

GENETIC PROGRAMMING WITH CONTEXT-

SENSITIVE GRAMMARS

Norman Paterson

A Thesis Submitted for the Degree of PhD
at the

University of St Andrews

2003

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/14984

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/14984

Genetic programming with
context-sensitive grammars

Thesis submitted for the degree of Doctor of Philosophy

by

Norman Paterson

A?/-

School of Computer Science

University of St Andrews

Scotland

September 2002

ProQuest Number: 10170995

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is d e p e n d e n t upon the quality of the copy subm itted.

In the unlikely e v e n t that the author did not send a c o m p le te manuscript
and there are missing p a g e s , these will be n oted . Also, if material had to be rem oved,

a n o te will ind icate the deletion .

uest
ProQuest 1 0 1 7 0 9 9 5

Published by ProQuest LLO (2 0 1 7). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C o d e

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 4 8 1 0 6 - 1346

m

%

Dedication

To my parents

John Campbell Paterson, 1908 — 1975

Marcelle Berthe Hütler, 1910 — 2000

Abstract

This thesis presents Genetic Algorithm for Deriving Software (Gads), a new
technique for genetic programming. Gads combines a conventional genetic
algorithm with a context-sensitive grammar. The key to Gads is the
ontogenic mapping, which converts a genome from an array of integers to a
correctly typed program in the phenotype language defined by the
grammar. A new type of grammar, the reflective attribute grammar (rag), is
introduced. The rag is an extension of the conventional attribute grammar,
which is designed to produce valid sentences, not to recognise or parse
them. Together, Gads and rags provide a scalable solution for evolving
type-correct software in independently-chosen context-sensitive languages.
The statistics of performance comparison is investigated. A method for
representing a set of genetic programming systems or problems on a
cladogram is presented. A method for comparing genetic programming
systems or problems on a single rational scale is proposed.

Declaration

(i) I, Norman Paterson, hereby certify that this thesis, which is approximately
70 000 words in length, has been written by me, that it is the record of
work carried out by me and that it has not been submitted in any previous
application for a higher degree.

date ^ 4 - 4 ' 2 ^ 3 signature o f candidate

(ii) I was admitted as a research student in October 1995 and as a candidate
for the degree of Doctor of Philosophy in October 1995; the higher study for
which this is a record was carried out in the University of St Andrews
between 1995 and 2002.

date %4 4 signature o f candidate________

(hi) I hereby certify that the candidate has fulfilled the conditions of the
Resolution and Regulations appropriate for the degree of Doctor of
Philosophy in the University of St Andrews and that the candidate is
qualified to submit this thesis in application for that degree.

date signature o f supervisor__________________ ^_____

111

Copyright

In submitting this thesis to the University of St Andrews I understand that I
am giving permission for it to be made available for use in accordance with
the regulations of the University Library for the time being in force, subject
to any copyright vested in the work not being affected thereby. I also
understand that the title and abstract will be published, and that a copy of
the work may be made and supplied to any bona fide library or research
worker.

date 2.4 -4 signature o f candidate

IV

Acknowledgements

Many people deserve acknowledgement for the help they gave in the
execution of this work. Michael Livesey, as supervisor, was always able to
show interest and listen to my endless and sometimes pointless thought
processes. Without his support, this work would quite simply not have been
possible. Ishbel Duncan offered to proofread: not a task to be undertaken
lightly.

The staff and students of the School of Computer Science unwittingly gave
support in that some of the time I spent on this part-time work can only
have come from the time I should have spent on my full-time job as Senior
Scientific Officer, which must have suffered in consequence.

Conor Ryan and Michael O'Neil from the University of Limerick showed that
the original ideas had some merit, and their friendship helped me to feel
less alone in a large world.

My wife and friend, Margaret McCabe, encouraged me relentlessly.

Acronyms & notations
But the scene o f this narrative is laid in the South o f England and takes place in and around
Knotacentinum Towers (pronounced as if written Nosham Taws), the seat o f Lord Knotacent
(pronounced as if written Nosh).

But it is not necessary to pronounce either of these names in reading them.

Nonsense Novels, Stephen Leacock, 1911.

The following acronyms and notations are used without further elaboration
throughout this thesis. I have tried to adopt the rule that acronym letters
are named individually if in upper case, and pronounced phonetically if in
lower case.
a

Ô

ADF

Probability of a type 1 error; level of significance.

Least d which can be detected 95% reliably.

Automatically defined function. A function whose definition is
evolved automatically, and which may be used by other parts of the
individual it is part of.

anova
Analysis of variance.

BNF
Backus-Naur form or Backus Normal form.

CFG
Context free grammar.

CSG
Context sensitive grammar.

d
Displacement; difference in means of two simulated populations.

ECJ
A Java-based evolutionary computation and GP research system [Luke,
2001].

ES

EPF

ET

GA

Evolution strategy.

Empirical (or estimated) power function.

Expression tree. A tree showing an expression such as a Lisp S-
expression. All nodes are terminal symbols. Internal nodes have arity
greater than 0. Leaf nodes have arity equal to 0. Contrast with PT.

Genetic algorithm.

VI

Gads
Genetic algorithm for deriving software. Two editions of Gads are
presented in this thesis. Gads 1 was previously described in [Paterson,
1996]. Gads 2 is described in this thesis for the first time. When
neither edition is specified. Gads is a more general reference to any-
edition in the series.

GE

GCL

GEP

GP

LHS

PT

rag

RHS

RMS

RNG

SA

sag

SGP

STGP

V

Grammatical Evolution, a GP system desribed in [Ryan, 1998a].
Historically, GE lies between Gads 1 and Gads 2.

Global confidence level, 95%.

Gene Expression Programming [Ferreira, 2001].

Genetic programming.

Left hand side (of a BNF production).

Parse tree. A tree showing the derivation or structure of a sentence
according to a grammar. Internal nodes are nonterminal symbols and
leaf nodes are termmal symbols. Also called derivation tree or syntax
tree. Contrast with ET. !

.1
Reflective attribute grammar. I

Right hand side (of a BNF production).

Root mean square.

Random number generator.

Simulated annealing.

Standard (ie non-reflective) attribute grammar.

Standard (ie Koza-style) genetic programming.

Strongly Typed GP [Montana, 1995] and [Clack, 1997].

Coefficient of variation = standard deviation -f- mean.

V ll

Contents
INTRODUCTION.

O u t l in e o f GP

Using formal languages.

1.1
1.2 O u t l in e OF G a d s .
1.3 R e l a t e d WORK __

1.3.1
1.3.2 Mapping genotype to phenotype_

1.4 M o t iv a t io n _________________________
1.4.1
7.4.2
1.4.3

1.5
1.6

Formal grammars
Simple genotype__
Change in representation.

C o n t r i b u t io n ________________
R e a d in g g u id e

G A D S l

2.1
2.2

In t r o d u c t io n _______
P r in c ip le s o f G a d s 1

2.2
2.2
2.2
2.2
2.2
2.2
2.2

2.3 Ex p e r im e n t a l d e sig n

2.3.
2.3
2.3.
2.j
2.3.
2.3.
2.5
2.3.
2.5
2.5

The phenotype language _
The ontogenic m apping_
The initial population____
Generating the phenotype
Inapplicable productions _
Residual nonterminals___
Evaluation_____________

The problem ___________
Experimental conditions^
The GA engine________
Generating the phenotype
Evaluating the phenotype _
S yn tax________________
Initial va lu e __________
Selection method
Crossover______

2 .4
Chromosome length .

E x p e r im e n t a l r e s u l t s
2.4,
2.4,
2.4
2.4,
2.4,

Phenotype length (Sym) ,

2.5

Number o f generations (Gen).
Number o f individuals (Ind)_
Time to center the cart (S td)_
Optimal program __________

C o m p a r iso n s _________________
2.5,
2.5,
2.5,

2.6
2.6.

2 .6,

2 . 6,

2 .6,

2 .6,

2 .6 ,

2 .6,

2 .6 .

2 .6,

1 Phenotype length_____
2 Number o f individuals
3 Initial population____

Q u e st io n s r a i s e d _________
1
2
3
4
5
6
7

Specifying sentence distribution.
Moving away from L isp_______
Functions, work variables etc
Choosing sentence distribution
Statistical analysis___________

2,7

Sequential chromosomes
Gene effectiveness_____
Genetic operations_____
Initial distribution_____

C o n c l u s io n s ________________

JO
.11
J I
J I
J 2
.12
.1 3

.14

.1 4

.1 5

.7 5

.7 5
77

.7 7

.7 5

.7 5

.7 9

.1 9

.7 9
20

.2 7

.27

.25

.25

.2 7

.2 7

.27

.25

.31

.52

.55

.54

.56

.57

.38

.59

.5 9

.5 9

.3 9

.5 9

.40

.40

.40

.40

.47
41

.47
41
41

V lll

STATISTICS 43

3.1 S t a t ist ic a l per spec tiv e 43
3.1.1 Introduction 43
3.1.2 Populations and samples 45

3.1.2.1 Configurations 44
3.1.2.1.1 Populations 44
3.1.2.1.2 Samples 44

3.1.2.2 Runs 45
3.1.2.2.1 Populations 45
3.1.2.2.2 Samples 45

3.1.2.3 Individuals in generation 0 45
3.1,2.3.1 Populations 45
3,1.2.3.2 Samples 45

3.1.2.4 Individuals in generation n > 0 46
3.1.2.4.1 Populations 46
3.1.2.4.2 Samples 47

3.1.3 Experiments, outcomes, units and treatments 45
3.1.4 Random variation 49
3.1.5 Confidence level 50

3 .2 Pe r f o r m a n c e COMPARISON 51
3.2.1 Introduction 51

3.2.1.1 Related work 52
3.2.2 Experimental design 53

3.2.2.1 Tests and C-sample sizes 54
3.2.2.2 Factors 54
3.2.2.3 Trials and outcomes 55
3.2.2.4 Random variables 55
3.2.2.5 Bootstrapping 55
3.2.2.6 Hypotheses 56
3.2.2.7 Power functions 57
3.2.2.8 Alpha and delta 58

3.2.3 Results 55
3.2.3.1 Normality 58
3.2,3.2 Alpha and delta 59
3,2.3.3 Alpha 60
3.2,3.4 Delta 63
3,2.3.5 Coefficient o f variation 63

3.2.4 Conclusions 64
3.2.4.1 Normality 65
3.2.4.2 Comparison of tests 65
3.2.4.3 Comparison o f problems 66
3.2,4.4 Summary 66

3.3 V is u a l is a t io n 67
3.3.1 Introduction 67
3.3.2 Cost and benefit 68

3,3.2,1 Measures o f cost 68
3,3.2.2 Measures of benefit 69
3.3.2.3 Horses for courses 69

3.3.2,3.1 Arithmetic mean 70
3.3.2.3,2 Two kinds o f difficulty 71
3.3,2.3.3 Equal importance 72
3.3.2.3.4 Distance between problems 73
3.3.2.3.5 Path length tree 74
3.3,2.3.6 Constructing the path length tree 79
3,3.2.3,7 Performance-based weights 82

GRAMMARS 84

4.1 Ex ist in g C S G s 84
4.1.1 Two-level grammars 85
4.1.2 Attribute grammars 56

4.1.2.1 Calculation after selection 87
4.1.2,2 Calculation before selection 88
4.1.2,3 The third wav 90

IX

4 .2 R e fl e c t iv e a t t r ib u t e g r a m m a r s

4 .2 .7
4.2.1.1
4.2.1.2
4.2.1.3
4.2.1.4

4 .2 .2
4.2.2.1
4.2.22
4.2.2.3
4.2.2.4
4.2.2.5
4.2.2.Ô
4.2.2.7
4.2.2.5
4.2.2.9

O verview _________________
Grammatical notation_______
Context free grammars_____
Standard attribute grammars _
Reflective attribute grammars

The S-algol rag ____________
Basic types_______________
Spaces __________________
Identifiers___________
Scope______________
For clause __________
Let declarations_____
Procedure declarations
Literals_____________
Preamble, postamble, program.

GADS 2

5.1 T he o r ig in s o f G a d s 2
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5

Translation: mapping genes to productions,
Repair: wrapping and defaults___________
Genotype : fixed length or variable length
Genetic operators: crossover___________
Hobson's choice genes________________

5 .2 S y s t e m s ______________________________________
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.5

Computing facilities___
Gads 2 implementation
ECJ param eters______
Raw and transformed data scales___
Fitness: functionality and parsimony _
Crossover________________________
Hobson's choice,
S -algol________

5.3 Pr o b l e m s a n d in d iv id u a l r esu lts _
Monkey ____________________
C a r t________________________

5.3.1
5.3.2
5.5.5
5.5.4
5.5.5
5.5.6
5.5.7
5.5.5

Tile 1, Tile 2.
Multiplexer_
Power______
Two b o x___
F a c t_______
A nnie______

5 .4 C o m p a r a t iv e r e su l t s

5.4 .7
5 .4 .2
5 .4 .5

5.4.3.1
5.4.3.2

Pairwise comparison
Visualisation ______
Rational scale comparison.

Problem weights — engine performance.
Engine weights — problem performance.

CONCLUSIONS

6.1 C o n t r ib u t io n

6.7 .7
6 .7 .2
6 .7 .5
6 .7 .4
6.1.5
6 .7 .6

Context sensitivity ,
Non genetic search.
P erform ance_____
Statistics______
Languages atul compilers
Solution_______________

6 .2 L im it a t io n s___________________
6.2.7
6.2.2

Statistics

_91
_97
_91
_93
_94
_95
_99
.100
.100
.102
.102
.106
.107
.112
.115
115

.117

.117

.7 7 5

.7 7 5

.7 2 6

.7 2 0

.7 2 5

.123

.7 2 5

.7 2 4

.7 2 4

.7 2 6

.727

.7 2 5

.7 2 5

.729

.129

.750

.7 5 4

.7 5 6

.747

.7 4 4

.747

.757

.762

.1 6 4

.767

.7 6 5

.772
_172

174

Rags implementation

.177

.177

.777

.777

.775

.775

.775

.775

.178

.779
779

B

6.5.7 Specifving sentence distribution 179
6.5.2 Movins awav from Lisp 779
6.5.5 Functions, work variables, etc 750
6.3.4 Choosins sentence distribution 180
6.5.5 Statistical analysis 180
6.5.6 Sequential chromosomes 180
6.3.7 Gene effectiveness 180
6.5.5 Genetic operations 180
6.5.9 Initial distribution 180

.4 Fu t u r e w o r k 180
6.4.7 Statistics 75/
6.4.2 Grammars 182
6.4.5 Performance comparison 182
6.4.4 Analysis o f Gads 755
6.4.5 GP system design 755
6.4.6 Biological analogy 755

REFERENCES 185

S-ALGOL RAG 190

B .l S y n t a x __190
B.2 P r o d u c t io n METHODS___ 223

B.2.1 Node__ 225
B.2.1 S_algolNode extends Node___ 225

B.3 O b je c t CREATION__ 237

XI

..à#!

Introduction

Genetic programming (GP) is a method for automatically developing
computer programs. Automatic means that programs are produced by
specifying what they are to do, not how they are to do it. For example, a
function f which computes the square root of its argument may be specified
by

This describes what f does, but it says nothing about how it might do it.

The current explosion of interest in GP was triggered by the publication of
Genetic Programming: on the programming o f computers by means o f
natural selection [Koza, 1992], and most work in GP since then has been a
development of Koza's ideas. Koza's approach is the GP mainstream, and as
the de facto standard it is sometimes referred to as standard genetic
programming (SGP).

The remaining subsections of this introduction summarise this thesis and
place it the context of other GP work, as follows:
§1.1 Outline of GP

Presents a general description of GP.
§1.2 Outline of Genetic Algorithm for Deriving Software (Gads)

Introduces the main topic of this thesis: Gads.
§1.3 Related work

Places this thesis in context of current GP systems.
§1.4 Motivation

Explains the aim of this work.
§1.5 Contribution

Summarises the main contributions of this thesis.
§1.6 Reading guide

Summarises the main sections of this thesis.

1.1 Outline of GP

GP is a child of the genetic algorithm (GA). The seminal work on GAs is
Adaptation in natural and artificial systems [Holland, 1992]. In outline, GAs
work as follows.
1 Initialisation

Generate an initial population at random.
2 Evaluation

Compute the fitness of each individual in the population, which is a
measure of how well it meets the requirements.

3 Breeding
Breed a new population, favouring fitter individuals as parents.

4 Termination
If the population contains an individual which meets the requirements,
or if some other limit is reached, then stop. Otherwise continue from
step 2.

For example, suppose we wish to design a roof truss in the form of a
triangle with 2 braces on each side:

Figure 1-1: R oof tiuss

We can reasonably expect the truss to be symmetrical, so for a given height
and width there are 4 variables, shown in the figure as a, h, c and d. These
are real values within a limited range. We can thus represent any individual
design by a real array of length 4, and an initial population of designs could
easily be generated with a random number generator (RNG). An array of 4
reals permits designs where the braces cross each other or cross the centre
of the truss. If we want to exclude these or similar possibilities, then a
different representation might be necessary.

The fitness of an individual design is computed by means of a fitness
function. The fitness function is problem-specific, and is essentially a
definition of the problem to be solved. Continuing with the truss example,
the fitness function could be a procedure which takes the 4 real numbers as
arguments and computes properties such as cost, weight, or strength.
Which properties are computed depends on the aim of the exercise. The
result is a scalar value representing how good the individual is. The
individuals in the initial population can be expected to be of poor quality,
but they will not all be equally poor. By chance, some will be better than
others.

Parents are chosen to breed a new generation in such a way that fitter
parents are more likely to be selected. The crossover technique is used to
produce children. Each parent is split in two at some position along its
length, and a child is formed by joining the first part of one parent with the
second part of the other. By joining the other two parts, a second child can
be produced at the same time for little extra effort. If the representation is
fixed length, then both parents m ust be split at the same position. Various
modifications of this simple form of crossover, and various other genetic
operations such as mutation, are used. With the truss example, since a
parent consists of only 4 reals, there are only 3 internal crossover points.

Notice that GA does not guarantee to find a solution or stop within any
specified number of steps. In practice it continues until a satisfactory
solution is found, or some resource is exhausted.

For evolution to work, two things are necessary: the fitness of the children
must correlate with the fitness of the parents, and there m ust be variation
in the children's fitness. These two conditions result in a situation where
cliildren sometimes outperform their parents. In this environment, selective
breeding acts like a ratchet, evolving ever fitter individuals.

There are countless possible variations to each step. For example, the data
type of individuals is not limited to one-dimensional arrays; multi­
dimensional arrays, graphs and other data types have been used
[Michalewicz, 1994]. Fitness may be a single scalar value, or there may be
multiple objectives. There may be multiple subpopulations, with migration
from one subpopulation to another. There may be different species in
competition with each other. The best individuals may be guaranteed a
place in the new population (elitism). Crossover need not be hmited to word
boundaries. A degree of random mutation may be introduced. The
probability of an individual being selected for breeding may be proportional
to its fitness value (roulette or fitness-proportionate selection) or the fitness
values may only be used for ranking (tournament selection). The entire
population may be replaced on each cycle (generational) or one individual at
a time (steady state).

To apply the GA model to the evolution of programs, some changes are
needed. If programs were represented as character strings, it would be
possible to use the GA model directly, with an array of characters rather
than real numbers. But in such a scheme, children would very rarely be
syntactically valid. For example, the probabihty that even the opening and
closing parentheses would match in a child formed by concatenating parts
of two parent programs split at random would be infeasibly small. SGP
therefore uses a different form of representation for its individuals: the
expression tree (FT). Figure 1-2 shows the FT for the Lisp expression "(GT X
(+ X V))". In this expression, "GT" stands for greater than, and the whole
expression is Lisp for x > (x + v). All nodes of the FT are terminal symbols
of the grammar. Internal nodes are functions or operators which take
arguments. External nodes are variables or constants which take no
arguments. Crossover in SGP is defined to swap whole subtrees between
two parents. Mutation can also be redefined in terms of subtrees. The
language of the individuals can be defined in such a way that this form of
crossover always produces children which are syntactically and semantically
valid.

X V

Figure 1-2: Expression tree for "(GT X (4- X V))"

SGP programs are usually S-expressions in a first-order subset of Lisp
augmented with special-purpose functions relevant to the problem domain.
Lisp has the advantage that S-expressions are themselves Lisp objects. It is
therefore possible to manipulate individuals for operations such as
crossover, and then to evaluate them to compute their fitness.

An example of a fitness function for a square root function is as follows.
We first define the root mean square (RMS) error in fas:

where X is a sample of real values x. RMS ranges from 0 to infinity, with 0
corresponding to the ideal For fitness-proportionate or fitness-ranked
selection we need a fitness function in which higher values are better.

This can be done by an expression such as:

1
f i tness[f)

\ + R M S (f)

It should be noted that applying a GA to a data type other than a linear list
or array — even to trees — is not peculiar to SGP. [Michalewicz, 1994]
describes the application of GAs to many different data types. What is
unique to GP in general and SGP in particular is the principle that the
individual — however represented — represents an executable program.

Given the above outline it is perhaps not surprising that GA and GP are
often described with reference to On the origin o f species by means of
natural selection [Darwin, 1859]. Although this is understandable, it is not
accurate, because neither GA nor GP are concerned with the evolution of
new species, nor do they use natural selection. Even multi-species GP
systems do not aim to produce new species. So far from using natural
selection, in which there is no distant goal, both GA and GP require an
explicit fitness function to be provided by the user to direct the selection
towards the user's goal. It follows that GA and GP are based not so much
on Darwin as on the selective breeding programmes for animals and plants
which date from prehistorical times. [Koza, 1996a] refers to animal
husbandry. What is different is that following Darwin we have a better
understanding of the principles by which such programmes work. Genesis
chapter 30 verses 37-42 describes a selective breeding programme in
existence before the principles were understood.

1.2 Outline of Gads

Gads evolves type-correct sentences in a given context-sensitive language.
The language is defined by a formal grammar which is separate from the
underlying evolutionary system. If the grammar defines a programming
language such as Lisp, C or Java, then Gads evolves type-correct programs.
If the grammar defines a language for describing electronic circuits, neural
nets, or bin packing, then Gads evolves electronic circuits, neural nets, or
bin packing solutions. However, this thesis only demonstrates the evolution
of programs in one context-sensitive programming language.

The main components of a Gads system are:
1 An evolutionary system such as a GA;
2 A formal grammar for the desired language;
3 An ontogenic mapping from genotype to phenotype;
4 A fitness function which defines the problem to be solved.

Of these, the evolutionary system and the fitness function are standard and
are not explained further here. The use of a formal grammar and the
ontogenic mapping from genotype to phenotype require explanation. An
outline explanation is given below.

Formal granunars have been used to specify programming languages for
many years. [Naur, 1963] introduced Backus-Naur form (BNF) to give a
context-free definition of Algol 60. Context-free grammars (CFGs) are
simple to understand, but to represent the context-sensitive aspects of a
language, it is necessary to use a context-sensitive grammar (CSG). The
most commonly used type of CSG is the sag [Pagan, 1981].

Grammars are commonly said to generate sentences in the language they
define, but in practice, they are more often used to parse sentences, in the
process of compiling or interpreting them. Each sentence in a language has
a parse tree (PT). Figure 1-3 shows a PT for the same Lisp expression used
for the ET in figure 1-2. In the PT, internal nodes are nonterminal symbols,
and leaf nodes are terminal symbols, of the language. (The actual grammar
is not given here. There are infinitely many possible grammars for a given
language. An example of a grammar corresponding to this PT is syntax A in
table 2-3.)

sexp

application

arity 2 sexp sexp

GT input application

arity 2 sexp sexp

input Input

X V

Figure 1-3: Parse tree for "(GT X (+ X V))"

Using a grammar to generate a sentence involves growing a PT, starting
from a single node for the language start symbol, and repeatedly using the
grammar rules to expand nonterminal nodes, until all the leaves of the PT
are terrninal symbols. With a CFG this is relatively straightforward, but with
a sag it is so inefficient as to be Infeasible. This thesis introduces the
reflective attribute grammar, which is an enhanced attribute grammar that
can be used to generate sentences in a context-sensitive language efficiently.

Generating a PT is a matter of choosing which rules to apply and which
order to apply them in. This choice can be represented as a list of rules.
Since a grammar can only have a finite number of rules, it is possible to
number them, so a list of rules can be represented as a list of rule numbers.
A list or array of numbers is precisely the kind of data that GAs operate on.
Thus, we have a route from GA individuals, as lists of numbers, to type-
correct sentences in any context-sensitive language we can define by means
of a reflective attribute grammar (rag). This is called the ontogenic mapping.

In fact it is not quite as simple as the above outline suggests. The numbers
in a GA individual are gene values; the numbers which direct the grammar
to grow a PT are rule numbers. Although these are both numbers, they have
different ranges, and a translation step is necessary. Beginning with the
translation from gene values to rule numbers, the ontogenic mapping uses
the gene values to select rules from the grammar and construct a PT, from
which a type-correct sentence can be extracted.

Also, although the ontogenic mapping cannot produce invalid sentences,
because it uses the grammar which defines the language in question, it can

fail to complete the process, resulting in a PT in which one or more leaves
are nonterminals. This can happen if the GA individual does not have
sufficient genes, or if the gene values select rules which lead to further PT
growth instead of PT termination. However it happens, a repair mechanism
is necessary. This is implemented by specifying a default rule for each -
nonterminal in the grammar.

Gads therefore makes a clear distinction between an individual's genotype,
which is the list or array of numbers by which the individual is represented
inside a GA or other evolutionary system, and the phenotype, which is the
sentence (ie program or other object) that is the desired solution. The
phenotype language is the language in which the phenotype is written. Key
properties of the ontogenic mapping appear to be (1) whether it supports
neutral evolution, and (2) whether it is many-to-one.

