 3-2 shows the value of the Kolmogorov-Smirnov 
test statistic (k) for each configuration. The rows are sorted by k. The 
critical value of the statistic is 0.136 at the 5% level. Configurations are on 
the left or right of the table depending on how their k value compares to 
0.136.
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Accept Reject
Config k Config k
LOTO 0.05 LSRO 0.14
LSTO 0.06 SODO 0.15
s s s o 0.10 LORO 0.15
SOSO 0.12 LSLO 0.17
LSAO 0.12 LOAO 0.17
SSDO 0.12 LOLO 0.17

SSRK 0.18
LSRK 0.20
LORK 0.20
SORK 0.21
LOMO 0.27
LSMO 0.30

Table 3-2: K olm ogorov-Sm irnov normality test results

S.2.3.2 Alpha and delta

The observations of a  and Ô are shown in tables 3-3 and 3-4.

T S R
10 20 30 10 20 30 10 20 30

LOAO 2 1 0 2 0 3 1 3 1
LOLO 2 3 2 2 6 16 1 1 1
LOMO 2 0 0 14 20 27 3 0 2
LORO 2 4 3 2 2 5 2 1 1
LORK 1 0 0 0 2 7 1 5 2
LOTO 1 1 1 3 3 0 1 1 1
LSAO 2 1 2 1 1 2 0 0 3
LSLO 1 0 1 2 5 14 0 1 1
LSMO 0 1 2 13 21 27 1 2 1
LSRO 2 4 2 0 1 2 1 2 2
LSRK 2 2 0 2 0 6 1 0 1
LSTO 2 2 2 2 0 2 1 3 0
SODO 1 0 0 0 0 1 1 1 2
SORK 2 0 3 1 3 9 0 2 1
SOSO 2 1 1 0 0 0 0 0 0
SSDO 3 5 3 0 0 0 2 1 2
SSRK 2 0 3 2 1 2 0 1 2
SSSO 3 1 1 1 1 1 1 1 1
Table 3-3: Observed values o f  a  (actually rejection counts in B-sam ples o f  30)
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T S R
10 20 30 10 20 30 10 20 30

LOAO 40 30 20 40 20 20 40 20 20
LOLO 5 3 3 7 4 2 6 4 3
LOMO 4 3 2 4 2 1 5 3 2
LORO 200 100 100 200 90 80 200 200 100
LORK 200 200 200 200 90 70 200 200 200
LOTO 80 40 40 80 60 40 70 50 40
LSAO 30 20 20 40 30 20 40 20 20
LSLO 5 3 3 5 3 2 5 3 3
LSMO 4 3 3 4 3 1 4 4 3
LSRO 200 200 90 200 200 80 200 200 100
LSRK 200 200 200 200 100 80 200 200 200
LSTO 80 60 40 80 50 40 80 50 40
SODO 60 40 30 70 40 30 50 40 30
SORK 200 200 200 200 90 60 200 200 200
SOSO 20 20 10 20 10 7 20 20 8
SSDO 30 20 30 30 30 20 40 30 20
SSRK 200 200 200 200 90 70 200 200 90
SSSO 20 10 8 20 10 8 20 20 10

Table 3-4: Observed values o f  ô

The columns are by test and C-sample size. The rows are by configuration. 
The values of table 3-3 are numbers of rejections in a B-sample of 30 tests 
with the given configuration. The values in table 3-4 are percentages. For 
some configurations, the empirical power function (EPF) value of the test 
never reached 95% . For these, ô was set to an arbitrary 200%.

No standard error is given for the values in tables 3-3 and 3-4, but each 
value is based on a B-sample of 30 observations.

3.2.3.3 Alpha

We tested the hypothesis that the observed values of a from table 3-3 are 
not significantly different from the theoretical value of 5% as follows.

First, recap the basis of the experiment. Two equal-sized C-samples were 
drawn from the same population and a test was applied to decide whether 
the C-sample means were significantly different. A rejection resulted if the 
test concluded that the C-samples were drawn from different populations. 
This was repeated 30 times for each of 162 cases: 18 populations (LOAO to 
SSSO), 3 tests (T, S and R) and 3 C-sample sizes (10, 20 and 30). The number 
of rejections was counted in each case, being a value in the range 0 to 30.
To convert a rejection count to an a  value, divide by 30.
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Under the null hypothesis, the only reason for a rejection is random 
variation within the 5% confidence level at which the tests were applied. 
Therefore, we can expect the number of rejections to have a binomial 
distribution with a size n = 30 and probability p = 5%, and we can use a 
test to compare the observed distribution of rejections with the expected- 
distribution. If the difference is too great, we shall have reason to reject the 
null hypothesis on which the expectations were based.

The complete set of observations in table 3-3 gives the following results:

# o e (o-e)Ve
0 37 34.7714798 0.14282689
1 50 54.9023365 0.43773916
2 42 41.8991515 0.00024274
3 15 20.5820393 1.51390067

4+ 18 9.8449929 6.75512321
Total 162 162 8.84983268

DF 4
9.488

Conclusion Accept
Table 3-5: test for T, S and R

Column # gives the category labels 0 to 4+ which are the number of 
rejections in each B-sample of 30. Category 4+ includes 4 or more 
rejections, which are combined to keep the expected number in each 
category at 5 or more. Column o shows the observed frequency of the 
number of rejections in each category. For example, 37 out of 162 cases 
had 0 rejections, 50 had 1 rejection, and so on. Column e shows the 
corresponding expected frequency. The final column (o-e)Ve shows the 
computation of the test statistic for each category.

The Total row gives the total of the columns above it. The rightmost entry 
in this row is the test statistic. DF is the degrees of freedom, which is 1 less 
than the number of categories. The figure is the critical value at 5%.

Since the test statistic 8.84983268 is less than the critical value 9.488, the 
conclusion is that we have no reason to reject the null hypothesis.

Tables 3-6, 3-7 and 3-8 below give the corresponding analysis for each of 
the three tests separately:
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# o e (o-e)Ve
0 12 11.5904933 0.01446839
1 14 18.3007788 1.01070554
2 18 13.9663838 1.16494431

34- 10 10.1423441 0.00199775
Total 54 54 2.19211598

DF 3
7.815

Conclusion Accept
Table 3-6: test for T alone

# o e (o-e)Ve
0 14 11.5904933 0.50090386
1 9 18.3007788 4.72681996
2 13 13.9663838 0.06686754

34- 18 10.1423441 6.08762194
Total 54 54 11.38221330

DF 3
7.815

Conclusion Reject
Table 3-7: test for S alone

# o e (o-e)Ve
0 11 1T5904933 0.03008347
1 27 18.3007788 4.13514910
2 11 13.9663838 0.63004377

34- 5 10.1423441 2.60725750
Total 54 54 :A40253385

DF 3
7.815

Conclusion Accept
Table 3-8: test for R alone

Table 3-5 shows that we cannot reject the null hypothesis overall, but not by 
much. The test statistic is close to the critical value. When we look at the 
performance of the three tests individually, it is clear that Student's T test 
performs well, randomisation Is borderline, and Smirnov's test fails.

Although the overall result is not to reject the null hypothesis, it is based on 
a kind of average that has no real meaning. In practice, we would use one 
test, not an average of three. The investigation shows that the choice of test 
is critical. We conclude that in general, the populations are not sufficiently 
normal to meet the requirements of the tests.
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S.2.3.4 Delta

Factor Fa FÔ F a Ô aô
Engine 5.45 0.04 3.84 *
RNG 0.02 0.00 3.84
problem 6.94 121.03 2.10 * * *
parameters 0.76 164.41 3.84 *
Test 10.32 1.04 3.00 *
Sample size 1.69 2.83 3.00

Table 3-9: A nalysis o f  variance o f  a  and ô

In table 3-9, Fa is the F value resulting from the analysis of variance applied 
to the a values of table 3-3. Fô is the corresponding figure from table 3-4. F 
is the critical value at 5% for the appropriate degrees of freedom. A * in 
columns headed a, ô and aô shows which factors have an effect on a, ô or 
both.

These results cannot be taken at face value because the factors are not 
independent. Only 18 of 64 configurations exist, which defines a relation 
between engine, RNG, problem and parameters. If only one of these factors 
is to be considered, then table 3-9 suggests it should be problem, which is 
the only factor that affects both a and 5. The rows for engine and 
parameters are therefore discounted.

The only effective factors are the problem and the test; and of these, the 
problem has the most effect. The importance of the problem as the 
determining factor suggests that some of the results should be revisited to 
take that into account. For example, if the Configurations in table 3-2 are 
pooled by problem, we find that two (S, T) pass, two (A, D) are borderline, 
and 3 (R, L, M) fail the normality test.

Despite our misgivings about the use of anova, it appears to have performed 
well. The results agree with our subjective view of tables 3-3 and 3-4, and 
correctly identified related factors.

3.2.3.S Coefficient of variation

To discover whether a cheaper predictor of Ô could be found, we 
investigated several measures of dispersion of the large samples. Using the 
coefficient of variation (V), we found a correlation of 99%. Figure 3-3 shows 
the relation with the least squares fit:
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Figure 3-3: mean ô (y axis) vs V  (x axis)

V is taken from the large sample of a configuration; and ô is the 
corresponding row mean from table 3-4. (Standard error of the row means 
is not shown but can be computed. It grows from about 0 to about 19%.) 
The graph suggests a linear relationship, with an outlier at V=92%. A least 
squares fit gives:

6 = 0.0103 +1.47 X y

This result m ust be treated with some caution because it uses the arbitrary 
value of 200% for missing data when calculating ô. However, using any 
value from 125% to 477% for missing data gives a correlation of 99% so it is 
not particularly sensitive.

It is obviously no surprise that V correlates with ô. It is not possible to 
detect a difference that is small relative to the variability of the sample. To 
have a context for this result, we also generated 3 normally distributed large 
samples with mean 50 and standard deviations of 1,5 and 50. For the 
normal data, the factor was about 1.7, compared to the 1.47 for GP data. 
That is, it was easier to detect differences in GP data than in normal data.

3.2.4 Conclusions

The aim of this study was to investigate whether GP perfomance data is 
normally distributed, and if not, how statistical tests behave when faced 
with such data.

Some allowance m ust be made in these conclusions for aspects of the 
experiment. First, the use of bootstrapping and displacement of the mean 
to generate data means that the data is partly simulated. Second, an 
arbitrary value of 200% was used for missing values in the calculation of ô. 
Third, analysis of variance, used to produce table 3-9, assumes that the
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populations are normally distributed with equal variance. This assumption 
was not confirmed, though the results of the anova (analysis of variance) 
appear to be reasonable.

3.2.4.1 Normality

GP performance data is not always normally distributed; as suggested by 
table 3-2, it may be the case that normal distributions are the exception.

3.2.4.2 Comparison of tests

The a metric appears to be a useful measure of a test's reliability. The ô 
metric does not have such a sound theoretical foundation, and although 
plausible, should be viewed with caution.

In broad terms, there is not as much difference between the tests as we 
expected. Table 3-9 shows that only a  is affected by the test, but a  appears 
to be affected more by the problem than by the test. There is a wide 
variation in ô, but again, table 3-9 shows that these are effects of the 
problem, not of the test.

Smirnov's test performed surprisingly poorly. This is probably due to the 
nature of the Multiplexer performance distribution. This distribution has 
several large spikes (eg at 1280) which result in many duplicate values in 
samples drawn from it. Smirnov's test expects a continuous distribution.
(A continuous distribution is one in which the probability of any one 
outcome is vanishingly small, and the probability of an outcome falling 
within a range can be determined by integration. For example, the 
probability that a car is travelling at exactly 30 miles per hour is 
infinitesimal, but the probability that it is travelling between 25 and 35 
miles per hour is finite.) The Multiplexer distribution is discrete, not 
continuous, as evidenced by the many duplicate integer values. Note that 
for a distribution to be continuous, it is not sufficient for the outcomes to 
be real-valued. Performance measurements of many GP systems are real­
valued, but the values are drawn from a relatively small set, so they are in 
fact discrete. Strictly speaking, all digital simulations are of finite accuracy 
and are therefore discrete. Whether this leads to problems with a test such 
as Smirnov’s may depend on the number of duplicate values in the samples.

Compared to either Smirnov's or Student's tests, the Randomisation test is 
expensive to compute, and difficult to program in such a way that the 
program can be independently tested. To obtain an independent test of the 
software (ie to ensure that your implementation is correct) it is necessary to 
produce output in test conditions such that you know what the output 
should be. With an implementation of, say. Student’s test, this is fairly 
straightforward. You can set up test data and compute the test statistic in a
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few lines of code, or on a spreadsheet. To achieve better independence, it is 
easy to do this on a different computer, and even to engage the help of a 
colleague to guard against errors in your own understanding. With 
Randomisation, it is very hard to achieve this degree of independence. To 
compare outputs, it is necessary that the outputs are identical to the bit - 
level. This requires that the computers use the same RNG and have the 
same floating point representation. Detecting errors in stochastic data is 
hard, because they are usually not visible to the naked eye. The net result is 
that implementing Randomisation twice, independently, for the purpose of 
testing the implementation, is considerably harder than can be justified 
when simpler alternatives are available.

On the basis of this study. Student's test is our preferred test.

S.2.4.3 Comparison of problems

The problem was the main factor in determining the reliability of any test, 
and table 3-5 shows that its main effect was on the test's ô value.

The 99% correlation between V and ô shown in figure 3-3 suggests that 
almost all of the effect of the problem can be explained in terms of the 
dispersion of the performance distribution.

In short, how well a test can detect a difference between C-sample means 
depends almost entirely on the problem used to produce the C-samples. As 
a rule of thumb, no test can reliably detect a difference between means less 
than 1.5 x V. Observed values of V range from 2% to 123%.

3.2.4.4 Summary

We had expected that the non-normality of the data would adversely affect 
all parametric tests, specifically Student’s T test and anova. We had 
expected to be able to demonstrate the superiority of a non-parametric test 
such as Smirnov's when dealing with GP data. In fact, we found the exact 
opposite. Not only does Smirnov's test perform unacceptably, but Student's 
test performs better with GP data than with normal data. Although anova 
was not the main subject of the study, we have kept the anova result 
because its behaviour seems to be well within the acceptable range.

While this may appear to be good news it is unsettling. When a test's 
assumptions are not met, we cannot be sure how the test will perform. It 
may reject a null hypothesis not because it is false, but because the data 
show an assumption to be false.
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3.3 Visualisation

This section presents a method for comparing GP systems or problems on a 
single rational scale.

3.3.1 Introduction

§3.2 Performance comparison shows how to make pair-wise comparisons of 
configurations. It also shows that the choice of problem is the most 
important factor affecting the performance of a configuration. Ideally, we 
should like to be able to average out the problem and obtain a measure of 
the engine's power; ideally, this would be a number on a rational scale. 
Unfortunately there are sound reasons why this ideal cannot be achieved in 
full; but there is no reason it cannot be approached, and this section 
presents a method for doing so.

The reasons the ideal cannot be achieved are (1) the No Free Lunch 
theorems [Wolpert, 19951, [Wolpert, 1997] and (2) the sample design for 
configurations. The No Free Lunch theorem tells us that all engines perform 
equally well when their performance is averaged over all possible problems. 
Of course, we are only dealing with a sample of the problem population, 
which is presumably why there is such variation in engine performance.
The problem, as explained in §3.1.2 Populations and samples, is that our 
sample design for problems is the benchmark suite, so our observations of 
engine performance cannot be generalised to the whole problem population. 
There appears to be much more variation m the difficulty of problems than 
in the ability of engines to find solutions. This makes averaging over 
problems extremely suspect. If a biologist were given a sample of life forms 
consisting of a dried pea, a wasp and a blue whale, and asked to make 
observations of them, we would not expect the average of these 
observations to be very enlightening.

This predicament is colloquially referred to as horses for courses and 
generally treated as having no satisfactory solution. The colloquial 
expression refers to race horses and race courses. It means that how fast a 
horse runs depends on which course it runs on. If horse A beats horse B on 
10 courses, but B beats A on a different 10 courses, you cannot say which 
horse is better. A horse's performance must be represented by a matrix 
with one element for each course. In our case, the horses are engines and 
the courses are problems.

Nonetheless, horses are bought and sold, and some horses are worth more 
than others. Money value is a scalar, so it appears that performance can be 
converted into a scalar by people who know about horses (and courses). 
This section presents an algorithm for the horses for courses problem. The 
algorithm is, to a certain extent, arbitrary. It might be possible to test it by 
using it to compute the price of real horses, and comparing the result with
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actual prices, but sadly that is beyond the scope of this investigation. The 
algorithm is presented here as an aid to visualisation, not as a tool for 
testing hypotheses.

An important property of this algorithm is that it apphes equally well to 
engines and problems. It therefore gives us a means of deciding how good a 
sample a benchmark suite of problems is.

3.3.2 Cost and benefit

We begin by defining cost and benefit We follow the usual practice of 
measuring cost by counting fitness evaluations. We introduce the term 
benefit as a measure of how effective an engine is at finding solutions. The 
novel idea here is that we also measure benefit in evaluations. Cost and 
benefit are thus both measured in the same units, which goes some way to 
making comparisons, averages, etc meaningful.

3.3.2.1 Measures of cost

The cost of using a GP engine is computational effort, so the measure of 
cost centers on the amount of computing work done.

There are various ways to measure computational effort, but counting 
fitness evaluations is the most often used. Other measures such as wall 
clock time, CPU time, or system accounting costs could be used but they 
generally add to the complexity and parochialism of the cost measure 
without improving its quality.

Fitness evaluation is generally computationally expensive and the number of 
evaluations is a measure of the efficiency of the GP engine. It is simply the 
number of individuals evaluated, up to but not including the solution. (The 
reason for not counting the solution is for consistency with the ideal GP 
engine that produces the solution first time. That ideal would have zero 
cost.)

An argument can be made for not counting individuals which duplicate 1
earlier ones, since these have already been evaluated. The business of t
identifying duplicates — memoisation — has its own cost. If the cost of I
memoisation is comparable to the cost of fitness evaluation then it makes j
little sense to memoise, and the measure then becomes a simple count of !
evaluations as described above. If memoisation is worth doing then a 1
compromise measure could be used, with a memoised evaluation counting |
as some fixed proportion of an evaluation. It is not difficult to imagine 
more complicated measures, but it is difficult to justify them. The simplest
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way to treat memoisation is to give it zero cost. In this thesis, memoisation 
is not considered.

The measure of cost used in this thesis is therefore fitness evaluation count

3.S.2.2 Measures of benefit

The purpose of a GP engine is to find solutions to problems, so the measure 
of benefit centers on the quality of solutions found.

A solution is defined in this thesis as the first fittest individual found in a 
run. This individual may be discovered in any generation (including 0) and 
remains the solution unless and until a strictly fitter individual is found. 
There are many possible measures of the quality of a solution, but the 
fitness of the solution is the most obvious choice.

In order to measure cost and benefit in the same units, we calibrate the 
objective function in the same units as the cost function, namely, in 
evaluations. For example, we might say that a good solution is worth lOOM 
evaluations, and a poor one is worth only Ik evaluations. This may appear 
to be an unnatural thing to do, in the sense that it feels strange. But it is 
only making explicit in a different form what is implicit when the user 
decides to stop searching before a perfect solution is found.

Existing objective functions are not always trivially simple to calibrate in 
evaluations. Some objective functions measure fitness as a number greater 
than or equal to zero, with a higher value representing a better solution.
Some have a natural upper limit; some do not. Some measure error rather |
than fitness, so that the GP system is required to minimise the objective j
function rather than maximise it. None of these differences is of great Î
significance but they contribute to mild confusion and unnecessary i
complexity. i

To avoid adding to the confusion, we introduce the term benefit to mean the 1
worth of a solution, measured in evaluations. The lowest benefit is zero, 1
and the higher the benefit the better. Some problems may have a natural j
limit on the benefit, and others not. 1

3.3.2.3 Horses for courses

The horses for courses problem is as follows. We have e engines, Ej ... £g, 
and p problems, Pj ... Pp. Each engine is tried with each problem, giving ep 
pairs. Each pair results in a benefit, which is the performance measure for 
the engine, and a cost, which is the performance measure for the problem.
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The data can be represented as a benefit matrix B with e rows and p 
columns, and a cost matrix C, with p rows and e columns. The cost and 
benefit matrices are arranged so that the rows correspond to the entities 
whose performance is in the body of the matrix.

The data is sample means. In the simple form of horses for courses the 
means are treated as points instead of estimates, which is an over­
simplification. A more robust method would take the standard error of the 
mean into account when producing the cladogram and again when the 
performance of engines and problems is reduced to a rational scale 
(§3.3.2.3.5 Path length tree, and §3.3.2.3.6 Constructing the path length tree, 
below). The final result should be that each engine or problem is 
represented by an interval on the rational scale, not by a point.

Suppose we have e = 5 engines and p 
look like this:

3 problems. Typical data might

27 39 21
22 23 32

B = 17 39 29
24 26 25
17 37 26

11 14 13 13 14
C = 14 16 20 11 15

14 13 18 15 16

The solution to the horses for courses problem is a column vector JS' of e 
rows, ie one element per engine, which is that engine's overall performance 
measure in the context of the problem sample. By symmetry there should 
also be a column vector C  of p rows from C, with one element per problem, 
representing that problem's difficulty in the context of the engine sample.

3.3.2.3.1 Arithmetic mean

There are countless functions which could produce a column vector as 
required, but there is no reason (yet) to look further than the arithmetic 
mean, and there are good reasons not to look much further.

In the arithmetic mean scheme, each element of B'is the mean of the 
corresponding row of B, giving the following values (to one decimal place):
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B '

2R0
25J
283
25.0
263

And corresponding to C:

C '  =

13.0
15.2
15.2

According to this scheme, engine 1 is the best with 29.0, engine 4 the worst 
with 25.0. Problem 1 is the easiest with 13.0, and problems two and 3 
equally hard with 15.2.

The arithmetic mean is simple, but raises two concerns.

S.3.2.3.2 Two kinds of difficulty

To compute the mean we add the observed benefits of one engine working 
on several different problems. The first concern is that this may not be a 
meaningful thing to do.

Cost and benefit are measured in the same units, namely, evaluations. A 
consequence of this is that benefits and costs are commensurate across all 
fitness functions.

This is not a play on words. A problem has two kinds of difficulty or 
computational effort. The first kind is the difficulty of evaluating points in 
the search space. Evaluating a point may involve any amount of 
computational effort. The end result of this effort is one fitness value. The 
second kind is the difficulty of using these fitness values to direct a search, 
through the space defined by the fitness function and the genetic operators, 
to find a better point. The first kind of difficulty may be called internal, the 
second external

Benefit and cost are measured in evaluations. They are not concerned with 
how much effort each evaluation involves, only in how well the search is 
conducted. They only measure external difficulty. Because they ignore the 
internal difficulty of evaluating each point's fitness, they measure only the 
difficulty that is visible to the GP engines. Cost and benefit are therefore
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commensurate, and the arithmetic mean is a valid computation. Indeed any 
linear sum of benefits and costs would be meaningful in these terms.

3.3.2.3.S Equal importance

The second concern is that computing the arithmetic mean of a row of B 
implies that the columns of B are all of equal importance. This would be 
fair if the problems that the columns represent were a random sample of all 
problems. This, however, is not the case. First, the problems are a 
benchmark suite, chosen by educated guesswork. This is also true of the 
engines. Second, in any investigation, the columns are liable to contain not 
only the problems of the benchmark suite, but also variations of these, 
which are included to see what the effect of certain minor changes in 
problem parameters might be. This is more common when comparing 
engines than problems, since we are used to tweaking engine parameters, 
but it can arise in either case.

We have no real assurance that the benchmark suite is fair to begin with. 
The inclusion of minor variations pretty well ensures that the resulting mix 
is far from fair. We therefore upgrade from the arithmetic mean to at least 
a weighted arithmetic mean. Since cost and benefit are commensurate, the 
weighted arithmetic mean is as meaningful as the plain arithmetic mean. 
The issue is how to determine the weights.

The case of exact duplicates provides the basis of a thought-experiment 
which, although somewhat artificial, is quite informative. Suppose we have 
5 problems A, B, C, D and E which are a fair sample (whatever that means). 
For simplicity, let us express the weights as percentages. Then each 
problem will deserve the same weight, say 20%. Suppose we now add to the 
set a sixth problem E' which is identical to E. The presence of E' adds no 
new information and therefore should not cause any change in the weighted 
means. The weights of A, B, C and D in the new set m ust still be equal, and 
also equal to the sum of the weights for E and E'. By symmetry, the weights 
of E and E' should be equal to each other. This implies that the weights of 
A, B, C and D remain at 20% while E and E' are at 10%. The weight which was 
assigned to E is now shared equally between E and E'.

Consider now a slightly different case. Suppose we have the same 5 
problems as before, but instead of adding an exact duplicate, we add to the 
set a sixth problem E" which is very similar to but distinct from E. In this 
case we should expect that the weights of A, B C and D m ust still be equal 
but the weights of E and E" together should be slightly more than that. 
Whether the weights of E and E" should be equal depends on the differences 
of E and E" from A, B, C and D. We might find, for example, that A, B, C and 
D each have weight 19%, while E and E" have weights of 12% each.
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To take this approach any further we need first a measure of the difference 
between two problems (or engines) and second, an algorithm to input this 
measure and output weights. With these weights we can compute the 
column matrices B' and C.

3.S.2.3.4 Distance between problems

For the sake of simple language, we deal only with assigning weights to 
engines, so that we can compute the weighted mean of each problem's cost; 
remembering always that the same method must be able to assign weights 
to problems so that we can compute the weighted mean of each engine's 
benefit. For the purpose of explaining the method, it is better to have 5 
weights to compute than 3.

There are many ways in which we could define the difference between 
engines, but arguably the simplest is to use the benefit matrix B. This 
matrix gives us the problems' view of the engines. If we want to consider 
the engines as black boxes, then the only external property we have is how 
well they solve problems, and that is exactly the information that B 
contains. Each row of B identifies a point in a j7-dimensional space. We can 
therefore use Euclidean distance to measure the difference between any two 
engines.

For example, with the matrix B already given, we can calculate the engine 
distance matrix D^as follows. Engine 1 is at (27, 39, 21) and engine two is 
at (22, 23, 32). The distance between these points is V[(27-22)2 + (39-23)2 + 
(21-32)2] = V402 = 20.05 approximately. Computing the distances between 
all pairs (to two decimal places) gives the following e by e matrix:

=

0
20.05 0
12.81 17.03 0
13.93 737 15.30 0
11,36 16.03 3.61 13.08

The main diagonal is zero, showing that every engine is identical to itself, 
and the upper triangle (not shown) is a reflection of the lower triangle. This 
matrix shows that engines 3 and 5, with difference 3.61, are very sim ilar, in 
terms of how they handle the 3 problems we are considering. Engines two 
and 4, with difference 7.87, are also quite similar, while engines 1 and 2, 
with difference 20.05, are the most distinct, A similar matrix, of p rows by p 
columns, can be computed for problems.
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3.3.2.3.S Path length tree

Now that we have a distance measure between engines, we need an 
algorithm to compute the weights to assign to them. What should the 
results of the algorithm be? If all 5 engines were equidistant, they should 
all receive equal weight, say 20%. But engines 3 and 5 are relatively close, so 
they should count more as one engine than two. This should raise the 
average weight per engine to about 25%, and engines 3 and 5 should get 
about 12.5% each. Engines two and 4 must be taken into account, and so on. 
We might expect engine 1 to get the most weight on account of its distance 
from engine 2.

To compute the weights we first represent the distance matrix as a PLT or 
cladogram. (The method of producing the PLT is given later.) A PLT is a tree 
composed of nodes and arcs. A node can have 1, two or 3 arcs. A node 
with 1 arc is a leaf node. The leaf nodes correspond to the points (engines 
in this case) we are measuring distance between. Exactly one node has two 
arcs; the root node. A node with three arcs is an internal or branch node. 
Each arc has a length. The PLT represents the distance matrix in the sense 
that the sum of the arc lengths along the path from one leaf node to another 
is equal to the distance between the corresponding points in the distance 
matrix.
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The PLT for the distance matrix given above is as follows:

5.66

■3.94

2.24

E3

2.572.01

3.72 1.03

6.59

Figure 3-4: Path length tree

Node (R) is the root. Nodes (1), (2), (3) are internal nodes. Nodes (El), (E2) 
etc correspond to the engines 1 ... 5. The arcs are labelled with distances. 
For example, the distance from (E2) to (E4) is 5.66 + 2.24 = 7.9, as compared 
to 7.87 in the distance matrix. In practice the PLT does not represent the 
distance matrix exactly, because a PLT has fewer degrees of freedom than a 
distance matrix for the same number of points. The construction algorithm 
ahns to minimise the error.
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The PLT in figure 3-4 is easy to comprehend, but the drawing style is not 
easy to use with larger numbers of nodes, A more conventional 
representation is as follows:

1 . 0 3 E5
3 . 7 2

2.01 2 . 5 7 E3

6 . 5 9

2 . 2 4
E4

3 . 9 4

5 . 6 6
E2

Scale

0 1  2 3 4 5 6 7 8 9  1 0

F i g u r e  3 - 5 :  C l a d o g r a m

The diagram is a 2-dimensional representation of a set of points in an n- 
dimensional space. The points in the n-dimensional space are the engines; 
the 3-dimensional space is defined by the benefit (in evaluations) measured 
by the three problems.

The horizontal dimension of the diagram uses a rational scale to represent 
distance. The horizontal scale is shown at the foot of the diagram. The 
length of each horizontal arc is given above the arc.

The vertical dimension is categorical, and simply places each point in its 
own category. Vertical lines do not represent distance. The vertical 
categories are sorted by horizontal length, with shortest length first. Thus, 
E4 lies above E2, and the entire E5-E3-E1 subtree lies above the entire E4-E2 
subtree.

The numbers in parentheses are the internal node numbers. They are not 
significant but have been left in to identify the nodes.

Both forms of tree are equivalent. The cladogram form is easier to scale and 
to produce automatically. The PLT form is perhaps easier to read, so I use it 
for the rest of this exposition.

Leaf nodes which are close (as defined by the distance matrix) are also close 
in the PLT and cladogram. Consider the paths from the root to the leaf 
nodes. Leaf nodes for engines which are close have paths with arcs in
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common. The closer the leaf nodes, the more common arcs. Identical 
engines would appear as nodes separated by an arc of length zero, so that 
the entire path length from the root would be common.

Representing the distance matrix as a PLT enables us to assign weights to 
engines in a systematic way. If the engines were equally diverse, they 
should be equally weighted. In this case the PLT would be star-shaped, and 
all arc lengths would be equal. The PLT is not star-shaped to the extent that 
the engines are not equally diverse. Firstly, the root acts as a kind of 
centroid, so the distance of a leaf from the root is a reasonable measure of 
the weight to attach to the leaf. If the PLT were star-shaped with a different 
arc length to each engine, the weight attached to each engine would be its 
arc length. But the PLT is tree-shaped, which is to say, some leaf nodes 
share part of the path to the root. For example, (E2) and (E4) share the arc 
(2)-(R). This is a measure of the similarity between (E2) and (E4). The more 
similar such nodes are, the more path they share. We take account of this 
by dividing the weight of the shared path between all the leaf nodes that 
share it. In this way, leaf nodes which are similar are made to share weight. 
Applying this to the PLT given above results in the following:

7.63 (27.5%)

5.66 (5.66)

2.01 (0.67)2.24 (2.24)

( é
4.21 (15.2%)

5.10 (18.4%)

P

2.57 (2.57)

3.72
U  (1.86)-----(1.03)

3.56 (12.8%)
6,59 (6.59)

7.26 (26.2%)
Figure 3-6: Lengths and weights
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The weight of each arc is shown in parentheses after its length. For 
example, the arc (R)-(2) is shared by (E2) and (E4) so its length has been 
divided by 2, giving 1.97. Similarly arc (R)-(l) was divided by 3, and arc 
(1H3) by 2.

The weight of node (E2) is now computed as 5.66 + 1.97 = 7.63. This is 
shown next to node (E2). The figure 27.5% is the weight as a percentage of 
the weights of all the leaf nodes. (The percentages do not add to exactly 
100% because of rounding error.)

This gives us engine weights We as follows:

7.26
7.63
5.10
4.21
3^6

or, as percentages:

2&2
27.5
1&4
15.2
1Z8

from which we can compute the weighted mean of the problem costs as:

C' =
12.9 
15.3
14.9

For comparison, the unweighted mean (from §3.3.2.3.1 Arithmetic mean) is:

C' =
13.0
15.2
15.2

The effect of the weights is slight but noticeable.
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3.3.2.S.6 C onstructing the  path length tree

PLTs are used in biology to represent distance relationships between living 
creatures in a process called phylogenetic inference.

The Fitch-Margoliash algorithm [Fitch, 1967] for producing unrooted PLTs is 
available as part of the PHYLIP software package [Felsenstein, 1995]. It is a 
heuristic algorithm which searches for a tree that minimises the error 
expression;

where D is the distance accoding to the distance matrix, and d is the 
distance according to the PLT. The search builds a tree by findmg the two 
entities (engines or problems, in our case) which can best be combined into 
a single entity which averages their distances. This reduces the number of 
entities by one. The process is repeated until no entities remain. The 
phylogenetic tree that results is simply a record of the order in which 
entities were combined. The first tree so created is not necessarily the best. 
The algorithm creates a series of trees by varying the order of combination 
slightly, and retaining the tree with the least error.
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The unrooted PLT for our example data looks like this:

,'E2)

\
\

5 .66
\

V

g ) ----------- 5.95

2.^4

&  1.03

(E4)
6 .59

(E l)

Figure 3-7: Unrooted PLT

An unrooted tree is unusual in Computer Science, and it is easy to make the 
mistake of thinking of one node as 'obviously' being the root, especially if 
the representation of the tree artificially distinguishes one node from the 
others. One way of establishing a root is to choose an existing node. 
However, it is not always obvious which node to choose, and experiments 
with pencil and paper soon show that fair results sometimes cannot be 
achieved with any existing node as root. We need a reliable method of 
establishing a root before we can use the PLT to compute weights.

The following method is used find a root node. We create a new, virtual 
point which is extremely and equally distant from all the real points. This 
requires a new row and column in the distance matrix, with all elements 
(except the main diagonal element) set to the same high value. The 
modified distance matrix is shown below. (Note that the top half reflects of 
the lower half.)
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0
20.05 0
12.81 17.03 0
13.93 7.87 15.30 0
11.36 16.03 3.61 13.08

1000.00 1000.00 1000.00 1000.00
0

1000.00

This virtual point is like a fixed star, so far away that all the real points are 
equidistant from it. The Fitch-Margoliash algorithm is not sensitive to the 
exact distance to the fixed star, provided it is large enough. In the example 
data given above, a distance to the fixed star of 1 000 is sufficient; further 
increases result in very small changes to the resulting PLT. The PLT 
produced by Fitch-Margoliash for a tree with a fixed star at distance 1 000 
is shown below.
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5.66

2 )------ 3 .94

992.11 (arc shown 1 /100th 
natural length)

3.72

Figure 3-8: PLT with fixed star at distance 1 000

Compare the PLT without a fixed star (figure 3-7) to the PLT with a fixed star 
(figure 3-8). Both are unrooted trees. The difference is that the PLT with 
fixed star has one more leaf node (*) for the fixed star and one more 
internal node (4). Apart from the new arcs (2)-(4) and (4)-(l), the previous 
arcs are unaffected by the change. Further, the old arc (2)-(l) has simply 
been split in two by node (4), since 3.94 + 2.01 = 5.95. While this is not a 
proof of anything, it is typical of the effect of adding a fixed star. Node (4), 
which is where the fixed star attaches to the PLT, is chosen as the root. The 
arc (4)-(*) is discarded, leaving us with a rooted PLT.

3.3.2.3.7 Performance-based weights

We have described a procedure for computing weights based on engine 
differences. Are other methods possible? One approach that seems
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attractive is to have weights proportional to performance. The idea here is 
that the problems are not equally difficult, so we should give more weight to 
difficult problems than easy ones, when averaging an engine's performance.

Unfortunately, this approach does not work. If the weight for a problem is 
proportional to the problem's cost, then by symmetry, the weight for an 
engine is proportional to the engine's benefit. This leads to simultaneous 
equations which reduce to 0 = 0.

The conclusion is that we cannot treat benefit and cost as multiplicative 
inverses of one another in this way, and that to try to do so is a conceptual 
error.
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Grammars

This section deals with issues of scalability which are raised in §2 Gads I '  
The essence of the scalability problem is that the Gads 1 experiment used 
an unrealistically small CFG. To generate a wider range of programs, the 
technique m ust be extended to use a realistically large CSG.

CSGs are necessary because real programming languages such as C and Java 
have context-sensitive rules. For example, it is only valid to refer to an 
identifier in an expression if the identifier has been declared, is of the 
correct type, includes the expression in its scope, and (depending on the 
language) has been initiahsed. Only if these conditions have been met may 
the identifer be used. But it is beyond the power of a CFG to represent 
these conditions or to test whether they have been met before allowing the 
relevant productions to be invoked. Where CFGs have productions whose 
LHS is a single nonterminal, CSGs have productions of the form:

xAy ::= xBy

that is, A may be rewritten as b  if it is in the context defined by x and y.
That is the formal approach, but in practice it is more usual to use other 
representations for the grammar, as it would not be practicable to produce 
a definition for a real language in that form. The most common and 
practical forms of CSG are the two-level grammar and the attribute grammar 
[Pagan, 1981], [Deransart, 1988].

Whichever type of grammar is used, the problem remains that grammars are 
designed for analysing sentences, not for synthesizing them. Chapter 1 of 
[Pagan, 1981] lists seven uses of a formal grammar. Synthesis is not among 
them. The historical reasons for this are obvious. Until the invention of GP 
there has been next to no automatic programming and therefore no 
possibility of synthesizing programs.

4.1 Existing CSGs

This section considers existing forms of CSG for use in Gads. The key 
feature that Gads requires is that the grammar can be used to synthesize 
sentences without computationally expensive backtracking or other 
searching. As shown in §2 Gads 1, CFGs have these properties, but as 
explained above, they are not suitable for deriving more realistic programs.
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4.1.1 Two-level gram m ars

We examine two-level grammars only in enough depth to decide they are not 
suitable. Suppose we have a two-level grammar defined as follows:

Protonotions
N o n e .

Notions (rules)
program: 
series :

series.
statement sequence.

Hyper rules
SEQITEM sequence SEQITEM;

SEQITEM sequence, 
SEQITEM.

Meta notions (meta rules)
SEQITEM:: declaration;

statement ; 
letter.

Now consider using this grammar to generate a sentence beginning with the 
start symbol p ro g ram  and applying productions:

program 
=> series
-> statement sequence
= >  ?

At this point we m ust pause. What does statement sequence change to? 
It is a notion, but there is no rule for it, because it is an instance of the more 
general SEQITEM sequence hyper rule.