1.3 Related work

[Ryan, 1998a] describes Grammatical Evolution (GE), which is closely related
to Gads. GE develops the idea of Gads 1 and addresses some of its
shortcomings. This thesis, in turn, adopts some of the GE ideas to develop
Gads 2. The relationship between Gads and GE is described more fully in §5
Gads2.

1.3.1 Using formai languages

There is a progression of phenotype languages from SGP's original small
untyped expression languages to large context-sensitive languages now
possible with Gads.

In the original form of SGP [Koza, 1992], there is only one data type (usually
floating point), and there are no unbound variables. Steps m ust be taken to
force all calculations into this mould. For example, to avoid divide-by-zero
exceptions, a protected division operator {%) is used which always returns a
valid floating point value even if its denominator is zero; to obtain Boolean
values, floating point values are compared to zero; and so on. The net
effect is that SGP produces programs in an untyped expression language.

This phenotype language is simple enough to describe by a CFG. Syntax A
(table 2-3) is an example of a CFG which defines the language of the cart-
centering problem.

Although untyped expression languages are versatile, there has been much
interest in extending SGP beyond the limitations of untyped expression
languages. Sequencing, iteration, abstraction (automatically defined
functions, or ADFs) and data types have been added to the basic model. But

the methods of achieving these extensions have been inelegant, incomplete
and restrictive, especially when compared with the facilities available to
human programmers using everyday programming languages. For example,
sequencing [Koza, 1992] was initially achieved by having a sequence
operator PR0GN2 that took two arguments. It evaluated the arguments'in
order. This allowed a two-step sequence; for a longer sequence it was
necessary to nest or cascade the two-step operator. In [Koza, 1994]
abstraction was initially achieved by having the user prescribe how many
procedures and how many parameters each should take, in advance of any
evolution; in chapters 21-25 a method of evolving this architecture Is
presented. However, it is still within the context of an untyped expression
language.

Despite their simplicity, untyped expression languages are versatile. As well
as solutions to numerical or symbolic problems, untyped expressions can
represent the construction of neural nets, electronic circuits and other
objects [Whitley, 1995], [Koza, 1998c]. Thus it has been possible to apply
SGP to a surprisingly wide range of problems.

[Montana, 1995] and [Clack, 1997] introduce Strongly Typed GP (STGP), an
enhanced form of SGP which supports multiple data types. STGP uses
protective crossover to enforce data type constraints. The types are
specified by the user, not evolved by the system. Specifying these details
requires that the user has insight into how the problem might best be
solved, which slightly weakens any claim to be an automatic programming
method.

A criticism of these extensions to the original untyped expression language
is that they are all somewhat ad hoc. Each extension addresses one
particular aspect. Although abstraction, sequencing, iteration, data types
etc have been exhaustively studied as part of programming language design,
it is difficult to take advantage of this by piecemeal extensions. Several
researchers have integrated formal grammars with SGP.

[Whigham, 1996] introduces CFG-GP, which uses an explicit CFG so that the
phenotype may be in any desired context free language. The tree is a PT
rather than an ET. Crossover is modified so that only subtrees with the
same nonterminal root may be swapped. Mutation is modified in a similar
way. The effect of this is to advance GP's range from untyped expression
languages to context free languages.

[Florner, 1996] describes a system which is similar to [Whigham, 1996].

[Bruhn, 2002] describes a system also based on PT representation but for a
tiny language (3 nonterminals) specialised for the knapsack problem. The
PT is extended by adding attributes to the PT nodes which represent the
linear constraints of the knapsack problem. The usual SGP genetic

operators are extended to ensure not only that the context-free grammar is
satisfied but also that the linear constraints are satisfied. In effect this is a
special-purpose attribute grammar, though it is not named as such. Bruhn's
system performs better than the corresponding GA in [Michalewicz, 1994].

These systems maintain SGP's approach of representing individuals as trees,
but use PTs rather than ETs. The parsing information in a PT is used by the
genetic operators such as crossover to ensure that only valid offspring are
produced. This extends the range of phenotype language to context-free
languages. However, it is not obvious how these systems could be extended
to CSGs. If a formal grammar is not used, it would be difficult to represent
the rules of the language that m ust be enforced if the individual is to be
valid; and while a CFG can be used to construct and maintain the integrity of
PTs, the requirements of a CSG would be difficult to implement as a form of
protected crossover.

Gads evolves type-correct sentences in a given context-sensitive language. It
is thus a major step in the direction of increasing the range of phenotype
languages which can be evolved.

1.3.2 Mapping genotype to phenotype

In most GP systems, the ontogenic mapping is one-to-one, and is so simple
that it is easily overlooked. It is commonly said that in SGP, genotype and
phenotype are not distinguished. Strictly speaking this is not correct. The
SGP genotype is a Lisp ET, while the phenotype is a Lisp program. The
ontogenic mapping in SGP is therefore a tree traversal, which is a one-to-one
mapping.

In Compiling Genetic Programming System [Nordin, 1994a], individuals are
arrays of machine code instructions. This system is unusual in that
genotype and phenotype truly are not distinguished, even by a one-to-one
mapping. The genotype and phenotype are one and the same. Since
machine code does not have the complexity of a high level language, simple
GA crossover can be used. However, minor modifications to the crossover
and mutation are introduced to ensure that individual instructions are
viable and do not, for example, have invalid operation codes. This approach
offers great advantages in efficiency, since no translation or interpretation
of the phenotype is necessary.

[Keller, 1996] describes a system with an ontogenic mapping. The mapping
is initially from codons (small integers) to the terminal symbols of the
phenotype language. A repair method is needed to repair any invalid
sequences that result. The system does not use formal grammars.

10

[Ferreira, 2001] introduces Gene Expression Programming (GEP), in which
genotype and phenotype are separate, in that the genotype and phenotype
operators can be partitioned. The genotype is essentially tree-structured,
but it is not a PT or a conventional ET. There is no translation process
which maps genotype elements into phenotype elements. (Section 3.4.1 ibid
emphasises this), ie phenotype elements are present in their final form in
the genotype. Ontogenesis consists of a breadth-first traversal of the
genotype tree. The main difference between GEP and SGP is in the genotype
representation, which allows unused elements to accumulate in the
genotype without appearing in the phenotype. While GEP is shown to
perform well on some problems, it is not obvious how it might be scaled to
provide sequencing, iteration, abstraction or data types.

1.4 Motivation

The aim of this work is to address some of the limitations identified in §1.3
Related work.

1.4.1 Formal grammars

In the early days of programming, languages were defined by their
compilers. This led to so many inconsistencies that the benefit of a
separate formal definition of the language was quite obvious, and nowadays
languages are almost always defined by formal grammars. Given that the
business of GP is to produce programs, it is something of an anomaly that
the phenotype language is not represented by a formal grammar in SGP.
SGP embodies mechanisms to define a language but which have little
resemblance to a formal grammar. Those GP systems that have
incorporated grammars have used CFGs, which are not powerful enough to
represent the full complexity of a programming language.

By incorporating full-size CSGs into GP, I hope to make the benefits of
programming language design such as abstraction, sequencing, iteration,
data types — not to mention future programming language developments —
available to GP at a stroke. Further, by separating the language from the GP
system, it should be easy to change the language to evolve programs in any
language. By using languages for timetables, electric circuits, or molecules,
we should be able to evolve these kinds of object, using the same underlying
evolutionary engine. Decoupling the language from the evolution should
make many different kinds of GP simpler to achieve.

1.4.2 Simple genotype

SGP and most GP systems use a tree-based genotype. Although this was a ij
key development which made GP possible, it has some disadvantages. It 4

11

makes GP so distinct from other forms of evolutionary programming that
advances in one field may not be so easily transferable to another.

By using a genotype which is a simple list or array of integers, Gads brings
GP back to the GA. This makes it possible to use existing GA software, to
use existing GA theory, and to avoid existing patents on tree-based systems.

1.4.3 Change in representation

It is well known that changes in the representation of the genotype can have
a major effect on the performance of GP, even with the same problem and
fitness function. The Travelling Salesman Problem is an example of this
[Michalewicz, 1994]. Indeed, the basis of SGP is to represent programs as
ETs and not as character strings [Koza, 1992].

Therefore, it is reasonable to expect that Gads would offer improved
performance for at least some classes of problem, simply by virtue of a
change of representation; although by the same reasoning. Gads should
have worse performance on others. An example of improved performance
is given in §2 Gads i, where solutions to the cart-centering problem are
found in generation 0 — that is, by random search.

1.5 Contribution

The main contributions of this thesis are:
Extending the range of GP to context-sensitive phenotype languages

Gads technique involves a formal grammar as part of the specification
of the ontogenic mapping. By changing the grammar, the phenotype
may be produced in Lisp, Java or any other language. The range of
languages need not be limited to programming languages. For
example, if it is possible to devise a language for electronic circuits,
timetables or bin packing, then it should be possible for Gads to find
solutions to these problems.

Exporting GP to other evolutionary systems
The Gads genotype is a list or array of integers. The simplicity of this
data structure means that Gads could be fitted on to a range of base
technologies, such as GAs, simulated annealing (SA), or even evolution
strategies (ESs), though to date, only GAs have been used. Thus, Gads
is not closely coupled to any particular underlying technology. This
brings several advantages. One, Gads is able to leverage existing
technologies. Two, Gads is able to draw on existing theories. Three,
since Gads does not use tree-based representations, existing GP
patents are avoidable.

12

1.6 Reading guide

The main sections of this thesis are as follows. §2 Gads 1 describes the first
implementation of Gads, which used a small CFG and a primitive ontogenic
mapping. §3 Statistics and §4 Grammars address the main limitations of §2
Gads 1. §5 Gads 2 describes the second implementation of Gads, which
uses a full-size CSG and a more advanced ontogenic mapping. §6
Conclusions discusses the strengths and weaknesses of the work, and where
it leads.

13

Gads 1

This section describes Gads 1. Much of the material in this section is taken
from [Paterson, 1996], which reports the results of the first experiments to
investigate the Gads technique.

The aim of the investigation was to decide whether Gads was feasible. For
this reason, many aspects of the implementation are far from optimal. A
teclmique that only works with careful tuning is not as valuable as one
which works, however inefficiently, without it. Also, having found that Gads
work without careful tuning suggests that there is room to improve its
performance at a later date.

2.1 Introduction

Gads 1 is an implementation of GP that uses array genotypes. The Gads 1
genotype is fbced-length array of integers which, when read by a suitable
generator, causes that generator to write the program that is the
corresponding phenotype. There is therefore a clear distinction between the
genotype and the phenotype. The mapping from genotype to phenotype is
called the ontogenic mapping. The genotype is operated on by the genetic
operators — crossover, mutation and so on — in the usual range of ways
available to GAs. To evaluate the fitness of a genotype, Gads 1 tests the
phenotype in the environment in which it is to operate. The result of the
testing gives the fitness of the phenotype, and by implication, of the
underlying genotype.

Using an array genotype has the immediate advantage that conventional GA
engines can be used. Using a generator to convert from genotypes to
phenotypes is not new. [Michalewicz, 1994] gives many examples, though
not using the terms genotype and phenotype.

The reason for investigating alternatives to FT genotypes is that the
behaviour of a GA system (and GA is taken here to include GP as a particular
case) depends greatly on the way the genotypes represent the phenotypes.
Thus, we should expect some change in performance to result from a
change of design. Whether the change is for the better or worse is only to
be found by experiment, but it would be reasonable to expect that there are
some classes of problem for which one approach is more suitable than the
other. The range of programs that can be produced by list- or tree-based GP
should, however, be identical.

14

2.2 Principles of Gads 1

2.2,1 The phenotype language

The phenotype language is the programming language in which the
phenotypes produced by Gads 1 are written. The choice of phenotype
language therefore depends on the problem domain which Gads 1 is
addressing. Lisp is an obvious candidate to begin with, because so much GP
has already been done using it, and results are available for comparison; but
Gads 1 is not limited to Lisp.

2.2.2 The ontogenic mapping

There are many candidates for the ontogenic mapping. For example, a
feature common among text editors is the ability to accept a sequence of
mark-up commands to apply to a file. We can assign an identifying integer
to each mark-up command, so that an editing sequence can be coded as a
list of integers. Given an initial file to edit, the editor is then an
implementation of an ontogenic mapping. [Keller, 1996] describes a many-
to-one mapping from genes to the terminal symbols of the phenotype
language. Program transformations offer yet another possible class of
genotype mappings. Gads 1 uses a BNF definition of the phenotype language
syntax as the basis of the ontogenic mapping. The syntax of the phenotype
language is written in BNF as a set of productions of the form:

LHS ::= RHS

where the left hand side (LHS) is one nonterminal symbol of the language,
and the right hand side (RHS) is a concatenation of zero or more symbols
(terminal or nonterminal) of the language. The productions are numbered
from 0 to n, so that any production can be represented by a number in the
range [0, n]. For example:

production
<input>0 <sexp>

1 <sexp>
2 <sexp>
3 <sexp>
4 <input>
5 <inout>

(GT <sexp> <sexp>)
(+ <sexp> <sexp>)
(- <sexp> <sexp>)
X
V

15

Thus, beginning with the start symbol <sexp>, a production sequence
results in a particular program. For example, the sequence 1,0, 4, 2, 0,4, 0,
5 progressively transforms the start symbol <sexp> into the expression -
(GT X (+ X V)):

<sexp>
1 , (GT <sexp> <sexp>)
0 (GT <input> <sexp>)
4 (GT X <sexp>)
2 (GT X (+ <sexp> <sexp>))
0 (GT X (+ <input> <sexp>))
4 (GT X (+ X <sexp>))
0 (GT X (+ X <input>))
5 (GT X (+ X V))

Every well-formed program in a language has a derivation according to the
syntax of that language. A derivation is a sequence of productions which,
when applied in turn, transform the language's start symbol into the
program. Thus, any program can be represented by a derivation, and any
derivation can be represented by the sequence of integers which correspond
to the productions in its derivation. In short, any program can be
represented as a sequence of integers in the range [0, n]. This is the basis
for representation of programs in Gads 1.

Provded the phenotype language is context-free, using BNF brings many
benefits;

BNF is well-established.
The BNF syntax for many languages is readily available.
A BNF generator produces all programs in a language. There are no
programs which, due to some unintentional peculiarity of the
generator, cannot be produced.
A BNF generator produces only well-formed programs. Unviable
genotypes do not occur. Expensive repair mechanisms are not
necessary.
It is feasible to include the BNF syntax of the phenotype as part of the
input to Gads 1. Thus the phenotype language need not be hard
coded into Gads 1.

The use of | to indicate alternatives in the RHS is a commonly-used BNF
shorthand for several productions which have the same LHS. In Gads 1, this
shorthand notation is not used. Each RHS consists of a single
concatenation.

16

2.2.3 The initial population

Each gene in the initial population is generated as a random number,
distributed uniformly over the range [0, n\. This means that each
production in the phenotype syntax is equally likely to occur at each gene in
the genotype.

There are, however, infinitely many syntaxes for a given phenotype
language. One syntax may be a simple renaming of another, or the
relationship between them may be more subtle. Distinct syntaxes give rise
in general to different distributions of programs in the initial population.
The initial distribution can be controlled by the choice of syntax. The
question of using a distribution other than uniform to generate the initial
population, so that certain productions are favoured at the expense of
others, is not discussed here. Nor is the question of using different
distributions for different gene positions along the chromosome.

2.2.4 Generating the phenotype

A BNF definition of the phenotype language is needed. For this
investigation, simple BNF definitions of Lisp were used, with about 10
productions. Phenotypes may be generated as strings or ETs. Gads 1 uses
ETs.

A string phenotype is a character string containing embedded nonterminal
symbols. Applying a production involves searching the string for an
occurrence of the nonterminal which is the left hand side of the current
production. Although simple, this involves much linear searching, and care
is needed to avoid creating spurious nonterminals by the juxtaposition of
terminals. A data structure can be used to keep a record of the position and
type of all nonterminals in the string, removing the need for linear searches
and so improving performance.

An ET phenotype requires a data structure for ET nodes. Each node of the
ET represents one symbol of the phenotype language, and has links to zero
or more child nodes. The number of links a node has depends on the
symbol it represents. When a nonterminal node is expanded, links to child
nodes are added, depending on the RHS of the production. For example, the
partially developed phenotype

(GT {- X <sexp>) <sexp>)

17

is represented by the ET shown below:

GT

<se>9>

X <sexp>
Figure 2-1 : A partially developed ET

Whichever form of phenotype is used, the generator begins by initialising a
new phenotype, and then applies the productions identified by the genes in
the order they occur along the chromosome. The initial value of the
phenotype is usually the start symbol of the language; for Lisp, this is
<sexp>. In more general terms, the initial value may be any partially-
generated program such as

(GT <sexp> <sexp>)

Using a partially generated program limits Gads 1 phenotypes to a subset of
the programs in the phenotype language.

2.2.5 Inapplicable productions

As ontogenesis proceeds, each gene in turn identifies the next production to
apply. But a given production can only be applied if the developing
phenotype contains the nonterminal which is the production's LHS. For
example, given the partially generated phenotype:

(GT <sexp> <numeral>)

only a production with <sexp> or <numeral> on its LHS can be applied. If a
gene selects a production which cannot be applied, the generator passes
over that gene, and moves on to the next gene.

2.2.6 Residual nonterminals

After all the productions in the genotype have been applied, there may still
be some nonterminals in the phenotype. This could happen because the
ontogenic mapping reached the end of the chromosome before all the
nonterminals were expanded, or perhaps because the necessary genes for

18

the nonterminal were not present in the chromosome. However it happens,
the end result is a phenotype which is not fully developed, and whose
fitness therefore cannot be evaluated in the usual way.

There are several ways of dealing with this. The phenotype can be rejected
as unviable, or penalised with a very low fitness, without further evaluation.

It is also possible to repair the phenotype. This has the advantage that the
resulting phenotype is well-formed, so it can be evaluated in the ordinary
way, and can contribute to the search for a good solution. Gads 1 uses a
simple repair method, which is to expand remaining nonterminals to a
default terminal value. For example, every remaining <sexp> can be
replaced by 0, every <atom letter> by A, and so on. However, deciding what
the default value should be for any given nonterminal would not be entirely
trivial for a large language. The default could even be a random value, but
this raises the question of endless iterations and non-repeatability.

2.2.7 Evaluation

Evaluating the individual requires either that it be compiled, linked and
executed; or that it is interpreted.

Compiling and linking introduces a considerable overhead, but if the fitness
evaluation involves much processing, the overhead is likely to be recovered
in more efficient execution.

Given that Gads 1 phenotypes are ETs, it was simple to evaluate them by
means of an ET interpreter. The interpreter was designed to give any
residual nonterminals default values during interpretation, so that the
repair mechanism was actually implemented in the interpreter.

2,3 Experimental design

This section describes an experiment to test the Gads 1 technique by
applying it to the cart-centering problem. The aim of the experiment is
firstly to discover whether Gads 1 works at all, and secondly to begin to
discover how various conditions affect its performance.

2.3.1 The problem

The problem is to find a program to control the motion of a cart. The cart
can move to left or right along a straight frictionless track. At any time f,
the position of the cart is x and it is moving at velocity v. The cart is subject

19

to a force applied either in the positive or negative direction, so that the cart
accelerates uniformly to the left or right. The control program can control
the direction of the force, but not its magnitude; in particular, it cannot be
switched off. By choosing appropriate units of measurement, mass of cart
and magnitude of force, we can arrange that the optimal solution has a -
simple form.

The control program controls the motion of the cart by computing whether
to apply the force to the left or to the right. That is, the program calculates
a given x and v. The aim of the control program is to bring the cart to rest
(ie V = 0) at the origin (ie x = 0) in the shortest possible time. This problem
has an analytical solution, which is:

if (x < vx ab^v)) then a = +0.5 else a = -0.5

This problem is chosen as a test case for Gads 1 because it is well-known,
and gives a basis for comparison with tree based GP. [Koza, 1992] refers to
further details of this problem in [Macki, 1982] and [Bryson, 1975].

2.3.2 Experimental conditions

This section outlines which conditions are held constant, and which are
varied.

The experimental conditions which are held constant are outlined in table
2 - 1 .

Value Description
GAGS-0.95 A conventional GA engine is used. See §2.3.3.
500 The population is fixed at 500 individuals.
uniform The genes of the initial population are randomly generated

with a uniform distribution over [0, n] where n is the number
of the last production in the syntax.

best of run The best individual found in the course of the run is
designated as the solution. If several individuals have the
same best fitness, the first one found is kept.

full term The run terminates after 50 generations.
ET Phenotypes are generated as ETs which can be interpreted.

See §2.3.4.
Simulation Phenotypes are evaluated by simulating control of a cart for

20 test cases. See §2.3.5
Table 2-1: Experimental constants

20

The experimental conditions which are varied are outlined in table 2-2.

Name Values Description
Syn A, B Two syntaxes (ie genotype mappings)

for the same phenotype language are
compared. See §2.3.6.

Init <sexp>,
<application>

Two initial values for generating the
phenotype are compared. See §2.3.7.

Sel ELITE 10%,
ROULETTE

Two selection methods for the GA are
compared. See §2.3.8.

Len 50,200 Two chromosome lengths are compared.
See §2.3.9.

Table 2-2; Experimental variables

The above four experimental variables give a total of 16 sets of
experimental conditions. The experimental variables are described in more
detail below.

In addition to the experimental variables, three different sets of test data
are used for each of the 16 conditions, making 48 runs in all. A different
random seed is used to generate the test data in each of the 48 runs.

2.3.3 The GA engine

The GA engine used for this experiment is GAGS-0.95 [Merelo, 1994]. GAGS-
0.95 was initially selected partly because it supports variable-length
chromosomes. However, this facility is not used in the experiments.

GAGS is a conventional genetic algorithm, not especially tailored or
customised for Gads 1. In fact it is in some ways less than ideal because the
genes are real numbers rather than integers. They m ust be mapped from
the real range [0,1] into the integer range [0, u] to identify a production.
However, this illustrates an advantage of Gads 1 over tree-based systems,
namely that it does not need a specialised GP engine.

2.3.4 Generating the phenotype

21

The phenotype is generated as an EX. Each node of the EX Is implemented
as a tuple of 3 integers:

(SYMBOL, LINKl, LINK2)

SYMBOL is a simple encoding which specifies a terminal or nonterminal of
the phenotype language, l i n k i and l i n k 2 are pointers to other nodes in
the tree. The n i l value is used when an actual pointer is not required.
Zero, one or two of the links in a node may actually be used, depending on
SYMBOL. For example, the partially developed phenotype

(GT (- X <sexp>) <sexp>)

is implemented as shown below:

<sexp> NIL NIL

<sexp> NIL NIL

Figure 2-2: Implementation o f an EX

This is the same example as is used in figure 2-1. The structure of the EX is
identical, but in figure 2-2 more of the implementation is apparent. Since
the nodes have three fields, the EX can be written as triples:

(GT,
(-, (X, NIL, NIL), (<sexp>, NIL, NIL)),
(<sexp>, NIL, NIL)

The generator begins by creating a new EX as a single node. The first field
of the node, s y m b o l , is specified by the experimental variables. The second

22

and third fields, l i n k i and l i n k 2 , are set to n i l . Generation then
continues by applying the productions corresponding to the genes along the
chromosome in turn. To apply a production, the generator traverses the ET
from the root, in infix order, looking for a node whose s y m b o l is the same
as the LHS of the production. If no such node can be found, the production
is ignored and the generator passes on to the next gene.

Once a suitable gene has been found, the s y m b o l of the node is updated. If
the production has only one symbol in its RHS this application is complete.
If the production has more than one symbol in its RHS, one or both of the
link fields are also used. For example, consider productions 5 and 6 of
syntax A (table 2-3 below) being applied to the following node:

{<application>,
NIL,
NIL

)

For production 5, the result is:

(<arityl>,
(<sexp>, NIL, NIL),
NIL

)

That is, a new <sexp> node is created, and connected to the tree by the first
link in the node being updated. For production 6, the result is:

(<arity2>,
(<sexp>, NIL, NIL),
(<sexp>, NIL, NIL)

)

That is, two new <sexp> nodes are created and connected to the tree.

2.3.5 Evaluating the phenotype

The fitness of the phenotype ET is measured by simulating control of the
cart for 20 random (x, v) starting conditions uniformly distributed over the
range [(-0.75, -0.75), (4-0.75, +0.75)]. A different random seed is used for
each of the 48 runs. The same test cases are used throughout each run.

The repair mechanism for residual nonterminals (which are discovered
during evaluation of the ET) is to Interpret them as 0. If the residual
nonterminal occupies the s y m b o l field of a node, then the entire subtree of

23

the ET is interpreted as 0, whether the linlcs are nonterminals or not. If the
residual nonterminal occupies the LINKI or L1NK2 field of a node, then that
field is interpreted as 0.

Simulation requires a wrapper to convert the real number returned from the
evaluation of the phenotype into an acceleration of +0.5 or -0.5. The
wrapper used is:

if (e v a l u a t e > 0.0) then +0.5 else -0.5

where e v a l u a t e is the result of evaluating the phenotype in the
environment of x and v.

The simulation equations of motion are:

v(t+ r) = v(t)+m{t) (1)

x(t + t) = XO + Tv(r) + r^a{t) / 2 (2)

Equation (1) says that the velocity at time (f + x) Is the same as the velocity
at time (f), plus any change due to acceleration a at time (f) for the duration
X. If the acceleration is zero, there is no change in velocity. If the
acceleration is greater than zero, the velocity at time (t + x) is greater than
the velocity at time (f), and if the acceleration is less than zero, the velocity
at time (f + x) is less than the velocity at time (f).