How do we find a hyper rule for statement sequence? In this tiny 
grammar, we can see that statement sequence matches SEQITEM 
sequence, because statement matches SEQITEM. But in a realistically 
large grammar, this matching is not likely to be simple. Even after a 
successful matching, and identifying a hyper rule, we are not finished. In 
general, a hyper rule may define any number of statement sequences. 
We will need a further method to choose one in particular.

To summarise, synthesis in two-level grammars is much more complicated 
than in one-level grammars. It's not immediately obvious how to do it, or 
even if it's possible. We therefore put two-level grammars to one side.
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4.1.2 Attribute gram m ars

Standard attribute grammars (sags) are not suitable for Gads 2, for reasons 
that come down to the bias in favour of analysis over synthesis. This bias 
leads to grammars that can recognise a valid sentence, but cannot be 
efficiently directed to produce one. Sags are a powerful computational 
paradigm. To say that they are not suitable for Gads 2 therefore requires 
careful justification. That justification now follows. Although it is closely 
argued, it is not so much a formal mathematical proof as a methodical 
exploration of system design.

Suppose we are using a sag to generate a PT in some language, beginning 
with the start symbol, and expanding node after node. Suppose we are 
using the basic Gads 1 mechanism for this: that is, we have a stream of 
genes and use them to choose one production at a time from the set of 
applicable productions (ie the set of productions whose LHS labels the PT 
node we are expanding). Suppose we are now about to expand a node which 
should generate an identifier, and suppose that out of all possible 
identifiers in this language, only a finite subset are valid in this context.

For example, we may have already generated:

let s = "a string"
let X = 3
let y = X * 5
let z = X *  X +

The language requires an expression after the last + sign; we have made 
choices as to the type of expression, and have decided that the expression is 
to be an identifier. Possible identifiers include x, y, and perhaps some 
predeclared identifiers such as pi. But an undeclared identifier in this 
context is not valid. Nor is an identifier if its type is not compatible. An 
identifier of type string, for example, would not be valid here.

We don’t need to be specific about the productions in the grammar or the 
specific language. At some point in the derivation of identifiers we must 
reach a stage where some choices are valid and others are not; and we 
suppose we are at that stage.

The usual way to design a sag that deals with this is to use the attributes to 
maintain an environment, that is, a data structure which records a 
description of the context at each node in the PT. For example, at the PT 
node corresponding to the declaration of identifier s, the environment 
would typically be augmented by a representation of the fact that s i s  in 
scope, that it has type string, and that it has been initialised. Similarly the 
environment is augmented by the declarations of x and y by the time we
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reach the situation in question. The specifics of the environment do not 
affect this argument: what is important is simply that there is an 
environment recording the context.

In analysis (ie when parsing a string of symbols which may be a sentence in 
the language), an environment is used to test whether a given identifier is 
valid by looking up the identifier in the environment and confirming that 
certain conditions hold. Typical conditions in this case would be such as (1) 
the identifier m ust exist in the environment, (2) it must be of a scalar 
arithmetic type, and (3) it m ust have been initialised. The conditions are 
usually formalised as a predicate which is associated with the production 
that produces the identifier. On encountering a predicate that evaluates to 
false, the analyser takes some exceptional action, such as backtracking to 
try other parsing possibilities, or, if this is not possible, issuing a message 
indicating that it has discovered an error in the input.

In synthesis (ie when producing a valid sentence in the language), we would 
like to use the environment to direct the choice of productions, so that a 
valid identifier could be produced. There is nothing in the productions 
themselves which can assist in this. Each production consists of an LHS 
which is a nonterminal symbol, and an RHS which is a sequence of one or 
more symbols. These symbols do not refer to attribute values. Also, since 
the set of productions in a sag is fixed, the productions must be capable of 
producing all possible identifiers in the language at any node in the PT.

The following subsections explore ways in which the synthesis might 
proceed, that is, the ways in which a sag could be used for Gads 2.

4.1.2.1 Calculation after selection

The simplest approach is to use the gene stream to select productions in the 
usual way. After each production is selected and applied, we evaluate the 
attributes and predicates associated with it. So long as no predicate 
evaluates to false, this process continues. It terminates when the PT is 
complete, in which case it will represent a type-correct program.

Difficulties arise if a predicate evaluates to false. If this happens, it means 
that a production was chosen in a context where it was not a valid choice. 
The difficulty is to know what to do about it.

The simplest option is to give up: mark the individual as unviable and 
perhaps give it the lowest possible fitness value. But this would lead to an 
unacceptably high mortality rate, as the chances of producing a type-correct 
individual by this method are fairly low.
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Another option is to backtrack, that is, to revisit an earher decision and 
choose a different path forwards, (We could save genes by skipping over 
the gene that made a bad decision, and re-use the gene stream, but 
displaced by one position.) This time we may succeed; if not, we backtrack 
and try again. Provided we methodically backtrack to recent decision points 
first and try them, before backtracking to earlier decisions, backtracking 
carries out an exhaustive search of a tree of possibihties. However, because 
we are using the gene stream to direct the search, it is not exhaustive. Our 
searching is limited by the genes that are available in the current individual. 
We are more likely to exhaust our supply of genes than exhaust the 
possibilities in the search space. Also, even if we could exhaust the search 
space, backtracking could be enormously expensive. For example, suppose 
under the direction of the gene stream, we decided to generate an identifier 
in a context where no suitable identifier was available. The fact that this 
particular alley is bhnd does not show up until we reach the end of the alley: 
we generate an identifier and a predicate evaluates to false. At this point we 
try another identifer — and it too fails. By the principle of backtracking to 
most recent decisions first, we must generate and reject all possible 
identifiers before we revisit the decision that is the cause of the rejections. 
Given that the productions can produce all possible identifiers in the 
language at any node in the PT, this is likely to take an unacceptably long 
time.

The conclusion is that any approach in which we choose a production 
before testing the consequences of that choice, is not feasible.

4.1.2.2 Calculation before selection

In this approach we investigate the possibility of using current environment 
as well as the gene stream to direct the choice of the next production.

It is clear from the analysis above that what is required is a method by 
which we can restrict the choice of productions at any given node in the PT. 
We need to exclude from consideration those productions which must lead 
to failure. This avoids blind alleys. We don't need to exclude productions 
that lead to a mixture of successes and failures, provided that they have at 
least one successful outcome.

For example, suppose we have a grammar that generates identifiers as letter 
sequences, and that we are in a context where the only valid identifiers are 
apple and banana. In this context we should exclude productions that 
lead to identifiers beginning with anything other than a or b, as they must 
fail. We should consider only productions that lead to a or b, even though 
they could lead to identifiers such as avocado or bramble which would 
fail. Paths leading to certain failure are excluded later.



The environment already has a representation of the set of identifiers which 
are valid at this point in the PT. What is required is a function which takes 
as its parameters a grammar and an environment, and from these returns 
the set of production rules (more precisely, their identifying numbers) 
which are valid at this point. More formally, we seek a function fsu ch  that:

/ :  (G ,«) I L ( ; > ) n / =.*<!)}

where:
G is the attribute grammar
e is the environment at this stage in the PT
p is a production in G (more precisely, its identifying number)
Up) is the language of p, ie the set of identifiers

that can be derived from p 
I  is the set of valid identifiers at this point in the PT,

extracted from e 
0  is the empty set.

In English, /"identifies the productions which may lead to valid identifiers. 
The only productions which are excluded are those which could not possibly 
lead to a valid identifier. Having used fto  compute the set of valid 
productions in the context of the current node, we use the next gene from 
the gene stream to choose one of these productions. From the definition of 
fw e  know that no matter which production we choose, we will not 
necessarily end in failure. Every production returned by /"can lead to 
success. By computing fa t  each PT node, and only choosing from the set of 
productions it returns, we can generate a program which is type-correct, 
without ever needing to backtrack.

The essence of this approach is that f is  computed before we choose a 
production, which guarantees that we never need to backtrack. However, 
this method has drawbacks.

First, f  may be unacceptably expensive to compute. To compute f  we need 
to test each production p in the grammar which has the LHS for the current 
PT node. For each p, we need to decide whether there is at least one 
identifier i in the environment, such that i can be derived from p. If so, we 
add p to the set of possible productions to be returned by f  If not, p cannot 
lead to a valid identifier and we exclude it excluded. The number of 
identifiers we examine to decide whether to allow or exclude p is not fixed. 
We only need to derive one identifier to allow p, but we can only exclude p 
after trying every valid identifier in the environment. Thus, to test a given 
p, f  analyses z using a grammar G' which is equal to G except that it has p as 
its start symbol. To compute fwe carry out many such analyses.

Second, unless fis  to be used at every node of the PT, a mechanism is 
needed to indicate when to use f  and when to go ahead without it. This
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could probably be done without deviating from the sag model by listing all 
affected productions, or giving certain nonterminals names in a certain 
form, for example.

Third, for Gads 2 to use f, the grammar must be written to implement an 
enviromnent in a particular way, and the enviromnent m ust be accessible by 
Gads 2. Gads 2 would have to be closely coupled with the grammar, which 
is not a good design principle. Grammar design is not trivial, so this may 
not always be an easy thing to accomplish.

Fourth, this approach requires that every time an identifier or piece of 
context-sensitive code is required, it has to be generated by a directed 
grammatical derivation.

The conclusion is that any approach in which we test productions to see if 
they could lead to a valid PT would be expensive to compute, difficult to 
program, and inefficient.

4.1.2.3 The third way

A weakness of both the previous approaches is that they use productions to 
replicate the information available in the environment. This leads to 
inefficiency. It is simple to produce a set of valid identifiers for the current 
context from the environment. Instead of using the gene stream to direct a 
grammatical derivation that leads to one of them, it would be much simpler 
to use just one gene to choose one directly from the set. An identifier 
chosen in this way is valid, so backtracking is not necessary.

The advantage of this approach is that it is simple and efficient. In fact, 
given that it consumes just one gene per identifier, has no backtracking, and 
it is computationally inexpensive, it is hard to see how it could be improved 
upon.

The disadvantage of the third way is that we no longer have a standard 
attribute grammar. The third way requires that at a certain stage in the 
growth of the PT, we stop growing the PT by choosing from the set of 
applicable productions and expanding a PT node, and instead choose from a 
set of identifiers computed from an attribute and use that to expand the 
node. It may be efficient, but it is not a standard attribute grammar. Also, 
this approach requires close coupling of Gads 2 and grammar.

The next section presents a method of obtaining the advantages of this 
approach with none of the disadvantages.
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4.2 Reflective attribute grammars

The example of selecting an Identifier is obviously just one example of 
context sensitivity. For full context sensitivity, we m ust be able to choose' 
types, procedures, control structures, and all the panoply of a full context 
sensitive language. The ideal grammar for Gads 2 ontogenesis would have 
the set of all acceptable choices in any given context, and use one gene in 
the genome to choose one of them. I call this ideal because it uses one unit 
of genetic information to make one choice in the ontogenesis, and no 
backtracking is ever necessary.

An extended form of attribute grammar called a rag, which reaches the 
ideal, is introduced below. I have used S-algol [Morrison, 1979] below to 
illustrate the ideas. S-algol combines a pleasant grammar with a full range 
of imperative language features such as basic types, procedures, arrays, and 
structures. S-algol is also used as the phenotype language in the 
experiments which follow. The S-algol rag is given in §B.

4.2.1 Overview

This section develops the idea of the rag, placing it in the context of CFGs 
and sags. The explanation is given in terms of formal grammars and also in 
terms of a possible object-oriented implementation of them. The actual 
implementation was in Java, so as to be able to make use of ECJ [Luke, 
2001 ].

4.2.1.1 Grammatical notation

Grammars are described using a form of BNF based on the description given 
in §2.4.1 of [Pagan, 1981]. Briefly, a symbolis a sequence of lowercase 
letters or digits beginning with a letter. Spaces are not significant. Thus the 
following all identify the same symbol:

no table 
notable 
not able

A symbol ending in “s y m b o l” defines the concrete representation of a 
terminal symbol. Each terminal symbol must have exactly one rule that 
defines it. The rule names the terminal symbol on the left, terminated by a 
colon. The right hand side is a string of characters delimited by a nonspace 
character (normally the quote). Spaces are significant within the delimited 
string. For example:
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caret symbol: 
quote symbol: /"/
newline symbol: "

numeral 4 symbol: "4"
while symbol: " while"

The terminal symbols are usually collected in a representation table which is 
separate from the rest of the grammar. Separating the concrete syntax from 
the abstract helps keep the grammar organised and easier to read.

A symbol which does not end in “s y m b o l” is a nonterminal. Each 
nonterminal m ust have at least one rule that defines it. The rule names the 
nonterminal symbol on the left, terminated by a colon. The right hand side 
is a series of one or more alternatives, separated by semicolons. The whole 
rule is terminated by a period. Each alternative consists of a comma- 
separated sequence of symbols. For example:

literal int: space symbol, numeral 0 symbol;
space symbol, digits.

digits: digit;
digit, digits.

digit: numeral 0 symbol;
numeral 1 symbol;
numeral 2 symbol;
numeral 3 symbol;
numeral 4 symbol;
numeral 5 symbol;
numeral 6 symbol; i
numeral 7 symbol; t
numeral 8 symbol; j
numeral 9 symbol. |

As in Gads 1 it is convenient to place the alternatives in different 
productions. The definition of l i t e r a l  i n t  above is equivalent to:

literal int: space symbol, numeral 0 symbol

literal int: space symbol, digits.

The alternatives for a nonterminal are numbered sequentially from 0. The 
order of the alternatives in a production is not significant as far as the 
language (ie the set of sentences and their structure) which the grammar 
defines is concerned, but it does affect the ontogenesis, because the first
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production for a nonterminal (ie production 0) is used as the default 
production for that nonterminal.

We generate a sentence by growing a PT, starting with the root, and 
expanding node by node until each path ends with a terminal symbol. Gads 
2 always expands the leftmost node first. We describe this process either as 
growing a PT by expanding nodes or as rewriting nonterminal symbols in a 
string, providing the meaning is clear from the surrounding text.

4.2.1.2 Context free grammars

When the grammar is a CFG, expanding a non-terminal node consists of 
using the next gene to choose a production alternative from the grammar 
which has that non terminal symbol as its LHS. In Gads 1, the alternative 
chosen is the one whose number equals the gene value. In Gads 1 this was 
acceptable but for a large grammar it would lead to many genes having no 
effect, as only a few alternatives would be applicable at any time.

[O'Neill, 2001b] describes the GE solution to this, which is to translate the 
gene value into a production number by a simple arithmetic operation. In 
GE this is done by computing the gene value modulo the number of 
applicable production alternatives. In Gads, we scale the gene value from 
the gene range to the range of applicable alternatives. For example suppose 
genes are integers in the range [0, 999] and there are 4 alternatives for the 
leftmost nonterminal, numbered 0,1,2 and 3. Then any gene value in the 
range [0, 249] will select alternative 0, any gene value in the range [250, 499] 
WÜ1 select alternative 1, and so on. Thus every gene is effective. The choice 
of translation scheme does have an effect, but this implementation is 
concerned with feasibility rather than performance.

Although the order in which alternatives are numbered does not affect the 
language of the grammar, this version of ontogenesis uses the first 
alternative (ie alternative 0) as the default definition for the symbol. The 
default is used if ontogenesis has exhausted the genes in the genome, and 
unexpanded nonterminal symbols remain in the developing phenotype. For 
example (using the above definitions), if an unexpanded l i t e r a l  i n t  
remains in the developing phenotype, it defaults to < sp ace>  0. Similarly, 
d i g i t s  defaults to d i g i t  and d i g i t  defaults to 0. Thus, by ordering the 
alternatives with care, all unexpanded symbols can be expanded 
automatically to sensible defaults. However, if the order of the alternatives 
for d i g i t s  were reversed, then an unexpanded d i g i t s  symbol would 
default to an endless string of Os.

In object-oriented terms, nodes are objects of class Node. A Node has an 
array of child Nodes.
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4.2.1.3 S tandard  attribute gram m ars

When the grammar is a sag, attribute values are inherited or synthesized at 
each node. (Note that Gads 2 does not use a sag — this step in the 
explanation is included just to fill a gap on the way to rags.) Inheritance 
and synthesis corresponds to passing parameters to, and receiving results 
from, the node-expanding procedure. Attribute evaluation rules are 
associated with each production alternative to specify the inheritance or 
synthesis is to be done, in the event that that alternative is used to expand a 
node. Generally, an expression assignment language is all that is needed for 
the evaluation rules. For example, if v a l  is an attribute associated with 
d i g i t s  and d i g i t ,  we might have:

digits: digit;
{digits.val := digit.val)

digits: digit, digits.
(digitsi.vai := digits 2 .val*10+digit.v a l }

The subscripts in the second evaluation rule are necessary to distinguish 
between the two occurrences of d i g i t s .  In object-oriented terms, these two 
occurrences are distinct objects, each of which has a v a l  attribute.

The numerical value of a string of digits in a sentence of the language can 
thus be referred to in the grammar. This makes it possible, for example, to 
specify in the grammar that no string of digits was greater than some limit. 
Without attributes, it is not really feasible to do such a thing, so 
specification of limits is either not done at all, or is done in an ad-hoc 
manner. When attribute grammars are used for parsing, this can be 
achieved using a boolean attribute OK which is synthesized at each 
nonterminal, and which is true if and only if the input sentence is 
recognised. If a false value is ever synthesized, the non-terminal 
responsible may give an indication of the error that has been detected. For 
example, to ensure that d i g i t s  never represents a value greater than the 
machine limit MAXINT, we could extend the definition of d i g i t s  to read:
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digits: digit;
{

OK := digit.val <= MAXINT 
digits.val := digit.val

}

digits: digit, digits.
{

OK :== digitS 2 .val <=
(MAXINT-digit.val)/lO

digitSi.val
digitsz.val*10+digit.val

}

In this example, we m ust take care that no intermediate value exceeds 
MAXINT, during the calculation of OK. However, since ontogenesis 
synthesises sentences rather than analysing them, there is no need for an 
attribute such as OK in Gads 2.

4.2.1.4 Reflective attribute grammars

When the grammar is a rag, the grammar itself is treated as an attribute. It 
is passed to the node-expanding procedure. The default behaviour when 
expanding a nonterminal node is to invoke the node-forming procedure 
recursively to produce a child node for each symbol on the RHS of the 
production alternative, and pass it the grammar, unchanged, as a parameter. 
If the rag never deviates from this default behaviour it is equivalent to an 
ordinary attribute grammar.

During the expansion of the node, the grammar may be modified, and the 
modified grammar passed down to the children of this node. (A modified 
grammar could conceivably be returned — ie synthesized — though this was 
not necessary in any of the examples I studied.) The expansion of the node 
is directed by the evaluation rules associated with the production 
alternative.

Rag evaluation rules are more complex than sag evaluation rules. The 
default rag evaluation rules have the following effect.

Inherit: the rag r, the symbol to expand s, and the genome g.
1 Record the symbol s for this node.
2 If 5 is a terminal symbol, there is nothing to do. Return.
3 Use the next gene in g to choose an alternative from the productions

which have this symbol on the LHS. (The genome object g is modified
each time a gene is consumed.) If the genes are exhausted, choose the 
default alternative.
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Create an array of child nodes, with one array element for each symbol 
on the RHS of the chosen production. Let the symbols on the RHS be
■̂ 0

5 For z = 0 to n, expand child node z, passing in the values r, s. and g.
6 Return.

These are the steps which are carried out each time a node is expanded in 
the ordinary way. The grammar g is not modified and the effect is 
equivalent to a sag.

The S-algol for clause provides a slightly more complex example. For is one 
of several alternatives for c l a u s e  v o id , and is defined as follows:

clause void: for symbol,
id int new, 
space symbol, 
equals symbol, 
clause int, 
to symbol, 
clause int, 
do symbol, 
clause void.

For example:

for X - 1 to 3 do write "x: ", x, "'n"

which, when executed, produces the following output:

X : 1
X : 2
X : 3

The for node thus has 9 children, numbered from 0 to 8, corresponding to 
the symbols on the RHS of the production. According to the scope rules of 
S-algol, a for clause introduces a new identifier (x in the example above) 
whose scope is the c l a u s e  v o id  at the end of the for (w r i te  in the 
example above). It follows that only two of the 9 children raise any issues 
of context sensitivity, namely #1 ( id  i n t  new) and #8 ( c la u s e  void). All 
the other children can be expanded according to the default evaluation rules 
given above. They inherit the context of the for as a whole. For children #1 
and #8, the rag has two goals: (i) that child #1 has to introduce a new 
identifier, and (ii) that the identifier introduced by child #1 has to be 
available for the expansion of child #8.
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The following diagram illustrates the situation after child #1 has been 
expanded; the curved arrow shows the data flow of the attribute 
synthesized by child #1 and about to be inherited by child #8. The diagram 
is somewhat impressionistic: data does not flow into the for clause node, 
but into the process which is constructing that node. A fuller description* of 
the events depicted in the diagram is given below.

for sym bol

Symbol s = " for" 
NodeQ child = nu

sp a c e  sym bol

for c lau se

Symbol s 
NodeQ child

Symbol s  = “ “ 
NodeQ child = null

c lau se  int

Symbol s 
NodeQ child

c la u se  Int

Symbol s 
NodeQ child

...........

c lau se  void

Symbol s 
NodeQ child

id Int new 3 equa ls  sym bol 1 5 to  sym bol I 7 do  sym bol

Symbol s  = “ int,4" 
NodeQ child = null

Symbol s  =
NodeQ child = null

j Symbol s  = " to" 
NodeQ child = null i Symbol s  = “ do” 

NodeQ child = null

Figure 4-1 : Expansion o f  a /o r  node

The mechanism for introducing new identifiers is embodied in the 
evaluation rules for certain nonterminal symbols such as i d  i n t  new, and 
is invoked whenever a node for such a symbol is constructed. The 
evaluation rules associated with id  i n t  new are identical to the default 
rules given above, for steps 1 through 4. Steps from 5 onwards are as 
follows:
5 Generate a new identifier as a character string. Identifiers must be 

unique. As an aid to readability they are constructed in the form tn  
where t is the type of the identifier and n is a serial number. For 
example, the identifier of a for clause control variable might be i n t . 4.

6 Declare a new terminal symbol whose value is the concrete 
represeritation of the new identifier. This makes the identifier 
available as a single symbol in the grammar.

7 Convert the current node from a nonterminal node to a terminal node, 
with the new identifier as its value. Set the array of children to null.

This raises the question: what production has the nonterminal symbol 
id  i n t  new as its LHS? This is addressed in more detail below; in passing 
note that the definition of this symbol is not relevant, since the effect of 
evaluation rule 7 is explicitly to ignore the RHS. In order to keep the 
grammar valid, however, every nonterminal symbol m ust be the LHS of at 
least one production, so we simply introduce a terminal symbol as a 
convenient stop:
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id int new: id int new symbol,

id int new symbol: " idlntNew"

The evaluation rules associated with the for clause are identical to the 
default rules given above, for steps 1 through 4. Steps from 5 onwards are 
as follows:
5 For z = 0 to 7, expand child node z, passing in the values r, s. and g. 

That is, expand all children in the default way except the final c l a u s e  
v o id .

6 Obtain the identifier synthesized by child #2. The evaluation rules for
new identifiers ensure that this is in the form of a terminal symbol
which we may name t. (That is, t is the name of a name. The scope of
t is the evaluation rules of the for clause.)

7 Construct a new production of the form:

id int c: t.
The LHS of this production ( id  i n t  c) is the symbol for identifiers of 
constant integer variables (ie variables whose values may be read, but 
which may not be assigned to).

8 Push the new production on to the grammar r, producing grammar r\ 
This adds t to the set of integer identifiers that are available at this 
point in the PT. There may or may not be other identifiers in scope at 
this point. The term push is used to suggest a stack-like operation in 
r. From a theoretical point of view, r' may be a completely new and 
separate object from r, but in practice, it is much cheaper to modify r.

9 Expand child node #8, passing in the values r\ and g. That is, 
expand the final c l a u s e  v o id  with a grammar that is extended by 
the addition of a production that allows the for clause’s control 
variable to be used in any context that requires an i d  i n t  c.

10 Pop the new production from the grammar. This undoes the effect of 
step 8, and once again the comments about theory and practice apply.

11 Return.

Thus the evaluation rules, working in concert, create a new identifier of the 
correct type, integrate it into a local extension of the grammar, use that 
extension to develop a clause, so that the new identifier is available in its 
correct scope in the PT.

Evaluation rules for a rag must be written in a language that is capable of 
accessing attributes synthesized by children, creating productions, pushing 
productions onto a grammar, synthesizing new attributes, and so on. 
Experiments suggest that a simple machine-code-like language would be
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adequate, with operations like expand node or push production onto 
grammar. The node-constructing procedure would include an interpreter 
for this language, and carry out the evaluation instructions associated with 
the alternative as it expanded the node.

A specification for such a language is not included in this thesis. Instead, a 
pragmatic but no less general approach was used, and a node-constructing 
procedure specific to S-algol was developed. Rather than a general 
interpreter, a numbered set of specialised methods was developed in Java. 
Method 0 is the default method, method 1 defines new identifiers, method 
two deals with for clauses, and so on. In all, 10 methods were developed. 
The evaluation rules associated with an alternative then reduce to a number 
specifying which method to apply when this alternative is chosen. Thus the 
methods were compiled rather than interpreted. From a theoretical basis 
the evaluation rules are written in a language that has an extremely simple 
syntax (namely, the set of integers from 0 to 10) and a rather complex 
semantics (namely, the 10 compiled methods).

The sag term evaluation rules does not quite fit the rag model. Instead of a 
set of simultaneous equations defining each synthesized attribute, we now 
have a procedure carrying out various operations. For this reason, I use the 
term production method instead. A production method is a procedure, 
written in a suitable language, associated with an alternative RHS of a rag 
production. If an alternative in a rag has no production method, it is 
associated with a default production method.

To start ontogenesis, a PT is constructed by calling the node constructor 
with the start symbol of the language, a fresh genotype, and the rag for the 
language. The rag at this point is called the root grammar. It is special in 
that it defines the language before any program-specific declarations have 
been made, and when the implications of doing so are embodied in its 
production methods.

4.2.2 The S-algol rag

This section presents a rag for S-algol. In so doing, it addresses various 
language issues concerned with the development of a rag.

The rag developed here does not encompass the entire S-algol language. For 
the purposes of this thesis, it was considered sufficient to demonstrate a 
rag capable of handling basic types, variables, iteration, and procedures. 
Language features such as arrays, data types, and various specialised types 
such as pixels and files, should be within the capabilities of rags, but would 
not add significantly to the value of this work.

The S-algol rag is given in §B.

99

i



4.2.2.1 Basic types

The S-algol basic types are void, int, real, bool and string. There is also a 
constant modifier so that, for example, creal is the type whose value is real, 
but which cannot be assigned to.

The [Morrison, 1979] definition of S-algol uses a CFG plus a set of type rules 
which first define various type categories (eg arith is int or real) and then 
define how types and syntax interact. For example, the rule for a while 
clause is given as:

while <clause>: bool 
do <clause>: void => void

This means that the test expression in a while must be boolean; the object of 
the while must be void, and the whole while clause is void.

A rag is locally context free, and must be able to represent types in such a 
way that only options of the correct types are available. The only way to do 
this is to include type information in the nonterminal symbols. Thus, where 
the S-algol CFG defines an expression, the rag must distinguish between 
void, int, real, bool and string expressions. This is done by appending the 
type name to the symbol name. For example, the top level S-algol 
expression nonterminal is expO. The rag defines 5 versions of this, namely 
expO void, expO int, expO real, expO bool and expO string.

4.2.2.2 Spaces t
Î

As is usual for a language recogniser, S-algol's CFG does not specify how |
spaces are used. This does not cause problems in parsing, but can in !
generating. For example, S-algol defines: '

<exp3>
<exp4>
<exp5>

which permits:

5 + + 6

<exp4>[<add_op><exp4>]* 
<exp5> (<rault__opXexp5>] 
[<add_op>]<exp6>]

as an int expression. But without spaces, this becomes:

5++6
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which generates a type error, because ++ is a string operator. Similarly, 
spaces affect the following expressions:

7 rem 3

and

7rem3

which generates a syntax error because there appears to be an operator 
missing between the int 7 and the identifier rem3.

It is not sufficient to put spaces around every terminal symbol, because this 
leads to errors like:

1 2  3

instead of

123

The solution strategy is a combination of tactics. First, use spaces as a 
prefix, not as a suffix. (It could just as well be the other way around: the 
important thing is consistency.) Second, include spaces in the 
representation table wherever possible. For example:

div symbol: " div"

This is the most efficient way to supply spaces. Essentially, a space is used 
to prefix any symbol which we know must be a token in its own right. Thus 
d iv  sym bol has a space, because it is only used as an integer operator.
But p lu s  sym bol cannot have a space, because it may be used in a string. 
Third, and last, we add sp a c e  sym bol into language productions wherever 
else a space is needed. For example:

eq op: space symbol, equals symbol;
tilde equals symbol.

Bottom-level symbols (sp ace  sym bol and e q u a ls  sym bol) which have 
no specific meaning of their own are being combined to make a higher level 
symbol (eg op) which has a more specific meaning. But t i l d e  e q u a ls  
sym bol is specific enough (it is always used to define a not equals relation)
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int r . w
int i . w
int s . w
cint maxint
creal maxreal
creal epsilon
creal pi

to be defined with its own prefix space. In some cases, new nonterminals 
have to be defined to carry out this strategy completely.

4.2.2.3 Identifiers

Declarations introduce new identifiers which are available for use within 
their own scopes.

As is usual, S-algol's CFG defines an identifier as a sequence of letters, digits 
and periods, beginning with a letter. However, this makes no distinction 
between variable names and reserved words; for example, w h ile  is a vahd 
identifier according to the CFG. Provided the language only has a finite 
number of reserved words, this problem can easily be avoided by generating 
identifiers in a form which ensures they cannot clash with any reserved 
word.

The same argument applies to predeclared identifiers. S-algol predeclares 
and initialises the following:

! width of real output field 
! width of int output field 
! spaces between output fields 
! largest int 
! largest real 
! smallest 1+epsilon > 1 
! mathematical constant

plus a few others of types not implemented in this work.

In this thesis, identifiers are generated in the form t , n where t  is the type 
of the identifier and n is a serial number. For example, the identifier of a 
for clause control variable might be i n t . 4. The serial number starts at 0 
and is incremented by 1 for every identifier that is issued (ie all types draw 
from the same serial number stream). Note that the dot symbol is not an 
operator in S-algol: the dot in i n t . 4 is simply a character in the identifier. I

!

4.2.2.4 Scope

The scope of an identifier is the region of the program in which the 
identifier can be used to refer to the object it identifies. Because of the way 
a rag works, it is most convenient if the scope of an identifier coincides with 
a subtree of the PT, and preferably a subtree whose root is close to where 
the identifier is introduced. Provided this is the case, it is fairly simple to 
add the appropriate productions to the grammar which is applied at the 
root of the subtree, so that the new identifier is incorporated into the
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language in precisely that part of the program which is its scope. 
Difficulties can arise if the scope rules are not well matched to the syntax.

Matching scope rules with syntax requires some care in designing the 
grammar. For example, suppose a language defines a program to be a 
sequence of declarations followed by a sequence of statements, where the 
scope of an identifier begins after its declaration and continues to the end 
of the enclosing block. (This is the case for S-algol identifiers.) Consider 
the following sample program:

let X = 3
let y = X * 5
let z = X * X  + y
if z/x > x/y

then write "yes' 
else write "no"

We might expect a CFG along the following lines:

program: decls, stmts,
decls: decl; deal, decls
stmts: stmt; stmt, stmts
decl : decl real;

decl int;

stmt : stmt assign;
stmt if; 
stmt while

where ... in the definitions of d e c l  and s tm t mean that a variety of 
different types of declaration and statement are defined. (The 
representation table is omitted to save space.) Using this grammar, the PT 
for the sample program is:
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program

decls stmts

stmt

decl decls

let X = 3
decl

decls

let y = X * 5

If z/x >  x/y
then write "yes" 
else write "no"

decl

let z = X * X + y 

Figure 4-2: PT not amenable to scope rules

This PT reveals a poor grammar design, at least as far as scope is concerned. 
The scope of x is the rest of the program, but the rest of the program is not 
a single subtree. The scope of z is the i/statement, which is about as far 
away in the PT as it is possible to be in this little example.

By using the following grammar, we can avoid this problem:

program: 
scope :

stmts : 
decl :

stmt

decl, scope. 
decl, scope;

stmts. 
stmt; stmt, stmts 
decl real;

decl int;

stmt assign;
stmt if; 
stmt while

Here, the nonterminal d e c l s  has been removed and replaced by a 
nonterminal sc o p e  which explicitly structures the PT to conform to the 
scope rules. There is no need to do the same for s tm ts  because statements 
do not introduce new identifiers (though you might choose to restructure 
stmts for other reasons, eg cosmetics or consistency). Using this grammar, 
the PT for the same program is:
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program

let X = 3 scope

let y = X * 5 decl

let z = X * X + y

stmts

stmt

if z/x >  x/y
then write "yes" 
else write "no"

Figure 4-3: PT amenable to scope rules

In this PT, the production methods needed for the p ro g ram  and sco p e  
nodes are similar: get the identifier from the left hand child and push it 
onto the grammar for expanding the right hand child.

Thus, it may be advisable to modify a grammar to make it simpler to 
implement as a rag, if there is poor correspondence between the syntax and 
the scope rules.

In human programming, holes in scope are an issue. A hole occurs when a 
variable is declared with the same name as one in an outer block. The inner 
declaration masks the outer declaration. However, holes in scope do not 
add to the power of the language to represent algorithms; they merely make
life easier for programmers. The following programs are equivalent:
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! program 1: hole 
let X = 3
for i = 1 to 10 do { 

let X  = i * X  

write i, x, "'n'
}

! program 2: no hole 
let X = 3
for i = 1 to 10 do { 

let y = i * X 
write i, y, "'n'

}

Program 1 declares two variables with identifier x. Program 2 declares the 
same variables with identifiers x and y. Program 1 creates a hole in the 
scope of the first variable x. Program 2 creates no hole in any scope. The 
point is that by renaming variables, it is possible to avoid holes in scope. 
Since the scheme for constructing identifiers used here ensures that all 
identifiers are unique, holes in scope cannot arise, and as the above example 
shows, we don't lose anything by this.

S-algol has simple scope rules — that is, they are simple to define, to 
understand and to implement, and they are well matched to the syntax. 
Other languages such as Java have more complex scope rules which allow, 
for example, an attribute to be used in any method of the class, whatever 
order the attribute and the class are declared in. However, our aim is (1) to 
synthesize programs, not to analyze them, and (2) to be able to generate all 
algorithms, not all programs. Consequently a rag for Java could generate all 
attributes before all classes, so that all attribute declarations are available in 
the PT when they are needed.

4.2.2.5 For clause

The for clause is the simplest example of a declaration in S-algol. It declares 
a control variable of type int, whose scope is a single void clause. S-algol 
provides two forms of for, one with an implied Increment of 1, and one with 
an explicit increment. Only the first form is implemented here.

The implementation of fo rm  a rag is described in §4.2.1.4 Reflective 
attribute grammars.
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4.2.2.G Let declarations

S-algol has 4 basic types {int, real, bool and string) which can be used in a let 
declaration. These double to 8 if the constant form is allowed; but constant 
declarations are not necessary for the purposes of this thesis and are 
therefore not implemented. There are predeclared constants in S-algol, so it 
is clear that rags are capable of handling them if it were desired.

The mechanism is similar to the for clause except that there are 4 types and 
the introduced identifier is less accessible, being several nodes away from 
where it is needed in the PT. A more complex production method is needed 
to access it and apply it. The S-algol productions involved in an int 
declaration are given in [Morrison, 1979] as:

<sequence> ::= <declaration>[;<sequence>]
<clause>[;sequence>]

<declaration> ::= <let_decl>|
<structure_decl>| 
<proc_decl>|
<forward>

(It is possible to have a sequence which ends with a declaration. At first 
sight this appears to be pointless, but it is possible for the declaration to 
have side effects. However, a final declaration has an empty scope.) The 
definition of < seq u en ce>  is rewritten for the rag as follows:
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sequence void: clause void;
clause void,

sequence separator, 
sequence void; 

decl let; 
decl let,

sequence separator, 
sequence void; 

decl proc; 
decl proc,

sequence separator, 
sequence void.

sequence int: clause int;
sequence void.

sequence separator, 
clause int. j

sequence real: clause real;
sequence void.

sequence separator, 
clause real.

sequence bool: clause bool;
sequence void,

sequence separator, 
clause bool.

sequence string: clause string;
sequence void,

sequence separator, 
clause string

sequence separator:
space symbol,

semicolon symbol, 
newline symbol.

The rag form is much longer, for several reasons. First, the untyped S-algol 
se q u e n c e  and c l a u s e  expand to 5 typed rag se q u en ce s  and c la u s e s .  
Second, S-algoFs form of BNF allows metasymbols like [ ] and  | . Third, 
the rag m ust make the punctuation explicit, by stating where sequence 
separators occur.

The production method for procedure declarations is quite different to that 
for let declarations, so the two types of declaration are separated at the top 
level. Procedure declarations are dealt with in the next section.

The definition of s e q u e n c e  s e p a r a t o r  includes a newline. Unless 
newlines are added explicitly (here and elsewhere) the generated program is 
a single line which is much longer than a sane person would write. These 
long lines exposed a bug in the compiler which caused compilation to fail.
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Rather than fix the compiler, it was simpler to insert newlines at suitable 
points. They also made the phenotype programs easier to read.

The definition of < d e c la r a t io n >  includes structures and forward 
declarations which are not implemented in this thesis. The definition of let 
declarations is rewritten as follows:

decl let:

decl let int

decl let real:

decl let bool :

decl let int; 
decl let real; 
decl let bool; 
decl let string.

let symbol,
id int new, 
assignment symbol, 
clause int.

let symbol,
id real new, 
assignment symbol, 
clause real.

let symbol,
id bool new, 
assignment symbol, 
clause bool.

decl let string:
let symbol,

id string new, 
assignment symbol, 
clause string.

id int new symbol : 
id real new symbol: 
id bool new symbol: 
id string new symbol :

" idlntNew"
" idRealNew"
" idBoolNew"
" idStringNew"

Again, the rag is much longer than the original version. The new identifier 
nonterminals ( id  i n t  new, etc) are defined by corresponding symbols ( id  
i n t  new sym bol, etc). As explained in the outline above, these terminal 
symbols are essentially placeholders, which are necessary only so that the 
grammar is well-formed. The production method for the new identifier 
nonterminals ignores them and converts their own node from nonterminal 
to terminal. However, the placeholder symbols are occasionally useful in 
development or debugging.

Only alternatives #3 and #5 of sequence void need production methods. 
Alternative #3 introduces a variable identifier, and #5 introduces a
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procedure identifier. The other alternatives either don't introduce new 
identifiers or introduce identifiers which have empty scopes.

Alternative #5 is dealt with in the next section.

The production method for alternative #3 (d e c l l e t , s e q u e n c e  
s e p a r a t o r ,  se q u e n c e  v o id ) digs down two levels to the declaration 
and retrieves the new identifier. It then creates a production of the 
appropriate type, pushes it onto the grammar, expands the se q u e n c e  
v o id , and pops the identifier from the grammar. Digging down more than 
one level is not the best design: it would have been cleaner to have the 
method for d e c l  l e t  do some of the work. The production method must 
find the type of the declaration in order to generate an appropriate 
production to push onto the grammar.

S-algol does not contain any predeclared variables of type real, bool or 
string. At face value this means the root grammar has no productions to 
define these identifiers:

id real 
id bool 
id string

and of course these nonterminals don’t appear in any RHS either. Thus, 
while the following i n t  productions exist in the root grammar:

exp6 i n t : id int.
id int: real width symbol;

string width symbol, 
int width symbol.

The corresponding r e a l  productions don’t exist:

exp6 real; id real.

because there are no predeclared r e a l  identifiers. (There are predeclared 
constant r e a l s ,  but constant r e a l  is not the same as r e a l .)

This means that when a real, bool or string identifier is introduced, it is 
necessary not only to add a production for the identifier in question, but 
also to add a production for identifiers of that type in general. For example, 
if we introduce r e a l . 0, we need two productions:
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e x p 6 real: id real,
id real: real.0 symbol.

As we continue to expand nodes and grow the PT, it is possible that a 
further real identifier is introduced, in the scope of r e a l . 0. In this case, 
we only need to add an alternative to the i d  r e a l  production, so that it 
becomes:

id real: real.0 symbol;
real.1 symbol.

The proper way to do this would be for the production method to test the 
grammar to see whether i d  r e a l  was already defined, and take either the 
first course of action or the second as appropriate. In this thesis, however, I 
took a pragmatic course of action and predeclared a seed variable of each 
type, including i n t  for consistency. That is, I modified the language 
slightly to sidestep the problem. The modifications are:

Add a declaration for each type to the standard preamble:

let INT := 0 
let REAL := 0.0 
let BOOL := false 
let STRING :=

Add productions for assignment for real, bool and string to c l a u s e  v o id  
(int assignment is already declared):

clause void:
id real,

assignment symbol, 
clause real; 

id bool,
assignment symbol, 
clause bool; 

id string,
assignment symbol, 
clause string.

Add productions for each type of id, with RHS equal to the predeclared 
symbol:

id int: variable int symbol,
id real: variable real symbol,
id bool : variable bool symbol.
id string: variable string symbol
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Add productions to allow level 6 expressions to produce identifiers of each 
type:

exp6 real: id real.
exp6 bool; id bool.
exp6 string: id string.

Add productions to produce the terminal symbols:

variable int symbol: " INT"
variable real symbol: '' REAL"
variable bool symbol: " BOOL"
variable string symbol: " STRING"

Having added these seed variables, the production method for sequence 
void is always able to push a new identifier of any type onto the grammar 
without further ado. However, a disadvantage of this approach is that the 
name space is slightly polluted, or diluted, by the seeds, since they provide 
extra routes to generate various forms of zero. This presumably makes it 
shghtly more difficult to find genes that generate values other than zero. It 
also makes phenotypes more wordy than they need be.

4.2.2.7 Procedure declarations

S-algol procedures may be recursive (ie the scope of a procedure includes its 
own body). Mutual recursion requires a forward declaration. Higher-order 
procedures — ie procedures which take procedures as parameters — are 
also supported.

For this thesis, only first-order procedures and self-recursion (ie not mutual 
recursion) was implemented. Two production methods for procedure 
declarations were implemented, one which allowed recursion, and one 
which did not, for comparison.

The S-algol syntax for parameter strings allows adjacent parameters of the 
same type to dispense with the second and subsequent type identifiers. For 
example, the following prototypes are equivalent:

procedure m (real x, y; int z -> real) 
procedure m (real x; real y ; int z -> real)

This is just syntactic sugar; the rag generates parameter lists in the second 
form only. That is, a parameter list is a semicolon-separated list of 
parameters, each of which consists of a type identifier and a variable 
identifier. The rag syntax for procedure declarations is as follows:
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decl p r o c ; decl proc void;
decl proc int; 
decl proc real; 
decl proc bool; 
decl proc string.

decl proc void:
proc symbol,

id proc new, 
sequence separator, 
clause void; 

proc symbol,
id proc new, 
round 1 symbol, 
parameter list, 
round r symbol, 
sequence separator, 
clause void.

decl proc in t :
proc symbol,

id proc new, 
round 1 symbol, 
arrow symbol, 
type int symbol, 
round r symbol, 
sequence separator, 
clause int; 

proc symbol,
id proc new, 
round 1 symbol, 
parameter list, 
arrow symbol, 
type int symbol, 
round r symbol, 
sequence separator, 
clause in t .

parameter list: parameter;
parameter,

parameter separator, 
parameter list.

parameter: type int symbol,
id int new; 

type real symbol, 
id real new; 

type bool symbol, 
id bool new; 

type string symbol, 
id string new.

For brevity, only d e c l  p ro c  v o id  and d e c l  p ro c  i n t  are shown in full. 
The productions for real, bool and string are similar to the znf version.
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When a procedure is declared there are two scopes of interest:

• The body of the procedure.

• The s e q u e n c e  v o id  following the procedure body.

I refer to these as the internal and the external scope respectively. The 
scope of the parameter declarations is the internal scope. The scope of the 
procedure is both the internal and external scopes (if we wish to enable 
recursion) or ju st the external scope (if we do not wish to enable recursion).

The mechanism for introducing a new procedure identifier is the same as 
for variable identifiers — that is, the production method for nonterminal 
i d  p ro c  new generates an identifier of the form p r o c , n and converts the 
node from nonterminal to terminal. For the same reason that seed variables 
of each type are required, it is necessary to define seed procedures of each 
type. Identity procedures which return their arguments are used for this: 
For example:

procedure PROC.INT (int x -> int)/ x

To manage the information involved in procedure declarations, three new 
attributes are required. These are conventional synthetic attributes in the 
sag sense. In terms of the implementation, three new object classes are 
introduced, and three fields of these types are added to the Node class. The 
three object classes are Prototype, Parameter, and ParameterList.

A Prototype object is synthesized when any type of procedure declaration 
node is created. It serves to represent the prototype that is declared. Once 
the Prototype object is complete, it is used by the parent se q u e n c e  v o id  
node to generate internal and external productions.

A ParameterList object is synthesized for each parameter list node. If the 
child is another p a r a m e te r  l i s t  node than the child’s list becomes the 
tail of the parent’s list. If the child is just a p a ra m e te r ,  then a new 
ParameterList object is started, with one element. The topmost p a ra m e te r  
l i s t  node is the child of a procedure declaration. This takes the list and 
incorporates it into the Prototype object.
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4.2.2.S Literals

Literals are generated by microsyntax, ie by productions lilce:

literal int; space symbol,
numeral 0 symbol, 

space symbol, 
digits.

digits: digit;
digit,

digits.

digit: numeral 0 symbol;
numeral 1 symbol; 
numeral 2 symbol; 
numeral 3 symbol; 
numeral 4 symbol; 
numeral 5 symbol; 
numeral 6 symbol; 
numeral 7 symbol; 
numeral 8 symbol; 
numeral 9 symbol.

This is expensive in that many genes are needed. However, the benefit is 
that each genotype can evolve whatever literals it requires. There is no 
convenient way to generate SGP’s random ephemeral constants. Generating 
random literals in production methods would be possible, but then the 
value of the literals cannot be replicated.

4.2.2.9 Preamble, postamble, program

Although not part of the S-algol language, these items are necessary to use 
the language in Gads 2. Each phenotype is generated in an S-algol wrapper 
comprising a preamble and a postamble.

The same preamble is used in all problems. It contains debugging control, 
seed variables, seed procedures, protected procedures (eg to avoid divide- 
by-zero errors), enhancements (FLOOR and CEILING procedures are not 
provided by S-algol), RNG setup, a procedure to map fitness into a 
standardised scale, and code to initialise the 10 environment.

The postamble is problem-specific. In all problems except Annie the 
phenotype is coded as a procedure body, since this makes it simple to 
evaluate the fitness over a set of test cases. This is often done by 
comparing the observed value (from the phenotype) with an expected value.
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and computing the RMS error. The procedure prototype, if any, is problem- 
specific.

In the course of the investigation, eight problems and some variations oT. 
them were investigated. Each problem was designed to exercise a different 
aspect of the rag system, and consequently each problem required a 
different subset of the S-algol language. To avoid having to maintain a suite 
of almost identical rags, a single rag that provided for all the problems was 
developed, with a system of top-level nonterminals to make it simple to 
switch between them. Thus, to obtain the Monkey problem, the first line of 
the rag (which defines the start symbol) is:

program: program monkey.

while to obtain the multiplexer program, the first line becomes:

program: program multiplexer.

And so on. Each program has its own section where it redefines the 
symbols with the values it requires, such as the phenotype. For example, 
the phenotype for monkey is a l i t e r a l  s t r i n g ,  while the phenotype for 
cart is exp3 r e a l .  These definitions, coming after the standard ones, 
replace them. All other problem-specific program sections are commented 
out, so that the rag is specialised for just one problem at a time.
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Gads 2

This section describes the Gads 2 experiments. The aims of the 
experiments were:

• To demonstrate the evolution of type-correct programs in a context 
sensitive language independent of the GA implementation.

To obtain preliminary performance measurements of the system, 
including a rational scalar comparisons of problems and engines.

To demonstrate visualisation techniques.

Like Gads 1, Gads 2 is not optimised for performance. Similarly, the 
implementation of rags is not intended as a polished product. It is a single­
use design consistent with the advice given in [Brooks, 1995], namely plan to 
throw one away.

The main subsections below are as follows:
§5.1 The origins of Gads 2

Describes the relationship between Gads 1, GE and Gads 2.
§5.2 Systems

Describes the software and hardware used for the experiments, and 
the general experimental setup that was common to all the problems 
investigated.

§5.3 Problems and individual results
This section describes the problems and the results on an individual 
basis.

§5.4 Comparative results
This section compares the results from different problems.

5.1 The origins of Gads 2

The main precursors of Gads 2 are Gads 1 and GE [Ryan, 1998a], [O'Neill, 
2001b]. The chronological order of these systems is:

Gads! —> GE Gads2

I
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This shows the essential relationship between Gads and GE but ignores 
influences which other systems also had on their design. The following 
subsections discuss the main differences between Gads 1, GE and Gads 2.

5,1.1 Translation: mapping genes to productions

In Gads 1 a gene selects the production with the same number. That is, the 
mapping from gene value to production number is the identity function; 
gene value 5 always selects production 5. This leads to unacceptably large 
numbers of introns, because the probability of selecting a production that 
can actually be applied falls as the number of productions rises.

In GE a gene is mapped from the set of gene values (say, [0, 255]) to the set 
of applicable production numbers (say [0, 3]), by computing the gene value 
modulo the number of relevant production alternatives. That is, GE 
computes the remainder when the gene value is divided by the number of 
production alternatives. For example, to map the gene value 121 into [0, 3] 
GE computes 121 modulo 4 = 1.

In Gads 2, the mapping method is to scale the gene by a linear 
transformation. For example, scaling [0, 255] into [0, 3] means that genes 
with values in [0, 63] map to 0, genes in [64, 127] map to 1, genes in 
[128, 191] map to 2 and genes in [192, 255] map to 3,

The analogous biological process is translation, which matches codons with 
amino acids during protein syntehsis. Whatever function is used, the 
important property is that the same genotype always produces the same 
phenotype. In both biology and GE the translation is many-to-one. That is, 
there may be more than one gene value which corresponds to an amino acid 
or production alternative. In both biology and GE this fact — referred to as 
genetic code degeneracy — promotes genotypic diversity.

5.1.2 Repair: wrapping and defaults

In Gads 1 the chromosome is scanned exactly once. This can leave the 
phenotype in an incompletely developed state, with nonterminals still 
unexpanded.

Gads 1 dealt with this by a rudimentary repair mechanism that assigned 
default values (generally zero) to undeveloped parts of the phenotype 
during evaluation. This approach was possible in Gads 1 because the 
language was small (so zero was always a legal option) and because the 
phenotype was evaluated by a purpose-built interpreter which could detect 
when default values were needed and supply them. At the time of Gads 1 it
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was thought that the defaults system would not be easy to scale to a large 
grammar.

In GE the chromosome is scanned multiple times, up to a prescribed limit*. 
This technique is called wrapping. It means that any given gene may be 
used multiple times. The effect of a gene depends on the nonterminal it is 
applied to. Given the same nonterminal, with the same set of production 
alternatives, the same gene always translates to the same alternative. But 
with wrapping, the gene may be used to select an alternative from a 
different production in each pass. Translation ensures that the gene will 
always make a valid choice. The main effect of wrapping is to make the 
ontogenic mapping more likely to produce a completely developed 
individual. It also affects the actual phenotypes that are produced by the 
ontogenic mapping.

Wrapping is analogous to the chromosome being in the form of a ring 
buffer, not a list or string; this is in fact the case in prokaryotic bacteria.

Wrapping is not sufficient to guarantee the complete development of the 
individual. It is possible to have a combination of genes which never 
complete development, no matter how many times they are wrapped. For 
example, using Syntax A (of table 2-3) a chromosome composed only of 
genes which select productions 1 and 5 will produce a phenotype that grows 
without limit. In GE, an individual which is incompletely developed after the 
wrapping limit has been reached is given the lowest possible fitness value.

Thus wrapping is not a complete solution to incomplete development, 
though by improving the completion rate of the ontogenic mapping, it 
reduces the need for a repair mechanism in the first place. Wrapping 
should be seen as part of the ontogenic mapping, not as a repair 
mechanism. By using wrapping, GE reduces the need for a repair 
mechanism to such an extent that GE does not have a repair mechanism.

Informal experiments for Gads 2 suggested that wrapping would not be so 
effective with a full-size grammar. The reason for this appears to be not so 
much the larger size of the grammar as its construction. For example, the 
definition of an expression is recursive and it is always possible to start a 
new sub-expression in parentheses. This is typical for a realistic language. 
Wrapping, instead of completing development, simply causes deeper and 
deeper nesting of new sub expressions, without limit.

Given a high proportion of incomplete individuals it would not be practical 
to assign them all minimum fitness values, as in GE. A repair mechanism is 
necessary. For this reason the defaults mechanism of Gads 1 was improved, 
as outlined in §4.2.1.2. In Gads 2, the first production alternative for a 
given nonterminal that is listed in the grammar is the default for that 
nonterminal. By ordering the production alternatives from simplest to most
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complex, It Is easy to set up a system of defaults that ensures every 
nonterminal has a sensible default, and avoids the mistake of having a 
recursive rule as the default. The concern in Gads 1 that defaults would be 
difficult to organise for a larger grammar proved to be groundless.

The defaults repair mechanism means that every individual develops 
completely, so it can then have its fitness evaluated in the ordinary way. 
This is valuable, since there are differences in the performance of these 
individuals, even though they are not completely developed using the 
ontogenetic mapping, and their genetic contribution may be lost if the 
individuals are given unfairly low fitness values.

In Gads 2, wrapping was not used at all (more correctly, the wrapping limit 
was set to zero so that the chromosome was scanned only once). It would 
have been possible to have a higher wrapping limit in Gads 2, but 
optimising the performance of Gads 2 was not the aim of the experiment, 
and this possibility was not explored.

5.1.3 Genotype: fixed length or variable length

Gads 1 used fixed length chromosomes, for simplicity. Three different 
lengths were investigated.

GE uses variable-length chromosomes. It is not clear that variability is 
essential for GE to work, though using variable length chromosomes allows 
GE to employ genetic operators that are not available to fixed length 
systems. Duplicate randomly selects and copies a part of the chromosome, 
and inserts the copy immediately before the last gene in the chromosome. 
Prune discards the unused tail of a chromosome, in the event that the 
ontogenic mapping completes before all the genes have been scanned. 
These operators change the length of the chromosomes. Steps must be 
taken in any variable length system to ensure that the chromosomes do not 
grow to unreasonable sizes.

Gads 2, again for simplicity, uses fixed length chromosomes. A length of 
1 000 genes per chromosome is used in the experiments. This size was 
chosen, following informal experiments, as being large enough to produce 
all the phenotypes that were to be investigated, but not so large as to cause 
any system problems.

5.1.4 Genetic operators: crossover

In Gads and GE, genetic operators work on the genotype, which is an array 
or list of integers, rather than a tree as in SGP. Because the ontogenic 
mapping ensures that any genotype can be expressed as a phenotype, issues
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of syntax, type-correctness, etc do not arise. However, the Gads/GE 
genotype does have an implicit internal structure, because of the way it is 
interpreted during ontogenesis. The following paragraphs explain how the 
structure arises and its interaction with simple one-point crossover.

First, there is an implied sequence in the genotype. A gene nearer the start 
of the chromosome may affect the operation of a gene nearer the end of the 
chromosome, but not vice-versa. For this reason it would be more accurate 
to describe the genotype data structure as a list or string than an array.
This is true even if the genotype is implemented as an array.

Second, ontogenesis may produce a fully developed individual before it 
reaches the end of the chromosome. In such a case, the chromosome 
consists of an active head, which is expressed in the phenotype, and an 
inactive tail, which is not expressed. We can always describe a chromosome 
as a head and a tail if we allow that the tail may be of zero length. Suppose 
we now carry out a one-point crossover of two same-length parents PI and 
P2. The crossover point may lie in the head or in the tail, in either parent, 
giving three different possibilities; XI, X2 or X3 (figure 5-1);

P I

P 2

head

head

tail

tail

X 1  X 2  X 3

Figure 5-1 : One-point crossover

The kind of children produced depends on the crossover location, as 
summarised in table 5-1.

Crossover XI Crossover X2 Crossover X3
Child Cl P1[..X1J + P2[X1..] P1[..X2] + P2[X2..J P1[..X3] + P2[X3..J
Child C2 P2[..X1J + P1[X1..J P2[..X2] + P1[X2..] P2[..X3] + P1[X3..J

Table 5-1

In terms of the amount of genetic mixing that is produced, it docs not 
matter whether the crossover is of type XI, X2 or X3. But the phenotypic 
effect (if we ignore genetic code degeneracy, and the possibility of parents 
having identical genes, for the moment) does depend on the crossover type. 
Children produced by XI are distinct from both parents. Child Cl produced 
by X2 is phenotypically identical to PI because it inherits the entire PI head. 
Child C2 produced by X2 is phenotypically distinct from both parents. Both
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children produced by X3 are phenotypically identical to their parents. Thus 
simple crossover may not produce as much change to the phenotype 
population as might be expected.

Despite this apparent inefficiency, producing phenotype clones is not a 
waste of time, because the genetic material in a tail can become active at a 
later time. For example, child C2 by XI inherits the shortest combination of 
parental heads: P2[..X1] followed by Pl[Xl..j. When this combination is used 
in ontogenic mapping, the effect of PI[XI..] depends on the effect of 
P2[..X1], because of the implicit genotype sequencing. This may result in the 
length of C2's head being less than, equal to or greater than the length of 
P i's  head. If C2's head is longer than PTs, then genes from P i’s tail are 
expressed in C2's phenotype. Thus, what was inactive can become active.

Gads 1 used uniform crossover, rather than one-point crossover, and made 
no allowance for the chromosome structure. In uniform crossover each 
gene in a child is equally likely to have come from either parent. It is 
possible that this form of crossover might be very disruptive to the implicit 
sequence of the genes in Gads, though the ontogenic mapping ensures that 
no invalid genotypes can result.

GE's default crossover operator is a simple one-point crossover much as 
described above, though the chromosomes are variable length and each 
parent's crossover point is chosen independently.

[O'Neill, 2001b] refers to various forms of homologous crossover, in which 
there is a deliberate attem pt to ensure that the genetic material that is 
exchanged is in some sense equivalent. The aim is to avoid overly 
destructive crossover which might result from exchanging material that is 
entirely unrelated and unsuitable for the context into which it is placed. (In 
biology, homologous chromosomes have the same or allelic genes with 
genetic loci usually arranged in the same order, so that DNA in matching 
positions on two chromosomes serves a similar purpose in each.) [O'Neill, 
2001b] introduces a new form of two-point homologous crossover for GE.
In the standard form of this operation, the two parents are first compared, 
gene by gene, from the start of the chromosome. Genes are considered to 
match if they translate to the same production. The first crossover point is 
immediately before the first pair of genes which do not match. The second 
crossover points are chosen randomly and independently in both parents, in 
the region to the right of the first crossover points. There is also a variant 
form of crossover in which the second crossover points are at the same 
locus in both parents, so that the children are same lengths as the parents.

Gads 2 uses a one-point crossover, modified to ensure that the crossover 
point is always in the head of both parents. That is, it is restricted to type 
XI of figure 5-1. Since Gads chromosomes are fixed length, the crossover 
position is the same in both parents. The reason for this choice is that the 
large size of Gads 2 chromosomes (1 000 genes), when combined with
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parsimony, can result in relatively short heads. If, in a given run, the typical 
head length is just 100 genes, then choosing a crossover point uniformly in 
the 1 000-gene chromosome will result in type X3 crossovers 90% of the 
time, and slower phenotype evolution.

5.1.5 Hobson's choice genes

In the definition of a language it is often desirable to define a production 
which has just one alternative on the RHS. For example, in Syntax A (table 
2-3) there is only one rule for <arity 1>, namely production #7. In [Ryan, 
1998a] the BNF definition of a C function has only one alternative for each 
LHS except <expr>. If, in the course of ontogenesis, such a nonterminal is 
produced, there is no choice about what it must expand to, no need to 
translate a gene to make that choice, and consequently no need to use up a 
gene at that point.

In Gads 1, which has an identity translation function, this is not an issue. In 
order to select production #7, it is necessary to have a gene with value 7.

In GE, as described in [Ryan, 1998a], genes are not used up unless necessary.

In the Gads 2 implementation of ontogenesis, these “Hobson’s choice’’ genes 
are used up. They must therefore use up some resources. For example, 
they may weaken the effect of crossover by diluting the crossover point 
space with ineffective crossover points. Any such effect could trivially be 
avoided by modifiying the ontogenic mapping to only use up a gene for a 
real choice.

5.2 Systems

This section gives a top-down description of the software and hardware 
used for the experiments, and the general experimental setup that was 
common to all the problems investigated.

5.2.1 Computing facilities

The experiments were carried out on a laboratory with a server and about 
60 client systems. Each run was started with 33 clients in parallel so that 
even if a few clients failed there would be a reasonable-sized sample of 
results. The runs were coordinated from the laboratory server.

The server ran Solaris 7; the clients ran RedHat Linux 7.1. In addition, the 
clients had Java 1.3.1 and S-algol [Kirby, 2000].
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Each client also had the ECJ GA engine [Luke, 2001]. This is a well-built and 
well-documented GA system, written in Java, and with numerous hooks for 
the experimenter to extend in Java.

5.2.2 Gads 2 implementation

I developed Gads 2 as an ECJ "experiment", as suggested in [Luke, 2001]. 
This means that Gads 2 is entirely contained in a directory subtree of ECJ. 
A copy of the subtree is available at

ftp ://ftp.d e s .st-and.a c .uk/pub/norman

The implementation is in two main parts: Java classes for a general rag; and 
extensions to specialise this for S-algol. The programming quality is 
admittedly rather rough, as my aim was to demonstrate the validity of the 
concept, not to develop an elegant or efficient implementation of it.

The main interface between ECJ and Gads 2 was provided by:
RAGInitializer

Called by ECJ at the start of the run. Sets up the rag.
RAGProbIem4

Called by ECJ to evaluate an individual.
RAGStatistics

Called by ECJ to output information about the run.
RAGIndividual

The Gads 2 genotype was an ECJ IntegerVector with a modified 
crossover. A simple crossover works but may be less efficient.

5.2.3 ECJ parameters

Four engine configurations — ie ECJ parameter sets — were used. They 
were named Koz_0, Koz_l, Pat_0 and Pat_l. All configurations shared ECJ's 
simple.params with the following deviations:
Species

Integer vector
Population size

1 000 individuals
Genome size

1 000 genes
Gene value range 

[0, 100]
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Crossover points
1

Crossover probability
0.9

Mutation probability
0.01

Two further configuration settings were used, each with two values, making 
a total of 4 engine configurations. The intention of this was simply to 
ensure that there was some variety in the experimental setup, and that 
results were not specific to one configuration. The settings were:
Style

Koza or Paterson (see below).
Fitness computation

Either functionality alone, or functionality and parsimony.

Koza-style parameters were intended to be similar to those in [Koza, 1994]. 
They include:
Selection method

Tournament size 7
Generations

100

Paterson-style parameters were intended to be quite different from Koza’s: 
Elite

900
Selection method

Tournament size 1 (ie random selection)
Generations

991

The different numbers of generations were contrived so that both Koza- and 
Paterson-style had the same number of evaluations, namely 100 000. These 
limits — 1 000 individuals and 100 000 evaluations — are probably too 
small if your purpose is to find solutions to real problems.

Parsimony pressure was applied in 50% of the configurations.
Configurations which ignored parsimony were given subscript 0. 
Parsimonious configurations were given subscript 1. The application of 
parsimony pressure is described below in §5.2.5 Fitness: functionality and 
parsimony.
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5.2.4 Raw and transform ed data sca les

It was necessary to design scales for measuring fitness, and its components, 
functionality and parsimony. There were two basic reasons for this.

The first was that the range of the raw measure was sometimes as large as 
[0, Float. MAX_VALUE]. The value of Java’s Float. MAX__VALUE is about 
10̂ *. This number is so large that it is very difficult to comprehend. For 
example, a value of just one-tenth of one percent of this is 10^  ̂which is still 
enormous by human standards. It is very difficult to interpret values in so 
large a range.

The second was that the raw measures were error measures, in which 0 is 
the best and bigger values are worse. These had to be reversed so that zero 
was the worst and bigger values were better. There are two obvious ways to 
do this: take the reciprocal, or take the negative.

These two factors interact. For example, if the raw functionality is very 
small compared to the theoretical maximum, reciprocating or negating will 
lead to values which are almost indistinguishable, so that fitness-based 
selection will be jeopardised.

1 adopted a standardised set of scale transformations to deal with this, with 
the aim of producing scales that were understandable and which produced a 
spread of values when real individuals were evaluated. The transformations 
are written as the procedure map in the preamble. The input to map is three 
boolean switches which specify the transformations required, an observed 
value, and the range it is in. The procedure returns a transformed value as 
follows:
logarithms

If the LOG option is selected, the scale and the observed value are 
replaced by their natural logarithms. This is normally used if the 
upper bound of the raw scale is F lo a t  ,MAX_VALUE or 
I n t e g e r . MAX_VALUE.

For example, if the raw value r is in the range [x, y] then it is 
transformed into the value log r in  the range [log x, log y].

reverse
If the REV option is selected, the sense of the scale and observed value 
(which may by now be logarithmed) are reversed. This is used when 
the raw value is an error measure, such as RMS difference between 
observed and expected values.
For example, if the raw value r is in the range [x, y] then it is 
transformed into the value x + y - r in  the range [y, x].

scale
If the SCA option is selected, the observed (which may by now be
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logarithmed and/or reversed) are scaled into a specific range. This is 
used when the raw value is not in the standard range.
For example, if the raw value r  is in the range [x, y] then it is 
transformed into the value (r - x) /  (y - x) * m in the range [Ô -m].

The final value of the transformed observation is returned.

5.2.5 Fitness: functionality and parsimony

Fitness is represented in ECJ as a real value in [0, F l o a t  .MAX__VALUE], with 
0 being the worst possible.

Raw functionality was a problem-specific measure of how well the individual 
performed the objective task, as measured by the evaluation wrapper. The 
most common measure was the RMS difference between observed values 
(from the individual being evaluated) and expected values (from an ideal 
solution). (The term expected does not imply any actual expectation — it is 
an echo of statistical terminology.)

Raw parsimony was measured in terms of the leaf count in the phenotype. 
(An early version used the gene count, I switched to a phenotype-based 
measure because it seemed more consistent to base fitness measures on the 
phenotype than on the genome.) Leaf count is in the range [1,
I n t e g e r  .MAX_VALUE], b u t  in  p rac tice  is un like ly  to  b e  anyw here  n ea r 
I n t e g e r . MAX_VALUE.

I wanted to be able to read a fitness value in terms of functionality and 
parsimony scores. A simple way to do this is to use decimal digits before 
the decimal point to represent functionality, and those after the decimal 
point to represent parsimony. This also ensures that functionahty takes 
precedence over parsimony. A Java float has a 24-bit mantissa, with an 
implied 1 bit in front after normalisation. This makes 25 bits, which can 
represent 2" fixed-point values, or just over 7 decimal digits. I therefore 
represented fitness by a fixed-point decimal number of the form:

ffff.ppp

where f  f  f  f  represents the functionality, and ppp the parsimony. Thus, 
functionality was transformed into a value in the range [0, 9999], and 
parsimony into a value in the range [0, 999], using the transformation 
procedure described above.

Using this method it is simple to interpret a fitness of, say 9825.881 as 
scoring 98.25% for functionality and 88.1% for parsimony. There is a slight
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difference between functionality and parsimony scores. The maximum 
functionality score of 9999 is usually achievable, since in the problems 
considered, the ideal result is known. The maximum parsimony of 999 is 
not usually achievable, because it corresponds to a phenotype of length 1. 
Of course we do not usually know the minimum phenotype length in 
advance. For example, the best solutions in the Annie problem scored 
9999.876 and this is probably the highest achievable score.

It would have been possible to use multiobjective fitness, and might have 
allowed for a smaller grain, which might be helpful. However, parsimony 
and functionality are not independent and so Pareto optimisation quickly 
results in convergence on solutions with good parsimony but poor 
functionality, because parsimony is much easier to achieve. Multiobjective 
fitness is therefore not a simple option.

5.2.6 Crossover

Although all genomes were the same size, 1 000 genes, not all genes were 
needed for every ontogenic mapping. A parsimonious individual might only 
use 100 genes. The genome in such a case consists of an active head of 100 
genes followed by an inactive tail of 900 genes. If crossover treats all 
possible crossover points as equally likely, then 9 times out of 10 the 
crossover point will be in the tail. The child which inherits the head of the 
genome will then be almost equivalent to the parent with the shorter head.
I say equivalent because later crossovers might show up differences.
In order to make crossover more effective, 1 introduced a version where the 
crossover points are guaranteed to be in the head of both parents.

This form of crossover is similar to the pruning technique described in 
[Ryan, 1998a]. However pruning is an operator that permanently modifies 
genotypes — genes are thrown away. The form of crossover here simply 
ensures that the crossover point is in the active region.

5.2.7 Hobson's choice

In each of the problems, several genes were used up in generating the 
wrapper. This requires no evolution because there are no choices to make, 
so all gene values select the same production. Nonetheless these “Hobson’s 
choice” genes m ust exist in this implementation of the ontogenic mapping, 
and m ust therefore use up some resources. For example, they may weaken 
the effect of crossover by diluting the crossover point space with ineffective 
crossover points. Any such effect is expected to be slight, though it could 
trivially be avoided by modifiying the ontogenic mapping to only use up a 
gene for a real choice.
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The ontogenic mapping in [Ryan, 1998a] does not use up genes unless it is 
necessary.

5.2.8 S-algol

The phenotype language chosen for the Gads 2 experiments is S-algol 
[Morrison, 1979] [Kirby, 2000]. S-algol is a general-purpose programming 
language which has the benefits of a pleasant grammar that makes it 
particularly suitable as a teaching language. In structure, it follows the 
general style of the Algol-like languages. Scalar data types include integers, 
reals, booleans and strings.

Integer operators div and rem compute integer division and remainder, 
respectively. For the purposes of GP, various procedures were defined. 
Procedures d i v  and r e m  are forms of div and rem, protected against 
division by zero. Procedure s l a s h  is the real equivalent. Procedure s u b s t r  
provides a form of substring extraction that is protected against indices 
beyond either end of the string. Procedures f l o o r  and c e i l i n g  were also 
added for the Tile problem. These are defined in the wrapper, near the end 
of §B.l Syntax.

5.3 Problems and individual results

This section describes the problems and the results on an individual basis.

A range of problems was chosen to exercise different aspects of Gads 2. 
Monkey

Evolve a string literal to test that the basic system is working.
Cart

The conventional cart-centering problem.
Tile

Mixed mode arithmetic.
Multiplexer

A standard example, involving boolean expressions and conditionals. 
Power

Variable declaration, assignment and iteration.
Two Box

Procedure declaration and use.
Fact

Recursive procedure declaration and use.
Annie

Evolution of a main program.
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Each of these problems is described in the following subsections. The 
description gives the aim of the problem, the objective of the problem, the 
subset of the S-algol rag that was used, how functionality was calculated, 
and the individual qualitative results.

5.3.1 Monkey

The aim of the monlcey problem was to test the Gads 2 implementation.

The objective was to evolve the literal string " H e l lo , w o r ld  I ' n ".

The monkey problem was named after the famous quotation:

"If an army of monkeys were strumming on typewriters, they might write all the 
books in the British Museum. "

—Sir Arthur Eddington, The nature of the physical world, 1928

The virtual monlceys were not given such a difficult task, but the task is not 
as simple as it appears. The kernel of the phenotype was an S-algol 
l i t e r a l  s t r i n g ,  so that the effective grammar was reduced to the 
following subset of S-algol:

program: programmonkey.
programmonkey: preamblesymbol, phenotypemonkey, 
postamblemonkeysymbol, endofprogram.
phenotypemonkey: phenotypemonkeybeginsymbol, literalstring, 
phenotypemonkeyendsymbol.
endofprogram: spacesymbol, questionsymbol.
literalstring: spacesymbol, quotesymbol, quotesymbol; spacesymbol,
quotesymbol, chars, quotesymbol.
chars: character; character, chars.
character: ascii; special.
ascii: letter; digit; punctuation.
special: apostrophersymbol, specialfollow.
letter: letterlowerasymbol; letterlowerbsymbol; letterlowercsymbol;
letterlowerdsymbol 
letterlowergsymbol 
letterlowerj symbol 
letterlowermsymbol 
letterlowerpsymbol 
letterlowerssymbol 
letterlowervsymbol 
letterlowerysymbol 
letterupperbsymbol 
letterupperesymbol 
letterupperbsymbol 
letterupperksymbol 
letteruppernsymbol 
letterupperqsymbol

letterloweresymbol 
letterlowerbsymbol 
letterlowerksymbol 
letterlowernsymbol 
letterlowergsymbol 
letterlowerbsymbol 
letterlowerwsymbol 
letterlower 2 symbol 
letteruppercsymbol 
letterupperfsymbol 
letterupperisymbol 
letterupperlsymbol 
letterupperosymbol 
letterupperrsymbol

letterlowerfsymbol; 
letterlowerisymbol; 
letterlowerIsymbol; 
letterlowerosymbol; 
letterlowerrsymbol; 
letterlowerusymbol; 
letterlowerxsymbol; 
letterupperasymbol ; 
letterupperdsymbol; 
letteruppergsymbol; 
letterupperj symbol; 
letteruppermsymbol; 
letterupperpsymbol; 
letterupperssymbol;
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letteruppertsymbol; letterupperasymbol; letteruppervsymbol; 
letterupperwsymbol; letterupperxsymbol; letterupperysymbol; 
letterupperzsymbol.
digit: numeralOsymbol; numerallsymbol; numeral2symbol; 
numeralSsymbol; numeral4symbol; numeralSsymbol; numeral6symbol; 
numerallsymbol; numeralSsymbol; numeralSsymbol. 
punctuation: spacesymbol; exclamationsymbol; hashsymbol; 
dollarsymbol; percentsymbol; ampersandsymbol; roundlsymbol; 
roundrsymbol; asterisksymbol; plussymbol; commasymbol; hyphensymbol; 
periodsymbol; slashsymbol; colonsymbol; semicolonsymbol; 
anglelsymbol; equalssymbol; anglersymbol; questionsymbol; atsymbol; 
squarelsymbol; backslashsymbol; squarersymbol; caretsymbol; 
underscoresymbol; apostrophelsymbol; curlylsymbol; barsymbol; 
curlyrsymbol; tildesymbol.
specialfollow: letterlowernsymbol; letterlowerpsymbol; 
letterlowerosymbol; letterlowerbsymbol; letterlowerbsymbol; 
apostrophersymbol; quotesymbol.

Monkey thus comes down to evolving c h a r s .  For each character, the 
genome must first choose between a s c i i  and s p e c i a l .  If a s c i i  is 
chosen, the genome m ust then choose l e t t e r ,  d i g i t  or p u n c tu a t io n ,  
and then the individual character. Similarly, a s p e c i a l  character involves 
several choices. The ideal genome must produce a string of 15 characters in 
several categories. This is not an efficient way to discover strings of 
characters, but it is not intended as an exercise in efficiency.

Functionality was computed as follows. The observed value was the literal 
string. The expected value was the target string, " H e l lo ,  w o r ld !  ' n". 
Raw functionality was the RMS of the difference between ascii values of 
observed characters and expected characters, with the shorter of the 
observed and expected strings extended with null characters to the same 
length as the longer string. For example, suppose the target string was 
" H e llo "  and the observed string was " H d lp ij" :

Observed : H d 1 p i j
Ascii : 72 100 108 112 105 106
Expected : H e 1 1 o NUL
Ascii : 72 101 108 108 111 0
Differences : 0 1 0 4 6 106
Squares : 0 1 0 16 36 11236

Sum of squares: 1 + 16 + 36 + 11236
= 11289

Mean square: 11289/6
= 1881.5

Root mean square: sqrt (1881.5)
= 43.4

The least possible value of raw functionality is 0. This is achieved when the 
observed and expected strings are equal. The maximum value is S-algol's 
maxreal, but this value is extremely unlikely because the probability of a
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long string is vanishingly small due to the definition of c h a r s .  
Consequently the maximum value of the raw functionahty was capped at a 
value equal to the raw functionality of the empty string.

Adjusted functionality was computed from the raw functionality first by 
reversing the scale (so that 0.0 represented the worst, not the best), and 
then by scaling it into the range [0, 9999].