Equation (2) says that the position at time (t + x) is the same as the position
at time (t), plus any change due to velocity v at time (f) for the duration x,
and for the acceleration a at time (f) for the duration x. Of course if there is
a non-zero acceleration, the velocity at the start of the time quantum will
not be the same as the velocity at the end, but by making the time quantum
small enough this error can be kept to an acceptable limit.

Taken together, the equations compute the velocity v and the position x of
the cart at time (t + x) in terms of its velocity and position at time (t). The
symbol x is the time quantum, which is set at 0.02 s. By computing these
equations repeatedly the simulation computes the velocity and position of
the cart at any desired time.

Simulation continues until either the simulated time runs out (at 10 s) or the
cart is close enough to the origin of the (x, v) plane (ie x̂ + \^ < ?̂), where r
is the target radius, set at 0.1 m.

24

Thus it is not necessary for the simulated cart to come exactly to rest
exactly at the origin. An approximate solution will do; the degree of
approximation being controlled by the target radius r and the time quantum
T. By contrast, the theoretical solution to this problem, given below in
§2.3.9 Chromosome length, is the exact solution. The exact solution
satisfies the approximate problem, but the converse is not true. The
importance of this is that if the GP system is left to evolve after the
theoretical solution has been found, it can go on to find solutions which are
better than the theoretical optimum, which is puzzling unless you realize
that GP and theory are not solving precisely the same problem.

The raw fitness is the sum of the simulated time over all 20 test cases,
adjusted fitness is 1.0/(1.0+raw fitness).

The

2.3.6 Syntax

Two syntaxes are compared: A and B. They are shown in tables 2-3 and 2-4.

production
0 <sexp> : : = <input>
1 <sexp> : : = <application>
2 <input> : = X
3 <input> : = V
4 <input> : = -1
5 <application> :;= {<arityl> <sexp>)
6 <application> ::= {<arity2> <sexp> <sexp>)
7 <arityl> = ABS
8 <arity2> = +
9 <arity2> = -
10 <arity2> = *
11 <arity2> = %
12 <arity2> = GT

Table 2-3: Syntax A

production
0 <sexp> <input>
1 <sexp> ::= <application>
2 <input> ::= X
3 <input> : V
4 <input> ::= -1
5 <application> = (ABS <sexp>)
6 <application> = (+ <sexp> <sexp>)
7 <application> = (- <sexp> <sexp>)
8 <application> = (* <sexp> <sexp>)
9 <application> = (% <sexp> <sexp>)
10 <application> = (GT <sexp> <sexp>)

Table 2-4: Syntax B

25

Both syntaxes define the same phenotype language: a stripped-down first-
order Lisp, containing only nested arithmetic expressions. All values are
real numbers. The meaning of the terminal symbols is as follows:
X

V

-1

ABS

+

%

GT

A variable whose value is the position of the cart.

A variable whose value is the velocity of the cart.

The constant -1.

A function of one argument, which returns its absolute value.

A function of two arguments, which returns their sum.

A function of two arguments, which returns the first less the second.

A function of two arguments, which returns their product.

A function of two arguments, which returns the first divided by the
second. If the second is within ±0.000001, the value 1 is returned.
This avoids the risk of dividing by zero.

A function of two arguments, which returns 1 if the first is greater
than the second, and 0 otherwise.

Although both syntaxes define the same phenotype language, the
probability of any given program being produced varies between the two
syntaxes. The difference in program probabilities can be shown for the case
of function applications. The relative frequency of the various functions in
programs generated using the two syntaxes is shown in table 2-5.

Function Syntax A Syntax B
ABS 50% 17%
+ 10% 17%
— 10% 17%
* 10% 17%
% 10% 17%
GT 10% 17%

Table 2-5: R elative frequency o f functions

Syntax A is skewed towards ABS, at the expense of the other functions.
Although ABS is involved in the optimal solution, it does not comprise 50%
of the functions. Syntax B's phenotype distribution should be richer in
likely solutions to the cart-centering problem.

26

2.3.7 Initial value

Two initial values for generating the phenotype are compared: <sexp> and
<application>.

<sexp> is the start symbol of Lisp. Using this as the initial value for
phenotype generation means that the whole of the stripped-down Lisp is the
range of phenotypes that can be generated. In particular, x, v and - i are
possible phenotypes.

In order to avoid these over-simple phenotypes, and force Gads 1 to
generate at least one function application, we use <application> as an
alternative initial value for program generation. This nonterminal occurs in
both syntaxes, with the same syntactic meaning, although the resulting
phenotype distribution is different.

2.3.8 Selection method

GAGS supports a range of selection methods. Two methods are compared.
ROULETTE

GAGS forms a gene pool by selecting individuals from the old
population in proportion to their fitness, using the roulette wheel
algorithm. Pairs of parents are chosen at random from the gene pool
and mated using uniform crossover. The offspring form the new
population.

ELITE 10%
GAGS removes the worst 10% of the population, and replaces them by
breeding. For each breeding pair, one parent is chosen by fitness
proportionate selection, and the second is chosen by uniform random
selection. The parents are mated using uniform crossover and added
to the population.

2.3.9 Crossover

GAGS uses uniform crossover. Given that the Gads 1 chromosome is an
array, with a definite beginning and a clear ordering of the genes along its
length, one-point crossover might be expected to produce much better
results. However, this is not an option in GAGS 0.95. Rather than develop
yet another GA, it was decided to stick with GAGS, with the intention of
discovering whether Gads would work with a less-than-optimal GA.

If uniform crossover is actually counter-productive, in the sense that it
disrupts useful gene subsequences, then roulette selection is likely to

27

perform badly. Elitism is likely to take more generations to produce any
result at all, although the meaning of generation is different.

2,3.10 Chromosome length

Two chromosome lengths are compared: 50 genes and 200 genes.

The optimal program can be represented as:

(GT (* -1 X) (* V (ABS V)))

and can be represented (using syntax A) by as few as 21 genes:

<sexp>
1 <application>
6 (<arity2> <sexp> <sexp>)
12 (GT <sexp> <sexp>)
1 (GT <application> <sexp>)
6 (GT (<arity2> <sexp> <sexp>) <sexp>)
10 (GT (* <sexp> <sexp>) <sexp>)
0 (GT / 'k <input> <sexp>) <sexp>)
4 (GT -1 <sexp>) <sexp>)
0 (GT -1 <input>) <sexp>)
2 (GT / k -1 X) <sexp>)
1 (GT (* -1 X) <application>)
6 (GT / k -1 X) (<arity2> <sexp> <sexp>))
10 (GT -1 X) (* <sexp> <sexp>))
0 (GT / k -1 X) (* <input> <sexp>))
3 (GT (* -1 X) (* V <sexp>))
1 (GT / k -1 X) (* V <application>))
5 (GT -1 X) (* V (<arityl> <sexp>)))
7 (GT (* -1 X) (* V (ABS < s e x p >)))
0 (GT (* -1 X) (* V (ABS <input>)))
3 (GT (* -1 X) (* V (ABS V)))

However, it might not be reasonable to expect such a compact chromosome
to arise in practice. The question is, how long m ust the chromosome be? In
general, the shorter the chromosome the better, since shorter chromosomes
require fewer computing resources.

A few simple experiments were carried out to show the relation between
chromosome length and program length. 1 000 chromosomes of length 50,
100 and 200 uniformly random genes were generated, and used to generate
programs, beginning with <sexp>. The lengths of the programs were
measured by counting the symbols (ie variables, constants and functions,
but not parentheses or spaces).

28

This question can also be answered analytically by the following method.
Suppose we have an infinite chromosome with a uniform distribution of
gene values. Rewrite the CFG as a set of simultaneous equations, according
to these rules;
1 Merge rules which have the same LHS into a single rule using the bar

symbol (1) to separate alternatives. For example, rewrite syntax A as:

<sexp>
<input>
<application>

<input> I <application>
X I V I - 1
(<arityl> <sexp>)

I (<arity2> <sexp> <sexp>)
<arityl> ; :== ABS
<arity2> + | - | * | % | G T

2 Convert each rule into an equation by making the following
substitutions:

2.1 Replace each nonterminal by an algebraic unknown which represents
the expected length of sentences derived from the nonterminal. (The
simplest way to do this is to remove the angled brackets and italicise
the name.)

2.2 Replace each terminal by the value 1 (which is its expected length). If
you don't want to count a certain terminal, replace it by the value 0.
This is done below with the terminal symbols (and).

2.3 Replace each : : = with =.

2.4 Replace concatenation in the RHS by addition.
2.5 Replace alternation by an averaging function; for example, replace:

P I Q I R

by:

average (P , Q , R)
or:

(P + 0 + R) / 3

The substitutions must be done with care to avoid accidentally confusing
terminal symbols and variable names. Rewriting syntax A leads to the
following system of simultaneous linear equations:

s e x p = a v e r a g e { i n p u t f a p p l i c a t i o n)
i n p u t = averaged, 1, 1)
a p p l i c a t i o n = average(0 + a r i t y l + s e x p + 0,

0 + a r i t y 2 + s e x p + s e x p + 0)
a r i t y l = 1
a r i t y 2 = averaged, 1, 1, 1, 1)

29

which can be solved for sexp to give:

s e x p

Table 2-6 shows the mean program length for both syntaxes, both
theoretical and empirical:

Genes Syntax A Syntax B
50 2.669 3.934
100 3.345 5.206
200 3.648 6.718
Theoretical 4 12

Table 2-6: Mean program length

In both syntaxes, the empirical programs are well short of the theoretical
limit. This implies that the ontogenic mapping runs out of genes before all
nonterminals have been expanded. Given that we are dealing with very
small grammars, the fact that 200 genes only generates programs half as
long as they could be is cause for concern. It suggests that the ontogenic
mapping uses genes inefficiently, and would not scale to larger grammars.

With a slight modification, the method of converting the CFG to a system of
equations can compute the expected number of genes needed to produce a
program in a given language. The first method, given above, works by
computing the expected number of leaf nodes in a FT. Each leaf is a
terminal symbol and is given the value 1 (unless it is a terminal you don't
wish to count, in which case it is given the value 0). To compute the
expected number of genes needed we modify the equations to count
internal nodes instead of leaves, since each internal node requires one gene
to expand it.

The modifcations are (1) the RHS of each equation begins with "i + " to
count the gene for the nonterminal being expanded, and (2) each terminal
symbol is replaced by 0. The system of equations for syntax A is:

s e x p
i n p u t
a p p l i c a t i o n

a r i t y l
a r i t y 2

1 + a v e r a g e { i n p u t , a p p l i c a t i o n)
1 + a v e r a g e {0, 0, 0)
1 + a v e r a g e {0 + a r i t y l + s e x p + 0,
0 + arity2 + s e x p + s e x p + 0)
1 + 0
1 + a v e r a g e {0, 0, 0, 0, 0)

30

which can be solved for sexp to give:

s e x p = 10

That is, it takes on average 10 genes to derive a program from <sexp>. This
is low compared to the chromosome lengths of 50, 100 and 200 that are
investigated empirically above, which is consistent with the conclusion that
the ontogenic mapping is inefficient.

The maximum length of program produced increases with the chromosome
length. It is also apparent that syntax B produces noticeably longer
programs than syntax A.

The number of residual nonterminals drops as the chromosome length
increases. This is of interest, since it suggests an upper bound on
chromosome length, which there is no advantage in passing.

It m ust be remembered that the above discussion applies only to the first
generation. After that, the effect of evolution — selection and
recombination — change the average lengths of programs in the
population., as shown below in table 2-8. For the purposes of the
experiment, chromosome lengths of 50 and 200 genes are used.

2.4 Experimental results

Several measurements were made for each of the 48 runs, and other
quantities can be calculated from them. The effect of the experimental
parameters on each of these is discussed in a separate section below. Table
2-7 summarises the measurements and the effect of the experimental
parameters on them.

31

Value Description
Phenotype length (Sym) The size of the best-of-run's phenotype, as

generated, measured by counting symbols.
Major factors: Len and Syn.
See §2.4.1.

Number of generations (Gen) The generation (starting at 0) where the best
individual was found.
Major factors: Syn and Sel.
See §2.4.2.

Number of individuals (Ind) The number of individuals generated up to
the best-of-run.
Major factors: Sel; others minor.
See §2.4.3.

Time to center the cart (Std) The best individuars average time to center
the cart, in simulated seconds.
Minor factors: Sel and Init.
See §2.4.4.

Optimal program Gads 1 finds the optimal program.
See §2.4.5.

Table 2-1 \ Experimental measurements

To gauge the effect of an experimental variable on a measurement, we
divide the 48 runs into two groups, one group for each value of the variable.
We then compare the mean measurement value of both groups. This is as
much statistical analysis as seems justified, given the small population size
and our ignorance of the underlying distributions.

2.4.1 Phenotype length (Sym)

The length of generated programs measured as the number of nodes of the
ET. This ignores parentheses, and counts each name, constant or non­
terminal as one symbol. The shortest best-of-run program, with length 4
symbols, is:

(GT (ABS X) V)

The mean program length has clearly increased, as can be seen by
comparing tables 2-6 and 2-8. Short length helps reduce the load of
calculating fitness, because there is less computation necessary to evaluate
a smaller ET than a larger one. Short length also makes programs easier for
a person to understand, as can be seen by examining the three equivalent
programs shown in §2.4.5 Optimal program below. But longer length is
necessary to represent more complicated algorithms. The distribution of
program length over all 48 runs is shown in figure 2-3.

32

35

30

25

U 20

I,.
10

[0 ,5) [5 , 1 0) [1 0 ,1 5) [1 5 ,2 0) [2 0 ,2 5) [2 5 ,3 0) [3 0 ,3 5) [3 5 ,4 0) [4 0 .4 5)

Symbols range

Figure 2-3: Distribution o f phenotype length (Sym)

The effect of experimental variables on program length is shown in table
2 - 8 .

Var Value Mean Value Mean
Syn A 7.5 B 11.3
Init <sexp> 9.0 <application> 9.7
Sel ELITE 10% 8.8 ROULETTE 9.9
Len 50 6.6 200 12.1

Table 2-8: Factors affecting phenotype length (Sym)

Chromosome length and syntax have the greatest effect on Sym. Initial
symbol and selection method do not appear to affect length significantly.

2.4.2 Number of generations (Gen)

By itself, Gen gives an idea of how much evolution is taking place. The
number of generations necessary to find the solution in each run is
relatively small. On average overall 48 runs only 8 generations are needed,
and in 25% of runs, the best result is found in generation 0. This suggests
that the population does not evolve particularly well.

On the other hand, the optimal solution was found in generation 0 of run
30. This is very much at odds with tree-based chromosomes. Chapters 7
and 9 of [Koza, 1992] suggest (but do not state explicitly) that SGP very

33

rarely solves the cart-centring problem in generation 0. That one run in 30
of Gads 1 should do is therefore intriguing, and worth investigating further.

The distribution of Gen over all 48 runs is shown in figure 2-4.

cr

Gen range

Figure 2-4: Distribution o f number o f generations (Gen)

The effect of experimental variables on Gen is shown in table 2-9.

Var Value Mean Value Mean
Syn A 6.9 B 9.0
Init <sexp> 8.1 <application> 7.8
Sel ELITE 10% 6.9 ROULETTE 9.0
Len 50 7.8 200 8.1

Table 2-9: Factors affecting number o f generations (Gen)

Syntax and selection method have the greatest effect on Gen. Initial symbol
and chromosome length do not appear to affect Gen significantly.

2.4.3 Number of individuals (Ind)

The number of individuals generated up to and including the best of the run
gives an idea of how efficient the search is.

34

The number depends on the selection method and the generation in which
the best individual was found. The actual number of evaluations is not
available from GAGS, so we assume that on average half of the new
individuals in the successful generation are generated before the best is
discovered. However, even a pessimistic assumption here (ie that the entire
population is evaluated before the best is discovered) makes little difference
to the number of evaluations.
ROULETTE

Each generation is completely new. The number of individuals
considered is:

GgMx500 + 250
ELITE 10%

Only 10% of the population is replaced at each generation after the
first. The total number of individuals considered is:

i f G en = 0 th en 2 5 0 e lse 5 0 0 + G en x 5 0

The distribution of Ind over all 48 runs is shown in figure 2-5.

25

20

10 -

...
(M r O ' ^ i n c D h - o o c ^ O 0 0 r o ^ tr> CO

»— oo CO tn

Ind range (x 1000)

Figure 2-5: Distribution o f number o f individuals (Ind)

35

The effect of experimental variables on Ind is shown in table 2-10.

Var Value Mean Value Mean
Syn A 26TA5 B 2852J
Init <sexp> 2829C2 <application> 2660.4
Sel ELITE 10% 739.6 ROULETTE 4750.0
Len 50 2568.8 200 2920.8

Table 2-10; Factors affecting number o f individuals (Ind)

As might be expected, selection method has the most significant effect on
Ind, but all four experimental parameters appear to affect Ind significantly.

2.4.4 Time to center the cart (Std)

Since every run used a different random seed for its 20 test cases, the time
from the runs has a large random component, and is not useful for
comparison. Instead, a fixed sample of 1 000 random test points was
generated and used to compare phenotypes after all runs were complete.
The time to center the cart using the standard test data is called the
standard time, or Std.

Two outlying values of Std (5.7 s and 5.8 s) are excluded from the following
analysis. The distribution of Std over the remaining 46 runs is shown in
figure 2-6. The m ost frequent time is 2.418 s, corresponding to the
phenotype:

(GT (* X -1) V)

36

40

35

30

25

3 20

15

10

[2 ,2 .1) [2 .1,2 .2) [2 .2 ,2 .3) [2 .3 ,2 .4) [2 .4 ,2 .5) [2 .5 ,2 .6) [2 .6 ,2 .7) [2 .7 ,2 .8)

Std range

Figui'e 2-6: Distribution o f time to center (Std)

The effect of experimental variables on the 46 values of Std is shown in
table 2-11.

Var Value Mean Value Mean
Syn A 2363 B 2.368
Init <sexp> 2.404 <application> 2.327
Sel ELITE 10% 2.406 ROULETTE 2325
Len 50 2389 200 2.342

Table 2-11: Factors affecting time to center (Std)

Selection method and initial symbol have the greatest effect on Std, but the
effect is slight. The other experimental variables do not appear to affect Std
significantly.

2.4.5 Optima! program

A vital question is whether Gads 1 discovers the optimal program. The
optimal program can be written as:

(GT (* -1 X) (* V (ABS V)))

37

Gads 1 finds the optimal program in runs 10, 22 and 30. The run details are
shown in table 2-12.

NO Syn Init Sel Len Gen Std
10 A appl roul 200 7 2.019
22 A sexp roul 200 28 2.019
30 B appl elit 200 0 2.019

Table 2-12: Runs leading to optimal program

The phenotypes are as follows:

Run 10

(GT (* V -1) (% X (ABS V)))

Run 22

(- (- -1 - 1) (% X X)) (+ (% X (ABS V)) V))

Run 30

(% (* X X) (+ -1 (- (- (GT (* (- (GT V (- (* (- V (+ X - D)
(GT V (ABS (- X X))) V)) V)) V) (ABS V)) X) (GT (* <sexp>
<sexp>) <sexp>)) (- <sexp> <sexp>))))

Although these phenotypes are syntactically quite different from each other
and from the optimal program, the fact that they all have the same Std value
over a sample of 20 initial conditions, and that they are all arithmetic
expressions without any mechanism such as conditionals to define special
cases in their input, strongly suggests that they are functionally identical.
Based on Std values we claim that 14 different algorithms are discovered in
the 48 runs.

2.5 Comparisons

The experiment was designed partly with the aim of comparing the
performance of Gads 1 with that of SGP. The cart-centering problem is the
first example of GP described in [Koza, 1992].

38

2.5.1 Phenotype length

On the whole the Gads 1 phenotypes do not resemble those of [Koza, 1992].
Koza's phenotypes are around 60 symbols long, Gads 1 phenotypes are
around 10 symbols long.

2.5.2 Number of Individuals

Koza’s optimal solution is found in generation 33. With the same principles
used to calculate Ind, the number of individuals is:

500 + 33 X 450 = 15350 individuals

The comparable Gads 1 figures from runs that lead to the optimal program
are 3 750, 14 250 and 250 individuals (table 2-12). Run 30 can reasonably
be discounted as a fluke that could only occur with an extremely simple
problem.

2.5.3 Initial population

The discovery of the optimal program by pure chance in generation 0 of run
30 is noteworthy. Tree-based GP experimenters do not generally expect
anything of value to arise in generation 0.

It is not obvious what, if anything, to make of this case. Clearly, no
evolution was involved, because the effect is in the initial population. A
possible explanation is that the discovery is connected with the relatively
short length of programs Gads 1 generates. But the phenotype in run 30 is
41 symbols long — the longest phenotype over all runs.

2.6 Questions raised

The study has raised a number of interesting questions. These are outlined
below. As well as these issues, it is clear that Gads 1 should be applied to a
further range of problems.

2.6.1 Specifying sentence distribution

Many grammars exist for the same language. Gads 1 used different
grammars as a way to specify the distribution of language strings. There

39

are other ways of doing this; for example, by specifying a probability or
weight for each alternative in a rule.

However, Gads 1 can achieve the same effect with a grammar in which the
rules are replicated in proportion to their relative probabilities. A purist
might object that a grammar is a set of rules so that replicating set
members is futile, but this can easily be overcome by renaming each of the
duplicates. The point is that both methods are equivalent, in terms of the
distributions they can produce. Are all 'sensible' methods equivalent?
Which is the m ost efficient in terms of programmer effort?

2.6.2 Moving away from Lisp

Much work has been done using Lisp as the phenotype language. The use of
other languages should be investigated. A possible difficulty here would be
the cost of evaluating fitness.

2.6.3 Functions, work variables etc

The definition of re-usable functions has been shown to increase the
effectiveness of genetic programming. Methods for doing this with Gads 1
should be investigated. In addition, the use of variables other than input
variables should be investigated. Such work variables are essential in real
programs.

2.6.4 Choosing sentence distribution

Given a method of specifying a sentence distribution, how do we choose a
good sentence distribution? A study of the rule frequencies used to
produce real programs would be of interest.

2.6.5 Statistical analysis

The extent to which a statistical analysis of the result can be carried out is
limited because we do not yet know much about the distribution the
measurements are likely to have. For example, an analysis of variance to
discover the relative importance of the experimental variables in
determining the experimental measurements would be of value. This I
requires that the distribution of the measurements is known to be 1
approximately normal. We hope to collect sufficient data to be able to use i
more powerful statistical tools in future analyses. i

1Ï
!

40

2.6.6 Sequential chromosomes

The essence of a sequence is that earlier genes can affect later ones but not
vice-versa. However, this only becomes visible during the evaluation of
fitness. Thus, in some sense, sequentiality is in the eye of the beholder. Is
there an objective way to measure the amount of sequentiahty in a
chromosome?

2.6.7 Gene effectiveness

In the Gads 1 experiment, chromosomes of 200 genes were used, but
nothing like that length of program was generated. It would appear that
many of the genes are unused. Why is this? Is there a way to increase gene
effectiveness? Is it a good thing to do?

As the population evolves, how does the pattern of active and inactive genes
change? We might expect that as evolution proceeds, convergence advances
along the length of the chromosome. Does this actually happen?

2.6.8 Genetic operations

GAGS uses uniform crossover, where each parent has an equal chance to
contribute each gene to a child. We might expect that one-point crossover
would be much more effective for Gads 1, given that it has a sequential i
chromosome. This may be related to the observation that many of the Gads |
1 runs did not find a better solution than was found by random search in I
generation 0. One-point and other crossover techniques should be i
investigated. I

2.6.9 Initiai distribution

Gads 1 was able to discover the optimal solution in one of its initial
generations. It would be interesting to compare the initial population
produced by Gads 1 to that produced by [Koza, 1992].

2.7 Conclusions

This section draws conclusions from the experiment.

The experiment was to decide (i) whether Gads 1 is feasible and (ii) whether
Gads 1 is worth developing further.

41

Gads 1 was implemented using a general-purpose GA engine that was not
customised for Gads 1 in any way. In some ways it was far from what might
be expected to be optimally tuned to Gads 1 requirements. The
implementation of Gads 1 was about 520 lines of C, including comments
and cpp directives. The implementation shows that the technique is simple
and feasible.

The performance of Gads 1 on the cart-centering problem is good enough to
confirm the feasibility of Gads 1. The three runs which discovered the
optimal solution were reasonably efficient.

The conclusion is that Gads 1 is feasible and is worth developing further.
The main limitations revealed by the investigation are in the areas of
statistics and scalability to full-size languages. These issues are dealt with
in §3 Statistics and §4 Grammars.

42

Statistics

This section deals with issues of statistical analysis which are raised in §'2
Gads 1. The aim of this section is to identify and develop the statistical
tools necessary for designing GP experiments and analysing their results. It
is in 3 main sections.

The first section, §3.1 Statistical perspective, analyses GP from a statistical
perspective, leading to a correspondence between statistical notions such as
experiment, population, sample and random variable and GP notions such as
run, population, individual and fitness. The criteria for a well-formed GP
experiment are thereby established.

The second section, §3.2 Performance comparison, uses a conventional
approach to investigate whether standard statistical techniques can reliably
be used to compare performance measurements produced by GP systems.
This puts performance comparison on a sound footing. It also reveals that
the most im portant factor affecting performance is the problem.

The third section, §3.3 Visualisation, develops a technique for visualising a
collection of points in a multi dimensional space. The points can represent
problems or GP system configurations. The technique, which is adapted
from biology, uses path-length trees known as cladograms.

3.1 Statistical perspective

3.1.1 Introduction

This section presents a description of the key GP features in statistical
terms. This is a necessary prerequisite to being able to apply statistical
techniques to GP experiments, and it leads to some important conclusions.
The introductory statistics presented here can be found in any statistics
textbook, and is taken mostly from [Freund, 1979].