A typical run (res_pat_0/log.atholl.0)i produced the following series of best- 
of-run phenotypes, starting in generation 0;

" ' 'q[A836L'b8"
.. >t;4E' ' ' ' 'p[='p' "0"
"2; 4E' ' ' ’ 'p[='p"’0" 

{4{r't"’'t>cn"
"&v4E' ' ’p[878'o'b'p""'
"''Q4El't'"E>cn"
"''q [AF't6mp]'o"

''p[878'o'b'p'""
" ’o}ml8’o'p:eJ'7"

'>gD7'' ’pmpJ'7"
"7Qoh''7'pmpJ'7"
"7Qgh{''’pj_ml0"
"<tgh{7'p[eJSO’p"
"OXmo]'''pjp]'7"
"8Qo}'3'pvpj I 7"
"l}m}'3'pvpj|_"
"1{ra}'3'pvp]I 
"7Qgh'3 'pvp]I 
"7Qge{'''p [pc'c2"
”2'  ̂[ {] ’ ' 'pmpc'c2"
"lsgh{36mpc'c2"
"7tgh{'''pmpc'c2"
"7_gh{1'pmp]kc2"
"N_gh{1'pmp]kc2"
"Ntoh'''Ivpc'c2"
"7hge{'''pmpmkc2"
"8Xge{7''|py'c2"
"7fgh('''pxpmkc4"
"7fgh{''’pxpmkc2"
"N_gh{''lmpm'c2"
"N_ohv'''pvqckc2"
"5^mh{7''Ipmjc2"
"Tfgh{'''pxpmkc2"
"N_ohv'''pvqmkc4"
"N_ghv' ' 'pvqmkc2''
"7bgh{ ' ' ' ' xpmkc2 ''
"N_gb{''''Ipmkc2"
"N_ph{''''xpmkc2"
"N_ohv''''xpmkc2"

1 The run log is lag.athol.Q  and can be found in the results directory res_pn tjO . The results directory identifies the parameters as run 0 
of the client "athoH" witli Paterson-style with no parsimony.
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N_gb{'' ''1pmk_#
N ghv7''ipmj_#"
Ndoh{'' ''xpmkc)
N o h { '' ''Ipmkc#
Ndmh{'' ''xpmkc)
Ndmhv''''1pmkc)
N ohv''''xpmkc#
N_mhv''''xpmkc#
N ohv'''"xpmkc#
Ndm h v '' '"xpmkc#
E^ohv''''xpmk_# t"
Ndmhv'' ' ' xpmk__# t"
Nbohv'''"vpmk_# t"
Ndmhv'' '"xpmk_# t"
Ndmhl'' ''xpmkc# t"
Ndmhv'''"xpmkc# b"
Gdghm'''"vpmk_# t"
Gdghm'''"xppkc# t"
Idmom'''"vppkc# t"
Gdmom'''"xprkc# t"
Gdmmm'' '"vppkc# t" :
Gdmkm'' '"xprkc# t"
Idmkn'' '"xprkc# t"
Gdmkn'' '"xprkd# t"
Gdmkn'' '"xprkd# n" '
Idmln'' '"xprld# t"
Gdmkn'' '"xprld! t"
Gdmln'' '"xprld1 t"
Gdmln'' '"xorld! t"
Gdmlo'' '"xprld! n"
Gemln'' '"xorld! n"
Gdmlo'' '"world I n"
Gemlo'' '"world! n"
Hemlo'' '"world ! n"
Hello'''"world ! n"

The length of the phenotype is always close to the target length of 15 
characters. This aspect of the functionality is evidently quite effective.

The phenotype string does not appear remotely similar to the target until 
very near the end. For example, it is not at all obvious that moving from 
"T f  gh{ ' ' ' pxpmkc2" to "Ndmhv ' ’ ' ' | pmkc ) " represents an improvement. 
This is presumably because the improvement is in terms of ascii values, 
which are not immediately apparent to human vision. The distance from H 
to T is greater than the distance from H to N, so we know that the first letter 
has improved, even though there is no subjective impression of it. I 
mention this because to begin with, I thought the system was not actually 
working at all.

The target is not actually reached, because the run ends in a local minimum. 
Between H e llo  and w o r ld  the expected value is com m asym bol, 
sp acesy m b o l. Both of these are in the p u n c tu a t io n  category. The 
observed value is a pair of characters in the s p e c i a l f o l l o w  category. (In 
S-algol, single quote acts as an escape character.) Thus, to change either of
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these characters requires two gene mutations: one for category and one for 
the character. It is most unlikely that both gene changes will occur during 
the production of one individual, so the changes m ust occur one at a time or 
not at all. But doing either change results in a worse functionality. Given 
the unfortunate choice of s p e c i a l f o l l o w  characters in the first place,- the 
system has actually done the best it can:

Observed: '
Ascii : 39 34
Expected : , S P
Ascii : 44 3 2
Differences : 5 2
Squares : 2 5 4

Sum of squares: 2 9

Mutating to choose p u n c tu a t io n  rather than s p e c i a l f o l l o w  would 
mean that a punctuation character would be selected; but not one so close 
to the expected value. Hence the system finds a less-than-perfect solution.

The Monkey experiment demonstrates that Gads 2 produces phenotypes 
according to the grammar, and demonstrates evolution in the GA system.

5.3.2 Cart

The aim of the cart problem was to revisit a standard problem.

The objective was to evolve a control expression for a bang-bang rocket cart 
as described in § 2 Gads 1. A human-designed solution to this problem is 
shown below:

procedure expected (real x, v -> real) 
- X  - v*rabs(v)

The kernel of the phenotype was an S-algol ex p 3 r e a l .  To keep the 
phenotype language comparable to the original problem, several S-algol 
nonterminals were redefined. For example, int, bool, string, conditional 
expression, procedure, and so on were removed, leaving a reduced grammar 
as follows:

program: programcart.
programcart: preamblesymbol, phenotypecart, postamblecartsymbol, 
endofprogram.
endofprogram: spacesymbol, questionsymbol. 
phenotypecart: phenotypecartbeginsymbol, expSreal, 
phenotypecartendsymbol. 
clausereal: expOreal.
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clausel: spacesymbol, roundlsymbol. 
clauser: spacesymbol, roundrsymbol. 
expOreal: explreal.
clauseseparator: spacesymbol, commasymbol. 
explreal: exp2real. 
exp2real: expSreal.
expSreal: exp4real; exp4real, addop, exp4real.
addop: spacesymbol, plussymbol, newlinesymbol; spacesymbol,
hyphensymbol, newlinesymbol.
exp4real: expSreal; procslashsyrabol, clausel, expSreal, 
clauseseparator, exp6real, clauser; expSreal, multopreal, exp6real. 
expSreal: expSreal,
expSreal: literalreal; applreal; idrealc; clausel, clausereal, 
clauser.
multopreal: spacesymbol, asterisksymbol. 
literalreal: spacesymbol, roundlsymbol, hyphensymbol, 
numerallsymbol, roundrsymbol. 
applreal: applrabs.
idrealc: spacesymbol, letterlowerxsymbol; spacesymbol, 
letterlowervsymbol.
applrabs: procrabssymbol, clausel, expOreal, clauser.

Functionality was computed as follows. A set of 20 test cases was 
generated. Each test case was a starting position x and velocity v for the 
cart, both uniformly distributed in the range (-0.75, +0.75), The same cases 
were used throughout. The observed value was the simulated time taken to 
centre the cart using the evolved control expression. The expected value 
was the simulated time taken using the human-designed control expression. 
Raw functionality was the RMS of the difference between observed time and 
expected time, over the sample of test cases.

The least possible value of raw functionality is 0. This is achieved when the 
observed and expected times are equal. (It is worth mentioning that the 
optimal time of 2.02 seconds given in [Koza, 1992] is an artifact of the 
simulation parameters. The simulation ends when the cart is within a 
certain non-zero capture radius of the origin. An interaction of the capture 
radius and the time quantum mean that it is possible to center the cart in 
less than the theoretical minimum time.) The maximum value is the 
simulated time limit, 10 seconds.

Adjusted functionality was computed from the raw functionality first by 
reversing the scale (so that 0,0 represented the worst, not the best), and 
then by scaling it into the range [0, 9999].

A typical run (res„pat_0/log.atholl.0) produced the following best-of-run 
phenotype:

- X + SLASH ( - V  , rabs ( SLASH ( rabs { SLASH { - x , x ) ), V  ) ) )
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The Cart experiment demonstrates that Gads 2 can produce phenotypes 
comparable with those produced by Gads 1.

5.3.3 Tile 1, Tile 2

The aim of the tile problem was to demonstrate the evolution of an 
expression involving more than one type.

The objective was to evolve an integer-valued expression for the number of 
square unit tiles needed to cover a given right-angled triangle, with real­
valued sides. The tiles cover the triangle from the right angle. For example, 
a triangle of sides 4.5 and 7.3 needs 23 tiles:

4 . 5

0.0 7 3

Figure 5-2; H ow  many tiles?

As far as I know there is no closed expression for the number of tiles: it is 
necessary to compute the number by adding up the number of tiles in each
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column, which Involves iteration. A human-designed procedure for this is 
as follows:

procedure expected (real x, y -> int) 
{

let t 0
for i = 0 to FLOOR(x) do {

t := t + CEILING(y-i/x*y)
}
t

}

The kernel of the phenotype was an S-algol expO i n t .  As usual, several S- 
algol nonterminals were redefined, to reduce the grammar to the relevant 
subset of S-algol. Also, procedures FLOOR and C E I L I N G  were introduced, 
because it seemed fairly likely they would be useful for this problem.

By mistake, version 1 of tile included v o id  c l a u s e  in the grammar. This 
is valid S-algol, but introduced the unintended capacity for the tile 
phenotype to write directly to standard output. Since the functionality of 
the phenotype was passed to the GA engine by executing the phenotype and 
reading its standard output, this meant that the phenotype could write its 
own functionality, independently of how well it computed the number of 
tiles. This mistake was fixed for version 2, which is shown below.

program: programtile.
programtile: preamblesymbol, phenotypetile, postambletilesymbol, 
endofprogram.
endofprogram: spacesymbol, questionsymbol.
phenotypetile: phenotypetilebeginsymboL, expOint,
phenotypetileendsymbol.
clauseint: expOint.
clausereal: expOreal.
clausel: spacesymbol, roundlsymbol.
expOint: explint.
clauser; spacesymbol, roundrsymbol. 
expOreal: explreal.
clauseseparator: spacesymbol, commasymbol.
explint: exp2int.
explreal: exp2real.
exp2int: exp3int.
exp2real: exp3real,
exp3int: explint; explint, addop, explint.
exp3real: explreal; explreal, addop, explreal; explint, addop, 
explreal; explreal, addop, explint.
explint: expSint; procdivsymbol, clausel, expSint, clauseseparator, 
expOint, clauser; procremsymbol, clausel, ex
pSint, clauseseparator, expOint, clauser; expSint, multopint, 
expOint.
addop: spacesymbol, plussymbol, newlinesymbol; spacesymbol, 
hyphensymbol, newlinesymbol.
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explreal; expSreal; procslashsymbol, clausel, expSreal, 
clauseseparator, expOreal, clauser; expSreal, multopreal 
, expOreal. 
expSint: expOint.
expOint: literalint; clausel, clauseint, clauser; applint. 
multopint: spacesymbol, asterisksymbol. 
expSreal: expOreal.
expOreal: literalreal; clausel, clausereal, clauser; applreal; 
idrealc.
multopreal: spacesymbol, asterisksymbol.
literalint: spacesymbol, numeralOsymbol; spacesymbol, digits, 
applint: applabs; applfloor; applceiling. 
literalreal: spacesymbol, numeralOsymbol, periodsymbol, 
numeralOsymbol; literalint, periodsymbol; literalint, pe 
riodsymbol, digits; literalint, periodsymbol, digits, 
letterloweresymbol, digits; literalint, periodsymbol, digi 
ts, letterloweresymbol, addop, digits, 
applreal: applrabs; applsqrt.
idrealc; spacesymbol, letterlowerxsymbol; spacesymbol,
letterlowerysymbol.
digits: digit; digit, digits.
digit: numeralOsymbol; numerallsymbol; numeral2symbol; 
numeralSsymbol; numeral4symbol; numeralSsymbol; numeralOs 
ymbol; numeral7symbol; numeralSsymbol; numeralOsymbol. 
applabs: procabssymbol, clausel, expOint, clauser. 
applrabs: procrabssymbol, clausel, expOreal, clauser. 
applsqrt: procsqrtsymbol, clausel, expOreal, clauser. 
applceiling: procceilingsymbol, clausel, expOreal, clauser. 
applfloor: proofloorsymbol, clausel, expOreal, clauser.

Functionality was computed as follows. A set of 20 test cases was 
generated. Each test case was a pair of real values x and y for a triangle, 
both uniformly distributed in the range (1, 100). The same cases were used 
throughout. The observed value was the number of tiles necessary 
according to the evolved expression. The expected value was the actual 
number of tiles necessary computed using the human-designed procedure. 
Raw functionality was the RMS of the difference between observed value 
and expected value, over the sample of test cases.

The least possible value of raw functionality is 0. This is achieved when the 
observed and expected number of tiles are equal. The maximum value is S- 
algol's maxint.

Adjusted functionality was computed from the raw functionality by taking 
logs, reversing the scale (so that 0.0 represented the worst, not the best), 
and then by scaling it into the range [0, 9999].

The phenotypes produced ranged from the short;

1 + 8 * 212
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to the long and Impenetrable:

( 1508 +
FLOOR ( CEILING ( SLASH { - 
0.4e04 , y ) +
+
X ) * 9 - 

X * 9.856 ) ) +
( DIV { ( REM ( ( REM ( ( REM ( 9 ,  { ( 0 * 4 ) ) ) +
REM ( 7 , 4 ) ) ,  18707 ) +
DIV ( ( DIV ( 0 , { DIV ( ( REM ( abs ( REM ( ( REM ( CEILING
{ ( REM ( 0 , ( ( DIV ( 0 , ( DIV { 0
, ( 374  -
DIV ( ( REM ( ( DIV ( FLOOR ( +
257.4e +

8 +
SLASH ( +
( - 
{ - 
0.0 +
DIV ( ( FLOOR ( +
sqrt ( SLASH { ( SLASH ( 0.6 , rabs ( SLASH ( rabs ( DIV ( 

FLOOR ( + 
sqrt { SLASH ( sqrt ( SLASH ( + 
y , sqrt ( SLASH ( -
sqrt { SLASH ( rabs ( { SLASH ( rabs ( SLASH ( + 
sqrt ( SLASH ( y , ( ( REM ( ( 6 ) , 0 ) - 
DIV ( 57069 , 0 ) ) * 86 +

rabs ( FLOOR ( rabs ( y ) * rabs ( REM ( CEILING { SLASH ( - 
0.0 , ( X * ( SLASH ( -
X , rabs ( REM ( 7 , ( REM ( abs ( DIV ( ( REM ( FLOOR ( 27 *

4 -
SLASH ( ( SLASH ( ( DIV ( ( DIV ( abs ( REM ( ( DIV ( 0 , ( (

REM ( 8 , 0 ) +
abs ( DIV ( 9 , 0 ) ) * 0 ) ) ) ) , 0 ) ) ,  FLOOR { DIV ( 0 ,
( 8 +
DIV ( CEILING ( 713 - 
SLASH ( +
rabs ( 0 . 0 )  , 0 . 0  ) ) , 0 )  ) ) +
0.0 ) )  +
0 ) , 0 ) +
0.0 ) , 0.0 ) +
0 ) , 0.0 ) ) , 0 ) +
0 ) , 0 ) +
0 ) , 0 ) ) ) +
0.0 ) )  +
0.0 ) +
0 . 0 )  ) ) , 0 ) +
0.0 ) +
0 . 0  ) * 0 +
0.0 ) * 0.0 ) ) +
0 ) , 0.0 ) +
0 ) , 0.0 ) +
0.0 ) * 0.0 +
0.0 ) , 0.0 ) +
0.0 ) , 0.0 ) +
0 ) ) +
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0 . 0  ) ,  0 . 0  ) ) +
0 ) , 0 ) +
0 . 0  ) , 0 . 0  ) ) ) +
0 . 0  ) , 0 . 0  ) +
0 . 0  ) * 0 . 0  +
0 ) ) , 0 ) ) +

0 . 0  ) , 0 . 0  ) ) , 0 ) ) , 0 ) + 
0 ) , 0 ) ) ) +
0 ) ) +
0 } * 0 ) ) +
0 ) +
0 . 0  ) , 0 ) ) , 0 ) +
0 ) , 0 ) ) , 0 ) ) )  +

0 ) ,  0 ) ) ,  0 ) +
0 ) ,  0 ) +

0 ) * 0

The long phenotype has a tail of zeroes. This indicates that the ontogenic 
mapping has used up all the genes in the genome. When this happens, and 
the ontogenic mapping process requests the next gene to choose between 
alternatives, it is given the value zero. This value results in the first 
alternative of the production being chosen. The first production is arranged 
to be the simplest; for example expO i n t  is expanded via a series of 
productions to the literal 0. Thus, when the genes have all been used, a tail 
of default values results. This ensures that all expressions, parameter lists, 
etc are finished off in the simplest grammatically correct fashion.

The most interesting phenotype which resulted from this problem, with 
fitness 9258.0, (in version 1, resJcoz.O, log.strathspey.O) was: ,

DIV ( CEILING ( DIV ( 0 , 0 ) +  
y * X ) , 2 ) -
DIV ( FLOOR ( -
y +
SLASH ( X , 0.91e - 

2 ) ) , 2 )

Simplifying 0 . 91e to 1, and using the identities;

f lo o r { -x )  = -ceiling (%) 
ceiling (-%)= -  floor {x)

this reduces to:

DIV ( CEILING ( X  * y ) , 2 ) + 
DIV ( CEILING ( X + y ) , 2 )
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In the example above, (x, y) = (7.333, 4.611), giving an evolved value of 21 
tiles, as compared with the true value of 23 tiles. The evolved expression 
can be seen to be composed of two subexpressions added together. The 
first approximates the area of the triangle, and the second adds a 
correction. In further tests, this expression was often exactly correct, never 
more than a few tiles wrong, and always wrong in the same direction (ie 
underestimating rather than overestimating).

The Tile experiment demonstrated that mixed mode expressions were 
satisfactorily evolved by Gads 2, and the discovery of interesting algorithms.

5.3.4 Multiplexer

The aim of the multiplexer problem was to demonstrate the evolution of 
boolean expressions involving z/clauses and boolean operators.

The problem is described in section 7.4.1 of [Koza, 1992]. The objective was 
to evolve a 3-bit multiplexer. A human-designed expression for this is 
shown below:

procedure expected (bool a2, al, aO,
d7. d 6 , d5 ,d4 ,d3, <

if a2
then if al

then if aO
then d7
else d6

else if aO
then d5
else d4

else if al
then if aO

then d3
else d2

else if aO
then dl
else dO

The kernel of the phenotype was an S-algol expO b o o l. As usual, several 
S-algol nonterminals were redefined, to reduce the grammar to the relevant 
subset of S-algol, which is shown below:

program: programmultiplexer.
programmultiplexer; preamblesymbol, phenotyperaultiplexer, 
postamblemultiplexersymbol, endofprogram. 
endofprogram: spacesymbol, questionsymbol.
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phenotypemultiplexer: phenotypemultiplexerbeginsymbol, expObool, 
phenotypemultiplexerendsymbol.
clausebool: expObool; ifsymbol, clausebool, thensymbol, clausebool, 
elsesymbol, clausebool. 
clausel: spacesymbol, roundlsymbol. 
clauser: spacesymbol, roundrsymbol.
expObool: explbool; explbool, orsymbol, newlinesymbol, explbool. 
explbool: exp2bool; exp2bool, andsymbol, newlinesymbol, exp2bool. 
exp2bool: exp3bool; notop, exp3bool; exp3bool, eqop, exp3bool; 
notop, clausel, exp3bool, eqop, exp3bool, clauser. 
exp3bool: exp4bool. 
notop: spacesymbol, tildesymbol. 
eqop: spacesymbol, equalssymbol; tildeequalssymbol. |
exp4bool: expSbool. ]
expSbool: exp6bool.
exp6bool: literalbool; clausel, clausebool, clauser; idboolc. 
literalbool: truesymbol; falsesymbol.
idboolc: spacesymbol, letterloweresymbol, numeral2symbol; 
spacesymbol, letterloweresymbol, numerallsymbol; spacesymbol, 
letterloweresymbol, numeralOsymbol; spacesymbol, letterlowerdsymbol, 
numeral?symbol; spacesymbol, letterlowerdsymbol, numeralSsymbol; 
spacesymbol, letterlowerdsymbol, numeralSsymbol; spacesymbol, 
letterlowerdsymbol, numeral4symbol; spacesymbol, letterlowerdsymbol, 
numeral3symbol; spacesymbol, letterlowerdsymbol, numeral2symbol; 
spacesymbol, letterlowerdsymbol, numerallsymbol; spacesymbol, 
letterlowerdsymbol, numeralOsymbol.

Functionality was computed as follows. All 2048 combinations of the 11 
input bits were generated. The observed value was the boolean value of the 
evolved expression. The expected value was the correct value computed 
using a perfect expression. Raw functionality was the count of the times 
where the observed and expected values were equal, over the sample of test 
cases.

The least possible value of raw functionality is 0. The maximum value is 
2048.

Adjusted functionality was computed from the raw functionality by scaling 
it into the range [0, 9999].

A typical phenotype is as follows:

d7 and ■
al = d7 or '
~ al and i
~ ( dS ~= ( if if ~ ( true ~= ( ~ true and i
( ~ d3 and i
~ ~ ( if if ~ false or \
~ d l  then if if ~ ( ( if ~ ( ~ ( d7 = ( if if ( if if if if t

if if ~ ( ( false = ( ~ d4 or f
( i f  ( al and •
~ ( true = ( ( - ( ( - ( - (  if if if ( if - ( ( - ( - ( (  ( |

~ ( ( true ~= ( ( i f  if if if aO ~= ( Î
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~ ( false ~= al ) or 
~ ( ( ~ ( false ~= ( ~ false or 
false and
- ( ( ~ true and
~ ( { if if ~ true and 
( if if ~ ( i f  if if ~ false and
- ( ~ false ) then if ( ~ ( ( if if ~ ( ( if if if if if ( if

if if if ~ ( " d7 ) and
~ ( if ~ ( false = true ) and
( if if false and
(.if ~ ( ( ~ aO and
( ( true ~= true and
~ ( ( if if if if - false and
( ~ ( if ~ ( d2 = a2 ) and
~ ( ( ~ ( dO d3 ) ) ( ~ true and
- ( false ( ~ ( ~ ( if if if if ~ ( ~ false and 
~ ( if if if false = false and
dO = d4 or
~ ( ( if false ~= ( if true then true else true ) and
true then true else true ) = true ) and
true then true else true then true else true then true else 

true ) or 
true ) or
true then true else true then true else true then true else 

true then true else true ) and 
true or 
true ) and 
true ) ) or
true ) ) or
true then true else true ) and
true ) = true then true else true then true else true then

true else true then true else true ) = t
rue ) ) or
true ) = true ) = true ) and
true then true else true ) = true then true else true then

true else true ) = true then true else t 
rue ) or
true then true else true then true else true then true else 

true then true else true ) = true and 
true or
true then true else true then true else true then true else 

true then true else true then true else
true ) = true and
true ) and
true then true else true then true else true ) = true ) and 
true or
true ) = true or
true then true else true else true then true else true then 

true else true ) and 
true then true else true then true else true ) = true or
true then true else true then true else true ) = true ) ) =

true and 
true ) ) ) ) = true ) ) or
true then true else true then true else true then true else 

true then true else true ) or 
true } or
true ) = true ) and 
true ) = true and 

true ) = true ) ) or
true ) or
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true ) and 
true or
true then true else true ) and
true then true else true then true else true then true else

true ) ) ) = true } or
true ) = true ) ) ) = true then true else true ) and 
true ) ) and 
true or 
true ) or
true then true else true then true else true then true else 

true then true else true then true else 
true then true else true ) = true and
true then true else true then true else true ) ) and
true ) and 
true or
true then true else true ) - true or 
true ) or
true then true else true then true else true else true then 

true else true ) or j
true ) ) or |
true ) ) and j
true or :|
true then true else true then true else true ) ) j

I
Once again we can see the tail, this time composed of many occurrences of \
t r u e ,  which is the default boolean expression. j

The Multiplexer experiment demonstrates that Gads 2 successfully 
generates boolean expressions, involving zf clauses and boolean operators.

5.3.5 Power

The aim of the power problem was to demonstrate the evolution of a 
program involving the declaration and use of typed variables and iteration.

The objective was to evolve the body of a procedure to raise a real value x to 
an integer power n. A human-designed solution to this is as follows;

procedure expected (real x; int n -> real) 
{

let result := 1.0 
for i = 1 to n do

result := result * x
result

)

The kernel of the phenotype was an artificial nonterminal defined to be a 
sequence of void clauses and declarations, followed by a real expression 
which was the value of the procedure. The human designed solution above 
requires only one declaration (of result), one void clause (the for) and a
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simple real expression (result). The phenotype kernel is therefore 
considerably more general than is required. As usual, several S-algol 
nonterminals were redefined, to reduce the grammar to the relevant subset 
of S-algol, which is shown below:

program: programpower.
programpower: preamblesymbol, phenotypepower, postamblepowersymbol, 
endofprogram.
endofprogram; spacesymbol, questionsymbol. 
phenotypepower: phenotypepowerbeginsymbol, sequencevoid, 
sequenceseparator, clausereal, phenotypepowerendsymbol. 
sequencevoid: clausevoid; clausevoid, sequenceseparator, 
sequencevoid; decllet; decllet, sequenceseparator, sequencevoid. 
clausevoid: expOvoid; forsymbol, idintnew, spacesymbol, 
equalssymbol, clauseint, tosymbol, clauseint, dosymbol, clausevoid; 
idint, assignmentsymbol, clauseint; idreal, assignmentsymbol, 
clausereal.
sequenceseparator: spacesymbol, semicolonsymbol, newlinesymbol.
decllet: declletint; declletreal.
clauseint: expOint.
clausereal: expOreal.
clausel: spacesymbol, roundlsymbol.
expOint: explint.
clauser: spacesymbol, roundrsymbol. 
expOreal: explreal.
declletint: letsymbol, idintnew, assignmentsymbol, clauseint. 
declletreal: letsymbol, idrealnew, assignmentsymbol, clausereal. 
idintnew: idintnewsymbol. 
idrealnew: idrealnewsymbol. 
expOvoid: explvoid.
idint: spacesymbol, letterlowernsymbol.
idreal: spacesymbol, letterlowerxsymbol.
clauseseparator: spacesymbol, commasymbol.
explvoid: exp2void.
explint: exp2int.
explreal: exp2real.
exp2void: expSvoid.
exp2int: expSint.
exp2real: expSreal.
expSvoid: exp4void.
expSint: exp4int; exp4int, addop, exp4int.
expSreal: exp4real; exp4real, addop, exp4real; exp4int, addop, 
exp4real; exp4real, addop, exp4int. 
exp4void: expSvoid.
exp4int: expSint; procdivsymbol, clausel, expSint, clauseseparator, 
expGint, clauser; procremsymbol, clausel, expSint, clauseseparator, 
expGint, clauser; expSint, multopint, expGint. 
addop: spacesymbol, plussymbol, newlinesymbol; spacesymbol, 
hyphensymbol, newlinesymbol.
exp4real: expSreal; procslashsymbol, clausel, expSreal, 
clauseseparator, expGreal, clauser; expSreal, multopreal, expGreal. 
expSvoid: expGvoid. 
expSint: expGint; a d d o p , expGint.
expGint: literalint; clausel, clauseint, clauser; idint. 
multopint: spacesymbol, asterisksymbol. 
expSreal: expGreal.
expGreal: literalreal; clausel, clausereal, clauser; idint; idreal.
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multopreal: spacesymbol, asterisksymbol,
expGvoid: sequencel, sequencer; clausel, clausevoid, clauser; 
sequencel, sequencevoid, sequencer, 
sequencel: spacesymbol, curlylsymbol. 
sequencer: spacesymbol, curlyrsymbol.
literalint: spacesymbol, numeralOsymbol; spacesymbol, digits, 
literalreal: spacesymbol, numeralOsymbol, periodsymbol, 
numeralOsymbol; literalint, periodsymbol; literalint, periodsymbol, 
digits; literalint, periodsymbol, digits, letterloweresymbol, 
digits; literalint, periodsymbol, digits, letterloweresymbol, addop, 
digits.
digits: digit; digit, digits.
digit: numeralOsymbol; numerallsymbol; numeral2symbol; 
numeralSsymbol; numeral4symbol; numeralSsymbol; numeralGsymbol; 
nuraeralVsymbol; numeralSsymbol; numeralSsymbol.

Functionality was computed as follows. A set of 30 test cases was 
generated. Each test case was a pair of real values x and n, both uniformly 
distributed, x  in the range (0, 10) and n in the range [0, 10]. The same cases 
were used throughout. The observed value was the value of x" computed 
according to the evolved expression. The expected value was computed 
using the human-designed solution above. Raw functionality was the RMS 
of the difference between observed value and expected value, over the 
sample of test cases.

The least possible value of raw functionality is 0. This is achieved when the 
observed and expected times are equal. The maximum value is maxreal

Adjusted functionality was computed from the raw functionality by taking 
logs, reversing the scale (so that 0.0 represented the worst, not the best), 
and then by scaling it into the range [0, 9999].

A typical phenotype (res_pat_0/log.dufftown.0) is as follows:

X 0.4e7 - n * n ;
n := DIV ( + n , 0 ) + DIV ( n , ( REM ( 811 , n ) - REM ( n , 
0 ) ) ) ;
( SLASH ( n , n ) + SLASH ( n ,  0 . 76) ) * x +  SLASH ( G.557e 
+ 0 , n )

As can be seen in this example, no variables are declared and no iteration 
takes place. The phenotype does not require either of these grammatical 
constructions, it merely enables them. Many phenotypes declare variables 
but never use them. For example (res_koz_0/log.atholl.O):

let real.O := DIV ( - n , 0 ) - SLASH ( - x , 0.0 ) 
SLASH ( n , ( SLASH ( x , 42. ) ) ) + + 7578471 * n
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While (res_koz_0/log.kinclalth.O) shows that more than one declaration is 
possible:

let int.O := DIV ( n , ( REM ( 1 , n ) ) ) ;
let real.l := SLASH { 09.0222 , 7.6 ) + ( x * 0.5719072e + 01
+ REM ( 0 , n ) } ;
+ n + REM ( - ( DIV ( 0 , ( REM ( - n , n ) ) ) + ( n * ( n -
DIV ( + n , n ) ) ) ) , 0 )

No best-of-run phenotype declared more than two variables. Use of 
declared variables was rare. For example, (res„koz_0/log.coe.O) begins:

let real.O := SLASH ( - ( SLASH ( ( SLASH ( - 0. , n ) ) , x )
) , n ) - n ;
real.O := - n + - real.O ;

showing that the identifier r e a l . 0 was correctly added to the grammar 
following its declaration.

Evolution of for clauses was much rarer. For example 
(res„pat_0/log.ransom.O) shows both an evolved /hr clause and use of a 
previously declared variable:

let int.O := DIV ( 0 , n ) ;
for int.l = ( int.O - DIV ( int.O , n ) ) * int.O to n * n do 
int.O := REM ( - 0 , int.O ) ;
n * 0.7e7

The grammar for this problem would support a nested for, though none was 
produced as a best-of-run phenotype. None of the best-of-run phenotypes 
used any declared variable in their final real expression.

Although this experiment failed to produce anything remotely like the 
human-designed solution, it succeeded in its aim of demonstrating the 
declaration and use of type-correct variables and iteration.

5.3.6 Two box

The aim of the two box problem was to demonstrate the evolution of a 
procedure declaration and use. The problem is described in section 4 of 
[Koza, 1994]. Four variants of the problem were investigated. None are 
identical in all respects to the original Koza problems, but they do aim to
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capture the spirit of the original. The variants present a progression 
towards less prescriptive procedure declarations.

The objective in all variants is to evolve an expression for the difference in 
volume of two cuboids. The cuboid dimensions are given as two sets of 
three real values. A human-designed solution to this problem is as follows:

procedure expected
(real LO, WO, H O ,  Ll, Wl, HI -> real)

{
procedure volume

(real ARGO, ARGl, ARG2 -> real) 
ARGO * ARGl * ARG2

volume (LO, WO, HO) - 
volume (Ll, Wl, HI)

The variants of the problem are distinguished by their phenotype grammars 
as follows:
Two Box 1 (Koza style: w ithout ADF)

A real expression involving only the real parameters LO, WO, HO, L l, Wl 
and HI and retz/arithmetic operations +, —, * and SLASH.

Two Box 2 (Koza style: with ADF)
A non-recursive procedure of type (real, real, real -> real) and a real 
expression as for Two Box 1, plus the declared procedure.

Two Box 3 (Paterson style: w ith unprescribed, non-recursive ADF)
A non-recursive procedure of type {reaV̂  -> real) (where real* means 
zero or more reals) and a real expression as for Two Box 1, plus the 
declared procedure.
S-algol supports recursion by default, so for this variant it was 
necessary to implement a form of S-algol which did not support 
recursion. This is described in §4.2.2.7 Procedure declarations.

Two Box 4 (Paterson style: with unprescribed, recursive ADF)
As for Two Box 3, but with recursion enabled.

The Two Box 1 kernel was a c l a u s e  r e a l .  As usual, several S-algol 
nonterminals were redefined, to reduce the grammar to the relevant subset 
of S-algol, which is shown below;

program: programtwoboxl.
programtwoboxl: preamblesymbol, phenotypetwoboxl, 
postambletwoboxsymbol, endofprogram. 
endofprogram: spacesymbol, questionsymbol.
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phenotypetwoboxl: phenotypetwoboxbeginsymbol, clausereal,
phenotypetwoboxendsymbol.
clausereal: expOreal.
clausel: spacesymbol, roundlsymbol.
clauser: spacesymbol, roundrsymbol.
expOreal: explreal,
clauseseparator: spacesymbol, commasymbol. 
explreal: exp2real. 
exp2real: expSreal.
expSreal: exp4real; exp4real, addop, exp4real.
addop: spacesymbol, plussymbol, newlinesymbol; spacesymbol,
hyphensymbol, newlinesymbol.
exp4real: expSreal; procslashsymbol, clausel, expSreal, 
clauseseparator, expGreal, clauser; expSreal, multopreal, expGreal. 
expSreal: expGreal.
expGreal: idrealc; clausel, clausereal, clauser. 
multopreal: spacesymbol, asterisksymbol.
idrealc: spacesymbol, letterupperlsymbol, numeralOsymbol; 
spacesymbol, letterupperwsymbol, numeralOsymbol; spacesymbol, 
letterupperhsyrabol, numeralOsymbol; spacesymbol, letterupperlsymbol, 
numerallsymbol; spacesymbol, letterupperwsymbol, numerallsymbol; 
spacesymbol, letterupperhsymbol, numerallsymbol.

The Two Box 2 kernel was a procedure declaration followed by a c l a u s e  
r e a l .  The procedure declaration was constrained to be of the specified 
type. The prescribed parameter list of 3 reals was obtained by “unwinding” 
the definition of p a r a m e t e r l i s t  so that the procedure methods already 
developed for the general parameter list could be re-used without 
modification. The seed procedure PROG. REAL was included so that the 
ADF could be added as an alternative to an existing production, without 
having to introduce the whole production. As usual, several S-algol j
nonterminals were redefined, to reduce the grammar to the relevant subset ]
of S-algol, which is shown below: |

program: programtwobox2.
programtwobox2: preamblesymbol, phenotypetwobox2, 
postambletwoboxsymbol, endofprogram. 
endofprogram: spacesymbol, questionsymbol.
phenotypetwobox2: phenotypetwoboxbeginsymbol, sequencevoid, 
phenotypetwoboxendsymbol.
sequencevoid: declproc, sequenceseparator, clausereal.
sequenceseparator: spacesymbol, semicolonsymbol, newlinesymbol.
declproc: declprocreal.
clausereal: expOreal.
clausel: spacesymbol, roundlsymbol.
clauser: spacesymbol, roundrsymbol.
applproctypereal: proctyperealsymbol, clausel, expOreal, clauser. 
expOreal: explreal.
declprocreal: procsymbol, idprocnew, roundlsymbol, parameterlist3, 
arrowsymbol, typerealsymbol, roundrsymbol, sequenceseparator, 
clausereal.
idrealnew: idrealnewsymbol. 
idprocnew: idprocnewsymbol. 
parameter: typerealsymbol, idrealnew.
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parameterseparator: spacesymbol, semicolonsymbol. 
idreal: spacesymbol, letterupperlsymbol, numeralOsymbol; 
spacesymbol, letterupperwsymbol, numeralOsymbol; spacesymbol, 
letterupperhsymbol, numeralOsymbol; spacesymbol, letterupperlsymbol, 
numerallsymbol; spacesymbol, letterupperwsymbol, numerallsymbol; .. 
spacesymbol, letterupperhsymbol, numerallsymbol. 
clauseseparator: spacesymbol, commasymbol. 
explreal: exp2real. 
exp2real: expSreal.
expSreal: exp4real; exp4real, addop, exp4real.
addop: spacesymbol, plussymbol, newlinesymbol; spacesymbol,
hyphensymbol, newlinesymbol.
exp4real: expSreal; procslashsymbol, clausel, expSreal, 
clauseseparator, expGreal, clauser; expSreal, multopreal, expGreal. 
expSreal: expGreal.
expGreal: idreal; applreal; clausel, clausereal, clauser. 
multopreal: spacesymbol, asterisksymbol, 
applreal: applproctypereal.
parameterlistS: parameter, parameterseparator, parameterlist2. 
parameterlist2: parameter, parameterseparator, parameterlistl. 
parameterlistl: parameter.

The Two Box 3 kernel was, like the Two Box 2 kernel, a procedure 
declaration followed by a c l a u s e  r e a l .  However, the procedure 
declaration was less constrained; the parameter list was zero or more real 
arguments. The seed procedure P R O C . R E A L  was included so that the ADF 
could be added as an alternative to an existing production, without having 
to introduce the whole production. As usual, several S-algol nonterminals 
were redefined, to reduce the grammar to the relevant subset of S-algol, 
which is shown below:

program: prograratwoboxS.
programtwoboxS: preamblesymbol, phenotypetwoboxS, 
postambletwoboxsymbol, endofprogram. 
endofprogram: spacesymbol, questionsymbol.
phenotypetwoboxS: phenotypetwoboxbeginsymbol, sequencevoid, 
phenotypetwoboxendsymbol.
sequencevoid: declproc, sequenceseparator, clausereal.
sequenceseparator: spacesymbol, semicolonsymbol, newlinesymbol.
declproc: declprocreal.
clausereal: expOreal.
clausel: spacesymbol, roundlsymbol.
clauser: spacesymbol, roundrsymbol.
applproctypereal: proctyperealsymbol, clausel, expOreal, clauser, 
expOreal: explreal.
declprocreal: procsymbol, idprocnew, roundlsymbol, arrowsymbol, 
typerealsymbol, roundrsymbol, sequenceseparator, clausereal; 
procsymbol, idprocnew, roundlsymbol, parameterlist, arrowsymbol, 
typerealsymbol, roundrsymbol, sequenceseparator, clausereal. 
idrealnew: idrealnewsymbol. 
idprocnew: idprocnewsymbol.
parameterlist: parameter; parameter, parameterseparator, 
parameterlist.
parameter: typerealsymbol, idrealnew.
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parameterseparator: spacesymbol, semicolonsymbol. 
idreal: spacesymbol, letterupperlsymbol, numeralOsymbol; 
spacesymbol, letterupperwsymbol, numeralOsymbol; spacesymbol, 
letterupperhsymbol, numeralOsymbol; spacesymbol, letterupperlsymbol, 
numerallsymbol; spacesymbol, letterupperwsymbol, numerallsymbol; 
spacesymbol, letterupperhsymbol, numerallsymbol. 
clauseseparator: spacesymbol, commasymbol, 
explreal: exp2real. 
exp2real: expSreal.
expSreal: exp4real; exp4real, addop, exp4real.
addop: spacesymbol, plussymbol, newlinesymbol; spacesymbol,
hyphensymbol, newlinesymbol.
exp4real: expSreal; procslashsymbol, clausel, expSreal, 
clauseseparator, expGreal, clauser; expSreal, multopreal, expGreal. 
expSreal: expGreal.
expGreal: idreal; applreal; clausel, clausereal, clauser. 
multopreal: spacesymbol, asterisksymbol, 
applreal: applproctypereal.