3.1.2 Populations and samples

In statistical terms, a population is a set of all conceivable or hypothetically
possible observations of a phenomenon. Measures of populations (eg mean,
standard deviation) are called population parameters. A sample is part of a
population. Measures of samples (corresponding to population parameters)
are called sample statistics.

43

A sample design is a scheme by which members of a population are selected
for a sample. The simplest sample design is the random sample, where
every member of the population has the same chance of being selected.
Random samples need about 30 members to avoid the need for small
sample techniques when comparing sample means. An important property
of sample designs is that the members must be chosen independently of
one another.

Where there is no theoretical basis for a sample design, the best that can be
done is to select members of the population by educated guesswork. This
produces a sample which can be called a benchmark suite. Random samples
and benchmark suites are at opposite ends of a range of sample designs.

In GP terms the terms population and generation are used interchangeably,
except when generation refers to the activity of creating new individuals. To
avoid confusion, we henceforth use the term population only in its statistical
sense, and use generation for the GP notion.

There are several populations of interest in this investigation:
Configurations
Runs
Individuals in generation 0
Individuals in generation n> 0

They are described below in more detail,

3.1.2.1 Configurations

3.1.2.1.1 Populations

The population of configurations is the population of GP engines and
problems, in all their variety, with all their parameters. The extent, even the
precise definition, of this population is unknown.

3.1.2.1.2 Samples

In choosing a sample of configurations, the best that can be done is to make
an educated guess.

44

3.1.2.2 Runs

3.1.2.2.1 Populations

Given a configuration, each run is characterized by its RNG seed. The
population of runs for a given configuration is thus equivalent to the
population of RNG seeds. This is very convenient, since the population of
RNG seeds is the natural numbers from 1 to whatever limit the RNG
imposes.

3.1.2.2.2 Samples

It is thus simple to choose a random sample of runs for any given
configuration. All that is needed is to seed the RNG for each run with a
value derived, say, from the system clock.

3.1.2.3 Individuals in generation 0

3.1.2.3.1 Populations

The population of which generation 0 of a run is a subset is typically the set
of all programs in a certain language (eg first-order Lisp) which satisfy
certain properties (eg the number of nodes is in a certain range, the atoms
are in a certain set, and so on). Individuals in GP are said to be generated
rather than selected, typically according to a scheme such as ramped half-
and-half.

Ramped half-and-half (chapter 6.2 in [Koza, 1992]) generates Lisp ETs. The
term ramped means that equal numbers of ETs are generated with depths
from 2 to the specified maximum. (The depth of a tree is the number of
arcs from root to furthest leaf.) For example, if the maximum depth is 6,
then there are equal numbers of ETs with depths 2, 3, 4, 5 and 6. The term
half-and-half means that within the ETs of each depth, half are generated by
the full method, and half by the grow method. The full method generates
ETs in which all leaves are at the same depth. The grow method generates
ETs in which leaves may be at any depth up to the maximum. The reason
for choosing a scheme such as ramped half-and-half is pragmatic: it
produces a wide variety of trees of various shapes and sizes.

3.1.2.3.2 Samples

In the case of generation 0 populations, the sample design is a generative
technique such as ramped half-and-half. Generation 0 is therefore not a

45

random sample, and it is not valid, for example, to use the mean fitness of
generation 0 as an estimate of the mean fitness of the population. It is hard
to estimate population parameters on the basis of a sample drawn with an
intricate sample design such as half-and-half.

A way round this difficulty is as follows. We have a non-random sample
drawn from a population by some sample design. This sample could
equally well have been a random sample drawn from a different population.
We can define this hypothetical population implicitly in terms of the
generative technique. There is little point in describing the hypothetical
population explicitly, because the only way we can actually draw samples
from it is to generate them. This change of standpoint enables us to treat
generation 0 as a random sample, provided we specify the generative
technique.

The quality of the sample may be questioned on the grounds that all the
individuals have been produced from one seed for the random number
generator. There is some sense in this but ultimately it rests on a
confusion. An RNG has two essential properties: one, that it is algorithmic
and repeatable, and two, that the numbers it produces satisfy statistical
tests for randomness. Consider simulating 1 000 throws of a die. We
would not hesitate to use one seed to generate all 1 000 throws. It would
make no sense to argue that each throw should have its own seed, since this
would effectively mean doing without the RNG. The fact that each run
starts from one seed is irrelevant: each call of an RNG returns a random
number. The individuals in generation 0 are guaranteed to be statistically
(but not algorithmically) independent of each other by the quality of the
RNG.

An experiment comprises many runs, each of which has its own generation
0. Each of these can be treated as a separate sample, or they can be
combined into a single sample. There is a benefit in separate samples,
because it is possible to test the claim that they are all drawn from the same
population. This can be used, for example, to test the hypothesis that the
generation software in the engine is working correctly.

3.1.2.4 Individuals In generation n > 0

3.1.2.4.1 Populations

Each successive generation of a run is generated from the previous one
using various operators, involving the fitness of the individuals. The
population of individuals of which the generation is a subset is, like the
population for generation 0, typically the set of all programs in a certain
language (eg first-order Lisp) which satisfy certain properties (eg the
number of nodes is in a certain range, the atoms are in a certain set, and so
on). However the individuals in generation n > 0 are not generated in the

46

same way as those in generation 0, and the certain properties they satisfy
need not be the same as those in generation 0. For example, individuals in
generation n > 0 may be allowed to have more nodes than those in
generation 0.

3.1.2.4.2 Samples

If we attempt to treat generation u > 0 as a sample in the same way as we
did for generation 0, we run into serious problems, because the individuals
are not independent of each other.

To see why this is so, consider two runs of a configuration, each of which
converges completely by the same generation, but each run converging to a
different genotype. If these generations are samples, what population are
they drawn from?

One approach is to say they are drawn from the same population but the
sample design is different in each case. This implies that we have a
different sample design for each generation number and each RNG seed.

Another approach is to change our standpoint as we did for generation 0.
We say that the populations are different, but the samples are random. This
simplification lets us estimate population parameters; but the conclusion is
not very useful, because we have a different population for each generation
number and each RNG seed.

Analysis on the basis of either of these approaches would be difficult, to say
the least. The source of the difficulty is that individuals after generation 0
are not independent — no surprise, they have been interbreeding for n
generations. We conclude that generation u > 0 is not a sample of any
population we can deal with.

To deal with generation n > 0 as a sample it is necessary to treat each
generation n > 0 as one individual, which is a random variable derived
from the run's RNG seed. A study of a generation n > 0 is essentially a
study of a sample of 1. It is possible to compute, say, the mean of the nth
generation fitness, but that mean is not very informative, because another
run will produce a different mean. To study the nth generation mean, the
experimenter should produce a sample of nth generation means, and study
them as a sample.

47

3.1.3 Experim ents, ou tcom es, units and treatm ents

In statistical terms, any process of observation or measurement is referred
to as an experiment, and the results, whether made through simple
observations or extensive calculations, are the outcomes of the experiment.
Experiments are often described in terms of applying treatments to units.
(This terminology arose from agricultural experiments, for example,
applying different levels of fertilizer were applied to plots of land.)

From the discussion of §3.1.2 Populations and samples, it is clear that the
soundest choice for a statistical experiment is the run. A run is
characterised by a configuration consisting of:

A GP engine, in a particular configuration. For example, Lil-GP, with a
generation size of 50, ramped half-and-half initialisation, depth limit
30, and genetic operators replicate 9%, crossover 90% and mutate 1%.
The engine is the treatment.
A problem, defined by an objective (or fitness) function, in a particular
configuration. For example, the lawmnower problem, for a particular
size and shape of lawn. The problem is the unit.

A run also needs an RNG seed. The RNG seed is not considered to be part
of the configuration. This is discussed in the next section.

A configuration is thus a collection of experimental conditions, which can
be a data structure of arbitrary complexity. The work described in this
thesis consists of many such experiments.

It is tempting to partition the configuration into a pair of sub­
configurations, one for the problem and one for the engine, perhaps by
defining a parameter to be a problem parameter if it can be observed in the
solution; and otherwise to be an engine parameter. For example, the
terminal set is a problem parameter, but the genetic operators are not. But
it is not always clear which parameters are associated with the problem and
which with the engine. For example, it might seem natural to associate
generation size with the engine. But even in [Koza, 1992], where there is a
deliberate attem pt to use the same engine parameters for all of the
examples (so that the same engine configuration is used throughout), it is
necessary to give the Boolean 11-multiplexer a generation size of 4000
instead of the usual 500. Does this mean that generation size is a problem
parameter? Certainly not; using different technique we can solve the
Boolean 11-multiplexer problem with no generation size parameter at all.
For example, random search or human design are methods which have no
generation size parameter. This parameter therefore belongs to the engine.
Knowing what value to set it to requires a very special kind of knowledge
about the problem, and this is one area of weakness in GP paradigm. The
existence of these problem-specific engine parameters means that for the
time being, we cannot usefully split a configuration into a problem part and

48

an engine part. It is however reasonable to identify a configuration by the
problem and engine involved.

In addition to the problem and engine, the operating system, hardware and
so on may be necessary for a complete description of an experiment. These
factors are constant for this investigation.

The termination criterion is an experimental condition, in that it affects the
resulting observations, such as the fitness of the best-of-run individual. But
it is unlike other experimental conditions, in that it does not alter the way a
run progresses. If a run is like a sequence, then the termination criterion
establishes how many terms there are, but it does not affect the rule for
computing each term from the previous one. Ideally, therefore, termination
criteria should not be treated in the same way as other configuration
components, but it has not been given special treatment in published papers
before now, so I do not give it special treatment here either. This is a topic
for future investigation.

3.1.4 Random variation

Much of traditional statistics is concerned with the natural variation that
occurs between units (problems, in GP) and treatments (engines, in GP). For
example, if you apply the same level of fertilizer to two seeds, they won't
produce the same yield. This is due both to differences in the treatment (it
is not possible to get it exactly the same twice) and to differences in the unit
(no two seeds are identical). Nor is it possible to apply a treatment to the
same unit more than once.

These limitations do not apply to computer simulations such as GP. It is
possible, for example, to re-use a sequence of random numbers. This
technique is known as CRN and is one of several methods of variance
reduction described in [Bratley, 1983]. When CRN is used, the experiment
produces a sample of pairs rather than a pair of samples. A sample
comprising the (signed) differences between the two values of each pair is
computed, and tested against the null hypothesis that it is a sample from a
population whose mean is zero. This form of testing is called a paired test.

For CRN to be of use certain pre-requisite conditions m ust be met, the main
one being that the random numbers are used for the same purpose in the
models being compared. This can require the use of multiple random
number streams so that each stream is used for one purpose.

For example, consider the design of an experiment to investigate the effect
of doubling chromosome length by comparing the performance of two GP
engines over a range of problems, using one random number stream, with
the same seed in each pair of configurations (one with double the

49

chromosome length of the other). This experimental design is not sound,
because the same random numbers are not used for the same purposes.
The first use of the random numbers is to produce generation 0. But the
configuration with the double chromosome length must use twice as many
random numbers as the other configuration. By the time the first individual
in generation 0 has been produced, the random number streams are out of
step. Despite using the same RNG seed the experiment is not a CRN design.
In order to use CRN, this experiment would have to be redesigned, for
example, by having one random number stream to produce genes, and
another to drive the selection of individuals for breeding.

It can be seen that CRN is an option only if the model is well-understood,
particularly in its use of the random numbers. The possibility of error is
high because it depends on algorithmic analysis, which is a difficult subject,
not least when analysing a system as complex as a GP engine developed by a
third party. The chance of detecting error is low because an error of this
sort does not manifest itself in output that is blatantly wrong. The effects
are subtle and may be revealed only by careful testing.

In this thesis, CRN is not used. One RNG stream is used for both treatments
and units. Provided the RNG works, and is being used correctly, this should
not introduce any artifacts into the results. The function of an RNG is
precisely to produce a stream of unrelated numbers. There is no advantage
in using two RNG processes instead of one, and in fact, doing so introduces
the risk of spurious results.

We therefore define the RNG seed as separate from the configuration.

3.1.5 Confidence level

Statistical results are generally not 100% certain because of the effects of
random variation. For example, the mean of a sample can be calculated
with 100% accuracy, but it is not the mean of the underlying population.
The most we can say about the population mean is that it probably lies
within certain limits. We can be precise about the limits and about just how
probable it is.

The measure of probability is the confidence level A confidence level of 95%
is usual for experimental work in the natural sciences, where it is seen as a
compromise between a desire for increased confidence and a desire to keep
the confidence intervals small enough to be useful.

In order to make the results of different parts of this thesis compatible, we
assume that the same confidence level applies to all observations and in all
hypothesis testing. This level is called the global confidence level (GCL), and
is set at 95%.

50

3.2 Performance comparison

This section presents the results of an investigation mto the reliability of
statistical tests. Much of the material in this section is taken from
[Paterson, 2000].

3,2.1 Introduction

A weakness of the Gads 1 experimental analysis is the way in which the new
technology is compared with the old, namely, by comparing the means of
two rather small samples. While this may be sufficient to indicate that
further investigation of Gads 1 is justified, it is not sufficient to enable us to
draw reliable, quantified conclusions.

The reason for this weakness is that we know next to nothing about the
statistical properties of performance as a random variable. In this section,
we report the results of an investigation into the reliability of statistical
tests (Student's, Smirnov's and Randomisation) when they are used to detect
differences in GP performance data. LihGP and SGPC are used to provide
test data. The main conclusions are: (a) that parametric tests perform
better, and non-parametric tests worse, than expected; (b) that the reliability
of the tests depends mostly on the problem being solved; and (c) that no
test can reliably detect a difference less than 1.5 x coefficient of variation
with GP data.

Performance comparison is central to research in GP. For example, 22 of the
55 papers in [pp3-343, Koza, 1997a] compare performance of rival systems.
In practice, performance comparison usually comes down to deciding
whether the difference between the means of two samples of observations is
significant. Many methods are used to reach this decision. Of the 22 papers
mentioned above, 16 used visual comparison of graphs, two used Student’s
T test, two used Koza's cumulative probability of success [Koza, 1992], 1
used the 2-sample Z test, and 1 used the Mann-Whitney U test.

A common error is to compare sample means as if they were exact
population means, not estimates of population means. There is a 95%
probability that the interval sample mean ± (1.96 x standard error) contains
the population mean. Standard error is described in statistics textbooks, eg
[Freund, 1979]. Only two of the 22 papers gave standard error or enough
information to work it out. Treating sample means as point estimates is the
main flaw in Koza's metric cumulative probability o f success [Angeline,
1996a].

4 of the 22 papers used recognised statistical tests. However, T and Z tests
have preconditions. Student’s T test requires that the two populations have
close to normal distributions, and that their variances are equal. The

51

sample size can be small. The Z test requires a sample size of at least 30,
that the two populations have close to normal distributions, and that their
variances are equal.

We find that normal distributions are the exception. An example of a
performance distribution is shown in figure 3-1. Performance is on the x-
axis, and frequency with which that performance occurs, on the y-axis. The
code LOAO identifies the engine and problem configuration, as explained in
%3.2.2.2,Factors below. This configuration is at the mid-range of normality
among the distributions we examined (see §3.2.3.1 Normality helow) and is
rejected at the 5% level as non-normal.

Figure 3-1; A non-normal distribution (LOAO)

Thus any result that depends on T or Z tests for GP data may be missing a
foundation. Weak statistical technique is therefore not limited to the Gads
1 experiment; it is widespread in the GP research field.

3.2.1.1 Related work

[Daida, 1997] addresses general issues of the difficulty of comparing results
or repeating others' work. In their own comparison, they use the Mann-
Whitney U test, which is not so dependent on population properties as the T
or Z tests; but they do not attempt to investigate the population properties.

[Lawrence, 1997] considers distributions of performance in neural network
simulations, and how to present results for a fair interpretation.

52

[Luke, 1997] reports an Investigation of about 12 000 independent runs of a
range of engine-problem configurations, with a sample size of 25. The
configurations were chosen to compare crossover and mutation. The
results are described as "nonlinear," and because the effects are shown to be
significant by Student’s T test, the paper argues that they cannot be
attributed to noise. However, the large number of comparisons means that
some of the results (5% of them, if a confidence level of 95% is used) are
almost certainly caused by noise. It is impossible to say whether the noisy
results are the nonlinear results. However, their study does bequeath a
large corpus of runs.

[Luke, 1998] is a revision of [Luke, 1997], in which a number of statistical
flaws are put right.

3.2.2 Experimental design

The experimental design is at two levels. At the upper level we investigate
the reliability of statistical tests. At the lower level we investigate GP
performance data. The performance data is produced in such a way that we
know what the results of the lower level investigation should be. The
observed results of the lower level investigation are input to the upper level
investigation. The two levels are summarized in table 3-1.

Upper level Lower level
Phenomenon Statistical testing. GP.
Factors Test, sample size. Engine, RNG, problem,

parameters.
Trial Application of a

statistical test.
Execution of a GP
system.

Outcome Acceptance or rejection
of a given null
hypothesis.

Files summarizing
evolution process.

Random variable Acceptor reject. Performance, ie raw
fitness of solution.

Experiment 30 trials, same except
for RNG seed.

10, 20 or 30 trials, same
except for RNG seed.

Statistics a and ô (none)
Table 3-1: Outline o f Experimental D esign

The description in the following subsections starts at the upper level, drills
down to the bottom of the lower level, and then returns to the upper level to
fit pieces together. The experiment involves several different kinds of
sample, taken for different purposes. To help avoid confusion, these are
referred to as type A-, B- or C-samples as follows. A-samples are size 100,
and are used for bootstrapping as described in §3.2.2.5 Bootstrapping. B-

53

samples are size 30, and are used for the upper level experiment. C-
samples are size 10, 20 or 30 and are used for the lower level experiment.

The various components of the investigation are identified by codes, eg T
for Student’s T test. These codes are given in parentheses in the next two
subsections.

3.2.2.1 Tests and C-sample sizes

We chose to investigate 3 tests that span a range of statistical techniques:
Student’s T test (T)

The classic experimenter's tool for comparing small samples. The
samples m ust be from approximately normal populations with the
same variance.

Smirnov's 2-sample test (S)
A non-parametric test which does not assume that the populations
have any particular distribution.

Randomisation test (R)
A modern computer-intensive test.

Each test was used to compare two equal-sized C-samples of 10, 20 or 30
observations.

3 2.2.2 Factors

We chose to investigate the effect of the following factors on the tests:
engine

Either LÜ-GP (L) or SGPC (S).
RNG

Either the engine's own (O), or the Solaris RNG (S).
problem

One of the problems distributed with the engine. Lil-GP has Artificial
Ant (A), Lawnmower (L), Multiplexer (M), Regression (R) and Two Box
(T). SGPC has Classifier (C), Donut (D), Regression (R) and Sin (S).
(Regression (R) occurs twice.)

parameters
Each engine's own default settings (0) were used where possible. In
addition, a parameter set was devised with the aim of replicating the
Regression problem in [Koza, 1992] on both Lil-GP and SGPC (K).

A complete set of all 4 factors is called a configuration. Each configuration
has a 4-letter code, eg LOAO. A configuration specifies all the Information
necessary to run a GP system, except the RNG seed. Although 64

54

configurations are possible, only 22 actually occur. This defines a relation
between the factors, le the factors are not independent.

3.2.2 3 Trials and outcomes

One lower-level trial is the execution of one GP system with one
configuration and one RNG seed. The outcome of a trial Is the collection of
files which It produces. This varies from one engine to another, but
typically contains a summary of the simulation which has been carried out.

For any given configuration, the C-sample space (ie population of possible
outcomes) is therefore equivalent to the population of RNG seeds. It Is
simple to choose a random C-sample of RNG seeds.

3.2.2.4 Random variables

We chose to investigate just one random variable at the lower level, namely
performance. This term is defined as the raw fitness o f the first best-of-run
individual It Is extracted from the outcome of each lower-level trial.

There is no deep theoretical basis for this choice. The decision to measure
one thing or another as a performance variable is often intuitive, and rarely
is a strong argument made for or against a particular metric. — [Cohen,
1995]. We chose fitness because the fitness of the best individual found in a
run is surely the primary goal of the run. Raw fitness is in some sense
closest to the source.

3.2.2 5 Bootstrapping

Rather than use the experimental apparatus described above to produce C-
samples directly, we chose to use bootstrapping to reduce the
computational effort. Bootstrapping simulates C-sampling from a large or
Infinite population by C-sampling-with-replacement from an A-sample of
that population.

Bootstrapping has two advantages. One, the expense of producing C-
samples is greatly reduced, since C-sampling-with-replacement re-uses
values that are expensive to compute. Two, the properties of the simulated
population can be manipulated and known with certainty. The disadvantage
is that we are dealing with a simulation of a population, not with the real
thing.

55

To support the bootstrapping procedure, we made 100 trials for each
configuration, and extracted the performance data from each. This gave us
22 A-samples of 100 observations. These A-samples were named with the
4-letter configuration code, eg LOAO. C-samples of 10, 20 or 30
performance values were drawn with replacement from the A-samples.

3.2.2.6 Hypotheses

Each test was used to accept or reject the following null hypothesis at a 5%
level of significance:
HO That there is no difference in the means o f the populations JTl and JT2

from which the C-samples were drawn.

on the basis of two equal-sized C-samples of performance data. Note that
HI and H2 refer to the simulated populations rather than the A-samples,
since the use of bootstrapping is transparent to the tests.

The alternative hypothesis, HI, was always the simple negation of HO. We
did not attempt to decide which of the populations has the larger mean,
only that there is a difference. Thus, the two-tailed form of each test was
always used. HI is a composite hypothesis, since there are many ways in
which two populations can differ.

To produce a pair of C-samples for which HO is true, we draw them both
from the same A-sample.

To produce a pair of C-samples for which HO is false, we first draw the first
C-sample in the ordinary way. We draw the second C-sample from the same
A-sample, but add a displacement d to each observation. The second C-
sample is thus effectively from a population which is translated by a known
amount. We measure d as a percentage of the mean of the A-sample. For
example d = 5 implies that the C-samples are drawn from populations Hi
and H2 whose means are \il and [x2 = jil x 1.05. If d = 0, then Hi = H2
in all respects. Populations Hi and H2 always have equal variance. We
chose the follov\4ng range of values for d: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20,
30, 40, 50, 60, 70, 80, 90, 100}.

We chose only to investigate differences in means, because that is the
difference researchers are most often interested in detecting. It is also the
only difference that Student’s T test is intended to detect, and in some
sense it is the simplest difference.

A combination of a test, a C-sample size, a configuration and a value for d is
called a scenario. A scenario specifies everything that is needed to apply a

56

test, except for an RNG seed to drive the bootstrapping process. A scenario
is a trial at the upper level, the outcome of which is either acceptor reject

3.2.2.7 Power functions

There are two ways in which a test can fail. To reject HO when it is true (a
false negative) is a type 1 error. To accept HO when it is false (a false
positive) is a type 2 error. We chose to compare the tests on the basis of the
occurrence of these errors.

The probability of a type 1 error is conventionally denoted a and, if the
test's preconditions are satisfied, is equal to the level of significance, in this
case 5%. Since the test's preconditions are in doubt, we estimated the
probability of a type 1 error empirically and compared it with the
theoretical value of 5%.

The probability of a type 2 error is conventionally denoted (3. p is not a
unique number, because HI is composite: there is a different value of p for
each H2. However, since we restricted ourselves to H2s that are
characterized by a parameter d, p reduces to a function of d. Such a
function is called a power function [Conover, 1971]. Figure 3-2 shows a
typical power function shape.

100%

9 0 %

60%

50%

3 0 %

20%

Figure 3-2: Typical power function shape

The power function shows the probability of rejecting HO as a function of d.
For d = 0, the power function is a. For d > 0, the power function is 1 - p.

The power function is thus a single concept that describes the behaviour of
a test over the range of conditions we are interested in. The true or
theoretical power function is not within our grasp. We estimate the power
functions empirically by executing each scenario 30 times (with different

57

RNG seeds) and recording how often HO was rejected. The proportion of
rejections, as a percentage in [0, 100], is the value of the EPF at that
scenario.

3.2.2.S Alpha and delta

Power functions, though informative, do not make for simple comparison of
tests. All the power functions examined are well-formed. They have
approximately the same shape as figure 3-2, but may be more or less
extended along the d-axis. It is therefore feasible to use a scalar metric to
distinguish them. We introduce the metric ô, defined to be the least value of
d for which p is less than or equal to S%. That is, as d increases from 0, the
test becomes more reliable in detecting a difference of d% of the mean, ô is
the value of d at which that reliability first reaches 95% (corresponding to a
5% level of significance). Putting it the other way round, the test cannot
reliably detect a difference of less than ô.

Thus, a and Ô are the upper-level random variables. The aim of the
investigation is to discover how they depend on the experimental factors.

3.2.3 Results

These results are necessarily a summary. Full details are at
ftp.dcs.st-and.ac.uk/pub/norman/StatDist.tar.gz.

4 of the A-samples (SOCO, SORO, SSCO and SSRO) contained only zeroes.
This appeared not to be a bug but arose because the perfect solution (with
fitness 0) was discovered every time. Since this effectively removed the
need for statistical analyses at the same time as rendering it impossible, we
removed these A-samples from further consideration and continued with
the remaining 18 configurations.

3.2.3.1 Normality

The Kolmogorov-Smirnov normality test was applied to each A-sample,
against the alternative hypothesis that the sample was not drawn from a
Normal population. Table 3-2 shows the value of the Kolmogorov-Smirnov
test statistic (k) for each configuration. The rows are sorted by k. The
critical value of the statistic is 0.136 at the 5% level. Configurations are on
the left or right of the table depending on how their k value compares to
0.136.

58

ftp://ftp.dcs.st-and.ac.uk/pub/norman/StatDist.tar.gz

Accept Reject
Config k Config k
LOTO 0.05 LSRO 0.14
LSTO 0.06 SODO 0.15
s s s o 0.10 LORO 0.15
SOSO 0.12 LSLO 0.17
LSAO 0.12 LOAO 0.17
SSDO 0.12 LOLO 0.17

SSRK 0.18
LSRK 0.20
LORK 0.20
SORK 0.21
LOMO 0.27
LSMO 0.30

Table 3-2: K olm ogorov-Sm irnov normality test results

S.2.3.2 Alpha and delta

The observations of a and Ô are shown in tables 3-3 and 3-4.

T S R
10 20 30 10 20 30 10 20 30

LOAO 2 1 0 2 0 3 1 3 1
LOLO 2 3 2 2 6 16 1 1 1
LOMO 2 0 0 14 20 27 3 0 2
LORO 2 4 3 2 2 5 2 1 1
LORK 1 0 0 0 2 7 1 5 2
LOTO 1 1 1 3 3 0 1 1 1
LSAO 2 1 2 1 1 2 0 0 3
LSLO 1 0 1 2 5 14 0 1 1
LSMO 0 1 2 13 21 27 1 2 1
LSRO 2 4 2 0 1 2 1 2 2
LSRK 2 2 0 2 0 6 1 0 1
LSTO 2 2 2 2 0 2 1 3 0
SODO 1 0 0 0 0 1 1 1 2
SORK 2 0 3 1 3 9 0 2 1
SOSO 2 1 1 0 0 0 0 0 0
SSDO 3 5 3 0 0 0 2 1 2
SSRK 2 0 3 2 1 2 0 1 2
SSSO 3 1 1 1 1 1 1 1 1
Table 3-3: Observed values o f a (actually rejection counts in B-sam ples o f 30)

59

T S R
10 20 30 10 20 30 10 20 30

LOAO 40 30 20 40 20 20 40 20 20
LOLO 5 3 3 7 4 2 6 4 3
LOMO 4 3 2 4 2 1 5 3 2
LORO 200 100 100 200 90 80 200 200 100
LORK 200 200 200 200 90 70 200 200 200
LOTO 80 40 40 80 60 40 70 50 40
LSAO 30 20 20 40 30 20 40 20 20
LSLO 5 3 3 5 3 2 5 3 3
LSMO 4 3 3 4 3 1 4 4 3
LSRO 200 200 90 200 200 80 200 200 100
LSRK 200 200 200 200 100 80 200 200 200
LSTO 80 60 40 80 50 40 80 50 40
SODO 60 40 30 70 40 30 50 40 30
SORK 200 200 200 200 90 60 200 200 200
SOSO 20 20 10 20 10 7 20 20 8
SSDO 30 20 30 30 30 20 40 30 20
SSRK 200 200 200 200 90 70 200 200 90
SSSO 20 10 8 20 10 8 20 20 10

Table 3-4: Observed values o f ô

The columns are by test and C-sample size. The rows are by configuration.
The values of table 3-3 are numbers of rejections in a B-sample of 30 tests
with the given configuration. The values in table 3-4 are percentages. For
some configurations, the empirical power function (EPF) value of the test
never reached 95% . For these, ô was set to an arbitrary 200%.

No standard error is given for the values in tables 3-3 and 3-4, but each
value is based on a B-sample of 30 observations.

3.2.3.3 Alpha

We tested the hypothesis that the observed values of a from table 3-3 are
not significantly different from the theoretical value of 5% as follows.

First, recap the basis of the experiment. Two equal-sized C-samples were
drawn from the same population and a test was applied to decide whether
the C-sample means were significantly different. A rejection resulted if the
test concluded that the C-samples were drawn from different populations.
This was repeated 30 times for each of 162 cases: 18 populations (LOAO to
SSSO), 3 tests (T, S and R) and 3 C-sample sizes (10, 20 and 30). The number
of rejections was counted in each case, being a value in the range 0 to 30.
To convert a rejection count to an a value, divide by 30.

60

Under the null hypothesis, the only reason for a rejection is random
variation within the 5% confidence level at which the tests were applied.
Therefore, we can expect the number of rejections to have a binomial
distribution with a size n = 30 and probability p = 5%, and we can use a
test to compare the observed distribution of rejections with the expected-
distribution. If the difference is too great, we shall have reason to reject the
null hypothesis on which the expectations were based.

The complete set of observations in table 3-3 gives the following results:

o e (o-e)Ve
0 37 34.7714798 0.14282689
1 50 54.9023365 0.43773916
2 42 41.8991515 0.00024274
3 15 20.5820393 1.51390067

4+ 18 9.8449929 6.75512321
Total 162 162 8.84983268

DF 4
9.488

Conclusion Accept
Table 3-5: test for T, S and R

Column # gives the category labels 0 to 4+ which are the number of
rejections in each B-sample of 30. Category 4+ includes 4 or more
rejections, which are combined to keep the expected number in each
category at 5 or more. Column o shows the observed frequency of the
number of rejections in each category. For example, 37 out of 162 cases
had 0 rejections, 50 had 1 rejection, and so on. Column e shows the
corresponding expected frequency. The final column (o-e)Ve shows the
computation of the test statistic for each category.

The Total row gives the total of the columns above it. The rightmost entry
in this row is the test statistic. DF is the degrees of freedom, which is 1 less
than the number of categories. The figure is the critical value at 5%.

Since the test statistic 8.84983268 is less than the critical value 9.488, the
conclusion is that we have no reason to reject the null hypothesis.

Tables 3-6, 3-7 and 3-8 below give the corresponding analysis for each of
the three tests separately:

61

o e (o-e)Ve
0 12 11.5904933 0.01446839
1 14 18.3007788 1.01070554
2 18 13.9663838 1.16494431

34- 10 10.1423441 0.00199775
Total 54 54 2.19211598

DF 3
7.815

Conclusion Accept
Table 3-6: test for T alone

o e (o-e)Ve
0 14 11.5904933 0.50090386
1 9 18.3007788 4.72681996
2 13 13.9663838 0.06686754

34- 18 10.1423441 6.08762194
Total 54 54 11.38221330

DF 3
7.815

Conclusion Reject
Table 3-7: test for S alone

o e (o-e)Ve
0 11 1T5904933 0.03008347
1 27 18.3007788 4.13514910
2 11 13.9663838 0.63004377

34- 5 10.1423441 2.60725750
Total 54 54 :A40253385

DF 3
7.815

Conclusion Accept
Table 3-8: test for R alone

Table 3-5 shows that we cannot reject the null hypothesis overall, but not by
much. The test statistic is close to the critical value. When we look at the
performance of the three tests individually, it is clear that Student's T test
performs well, randomisation Is borderline, and Smirnov's test fails.

Although the overall result is not to reject the null hypothesis, it is based on
a kind of average that has no real meaning. In practice, we would use one
test, not an average of three. The investigation shows that the choice of test
is critical. We conclude that in general, the populations are not sufficiently
normal to meet the requirements of the tests.

62

S.2.3.4 Delta

Factor Fa FÔ F a Ô aô
Engine 5.45 0.04 3.84 *
RNG 0.02 0.00 3.84
problem 6.94 121.03 2.10 * * *
parameters 0.76 164.41 3.84 *
Test 10.32 1.04 3.00 *
Sample size 1.69 2.83 3.00

Table 3-9: A nalysis o f variance o f a and ô

In table 3-9, Fa is the F value resulting from the analysis of variance applied
to the a values of table 3-3. Fô is the corresponding figure from table 3-4. F
is the critical value at 5% for the appropriate degrees of freedom. A * in
columns headed a, ô and aô shows which factors have an effect on a, ô or
both.

These results cannot be taken at face value because the factors are not
independent. Only 18 of 64 configurations exist, which defines a relation
between engine, RNG, problem and parameters. If only one of these factors
is to be considered, then table 3-9 suggests it should be problem, which is
the only factor that affects both a and 5. The rows for engine and
parameters are therefore discounted.

The only effective factors are the problem and the test; and of these, the
problem has the most effect. The importance of the problem as the
determining factor suggests that some of the results should be revisited to
take that into account. For example, if the Configurations in table 3-2 are
pooled by problem, we find that two (S, T) pass, two (A, D) are borderline,
and 3 (R, L, M) fail the normality test.

Despite our misgivings about the use of anova, it appears to have performed
well. The results agree with our subjective view of tables 3-3 and 3-4, and
correctly identified related factors.

3.2.3.S Coefficient of variation

To discover whether a cheaper predictor of Ô could be found, we
investigated several measures of dispersion of the large samples. Using the
coefficient of variation (V), we found a correlation of 99%. Figure 3-3 shows
the relation with the least squares fit:

63

200%

1 5 0 % - -

100 % . .

50%-!-

y

■'+

0% .T ^---------- 1------------- 1------------- 1
''6% 50% 100% 150%

Figure 3-3: mean ô (y axis) vs V (x axis)

V is taken from the large sample of a configuration; and ô is the
corresponding row mean from table 3-4. (Standard error of the row means
is not shown but can be computed. It grows from about 0 to about 19%.)
The graph suggests a linear relationship, with an outlier at V=92%. A least
squares fit gives:

6 = 0.0103 +1.47 X y

This result m ust be treated with some caution because it uses the arbitrary
value of 200% for missing data when calculating ô. However, using any
value from 125% to 477% for missing data gives a correlation of 99% so it is
not particularly sensitive.

It is obviously no surprise that V correlates with ô. It is not possible to
detect a difference that is small relative to the variability of the sample. To
have a context for this result, we also generated 3 normally distributed large
samples with mean 50 and standard deviations of 1,5 and 50. For the
normal data, the factor was about 1.7, compared to the 1.47 for GP data.
That is, it was easier to detect differences in GP data than in normal data.

3.2.4 Conclusions

The aim of this study was to investigate whether GP perfomance data is
normally distributed, and if not, how statistical tests behave when faced
with such data.

Some allowance m ust be made in these conclusions for aspects of the
experiment. First, the use of bootstrapping and displacement of the mean
to generate data means that the data is partly simulated. Second, an
arbitrary value of 200% was used for missing values in the calculation of ô.
Third, analysis of variance, used to produce table 3-9, assumes that the

64

populations are normally distributed with equal variance. This assumption
was not confirmed, though the results of the anova (analysis of variance)
appear to be reasonable.

3.2.4.1 Normality

GP performance data is not always normally distributed; as suggested by
table 3-2, it may be the case that normal distributions are the exception.

3.2.4.2 Comparison of tests

The a metric appears to be a useful measure of a test's reliability. The ô
metric does not have such a sound theoretical foundation, and although
plausible, should be viewed with caution.

In broad terms, there is not as much difference between the tests as we
expected. Table 3-9 shows that only a is affected by the test, but a appears
to be affected more by the problem than by the test. There is a wide
variation in ô, but again, table 3-9 shows that these are effects of the
problem, not of the test.

Smirnov's test performed surprisingly poorly. This is probably due to the
nature of the Multiplexer performance distribution. This distribution has
several large spikes (eg at 1280) which result in many duplicate values in
samples drawn from it. Smirnov's test expects a continuous distribution.
(A continuous distribution is one in which the probability of any one
outcome is vanishingly small, and the probability of an outcome falling
within a range can be determined by integration. For example, the
probability that a car is travelling at exactly 30 miles per hour is
infinitesimal, but the probability that it is travelling between 25 and 35
miles per hour is finite.) The Multiplexer distribution is discrete, not
continuous, as evidenced by the many duplicate integer values. Note that
for a distribution to be continuous, it is not sufficient for the outcomes to
be real-valued. Performance measurements of many GP systems are real­
valued, but the values are drawn from a relatively small set, so they are in
fact discrete. Strictly speaking, all digital simulations are of finite accuracy
and are therefore discrete. Whether this leads to problems with a test such
as Smirnov’s may depend on the number of duplicate values in the samples.

Compared to either Smirnov's or Student's tests, the Randomisation test is
expensive to compute, and difficult to program in such a way that the
program can be independently tested. To obtain an independent test of the
software (ie to ensure that your implementation is correct) it is necessary to
produce output in test conditions such that you know what the output
should be. With an implementation of, say. Student’s test, this is fairly
straightforward. You can set up test data and compute the test statistic in a

65

few lines of code, or on a spreadsheet. To achieve better independence, it is
easy to do this on a different computer, and even to engage the help of a
colleague to guard against errors in your own understanding. With
Randomisation, it is very hard to achieve this degree of independence. To
compare outputs, it is necessary that the outputs are identical to the bit -
level. This requires that the computers use the same RNG and have the
same floating point representation. Detecting errors in stochastic data is
hard, because they are usually not visible to the naked eye. The net result is
that implementing Randomisation twice, independently, for the purpose of
testing the implementation, is considerably harder than can be justified
when simpler alternatives are available.

On the basis of this study. Student's test is our preferred test.

S.2.4.3 Comparison of problems

The problem was the main factor in determining the reliability of any test,
and table 3-5 shows that its main effect was on the test's ô value.

The 99% correlation between V and ô shown in figure 3-3 suggests that
almost all of the effect of the problem can be explained in terms of the
dispersion of the performance distribution.

In short, how well a test can detect a difference between C-sample means
depends almost entirely on the problem used to produce the C-samples. As
a rule of thumb, no test can reliably detect a difference between means less
than 1.5 x V. Observed values of V range from 2% to 123%.

3.2.4.4 Summary

We had expected that the non-normality of the data would adversely affect
all parametric tests, specifically Student’s T test and anova. We had
expected to be able to demonstrate the superiority of a non-parametric test
such as Smirnov's when dealing with GP data. In fact, we found the exact
opposite. Not only does Smirnov's test perform unacceptably, but Student's
test performs better with GP data than with normal data. Although anova
was not the main subject of the study, we have kept the anova result
because its behaviour seems to be well within the acceptable range.

While this may appear to be good news it is unsettling. When a test's
assumptions are not met, we cannot be sure how the test will perform. It
may reject a null hypothesis not because it is false, but because the data
show an assumption to be false.

66

3.3 Visualisation

This section presents a method for comparing GP systems or problems on a
single rational scale.

3.3.1 Introduction

§3.2 Performance comparison shows how to make pair-wise comparisons of
configurations. It also shows that the choice of problem is the most
important factor affecting the performance of a configuration. Ideally, we
should like to be able to average out the problem and obtain a measure of
the engine's power; ideally, this would be a number on a rational scale.
Unfortunately there are sound reasons why this ideal cannot be achieved in
full; but there is no reason it cannot be approached, and this section
presents a method for doing so.

The reasons the ideal cannot be achieved are (1) the No Free Lunch
theorems [Wolpert, 19951, [Wolpert, 1997] and (2) the sample design for
configurations. The No Free Lunch theorem tells us that all engines perform
equally well when their performance is averaged over all possible problems.
Of course, we are only dealing with a sample of the problem population,
which is presumably why there is such variation in engine performance.
The problem, as explained in §3.1.2 Populations and samples, is that our
sample design for problems is the benchmark suite, so our observations of
engine performance cannot be generalised to the whole problem population.
There appears to be much more variation m the difficulty of problems than
in the ability of engines to find solutions. This makes averaging over
problems extremely suspect. If a biologist were given a sample of life forms
consisting of a dried pea, a wasp and a blue whale, and asked to make
observations of them, we would not expect the average of these
observations to be very enlightening.

This predicament is colloquially referred to as horses for courses and
generally treated as having no satisfactory solution. The colloquial
expression refers to race horses and race courses. It means that how fast a
horse runs depends on which course it runs on. If horse A beats horse B on
10 courses, but B beats A on a different 10 courses, you cannot say which
horse is better. A horse's performance must be represented by a matrix
with one element for each course. In our case, the horses are engines and
the courses are problems.

Nonetheless, horses are bought and sold, and some horses are worth more
than others. Money value is a scalar, so it appears that performance can be
converted into a scalar by people who know about horses (and courses).
This section presents an algorithm for the horses for courses problem. The
algorithm is, to a certain extent, arbitrary. It might be possible to test it by
using it to compute the price of real horses, and comparing the result with

67

actual prices, but sadly that is beyond the scope of this investigation. The
algorithm is presented here as an aid to visualisation, not as a tool for
testing hypotheses.

An important property of this algorithm is that it apphes equally well to
engines and problems. It therefore gives us a means of deciding how good a
sample a benchmark suite of problems is.

3.3.2 Cost and benefit

We begin by defining cost and benefit We follow the usual practice of
measuring cost by counting fitness evaluations. We introduce the term
benefit as a measure of how effective an engine is at finding solutions. The
novel idea here is that we also measure benefit in evaluations. Cost and
benefit are thus both measured in the same units, which goes some way to
making comparisons, averages, etc meaningful.

3.3.2.1 Measures of cost

The cost of using a GP engine is computational effort, so the measure of
cost centers on the amount of computing work done.

There are various ways to measure computational effort, but counting
fitness evaluations is the most often used. Other measures such as wall
clock time, CPU time, or system accounting costs could be used but they
generally add to the complexity and parochialism of the cost measure
without improving its quality.

Fitness evaluation is generally computationally expensive and the number of
evaluations is a measure of the efficiency of the GP engine. It is simply the
number of individuals evaluated, up to but not including the solution. (The
reason for not counting the solution is for consistency with the ideal GP
engine that produces the solution first time. That ideal would have zero
cost.)

An argument can be made for not counting individuals which duplicate 1
earlier ones, since these have already been evaluated. The business of t
identifying duplicates — memoisation — has its own cost. If the cost of I
memoisation is comparable to the cost of fitness evaluation then it makes j
little sense to memoise, and the measure then becomes a simple count of !
evaluations as described above. If memoisation is worth doing then a 1
compromise measure could be used, with a memoised evaluation counting |
as some fixed proportion of an evaluation. It is not difficult to imagine
more complicated measures, but it is difficult to justify them. The simplest

68

way to treat memoisation is to give it zero cost. In this thesis, memoisation
is not considered.

The measure of cost used in this thesis is therefore fitness evaluation count

3.S.2.2 Measures of benefit

The purpose of a GP engine is to find solutions to problems, so the measure
of benefit centers on the quality of solutions found.

A solution is defined in this thesis as the first fittest individual found in a
run. This individual may be discovered in any generation (including 0) and
remains the solution unless and until a strictly fitter individual is found.
There are many possible measures of the quality of a solution, but the
fitness of the solution is the most obvious choice.

In order to measure cost and benefit in the same units, we calibrate the
objective function in the same units as the cost function, namely, in
evaluations. For example, we might say that a good solution is worth lOOM
evaluations, and a poor one is worth only Ik evaluations. This may appear
to be an unnatural thing to do, in the sense that it feels strange. But it is
only making explicit in a different form what is implicit when the user
decides to stop searching before a perfect solution is found.

Existing objective functions are not always trivially simple to calibrate in
evaluations. Some objective functions measure fitness as a number greater
than or equal to zero, with a higher value representing a better solution.
Some have a natural upper limit; some do not. Some measure error rather |
than fitness, so that the GP system is required to minimise the objective j
function rather than maximise it. None of these differences is of great Î
significance but they contribute to mild confusion and unnecessary i
complexity. i

To avoid adding to the confusion, we introduce the term benefit to mean the 1
worth of a solution, measured in evaluations. The lowest benefit is zero, 1
and the higher the benefit the better. Some problems may have a natural j
limit on the benefit, and others not. 1

3.3.2.3 Horses for courses

The horses for courses problem is as follows. We have e engines, Ej ... £g,
and p problems, Pj ... Pp. Each engine is tried with each problem, giving ep
pairs. Each pair results in a benefit, which is the performance measure for
the engine, and a cost, which is the performance measure for the problem.

69

The data can be represented as a benefit matrix B with e rows and p
columns, and a cost matrix C, with p rows and e columns. The cost and
benefit matrices are arranged so that the rows correspond to the entities
whose performance is in the body of the matrix.

The data is sample means. In the simple form of horses for courses the
means are treated as points instead of estimates, which is an over­
simplification. A more robust method would take the standard error of the
mean into account when producing the cladogram and again when the
performance of engines and problems is reduced to a rational scale
(§3.3.2.3.5 Path length tree, and §3.3.2.3.6 Constructing the path length tree,
below). The final result should be that each engine or problem is
represented by an interval on the rational scale, not by a point.

Suppose we have e = 5 engines and p
look like this:

3 problems. Typical data might

27 39 21
22 23 32

B = 17 39 29
24 26 25
17 37 26

11 14 13 13 14
C = 14 16 20 11 15

14 13 18 15 16

The solution to the horses for courses problem is a column vector JS' of e
rows, ie one element per engine, which is that engine's overall performance
measure in the context of the problem sample. By symmetry there should
also be a column vector C of p rows from C, with one element per problem,
representing that problem's difficulty in the context of the engine sample.

3.3.2.3.1 Arithmetic mean

There are countless functions which could produce a column vector as
required, but there is no reason (yet) to look further than the arithmetic
mean, and there are good reasons not to look much further.

In the arithmetic mean scheme, each element of B'is the mean of the
corresponding row of B, giving the following values (to one decimal place):

70

B '

2R0
25J
283
25.0
263

And corresponding to C:

C ' =

13.0
15.2
15.2

According to this scheme, engine 1 is the best with 29.0, engine 4 the worst
with 25.0. Problem 1 is the easiest with 13.0, and problems two and 3
equally hard with 15.2.

The arithmetic mean is simple, but raises two concerns.

S.3.2.3.2 Two kinds of difficulty

To compute the mean we add the observed benefits of one engine working
on several different problems. The first concern is that this may not be a
meaningful thing to do.

Cost and benefit are measured in the same units, namely, evaluations. A
consequence of this is that benefits and costs are commensurate across all
fitness functions.

This is not a play on words. A problem has two kinds of difficulty or
computational effort. The first kind is the difficulty of evaluating points in
the search space. Evaluating a point may involve any amount of
computational effort. The end result of this effort is one fitness value. The
second kind is the difficulty of using these fitness values to direct a search,
through the space defined by the fitness function and the genetic operators,
to find a better point. The first kind of difficulty may be called internal, the
second external

Benefit and cost are measured in evaluations. They are not concerned with
how much effort each evaluation involves, only in how well the search is
conducted. They only measure external difficulty. Because they ignore the
internal difficulty of evaluating each point's fitness, they measure only the
difficulty that is visible to the GP engines. Cost and benefit are therefore

71

commensurate, and the arithmetic mean is a valid computation. Indeed any
linear sum of benefits and costs would be meaningful in these terms.

3.3.2.3.S Equal importance

The second concern is that computing the arithmetic mean of a row of B
implies that the columns of B are all of equal importance. This would be
fair if the problems that the columns represent were a random sample of all
problems. This, however, is not the case. First, the problems are a
benchmark suite, chosen by educated guesswork. This is also true of the
engines. Second, in any investigation, the columns are liable to contain not
only the problems of the benchmark suite, but also variations of these,
which are included to see what the effect of certain minor changes in
problem parameters might be. This is more common when comparing
engines than problems, since we are used to tweaking engine parameters,
but it can arise in either case.

We have no real assurance that the benchmark suite is fair to begin with.
The inclusion of minor variations pretty well ensures that the resulting mix
is far from fair. We therefore upgrade from the arithmetic mean to at least
a weighted arithmetic mean. Since cost and benefit are commensurate, the
weighted arithmetic mean is as meaningful as the plain arithmetic mean.
The issue is how to determine the weights.

The case of exact duplicates provides the basis of a thought-experiment
which, although somewhat artificial, is quite informative. Suppose we have
5 problems A, B, C, D and E which are a fair sample (whatever that means).
For simplicity, let us express the weights as percentages. Then each
problem will deserve the same weight, say 20%. Suppose we now add to the
set a sixth problem E' which is identical to E. The presence of E' adds no
new information and therefore should not cause any change in the weighted
means. The weights of A, B, C and D in the new set m ust still be equal, and
also equal to the sum of the weights for E and E'. By symmetry, the weights
of E and E' should be equal to each other. This implies that the weights of
A, B, C and D remain at 20% while E and E' are at 10%. The weight which was
assigned to E is now shared equally between E and E'.

Consider now a slightly different case. Suppose we have the same 5
problems as before, but instead of adding an exact duplicate, we add to the
set a sixth problem E" which is very similar to but distinct from E. In this
case we should expect that the weights of A, B C and D m ust still be equal
but the weights of E and E" together should be slightly more than that.
Whether the weights of E and E" should be equal depends on the differences
of E and E" from A, B, C and D. We might find, for example, that A, B, C and
D each have weight 19%, while E and E" have weights of 12% each.

72

To take this approach any further we need first a measure of the difference
between two problems (or engines) and second, an algorithm to input this
measure and output weights. With these weights we can compute the
column matrices B' and C.

3.S.2.3.4 Distance between problems

For the sake of simple language, we deal only with assigning weights to
engines, so that we can compute the weighted mean of each problem's cost;
remembering always that the same method must be able to assign weights
to problems so that we can compute the weighted mean of each engine's
benefit. For the purpose of explaining the method, it is better to have 5
weights to compute than 3.

There are many ways in which we could define the difference between
engines, but arguably the simplest is to use the benefit matrix B. This
matrix gives us the problems' view of the engines. If we want to consider
the engines as black boxes, then the only external property we have is how
well they solve problems, and that is exactly the information that B
contains. Each row of B identifies a point in a j7-dimensional space. We can
therefore use Euclidean distance to measure the difference between any two
engines.