The Two Box 4 kernel (and consequently the context-free grammar) was 
identical to the Two Box 3 kernel. The difference, namely the fact that 
recursion was enabled in Two Box 4, was achieved by using a different 
production method.

Functionality was computed for all variants as follows. A set of 10 test 
cases was generated. Each test case was a set of 6 integer values LO, WO, HO, 
Ll, Wl, and HI, all uniformly distributed in the range [1, 10]. The same 
cases were used throughout. The observed value was the value of the 
evolved expression. The expected value was the correct difference in the 
cuboid volumes computed using the human-designed solution above. Raw 
functionality was the RMS of the difference between observed value and 
expected value, over the sample of test cases.

The least possible value of raw functionality is 0. This is achieved when the 
observed and expected times are equal. The maximum value is maxreal.

Adjusted functionality was computed from the raw functionality by taking 
logs, reversing the scale (so that 0.0 represented the worst, not the best), 
and then by scaling it into the range [0, 9999].

A typical Two Box 1 phenotype (res_koz_0/log.atholl.O) is as follows:

( { ( HO -
SLASH ( Wl , WO ) ) * WO -
SLASH ( ( SLASH ( ( HI * ( Ll * Wl ) +
{ SLASH ( ( Wl ) , { SLASH ( ( SLASH ( Ll , WO ) -
SLASH ( HI , Wl ) ) , WO ) -
Ll ) ) ) * Wl ) , { SLASH ( HO , HO } +
SLASH ( HO , ( HI * ( SLASH ( ( ( HO * Wl +
Ll * HO ) * Ll ) , ( LO * ( SLASH ( { SLASH ( ( Wl * LO +
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HI ) , ( HI * ( SLASH ( Wl , Wl ) ) -
SLASH ( WO , ( Ll * WO +
( ( Ll ) * ( SLASH ( WO , { ( { SLASH ( Ll , LO ) -
SLASH ( ( SLASH ( ( ( SLASH { { SLASH ( { SLASH ( ( ( ( (

SLASH ( Ll , ( SLASH ( ( Wl - SLASH { Wl , LO ) ) , Wl ) ).. ) )
) * ( SLASH ( ( SLASH ( WO , LO ) -
{ WO * ( ( SLASH ( HI , Ll ) +
( LO * Ll +
( HI ) ) ) * ( SLASH { ( SLASH ( ( ( ( LO * ( WO * ( ( SLASH

{ Ll , ( SLASH ( ( Wl * ( ( HO * WO ) -
SLASH ( ( ( WO ) +
HO ) , ( { SLASH { HO , Ll ) ) * Ll ) ) ) ) , Wl ) +
WO ) ) ) -
( SLASH ( LO , ( SLASH ( Wl , WO ) ) ) ) ) )  -
SLASH ( ( ( SLASH ( ( Ll +
SLASH ( Ll , WO } ) , { ( Wl ) -
WO ) ) +
SLASH ( ( HI * LO ) , LO ) } +
LO ) , LO ) ) * LO ) ) , LO ) +
LO ) ,  LO ) ) ) ) ) ,  LO ) +
LO ) +
LO ) * LO ) , LO ) +
LO ) , LO ) ) , LO ) ) ) , LO ) +
LO ) ,  LO ) )  * LO ) ) ) ) ) *  LO ) ) ) ) ) ,  LO ) +
LO ) +
LO ) ) ) ) ) ) )  +
LO ) , LO ) ) * LO +
LO ) +
LO

The tail consists of LO which is the default real expression in this grammar.

A typical Two Box 2 phenotype (res_koz_l/log.inchmurrin.O) is shown 
below.

procedure proc.O( real real.l ; real real.2 ; real real.3 -> 
real) /
HO * real.2 /
( SLASH { ( p r o c .0( PROC.REAL ( PROC.REAL ( WO * WO ) *

PROC.REAL ( SLASH ( PROC.REAL ( LO ) , PROC.REAL ( HI ) ) ) -
WO ) * Ml , ( SLASH ( HO , HI ) ) * ( SLASH ( HO , ( Wl *

PROC.REAL ( SLASH { ( Wl -
SLASH ( PROC.REAL { SLASH ( proc.0( PROC.REAL ( SLASH (

PROC.REAL { WO * HO ) , Wl ) ) , PROC.REAL ( Wl ) , PROC.REAL
( PROC.REAL ( PROC.REAL ( SLASH ( HI , PROC.REAL ( WO ) ) ) )
) * ( HI +
{ ( proc.O{ SLASH ( p roc.0( ( SLASH { WO , ( SLASH ( HO , Wl

) ~
{ SLASH ( HO , WO ) ) ) ) +
WO ) * proc.O( SLASH ( proc.O{ SLASH { LO , HO ) , Wl , Ll -
( WO * proc.O( SLASH { PROC.REAL ( Wl ) , ( ( PROC.REAL (
SLASH ( WO , LO ) ) ) * ( Ll * PROC.REAL ( SLASH ( PROC.REAL (
PROC.REAL ( { PROC.REAL { PROC.REAL ( HO ) ) ) ) ) , ( ( SLASH
{ ( ( PROC.REAL ( ( Ll ) ) +
HO ) * ( ( ( SLASH { Ll , Wl ) ) +
( PROC.REAL ( Wl ) * Wl ) * HO ) ) ) , ( HO * ( PROC.REAL {
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Wl ) ) +
LO ) ) ) +
PROC,.REAL ( SLASH ( p roc.0( ( H O * ( ( proc.O( SLASH ( ( HO
WO ) , PROC.REAL ( SLASH ( proc. 0( HO , PROC.REAL { Hi )' f

SLASH { ( ( ( WO ) ) ) , WO ) +
( LO ) ) , LO ) +
LO ) ) , LO , LO) +
LO ) ) +
LO ) , LO , LO) , LO ) ) * LO ) ) ) +
LO ) ) ) , LO , LO) )) , LO ) , LO , LO) +
LO , LO , LO) , LO ) , LO , LO) * LO ) ) )) , LO ) +
LO ) , LO ) ) , LO ) ) ) ) +
LO ) , LO) ) , LO ) ) * LO

The phenotype begins with the prototype for procedure p r o c . 0, with the 
three real parameters, named r e a l . 1, r e a l . 2 and r e a l . 3. The body 
refers to HO and r e a l . 2, showing that the external parameters and the 
procedure’s own parameters are in scope. The phenotype then ends with a 
multi-line real expression involving the cuboid dimensions and the newly- 
defined procedure p r o c . 0. Each call of the new procedure has the correct 
number of parameters. The procedure parameters are not in scope in the 
expression and so do not appear. The expression ends with a default tail.

Two Box 3 allows any number of reals in the procedure declaration. As 
expected from the grammar, the most common number of reals is zero, 
followed by 1, 2 and so on. The most observed was 6. A typical Two Box 3 
phenotype (res_pat_l/log.brackla.O) with a procedure of type (-> real) is 
shown below:

procedure proc.O( -> real) /
Wl * ( SLASH ( HI , ( WO * WO +
WO ) ) ) ;
PROC.REAL ( SLASH ( HO , PROC.REAL ( PROC.REAL ( p r o c .0 ) ) )

+
SLASH ( PROC.REAL ( SLASH ( PROC.REAL ( SLASH ( WO , proc.O ) 

( Wl ) * ( PROC.REAL ( proc.O * Ll -
PROC.REAL ( SLASH ( ( proc.O * { SLASH ( { SLASH ( ( SLASH (

PROC.REAL { WO * PROC.REAL ( ( SLASH ( ( SLASH ( LO , proc.O )
+
SLASH ( proc.O , proc.O ) ) , proc.O ) -
HI ) +
proc.O * WO ) -
proc.O * Ll ) , proc.O ) -
Wl ) , PROC.REAL ( { proc.O +
SLASH ( PROC.REAL { ( SLASH { PROC.REAL ( proc.O +
SLASH ( PROC.REAL ( LO -
PROC.REAL ( PROC.REAL ( SLASH ( proc.O , WO ) +
HI ) * PROC.REAL { SLASH { ( SLASH ( PROC.REAL ( ( SLASH {

proc.O , { ( ( SLASH ( PROC.REAL ( SLASH ( PROC.REAL ( ( LO *
HI -
LO ) * proc.O ) , Ll ) ) , ( ( SLASH ( proc.O , proc.O ) ) +
proc.O ) ) +
SLASH ( PROC.REAL ( SLASH ( PROC.REAL ( ( proc.O ) * ( { ( LO

) +

153



( wo ( proc.O -

( ( SLASH (

( ( SLASH { HI

PROC.REAL ( proc.O )
( HO +
Ll * { proc.O +
SLASH ( PROC.REAL ( HO - 
( PROC.REAL ( SLASH ( PROC.REAL { Ll )

PROC.REAL ( SLASH ( HO , proc.O ) - 
proc.O ) , WO ) ) * ( SLASH ( HO , Ll ) ) +
( SLASH ( ( LO * Wl ) , proc.O ) ) ) ) ) ) )

, PROC.REAL ( SLASH ( WO , proc.O ) - 
PROC.REAL { SLASH { proc.O , PROC.REAL ( SLASH ( { SLASH ( 

proc.O , HO ) +
* ( (  LO ) ) ) ) ) ) ) ) ) )  )

LO ) ) , LO ) +

proc 0 ) , WO ) ) ) ) )
LO , LO ) t LO ) +
LO ) ) +
LO ) LO ) +
LO ) , LO ) ) ) * LO ) ,
LO > * LO +
LO ) , LO ) ) +
LO ) ) +
LO ) , LO ) ) +
LO ) , LO ) ) ) * LO +
LO ) ) T LO ) +
LO ) , LO ) ) * LO +
LO

A typical Two Box 3 phenotype (res_pat_l/log.garioch.O) with a procedure of 
type (real, real -> real) is shown below:

procedure proc.O( real real.l ; real real.2 -> real) ;
SLASH { real.l , ( Ll ) ) ;
proc.O( WO * proc.O{ PROC.REAL { ( SLASH ( Wl , HO ) +
SLASH ( ( WO ) , proc.O( SLASH ( PROC.REAL ( ( SLASH ( Wl ,

LO ) +
HI ) ) , HO ) , SLASH ( PROC.REAL ( WO * p roc.0( PROC.REAL ( 

PROC.REAL ( ( ( HO +
( proc.O ( PROC.REAL ( LO ) , SLASH ( Wl , PROC.REAL ( SLASH ( 

Wl , { PROC.REAL ( SLASH { PROC.REAL { ( WO * PROC.REAL {
SLASH { HO , ( PROC.REAL ( HO ) ) ) ) -
Wl ) ) , PROC.REAL { ( SLASH ( HO , PROC.REAL ( PROC.REAL (

SLASH { WO , ( PROC.REAL ( PROC.REAL ( PROC.REAL ( Ll * LO ) )

WO ) * Ll ) ) ) * PROC.REAL ( HO +
PROC.REAL ( Wl +
PROC.REAL ( PROC.REAL ( ( Ll +
WO ) ) ) * PROC.REAL ( SLASH ( ( ( PROC.REAL { HO ) -
Wl ) ) , { proc.O{ PROC.REAL { PROC.REAL ( ( p r o c .0 (

PROC.REAL ( PROC,REAL ( WO ) * PROC.REAL ( SLASH ( Ll , { HI *
PROC.REAL ( HI ) ) ) ) ) , ( ( SLASH ( Wl , PROC.REAL ( ( Wl *
Wl -
SLASH ( ( WO ) , HI ) ) * PROC.REAL ( PROC.REAL ( ( Ll ) ) )

+
( HI ) ) ) ) * ( (  Ll -
SLASH ( PROC.REAL ( SLASH ( { Ll ) , Ll ) ) , HO ) ) ) )) *

PROC.REAL ( SLASH ( PROC.REAL ( proc.O( Ll - 
HI , HI) ) , PROC.REAL ( PROC.REAL ( SLASH { proc.O{ proc.0(

Wl -
WO , LO) * LO , LO) , LO ) ) ) ) +
LO ) ) +
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LO ) ) +
LO , LO) ) ) +
LO ) ) * LO ) ) :) ) * LO ) ) ) * LO
LO ) ) ) ) +
LO) * LO ) ) ) ) ) , LO) ) , LO ) +
LO) ) ) ) * LO , LO) , LO)

The procedure’s formal arguments are in scope only in the procedure body. 
The procedure itself is in scope in the final clause, where each call has two 
real arguments as required. There is a short tail.

The best individual found (res_pat_l/log.glenhaven.O) was:

procedure proc.O{ -> real) ; 
LO ;
( proc.O * ( WO * HO ) - 
Ll * PROC.REAL ( Wl * HI ) )

Given that PROC. REAL is an identity procedure, this can be seen to be 
equivalent to the correct value.

Two Box 4 allows the procedure to be recursive. However it was not until 
the experiment had been concluded that it was realised that without 
boolean expressions, any call of the recursive procedure, whether from 
inside itself or from the final real clause, must lead to endless recursion, 
resulting in a timeout and a functionality score of zero. Thus recursion, 
while syntactically sound, was a semantic trap. (The next problem. Fact, 
deals with recursion more fairly.) As a consequence examples of a Two Box 
4 phenotype showing a recursive call of the procedure are rare, and they all 
have the prototype (-> real). For example (res_koz_0/log.chivas.O):

procedure proc.O ( -> real) ;
Ll +
proc.O ;
( LO ) * PROC.REAL ( { SLASH ( HO , Wl ) +
PROC.REAL ( PROC,REAL ( SLASH ( WO , Ll ) ) ) * PROC.REAL (

PROC.REAL ( ( PROC.REAL ( SLASH ( PROC.REAL ( HO +
SLASH ( PROC.REAL ( SLASH ( PROC.REAL ( PROC.REAL { PROC.REAL
( PROC.REAL ( H O  * ( W O  - SLASH ( HO , PROC.REAL ( SLASH (
PROC.REAL ( SLASH ( LO , ( SLASH ( LO , Wl ) -
SLASH { PROC.REAL ( ( SLASH ( PROC.REAL ( SLASH ( PROC.REAL (

SLASH ( PROC.REAL ( PROC,REAL ( HI ) * ( SLASH { PROC.REAL (
SLASH ( WO r HO ) ) , PROC.REAL { SLASH ( PROC.REAL ( SLASH (
PROC.REAL ( HI ) , ( PROC.REAL { SLASH ( Ll , PROC.REAL (
SLASH ( PROC.REAL ( PROC.REAL ( ( SLASH ( PROC.REAL ( ( Wl *
Ll ) * ( PROC.REAL ( PROC.REAL ( SLASH { PROC.REAL ( PROC.REAL
( PROC.REAL ( SLASH ( ( SLASH { PROC.REAL ( PROC.REAL { SLASH
{ PROC.REAL ( HO -
PROC.REAL ( SLASH ( PROC.REAL { SLASH ( Wl , PROC.REAL {

PROC.REAL ( SLASH ( WO , PROC.REAL ( SLASH ( PROC.REAL ( ( (
PROC.REAL ( SLASH ( ( ( SLASH { HI , ( PROC.REAL ( ( SLASH ( (
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PROC.REAL ( HO * ( SLASH ( ( SLASH ( { WO * PROC.REAL { (
SLASH ( PROC.REAL ( ( SLASH ( PROC.REAL ( { SLASH ( { SLASH (
PROC.REAL ( SLASH ( HI , Wl ) +
SLASH { PROC.REAL { PROC.REAL ( SLASH ( PROC.REAL ( SLASH ( 

PROC.REAL ( SLASH ( LO , PROC.REAL ( SLASH { ( ( SLASH ( ( ..
PROC.REAL { Ll +
PROC.REAL ( LO ) ) * LO +
LO , LO ) +
LO * LO ) LO ) ) )

LO ) ) LO ) ) ) r LO
LO , LO ) ) +
LO +
LO , LO ) ) / LO ) )
LO * LO +
LO LO +
LO ) ) ) LO ) ) +
LO ) * LO +
LO LO ) +
LO ) ) * LO +
LO ) +
LO , LO ) ) ) f LO )
LO f LO ) +
LO LO +
LO * LO ) , LO ) +
LO * LO +
LO * LO ) +
LO , LO ) ) ) +
LO LO ) +
LO ) +
LO LO ) ) ) , LO )
LO LO ) ) +
LO LO ) ) ) +
LO LO ) ) ) ) +
LO +
LO ) * LO ) , LO ) +
LO LO ) ) , LO ) )
LO ) )

LO ) } , LO ) ) LO ) LO ) )

LO ) LO ) +

LO ) , LO ) +

) ) ) ) LO ) LO ) +

) ) +

The procedure p r o c . 0 is endlessly recursive. To call it results in a zero 
functionality score, and indeed it is not called in the final c l a u s e  r e a l .

In all Two Box examples, the procedure body was typically one or two lines 
long, while the final clause was aroimd twenty lines (not including the tail). 
Given that both of these are derived from c la u s e  r e a l ,  this difference is 
surprising. A possible explanation — apart from error — is that the CFG 
components of the grammar are not equal, since in the second case, the 
defined procedure p r o c . 0 is available. In Two Box 4 the CFG components 
are equal, but the semantics render comparison impossible.

Two Box 1 essentially replicates the earlier experiments such as Cart.

Two Box 2 demonstrates that Gads 2 can evolve a procedure body for a 
given prototype and use it in an expression.
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Two Box 3 demonstrates that Gads 2 can evolve a procedure prototype, a 
non-recursive body for it, and an expression which uses it.

Two Box 4 demonstrates that Gads 2 can evolve a procedure prototype, a 
recursive body for it, and an expression which uses it. The demonstration 
of recursion is not entirely satisfactory because recursion was (by accident) 
impossible to achieve. However, Gads 2 was able both to evolve recursive 
programs, and to learn that doing so was ineffective.

5.3.7 Fact

The aim of the Fact problem was to demonstrate the evolution and use of a 
recursive procedure.

The objective was to evolve a recursive factorial procedure. However, this 
simple objective required a less-than-obvious wrapper to avoid making it 
too specific. Real types were used to avoid integer overflow. The objective 
was couched as follows: to evolve a procedure p of type (int -> real); and 
then to evolve a real expression, possibly involving p and a given integer n; 
the value of the real expression to be equal to factorial (ri). A human- 
designed solution is as follows:

procedure expected (int n -> real)/
{

procedure factorial (int n -> real) 
if n <== 0

then 1
else factorial(n-1)*n 

factorial (n)
)

Here, f a c t o r i a l  is the evolved procedure, and f a c t o r i a l  (n ) is the 
evolved expression. As can be seen, the evolved program involves three 
types: int, real and bool

The kernel of the phenotype was an artificial nonterminal defined to be a 
procedure declaration followed by a c l a u s e  r e a l .  The procedure 
declaration was constrained to be of type iint-> real), and recursion was 
enabled. The procedure would therefore be in scope in its own body and in 
the following c l a u s e  r e a l .  As usual, several S-algol nonterminals were 
redefined, to reduce the grammar to the relevant subset of S-algol, which is 
shown below;

program: programfact
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programfact: preamblesymbol, phenotypefact, postarablefactsymbol, 
endofprogram.
endofprogram: spacesymbol, questionsymbol. 
phenotypefact: phenotypefactbeginsymbol, sequencevoid, 
phenotypefactendsymbol.
sequencevoid: declproc, sequenceseparator, clausereal. 
sequenceseparator: spacesymbol, semicolonsymbol, newlinesymbol. 
declproc: declprocreal. 
clauseint: expOint.
clausereal: expGreal; ifsymbol, clausebool, thensymbol, clausereal, 
elsesymbol, clausereal.
sequencêbool: clausebool; sequencevoid, sequenceseparator, 
clausebool.
clausebool: expObool; ifsymbol, clausebool, thensymbol, clausebool, 
elsesymbol, clausebool.
sequencestring: clausestring; sequencevoid, sequenceseparator, 
clausestring.
clausestring: expOstring; ifsymbol, clausebool, thensymbol, 
clausestring, elsesymbol, clausestring. 
clausel: spacesymbol, roundlsymbol. 
expOint: explint.
clauser: spacesymbol, roundrsymbol.
applproctypereal: proctyperealsymbol, clausel, expOreal, clauser. 
expOreal: explreal.
applproctypebool: proctypeboolsymbol, clausel, expObool, clauser. 
expObool: explbool; explbool, orsymbol, newlinesymbol, explbool. 
applproctypestring: proctypestringsymbol, clausel, expOstring, 
clauser.
expOstring: explstring.
declprocreal: procsymbol, idprocnew, roundlsymbol, parameterlist, 
arrowsymbol, typerealsymbol, roundrsymbol, sequenceseparator, 
clausereal.
idintnew: idintnewsymbol.
idprocnew: idprocnewsymbol.
parameterlist: parameter.
parameter: typeintsymbol, idintnew.
idint: spacesymbol, letterlowernsymbol.
idreal: variablerealsymbol.
idbool: variableboolsymbol.
idstring: variablestringsymbol.
clauseseparator: spacesymbol, commasymbol.
explint: exp2int.
explreal: exp2real.
explbool: exp2bool; exp2bool, andsymbol, newlinesymbol, exp2bool. 
explstring: exp2string. 
exp2int: exp3int. 
exp2real: exp3real.
exp2bool: exp3bool; notop, exp3bool; exp3int, eqop, exp3int; 
exp3real, eqop, exp3real; exp3int, comparop, exp3int; exp3real, 
comparop, exp3real; notop, clausel, expSint, eqop, expSint, clauser; 
notop, clausel, expSreal, eqop, expSreal, clauser; notop, clausel, 
expSint, comparop, expSint, clauser; notop, clausel, expSreal, 
comparop, expSreal, clauser. 
exp2string: expSstring.
expSint: exp4int; exp4int, addop, exp4int.
expSreal: exp4real; exp4real, addop, exp4real; exp4int, addop,
exp4real; exp4real, addop, exp4int.
expSbool: exp4bool.
notop: spacesymbol, tildesymbol.
eqop: spacesymbol, equalssymbol; tildeequalssymbol.
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expSstring: exp4string.
comparop: spacesymbol, anglelsymbol; anglelequalssymbol; 
spacesymbol, anglersymbol; anglerequalssymbol.
exp4int: expSint; procdivsymbol, clausel, expSint, clauseseparator, 
expGint, clauser; procremsymbol, clausel, expSint, clauseseparator, 
expGint, clauser; expSint, multopint, expGint. 
addop: spacesymbol, plussymbol, newlinesymbol; spacesymbol, 
hyphensymbol, newlinesymbol.
exp4real: expSreal; procslashsymbol, clausel, expSreal, 
clauseseparator, expGreal, clauser; expSreal, multopreal, expGreal. 
exp4bool: expSbool.
exp4string: expSstring; expSstring, multopstring, expSstring. 
expSint: expGint; addop, expGint.
expGint: literalint; clausel, clauseint, clauser; idint. 
multopint: spacesymbol, asterisksymbol. 
expSreal: expGreal.
expGreal: idint; idreal; applreal; clausel, clausereal, clauser.
multopreal: spacesymbol, asterisksymbol.
expSbool: expGbool.
expSstring: expGstring.
multopstring: concatsymbol.
expGbool: literalbool; clausel, clausebool, clauser; sequencel, 
sequencebool, sequencer; applbool; idbool.
expGstring: literalstring; clausel, clausestring, clauser; 
sequencel, sequencestring, sequencer; procsubstrsymbol, clausel, 
expOstring, clauseseparator, expOint, clauseseparator, expOint, 
clauser; applstring; idstring. 
sequencel: spacesymbol, curlylsymbol. 
sequencer: spacesymbol, curlyrsymbol.
literalint: spacesymbol, numeralOsymbol; spacesymbol, digits.
applreal: applproctypereal.
literalbool: truesymbol; falsesymbol.
applbool: applproctypebool; appldigit; applletter.
literalstring: spacesymbol, quotesymbol, quotesymbol; spacesymbol,
quotesymbol, chars, quotesymbol.
applstring: applproctypestring; applcode; appliformat.
digits: digit; digit, digits.
chars: character; character, chars.
character: ascii; special.
ascii: letter; digit; punctuation.
special: apostrophersymbol, specialfollow.
letter: letterlowerasymbol; letterlowerbsymbol; letterloweresymbol;
letterlowerdsymbol 
letterlowergsymbol 
letterlowerj symbol 
letterlowermsymbol 
letterlowerpsymbol 
letterloweresymbol 
letterlowervsymbol 
letterlowerysymbol 
letterupperhsymbol 
letterupperesymbol 
letterupperhsymbol 
letterupperhsymbol 
letteruppernsymbol 
letterupperqsymbol 
letteruppertsymbol 
letterupperwsymbol 
letterupperzsymbol.

letterloweresymbol 
letterlowerbsymbol 
letterlowerksymbol 
letterlowernsymbol 
letterlowerqsymbol 
letterlowertsymbol 
letterlowerwsymbol 
letterlowerzsymbol 
letteruppercsymbol 
letterupperlsymbol 
letterupperlsymbol 
letterupperlsymbol 
letterupperosymbol 
letterupperrsymbol 
letterupperusymbol 
letterupperxsymbol

letterlowerfsymbol; 
letterlowerisymbol; 
letterlowerlsymbol; 
letterloweresymbol; 
letterlowerrsymbol; 
letterlowerusymbol; 
letterlowerxsymbol; 
letterupperasymbol; 
letterupperdsymbol; 
letteruppergsymbol; 
letterupperj symbol; 
letteruppermsymbol; 
letterupperpsymbol; 
letterupperssymbol; 
letteruppervsymbol; 
letterupperysymbol;
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digit: numeralOsymbol; numerallsymbol; numeralSsymbol; 
numeralSsymbol; numeral4symbol; numeralSsymbol; numeralGsymbol; 
numeral?symbol; numeralSsymbol; numeralSsymbol. 
punctuation: spacesymbol; exclamationsymbol; hashsymbol; 
dollarsymbol; percentsymbol; ampersandsymbol; roundlsymbol; 
roundrsymbol; asterisksymbol; plussymbol; commasymbol; hyphensymbol; 
periodsymbol; slashsymbol; colonsymbol; semicolonsymbol; 
anglelsymbol; equalssymbol; anglersymbol; questionsymbol; atsymbol; 
squarelsymbol; backslashsymbol; squarersymbol; caretsymbol; 
underscoresymbol; apostrophelsymbol; curlylsymbol; barsymbol; 
curlyrsymbol; tildesymbol.
specialfollow: letterlowernsymbol; letterlowerpsymbol; 
letterloweresymbol; letterlowertsymbol; letterlowerbsymbol; 
apostrophersymbol; quotesymbol.
appldigit: procdigitsymbol, clausel, expOstring, clauser. 
applletter: proclettersymbol, clausel, expOstring, clauser. 
applcode: proccodesymbol, clausel, expOint, clauser. 
appliformat: prociformatsymbol, clausel, expOint, clauser.

Inspection of the above grammar reveals that it includes support for the 
string type. This was unintentional; but has been left in for future 
comparison. Modifying grammars is not simple: it is easy to include 
unwanted features and hard to find out where the leak is. In the above 
grammar, the leak is a p p l  b o o l. If exp6 b o o l is redefined without a p p l 
b o o l on its RHS, the grammar supports boolean expressions but not 
boolean procedures.

Functionality was computed as follows. A set of 10 test cases was 
generated, evenly distributed over the range [1, 95] which is the largest 
range that could not cause overflow in the evaluation process. The 
observed value was the logarithm of the value returned by the evolved 
expression. The expected value was the logaritlim of the value returned by 
the the human-designed solution above. Raw functionality was the RMS of 
the difference between observed value and expected value, over the sample 
of test cases.

The least possible value of raw functionality is 0. This is achieved when the 
observed and expected times are equal. The maximum value is log maxreal

Adjusted functionality was computed from the raw functionality by 
reversing the scale (so that 0.0 represented the worst, not the best), and 
then by scaling it into the range [0, 9999].

None of the best-of-run phenotypes produced a conditional expression, 
though it is not obvious why they were selected out. The example 
phenotype below is not best-of-anything, but it shows the features of 
interest:

p r o c e d u r e  o b s e r v e d  ( i n t  n ->  r e a l )  
{
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! < « «  p h e n o t y p e  b e g i n s  
p r o c e d u r e  p r o c . O  ( i n t  i n t . l  ->  r e a l )  ; 
if if - ( PROC.REAL ( p r o c .0( DIV ( +
( DIV { - 
6 , ( REM ( -
( -
( REM ( n , ( REM { ( REM ( +
2 , { REM ( n , ( DIV ( +
0 , { REM ( -
n , ( “
int.l * ( DIV { ( REM ( +
n , { REM ( ( REM ( +
{ ( ( 6 +
n ) * ( ( REM { -
int.l , int.l ) - 
REM ( +
( DIV { ( +
int.l * n +
REM ( int.l , 47 ) ) , int.l } +
DIV ( 73 , n ) ) , n ) ) ) ) ) , { REM ( +
( REM ( 65 , ( +
4 * ( REM ( int.l , { REM ( +
( REM ( +
n , 0 ) ) , ( DIV ( +
n , 0 ) -
0 ) ) ) ) +
REM ( ( REM ( +
( REM ( int.l , ( DIV ( ( ( REM ( ( DIV ( ( int . 1 ) , n )

+
( ~
( REM ( -
0 , ( REM ( +
n , ( 0 * in t .1 -

n * ( REM ( n , ( DIV ( ( n * 3 -
DIV ( ( REM ( +
n , ( REM ( -
( REM {int.l , ( ( +
( DIV ( int.l , 7 ) +
DIV { - 
( -
52 ) , 0 ) ) * ( DIV ( +
( REM ( - 
{ REM ( -t- 
( -
( REM ( -
8 , ( { DIV ( { REM ( -
n , ( ( -
4 * int.l ) ) ) -
0 ) , 252 ) ) ) ) +
REM ( ( REM ( -
n , 1013 ) +
REM ( n , 0 ) ) , n ) ) -

+
( { REM ( -
1 , n ) -
REM ( int.l , { +
( DIV ( 0 , 0 ) +
0 ) ) ) ) * 0 ) ) , 0 ) +
0 ) , 0 ) ) , 0 ) +
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0 ) +
0 0 ) ) ) , 0 )
0 ) ) +
0 0 ) ) , 0 ) +
0 ) ) +
0 ) ) ) ) ) +
0 ) +
0 ) ) f 0 ) ) 0 +
0 0 ) ) ) +
0 0 ) +
0 0 ) ) +
0 ) ) ) , 0 ) +
0 ) ) +
0 0 } ) } ) , 0
0 ) ) +
0 ) ) ) ) ) , 0 ) +
0 ) ) +
0 ) +
0 ) , 0 ) ) ) ) 0
0) +
n ) +
n = n ) and
true or

0 ) +

true then true else true then n else n ; 
n

! » » >  p h e n o t y p e  e n d s  
}

The first 4 and last 2 lines are in italics because they are prescribed; all else 
is evolved. The body of procedure p r o c . 0 extends to the semicolon 4 lines 
from the end. The next line is the c l a u s e  r e a l  that is returned as the 
value of procedure o b se rv e d .

The body of p r o c . 0 contains boolean expressions and uses the parameters 
n and i n t . 1 as it should. It is also recursive.

This experiment demonstrates that Gads 2 can evolve a recursive procedure.

5.3.8 Annie

The aim of the Annie problem was to demonstrate the evolution of a main 
program with a full-sized context-sensitive grammar, that is, that Gads 2 
successfully deals with the scalability problems of Gads 1.

In order for the main program to fit into the same scheme as the other 
experiments, it was necessary that it had no wrapper. In effect it was its 
own wrapper, and had the power to write its own functionality. The 
maximum functionality was 9999, so a human-designed solution Is as 
follows:
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w r i t e  9 9 9 9 ,  " ' n"

This is about the simplest program imaginable. However, given the size of 
the search space, it is not a trivial problem to solve. The kernel of the 
phenotype was s e q u e n c e  v o id . No S-algol nonterminals were redefined. 
The full S-algol grammar as shown in §B was used, comprising 129 
nonterminals and 165 terminals.

The Annie problem was named after the character who sings:

"Anything you can do, I can do better. "
—Irving Berlin, Annie Get Your Gun, 1946

Functionality was computed as follows. Whatever output the program 
produced was read. If it could be interpreted as a real value using standard 
input procedures, that was the functionality. A value less than 0 or greater 
than 9999 was set to zero, so that it was not simply a m atter of outputting 
maxreal. Annie has to get as close to 9999 as possible — but no more.

As might be expected the range of solutions was large. The most 
parsimonious and highest functionality score was 9999.876, which was 
achieved in three runs. This corresponds exactly to the human-designed 
individual above. A more typical phenotype (res_pat_0/log.atholl.O) is 
shown below:

let int.O := REM ( length ( "" ++ PROC.STRING { code ( ( REM {

maxint , INT ) -
length ( ( "52'o" ++ STRING ) ) ) ) + +  STRING ) ) , ( DIV ( +
{ DECODE ( " ’p9" ) * maxint } , { write 9998. -

length ( PROC.STRING ( code ( 0 -
REM ( -
DECODE ( { { ( iformat ( maxint * s.w -
0 * 2 ) ) } + + ( {  { STRING ++ { ( code ( DIV ( 7 , s.w ) ) )

} } } + + ( {  let real.l := DIV ( - 
maxint , r.w ) - 
REAL ;
STRING ++ PROC.STRING ( { iformat { +
0 ) ++ STRING ) ++ { PROC.STRING { { let real.2 := REAL + 
maxint * sqrt ( - 
s.w +
r.w * pi ) /
PROC.STRING ( ( '"'65" ) ++ { ":'n'"]'py" ++ { STRING ++ '"o"

) } ) } ++ "'nS)" ) } ) } ++ code ( DIV ( +
s.w , 04 ) ) ) ) } ) , INT ) ) ) ++ { "" } ) ,"'n" ;
procedure proc.3 { real real.4 -> int) /
REM ( i .w , 0 ) ;
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DIV { -
maxint , r.w ) } ) ) )

The write clause begins on the 4th line and ends with the string " ' n" on the 
5th-from-last line. It's obvious that the value 9998 has been evolved 
because It is valuable. What the rest of the write statement does is not 
obvious, and is probably not worth examining in detail.

This experiment demonstrates that Gads 2 can evolve main programs in a 
fully-featured context sensitive language.

5.4 Comparative results

This section examines the results on a comparative basis.

The main observations of each run were the fitness of the best-of-run and 
the number of evaluations needed to reach it. Each run was characterized 
by a configuration and a random seed which was different for each run.
The configuration was partitioned into problem parameters and engine 
parameters. Problem parameters were those which directly affected the 
solution phenotype; the engine parameters were those wliich affected the 
performance of the evolutionary process. On this basis, the grammar, which 
includes the evaluation function and the wrapper, is the embodiment of the 
problem parameters, while the GA system and the evolutionary parameters, 
such as population size, are the engine.

The following tables give the main observations.

B-N annie cart fact monkey multi-
plexei

power tilel tile2 twobox twobox twobox twobox

koz 0 33 32 33 33 33 33 33 33 33 33 33 33
koz 1 33 33 33 33 33 33 32 33 33 33 33 33
pat_0 30 33 33 30 33 33 33 33 33 33 33 33
pat_l 33 32 33 31 33 33 33 33 33 33 33 33

Table 5-2: B-N: Sam ple size o f  benefit sam ples

B-MN annie cart fact monkei m ul t i ­
plexer

power tilel tile2 twobox twobox twobox twobox

koz_0 9923 
. 97

9999 8330 9753 6586 
. 636

9741
.758

7231
.818

7083
.697

9951
.576

9935 9940
.424

9942
.212

koz 1 9661
.062

9999
.836

8373 
. 995

9768
.431

6416 
. 986

9741
.596

7094
.389

7003 
. 607

9950
.212

9940
.046

9945
.447

9946
.443

pat_0 9815
.267

9999 8230
.121

9868 6459
.394

9740
.818

7006 
. 97

7129
.788

9947
.758

9935
.061

9938
.848

9943
.333

pat_l 9970.0
32

9999
.841

8210 
. 695

9835
.082

6290
.305

9741 
. 142

7020
.398

7131
.305

9951
.795

9935
.411

9945
.874

9945
.378

Table 5-3: B-M N; M ean o f  benefit sam ples
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B-SD annie cart fact monkey m ul t i ­
plexer

power tilel tile2 twobox twobox twobox twobox

koz 0 349 0 326 145 395 3 469 499 12 4 7 11
.205 .381 .542 .883 .553 .365 . 661 . 191 .969 .71 .858

koz 1 1706.1 0 296 144 418 3 583 493 14 5 11 14
74 .012 .792 . 929 .472 .807 .392 .339 . 43 .297 .299 . 985

pat 0 974.36 0 217 106 285 3 375 434 6 4 6 11
9 . 999 .504 .05 .737 .457 .526 .722 .962 .548 L .277

pat 1 140 0 214 112 281 2 408 604 16 4 11 12
.959 .011 .833 .008 .655 .474 .65 .171 .82 .368 .028 .039

Table 5-4; B-SD; Standard deviation o f  benefit samples

B-V annie cart fact monkey m u l t i -1

plexer
power tilel tile2 twobox twobox twobox twobox

koz 0 0 0 0 0 0 0 0 0 0 0 0 0
.035 .039 .015 .06 .065 .071 .001 .001 .001 .001

koz 1 0 0 0 0 0 0 0 0 0 0 0 0
.177 .035 .015 .065 .082 .07 .001 .001 .001 .002

pat 0 0 0 0 0 0 0 0 0 0 0 0 0
.099 .026 .011 .044 .054 .061 .001 .001 .001

pat 1 0 0 0 0 0 0 0 0 0 0 0 0
.014 .026 ,011 .045 .058 .085 .002 .001 .001

Table 5-5: B-V: C oefficient o f  variation o f  benefit sam ples

C-N koz 0 koz 1 pat 0 pat 1
annie 33 33 30 33
cart 32 33 33 32
fact 33 33 33 33
monkey 33 33 30 31
multiplexer 33 33 33 33
power 33 33 33 33
tilel 33 32 33 33
tile2 33 33 33 33
twoboxl 33 33 33 33
twobox2 33 33 33 33
twobox3 33 33 33 33
twobox4 33 33 33 33

Table 5-6: C-N: Sam ple size o f  cost samples
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C-MN koz 0 koz 1 pat 0 pat 1
annie 52348.485 7 8 9 5 4 . 5 4 5 54956.667 80616.6-67
cart 4562.500 2 9 6 2 1 . 2 1 2 7 2 9 5 . 4 5 5 28003.125
fact 8 8 9 2 4 . 2 4 2 9 1 6 2 1 . 2 1 2 94871.212 9 4 8 1 3 . 6 3 6

monkey 72924.242 72227.273 95240.000 95304.839
multiplexer 56863.636 5 1 5 6 0 .606 5 5 4 1 6 . 6 6 7 6 6 6 8 0 . 3 0 3

power 46772.727 47045.455 4 0 2 3 4 . 8 4 8 5 9 9 6 8 . 1 8 2
tilel 8 2 4 6 9 . 6 9 7 54031.250 62386.364 4 1 6 1 9 . 6 9 7
tile2 65166.667 50196.970 77380.303 4 4 2 8 7 . 8 7 9

twoboxl 6 2 8 6 3 . 6 3 6 6 2 1 6 6 . 6 6 7 8 5 5 1 3 . 6 3 6 84037.879
twobox2 4 8 0 4 5 . 4 5 5 94590.909 50407.576 95007.576
twoboxS 60833.333 78196.970 6 4 1 8 3 . 3 3 3 8 6 9 5 9 . 0 9 1
twobox4 59954.545 81560.606 80501.515 9 4 2 4 3 . 9 3 9

Table 5-7: C-MN: Mean o f  cost sam ples

C-SD koz 0 koz 1 pat 0 pat 1
annie 27423.896 26004.916 18702.184 19895.864
cart 2 9 0 6 . 4 7 2 3 3 9 9 2 . 4 2 3 3038.924 13625.071
fact 2 1 4 4 0 . 3 6 8 19900.938 13188.176 13029.769

monkey 1 0 5 5 3 . 5 2 5 1 6 3 8 8 . 3 9 7 4135.661 4 7 9 6 . 1 6 8
multiplexer 2 9 1 3 7 . 4 1 0 3 2 2 9 7 . 3 8 7 3 2 5 0 4 . 7 3 7 2 9 2 8 3 . 1 5 9

power 39335.315 3 3 8 3 7 . 0 0 9 3 3 3 5 8 . 3 2 3 32194.783
tilel 2 7 6 9 8 . 6 9 7 4 2 7 5 7 . 3 6 8 39453.317 4 0 7 5 7 . 2 4 2
tile2 3 6 1 1 6 . 7 0 9 3 9 8 3 3 . 6 2 7 31675.271 40217.804

twoboxl 2 5 1 9 1 . 5 3 9 2 8 3 9 8 . 5 7 7 1 6 6 0 3 . 8 1 8 24141.727
twobox2 3 0 3 6 4 . 5 4 6 5658.863 2 8 3 9 3 . 4 4 1 4 8 7 0 . 4 4 9
twobox3 2 8 6 8 8 . 7 0 3 22040.424 28319.667 18115.866
twobox4 24259.136 17489.174 2 0 7 9 4 . 9 2 3 7 8 9 0 . 2 6 1

Table 5-8: C-SD: Standard deviation o f  cost sam ples

C-V koz 0 koz 1 pat 0 pat 1
annie 0 . 5 2 4 0 . 3 2 9 0 . 3 4 0 0.247
cart 0 . 6 3 7 1.148 0.417 0 . 4 8 7
fact 0 . 2 4 1 0.217 0.139 0.137

monkey 0.145 0 . 2 2 7 0 . 0 4 3 0.050
multiplexer 0.512 0 . 6 2 6 0 . 5 8 7 0.439

power 0.841 0 . 7 1 9 0 . 8 2 9 0 . 5 3 7
tilel 0 . 3 3 6 0.791 0.632 0 . 9 7 9
tile2 0.554 0 . 7 9 4 0 . 4 0 9 0 . 9 0 8

twoboxl 0 . 4 0 1 0 . 4 5 7 0 . 1 9 4 0.287
twobox2 0 . 6 3 2 0.060 0.563 0.051
twobox3 0 . 4 7 2 0 .282 0 . 4 4 1 0.208
twobox4 0 . 4 0 5 0.214 0.258 0 . 0 8 4

Table 5-9: C-V: C oefficient o f  variation o f  cost sam ples

Table names begin with B or C, for benefit or cost respectively. In fact, no 
attempt was made to render cost and benefit comensurate; there seemed to 
be no reasonable way to do so. Benefit in these tables is simply fitness.
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Table names end with N, MN, SD or y  for sample size, sample mean, sample 
standard deviation, or sample coefficient of vnnntzon respectively.

Annie through Twobox4 are problems in alphabetical order. Koz_0 through 
Pat_l are engine configurations.

5.4.1 Pairwise comparison

Using the data in the above tables it is straightforward to compare any pair 
of samples. But it is immediately apparent that pairwise comparison is of 
limited use, because there are so many pairs. One obvious choice is to 
compare Tile 1 and Tile 2, in each of the 4 engine configurations, for cost 
and benefit. Given that the sample sizes are all over 30 there is no need to 
use Student's T test — the usual Z test will do [Freund, 1979].

The test statistic for comparing two sample means is

Z = mi

I
where m  is the sample mean, s the sample standard deviation, and n the 
sample size. The critical value for Z in a  two-sided alternative is ±1.96 at 
5%. Applying this to the benefit and cost measurements for the tile 
problems, we have:

Tile 1 Tile 2
config n m S n m S z

B koz_0 33 7231.818 469.365 33 7083.697 499.661 1.24
B koz_l 32 7094.389 583.392 33 7003.607 493.339 0.68
B pat_0 33 7006.970 375.457 33 7129.788 434.528 -1.23
B pat_l 33 7020.398 408.650 33 7131.305 604.171 -0.87

C koz_0 33 82469.697 27698.697 33 65166.667 36116.709 2.18
C koz_l 32 54031.250 42757.368 33 50196.970 39833.627 0.37
C pat„0 33 62386.364 39453.317 33 77380.303 31675.271 -1.70
C pat_l 33 41619.697 40757.242 33 r 44287.879 40217.804 -0.27

Table 5-10: comparison o f  tile versions

The leftmost column has B or C for benefit or cost. The rightmost column 
shows the Z value for each row. For example, the Z value 1.24 is the test 
statistic for comparing the benefit observations of tile 1 and tile 2, under 
the koz_0 configurations.
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Only one Z value exceeds the critical value — the koz_0 cost comparison. 
But given the 5% confidence level it is probably reasonable to conclude that 
1 rejection of the null hypothesis in 8 tests is not significant, and that the 
two versions of the tile problem behave indistinguishably.

1 have little doubt that other pairwise comparisons would show that other 
pairs of problems and possibly of engines are similarly indistinguishable. 
For a rigorous analysis this should be taken into account, for example by 
pooling the relevant samples. However, I have kept the samples distinct for 
the purposes of demonstrating the visualisation techniques in action.

5.4.2 Visualisation

Using the method described in §3.3 Visualisation, and the data given above, 
we can produce cladograms for problems and engines.
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The problem cladogram is shown below:

13462

(in

4127

)205

(vobox 3

(9) p i M  annie
5 1 0 0

m
17446 tvobox 2

(n
6536

7 8 8 3

tvebox 4

7645
(10k— —    i w o b o x  1

3572 U] 5927

8630
(2)

monkey

1932:

923 6

12292

2009

Hie 2

(6 )

14130 tile I

(51

5649

3596
m ultiplexer

2829
(31

Î776
power

(41

fact

61917

CNM

cart

e vois /  10k

3 4 5 6
Figure 5-3: Problem  cladogram (mean)

As already explained the diagram is a 2-dimensional representation of a set 
of points in an n-dimensional space. The points in the n-dimensional space 
are the problems; the 4-d space is defined by the cost (in evaluations) 
measured by the four engine configurations.

The horizontal dimension of the diagram uses a rational scale to represent 
distance. For example, the distance between the points power and cart is 2 
829 + 61 917 = 64 746, which approximates the distance between these 
points in the original 4-dimensional space. The horizontal scale is shown at

169



the foot of the diagram. The length of each horizontal arc is given above 
the arc.

The vertical dimension is categorical, and simply places each point in i t s - 
own category. Vertical lines do not represent distance. The vertical 
categories are sorted by horizontal length, with shortest length first. Thus, 
tile 2 lies above tile 1, and the entire tüe subtree lies above the entire 
multiplexer-power-cart subtree.

The numbers in parentheses are the node numbers assigned by Phylip. 
They are not significant but have been left in to identifiy the nodes.

For comparison, the following cladogram is based on the same data but uses 
median rather than mean:
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At first glance figures 5-3 and 5-4 appear quite different, but on closer 
inspection it turns out that much of the difference is not significant. At the 
root, two numbers in parentheses indicate that two Phyhp nodes (nodes 5 
and 9) coincide. In the main body of the diagram, three main subtrees 
match those of the mean version. The vertical ordering is different, but as 
the vertical scale is catergorical, that is not significant. The only structural 
differences are in the middle subtree of the median cladogram, where there 
has been some rearrangement of the clades.

The engine cladogram is shown below:
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Figure 5-5: Engine cladogram (mean)
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For comparison, the median version is also given:
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These diagrams represent the 4 points in the 12-dimensional engine space. 
The unit of measure is benefit (ie fitness). With only 4 engines it is not 
possible to learn much from these diagrams, but it is noteworthy that the 
diagrams do detect the two ECJ parameter sets. The main clades of the 
mean version correspond to the style, and the main clades of the median 
version correspond to the parsimony option.

5.4.3 Rational scale comparison

The mean versions of the cladograms were used to compute weights for the 
problems and engines, and then to compute the weighted mean 
performance of problems and engines.

5.4.3.1 Problem weights — engine performance

Engine performance is a measure of how effective each engine was, in terms 
of how fit the best-of-run was after 100k evaluations, averaged over the 12 
problems.

The problem weights were as follows:

Problem Weight (%) Weight (absolute)
annie 4.4% 10249
cart 30.5% 71090
fact 12.3% 28722

monkey 6.5% 15227
multiplexer 2.5% 5881

power 5.2% 12002
tilel 8.9% 20678
tile2 6.8% 15786

twoboxl 5.5% 12730
twobox2 9.9% 22988
twoboxS 3.1% 7118
twobox4 4.5% 10430

Table 5-11: Problem weights
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The weighted and unweighted average and ranlced engine performance is 
given in the following table:

Engine Weighted
mean

Unweighted
mean

Weighted
rank

Unweighted
rank

koz 0 9228 9035 1 1
koz' 1 9202 8987 2 4
pat 0 9198 9001 3= 2
pat 1 9198 8998 3= 3

Table 5-12: Engine performance

The mean values are shown on the chart below:

Engine performance
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Figure 5-7: Engine performance

The overall increase in the weighted performance is due to the large weight 
(30.5%) given to the Cart problem. The Cart problem is easy — the ideal 
solution is always found — and the weighted engine performance reflects 
this.

The effect of the weights on the ranked performance is to change the 
obvious conclusion from parsimony pressure improves performance to Koza 
style parameters are better than Paterson style. Of course these conclusions 
are simphstic, given the variation in the data.
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5 4.3.2 Engine w eights — probiem  perform ance

Problem performance is a measure of how difficult each problem is, in 
terms of how many evaluations were necessary to reach the best-of-run in 
100k evaluations, averaged over the 4 engines.
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The engine weights were as follows:

Engine Weight (%) Weight (absolute)
koz 0 29.2% 188
koz 1 25.7% 166
pat_0 14.8% 95
pat 1 30.3% 195

Table 5-13: Engine weights

The weighted and unweighted average and ranked problem performance is 
given in the following table:

Problem Weighted
mean

Unweighted
mean

Weighted
rank

Unweighted
rank

annie 6 8 1 3 8 6 6 7 1 9 7 7
cart 1 8 5 10 17371 12 12
fact 9 2 2 8 2 9 2 5 5 8 1 1

monkey 8 2 8 2 9 8 3 9 2 4 2 2
multiplexer 58261 5 7 6 3 0 9 10

power 4 9 8 7 3 4 8 5 0 5 11 11
tilel 59811 6 0 1 2 7 8 8
tile2 56801 5 9 2 5 8 10 9

twoboxl 7 2 4 5 3 7 3 6 4 5 6 4
twobox2 7 4 5 8 7 7 20 1 3 4 6
twobox3 7 3 7 0 8 7 2 5 43 5 5
twobox4 7 8 9 3 8 7 9 06 5 3 3

Table 5-14: Problem performance
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The mean values are shown on the chart below:

Problem performance
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Figure 5-8: Problem performance

There is little difference between the weighted and unweighted means.

Differences are more evident in the rankings, where pairs (9, 10) and (4, 6) 
are swapped. These pairs are (multiplexer, tile2) and (twoboxl, twobox2) 
respectively. Given the slight effect of the weighting and the variance in the 
underlying data it would be unwise to attach any significance to this change 
in ranking.
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Conclusions

This section discusses the contribution of this research to GP, its 
limitations, and suggests directions for future work.

6.1 Contribution

The contributions of this thesis are shown below in order of significance as 
it appears at the time of writing.

6.1.1 Context sensitivity

Gads provides a scalable solution for evolving type-correct software in 
independently-chosen context-sensitive languages.

Up till now, small phenotype languages have been the only option. The lack 
of a general mechanism for context sensitivity meant that only small 
grammars were feasible, whether they were tightly or loosely coupled to the 
evolutionary engine. Gads extends GP to loosely coupled full-size context- 
sensitive phenotype languages. The implications of this remain to be 
explored. The obvious possibility is that more complex programs in human 
programming languages such as Java or C, including data structures and 
procedures, can be evolved entirely from scratch. Gad also presents the 
possibility of defining new languages for circuit design, scheduling, or other 
problem domains, and evolving solutions in these languages.

6.1.2 Non genetic search

The ontogenic mapping enables non-genetic optimisation systems to 
perform automatic programming.

Any system that can search for optimal solutions in a space represented by 
a list or array of integers, directed by an objective function, can now search 
for sentences in context-sensitive languages. For example SA, ES or possibly 
even neural nets could evolve programs, and thus open other avenues to 
automatic programming.
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6.1.3 Perform ance

Separation of genotype and phenotype, with the ontogenic mapping, 
provides improvement in evolutionary performance over SGP. This was 
noted in §2 Gads 1 and has been independently confirmed in [Freeman, 
1998] and [O’Neill, 2001c].

6.1.4 Statistics

The initial discussion in §3.1 Statistical perspective gives useful insights into 
what can be investigated. Matching the components of the GP system with 
the corresponding components of the statistical model is non-trivial, and 
helps to avoid conceptual blunders.

§3.2 Performance comparison gives a much-needed foundation to the use of 
statistical tests in comparing performance of GP systems.

§3.3 Visualisation suggests new ways to represent experimental GP data.

6.1.5 Languages and compilers

Rags reveals many features of the phenotype language that were probably 
unintentional. For example, 5 + + — + 6 is valid S-algol, but it probably 
should not be. Rags could be a useful tool in the design of programming 
languages and in the testing of compilers.

6.1.6 Solution

The solution to the tile problem is a minor contribution. This solution is a 
good example of GP at work. Faced with a problem for which there may 
well be no closed-form solution, GP is nonetheless able to find an 
approximate solution. This particular example m ust also be counted a 
success for Gads 2, as it demonstrates the evolution of an expression 
involving mixed types.

6.2 Limitations

The main limitation is that this thesis is broad rather than deep. It covers a 
wide range of topics, but does not deal with any of them in great depth. 
Experimental results are given, but little or no theoretical analysis.
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6.2.1 S tatistics

Some of the analysis in §3.2 Performance comparison has little theoretical 
foundation. Measures such as delta, although plausible, may have flaws a‘s 
yet undiscovered.

The data underlying §3.3 Visualisation is sample means. The means are 
treated as points instead of estimates, which is an over-simplification. A 
more robust method would take the standard error of the mean into 
account when producing the cladogram and again when the performance of 
engines and problems is reduced to a rational scale. The final result should 
be that each engine or problem is represented by an interval on the rational 
scale, not a by point.

6.2.2 Rags implementation

The implementation of rags is suitable for a proof-of-concept, but it is not a 
polished product. It is a single-use design consistent with Brooks' advice: 
plan to throw one away [Brooks, 1995].

An aspect of this is that Gads 2 is not optimised for performance. Its 
performance as recorded here provides a baseline; we may expect tuning to 
produce better performance though there is as yet no concrete evidence on 
which to base this expectation.

6.3 Questions from Gads 1

This section revisits §2.6 Questions raised.

6.3.1 Specifying sentence distribution

The issue of biasing the grammar to make some sentences more likely than 
others is still to be investigated. Would it be helpful to attach weights to 
production alternatives so that some were more likely to be chosen than 
others? If so, how would the weights be set? Could they be evolved? Would 
they apply to the entire run or could they vary from one individual to 
another?

6.3.2 Moving away from Lisp

The goal of using a language other than Lisp is achieved in §5 Gads 2.
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6.3.3 Functions, work variables, etc

The goal of evolving re-usable functions and work variables is achieved in 
§5 Gads 2.

6.3.4 Choosing sentence distribution

A study of the rule frequencies in the derivation of real programs has not 
been carried out.

6.3.5 Statistical analysis

The weakness of the analysis in §2 Gads 1 is addressed satisfactorily in 
§3 Statistics.

6.3.6 Sequential chromosomes

This question has been addressed to some extent in [Keijzer, 2001].

6.3.7 Gene effectiveness

This question is specific to Gads 1. As Gads 2 uses translation the question 
is no longer of interest.

6,3.8 Genetic operations

Different crossover techniques are discussed in [O'Neill, 2001b] and 
[Keijzer, 2001].

6.3.9 Initial distribution

A comparison of generation 0 from Gads and SGP is still to be made.

6.4 Future work

This section presents a number of questions raised by this thesis, including 
those still open in §6.3 Questions from Gads 1 above.
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6.4.1 S tatistics

The main theme of §3 Statistics is the application of statistics to GP. GP 
systems exhibit behaviour that is much more complex than traditional 
computer science is used to dealing with, possibly more hke biology than 
engineering. For this reason, we should look to statistics and the life 
sciences to see what tools and techniques can be adapted for GP.

There is a sizeable body of statistics (eg [Morrison, 2001], [Felsenstein, 
1995]) dedicated to problems such as visualisation, which should be 
investigated. Latent variable models (eg [Loehlin, 1992]) offer another 
avenue which should be investigated.

§3.1.2 Populations and samples makes a claim that is empirically testable, 
namely that generation 0 can be treated as a sample but generation n > 0 
cannot, and the effect is greater as n increases. According to the Central 
Limit Theorem, the sampling distribution of the mean approximates the 
normal distribution [Freund, 1979]. That is, if we take large (> 30) samples 
of a population and compute their means, these means are distributed 
normally. This is true whatever the population distribution. To test the 
claim, proceed as follows. For a range of problems and engines, and li 
taking a suitable range of values, say 0, 10, 20, 30, 40, and 50 in turn, let the 
GP system run to generation n, and measure the mean fitness (or size, or 
any other performance measure you like). (The range of values for n is not 
strictly necessary: only the largest value really needs to be tested. But a 
range should show a trend which is more convincing than a single point.)
Do this 30 times with the same configuration and a different RNG seed. Use 
a goodness-of-fit test to decide whether the means of a configuration are 
normally distributed. If the argument in §3.1.2 is sound, the means should 
always be normally distributed when m = 0, and in general less so as n 
increases.

It could be argued that there is no need to test this claim as it has been 
mathematically proven. This is not quite so. The Central Limit Theorem is 
a theorem, and may be taken as proven, but that is not what is being tested. 
The test is whether the analysis made in §3.1.2 Populations and samples is 
sound. That analysis makes a prediction which can be tested by 
experiment. The behaviour of GP systems is sufficiently complex that 
empirical verification of theoretical predictions is valuable.

What is needed is a reference work entitled Statistical techniques for 
evolutionary computation.
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6.4.2 Gram m ars

Theoretical aspects of rags should be explored. For example: what kind of 
language is necessary for the production methods? Do rags restrict how ' 
scope is defined? Are there useful subclasses of CFGs?

An implementation of rags designed for other researchers to use, probably 
in Java, would make this a useful tool. Rags for other languages (such as C, 
C++, Java) could be developed.

A method to avoid having to generate an mdividual's PT and flattening it 
into a character string, only for a compiler to have to read it and reconstruct 
the PT, would greatly improve wall-clock performance.

All the languages considered so far have in common the property that 
identifiers are introduced and then used. Not all problems fit this model.
An example of a different model is the children's game in which a set of 
randomly chosen integers have to be combined into an expression whose 
value is equal to some goal. For example, if the set was {5, 7, 19, 20, 56} and 
the goal was 44 then a solution would be:

5 6 - ( 5  + 7 )* (2 0 -1 9 )

The player starts with the complete set of integers, but each one can only be 
used once. When any given integer is used, it creates a context in which the 
set of available integers has been reduced. For a rag, this requires removing 
alternatives from the language, not adding them.

6.4.3 Performance comparison

§5 Gads 2 aims to carry out a deeper investigation of Gads 2. An original 
aim was to compare the performance of Gads 2 with that of an SGP system. 
This was not done, and §5 Gads 2 was reduced to a demonstration of Gads 
2 and a rough baseline of its performance. A comparison remains 
necessary.

The notion of comensurate cost and benefit, introduced in §3.3 
Visualisation, is not used in §5 Gads 2. The need for this concept, and its 
use in practice, therefore remains to be demonstrated.

See also §6.3.9 Initial distribution.
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6.4.4 Analysis of Gads

See also §6.3.6 Sequential chromosomes and §6.3.8 Genetic operations.

6.4.5 GP system design

GP is expected to discover every wheel from scratch. This is more apparent 
in Gads 2 than in SGP, since Gads 2 can use a standard programming 
language, with all the usual programming concepts. But the conceptual 
level of the constructs in a programming language such as S-algol or Java is 
extremely low compared to the level at which human programmers work. 
We don't expect a totally inexperienced programmer to discover and 
implement concepts like stacks or linked lists, every time they have to write 
a program; so why should GP? What is needed is a library of programming 
strategies, which the GP system can draw on. Strategies might include, for 
example, divide-and-conquer, induction, tail recursion, or to-do-lists. It is 
not immediately obvious which strategies to include, or how they could be 
represented. Something like this has been done in functional languages, 
which have the expressive power to represent a strategy like divide-and- 
conquer as a (very) high-order function.

See also §6.3.1 Specifying sentence distribution and §6.3.4 Choosing sentence 
distribution.

6.4.6 Biological analogy

[de Jong, 2001] describes an experiment in which the population diversity is 
explicitly maintained. This illustrates a point which is often made, namely 
that the pressure behind biological evolution is replication, not adaptation.
Adaptation is possible because of replication, not vice versa. In biological |
terms, programs like cart-centring are probably the most successful, j
because so many copies of this program exist. The purpose of GP for 
humans is not replication but adaptation. (It is permissible to use the term 
purpose here; biological evolution has no purpose.) It is therefore a mistake 
to aim to simulate biological evolution in all its aspects. GP should identify 
and adopt just those aspects of biological evolution which result in 
adaptation.

An analogy between GP and biological evolution implies a correspondence 
between the two sides. There seems to me to be a mismatch between the 
information content of the supposedly matched terms. The biological side 
carries much more information than the GP side; in other words, GP uses 
terms that imply more information content than they actually contain. The 
most obvious example is perhaps the GP use of the term gene, which in GP 
usage can contain as little as 1 bit of information, while in biology might 
contain several hundred bits of information.
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I would therefore propose an analogy as follows, with the aim of achieving a 
closer fit in terms of information content, and of not giving a biological 
word a radically different meaning in GP.. First, the biological term base 
should correspond to the GP term bit. These are close in information 
capacity, and both are units at the lowest end of their respective scales. By 
direct analogy, a GP codon should then be a contiguous group of bits, and a 
GP gene should be a sequence of codons. (This is a change from current GP 
usage, where gene is often synonymous with codon.)

The biological term translation, which associates codons with amino acids 
(the full biological process is not relevant here) should correspond to the GE 
or Gads translation which maps codons to rules in the grammar. The Gads 
term ontogenesis should be replaced by procedure synthesis, corresponding 
to protein synthesis.

In terms of these definitions, most GP systems deal with single-gene 
individuals. Further, the typical GP individual corresponds not to a whole 
biological organism but to a single protein. In terms of information content, 
matching GP individuals with proteins is more reasonable than matching 
them with entire organisms.

Clarifying the analogy is not an exercise in pedantry. The purpose of an 
analogy is to carry ideas from one discipline to another. I have suggested 
that GP currently operates at the level of the single gene and protein 
synthesis. Perhaps this is the natural limit of GP. But if we wish to consider 
evolving software orders of magnitude more complex than GP can currently 
produce, we will need new ways to go about it. The biological analogy 
suggests a way forward. In biology, a chromosome consists of several 
genes, and an entire eukaryotic genotype consists of several chromosomes. 
These organisational structures could correspond to the organisational 
structures in an object-oriented program. Each gene could represent a 
method or attribute; each chromosome a class, and the entire genotype a 
complete program. By organising GP in this way, we might be able to tackle 
problems far in excess of any currently being investigated.
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B S-algol rag

The Java code is included here as an aid to understanding details of the 
implementation. However it must be stressed that this implementation is 
intended to be a single-use, throw-away design as suggested in [Brooks,
19951.

;
The rag is given in three parts: 4
B.l Syntax I

The context-free syntax component of the rag. '
B.2 The production methods. ■

The class definitions for Node and S_algolNode. j
B.3 Object creation 1

The class definition for the initialiser which sets up the run-time |
objects for the grammar at the start of each run. |

i

A Perl script (not shown) translates the CFG in §B.l Syntax into Java |
statements which are combined with a standard header and footer to |
produce the R A G ln i t i a l i z e r  class shown in §B.3 Object creation. This 
class is called by the ECJ GA at the start of each run, and sets up the objects 
that define the rag (ie terminals, nonterminals, serial counter for identifiers, 
etc).

The Node class contains the default production method. Its extension 
S.algolNode contains production methods specific to S-algol. Each method 
is identified by a number. The R A G ln i t i a l i z e r  class shown in §B.3 
Object creation uses these numbers to associate a production method with 
the corresponding production.

B.l Syntax

The syntax below is switched to the Fact problem, as indicated by the first 
production.

Rules

######## ########
# Session 
######## ########

# IMPORTANT! The structure of the following lines
# is used by ec.experiment.nrp.rag.ecj.RAGProblem4
# to locate the phenotype.
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# Use next line (program:) to choose a program. j
# Then arrange that the corresponding section is
# uncommented in Phenotypes.

program; program fact.

program monkey:
preamble symbol,
phenotype monkey, postamble monkey symbol, 
end of program.

program cart:
preamble symbol,
phenotype cart, postamble cart symbol, 
end of program.

program tile :
preamble symbol,
phenotype tile, postamble tile symbol, 
end of program.

program multiplexer:
preamble symbol,
phenotype multiplexer, postamble multiplexer symbol, 
end of program.

program power;
preamble symbol,
phenotype power, postamble power symbol, 
end of program.

# Two Box is in 4 versions:
#
# Two Box 1 (Koza style: without ADF).
# Two Box 2 (Koza style: with ADF).
# Two Box 3 (Paterson style: with unprescribed, non-recursive
ADF) .
# Two Box 4 (Paterson style : with unprescribed, recursive ADF).
#
# The phenotype is problem-specific, but the rest of the wrapper
# is common to all 4 versions.

program two box 1 :
preamble symbol,
phenotype two box 1, postamble two box symbol, 
end of program.

program two box 2 :
preamble symbol,
phenotype two box 2, postamble two box symbol, 
end of program.

program two box 3 :
preamble symbol,
phenotype two box 3, postamble two box symbol, 
end of program.

program two box 4 :
preamble symbol,
phenotype two box 4, postamble two box symbol, 
end of program.

program fact:
preamble symbol,
phenotype fact, postamble fact symbol, 
end of program.

program annie:
preamble symbol,
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phenotype annie, postamble annie symbol, 
end of program.

end of program: space symbol, question symbol.

sequence void; clause void;

clause void, sequence separator, sequence void;

decl let;

decl let, sequence separator, sequence void; 

decl proc;

decl proc, sequence separator, sequence void.

sequence int; clause int;

sequence void, sequence separator, clause int.

sequence real: clause real;

sequence void, sequence separator, clause real.

sequence bool: clause bool;

sequence void, sequence separator, clause bool.

sequence string: clause string;

sequence void, sequence separator, clause string.

sequence separator:
space symbol, semicolon symbol, newline symbol.

appl proc type void:
proc type void symbol.

appl proc type int:
proc type int symbol, 
clause 1, expo int, clause r.

appl proc type real:
proc type real symbol, 
clause 1, expO real, clause r.

appl proc type bool:
proc type bool symbol, 
clause 1, expO bool, clause r.

I

appl proc type string: |
proc type string symbol, Î
clause 1, expO string, clause r. !

######## ######## !
# Declarations ■
# # # # # # # #  # # # # # # # #  j

decl let: decl let int; i
decl let real; :

decl let bool; I
i

decl let string. \

decl proc: decl proc void; ■
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decl proc int;

decl proc real;

decl proc bool ;

decl proc string

decl let int;
let symbol, id int new, assignment symbol, clause int. 

decl let real;
let symbol, id real new, assignment symbol, clause real, 

decl let bool:
let symbol, id bool new, assignment symbol, clause bool.

decl let string:
let symbol, id string new, assignment symbol, clause string.

decl proc void:
proc symbol, id proc new, 
sequence separator, 
clause void;

proc symbol, id proc new,
round 1 symbol, parameter list, round r symbol, 
sequence separator, 
clause void. |

1
decl proc int: |

proc symbol, id proc new,
round 1 symbol, arrow symbol, type int symbol, round r symbol, 
sequence separator,
clause int; 4

I
proc symbol, id proc new, !
round 1 symbol, parameter list, arrow symbol, type int symbol, I

round r symbol, j
sequence separator, j
clause int. j

decl proc real: ;
proc symbol, id proc new, |
round 1 symbol, arrow symbol, type real symbol, round r j

symbol,
sequence separator, Î
clause real; {

1
proc symbol, id proc new, ]
round 1 symbol, parameter list, arrow symbol, type real j

symbol, round r symbol, j
sequence separator, f
clause real. l

decl proc bool: I
proc symbol, id proc new, ■
round 1 symbol, arrow symbol, type bool symbol, round r j

symbol, i
sequence separator, I
clause bool; j

proc symbol, id proc new, |
round 1 symbol, parameter list, arrow symbol, type bool !

symbol, round r symbol, I
sequence separator, j
clause bool. Î

decl proc string: I
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proc symbol, id proc new,
round 1 symbol, arrow symbol, type string symbol, round r

symbol,
sequence separator, 
clause string;

proc symbol, id proc new,
round 1 symbol, parameter list, arrow symbol, type string 

symbol, round r symbol,
sequence separator, 
clause string.

id int new: id int new symbol.

id real new: id real new symbol.

id bool new: id bool new symbol.

id string new: id string new symbol.

id proc new: id proc new symbol.

parameter list: parameter;

parameter, parameter separator, parameter list.

parameter: type int symbol, id int new;

type real symbol, id real new;

type bool symbol, id bool new;

type string symbol, id string new.

parameter separator: space symbol, semicolon symbol.

######## ########
# Clauses 
######## ########

########
# Clauses “ void
########
clause void: expO void;

if symbol, clause bool, 
do symbol, clause void;

if symbol, clause bool, 
then symbol, clause void, 
else symbol, clause void;

while symbol, clause bool, do symbol, clause void; 

for symbol, id int new, space symbol, equals symbol, clause
int.

to symbol, clause int, 
do symbol, clause void;

write;

id int, assignment symbol, clause int; 

id real, assignment symbol, clause real; 

id bool, assignment symbol, clause bool; 

id string, assignment symbol, clause string.
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write: write symbol, write list, write newline,

write list: clause writable;

clause writable, clause separator, write list.

# <write newline> is added to S-algol
# to ensure that output actually appears.
write newline; clause separator, quote symbol, apostrophe r symbol,
letter lower n symbol, quote symbol,

clause writable: clause int;

clause real;

clause string;

clause bool.

clause separator: space symbol, comma symbol.

########
# Clauses - int
########
clause int: expO int;

if symbol, clause bool, 
then symbol, clause int, 
else symbol, clause int.

########
# Clauses - real
########
clause real: expO real;

if symbol, clause bool, 
then symbol, clause real, 
else symbol, clause real.

########
# Clauses - bool 
########
clause bool: expO bool;

if symbol, clause bool, 
then symbol, clause bool,
else symbol, clause bool.

########
# Clauses - string 
########
clause string: expO string;

if symbol, clause bool, 
then symbol, clause string,
else symbol, clause string.

######## ########
# Expressions 
######## ########

########
# Expressions - level 0
########
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expo void: expl void.

expo int: expl int.

expO real: expl real.

#
#

<new
from

line symbol> is added here to prevent long lines 
building up - they crash the S-algol compiler.

expO bool: expl bool;

expl bool, or symbol, newline symbol, expl bool.

expO string: expl string.

########
# Expressions 
########

- level 1

expl void: exp 2 void.

expl int: exp2 int.

expl real; exp2 real.

#
#

<new
from

line symbol> is added here to prevent long lines 
building up - they crash the S-algol compiler.

expl bool: exp2 bool;

exp 2 bool, and symbol, newline symbol, exp2 bool.

expl string: exp2 string.

########
# Expressions - level 2
########

S-algol says:

<exp2> ::= [~]<exp3>[<rel_op><exp3>] 

which permits 

- 0  =  0

but this generates a type error.
To avoid this we add round brackets.

exp2 void: exp3 void.

exp2 int: exp3 int.

exp2 real: exp3 real.

exp2 bool: exp3 bool;

not op, exp3 bool; 

exp3 int, eg op, exp3 int; 

exp3 real, eq op, exp3 real; 

exp3 bool, eq op, exp3 bool; 

exp3 string, eq op, exp3 string; 

exp3 int, compar op, exp3 int;
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exp3 real, compar op, exp3 real; 
exp3 string, compar op, exp3 string;
not op, clause 1, exp3 int, eq op, exp3 int, clause r;
not op, clause 1, exp3 real, eq op, exp3 real, clause r;
not op, clause 1, exp3 bool, eq op, exp3 bool, clause r ;
not op, clause 1, exp3 string, eq op, exp3 string, clause r ;
not op, clause 1, exp3 int, compar op, exp3 int, clause r ;
not op, clause 1, exp3 real, compar op, exp3 real, clause r ;
not op, clause 1, exp3 string, compar op, exp3 string, clause

exp2 string: exp3 string.
not op: space symbol, tilde symbol,
eq op: space symbol, equals symbol;

tilde equals symbol, 
compar op: space symbol, angle 1 symbol;

angle 1 equals symbol; 
space symbol, angle r symbol; 
angle r equals symbol.

########
# Expressions - level 3
########
exp3 void: exp4 void.
exp3 int : exp4 int;

exp4 int, add op, exp4 int. 
exp3 real: exp4 real;

exp4 real, add op, exp4 real; 
exp4 int, add op, exp4 real; 
exp4 real, add op, exp4 int. 

exp3 bool: exp4 bool.
exp3 string: exp4 string.
# <new line symbol> is added here to prevent long lines
# from building up - they crash the S-algol compiler,
add op: space symbol, plus symbol, newline symbol;

space symbol, hyphen symbol, newline symbol.
########
# Expressions - level 4
########

# S-algol defines
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<exp4> ;:= <exp5>[<nult_op><exp5>]* 
<exp5> ; := <[add_op.']<exp6>

which produces 
4 * + 6

which gives rise to a precedence error.
So I have redefined exp4 ir. terms of exp6.
Division (div, rera, /) uses protected procedure calls

exp4 void: exp5 void.
exp4 int: exp5 int;

proc div symbol, clause 1,
exp5 int, clause separator, 
exp6 int, clause r ;

proc rem symbol, clause 1,
exp5 int, clause separator, 
exp6 int, clause r;

exp5 int, mult op int, exp6 int.
exp4 real; exp5 real;

proc slash symbol, clause 1,
exp5 real, clause separator, 
exp6 real, clause r;

exp5 real, mult op real, exp6 real.
exp4 bool : exp5 bool.
exp4 string: exp5 string;

exp5 string, mult op string, exp5 string.
mult op int: space symbol, asterisk symbol.
# div symbol;
# rem symbol.
mult op real: space symbol, asterisk symbol.
# space symbol, slash symbol,
mult op string: concat symbol.
########
# Expressions - level 5
########
expS void; 
exp5 int:

exp5 real:

exp5 bool:

exp6 void.
exp6 int;
add op, exp6 int.
exp6 real;
add op, exp6 real.
exp6 bool.
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exp5 string; exp6 string.

########
# Expressions - level 6 
########
# Substring (x[y) uses a protected procedure call.

exp6 void: sequence 1, sequence r;

clause 1, clause void, clause r;

sequence 1, sequence void, sequence r.

exp6 int : literal int;

clause 1, clause int, clause r;
sequence 1, sequence int, sequence r;

appl int;

id int;
id int c .

exp6 real: literal real;

clause 1, clause real, clause r ;

sequence 1, sequence real, sequence r ;
appl real;

id int;
id int c;

id real;
id real c.

exp5 bool: literal bool;
clause 1, clause bool, clause r;

sequence 1, sequence bool, sequence r ;
appl bool;
id bool.

exp6 string: literal string;
clause 1, clause string, clause r;
sequence 1, sequence string, sequence r ;
proc substr symbol, clause 1,

expO string, clause separator, 
expO int, clause separator, 
expO int, clause r;

appl string;

id string.
clause 1: space symbol, round 1 symbol.
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clause r: space symbol, round r symbol,

sequence 1; space symbol, curly 1 symbol,

sequence r; space symbol, curly r symbol.

######## ########
# Literals 
######## ########
# The use of space must be made explicit for literal int.
# Allowing an <add_op> in a literal int can lead to
#
# 5 * -6
#
# which is illegal, so I have removed this option.
# Negative literals are already provided for by exp5 (qv).
# This requires an explicit add op before the exponent of
# a scientififc notation real.