For example, with the matrix B already given, we can calculate the engine
distance matrix D^as follows. Engine 1 is at (27, 39, 21) and engine two is
at (22, 23, 32). The distance between these points is V[(27-22)2 + (39-23)2 +
(21-32)2] = V402 = 20.05 approximately. Computing the distances between
all pairs (to two decimal places) gives the following e by e matrix:

=

0
20.05 0
12.81 17.03 0
13.93 737 15.30 0
11,36 16.03 3.61 13.08

The main diagonal is zero, showing that every engine is identical to itself,
and the upper triangle (not shown) is a reflection of the lower triangle. This
matrix shows that engines 3 and 5, with difference 3.61, are very sim ilar, in
terms of how they handle the 3 problems we are considering. Engines two
and 4, with difference 7.87, are also quite similar, while engines 1 and 2,
with difference 20.05, are the most distinct, A similar matrix, of p rows by p
columns, can be computed for problems.

73

3.3.2.3.S Path length tree

Now that we have a distance measure between engines, we need an
algorithm to compute the weights to assign to them. What should the
results of the algorithm be? If all 5 engines were equidistant, they should
all receive equal weight, say 20%. But engines 3 and 5 are relatively close, so
they should count more as one engine than two. This should raise the
average weight per engine to about 25%, and engines 3 and 5 should get
about 12.5% each. Engines two and 4 must be taken into account, and so on.
We might expect engine 1 to get the most weight on account of its distance
from engine 2.

To compute the weights we first represent the distance matrix as a PLT or
cladogram. (The method of producing the PLT is given later.) A PLT is a tree
composed of nodes and arcs. A node can have 1, two or 3 arcs. A node
with 1 arc is a leaf node. The leaf nodes correspond to the points (engines
in this case) we are measuring distance between. Exactly one node has two
arcs; the root node. A node with three arcs is an internal or branch node.
Each arc has a length. The PLT represents the distance matrix in the sense
that the sum of the arc lengths along the path from one leaf node to another
is equal to the distance between the corresponding points in the distance
matrix.

74

The PLT for the distance matrix given above is as follows:

5.66

■3.94

2.24

E3

2.572.01

3.72 1.03

6.59

Figure 3-4: Path length tree

Node (R) is the root. Nodes (1), (2), (3) are internal nodes. Nodes (El), (E2)
etc correspond to the engines 1 ... 5. The arcs are labelled with distances.
For example, the distance from (E2) to (E4) is 5.66 + 2.24 = 7.9, as compared
to 7.87 in the distance matrix. In practice the PLT does not represent the
distance matrix exactly, because a PLT has fewer degrees of freedom than a
distance matrix for the same number of points. The construction algorithm
ahns to minimise the error.

75

The PLT in figure 3-4 is easy to comprehend, but the drawing style is not
easy to use with larger numbers of nodes, A more conventional
representation is as follows:

1 . 0 3 E5
3 . 7 2

2.01 2 . 5 7 E3

6 . 5 9

2 . 2 4
E4

3 . 9 4

5 . 6 6
E2

Scale

0 1 2 3 4 5 6 7 8 9 1 0

F i g u r e 3 - 5 : C l a d o g r a m

The diagram is a 2-dimensional representation of a set of points in an n-
dimensional space. The points in the n-dimensional space are the engines;
the 3-dimensional space is defined by the benefit (in evaluations) measured
by the three problems.

The horizontal dimension of the diagram uses a rational scale to represent
distance. The horizontal scale is shown at the foot of the diagram. The
length of each horizontal arc is given above the arc.

The vertical dimension is categorical, and simply places each point in its
own category. Vertical lines do not represent distance. The vertical
categories are sorted by horizontal length, with shortest length first. Thus,
E4 lies above E2, and the entire E5-E3-E1 subtree lies above the entire E4-E2
subtree.

The numbers in parentheses are the internal node numbers. They are not
significant but have been left in to identify the nodes.

Both forms of tree are equivalent. The cladogram form is easier to scale and
to produce automatically. The PLT form is perhaps easier to read, so I use it
for the rest of this exposition.

Leaf nodes which are close (as defined by the distance matrix) are also close
in the PLT and cladogram. Consider the paths from the root to the leaf
nodes. Leaf nodes for engines which are close have paths with arcs in

76

common. The closer the leaf nodes, the more common arcs. Identical
engines would appear as nodes separated by an arc of length zero, so that
the entire path length from the root would be common.

Representing the distance matrix as a PLT enables us to assign weights to
engines in a systematic way. If the engines were equally diverse, they
should be equally weighted. In this case the PLT would be star-shaped, and
all arc lengths would be equal. The PLT is not star-shaped to the extent that
the engines are not equally diverse. Firstly, the root acts as a kind of
centroid, so the distance of a leaf from the root is a reasonable measure of
the weight to attach to the leaf. If the PLT were star-shaped with a different
arc length to each engine, the weight attached to each engine would be its
arc length. But the PLT is tree-shaped, which is to say, some leaf nodes
share part of the path to the root. For example, (E2) and (E4) share the arc
(2)-(R). This is a measure of the similarity between (E2) and (E4). The more
similar such nodes are, the more path they share. We take account of this
by dividing the weight of the shared path between all the leaf nodes that
share it. In this way, leaf nodes which are similar are made to share weight.
Applying this to the PLT given above results in the following:

7.63 (27.5%)

5.66 (5.66)

2.01 (0.67)2.24 (2.24)

(é
4.21 (15.2%)

5.10 (18.4%)

P

2.57 (2.57)

3.72
U (1.86)-----(1.03)

3.56 (12.8%)
6,59 (6.59)

7.26 (26.2%)
Figure 3-6: Lengths and weights

77

The weight of each arc is shown in parentheses after its length. For
example, the arc (R)-(2) is shared by (E2) and (E4) so its length has been
divided by 2, giving 1.97. Similarly arc (R)-(l) was divided by 3, and arc
(1H3) by 2.

The weight of node (E2) is now computed as 5.66 + 1.97 = 7.63. This is
shown next to node (E2). The figure 27.5% is the weight as a percentage of
the weights of all the leaf nodes. (The percentages do not add to exactly
100% because of rounding error.)

This gives us engine weights We as follows:

7.26
7.63
5.10
4.21
3^6

or, as percentages:

2&2
27.5
1&4
15.2
1Z8

from which we can compute the weighted mean of the problem costs as:

C' =
12.9
15.3
14.9

For comparison, the unweighted mean (from §3.3.2.3.1 Arithmetic mean) is:

C' =
13.0
15.2
15.2

The effect of the weights is slight but noticeable.

78

3.3.2.S.6 C onstructing the path length tree

PLTs are used in biology to represent distance relationships between living
creatures in a process called phylogenetic inference.

The Fitch-Margoliash algorithm [Fitch, 1967] for producing unrooted PLTs is
available as part of the PHYLIP software package [Felsenstein, 1995]. It is a
heuristic algorithm which searches for a tree that minimises the error
expression;

where D is the distance accoding to the distance matrix, and d is the
distance according to the PLT. The search builds a tree by findmg the two
entities (engines or problems, in our case) which can best be combined into
a single entity which averages their distances. This reduces the number of
entities by one. The process is repeated until no entities remain. The
phylogenetic tree that results is simply a record of the order in which
entities were combined. The first tree so created is not necessarily the best.
The algorithm creates a series of trees by varying the order of combination
slightly, and retaining the tree with the least error.

79

The unrooted PLT for our example data looks like this:

,'E2)

\
\

5 .66
\

V

g) ----------- 5.95

2.^4

& 1.03

(E4)
6 .59

(E l)

Figure 3-7: Unrooted PLT

An unrooted tree is unusual in Computer Science, and it is easy to make the
mistake of thinking of one node as 'obviously' being the root, especially if
the representation of the tree artificially distinguishes one node from the
others. One way of establishing a root is to choose an existing node.
However, it is not always obvious which node to choose, and experiments
with pencil and paper soon show that fair results sometimes cannot be
achieved with any existing node as root. We need a reliable method of
establishing a root before we can use the PLT to compute weights.

The following method is used find a root node. We create a new, virtual
point which is extremely and equally distant from all the real points. This
requires a new row and column in the distance matrix, with all elements
(except the main diagonal element) set to the same high value. The
modified distance matrix is shown below. (Note that the top half reflects of
the lower half.)

80

J

0
20.05 0
12.81 17.03 0
13.93 7.87 15.30 0
11.36 16.03 3.61 13.08

1000.00 1000.00 1000.00 1000.00
0

1000.00

This virtual point is like a fixed star, so far away that all the real points are
equidistant from it. The Fitch-Margoliash algorithm is not sensitive to the
exact distance to the fixed star, provided it is large enough. In the example
data given above, a distance to the fixed star of 1 000 is sufficient; further
increases result in very small changes to the resulting PLT. The PLT
produced by Fitch-Margoliash for a tree with a fixed star at distance 1 000
is shown below.

81

5.66

2)------ 3 .94

992.11 (arc shown 1 /100th
natural length)

3.72

Figure 3-8: PLT with fixed star at distance 1 000

Compare the PLT without a fixed star (figure 3-7) to the PLT with a fixed star
(figure 3-8). Both are unrooted trees. The difference is that the PLT with
fixed star has one more leaf node (*) for the fixed star and one more
internal node (4). Apart from the new arcs (2)-(4) and (4)-(l), the previous
arcs are unaffected by the change. Further, the old arc (2)-(l) has simply
been split in two by node (4), since 3.94 + 2.01 = 5.95. While this is not a
proof of anything, it is typical of the effect of adding a fixed star. Node (4),
which is where the fixed star attaches to the PLT, is chosen as the root. The
arc (4)-(*) is discarded, leaving us with a rooted PLT.

3.3.2.3.7 Performance-based weights

We have described a procedure for computing weights based on engine
differences. Are other methods possible? One approach that seems

82

attractive is to have weights proportional to performance. The idea here is
that the problems are not equally difficult, so we should give more weight to
difficult problems than easy ones, when averaging an engine's performance.

Unfortunately, this approach does not work. If the weight for a problem is
proportional to the problem's cost, then by symmetry, the weight for an
engine is proportional to the engine's benefit. This leads to simultaneous
equations which reduce to 0 = 0.

The conclusion is that we cannot treat benefit and cost as multiplicative
inverses of one another in this way, and that to try to do so is a conceptual
error.

83

Grammars

This section deals with issues of scalability which are raised in §2 Gads I '
The essence of the scalability problem is that the Gads 1 experiment used
an unrealistically small CFG. To generate a wider range of programs, the
technique m ust be extended to use a realistically large CSG.

CSGs are necessary because real programming languages such as C and Java
have context-sensitive rules. For example, it is only valid to refer to an
identifier in an expression if the identifier has been declared, is of the
correct type, includes the expression in its scope, and (depending on the
language) has been initiahsed. Only if these conditions have been met may
the identifer be used. But it is beyond the power of a CFG to represent
these conditions or to test whether they have been met before allowing the
relevant productions to be invoked. Where CFGs have productions whose
LHS is a single nonterminal, CSGs have productions of the form:

xAy ::= xBy

that is, A may be rewritten as b if it is in the context defined by x and y.
That is the formal approach, but in practice it is more usual to use other
representations for the grammar, as it would not be practicable to produce
a definition for a real language in that form. The most common and
practical forms of CSG are the two-level grammar and the attribute grammar
[Pagan, 1981], [Deransart, 1988].

Whichever type of grammar is used, the problem remains that grammars are
designed for analysing sentences, not for synthesizing them. Chapter 1 of
[Pagan, 1981] lists seven uses of a formal grammar. Synthesis is not among
them. The historical reasons for this are obvious. Until the invention of GP
there has been next to no automatic programming and therefore no
possibility of synthesizing programs.

4.1 Existing CSGs

This section considers existing forms of CSG for use in Gads. The key
feature that Gads requires is that the grammar can be used to synthesize
sentences without computationally expensive backtracking or other
searching. As shown in §2 Gads 1, CFGs have these properties, but as
explained above, they are not suitable for deriving more realistic programs.

84

4.1.1 Two-level gram m ars

We examine two-level grammars only in enough depth to decide they are not
suitable. Suppose we have a two-level grammar defined as follows:

Protonotions
N o n e .

Notions (rules)
program:
series :

series.
statement sequence.

Hyper rules
SEQITEM sequence SEQITEM;

SEQITEM sequence,
SEQITEM.

Meta notions (meta rules)
SEQITEM:: declaration;

statement ;
letter.

Now consider using this grammar to generate a sentence beginning with the
start symbol p ro g ram and applying productions:

program
=> series
-> statement sequence
= > ?

At this point we m ust pause. What does statement sequence change to?
It is a notion, but there is no rule for it, because it is an instance of the more
general SEQITEM sequence hyper rule.

How do we find a hyper rule for statement sequence? In this tiny
grammar, we can see that statement sequence matches SEQITEM
sequence, because statement matches SEQITEM. But in a realistically
large grammar, this matching is not likely to be simple. Even after a
successful matching, and identifying a hyper rule, we are not finished. In
general, a hyper rule may define any number of statement sequences.
We will need a further method to choose one in particular.

To summarise, synthesis in two-level grammars is much more complicated
than in one-level grammars. It's not immediately obvious how to do it, or
even if it's possible. We therefore put two-level grammars to one side.

85

4.1.2 Attribute gram m ars

Standard attribute grammars (sags) are not suitable for Gads 2, for reasons
that come down to the bias in favour of analysis over synthesis. This bias
leads to grammars that can recognise a valid sentence, but cannot be
efficiently directed to produce one. Sags are a powerful computational
paradigm. To say that they are not suitable for Gads 2 therefore requires
careful justification. That justification now follows. Although it is closely
argued, it is not so much a formal mathematical proof as a methodical
exploration of system design.

Suppose we are using a sag to generate a PT in some language, beginning
with the start symbol, and expanding node after node. Suppose we are
using the basic Gads 1 mechanism for this: that is, we have a stream of
genes and use them to choose one production at a time from the set of
applicable productions (ie the set of productions whose LHS labels the PT
node we are expanding). Suppose we are now about to expand a node which
should generate an identifier, and suppose that out of all possible
identifiers in this language, only a finite subset are valid in this context.

For example, we may have already generated:

let s = "a string"
let X = 3
let y = X * 5
let z = X * X +

The language requires an expression after the last + sign; we have made
choices as to the type of expression, and have decided that the expression is
to be an identifier. Possible identifiers include x, y, and perhaps some
predeclared identifiers such as pi. But an undeclared identifier in this
context is not valid. Nor is an identifier if its type is not compatible. An
identifier of type string, for example, would not be valid here.

We don’t need to be specific about the productions in the grammar or the
specific language. At some point in the derivation of identifiers we must
reach a stage where some choices are valid and others are not; and we
suppose we are at that stage.

The usual way to design a sag that deals with this is to use the attributes to
maintain an environment, that is, a data structure which records a
description of the context at each node in the PT. For example, at the PT
node corresponding to the declaration of identifier s, the environment
would typically be augmented by a representation of the fact that s i s in
scope, that it has type string, and that it has been initialised. Similarly the
environment is augmented by the declarations of x and y by the time we

86

reach the situation in question. The specifics of the environment do not
affect this argument: what is important is simply that there is an
environment recording the context.

In analysis (ie when parsing a string of symbols which may be a sentence in
the language), an environment is used to test whether a given identifier is
valid by looking up the identifier in the environment and confirming that
certain conditions hold. Typical conditions in this case would be such as (1)
the identifier m ust exist in the environment, (2) it must be of a scalar
arithmetic type, and (3) it m ust have been initialised. The conditions are
usually formalised as a predicate which is associated with the production
that produces the identifier. On encountering a predicate that evaluates to
false, the analyser takes some exceptional action, such as backtracking to
try other parsing possibilities, or, if this is not possible, issuing a message
indicating that it has discovered an error in the input.

In synthesis (ie when producing a valid sentence in the language), we would
like to use the environment to direct the choice of productions, so that a
valid identifier could be produced. There is nothing in the productions
themselves which can assist in this. Each production consists of an LHS
which is a nonterminal symbol, and an RHS which is a sequence of one or
more symbols. These symbols do not refer to attribute values. Also, since
the set of productions in a sag is fixed, the productions must be capable of
producing all possible identifiers in the language at any node in the PT.

The following subsections explore ways in which the synthesis might
proceed, that is, the ways in which a sag could be used for Gads 2.

4.1.2.1 Calculation after selection

The simplest approach is to use the gene stream to select productions in the
usual way. After each production is selected and applied, we evaluate the
attributes and predicates associated with it. So long as no predicate
evaluates to false, this process continues. It terminates when the PT is
complete, in which case it will represent a type-correct program.

Difficulties arise if a predicate evaluates to false. If this happens, it means
that a production was chosen in a context where it was not a valid choice.
The difficulty is to know what to do about it.

The simplest option is to give up: mark the individual as unviable and
perhaps give it the lowest possible fitness value. But this would lead to an
unacceptably high mortality rate, as the chances of producing a type-correct
individual by this method are fairly low.

87

Another option is to backtrack, that is, to revisit an earher decision and
choose a different path forwards, (We could save genes by skipping over
the gene that made a bad decision, and re-use the gene stream, but
displaced by one position.) This time we may succeed; if not, we backtrack
and try again. Provided we methodically backtrack to recent decision points
first and try them, before backtracking to earlier decisions, backtracking
carries out an exhaustive search of a tree of possibihties. However, because
we are using the gene stream to direct the search, it is not exhaustive. Our
searching is limited by the genes that are available in the current individual.
We are more likely to exhaust our supply of genes than exhaust the
possibilities in the search space. Also, even if we could exhaust the search
space, backtracking could be enormously expensive. For example, suppose
under the direction of the gene stream, we decided to generate an identifier
in a context where no suitable identifier was available. The fact that this
particular alley is bhnd does not show up until we reach the end of the alley:
we generate an identifier and a predicate evaluates to false. At this point we
try another identifer — and it too fails. By the principle of backtracking to
most recent decisions first, we must generate and reject all possible
identifiers before we revisit the decision that is the cause of the rejections.
Given that the productions can produce all possible identifiers in the
language at any node in the PT, this is likely to take an unacceptably long
time.

The conclusion is that any approach in which we choose a production
before testing the consequences of that choice, is not feasible.

4.1.2.2 Calculation before selection

In this approach we investigate the possibility of using current environment
as well as the gene stream to direct the choice of the next production.

It is clear from the analysis above that what is required is a method by
which we can restrict the choice of productions at any given node in the PT.
We need to exclude from consideration those productions which must lead
to failure. This avoids blind alleys. We don't need to exclude productions
that lead to a mixture of successes and failures, provided that they have at
least one successful outcome.

For example, suppose we have a grammar that generates identifiers as letter
sequences, and that we are in a context where the only valid identifiers are
apple and banana. In this context we should exclude productions that
lead to identifiers beginning with anything other than a or b, as they must
fail. We should consider only productions that lead to a or b, even though
they could lead to identifiers such as avocado or bramble which would
fail. Paths leading to certain failure are excluded later.

The environment already has a representation of the set of identifiers which
are valid at this point in the PT. What is required is a function which takes
as its parameters a grammar and an environment, and from these returns
the set of production rules (more precisely, their identifying numbers)
which are valid at this point. More formally, we seek a function fsu ch that:

/ : (G ,«) I L (; >) n / =.*<!)}

where:
G is the attribute grammar
e is the environment at this stage in the PT
p is a production in G (more precisely, its identifying number)
Up) is the language of p, ie the set of identifiers

that can be derived from p
I is the set of valid identifiers at this point in the PT,

extracted from e
0 is the empty set.

In English, /"identifies the productions which may lead to valid identifiers.
The only productions which are excluded are those which could not possibly
lead to a valid identifier. Having used fto compute the set of valid
productions in the context of the current node, we use the next gene from
the gene stream to choose one of these productions. From the definition of
fw e know that no matter which production we choose, we will not
necessarily end in failure. Every production returned by /"can lead to
success. By computing fa t each PT node, and only choosing from the set of
productions it returns, we can generate a program which is type-correct,
without ever needing to backtrack.

The essence of this approach is that f is computed before we choose a
production, which guarantees that we never need to backtrack. However,
this method has drawbacks.

First, f may be unacceptably expensive to compute. To compute f we need
to test each production p in the grammar which has the LHS for the current
PT node. For each p, we need to decide whether there is at least one
identifier i in the environment, such that i can be derived from p. If so, we
add p to the set of possible productions to be returned by f If not, p cannot
lead to a valid identifier and we exclude it excluded. The number of
identifiers we examine to decide whether to allow or exclude p is not fixed.
We only need to derive one identifier to allow p, but we can only exclude p
after trying every valid identifier in the environment. Thus, to test a given
p, f analyses z using a grammar G' which is equal to G except that it has p as
its start symbol. To compute fwe carry out many such analyses.

Second, unless fis to be used at every node of the PT, a mechanism is
needed to indicate when to use f and when to go ahead without it. This

89

could probably be done without deviating from the sag model by listing all
affected productions, or giving certain nonterminals names in a certain
form, for example.

Third, for Gads 2 to use f, the grammar must be written to implement an
enviromnent in a particular way, and the enviromnent m ust be accessible by
Gads 2. Gads 2 would have to be closely coupled with the grammar, which
is not a good design principle. Grammar design is not trivial, so this may
not always be an easy thing to accomplish.

Fourth, this approach requires that every time an identifier or piece of
context-sensitive code is required, it has to be generated by a directed
grammatical derivation.

The conclusion is that any approach in which we test productions to see if
they could lead to a valid PT would be expensive to compute, difficult to
program, and inefficient.

4.1.2.3 The third way

A weakness of both the previous approaches is that they use productions to
replicate the information available in the environment. This leads to
inefficiency. It is simple to produce a set of valid identifiers for the current
context from the environment. Instead of using the gene stream to direct a
grammatical derivation that leads to one of them, it would be much simpler
to use just one gene to choose one directly from the set. An identifier
chosen in this way is valid, so backtracking is not necessary.

The advantage of this approach is that it is simple and efficient. In fact,
given that it consumes just one gene per identifier, has no backtracking, and
it is computationally inexpensive, it is hard to see how it could be improved
upon.

The disadvantage of the third way is that we no longer have a standard
attribute grammar. The third way requires that at a certain stage in the
growth of the PT, we stop growing the PT by choosing from the set of
applicable productions and expanding a PT node, and instead choose from a
set of identifiers computed from an attribute and use that to expand the
node. It may be efficient, but it is not a standard attribute grammar. Also,
this approach requires close coupling of Gads 2 and grammar.

The next section presents a method of obtaining the advantages of this
approach with none of the disadvantages.

90

4.2 Reflective attribute grammars

The example of selecting an Identifier is obviously just one example of
context sensitivity. For full context sensitivity, we m ust be able to choose'
types, procedures, control structures, and all the panoply of a full context
sensitive language. The ideal grammar for Gads 2 ontogenesis would have
the set of all acceptable choices in any given context, and use one gene in
the genome to choose one of them. I call this ideal because it uses one unit
of genetic information to make one choice in the ontogenesis, and no
backtracking is ever necessary.

An extended form of attribute grammar called a rag, which reaches the
ideal, is introduced below. I have used S-algol [Morrison, 1979] below to
illustrate the ideas. S-algol combines a pleasant grammar with a full range
of imperative language features such as basic types, procedures, arrays, and
structures. S-algol is also used as the phenotype language in the
experiments which follow. The S-algol rag is given in §B.

4.2.1 Overview

This section develops the idea of the rag, placing it in the context of CFGs
and sags. The explanation is given in terms of formal grammars and also in
terms of a possible object-oriented implementation of them. The actual
implementation was in Java, so as to be able to make use of ECJ [Luke,
2001].

4.2.1.1 Grammatical notation

Grammars are described using a form of BNF based on the description given
in §2.4.1 of [Pagan, 1981]. Briefly, a symbolis a sequence of lowercase
letters or digits beginning with a letter. Spaces are not significant. Thus the
following all identify the same symbol:

no table
notable
not able

A symbol ending in “s y m b o l” defines the concrete representation of a
terminal symbol. Each terminal symbol must have exactly one rule that
defines it. The rule names the terminal symbol on the left, terminated by a
colon. The right hand side is a string of characters delimited by a nonspace
character (normally the quote). Spaces are significant within the delimited
string. For example:

91

caret symbol:
quote symbol: /"/
newline symbol: "

numeral 4 symbol: "4"
while symbol: " while"

The terminal symbols are usually collected in a representation table which is
separate from the rest of the grammar. Separating the concrete syntax from
the abstract helps keep the grammar organised and easier to read.

A symbol which does not end in “s y m b o l” is a nonterminal. Each
nonterminal m ust have at least one rule that defines it. The rule names the
nonterminal symbol on the left, terminated by a colon. The right hand side
is a series of one or more alternatives, separated by semicolons. The whole
rule is terminated by a period. Each alternative consists of a comma-
separated sequence of symbols. For example:

literal int: space symbol, numeral 0 symbol;
space symbol, digits.

digits: digit;
digit, digits.

digit: numeral 0 symbol;
numeral 1 symbol;
numeral 2 symbol;
numeral 3 symbol;
numeral 4 symbol;
numeral 5 symbol;
numeral 6 symbol; i
numeral 7 symbol; t
numeral 8 symbol; j
numeral 9 symbol. |

As in Gads 1 it is convenient to place the alternatives in different
productions. The definition of l i t e r a l i n t above is equivalent to:

literal int: space symbol, numeral 0 symbol

literal int: space symbol, digits.

The alternatives for a nonterminal are numbered sequentially from 0. The
order of the alternatives in a production is not significant as far as the
language (ie the set of sentences and their structure) which the grammar
defines is concerned, but it does affect the ontogenesis, because the first

92

production for a nonterminal (ie production 0) is used as the default
production for that nonterminal.

We generate a sentence by growing a PT, starting with the root, and
expanding node by node until each path ends with a terminal symbol. Gads
2 always expands the leftmost node first. We describe this process either as
growing a PT by expanding nodes or as rewriting nonterminal symbols in a
string, providing the meaning is clear from the surrounding text.