# These are minor language glitches which have come to
# light - they are not significant for GP.

literal int: space symbol, numeral 0 symbol;

space symbol, digits.

literal real: space symbol, numeral 0 symbol, period symbol, numeral 0 
symbol;

literal int, period symbol; 

literal int, period symbol, digits;

literal int, period symbol, digits, letter lower e symbol,
digits ;

literal int, period symbol, digits, letter lower e symbol, add
op, digits.
literal bool: true symbol;

false symbol.
literal string: space symbol, quote symbol, quote symbol;

space symbol, quote symbol, chars, quote symbol, 
chars: character;

character, chars.
# char is renamed character to avoid conflict with Java char,
character: ascii;

special. 
ascii: letter;

digit;
punctuation.

letter: letter lower a symbol; letter lower b symbol; letter
lower c symbol;

letter lower d symbol; letter lower e symbol; letter lower f
symbol;
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letter lower g symbol 
letter lower j symbol 
letter lower m symbol 
letter lower p symbol 
letter lower s symbol 
letter lower v symbol 
letter lower y symbol 
letter upper b symbol 
letter upper e symbol 
letter upper h symbol 
letter upper k symbol 
letter upper n symbol 
letter upper q symbol 
letter upper t symbol 
letter upper w symbol 
letter upper z symbol.

digit; 
digit, digits.

letter lower h symbol 
letter lower k symbol 
letter lower n symbol 
letter lower q symbol 
letter lower t symbol 
letter lower w symbol 
letter lower z symbol 
letter upper c symbol 
letter upper f symbol 
letter upper i symbol 
letter upper 1 symbol 
letter upper o symbol 
letter upper r symbol 
letter upper u symbol 
letter upper x symbol

symbol; 
symbol; 
symbol; 
symbol; 
symbol ; 
symbol; 
symbol; 
symbol; 
symbol; 
symbol; 
symbol; 
symbol; 
symbol; 
symbol; 
symbol;

digits :

digit: numeral 0 symbol; numeral 1 symbol; numeral 2 symbol; numeral
3 symbol; numeral 4 symbol;

numeral 5 symbol; numeral 6 symbol; numeral 7 symbol; numeral 
8 symbol; numeral 9 symbol.
punctuation: space symbol; exclamation symbol; hash symbol; dollar symbol;

percent symbol; ampersand symbol; round 1 symbol; round r
symbol;

symbol; 

symbol; 

special:

letter lower i 
letter lower 1 
letter lower o 
letter lower r 
letter lower u 
letter lower x 
letter upper a 
letter upper d 
letter upper g 
letter upper j 
letter upper m 
letter upper p 
letter upper s 
letter upper v 
letter upper y

asterisk symbol; plus symbol; comma symbol; hyphen symbol; 
period symbol; slash symbol; colon symbol; semicolon symbol; 
angle 1 symbol; equals symbol; angle r symbol; question
at symbol; square 1 symbol; backslash symbol; square r symbol; 
caret symbol; underscore symbol; apostrophe 1 symbol; curly 1
bar symbol; curly r symbol; tilde symbol.
apostrophe r symbol, special follow.

special follow; letter lower n symbol;
letter lower p symbol; 
letter lower o symbol; 
letter lower t symbol; 
letter lower b symbol; 
apostrophe r symbol; 
quote symbol.

######## ########
# Standard identifiers
######## ########

# Standard identifiers are no different to programmer-declared ones,
# except that they are in the root grammar.
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id int!

id int c: 
id real: 
id real c:

id bool; 
id string:

variable int symbol; 
real width symbol; 
string width symbol; 
int width symbol. 
maxint symbol. 
variable real symbol, 
epsilon symbol; 
pi symbol; 
maxreal symbol. 
variable bool symbol, 
variable string symbol.

######## ########
# Standard procedures
######## ########
# Procedures floor and ceiling are enhancements,
appl void: 
appl int:

appl real:

appl bool:

appl string:

appl proc type void.
appl proc type int;
appl abs;
appl decode;
appl find substr;
appl length;
appl random;
appl truncate.
appl proc type real;
appl atan;
appl cos ;
appl exp;
appl In;
appl rabs;
appl sin;
appl sqrt.
appl proc type bool; 
appl digit; 
appl letter, 
appl proc type string;
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appl abs;

appl atan:

appl code; 
appl iformat.

proc abs symbol,
clause 1, expO int, clause r.

proc atan symbol,
clause 1, expO real, clause r.

appl ceiling:
proc ceiling symbol,

clause 1, expO real, clause r.
appl code:

proc code symbol,
clause 1, expO int, clause r.

appl cos :
proc cos symbol,

clause 1, expO real, clause r .
appl decode:

proc decode symbol,
clause 1, expO string, clause r.

appl digit:
proc digit symbol,

clause 1, expO string, clause r.
appl exp:

proc exp symbol,
clause 1, expO real, clause r.

appl find substr:
proc find substr symbol,

clause 1, expO string, clause separator, expO string,
clause r.
appl floor:

proc floor symbol,
clause 1, expO real, clause r.

appl iformat:
proc iformat symbol,

clause 1, expO int, clause r.
appl length:

proc length symbol,
clause 1, expO string, clause r.

appl letter;
proc letter symbol,

clause 1, expO string, clause r.
appl In:

proc In symbol,
clause 1, expO real, clause r.

appl rabs:
proc rabs symbol,

clause 1, expO real, clause r.
appl random:

proc random symbol,
clause 1, expO int, clause r.
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appl sin:
proc sin symbol,

clause 1, expO real, clause r.
appl sqrt:

proc sqrt symbol,
clause 1, expO real, clause r.

appl truncate;
proc truncate symbol,

clause 1, expO real, clause r.
######## ########
# Phenotype 
######## ########

# There is one subsection per problem.
#
# In each subsection, there is a production with LHS
# of the form
#
# phenotype problem:
#
# followed by zero or more productions which redefine
# notions that were already defined in the main body of
# the grammar above,
#
# To choose problem X, first check that the production
# for _program__ is program X_ at the head of this file.
#
# Then uncomment all productions in the problem X subsection
# below.
#
# Finally, in each of the other problem subsections,
# comment all productions except the first (ie except the
# production with LHS of the form:
#
# phenotype _problem_:
########
# Monkey 
########
phenotype monkey :

phenotype monkey begin symbol,
literal string,
phenotype monkey end symbol.

########
# Cart 
########
phenotype cart;

phenotype cart begin symbol, 
exp3 real,
phenotype cart end symbol.

#@clause real: expO real.
#@
#@exp3 real:
#@ exp4 real;

exp4 real, add op, exp4 real.
#@
#@exp6 real:
#0 literal real;
#0 appl real;
#0 id real c;
#0 clause 1, clause real, clause r.
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#@literal real:
#@ space symbol, round 1 symbol, hyphen symbol, numeral 1 symbol,
round r symbol.
#@
#@appl real;
#@ appl rabs.
#0
#0id real c :
#0 space symbol, letter lower x symbol;
#0 space symbol, letter lower v symbol.
########
# Tile 
########

phenotype tile :
phenotype tile begin symbol, 
expO int,
phenotype tile end symbol.

# Redefine clause int and clause real to avoid sequences.
#0clause int: expO int.
#0
#0clause real: expO real.
#0
#0exp5 int: exp6 int.
#0
#0exp6 int:
#0 literal int;
# 0
#0 clause 1, clause int, clause r;
# 0
#0 appl int.
# 0
#0exp6 real:
#0 literal real;
#0
#0 clause 1, clause real, clause r;
#0
#0 appl real;
#0
#0 id real c .
#0
#0appl int:
#0 appl abs;
#0
#0 appl floor;
#0
#0 appl ceiling.
#0
#0appl real: j
#0 appl rabs; |
# 0  j
#0 appl sqrt. :
#0id real c : j
#0 space symbol, letter lower x symbol; ,
#0 space symbol, letter lower y symbol. |
######## ;
# Multiplexer |
######## i

tphenotype multiplexer: |
phenotype multiplexer begin symbol, !
expO bool, I
phenotype multiplexer end symbol. |

#0exp2 bool: exp3 bool; ^
1
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#0 not op, exp3 bool;
#0
#0 exp3 bool, eq op, exp3 bool;
#0
#0 not op, clause 1, exp3 bool, eq op, exp3 bool, clause r.
#0
#0exp6 bool: literal bool;
#0
#0 clause 1, clause bool, clause r ;
#0
#0 id bool c.
#0
#0id bool 
#0

c :
space symbol. letter lower a symbol, numeral 2 symbol;

#0 space symbol, letter lower a symbol, numeral 1 symbol;
#0 space symbol, letter lower a symbol. numeral 0 symbol;
#0 space symbol. letter lower d symbol, numeral 7 symbol;
#0 space symbol, letter lower d symbol, numeral 6 symbol;
#0 space symbol, letter lower d symbol. numeral 5 symbol;
#0 space symbol. letter lower d symbol, numeral 4 symbol;
#0 space symbol, letter lower d symbol, numeral 3 symbol;
#0 space symbol. letter lower d symbol, numeral 2 symbol;
#0 space symbol. letter lower d symbol, numeral 1 symbol;
#0 space symbol, letter lower d symbol, numeral 0 symbol.
########
# Power 
########
phenotype power:

phenotype power begin symbol,
sequence void, sequence separator, 
clause real,
phenotype power end symbol. j

#0sequence void: |
#0 clause void; •
# 0  I
#0 clause void, sequence separator, sequence void;
#0 I
#0 decl let; I
# 0  I
#0 decl let, sequence separator, sequence void.
#0 i
#0decl let: 1
#0 decl let int; j
#0 I
#0 decl let real. J
#0 I
#0clause void: |
#0 expO void; ■
#0 ;
#0 for symbol, id int new, space symbol, equals symbol, clause !
int,
#0 to symbol, clause int, |
#0 do symbol, clause void; j
# 0  I
#0 id int, assignment symbol, clause int; i
#0
#0 id real, assignment symbol, clause real.
#0clause int:

expO int.
#0clause real:
#0 expO real.
#0
#0exp6 int:
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#@
#0
#0

#0
#0exp6 real!
#0
#0
#0
#0
#0

#0
#0id int:

#0id real:

literal int;

clause 1, clause int, clause r; 

id int.

literal real;

clause 1, clause real, clause r ; 

id int; 

id real.

space symbol, letter lower n symbol, 

space symbol, letter lower x symbol.

########
# Two Box 1 (Koza style: without ADF).
########
# The Two Box 1 phenotype is :
# (1) A real clause involving only:
# variables LO, WO, HO, LI, W1 and HI
# operators +, -, * and SLASH

phenotype two box 1 :
phenotype two box begin symbol, 
clause real,
phenotype two box end symbol.

#0clause real:

# 0
#0exp3 real: 
#0 
#0 
#0
#0exp5 real:

#0exp6 real: 
#0 
#0
#0
#0id real c:

expO real.

exp4 real;
exp4 real, add op, exp4 real.

exp6 real.

id real c ;
clause 1, clause real, clause r.

#0 space symbol, letter upper 1 symbol, numeral 0 symbol;
#0 space symbol. letter upper w symbol, numeral 0 symbol;
#0 space symbol. letter upper h symbol, numeral 0 symbol;
#0 space symbol, letter upper 1 symbol, numeral 1 symbol;
#0 space symbol, letter upper w symbol, numeral 1 symbol;
#0 space symbol, letter upper h symbol, numeral 1 symbol.

########
# Two Box 2 (Koza style: with ADF)
########

The Two Box 2 phenotype is :
(1) A non-recursive procedure of type

(real, real, real -> real)
(2) A real clause involving only:

seed procedure PROC.REAL
variables LO, WO, HO, LI, W1 and HI
operators +, -, * and SLASH
procedure as declared above
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#
# Assignment is not supported.
#
# The non-recursive nature is controlled
# by the choice of production method.

phenotype two box 2 :
phenotype two box begin symbol, 
sequence void,
phenotype two box end symbol.

#0sequence void;
#0 decl proc, sequence separator, clause real.
#0
#0decl proc;
#0 decl proc real.
#0
#0decl proc real:
#0 proc symbol, id proc new,
#0 round 1 symbol, parameter list 3, arrow symbol, type real
symbol, round r symbol,
#0 sequence separator,
#0 clause real,
#0
#0# The odd way to get exactly three parameters means
#0# we can use the existing production methods.
#0
#0parameter list 3 :
#0 parameter, parameter separator, parameter list 2.
#0
#0parameter list 2 :
#0 parameter, parameter separator, parameter list 1.
#0
#0parameter list 1;
#0 parameter.
#0
#0parameter :
#0 type real symbol, id real new.
#0
#0clause real:
#0 expO real.
#0
#0exp3 real:
#0 exp4 real;
#0 exp4 real, add op, exp4 real.
#0
#0exp5 real: exp6 real.
#0
#0# <id real> is 1st alternative to avoid default loop.
#0
#0exp6 real:
#0 id real;
#0 appl real;
#0 clause 1, clause real, clause r.
#0
#0# <id real> must exist so that <parameter> can extend it
#0# with formal arguments. But there is no assignment.
#0
#0id real:
#0 space symbol, letter upper 1 symbol, numeral 0 symbol;
#0 space symbol, letter upper w symbol, numeral 0 symbol;
#0 space symbol, letter upper h symbol, numeral 0 symbol;
#0 space symbol, letter upper 1 symbol, numeral 1 symbol;
#0 space symbol, letter upper w symbol, numeral 1 symbol;
#0 space symbol, letter upper h symbol, numeral 1 symbol.
#0
#0# <appl real> must exist so that <decl p r o O  can extend it
#0# with the defined ADF. It is given a harmless initial value.

208



#0appl real:
#0 appl proc type real.

########
# Two Box 3 (Paterson style: with unprescribed, non-recursive ADF).
########
# The Two Box 3 phenotype is :
# (1) A non-recursive procedure of type
# (real* -> real)
# where real* means zero or more reals. For example:
# ( -> real)
# (real, real, real -> real)
# (2) A real clause involving only:
# seed procedure PROC.REAL
# variables LO, WO, HO, LI, W1 and HI
# operators +, -, * and SLASH
# procedure as declared above

phenotype two box 3 :
phenotype two box begin symbol, 
sequence void,
phenotype two box end symbol.

#0sequence void:
#0 decl proc, sequence separator, clause real.
#0
#0decl proc:
#0 decl proc real.
#0
#0parameter :
#0 type real symbol, id real new.
#0
#0clause real:
#0 expO real.
#0  !
#0exp3 real: |
#0 exp4 real; ;
#0 exp4 real, add op, exp4 real. |
#0 I
exp5 real: exp6 real. !
#0 j
#0# <id real> is 1st alternative to avoid default loop. j
#0 I
#0exp6 real: |
#0 id real; j
#0 appl real; j
#0 clause 1, clause real, clause r. I
#0 I
#0# <id real> must exist so that <parameter> can extend it I
#0# with formal arguments. But there is no assignment. i
# 0  ;
#0id real; j
#0 space symbol, letter upper 1 symbol. numeral 0 symbol;
#0 space symbol, letter upper w symbol, numeral 0 symbol;
#0 space symbol, letter upper h symbol, numeral 0 symbol;
#0 space symbol, letter upper 1 symbol. numeral 1 symbol;
#0 space symbol, letter upper w symbol. numeral 1 symbol;
#0
#0

space symbol. letter upper h symbol, numeral 1 symbol.
#0# <appl real> must exist so that <decl proO can extend it
#0# with the defined ADF It is given a harmless initial value.
# 0
#0appl real;
#0 appl proc type real.
########
# Two Box 4 (Paterson style: with unprescribed, recursive ADF).
########
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# The Two Box 4 phenotype is:
# (1) A possibly recursive procedure of type
# (real* -> real)
# where real* means zero or more reals. For
# ( -> real)
# (real, real, real -> real)
# (2) A real clause involving only:
# seed procedure PROC.REAL
# variables LO, WO, HO, LI, Wl and
# operators +, -, * and SLASH
# procedure as declared above

phenotype two box 4 :
phenotype two box begin symbol,
decl proc, sequence separator, clause real,
phenotype two box end symbol.

# The productions for Two Box 4 are the same as for Two Box 3.
# The difference is in the RAGlnitializer.suffix.

########
# Fact.
########
phenotype fact:

phenotype fact begin symbol,
sequence void,
phenotype fact end symbol.

sequence void:
decl proc, sequence separator, clause real.

# Procedure; (int -> real),
decl proc:

decl proc real.

decl proc real;
proc symbol, id proc new,
round 1 symbol, parameter list, arrow symbol, type real 

symbol, round r symbol,
sequence separator, 
clause real.

# Simple ints only,
clause int; expO int.

# Proc has just one int parameter,
parameter list: parameter.

parameter:
type int symbol, id int new.

# Remove references to strings,
exp2 bool;

exp3 bool;
not op, exp3 bool;
exp3 int, eq op, exp3 int;
exp3 real, eq op, exp3 real;
exp3 int, compar op, exp3 int;
exp3 real, compar op, exp3 real;
not op, clause 1, exp3 int, eq op, exp3 int, clause r ;
not op, clause 1, exp3 real, eq op, exp3 real, clause r;
not op, clause 1, exp3 int, compar op, exp3 int, clause r ;
not op, clause 1, exp3 real, compar op, exp3 real, clause r,

exp5 real: exp6 real.

# <id real> is 1st alternative to avoid default loop.
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exp6 int: literal int;
clause 1, clause int, clause r; 
id int.

exp6 real:
id int; 
id real; 
appl real;
clause 1, clause real, clause r.

# <id int> must exist so that <parameter> can extend it
# with formal arguments. But there is no assignment.

id int;
space symbol, letter lower n symbol.

# <appl real> must exist so that <decl p r o O  can extend it
# with the defined ADF. It is given a harmless initial value.

appl real:
appl proc type real.

########
# Annie.
########
phenotype annie:

phenotype annie begin symbol,
sequence void,
phenotype annie end symbol.

######## ######## ######## ######## ######## ######## ######## ########
# Representation table
######## ######## ######## ######## ######## ######## ######## ########
Symbols

######## ######## ######## ########
# Wrapper
######## ######## ######## ########
# The wrapper consists of:
#
# preamble symbol
# Contains the code for implementing Rag, for
# protected S-algol operations, and for common evaluation
# procedures. The preamble is common to all problems,
# though not all of it is used by all problems.
#
# phenotype <problem> begin symbol
# phenotype <problem> end symbol
# The phenotype begin and end symbols contain comments
# to help locate the phenotype in the wrapper.
#
# All problems except Annie are wrapped in a procedure,
# whose prototype varies from problem to problem. The
# begin and end symbols contain the problem-specific
# procedure prototype and {} to enclose the procedure body,
# which is the actual phenotype.
#
# postamble <problem> symbol
# The postamble is problem-specific. It has whatever is
# needed to evaluate the phenotype and output its
# functionality. For Annie, the phenotype is responsible
# for everything, so the postamble is just a rump.

preamble symbol: %
let DEBUG = false I Control debug output.
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I Seed variables, 
let INT := 0 
let REAL := 0.0 
let BOOL := false 
let STRING :=

! Seed procedures, 
procedure PROG.VOID 

{}
procedure PROG.INT(int x -> int)

{X}
procedure PROG.REAL(real x -> real)

{X}
procedure PROG.BOOL(bool x -> bool)

{X}
procedure PROG.STRING(string x -> string)

{X}

! Protected procedures, 
procedure DEGODE(string s -> int)

if s = "" then 0 else decode(s ) 
procedure DIV(int n, d -> int)

if d = 0 then 0 else n div d
procedure REM(int n, d -> int)

if d = 0 then 0 else n rem d
procedure SLASH(real n, d -> real)

if rabs(d) < le-6 then 0 else n / d 
procedure SUBSTR(string s; int i, j ~> string) ! Java indexing semantics,

if 0 <= i and i < j and j <= length(s) then s(i+l|j-i) else

1 Enhancements to S-algol. 
procedure FLOOR (real x int) 

truncate(x )

procedure GEILING (real x -> int)
{
let t = truncate(x) 
if X = t then t else t+1 
}

i Evaluation procedures, 
let Seed := 635547864
procedure random.real (-> real) ! Returns uniform in (0.0, 1.0).

{
Seed ;= random (Seed)
Seed/maxint
}

let LOG = true ! Named constants ...
let REV = true ! ... to make call to map ...
let SGA = true ! ... easier to understand.
let MAX.FUNGTIONALITY = 9999 ! Functionality is in [0,
MAX.FUNCTIONALITY].
let LOG.MAXINT = In(maxint) ! Useful constant,
let LOG.MAXREAL = In(maxreal) ! Useful constant.
procedure map (bool log, rev, sea; real in.min, in.max, in.obs -> real); {

if DEBUG do write "MAP; log; ", log, "; rev: ", rev, "; sea: ", sea,
"; in.min; ", in.min, "; in.max; ", in.max, "; in.obs: ", in.obs, ")'n"

I Prepare the output observation, 
let out.obs ;= in.obs

! Convert to log scale.
I out.obs in [log.in.min, log.in.max] 
if log do {

if in.min = 0 do {write "***** map; FP exception: log (0); 
in.min.'n"; abort}
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if in.max = 0 do {write "***** map: FP exception; log (0); 
in.max.'n"; abort}

if out.obs = 0 do {write "***** map; FP exception: log (0) 
out.obs.'n "; abort}

in.min := In (in.min) 
in.max ;= In (in.max) 
out.obs :== In (out.obs)
if DEBUG do write "LOG; in.min: ", in.min, in.max:",

in.max, out.obs: ", out.obs, "'n "
}
! Reverse the sense of the scale.
! out.obs in [in.min, in.max] 
if rev do {

out.obs ;= in.min + in.max - out.obs
if DEBUG do write "REV: out.obs; ", out.obs, "'n "

}
! Apply a scaling factor, 
if sea do {

out.obs ;= (out.obs - in.min)/(in.max- 
in.min)*MAX.FUNCTIONALITY

if DEBUG do write "SCA: out.obs; ", out.obs, ” 'n"
}
! Trim and cap result.
out.obs := truncate (out.obs+0.5)
if out.obs < 0 do out.obs ;= 0
if out.obs > MAX.FUNCTIONALITY do out.obs := MAX.FUNCTIONALITY

I Return. 
out.obs

}
! Set up 10 environment, 
i.w := 0 
s.w : = 0 
r.w :== 0

######## ######## 
# Monkey
######## ########
phenotype monkey begin symbol: 
procedure observed (-> string) 
{
I « « <  phenotype begins

phenotype monkey end symbol: 
l » » >  phenotype ends 
}

postamble monkey symbol: %
! Evaluation parameters.
let BANANA = "Hello, world!'n"

I Ideal phenotype, 
procedure expected (-> string)
BANANA

I Compute RMS difference between Ascii of observed and expected, 
procedure RMS (string obs, exp -> real)

{
if DEBUG do write "obs, exp; obs, "'", exp, "'"'n '
let rms := 0.0
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let s := length (obs); if length (exp) > length (obs) do s :== 
length(exp)

for i = 0 to s-1 do 
{
let o = SUBSTR(obs,i,i+1) 
let e = SUBSTR(exp,i,i+l) 
let d = DECODE(o)-DECODE(e)
if DEBUG do write "o, e, d: o,  " ' ", e, ", d,

" ' n "
rms := rms + d*d 
}

rms ;= sqrt(rms/s)
if DEBUG do write "rms; ", rms, "'n " 
rms

}

! Write the functionality.
write map (-LOG, REV, SCA, 0, RMS("", expected), RMS(observed, expected)),
II I ^ '1

######## ########
# Cart
######## ########

phenotype cart begin symbol; %
procedure observed (real x, v -> real)
{
! « « <  phenotype begins 
%
phenotype cart end symbol ; %
! » » >  phenotype ends
}
%

postamble cart symbol: %
! Evaluation parameters.
let CASES = 20 S Number of test cases,
let TAU = 0 . 0 2  ! Time step,
let RAD = 0.11 Target radius in (x, v) space 
let EOT = 1 0  1 Time limit in simulated seconds

! Ideal phenotype.
procedure expected (real x, v -> real)
-X - v*rabs(v)

1 Simulate cart.
procedure time.to.center(real x, v; (real, real -> real) control -> real) 

{
let t := 0.0
while t < EOT and x*x+v*v > RAD * RAD do 

{
let a = if control (x, v) < 0 then -0.5 else +0.5
t := t + TAU
X := X + TAU * V + TAU*TAU*a/2
v := V + TAU * a
}

t
>

1 Compute RMS difference between observed and expected, 
let rms := 0.0
if DEBUG do write "x 't v 't o 't e 't d 'n " 
for i = 1 to CASES do 

{
let X = random.real*l.5-0.75 
let V = random.real*1.5-0.75 
let o = time.to.center (x, v, observed)
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let e == time. to. center (x, v, expected) 
let d = o - e
if DEBUG do write x, "'t", v, " ’t", o, "'t", e, "'t", d, "'n " 
rms := rms + d*d 
>

rms := sqrt(rms/CASES)
if DEBUG do write "rms = ", rms, "'n "

I Write the functionality.
write map (-LOG, REV, SCA, 0, EOT, rms), "'n "
%

######## ########
# Tile 
######## ########
phenotype tile begin symbol : %
procedure observed (real x, y -> int)
{
! « « <  phenotype begins
%

phenotype tile end symbol ; %
! » » >  phenotype ends
}
%
postamble tile symbol: %
! Evaluation parameters.
let CASES = 2 0  ! Number of test cases.

! Ideal phenotype.
procedure expected (real x, y -> int)
{

let t := 0
for i = 0 to FLOOR(x ) do {

t := t + CEILING(y-i/x*y)
}
t

}
1 Compute RMS of difference between observed and expected, 
let rms := 0.0
if DEBUG do write "x't y 't o 't e 't d ’n" 
for i = 1 to CASES do 

{
let X = truncate(random.real*100)+1 
let y = truncate(random.real*100)+l
let o = 0.0+observed (x, y ) ! Use real to avoid int overflow
let e = 0.0+expected (x, y ) ! Use real to avoid int overflow
let d = o - e
if DEBUG do write x, "'t ", y , "'t ", o, "'t ", e, "'t ", d, "'n "
rms := rms + d*d 
}

rms ;= sqrt(rms/CASES)
if DEBUG do write "rms = ", rms, "'n "

! Write the functionality,
write map (LOG, REV, SCA, 1, maxint, rms+1), "'n "
%

######## ########
# Multiplexer 
######## ########

phenotype multiplexer begin symbol: %
procedure observed (bool a2, al, aO, d7, d6, d5 ,d4 ,d3, d2, dl, dO -> bool 
{
1 « < «  phenotype begins
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phenotype multiplexer end symbol: 
l » » >  phenotype ends 
}

postamble multiplexer symbol;
I Evaluation parameters.
let CASES = 2 0 4 8  ! Number of test cases.

! Ideal phenotype.
procedure expected (bool a2, al, aO, d7, d6, d5 ,d4 ,d3, d2, dl, dO -> bool) 
{

if a2 
then

else

if al
then if aO

then d7
else d6

else if aO
then d5

if al
else d4

then if aO
then d3
else d2

else if aO
then dl
else do

Compute raw functionality = count of correct results in all cases!
let f 
let a2 
let al 
let aO 
let d7 
let d6 
let d5 
let d4 
let d3 
let d2 
let dl 
let do

= 0 ! Functionality = count of correct results,
false
false 
false 
false 
false 
false 
false 
false 
false 
false 

;= false 
if DEBUG do write "e'to'tf'n" 
for c = 1 to CASES do 

{
if DEBUG do write "Case c,
let i — 0 — 1 a2 = i rem 2 = 0
i ;= i div 2 al = i rem 2 = 0
i := i div 2 aO = i rem 2 = 0
i ; = i div 2 d7 = i rem 2 = 0
i ;= i div 2 d6 = i rem 2 = 0
i := i div 2 d5 = i rem 2 = 0
i : = i div 2 d4 = i rem 2 = 0
i ;= i div 2 d3 = i rem 2 = 0
i : = i div 2 d2 = i rem 2 = 0
i ;= i div 2 dl = i rem 2 = 0
i : = i div 2 do i rem 2 = 0
let o = observed (a2 , al , aO , d7, d6, d5 ,d4 ,d3, d2, dl, dO)
let e := expected (a2, al, 
if e = o do f : = f + l  
if DEBUG do write e, "'t ", 
}

aO, d7, d6, d5 ,d4 ,d3, d2, dl, dO) 

o , " ' t " , f , " ' n "

1 Write the functionality, 
write map (-LOG, -REV, SCA, 0, CASES, f), "'n'
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######## ########
# Power
######## ########

phenotype power begin symbol: 
procedure observed (real x; int n -> real) 
{
! Re-initialise seed variables
INT := 0
REAL ;= 0.0
BOOL := false
STRING ;=
! « < «  phenotype begins

phenotype power end symbol; 
! » » >  phenotype ends 
}

postamble power symbol: %
I Evaluation parameters. 
let CASES = 3 0
let MAX.X = 1 0  ! X is in (0, MAX.X ).
let MAX.N = 1 0  ! n is in [0, MAX.X],

! Ideal phenotype.
procedure expected (real x; int n -> real)
{

let result := 1.0 
for i = 1 to n do

result := result * x
result

}
I Compute RMS difference beteen observed and expected, 
let rms := 0.0
if DEBUG do write "c't x 't n 't o 't e 't d 'n" 
for c = 1 to CASES do 

{
let X = random.real*MAX.X
let n = truncate(random.real*MAX.N) + 1
let o = observed (x, n)
let e = expected (x, n)
let d = o - e
rms := rms + d * d
if DEBUG do write c, "'t ", x, "'t ", n, "'t", o, "'t ", e, "'t", d,

" ' n "
}

rms := sqrt(rms/CASES)
if DEBUG do write "rms ", rms, "'n "

! Write the functionality.
write map (LOG, REV, SCA, 1, maxreal, rms+1), "'n "
%
######## ########
# Two Box
######## ########

phenotype two box begin symbol: %
procedure observed (real L O , WO, HO, LI, Wl, HI -> real)
{
! « « <  phenotype begins 
%

phenotype two box end symbol : %
l»>>> phenotype ends
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postamble two box symbol; %
! Evaluation parameters. 
let CASES = 10
let RANGE = 10 ! Each dimension is in [0, RANGE],

! Ideal phenotype.
procedure expected (real LO, WO, HO, Ll, Wl, HI -> real) 
{

procedure volume (real ARGO, ARGl, ARG2 -> real) 
ARGO * ARGl * ARG2

volume (LO, WO, HO) - volume (Ll, Wl, HI)
>
! Compute RMS difference between observed and expected 
let rms := 0.0
if DEBUG do write "Case LO WO HO Ll Wl Hi Obs

Exp Obs-Exp'n" 
for c = 1 to CASES do 

{
J Define fitness cases, as in [Koza, 1994]. 
let LO = truncate(random.real*RANGE) + 1
let WO = truncate(random.real*RANGE) + 1
let HO = truncate(random.real*RANGE) + 1
let Ll = truncate(random.real*RANGE) + 1
let Wl = truncate(random.real*RANGE) + 1
let HI = truncate(random.real*RANGE) + 1
let o = observed (LO, WO, HO, Ll, Wl, HI)
let e = expected (LO, WO, HO, Ll, Wl, HI)
let d = o - e
rms ;= rms + d * d
if DEBUG do write c, '"t", LO, " ' t" , WO, " ' t" , HO, " 't" , Ll, " ' t' 

Wl, "'t ", HI, "'t ", fformat(o,3,1), "'t", fformat(e,3,1), "'t ", 
fformat(d,3,1), "'n"

}
rms := sqrt(rms/CASES)
if DEBUG do write "rms = ", rms, "'n"

I Write the functionality.
write map (LOG, REV, SCA, 1, maxreal, rms+1), "'n"
%

######## ########
# Fact
######## ########
phenotype fact begin symbol: %
procedure observed (int n -> real)
{
! < « «  phenotype begins 
%

phenotype fact end symbol : %
! » > »  phenotype ends 
}

postamble fact symbol: %
! Evaluation parameters. 
let CASES = 1 0
let RANGE = 95 1 Largest number such that rms cannot overflow.

I Ideal phenotype.
procedure expected (int n -> real); {

procedure factorial (int n -> real)
if n <= 0 then 1 else factorial(n-1)*n
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}
factorial (n)

! Compute RMS difference between observed and expected 
let rms ;= 0.0
if DEBUG do write "Case n o e d
for c = 1 to CASES do 

{
let n = truncate (c / CASES * RANGE + 0.5) 
let o = In (1+rabs(observed (n))) 
let e = In (1+rabs(expected (n))) 
let d = o - e 
rms := rms + d * d 
if DEBUG do write c, "'t ", n, t", o, " ’t", e, "'t ", d, "'t", rms,

}
rms ;= sqrt(rms/CASES)
if DEBUG do write "rms = ", rms, "'n "

1 Write the functionality.
write map (-LOG, REV, SCA, 1, In(maxreal), rms+1), "'n' 
?
%

######## ########
# Annie
######## ########
phenotype annie begin symbol: %
l « « <  phenotype begins

phenotype annie end symbol: 
l»>>> phenotype ends

postamble annie symbol:

######## ######## ######## ########
# Preamble symbols
######## ######## ######## ########

variable int symbol: 
variable real symbol: 
variable bool symbol: 
variable string symbol;

proc type void symbol;

proc type int symbol:

proc type real symbol:

proc type bool symbol;

proc type string symbol:

proc decode symbol ;

proc div symbol:

proc rem symbol:

proc slash symbol:

proc substr symbol:

" INT"
" REAL"
" BOOL"
" STRING"

" PROC.VOID’

" PROC.INT"

" PROC.REAL’

’’ PROC.BOOL’

PROC.STRING"

DECODE"

DIV"

REM"

SLASH"

SUBSTR"
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######## ######## ######## ######## 
# Reserved words
######## ######## ######## ########
and symbol: 
by symbol: 
div symbol; 
do symbol; 
else symbol: 
false symbol : 
for symbol: 
if symbol: 
let symbol: 
or symbol: 
proc symbol: 
rem symbol: 
then symbol: 
true symbol: 
to symbol; 
type int symbol; 
type bool symbol : 
type real symbol: 
type string symbol: 
type void symbol : 
while symbol: 
write symbol :

and"
by"
div"
do"
else"
false"
for"
if"
let"
or"
procedure'
rem"
then"
true"
to"
int"
bool "
real"
string"
void"
while"
write"

######## ######## ######## ########
# Predeclared identifiers - procedures
######## ######## ######## ########

# Procedure decode is redefined above as a protected procedure

proc abs symbol: " abs "
proc atan symbol : " atan"
proc ceiling symbol: " CEILING"
proc code symbol : " code"
proc cos symbol: " cos"
proc digit symbol: " digit"
proc exp symbol; " exp "
proc find substr symbol: " find.substr"
proc floor symbol: " FLOOR"
proc iformat symbol: " iformat"
proc length symbol : " length"
proc letter symbol : " letter"
proc In symbol ; " In"
proc rabs symbol; " rabs"
proc random symbol: " random"
proc sin symbol: " sin"
proc sqrt symbol; " sqrt"
proc truncate symbol: " truncate"
######## ######## ######## ########
# Predeclared identifiers - variables
######## ######## ######## ########
epsilon symbol: " epsilon"
int width symbol : " i.w"
maxint symbol: " maxint"
maxreal symbol; " maxreal"
pi symbol: " pi"real width symbol : " r.w"
string width symbol: " s.w"

######## ######## ######## ########
# Punctuation - composite
######## ######## ######## ########

arrow symbol: " ->"
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assignment symbol; 
concat symbol : 
angle r equals symbol : 
angle 1 equals symbol: 
tilde equals symbol:

++■
>=’
<='

######## ######## ######## ######## 
# Letters
######## ######## ######## ########

letter lower a symbol: "a"
letter lower b symbol; "b"
letter lower c symbol; "c "
letter lower d symbol: "d"
letter lower e symbol: "e"
letter lower f symbol : "f "
letter lower g symbol; "g"
letter lower h symbol: "h"
letter lower i symbol: "i"
letter lower j symbol: "j"
letter lower k symbol: "k"
letter lower 1 symbol : "1"
letter lower m symbol: "m"
letter lower n symbol; "n"
letter lower o symbol; "o"
letter lower P symbol; "p"
letter lower q symbol; "q"
letter lower r symbol: "r"
letter lower s symbol; "s"
letter lower t symbol : "t"
letter lower u symbol: "u"
letter lower V symbol; "v"
letter lower w symbol: "w"
letter lower X symbol; "x"
letter lower y symbol: "y"
letter lower z symbol: " Z "
letter upper a symbol: "A"
letter upper b symbol; "B"
letter upper c symbol: "C"
letter upper d symbol: "D"
letter upper e symbol; "E"
letter upper f symbol : "F"
letter upper g symbol; "G"
letter upper h symbol: "H"
letter upper i symbol: "I"
letter upper j symbol: "J"
letter upper k symbol: "K"
letter upper 1 symbol: "L"
letter upper m symbol: "M"
letter upper n symbol; "N"
letter upper o symbol: "0"
letter upper P symbol: "P"
letter upper q symbol : "Q"
letter upper r symbol: "R"
letter upper s symbol: "S"
letter upper t symbol: "T"
letter upper u symbol: "U"
letter upper V symbol; "V"
letter upper w symbol; "W"
letter upper X symbol: "X"
letter upper y symbol; "Y"
letter upper z symbol; "Z"
######## ######## ######## ########
# Numerals
######## ######## ######## ########

numeral 0 symbol : 
numeral 1 symbol ;

"0"
"1"
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numeral 2 symbol: "2
numeral 3 symbol: "3
numeral 4 symbol : "4
numeral 5 symbol : "5
numeral 6 symbol; "6
numeral 7 symbol; "7
numeral 8 symbol: "8
numeral 9 symbol: "9
######## ######## ######## ########
# Punctuation - simple - in Ascii order
######## ######## ######## ########

space symbol; ” "
exclcimation symbol : " ! "
quote symbol : '"'
hash symbol; "#"
dollar symbol: "
percent symbol; 
ampersand symbol:
apostrophe r symbol: "'"
round 1 symbol : "("
round r symbol : " ) "
asterisk symbol: "*"
plus symbol; "+"
comma symbol; ","
hyphen symbol;
period symbol: ". "
slash symbol; "/"
colon symbol: ":"
semicolon symbol: ";"
angle 1 symbol: "<"
equals symbol; "="
angle r symbol; ">"
question symbol: "?"
at symbol:
square 1 symbol ; "["
backslash symbol : "\"
square r symbol ; "]"
caret symbol : " "
underscore symbol:
apostrophe 1 symbol:
curly 1 symbol : "{"
bar symbol: "|"
curly r symbol ; "}"
tilde symbol;
newline symbol: "

######## ######## ######## ########
# Placeholders
######## ######## ########

id int new symbol: " idlntNew"
id real new symbol: " idRealNew"
id bool new symbol: " idBoolNew"
id string new symbol; " idStringNew'
id proc new symbol: " idProcNew"
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B.2 Production methods

The production methods are coded in the node constructor. A general Node 
class is presented, followed by the specialised SalgolNode.

B.2.1 Node

// Node - a Node in a parse tree.