4.2.1.2 Context free grammars

When the grammar is a CFG, expanding a non-terminal node consists of
using the next gene to choose a production alternative from the grammar
which has that non terminal symbol as its LHS. In Gads 1, the alternative
chosen is the one whose number equals the gene value. In Gads 1 this was
acceptable but for a large grammar it would lead to many genes having no
effect, as only a few alternatives would be applicable at any time.

[O'Neill, 2001b] describes the GE solution to this, which is to translate the
gene value into a production number by a simple arithmetic operation. In
GE this is done by computing the gene value modulo the number of
applicable production alternatives. In Gads, we scale the gene value from
the gene range to the range of applicable alternatives. For example suppose
genes are integers in the range [0, 999] and there are 4 alternatives for the
leftmost nonterminal, numbered 0,1,2 and 3. Then any gene value in the
range [0, 249] will select alternative 0, any gene value in the range [250, 499]
WÜ1 select alternative 1, and so on. Thus every gene is effective. The choice
of translation scheme does have an effect, but this implementation is
concerned with feasibility rather than performance.

Although the order in which alternatives are numbered does not affect the
language of the grammar, this version of ontogenesis uses the first
alternative (ie alternative 0) as the default definition for the symbol. The
default is used if ontogenesis has exhausted the genes in the genome, and
unexpanded nonterminal symbols remain in the developing phenotype. For
example (using the above definitions), if an unexpanded l i t e r a l i n t
remains in the developing phenotype, it defaults to < sp ace> 0. Similarly,
d i g i t s defaults to d i g i t and d i g i t defaults to 0. Thus, by ordering the
alternatives with care, all unexpanded symbols can be expanded
automatically to sensible defaults. However, if the order of the alternatives
for d i g i t s were reversed, then an unexpanded d i g i t s symbol would
default to an endless string of Os.

In object-oriented terms, nodes are objects of class Node. A Node has an
array of child Nodes.

93

4.2.1.3 S tandard attribute gram m ars

When the grammar is a sag, attribute values are inherited or synthesized at
each node. (Note that Gads 2 does not use a sag — this step in the
explanation is included just to fill a gap on the way to rags.) Inheritance
and synthesis corresponds to passing parameters to, and receiving results
from, the node-expanding procedure. Attribute evaluation rules are
associated with each production alternative to specify the inheritance or
synthesis is to be done, in the event that that alternative is used to expand a
node. Generally, an expression assignment language is all that is needed for
the evaluation rules. For example, if v a l is an attribute associated with
d i g i t s and d i g i t , we might have:

digits: digit;
{digits.val := digit.val)

digits: digit, digits.
(digitsi.vai := digits 2 .val*10+digit.v a l }

The subscripts in the second evaluation rule are necessary to distinguish
between the two occurrences of d i g i t s . In object-oriented terms, these two
occurrences are distinct objects, each of which has a v a l attribute.

The numerical value of a string of digits in a sentence of the language can
thus be referred to in the grammar. This makes it possible, for example, to
specify in the grammar that no string of digits was greater than some limit.
Without attributes, it is not really feasible to do such a thing, so
specification of limits is either not done at all, or is done in an ad-hoc
manner. When attribute grammars are used for parsing, this can be
achieved using a boolean attribute OK which is synthesized at each
nonterminal, and which is true if and only if the input sentence is
recognised. If a false value is ever synthesized, the non-terminal
responsible may give an indication of the error that has been detected. For
example, to ensure that d i g i t s never represents a value greater than the
machine limit MAXINT, we could extend the definition of d i g i t s to read:

94

digits: digit;
{

OK := digit.val <= MAXINT
digits.val := digit.val

}

digits: digit, digits.
{

OK :== digitS 2 .val <=
(MAXINT-digit.val)/lO

digitSi.val
digitsz.val*10+digit.val

}

In this example, we m ust take care that no intermediate value exceeds
MAXINT, during the calculation of OK. However, since ontogenesis
synthesises sentences rather than analysing them, there is no need for an
attribute such as OK in Gads 2.

4.2.1.4 Reflective attribute grammars

When the grammar is a rag, the grammar itself is treated as an attribute. It
is passed to the node-expanding procedure. The default behaviour when
expanding a nonterminal node is to invoke the node-forming procedure
recursively to produce a child node for each symbol on the RHS of the
production alternative, and pass it the grammar, unchanged, as a parameter.
If the rag never deviates from this default behaviour it is equivalent to an
ordinary attribute grammar.

During the expansion of the node, the grammar may be modified, and the
modified grammar passed down to the children of this node. (A modified
grammar could conceivably be returned — ie synthesized — though this was
not necessary in any of the examples I studied.) The expansion of the node
is directed by the evaluation rules associated with the production
alternative.

Rag evaluation rules are more complex than sag evaluation rules. The
default rag evaluation rules have the following effect.

Inherit: the rag r, the symbol to expand s, and the genome g.
1 Record the symbol s for this node.
2 If 5 is a terminal symbol, there is nothing to do. Return.
3 Use the next gene in g to choose an alternative from the productions

which have this symbol on the LHS. (The genome object g is modified
each time a gene is consumed.) If the genes are exhausted, choose the
default alternative.

95

Create an array of child nodes, with one array element for each symbol
on the RHS of the chosen production. Let the symbols on the RHS be
■̂ 0

5 For z = 0 to n, expand child node z, passing in the values r, s. and g.
6 Return.

These are the steps which are carried out each time a node is expanded in
the ordinary way. The grammar g is not modified and the effect is
equivalent to a sag.

The S-algol for clause provides a slightly more complex example. For is one
of several alternatives for c l a u s e v o id , and is defined as follows:

clause void: for symbol,
id int new,
space symbol,
equals symbol,
clause int,
to symbol,
clause int,
do symbol,
clause void.

For example:

for X - 1 to 3 do write "x: ", x, "'n"

which, when executed, produces the following output:

X : 1
X : 2
X : 3

The for node thus has 9 children, numbered from 0 to 8, corresponding to
the symbols on the RHS of the production. According to the scope rules of
S-algol, a for clause introduces a new identifier (x in the example above)
whose scope is the c l a u s e v o id at the end of the for (w r i te in the
example above). It follows that only two of the 9 children raise any issues
of context sensitivity, namely #1 (id i n t new) and #8 (c la u s e void). All
the other children can be expanded according to the default evaluation rules
given above. They inherit the context of the for as a whole. For children #1
and #8, the rag has two goals: (i) that child #1 has to introduce a new
identifier, and (ii) that the identifier introduced by child #1 has to be
available for the expansion of child #8.

96

The following diagram illustrates the situation after child #1 has been
expanded; the curved arrow shows the data flow of the attribute
synthesized by child #1 and about to be inherited by child #8. The diagram
is somewhat impressionistic: data does not flow into the for clause node,
but into the process which is constructing that node. A fuller description* of
the events depicted in the diagram is given below.

for sym bol

Symbol s = " for"
NodeQ child = nu

sp a c e sym bol

for c lau se

Symbol s
NodeQ child

Symbol s = “ “
NodeQ child = null

c lau se int

Symbol s
NodeQ child

c la u se Int

Symbol s
NodeQ child

...........

c lau se void

Symbol s
NodeQ child

id Int new 3 equa ls sym bol 1 5 to sym bol I 7 do sym bol

Symbol s = “ int,4"
NodeQ child = null

Symbol s =
NodeQ child = null

j Symbol s = " to"
NodeQ child = null i Symbol s = “ do”

NodeQ child = null

Figure 4-1 : Expansion o f a /o r node

The mechanism for introducing new identifiers is embodied in the
evaluation rules for certain nonterminal symbols such as i d i n t new, and
is invoked whenever a node for such a symbol is constructed. The
evaluation rules associated with id i n t new are identical to the default
rules given above, for steps 1 through 4. Steps from 5 onwards are as
follows:
5 Generate a new identifier as a character string. Identifiers must be

unique. As an aid to readability they are constructed in the form tn
where t is the type of the identifier and n is a serial number. For
example, the identifier of a for clause control variable might be i n t . 4.

6 Declare a new terminal symbol whose value is the concrete
represeritation of the new identifier. This makes the identifier
available as a single symbol in the grammar.

7 Convert the current node from a nonterminal node to a terminal node,
with the new identifier as its value. Set the array of children to null.

This raises the question: what production has the nonterminal symbol
id i n t new as its LHS? This is addressed in more detail below; in passing
note that the definition of this symbol is not relevant, since the effect of
evaluation rule 7 is explicitly to ignore the RHS. In order to keep the
grammar valid, however, every nonterminal symbol m ust be the LHS of at
least one production, so we simply introduce a terminal symbol as a
convenient stop:

97

id int new: id int new symbol,

id int new symbol: " idlntNew"

The evaluation rules associated with the for clause are identical to the
default rules given above, for steps 1 through 4. Steps from 5 onwards are
as follows:
5 For z = 0 to 7, expand child node z, passing in the values r, s. and g.

That is, expand all children in the default way except the final c l a u s e
v o id .

6 Obtain the identifier synthesized by child #2. The evaluation rules for
new identifiers ensure that this is in the form of a terminal symbol
which we may name t. (That is, t is the name of a name. The scope of
t is the evaluation rules of the for clause.)

7 Construct a new production of the form:

id int c: t.
The LHS of this production (id i n t c) is the symbol for identifiers of
constant integer variables (ie variables whose values may be read, but
which may not be assigned to).

8 Push the new production on to the grammar r, producing grammar r\
This adds t to the set of integer identifiers that are available at this
point in the PT. There may or may not be other identifiers in scope at
this point. The term push is used to suggest a stack-like operation in
r. From a theoretical point of view, r' may be a completely new and
separate object from r, but in practice, it is much cheaper to modify r.

9 Expand child node #8, passing in the values r\ and g. That is,
expand the final c l a u s e v o id with a grammar that is extended by
the addition of a production that allows the for clause’s control
variable to be used in any context that requires an i d i n t c.

10 Pop the new production from the grammar. This undoes the effect of
step 8, and once again the comments about theory and practice apply.

11 Return.

Thus the evaluation rules, working in concert, create a new identifier of the
correct type, integrate it into a local extension of the grammar, use that
extension to develop a clause, so that the new identifier is available in its
correct scope in the PT.

Evaluation rules for a rag must be written in a language that is capable of
accessing attributes synthesized by children, creating productions, pushing
productions onto a grammar, synthesizing new attributes, and so on.
Experiments suggest that a simple machine-code-like language would be

98

adequate, with operations like expand node or push production onto
grammar. The node-constructing procedure would include an interpreter
for this language, and carry out the evaluation instructions associated with
the alternative as it expanded the node.

A specification for such a language is not included in this thesis. Instead, a
pragmatic but no less general approach was used, and a node-constructing
procedure specific to S-algol was developed. Rather than a general
interpreter, a numbered set of specialised methods was developed in Java.
Method 0 is the default method, method 1 defines new identifiers, method
two deals with for clauses, and so on. In all, 10 methods were developed.
The evaluation rules associated with an alternative then reduce to a number
specifying which method to apply when this alternative is chosen. Thus the
methods were compiled rather than interpreted. From a theoretical basis
the evaluation rules are written in a language that has an extremely simple
syntax (namely, the set of integers from 0 to 10) and a rather complex
semantics (namely, the 10 compiled methods).

The sag term evaluation rules does not quite fit the rag model. Instead of a
set of simultaneous equations defining each synthesized attribute, we now
have a procedure carrying out various operations. For this reason, I use the
term production method instead. A production method is a procedure,
written in a suitable language, associated with an alternative RHS of a rag
production. If an alternative in a rag has no production method, it is
associated with a default production method.

To start ontogenesis, a PT is constructed by calling the node constructor
with the start symbol of the language, a fresh genotype, and the rag for the
language. The rag at this point is called the root grammar. It is special in
that it defines the language before any program-specific declarations have
been made, and when the implications of doing so are embodied in its
production methods.

4.2.2 The S-algol rag

This section presents a rag for S-algol. In so doing, it addresses various
language issues concerned with the development of a rag.

The rag developed here does not encompass the entire S-algol language. For
the purposes of this thesis, it was considered sufficient to demonstrate a
rag capable of handling basic types, variables, iteration, and procedures.
Language features such as arrays, data types, and various specialised types
such as pixels and files, should be within the capabilities of rags, but would
not add significantly to the value of this work.

The S-algol rag is given in §B.

99

i

4.2.2.1 Basic types

The S-algol basic types are void, int, real, bool and string. There is also a
constant modifier so that, for example, creal is the type whose value is real,
but which cannot be assigned to.

The [Morrison, 1979] definition of S-algol uses a CFG plus a set of type rules
which first define various type categories (eg arith is int or real) and then
define how types and syntax interact. For example, the rule for a while
clause is given as:

while <clause>: bool
do <clause>: void => void

This means that the test expression in a while must be boolean; the object of
the while must be void, and the whole while clause is void.

A rag is locally context free, and must be able to represent types in such a
way that only options of the correct types are available. The only way to do
this is to include type information in the nonterminal symbols. Thus, where
the S-algol CFG defines an expression, the rag must distinguish between
void, int, real, bool and string expressions. This is done by appending the
type name to the symbol name. For example, the top level S-algol
expression nonterminal is expO. The rag defines 5 versions of this, namely
expO void, expO int, expO real, expO bool and expO string.

4.2.2.2 Spaces t
Î

As is usual for a language recogniser, S-algol's CFG does not specify how |
spaces are used. This does not cause problems in parsing, but can in !
generating. For example, S-algol defines: '

<exp3>
<exp4>
<exp5>

which permits:

5 + + 6

<exp4>[<add_op><exp4>]*
<exp5> (<rault__opXexp5>]
[<add_op>]<exp6>]

as an int expression. But without spaces, this becomes:

5++6

100

which generates a type error, because ++ is a string operator. Similarly,
spaces affect the following expressions:

7 rem 3

and

7rem3

which generates a syntax error because there appears to be an operator
missing between the int 7 and the identifier rem3.

It is not sufficient to put spaces around every terminal symbol, because this
leads to errors like:

1 2 3

instead of

123

The solution strategy is a combination of tactics. First, use spaces as a
prefix, not as a suffix. (It could just as well be the other way around: the
important thing is consistency.) Second, include spaces in the
representation table wherever possible. For example:

div symbol: " div"

This is the most efficient way to supply spaces. Essentially, a space is used
to prefix any symbol which we know must be a token in its own right. Thus
d iv sym bol has a space, because it is only used as an integer operator.
But p lu s sym bol cannot have a space, because it may be used in a string.
Third, and last, we add sp a c e sym bol into language productions wherever
else a space is needed. For example:

eq op: space symbol, equals symbol;
tilde equals symbol.

Bottom-level symbols (sp ace sym bol and e q u a ls sym bol) which have
no specific meaning of their own are being combined to make a higher level
symbol (eg op) which has a more specific meaning. But t i l d e e q u a ls
sym bol is specific enough (it is always used to define a not equals relation)

101

int r . w
int i . w
int s . w
cint maxint
creal maxreal
creal epsilon
creal pi

to be defined with its own prefix space. In some cases, new nonterminals
have to be defined to carry out this strategy completely.

4.2.2.3 Identifiers

Declarations introduce new identifiers which are available for use within
their own scopes.

As is usual, S-algol's CFG defines an identifier as a sequence of letters, digits
and periods, beginning with a letter. However, this makes no distinction
between variable names and reserved words; for example, w h ile is a vahd
identifier according to the CFG. Provided the language only has a finite
number of reserved words, this problem can easily be avoided by generating
identifiers in a form which ensures they cannot clash with any reserved
word.

The same argument applies to predeclared identifiers. S-algol predeclares
and initialises the following:

! width of real output field
! width of int output field
! spaces between output fields
! largest int
! largest real
! smallest 1+epsilon > 1
! mathematical constant

plus a few others of types not implemented in this work.

In this thesis, identifiers are generated in the form t , n where t is the type
of the identifier and n is a serial number. For example, the identifier of a
for clause control variable might be i n t . 4. The serial number starts at 0
and is incremented by 1 for every identifier that is issued (ie all types draw
from the same serial number stream). Note that the dot symbol is not an
operator in S-algol: the dot in i n t . 4 is simply a character in the identifier. I

!

4.2.2.4 Scope

The scope of an identifier is the region of the program in which the
identifier can be used to refer to the object it identifies. Because of the way
a rag works, it is most convenient if the scope of an identifier coincides with
a subtree of the PT, and preferably a subtree whose root is close to where
the identifier is introduced. Provided this is the case, it is fairly simple to
add the appropriate productions to the grammar which is applied at the
root of the subtree, so that the new identifier is incorporated into the

102

language in precisely that part of the program which is its scope.
Difficulties can arise if the scope rules are not well matched to the syntax.

Matching scope rules with syntax requires some care in designing the
grammar. For example, suppose a language defines a program to be a
sequence of declarations followed by a sequence of statements, where the
scope of an identifier begins after its declaration and continues to the end
of the enclosing block. (This is the case for S-algol identifiers.) Consider
the following sample program:

let X = 3
let y = X * 5
let z = X * X + y
if z/x > x/y

then write "yes'
else write "no"

We might expect a CFG along the following lines:

program: decls, stmts,
decls: decl; deal, decls
stmts: stmt; stmt, stmts
decl : decl real;

decl int;

stmt : stmt assign;
stmt if;
stmt while

where ... in the definitions of d e c l and s tm t mean that a variety of
different types of declaration and statement are defined. (The
representation table is omitted to save space.) Using this grammar, the PT
for the sample program is:

103

program

decls stmts

stmt

decl decls

let X = 3
decl

decls

let y = X * 5

If z/x > x/y
then write "yes"
else write "no"

decl

let z = X * X + y

Figure 4-2: PT not amenable to scope rules

This PT reveals a poor grammar design, at least as far as scope is concerned.
The scope of x is the rest of the program, but the rest of the program is not
a single subtree. The scope of z is the i/statement, which is about as far
away in the PT as it is possible to be in this little example.

By using the following grammar, we can avoid this problem:

program:
scope :

stmts :
decl :

stmt

decl, scope.
decl, scope;

stmts.
stmt; stmt, stmts
decl real;

decl int;

stmt assign;
stmt if;
stmt while

Here, the nonterminal d e c l s has been removed and replaced by a
nonterminal sc o p e which explicitly structures the PT to conform to the
scope rules. There is no need to do the same for s tm ts because statements
do not introduce new identifiers (though you might choose to restructure
stmts for other reasons, eg cosmetics or consistency). Using this grammar,
the PT for the same program is:

104

program

let X = 3 scope

let y = X * 5 decl

let z = X * X + y

stmts

stmt

if z/x > x/y
then write "yes"
else write "no"

Figure 4-3: PT amenable to scope rules

In this PT, the production methods needed for the p ro g ram and sco p e
nodes are similar: get the identifier from the left hand child and push it
onto the grammar for expanding the right hand child.

Thus, it may be advisable to modify a grammar to make it simpler to
implement as a rag, if there is poor correspondence between the syntax and
the scope rules.

In human programming, holes in scope are an issue. A hole occurs when a
variable is declared with the same name as one in an outer block. The inner
declaration masks the outer declaration. However, holes in scope do not
add to the power of the language to represent algorithms; they merely make
life easier for programmers. The following programs are equivalent:

105

! program 1: hole
let X = 3
for i = 1 to 10 do {

let X = i * X

write i, x, "'n'
}

! program 2: no hole
let X = 3
for i = 1 to 10 do {

let y = i * X
write i, y, "'n'

}

Program 1 declares two variables with identifier x. Program 2 declares the
same variables with identifiers x and y. Program 1 creates a hole in the
scope of the first variable x. Program 2 creates no hole in any scope. The
point is that by renaming variables, it is possible to avoid holes in scope.
Since the scheme for constructing identifiers used here ensures that all
identifiers are unique, holes in scope cannot arise, and as the above example
shows, we don't lose anything by this.

S-algol has simple scope rules — that is, they are simple to define, to
understand and to implement, and they are well matched to the syntax.
Other languages such as Java have more complex scope rules which allow,
for example, an attribute to be used in any method of the class, whatever
order the attribute and the class are declared in. However, our aim is (1) to
synthesize programs, not to analyze them, and (2) to be able to generate all
algorithms, not all programs. Consequently a rag for Java could generate all
attributes before all classes, so that all attribute declarations are available in
the PT when they are needed.

4.2.2.5 For clause

The for clause is the simplest example of a declaration in S-algol. It declares
a control variable of type int, whose scope is a single void clause. S-algol
provides two forms of for, one with an implied Increment of 1, and one with
an explicit increment. Only the first form is implemented here.

The implementation of fo rm a rag is described in §4.2.1.4 Reflective
attribute grammars.

106

4.2.2.G Let declarations

S-algol has 4 basic types {int, real, bool and string) which can be used in a let
declaration. These double to 8 if the constant form is allowed; but constant
declarations are not necessary for the purposes of this thesis and are
therefore not implemented. There are predeclared constants in S-algol, so it
is clear that rags are capable of handling them if it were desired.

The mechanism is similar to the for clause except that there are 4 types and
the introduced identifier is less accessible, being several nodes away from
where it is needed in the PT. A more complex production method is needed
to access it and apply it. The S-algol productions involved in an int
declaration are given in [Morrison, 1979] as:

<sequence> ::= <declaration>[;<sequence>]
<clause>[;sequence>]

<declaration> ::= <let_decl>|
<structure_decl>|
<proc_decl>|
<forward>

(It is possible to have a sequence which ends with a declaration. At first
sight this appears to be pointless, but it is possible for the declaration to
have side effects. However, a final declaration has an empty scope.) The
definition of < seq u en ce> is rewritten for the rag as follows:

107

sequence void: clause void;
clause void,

sequence separator,
sequence void;

decl let;
decl let,

sequence separator,
sequence void;

decl proc;
decl proc,

sequence separator,
sequence void.

sequence int: clause int;
sequence void.

sequence separator,
clause int. j

sequence real: clause real;
sequence void.

sequence separator,
clause real.

sequence bool: clause bool;
sequence void,

sequence separator,
clause bool.

sequence string: clause string;
sequence void,

sequence separator,
clause string

sequence separator:
space symbol,

semicolon symbol,
newline symbol.

The rag form is much longer, for several reasons. First, the untyped S-algol
se q u e n c e and c l a u s e expand to 5 typed rag se q u en ce s and c la u s e s .
Second, S-algoFs form of BNF allows metasymbols like [] and | . Third,
the rag m ust make the punctuation explicit, by stating where sequence
separators occur.

The production method for procedure declarations is quite different to that
for let declarations, so the two types of declaration are separated at the top
level. Procedure declarations are dealt with in the next section.

The definition of s e q u e n c e s e p a r a t o r includes a newline. Unless
newlines are added explicitly (here and elsewhere) the generated program is
a single line which is much longer than a sane person would write. These
long lines exposed a bug in the compiler which caused compilation to fail.

108

Rather than fix the compiler, it was simpler to insert newlines at suitable
points. They also made the phenotype programs easier to read.

The definition of < d e c la r a t io n > includes structures and forward
declarations which are not implemented in this thesis. The definition of let
declarations is rewritten as follows:

decl let:

decl let int

decl let real:

decl let bool :

decl let int;
decl let real;
decl let bool;
decl let string.

let symbol,
id int new,
assignment symbol,
clause int.

let symbol,
id real new,
assignment symbol,
clause real.

let symbol,
id bool new,
assignment symbol,
clause bool.

decl let string:
let symbol,

id string new,
assignment symbol,
clause string.

id int new symbol :
id real new symbol:
id bool new symbol:
id string new symbol :

" idlntNew"
" idRealNew"
" idBoolNew"
" idStringNew"

Again, the rag is much longer than the original version. The new identifier
nonterminals (id i n t new, etc) are defined by corresponding symbols (id
i n t new sym bol, etc). As explained in the outline above, these terminal
symbols are essentially placeholders, which are necessary only so that the
grammar is well-formed. The production method for the new identifier
nonterminals ignores them and converts their own node from nonterminal
to terminal. However, the placeholder symbols are occasionally useful in
development or debugging.

Only alternatives #3 and #5 of sequence void need production methods.
Alternative #3 introduces a variable identifier, and #5 introduces a

109

procedure identifier. The other alternatives either don't introduce new
identifiers or introduce identifiers which have empty scopes.

Alternative #5 is dealt with in the next section.

The production method for alternative #3 (d e c l l e t , s e q u e n c e
s e p a r a t o r , se q u e n c e v o id) digs down two levels to the declaration
and retrieves the new identifier. It then creates a production of the
appropriate type, pushes it onto the grammar, expands the se q u e n c e
v o id , and pops the identifier from the grammar. Digging down more than
one level is not the best design: it would have been cleaner to have the
method for d e c l l e t do some of the work. The production method must
find the type of the declaration in order to generate an appropriate
production to push onto the grammar.

S-algol does not contain any predeclared variables of type real, bool or
string. At face value this means the root grammar has no productions to
define these identifiers:

id real
id bool
id string

and of course these nonterminals don’t appear in any RHS either. Thus,
while the following i n t productions exist in the root grammar:

exp6 i n t : id int.
id int: real width symbol;

string width symbol,
int width symbol.

The corresponding r e a l productions don’t exist:

exp6 real; id real.

because there are no predeclared r e a l identifiers. (There are predeclared
constant r e a l s , but constant r e a l is not the same as r e a l .)

This means that when a real, bool or string identifier is introduced, it is
necessary not only to add a production for the identifier in question, but
also to add a production for identifiers of that type in general. For example,
if we introduce r e a l . 0, we need two productions:

110

e x p 6 real: id real,
id real: real.0 symbol.

As we continue to expand nodes and grow the PT, it is possible that a
further real identifier is introduced, in the scope of r e a l . 0. In this case,
we only need to add an alternative to the i d r e a l production, so that it
becomes:

id real: real.0 symbol;
real.1 symbol.