// This is an abstract class. It has to be specified for each 
// language because the production methods are language-specific.
// This is not good. It would be better to devise a virtual 
// machine code for production methods in the longer term.
// Then the language-specific detail could go into the grammar,
// and a more general Node class would interpret it.

package ec.experiment.nrp.rag; 
import j ava.io.* ;
public abstract class Node { ^

public Node () {
}
// INHERITED ATTRIBUTES

// The Symbol at this node, 
public Symbol s = null;

// SYNTHETIC ATTRIBUTES

// Children of this node, 
public Node[] child = null; 
public int childCount = 0;

// PRODUCTION METHODS

// Apply specified production method. This method must be 
// overridden to cater for non-default production methods, 
public void applyMethod(int m. ReflexiveAttributeGrammar RAG, Symbol 

s. Symbol[] RHS, Genotype g) { 
switch (m) { 
case 0:

method_0 (RAG, (NonTerminal)s , RHS, g); 
break; 

default :
System.out.printIn (" Node; applyMethod: error:

unexpected method number : " + m);
>

}
public static final int METHOD_DEFAULT = 0;
public void method_0 (ReflexiveAttributeGrammar RAG, NonTerminal LHS, 

Symbol[] RHS, Genotype g) {
// Beginning.
// System.out.printIn (" Node : method_0: beginning.");

// Descend into subtree.
for (int i = 0; i < this.child.length; i++) {

// System.out.printIn (" Node; creating child node; "
+ i ) ;

// Uncomment next line with specific Node subclass.
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// child[i] = new Node(RAG, RHS[i], g);
}

// Completed.
// System.out.printIn (" Node: method_0; completed.");

}
// CONSTRUCTORS

public Node (ReflexiveAttributeGrammar RAG, Symbol s. Genotype g) { 

// System.out.printIn (" Node; beginning symbol; " +
s.getName())

s .getName()) 
}

// Note the Symbol at this node, 
this.s = s ;

// If the Symbol s is a Terminal, we are finished, 
if (s instanceof Terminal)

{
return;
}

// Use Genotype g to choose a production for this NonTerminal, 
Production p = ((NonTerminal)s).getProduction(g);

// Get the RHS of this production.
Symbol[] RHS = p .getRHS();

// Prepare to have children.
// this.child = new Node[RHS.length];

// Apply specified method.
applyMethod(p.getMethodNumber(), RAG, s, RHS, g);

// System.out.println (" Node: completed symbol; " +

// PHENOTYPE

public String getLeaves () { 
if (child == null) {

return (s.getName());
} else {

String leaves =
for (int i = 0; i < this.child.length; i++) { 

leaves = leaves + child[i ].getLeaves();
}
return (leaves);

}
}
public void writeLeaves (FileOutputStream fos) throws lOException { 

if (child == null) {
fos.write(s .getName().getBytes());

} else {
for (int i = 0; i < this.child.length; i++) { 

child[i].writeLeaves(fos);
}

}
}
public int countLeaves () { 

if (child == null) { 
return (1);

} else {
int leaves = 0 ;
for (int i = 0; i < this.child.length; i++) {
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l e a v e s  =  l e a v e s  +  c h i l d [ i ] . c o u n t L e a v e s ( ) ;

}return (leaves);
}

}

B.2.1 S_algolNode extends Node

// S_algolNode - a S_algoINode in a parse tree.
1

package ec.experiment.nrp.rag.ecj; j
import ec.experiment.nrp.rag.*;
import ec.experiment.nrp.rag.s_algol.* ; I
public class S__algolNode extends Node {

public S_algolNode () {
> ;
// SYNTHETIC ATTRIBUTES j

I// S_algolPrototype - synthesized by procedure declarations. j
S_algolPrototype prototype = null; |

1// S_algolParameter - synthesized by parameter_.
S_algolParcuneter parameter = null;

I// S__algolParameterList - synthesized by _parameter list_. j
S_algolParameterList parameterList = null; i
// PRODUCTION METHODS I

I// Apply specified production method. This method must be |
// overridden to cater for non-default production methods. |
public void applyMethod(int m. ReflexiveAttributeGrammar RAG, Symbol \

s. Symbol[] RHS, Genotype g) { ;l
switch (m) { j
case 0 ; !

methodO (RAG, (NonTerminal)s , RHS, g); !
break; |

case 1: ;
method_l (RAG, (NonTerminal)s, RHS, g); j
break; '

case 2 ; I
method_2 (RAG, (NonTerminal)s, RHS, g ); j
break; >

case 3:
method_3 (RAG, (NonTerminal)s, RHS, g); ;
break;

case 4 : !
method_4 (RAG, (NonTerminal)s, RHS, g); j
break; ■

case 5: |
method_5 (RAG, (NonTerminal)s , RHS, g); |
break; t

case 6 ; j
method_6 (RAG, (NonTerminal)s, RHS, g);
break;

case 7 :
method_7 (RAG, (NonTerminal)s, RHS, g, true);
break;

case 8:
method_8 (RAG, (NonTerminal)s, RHS, g);
break;
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c a s e  9 :
method_9 (RAG, (NonTerminal)s, RHS, g); 
break; 

case 10:
method_7 (RAG, (NonTerminal)s, RHS, g, false); 
break; 

default:
System.out.println (" SalgolNode: applyMethod:

error: unexpected method number: " + m);
}

}
public static final int METHOD_DEFAULT = 0;
public void method_0 (ReflexiveAttributeGrammar RAG, NonTerminal LHS,

Symbol[] RHS, Genotype g) {
// Beginning.
// System.out.println (" S_algoINode: method 0 : beginning:

this.child.length = " + this.child.length);
// System.out.println (" S algoINode : method 0 : beginning;

RAG == null; " + (RAG==null));
// System.out.println (" SalgoINode: m e t hodO: beginning:

LHS == null: " + (LHS==null));
// System.out.println (" S_algolNode: m e t hodO: beginning:

RHS == null: " + (RHS==null));
// System.out.println (" S_algolNode; m e t hodO: beginning: g 

== null; " + (g==null));
// Descend into subtree.
for (int i = 0; i < this.child.length; i++) {

// System.out.println (" SalgolNode: creating.child
node ; " + i);

child[i] = new S_algoINode(RAG, RHS[i], g) ;
// System.out .println (" S__algoINode: creating child 

node; " + i + " completed.");
}
// Completed.
// System, out. println (" S__algolNode: methodO : completed.");

>
public static final int METHOD_ID_NEW = 1;
public void methodl (ReflexiveAttributeGrammar RAG, NonTerminal LHS,

Symbol[] RHS, Genotype g) {
// This production method processes the following

NonTerminals;
// id int new ^
// id real new ;
// id bool new |
// id string new Ï
// id proc new .{
// In each case the processing is the same; I
// 1. Create a new identifier. |
// 2. Declare it as a Terminal Symbol. I
// 3. Make it this node's Symbol. !
// Beginning, Î
// System.out.println (" S_algolNode: method_l; beginning."); |
// Create a new identifier. i
// - the NonTerminal name will be one of these strings: |
// " <idIntNew>" ,|
// " <idRealNew>" j
// " <idBoolNew>" i
// " <idStringNew>" I
// " <idProcNew>" i
I I -  decide which by getting char at 4. t
String type = s .getName();  I
// System.out.println (" S_algolNode: method_l; type: " + I

type); 1
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char typeChar = type.charAt(4);
String i = null; 
switch (typeChar) { 
case 'I ';

i = Identifier,getld("int") ; 
break; 

case ’R ':
i = Identifier.getld("real") ; 
break; 

case 'B ’;
i = Identifier.getld("bool") ; 
break; 

case 'S':
i = Identifier.getld("string"); 
break; 

case 'P':
i = Identifier.getld("proc") ; 
break; 

default :
System.out.println (" S_algolNode: error:

unexpected type initial; " + typeChar);
}
// Declare new id as a Terminal Symbol.
Terminal terminal = new Terminal (i);
// Make it this S_algolNode's Symbol, 
this.s = terminal; 
this.child = null;

}

// Completed.
// System.out.println (" S algolNode: meth o d l : completed.");

public static final int METHOD_CLAUSE_FOR = 2;
public void method_2 (ReflexiveAttributeGrammar RAG, NonTerminal LHS, 

Symbol[] RHS, Genotype g) {
// Beginning.
// System.out.println (
// System.out.println (

" + (RAG==null));
// System.out.println (

" + (LHS==null));
// System.out.println (

" + (RHS==null));
// System.out.println (

+ (g==null));

S a1goINode : method_2; beginning."); 
S_algolNode: method_2: RAG is null;
S__algolNode: method 2 : LHS is null;
S_algoINode : method 2 : RHS is null;
S_algolNode: method_2: g is null: "

children.");

// Production;
// 0 for symbol,
// 1 id int new,
// 2 space symbol,
// 3 equals symbol,
// 4 clause int,
// 5 to symbol,
// 6 clause int,
// 7 do symbol,
// 8 clause void.
// Expand all children except the final clause void.
// System.out.println (" S_algolNode; method_2; expand first
for (int i = 0; i < 8; i++) {

child[i] = new S_algoINode(RAG, RHS[i], g);
}

terminal.");
// Get the <id int new> Terminal.
// System.out.println (" S_algolNode; method_2; new 
Terminal t = (Terminal)(child[1].s);
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// System.out.println (" SalgolNode: method_2; new terminal 
is null; " + (t==null));

// Make new Production.
// id int c; <id int new>.
// System.out.println (" S_algolNode; method_2: new

production.");
Production p = new Production (RAGInitializer.idlntC, new 

Symbol[] {t});
// System,out.println (" SalgolNode: method_2; new 

production is null: " + (p==null));

// Push the new Production onto the grammar.
// System.out.println (" SalgolNode; method_2; push.");
// System.out.println (" S algolNode; method 2 : RAG is null:

" + (RAG==null));
RAG.addProduction(p );

child.")

}

// Expand the clause void node.
II System.out.println (" SalgolNode: method_2; expand last 
child[8] = new SalgoINode (RAG, RHS[8], g);
// Pop the Production from the grammar.
// System.out.println (" S_algoINode: method_2: pop.");
RAG.removeProduction();
// Completed.
// System.out.println (" S_algolNode: method_2; completed.");

public static final int METHOD_DECLARATION = 3 ;
public void method_3 (ReflexiveAttributeGrammar RAG, NonTerminal LHS, 

Symbol[] RHS, Genotype g) {
// This production method processes the following Productions: 
// 0 decl,
// 1 sequence separator,
II 2 sequence void.
// The declaration may be for an int, real, bool or string.
// In each case the processing is the same:
// 1. Expand all children except the final sequence void.
// 2 .  Get the Terminal declared in child[0].
// 3. Make a Production for the Terminal.
// 4. Push the Production onto the grammar.
// 5. Use the grammar to expand child[2].
// 6. Pop the Production.
// Beginning.
// System.out.println (" S algolNode; method_3: beginning.");
// 1. Expand all children except the final sequence void, 
for (int i = 0; i < 2; i++) {

II System.out.println (" S algolNode: method_3; 
expanding child " + i);

child[i] = new S_algolNode(RAG, RHS[i ], g);
}
// 2 .  Get the Terminal declared in child[0].
// It's at decl -> decl _type_ -> id _type_ new 
// but by now it's been changed from id _type_ new 
II to an identifier of the form _type_._n_
/ / e g  "int.O" or "bool.2 7 " .
// where _type__ = int, real, bool or string
Terminal t = (Terminal)(child[0].child[0].child[1].s);
// 3. Make a Production for the Terminal.
// The production is of the form:
// id _type_; id _type_ new.
Production p = null;
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{t})

{t})

{t})

I l Get the first letter of its type (i, r, b or s): 
char typeChar = t .getName().charAt(1); 
switch (typeChar) { 
case 'i ':

p = new Production (RAGInitializer.idint, new Symbol[)

break; 
case 'r ’;

p = new Production (RAGInitializer.idReal, new Symbol[]

break; 
case ’b ':

p = new Production (RAGInitializer.idBool, new Symbol[]

break; 
case 's':

p = new Production (RAGInitializer.idString, new
Symbol[) {t});

break;
default;

System.out.println(" S_algolNode; method!: error;
unexpected typeChar; " + typeChar);

}
// 4. Push the Production onto the grammar.
RAG.addProduct ion(p );
// 5. Use the grammar to expand child[2]. 
child[2] = new S algolNode (RAG, RHS[2], g);
// 6. Pop the Production.
RAG.removeProduction();
// Completed.
// System.out.println (" S_algolNode; method_3: completed.");

}
public static final int METHOD_PARAMETER = 4;
public void method_4 (ReflexiveAttributeGrammar RAG, NonTerminal LHS, 

Symbol[] RHS, Genotype g) {
// This production method processes the following Productions;
/ / parameter 0 :
II 0 int symbol,
// 1 id int new.
/ / parameter_l;
// 0 real symbol,
// 1 id real new.
/ / parameter_2;
// 0 bool symbol,
// 1 id bool new.
/ / parameter_3;
// 0 string symbol,
II 1 id string new.
// That is, 4 alternatives each comprising a type and a 
// new identifier.
// In each case the processing is the same :
// 1. Expand all children in the usual way.
II 2. Let type = Terminal declared in child[0].
// 3. Let name = Terminal declared in child[1].
// 4. Create a SalgolParameter object.
// Beginning.
// System.out.println (" S_algoINode; method 4 ; beginning.");
// 1. Expand all children in the usual way. 
method_0 (RAG, LHS, RHS, g);
// 2. Let type = Terminal declared in child[0].
Terminal type == (Terminal )( child[ 0 ]. s ) ;
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// 3. Let name = Terminal declared in child[l].
Terminal name = (Terminal)(child[1].s );
// 4. Create a S_algolParameter object, 
parameter = new S_algolParameter(type, name);
// Completed.
// System.out.println (" SalgoINode; method_4; completed.");

}
public static final int METHOD__PARAMETER_LIST_0 = 5;
public void method_5 (ReflexiveAttributeGrammar RAG, NonTerminal LHS, 

Symbol[] RHS, Genotype g) {
// This production method processes the following Productions; 
// parameter list; parameter.
// The processing is as follows;
// 1. Expand all children in the usual way.
// 2. Start new S_algolParameterList.
// Beginning.
// System.out.printIn (" S_algolNode; method_5: beginning.");
// 1. Expand all children in the usual way.
method_0 (RAG, LHS, RHS, g);
// 2. Start new S_algolParameterList. 
parameterList = new 

S_algolParameterList(((S_algolNode)child[0]).parameter);
// Completed.
// System.out.println (" S algolNode; methods : completed.");

}
public static final int METH0D_PARAMETER__LIST_1 = 6;
public void method 6 (ReflexiveAttributeGrammar RAG, NonTerminal LHS, 

Symbol[] RHS, Genotype g) {
// This production method processes the following Productions; 
// parameter list ; parameter, parameter separator, 

parameter list.
// The processing is as follows:
// 1. Expand all children in the usual way.
// 2. Add to S algolParameterList.
// 3. Delete child's parameterList to avoid space leak.
// Beginning.
// System.out.println (" S_algolNode; method_6; beginning.");
// 1. Expand all children in the usual way. 
method_0 (RAG, LHS, RHS, g);
// 2. Add to S__algolParameterList. 
parameterList = new 

S_algolParameterList(((S algolNode)child[0]).parameter,
((S_algolNode)child[2]).parameterList);

// 3. Delete child's parameterList to avoid space leak.
((S_algolNode)child[1]).parameterList = null;
// Completed.
// System.out.println (” S_algoINode: method_6; completed.");

>
public static final int METHOD_DECL_PROC = 7; 
public static final int METHOD_DECL_PROC_NONREC = 10; 
public void method_7 (ReflexiveAttributeGrammar RAG, NonTerminal LHS, 

Symbol[] RHS, Genotype g, boolean recursionEnabled) {
// This production method processes the following Productions; 
// declProcVoid 0:
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// 0 procSymbol,
// 1 idProcNew,
// 2 sequenceSeparator
// 3 clauseVoid.
// declProcVoid_l:
// 0 procSymbol,
// 1 idProcNew,
// 2 roundLSymbol,
// 3 parameterList,
// 4 roundRSymbol,
// 5 sequenceSeparator
// 6 clauseVoid.
// declProcInt 0:
// 0 procSymbol,
// 1 idProcNew,
// 2 roundLSymbol,
// 3 arrowSymbol,
// 4 typelntSymbol,
// 5 roundRSymbol,
// 6 sequenceSeparator
// 7 clauseint.
// declProcInt 1;
// 0 procSymbol,
// 1 idProcNew,
// 2 roundLSymbol,
// 3 parameterList,
// 4 arrowSymbol,
// 5 typelntSymbol,
// 6 roundRSymbol,
// 7 sequenceSeparator
// 8 clauseint.
// declProcReal 0 :
// 0 procSymbol,
// 1 idProcNew,
// 2 roundLSymbol,
// 3 arrowSymbol,
// 4 typeRealSymbol,
// 5 roundRSymbol,
// 6 sequenceSeparator
// 7 clauseReal.
// declProcReal 1;
// 0 procSymbol,
// 1 idProcNew,
// 2 roundLSymbol,
// 3 parameterList,
// 4 arrowSymbol,
// 5 typeRealSymbol,
// 6 roundRSymbol,
// 7 sequenceSeparator
// 8 clauseReal.
// declProcBool 0:
// 0 procSymbol,
// 1 idProcNew,
// 2 roundLSymbol,
// 3 arrowSymbol,
// 4 typeBoolSymbol,
// 5 roundRSymbol,
// 6 sequenceSeparator,
// 7 clauseBool.
// declProcBool 1 :
// 0 procSymbol,
// 1 idProcNew,
// 2 roundLSymbol,
// 3 parameterList,
// 4 arrowSymbol,
// 5 typeBoolSymbol,
// 6 roundRSymbol,
// 7 sequenceSeparator,
// 8 clauseBool.
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declProcString_0;
0 procSymbol,
1 idProcNew,
2 roundLSymbol,
3 arrowSymbol,
4 typeStringSymbol,
5 roundRSymbol,
6 sequenceSeparator,
7 clauseString. 
declProcString_l :
0 procSymbol,
1 idProcNew,
2 roundLSymbol,
3 parameterList,
4 arrowSymbol,
5 typeStringSymbol,
6 roundRSymbol,
7 sequenceSeparator,
8 clauseString.

That is, productions for procedure declaration, with or 
without parameters, returning any type. These productions 
come in several forms which we must distinguish. The 
simplest way is by counting how many children the node has, 
though it's a bit of a kludge. The children are numbered 
above for convenience. It can be seen that the number of 
children is always 4, 7, 8 or 9.
The processing is as follows;
1. Expand all children in the usual way except last child.
2. Let prototype = new S_algolPrototype object.
3. Compute prototype.name.
4. Compute prototype.parameter.
5. Compute prototype.returnType.
6. Apply productions to grammar.
7. Expand last child.
8. Remove productions from grammar.
This method is different to others in that it takes an
boolean parameter which indicates whether to enable
If recursion is enabled (ie true), the external
are made available inside the procedure body. Otherwise
are not. This is not an S_algol issue; Salgol supports 
recursion, end of story. The choice is provided to
the effect of recursion on Gads performance.
To enable recursion, use method_7. To disable it, use

// Beginning.
// System.out.println (" S_algolNode: method 7 ; beginning.");
// 1. Expand all children in the usual way except last child, 
for (int i == 0; i < child.length-1 ; i++) {

// System.out.println (" S_algolNode: method_7; 
expanding child " + i);

child[i] = new S_a1goINode(RAG, RHS[i], g);
}

prototype.");
// 2. Let prototype = new S_algolPrototype object.
// System.out.println (" S_algolNode; method_7: creating
prototype = new S_algolPrototype();
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// 3. Compute prototype.name,
// System.out.println (" S_algolNode: method 7 : setting

name.");
prototype.setName((Terminal)(child[l].s));
// 4. Compute prototype.parameter.
// If the number of children is 4 or 8, there are no

parameters.
// The prototype’s parameter list is empty by default so in

this
// case there is nothing to do.
// If there are parameters, the parameterList is always

child[3]'.
// System.out.printIn (" S_algoINode: method_7: testing 

child.length.");
if (child.length == 7 || child.length ==9) {

// System.out.println (" S_algolNode: method_7: 
setting parameter.");

prototype.setParameter(((S algolNode)child[3]).parameterList);
}

// 5. Compute prototype.returnType.
// If the number of children is 7 or less, we are expanding 
// a _decl proc void_ node, so the type is void. Otherwise,
// the type symbol is always the third last child, 
if (child.length <= 7) {

// System.out.println (" S_algolNode: method_7: 
setting void type.");

prototype.setType(RAGInitializer.typeVoidSymbol);
} else {

// System.out.println (" S_algoINode: method 7 : 
setting other type.");

prototype.setType((Terminal)(child[child.length-4].s ));
>

// 6. Apply productions to grammar.
// System.out.println (" S_algolNode: method_7: applying

internal.");
prototype.applylnternal(RAG); 
if (recursionEnabled) {

// System.out.println (" S_algolNode: method_7: 
applying external.");

prototype.applyExternal(RAG);
}

// 7. Expand last child.
// System.out.println (" S algoINode : method 7 : expanding

last child.");
child[child.length-1] = new SalgolNode(RAG, RHS[child.length-

1 ]. g ) ;
// 8. Remove productions from grammar, 
if (recursionEnabled) {

// System.out.println (" SalgolNode: method_7: 
removing external.");

prototype.removeExternal(RAG);
}
// System.out.println (" S_algoINode ; method_7; removing

internal.")

}

prototype.removeInternal(RAG);
// Completed.
// System.out.println (" S_algolNode: method_7: completed.");

public static final int METH0D_SEQUENCE_V0ID__5 = 8;
public void methods (ReflexiveAttributeGrammar RAG, NonTerminal LHS, 

Symbol[] RHS, Genotype g) {
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void.

sequenceVoid,

arguments

which

// This production method processes the following production; 
/ /
// sequence void: decl proc, sequence separator, sequence 

/ /
// It applies the external declarations of declProc to
/ /s o that the procedure is in scope in the sequence.
/ /
// A typical external declaration looks like this :
/ /
// appl string:
// id proc,
// clausel,
// expO int,
// clause separator,
// expO real,
// clause separator,
// expO bool,
// clause r.
/ /
// The type of the procedure and the number and type of the
// are variable.
/ /
// The processing is as follows. The S_algolPrototype object
// describes the procedure is obtained by navigating the parse 
// tree to the node where the object is held (as the synthetic 
// attribute "prototype"). This object is always at the same 
// relative position:
/ /
// child[0].child[0].prototype
/ /
// whatever the procedure type or parameters.
/ /
// In detail the steps are;
// 1. Expand all children in the usual way except last child. 
// 2. Let prototype = created S_algolPrototype object.
// 3. Apply external productions to grammar.
// 4. Expand last child.
// 5. Remove external productions from grammar.
// Beginning.
// System.out.println (" S_algolNode: method_8: beginning.");
// 1. Expand all children in the usual way except last child, 
for (int i = 0; i < this.child.length-1; i++) {

// System.out.println (" S algolNode: (1) creating
child node: " + i);

child[i] = new S_algoINode(RAG, RHS[i], g);
}

// 2. Let prototype = created S algolPrototype object.
// System.out.println (" S algolNode: method 8 : (2)

prototype.");
SalgolPrototype prototype =

((SalgolNode)(child[0].child[0])).prototype;
// 3. Apply external productions to grammar.
// System.out.println (" S algolNode: method s  : (3)

applyExternal");
prototype.applyExternal(RAG);

child");

1 ] / g ) ;

// 4. Expand last child.
// System.out.println (" S_algoINode : method 8 : (4) last
child[child.length-1] = new S_algolNode(RAG, RHS[child.length-
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// 5. Remove external productions from grammar.
// System.out.println (" S algolNode: methods : (5) remove"); 
prototype.removeExternal(RAG);
// Completed.
// System.out.println (" S algolNode: method 8 ; completed.");

}

public static final int METHOD_LITERAL = 9 ;
public void method_9 (ReflexiveAttributeGrammar RAG, NonTerminal LHS, 

Symbol[] RHS, Genotype g) {
// This production method processes the following productions: 
/ /
// literal int:
// literal real;
// literal bool :
II literal string:
/ /
II That is, all the literal types. The effect of this method

I S

literals,

the

is
S_algol.)

11 t o dispense with the micro-syntax definition of these
// The reason for using this method is principally to avoid 
// overflow in arithmetic literals, and partly for efficiency.
I I
I I  The processing method is to generate a random literal of
// required type, and convert this node from a nonterminal to
// a terminal.
/ /
// Note that negative literals are not supported - the effect 
// achieved by the unary minus. (This is a change from

// Beginning.
// System, out .println (" S_algolNode: raethod_9 ; beginning."); *|
// Generate appropriate literal and make it a Terminal. j
Terminal terminal = null; j
if (LHS == RAGInitializer.literalint) { !

terminal = new Terminal ( I
" "tString.valueOf( Ï

(int)( i
Math.random()*Include.MAXINT

) i

} else if (LHS == RAGInitializer.literalReal) {
terminal =  new Terminal ( I

" +  ( I
String.valueOf( :

(in t )( ■
Math.random()*Include.MAX_INT 1

)*Math.pow( :
1 0 , !
(int)( <

Math.random()*Include.MAX_REAL_EXP

)

)

)
).toLowerCase() // Convert E to e in

scientific notation
) ;

} else if (LHS == RAGInitializer.literalBool) { 
terminal = new Terminal (

" "tString.valueOf(Math.random() < 0.5)
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) ?
} else if (LHS == RAGInitializer.literalString) {

// Generate a string whose length is...
/ /
// 0 with probability 50%
// 1 with probability 25%
// 2 with probability 12.5%
// 3 with probability 6.25%
/ /  
/ /
I / and whose characters are drawn uniformly from ascii 
// and the S-algol specials.
I! Compose ascii alphabet.
String lower = "abcdefghijklmnopqrstuvwxyz";
String upper = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
String digit = "0123456789";
String punct = " !#$%&()*+,-./: ;<=>?@ [ | ;
String alphabet = lower+upper+digit+punct;
// Compose special alphabet.
String specialf = "npotb'\ ;
II Prepare a target string.
String s = "";
// With probability 50% add another character, 
while (Math.random() <0.5) {

// Choose a char at random from alphabet +
specialf.

int i =
(int)(Math.random()*(alphabet.length()+specialf.length()));

String x = "";
if (i < alphabet.length()) {

X = String.valueOf(alphabet.charAt(i ));
} else {

X = " ' " +
String.valueOf(specialf.charAt(i-alphabet.length()));

}

// Apend it to the target string, 
s = s + x;

}
terminal = new Terminal (" \""+s+"\"");

} else {
System. out. println ( " S_algolNode: method__9 : error:

unexpected LHS: " + LHS.toString());
} I
// Make it this S_algolNode's Symbol. i
this.s = terminal; |
this.child = null; |
// Completed. ]
// System, out .println (" S__algolNode ; method_9 : completed."); *

}

public S_algolNode (ReflexiveAttributeGrammar RAG, Symbol s. Genotype j
g) < t

I// System.out.println (" S_algoiNode : beginning symbol: " + |
s . getName ( ) ) ; -i

// System.out.println (" S algolNode: beginning: RAG == null: |
" + (RAG==null)); j

// System.out.println (" S_algolNode: beginning: s == null: " \
+ (s==null)); I

// System.out.println (" S_algolNode: beginning: g == null : " |
+ (g==null)); |
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s .getName{)) 
}

}

// Note the Symbol at this node, 
this.s = s;

/ / I f  the Symbol s is a Terminal, we are finished.
// System.out.println (" S_algolNode; finished?"); 
if (s instanceof Terminal)

{
return;
}

// Use Genotype g to choose a production for this NonTerminal, 
// System.out.println (" S_algolNode: getProduction"); 
Production p = ((NonTerminal)s ).getProduction(g);

// Get the RHS of this production.
// System.out.println (" S_algoINode: getRHS");
Symbol[] RHS = p .getRHS();

// Prepare to have children.
// System.out.println (" S algolNode: new node"); 
this.child = new SalgoINode[RHS.length];

// Apply specified method.
// System.out.println (" S_algoINode: apply");
applyMethod(p.getMethodNumber(), RAG, s, RHS, g);

// System.out.println (" S_algolNode; completed symbol: " +

B.3 Object creation

The following class is generated from the rag definition. The part between 
the lines

// INSERT S_algol.java below this line 
// INSERT S_algol.java above this line

is generated automatically from the rag, by means of a Perl script. To save 
space I have replaced large chunks of this with ellipsis. Following this 
comes a section which sets the production method numbers specific to this 
problem (ie Fact). To control multiple versions, this section is written by 
giving a "patch" which deviates from the "standard" production methods.

package e c .experiment.nrp.rag.ecj;
import ec.experiment.nrp.rag.*;
import ec.vector.*;
import ec. * ;
import ec.simple.*;
import ec.util.*;

// RAGInitializer - sets up objects for this problem 
public class RAGInitializer extends SimpleInitializer {
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// Public Symbols - these are S_algol Symbols used in other places.
// Defined here to avoid unnecessary searching by name, 
public static ReflexiveAttributeGrammar S algol = null; 
public static Terminal roundLSymbol; 
public static Terminal roundRSymbol; 
public static Terminal typeVoidSymbol; 
public static NonTerminal program;
public static NonTerminal idint;
public static NonTerminal idlntC;
public static NonTerminal idReal;
public static NonTerminal idBool;
public static NonTerminal idString;
public static NonTerminal expOVoid;
public static NonTerminal expOInt;
public static NonTerminal expOReal;
public static NonTerminal expOBool;
public static NonTerminal expOString;
public static NonTerminal applVoid; !
public static NonTerminal applint; j
public static NonTerminal applReal; J
public static NonTerminal applBool; i
public static NonTerminal applString; I
public static NonTerminal clauseSeparator; |
public static NonTerminal literalint; |
public static NonTerminal literalReal; !
public static NonTerminal literalBool; |
public static NonTerminal literalString;

1public void setup(final EvolutionState state, final Parameter base) { |
super.setup(state,base); !

i// System.out.println(" RAGInitializer: beginning."); î
// INSERT Sa l g o l .java below this line I
Terminal procTypeVoidSymbol = new Terminal(" PROC.VOID"); j
Terminal procTypeIntSymbol = new Terminal(" PROC.INT"); j

Terminal procTypeRealSymbol = new Terminal(" PROC.REAL"); |
Terminal procTypeBoolSymbol = new Terminal(" PROC.BOOL"); j
Terminal procTypeStringSymbol = new Terminal(" PROC.STRING"); Î
Terminal letSymbol = new Terminal(" let"); j
Terminal assignmentSymbol = new Terminal(" ;="); :
Terminal procSymbol = new Terminal(" procedure"); !
Terminal roundLSymbol = new Terminal("("); |
Terminal roundRSymbol == new Terminal (")"); ;
Terminal arrowSymbol = new Terminal ( "  - > " ) ;  i

Terminal divSymbol = new Terminal(" div"); !
Terminal remSymbol = new Terminal(" rem");
Terminal typeVoidSymbol = new Terminal(" void");
NonTerminal program = new NonTerminal("program”);
NonTerminal programFact = new NonTerminal("programFact"); j
NonTerminal programMonkey = new NonTerminal("programMonkey"); ]
NonTerminal applCode = new NonTerminal{"applCode"); î
NonTerminal appl I format = new NonTerminal ( "appllformat"); j
NonTerminal applCeiling = new NonTerminal("applCeiling"); I
NonTerminal applFloor = new NonTerminal("applFloor"); |
Production programO = new Production(program, new Symbol[] {programFact}); |
Production programFact_0 = new Production(programFact, new Symbol[] 1
{preambleSymbol, phenotypeFact, postambleFactSymbol, endOfProgram}); '
Production programMonkey_0 = new Production(programMonkey, new Symbol!]
{preambleSymbol, phenotypeMonkey, postambleMonkeySymbol, endOfProgram});
Production phenotypeMonkey 0 = new Production(phenotypeMonkey, new Symbol[] 
{phenotypeMonkeyBeginSymbol, literalString, phenotypeMonkeyEndSymbol});
Production endOfProgramO = new Production(endOfProgram, new Symbol[]
{spaceSymbol, questionSymbol});
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Production applCode 0 = new Production(applCode, new Symbol[] 
{procCodeSymbol, clauseL, expOint, clauseR});
Production appllformat__0 = new Production(appllformat, new Symbol[] 
{procIformatSymbol, clauseL, expOint, clauseR});
Production applCeiling_0 = new Production(applCeiling, new Symbol{] 
{procCeilingSymbol, clauseL, expOReal, clauseR});
Production applFloorO = new Production(applFloor, new Symbol[] 
{procFloorSymbol, clauseL, expOReal, clauseR});
ReflexiveAttributeGrammar S__algol = new ReflexiveAttributeGrammar(); 
S_algol.addTerminal(preambleSymbol);
S_algol.addTerminal(postambleMonkeySymbol);
S_algol.addTerminal(postambleCartSymbol);
Sa l g o l .addTerminal(postambleTileSymbol);
S_algol.addTerminal{postambleMultiplexerSymbol);
S_algol.addTerminal(postamblePowerSymbol);
S_algol.addTerminal(phenotypeAnnieBeginSymbol);
S__algol. addTerminal ( phenotypeAnnieEndSymbol ) ;
S_algol.addTerminal{bySymbol);
S_algol,addTerminal(divSymbol);
S_algol.addTerminal(remSymbol);
S_algol.addTerminal(typeVoidSymbol);
S_algol.addNonTerminal(program);
S__algol. addNonTerminal ( programFact ) ;
S_algol.addNonTerminal(programMonkey);
S_algol.addNonTerminal(phenotypeMonkey) ;
S_algol.addNonTerminal(endOfProgram);
S_algol.addNonTerminal{applSin);
S_algol.addNonTerminal(applSqrt);
S algo1,addNonTerminal(applDigit);
S_algol.addNonTerminal(applLetter);
S_algol.addNonTerminal(applCode);
S_algol.addNonTerminal(appllformat);
S_algol.addNonTerminal(applCeiling);
S_algol.addNonTerminal{applFloor);
S_algol.addProduction(programO);
S__algol. addProduction ( programFact O ) ;
S a l g o l .addProduction(programMonkeyO);
S_algol.addProduction(phenotypeMonkey_0);
S_algol.addProduction(endOfProgramO);
S_algol.addProduction(programCart 0);
S_algol.addProduction(phenotypeCart_0);
S_algol.addProduction(programTile_0);
S_algol.addProduction(phenotypeTileO);
S_algol.addProduction(applLetter 0);
S_algol.addProduction(applCodeO);
S_algol.addProduction(applIformat_0);
S_algol.addProduction(applCeiling_0);
S_algol.addProduction(applFloorO);
// INSERT Salgol.java above this line

// Patch for Fact,
// parameterl deleted
// parameter_2 deleted
// parameter_3 deleted
// pareuneterList_l deleted
// declProcReal_l deleted
// sequenceVoid__3 deleted
// sequence Void 5 renamed sequenceVoid__0
// Set method numbers in selected Productions.
// This way of setting method numbers is a kludge 
// because the BNF is not up to it in the .rag file.
// The methods are defined in SalgolNode.
// Methods to introduce new IDs.
idIntNew_0.setMethodNumber(S_algoINode.METHOD_ID_NEW);
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idRealNew_0.setMethodNumber(S_algolNode,METHOD_ID_NEW); 
idBoolNew_0.setMethodNumber(S algolNode.METHOD_ID_NEW); 
idStringNew_0.setMethodNumber(S_algolNode.METHOD_ID_NEW); 
idProcNew 0.setMethodNumber(S_algoINode.METHOD_ID_NEW);
// clause void: for symbol, id int new, ...
clauseVoid_4.setMethodNumber(S_algolNode.METHOD__CLAUSE_FOR);
// sequence void : decl let, sequence separator, sequence void. 
/ /

sequenceVoid_3.setMethodNumber(S_algoINode.METHOD_DECLARATION);
// parameter: _type_ symbol, id _type_ new.
// for _type_ = int, real, bool, string.
parameter_0 . setMethodNumber ( S_algolNode .METHOD__PARAMETER) ;
// parameter_l.setMethodNumber(SalgolNode.METHOD_PARAMETER); 
// parameter_2 . setMethodNumber (S_algoINode .METHOD__PARAMETER) ; 
// parameters.setMethodNumber(SalgoINode.METHOD PARAMETER);
// parameter list: parameter.

parameterList 0.setMethodNumber{S_algolNode.METHOD_PARAMETER_LIST_0);
// parameter list: parameter, parameter list.
/ /

parameterList_l.setMethodNumber(S_algolNode.METHOD_PARAMETER_LIST_l);
// decl proc _type_: ...
// for _type_ = int, real, bool, string.
declProcVoid 0.setMethodNumber(S__algoINode.METHOD_DECL_PROC); 
declProcVoid_l.setMethodNumber(S_algolNode.METHOD_DECL_PROC); 
deciProclnt_0.setMethodNumber(S_algolNode.METHOD_DECL_PROC); 
declProcInt_l.setMethodNumber(S_algolNode.METHOD_DECL_PROC); 
declProcRealO.setMethodNumber(S_algolNode.METHOD_DECL_PROC); 
/ /

declProcReal_l.setMethodNumber(S_algoINode.METHOD_DECL_PROC);
declProcBool O . setMethodNumber ( S_algoINode .METHOD__DECL_PROC ) ; 
declProcBool_l.setMethodNumber(S_algolNode.METHOD_DECL__PROC);

declProcString 0.setMethodNumber(S_algolNode.METHOD_DECL_PROC);
declProcString_l.setMethodNumber(S_algolNode.METHOD_DECL_PROC);

// sequence void: declProc, sequenceSeparator, sequenceVoid 
/ /

sequenceVoid_5.setMethodNumber(S_algolNode.METH0D_SEQUENCE_V0ID_5);
sequenceVoid_0.setMethodNumber(S_algolNode.METH0D__SEQUENCE_V0ID_5);

// Set public static Symbols.
RAGInitializer.S algo1 = S_algol;
RAGInitializer.roundLSymbol = roundLSymbol;
RAGInitializer.roundRSymbol = roundRSymbol;
RAGInitializer.typeVoidSymbol = typeVoidSymbol;
RAGInitializer.program = program;
RAGInitializer.idInt = idInt;
RAGInitializer.idlntC = idlntC;
RAGInitializer.idReal = idReal;
RAGInitializer.idBool = idBool;
RAGInitializer.idString = idString;
RAGInitializer.expOVoid = expOVoid;
RAGInitializer.expOInt = expOInt;
RAGInitializer.expOReal = expOReal;
RAGInitializer.expOBool = expOBool;
RAGInitializer.expOString = expOString;
RAGInitializer.applVoid = applVoid;
RAGInitializer.applint = applint;
RAGInitializer.applReal = applReal;
RAGInitializer.applBool = applBool;
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RAGInitializer. 
RAGInitializer. 
RAGInitializer. 
RAGInitializer. 
RAGInitializer. 
RAGInitializer,

applString = applString; 
clauseSeparator = clauseSeparator; 
literalint = literalint; 
literalReal = literalReal; 
literalBool = literalBool; 
literalString = literalString;

// Mark this position.
S_algol.mark();

// System.out.println(" RAGInitializer: completed.");
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