The proper way to do this would be for the production method to test the
grammar to see whether i d r e a l was already defined, and take either the
first course of action or the second as appropriate. In this thesis, however, I
took a pragmatic course of action and predeclared a seed variable of each
type, including i n t for consistency. That is, I modified the language
slightly to sidestep the problem. The modifications are:

Add a declaration for each type to the standard preamble:

let INT := 0
let REAL := 0.0
let BOOL := false
let STRING :=

Add productions for assignment for real, bool and string to c l a u s e v o id
(int assignment is already declared):

clause void:
id real,

assignment symbol,
clause real;

id bool,
assignment symbol,
clause bool;

id string,
assignment symbol,
clause string.

Add productions for each type of id, with RHS equal to the predeclared
symbol:

id int: variable int symbol,
id real: variable real symbol,
id bool : variable bool symbol.
id string: variable string symbol

111

Add productions to allow level 6 expressions to produce identifiers of each
type:

exp6 real: id real.
exp6 bool; id bool.
exp6 string: id string.

Add productions to produce the terminal symbols:

variable int symbol: " INT"
variable real symbol: '' REAL"
variable bool symbol: " BOOL"
variable string symbol: " STRING"

Having added these seed variables, the production method for sequence
void is always able to push a new identifier of any type onto the grammar
without further ado. However, a disadvantage of this approach is that the
name space is slightly polluted, or diluted, by the seeds, since they provide
extra routes to generate various forms of zero. This presumably makes it
shghtly more difficult to find genes that generate values other than zero. It
also makes phenotypes more wordy than they need be.

4.2.2.7 Procedure declarations

S-algol procedures may be recursive (ie the scope of a procedure includes its
own body). Mutual recursion requires a forward declaration. Higher-order
procedures — ie procedures which take procedures as parameters — are
also supported.

For this thesis, only first-order procedures and self-recursion (ie not mutual
recursion) was implemented. Two production methods for procedure
declarations were implemented, one which allowed recursion, and one
which did not, for comparison.

The S-algol syntax for parameter strings allows adjacent parameters of the
same type to dispense with the second and subsequent type identifiers. For
example, the following prototypes are equivalent:

procedure m (real x, y; int z -> real)
procedure m (real x; real y ; int z -> real)

This is just syntactic sugar; the rag generates parameter lists in the second
form only. That is, a parameter list is a semicolon-separated list of
parameters, each of which consists of a type identifier and a variable
identifier. The rag syntax for procedure declarations is as follows:

112

decl p r o c ; decl proc void;
decl proc int;
decl proc real;
decl proc bool;
decl proc string.

decl proc void:
proc symbol,

id proc new,
sequence separator,
clause void;

proc symbol,
id proc new,
round 1 symbol,
parameter list,
round r symbol,
sequence separator,
clause void.

decl proc in t :
proc symbol,

id proc new,
round 1 symbol,
arrow symbol,
type int symbol,
round r symbol,
sequence separator,
clause int;

proc symbol,
id proc new,
round 1 symbol,
parameter list,
arrow symbol,
type int symbol,
round r symbol,
sequence separator,
clause in t .

parameter list: parameter;
parameter,

parameter separator,
parameter list.

parameter: type int symbol,
id int new;

type real symbol,
id real new;

type bool symbol,
id bool new;

type string symbol,
id string new.

For brevity, only d e c l p ro c v o id and d e c l p ro c i n t are shown in full.
The productions for real, bool and string are similar to the znf version.

113

When a procedure is declared there are two scopes of interest:

• The body of the procedure.

• The s e q u e n c e v o id following the procedure body.

I refer to these as the internal and the external scope respectively. The
scope of the parameter declarations is the internal scope. The scope of the
procedure is both the internal and external scopes (if we wish to enable
recursion) or ju st the external scope (if we do not wish to enable recursion).

The mechanism for introducing a new procedure identifier is the same as
for variable identifiers — that is, the production method for nonterminal
i d p ro c new generates an identifier of the form p r o c , n and converts the
node from nonterminal to terminal. For the same reason that seed variables
of each type are required, it is necessary to define seed procedures of each
type. Identity procedures which return their arguments are used for this:
For example:

procedure PROC.INT (int x -> int)/ x

To manage the information involved in procedure declarations, three new
attributes are required. These are conventional synthetic attributes in the
sag sense. In terms of the implementation, three new object classes are
introduced, and three fields of these types are added to the Node class. The
three object classes are Prototype, Parameter, and ParameterList.

A Prototype object is synthesized when any type of procedure declaration
node is created. It serves to represent the prototype that is declared. Once
the Prototype object is complete, it is used by the parent se q u e n c e v o id
node to generate internal and external productions.

A ParameterList object is synthesized for each parameter list node. If the
child is another p a r a m e te r l i s t node than the child’s list becomes the
tail of the parent’s list. If the child is just a p a ra m e te r , then a new
ParameterList object is started, with one element. The topmost p a ra m e te r
l i s t node is the child of a procedure declaration. This takes the list and
incorporates it into the Prototype object.

114

4.2.2.S Literals

Literals are generated by microsyntax, ie by productions lilce:

literal int; space symbol,
numeral 0 symbol,

space symbol,
digits.

digits: digit;
digit,

digits.

digit: numeral 0 symbol;
numeral 1 symbol;
numeral 2 symbol;
numeral 3 symbol;
numeral 4 symbol;
numeral 5 symbol;
numeral 6 symbol;
numeral 7 symbol;
numeral 8 symbol;
numeral 9 symbol.

This is expensive in that many genes are needed. However, the benefit is
that each genotype can evolve whatever literals it requires. There is no
convenient way to generate SGP’s random ephemeral constants. Generating
random literals in production methods would be possible, but then the
value of the literals cannot be replicated.

4.2.2.9 Preamble, postamble, program

Although not part of the S-algol language, these items are necessary to use
the language in Gads 2. Each phenotype is generated in an S-algol wrapper
comprising a preamble and a postamble.

The same preamble is used in all problems. It contains debugging control,
seed variables, seed procedures, protected procedures (eg to avoid divide-
by-zero errors), enhancements (FLOOR and CEILING procedures are not
provided by S-algol), RNG setup, a procedure to map fitness into a
standardised scale, and code to initialise the 10 environment.

The postamble is problem-specific. In all problems except Annie the
phenotype is coded as a procedure body, since this makes it simple to
evaluate the fitness over a set of test cases. This is often done by
comparing the observed value (from the phenotype) with an expected value.

115

and computing the RMS error. The procedure prototype, if any, is problem-
specific.

In the course of the investigation, eight problems and some variations oT.
them were investigated. Each problem was designed to exercise a different
aspect of the rag system, and consequently each problem required a
different subset of the S-algol language. To avoid having to maintain a suite
of almost identical rags, a single rag that provided for all the problems was
developed, with a system of top-level nonterminals to make it simple to
switch between them. Thus, to obtain the Monkey problem, the first line of
the rag (which defines the start symbol) is:

program: program monkey.

while to obtain the multiplexer program, the first line becomes:

program: program multiplexer.

And so on. Each program has its own section where it redefines the
symbols with the values it requires, such as the phenotype. For example,
the phenotype for monkey is a l i t e r a l s t r i n g , while the phenotype for
cart is exp3 r e a l . These definitions, coming after the standard ones,
replace them. All other problem-specific program sections are commented
out, so that the rag is specialised for just one problem at a time.

116

Gads 2

This section describes the Gads 2 experiments. The aims of the
experiments were:

• To demonstrate the evolution of type-correct programs in a context
sensitive language independent of the GA implementation.

To obtain preliminary performance measurements of the system,
including a rational scalar comparisons of problems and engines.

To demonstrate visualisation techniques.

Like Gads 1, Gads 2 is not optimised for performance. Similarly, the
implementation of rags is not intended as a polished product. It is a single­
use design consistent with the advice given in [Brooks, 1995], namely plan to
throw one away.

The main subsections below are as follows:
§5.1 The origins of Gads 2

Describes the relationship between Gads 1, GE and Gads 2.
§5.2 Systems

Describes the software and hardware used for the experiments, and
the general experimental setup that was common to all the problems
investigated.

§5.3 Problems and individual results
This section describes the problems and the results on an individual
basis.

§5.4 Comparative results
This section compares the results from different problems.

5.1 The origins of Gads 2

The main precursors of Gads 2 are Gads 1 and GE [Ryan, 1998a], [O'Neill,
2001b]. The chronological order of these systems is:

Gads! —> GE Gads2

I

117 i

This shows the essential relationship between Gads and GE but ignores
influences which other systems also had on their design. The following
subsections discuss the main differences between Gads 1, GE and Gads 2.

5,1.1 Translation: mapping genes to productions

In Gads 1 a gene selects the production with the same number. That is, the
mapping from gene value to production number is the identity function;
gene value 5 always selects production 5. This leads to unacceptably large
numbers of introns, because the probability of selecting a production that
can actually be applied falls as the number of productions rises.

In GE a gene is mapped from the set of gene values (say, [0, 255]) to the set
of applicable production numbers (say [0, 3]), by computing the gene value
modulo the number of relevant production alternatives. That is, GE
computes the remainder when the gene value is divided by the number of
production alternatives. For example, to map the gene value 121 into [0, 3]
GE computes 121 modulo 4 = 1.

In Gads 2, the mapping method is to scale the gene by a linear
transformation. For example, scaling [0, 255] into [0, 3] means that genes
with values in [0, 63] map to 0, genes in [64, 127] map to 1, genes in
[128, 191] map to 2 and genes in [192, 255] map to 3,

The analogous biological process is translation, which matches codons with
amino acids during protein syntehsis. Whatever function is used, the
important property is that the same genotype always produces the same
phenotype. In both biology and GE the translation is many-to-one. That is,
there may be more than one gene value which corresponds to an amino acid
or production alternative. In both biology and GE this fact — referred to as
genetic code degeneracy — promotes genotypic diversity.

5.1.2 Repair: wrapping and defaults

In Gads 1 the chromosome is scanned exactly once. This can leave the
phenotype in an incompletely developed state, with nonterminals still
unexpanded.

Gads 1 dealt with this by a rudimentary repair mechanism that assigned
default values (generally zero) to undeveloped parts of the phenotype
during evaluation. This approach was possible in Gads 1 because the
language was small (so zero was always a legal option) and because the
phenotype was evaluated by a purpose-built interpreter which could detect
when default values were needed and supply them. At the time of Gads 1 it

118

was thought that the defaults system would not be easy to scale to a large
grammar.

In GE the chromosome is scanned multiple times, up to a prescribed limit*.
This technique is called wrapping. It means that any given gene may be
used multiple times. The effect of a gene depends on the nonterminal it is
applied to. Given the same nonterminal, with the same set of production
alternatives, the same gene always translates to the same alternative. But
with wrapping, the gene may be used to select an alternative from a
different production in each pass. Translation ensures that the gene will
always make a valid choice. The main effect of wrapping is to make the
ontogenic mapping more likely to produce a completely developed
individual. It also affects the actual phenotypes that are produced by the
ontogenic mapping.

Wrapping is analogous to the chromosome being in the form of a ring
buffer, not a list or string; this is in fact the case in prokaryotic bacteria.

Wrapping is not sufficient to guarantee the complete development of the
individual. It is possible to have a combination of genes which never
complete development, no matter how many times they are wrapped. For
example, using Syntax A (of table 2-3) a chromosome composed only of
genes which select productions 1 and 5 will produce a phenotype that grows
without limit. In GE, an individual which is incompletely developed after the
wrapping limit has been reached is given the lowest possible fitness value.

Thus wrapping is not a complete solution to incomplete development,
though by improving the completion rate of the ontogenic mapping, it
reduces the need for a repair mechanism in the first place. Wrapping
should be seen as part of the ontogenic mapping, not as a repair
mechanism. By using wrapping, GE reduces the need for a repair
mechanism to such an extent that GE does not have a repair mechanism.

Informal experiments for Gads 2 suggested that wrapping would not be so
effective with a full-size grammar. The reason for this appears to be not so
much the larger size of the grammar as its construction. For example, the
definition of an expression is recursive and it is always possible to start a
new sub-expression in parentheses. This is typical for a realistic language.
Wrapping, instead of completing development, simply causes deeper and
deeper nesting of new sub expressions, without limit.

Given a high proportion of incomplete individuals it would not be practical
to assign them all minimum fitness values, as in GE. A repair mechanism is
necessary. For this reason the defaults mechanism of Gads 1 was improved,
as outlined in §4.2.1.2. In Gads 2, the first production alternative for a
given nonterminal that is listed in the grammar is the default for that
nonterminal. By ordering the production alternatives from simplest to most

119

complex, It Is easy to set up a system of defaults that ensures every
nonterminal has a sensible default, and avoids the mistake of having a
recursive rule as the default. The concern in Gads 1 that defaults would be
difficult to organise for a larger grammar proved to be groundless.

The defaults repair mechanism means that every individual develops
completely, so it can then have its fitness evaluated in the ordinary way.
This is valuable, since there are differences in the performance of these
individuals, even though they are not completely developed using the
ontogenetic mapping, and their genetic contribution may be lost if the
individuals are given unfairly low fitness values.

In Gads 2, wrapping was not used at all (more correctly, the wrapping limit
was set to zero so that the chromosome was scanned only once). It would
have been possible to have a higher wrapping limit in Gads 2, but
optimising the performance of Gads 2 was not the aim of the experiment,
and this possibility was not explored.

5.1.3 Genotype: fixed length or variable length

Gads 1 used fixed length chromosomes, for simplicity. Three different
lengths were investigated.

GE uses variable-length chromosomes. It is not clear that variability is
essential for GE to work, though using variable length chromosomes allows
GE to employ genetic operators that are not available to fixed length
systems. Duplicate randomly selects and copies a part of the chromosome,
and inserts the copy immediately before the last gene in the chromosome.
Prune discards the unused tail of a chromosome, in the event that the
ontogenic mapping completes before all the genes have been scanned.
These operators change the length of the chromosomes. Steps must be
taken in any variable length system to ensure that the chromosomes do not
grow to unreasonable sizes.

Gads 2, again for simplicity, uses fixed length chromosomes. A length of
1 000 genes per chromosome is used in the experiments. This size was
chosen, following informal experiments, as being large enough to produce
all the phenotypes that were to be investigated, but not so large as to cause
any system problems.

5.1.4 Genetic operators: crossover

In Gads and GE, genetic operators work on the genotype, which is an array
or list of integers, rather than a tree as in SGP. Because the ontogenic
mapping ensures that any genotype can be expressed as a phenotype, issues

120

of syntax, type-correctness, etc do not arise. However, the Gads/GE
genotype does have an implicit internal structure, because of the way it is
interpreted during ontogenesis. The following paragraphs explain how the
structure arises and its interaction with simple one-point crossover.

First, there is an implied sequence in the genotype. A gene nearer the start
of the chromosome may affect the operation of a gene nearer the end of the
chromosome, but not vice-versa. For this reason it would be more accurate
to describe the genotype data structure as a list or string than an array.
This is true even if the genotype is implemented as an array.

Second, ontogenesis may produce a fully developed individual before it
reaches the end of the chromosome. In such a case, the chromosome
consists of an active head, which is expressed in the phenotype, and an
inactive tail, which is not expressed. We can always describe a chromosome
as a head and a tail if we allow that the tail may be of zero length. Suppose
we now carry out a one-point crossover of two same-length parents PI and
P2. The crossover point may lie in the head or in the tail, in either parent,
giving three different possibilities; XI, X2 or X3 (figure 5-1);

P I

P 2

head

head

tail

tail

X 1 X 2 X 3

Figure 5-1 : One-point crossover

The kind of children produced depends on the crossover location, as
summarised in table 5-1.

Crossover XI Crossover X2 Crossover X3
Child Cl P1[..X1J + P2[X1..] P1[..X2] + P2[X2..J P1[..X3] + P2[X3..J
Child C2 P2[..X1J + P1[X1..J P2[..X2] + P1[X2..] P2[..X3] + P1[X3..J

Table 5-1

In terms of the amount of genetic mixing that is produced, it docs not
matter whether the crossover is of type XI, X2 or X3. But the phenotypic
effect (if we ignore genetic code degeneracy, and the possibility of parents
having identical genes, for the moment) does depend on the crossover type.
Children produced by XI are distinct from both parents. Child Cl produced
by X2 is phenotypically identical to PI because it inherits the entire PI head.
Child C2 produced by X2 is phenotypically distinct from both parents. Both

121

children produced by X3 are phenotypically identical to their parents. Thus
simple crossover may not produce as much change to the phenotype
population as might be expected.

Despite this apparent inefficiency, producing phenotype clones is not a
waste of time, because the genetic material in a tail can become active at a
later time. For example, child C2 by XI inherits the shortest combination of
parental heads: P2[..X1] followed by Pl[Xl..j. When this combination is used
in ontogenic mapping, the effect of PI[XI..] depends on the effect of
P2[..X1], because of the implicit genotype sequencing. This may result in the
length of C2's head being less than, equal to or greater than the length of
P i's head. If C2's head is longer than PTs, then genes from P i’s tail are
expressed in C2's phenotype. Thus, what was inactive can become active.

Gads 1 used uniform crossover, rather than one-point crossover, and made
no allowance for the chromosome structure. In uniform crossover each
gene in a child is equally likely to have come from either parent. It is
possible that this form of crossover might be very disruptive to the implicit
sequence of the genes in Gads, though the ontogenic mapping ensures that
no invalid genotypes can result.

GE's default crossover operator is a simple one-point crossover much as
described above, though the chromosomes are variable length and each
parent's crossover point is chosen independently.

[O'Neill, 2001b] refers to various forms of homologous crossover, in which
there is a deliberate attem pt to ensure that the genetic material that is
exchanged is in some sense equivalent. The aim is to avoid overly
destructive crossover which might result from exchanging material that is
entirely unrelated and unsuitable for the context into which it is placed. (In
biology, homologous chromosomes have the same or allelic genes with
genetic loci usually arranged in the same order, so that DNA in matching
positions on two chromosomes serves a similar purpose in each.) [O'Neill,
2001b] introduces a new form of two-point homologous crossover for GE.
In the standard form of this operation, the two parents are first compared,
gene by gene, from the start of the chromosome. Genes are considered to
match if they translate to the same production. The first crossover point is
immediately before the first pair of genes which do not match. The second
crossover points are chosen randomly and independently in both parents, in
the region to the right of the first crossover points. There is also a variant
form of crossover in which the second crossover points are at the same
locus in both parents, so that the children are same lengths as the parents.

Gads 2 uses a one-point crossover, modified to ensure that the crossover
point is always in the head of both parents. That is, it is restricted to type
XI of figure 5-1. Since Gads chromosomes are fixed length, the crossover
position is the same in both parents. The reason for this choice is that the
large size of Gads 2 chromosomes (1 000 genes), when combined with

122

parsimony, can result in relatively short heads. If, in a given run, the typical
head length is just 100 genes, then choosing a crossover point uniformly in
the 1 000-gene chromosome will result in type X3 crossovers 90% of the
time, and slower phenotype evolution.

5.1.5 Hobson's choice genes

In the definition of a language it is often desirable to define a production
which has just one alternative on the RHS. For example, in Syntax A (table
2-3) there is only one rule for <arity 1>, namely production #7. In [Ryan,
1998a] the BNF definition of a C function has only one alternative for each
LHS except <expr>. If, in the course of ontogenesis, such a nonterminal is
produced, there is no choice about what it must expand to, no need to
translate a gene to make that choice, and consequently no need to use up a
gene at that point.

In Gads 1, which has an identity translation function, this is not an issue. In
order to select production #7, it is necessary to have a gene with value 7.

In GE, as described in [Ryan, 1998a], genes are not used up unless necessary.

In the Gads 2 implementation of ontogenesis, these “Hobson’s choice’’ genes
are used up. They must therefore use up some resources. For example,
they may weaken the effect of crossover by diluting the crossover point
space with ineffective crossover points. Any such effect could trivially be
avoided by modifiying the ontogenic mapping to only use up a gene for a
real choice.

5.2 Systems

This section gives a top-down description of the software and hardware
used for the experiments, and the general experimental setup that was
common to all the problems investigated.

5.2.1 Computing facilities

The experiments were carried out on a laboratory with a server and about
60 client systems. Each run was started with 33 clients in parallel so that
even if a few clients failed there would be a reasonable-sized sample of
results. The runs were coordinated from the laboratory server.

The server ran Solaris 7; the clients ran RedHat Linux 7.1. In addition, the
clients had Java 1.3.1 and S-algol [Kirby, 2000].

123

Each client also had the ECJ GA engine [Luke, 2001]. This is a well-built and
well-documented GA system, written in Java, and with numerous hooks for
the experimenter to extend in Java.

5.2.2 Gads 2 implementation

I developed Gads 2 as an ECJ "experiment", as suggested in [Luke, 2001].
This means that Gads 2 is entirely contained in a directory subtree of ECJ.
A copy of the subtree is available at

ftp ://ftp.d e s .st-and.a c .uk/pub/norman

The implementation is in two main parts: Java classes for a general rag; and
extensions to specialise this for S-algol. The programming quality is
admittedly rather rough, as my aim was to demonstrate the validity of the
concept, not to develop an elegant or efficient implementation of it.

The main interface between ECJ and Gads 2 was provided by:
RAGInitializer

Called by ECJ at the start of the run. Sets up the rag.
RAGProbIem4

Called by ECJ to evaluate an individual.
RAGStatistics

Called by ECJ to output information about the run.
RAGIndividual

The Gads 2 genotype was an ECJ IntegerVector with a modified
crossover. A simple crossover works but may be less efficient.

5.2.3 ECJ parameters

Four engine configurations — ie ECJ parameter sets — were used. They
were named Koz_0, Koz_l, Pat_0 and Pat_l. All configurations shared ECJ's
simple.params with the following deviations:
Species

Integer vector
Population size

1 000 individuals
Genome size

1 000 genes
Gene value range

[0, 100]

124

ftp://ftp.des.st-and.ac.uk/pub/norman

Crossover points
1

Crossover probability
0.9

Mutation probability
0.01

Two further configuration settings were used, each with two values, making
a total of 4 engine configurations. The intention of this was simply to
ensure that there was some variety in the experimental setup, and that
results were not specific to one configuration. The settings were:
Style

Koza or Paterson (see below).
Fitness computation

Either functionality alone, or functionality and parsimony.

Koza-style parameters were intended to be similar to those in [Koza, 1994].
They include:
Selection method

Tournament size 7
Generations

100

Paterson-style parameters were intended to be quite different from Koza’s:
Elite

900
Selection method

Tournament size 1 (ie random selection)
Generations

991

The different numbers of generations were contrived so that both Koza- and
Paterson-style had the same number of evaluations, namely 100 000. These
limits — 1 000 individuals and 100 000 evaluations — are probably too
small if your purpose is to find solutions to real problems.

Parsimony pressure was applied in 50% of the configurations.
Configurations which ignored parsimony were given subscript 0.
Parsimonious configurations were given subscript 1. The application of
parsimony pressure is described below in §5.2.5 Fitness: functionality and
parsimony.

125

5.2.4 Raw and transform ed data sca les

It was necessary to design scales for measuring fitness, and its components,
functionality and parsimony. There were two basic reasons for this.

The first was that the range of the raw measure was sometimes as large as
[0, Float. MAX_VALUE]. The value of Java’s Float. MAX__VALUE is about
10̂ *. This number is so large that it is very difficult to comprehend. For
example, a value of just one-tenth of one percent of this is 10^ ̂which is still
enormous by human standards. It is very difficult to interpret values in so
large a range.

The second was that the raw measures were error measures, in which 0 is
the best and bigger values are worse. These had to be reversed so that zero
was the worst and bigger values were better. There are two obvious ways to
do this: take the reciprocal, or take the negative.

These two factors interact. For example, if the raw functionality is very
small compared to the theoretical maximum, reciprocating or negating will
lead to values which are almost indistinguishable, so that fitness-based
selection will be jeopardised.

1 adopted a standardised set of scale transformations to deal with this, with
the aim of producing scales that were understandable and which produced a
spread of values when real individuals were evaluated. The transformations
are written as the procedure map in the preamble. The input to map is three
boolean switches which specify the transformations required, an observed
value, and the range it is in. The procedure returns a transformed value as
follows:
logarithms

If the LOG option is selected, the scale and the observed value are
replaced by their natural logarithms. This is normally used if the
upper bound of the raw scale is F lo a t ,MAX_VALUE or
I n t e g e r . MAX_VALUE.

For example, if the raw value r is in the range [x, y] then it is
transformed into the value log r in the range [log x, log y].

reverse
If the REV option is selected, the sense of the scale and observed value
(which may by now be logarithmed) are reversed. This is used when
the raw value is an error measure, such as RMS difference between
observed and expected values.
For example, if the raw value r is in the range [x, y] then it is
transformed into the value x + y - r in the range [y, x].

scale
If the SCA option is selected, the observed (which may by now be

126

logarithmed and/or reversed) are scaled into a specific range. This is
used when the raw value is not in the standard range.
For example, if the raw value r is in the range [x, y] then it is
transformed into the value (r - x) / (y - x) * m in the range [Ô -m].

The final value of the transformed observation is returned.

5.2.5 Fitness: functionality and parsimony

Fitness is represented in ECJ as a real value in [0, F l o a t .MAX__VALUE], with
0 being the worst possible.

Raw functionality was a problem-specific measure of how well the individual
performed the objective task, as measured by the evaluation wrapper. The
most common measure was the RMS difference between observed values
(from the individual being evaluated) and expected values (from an ideal
solution). (The term expected does not imply any actual expectation — it is
an echo of statistical terminology.)

Raw parsimony was measured in terms of the leaf count in the phenotype.
(An early version used the gene count, I switched to a phenotype-based
measure because it seemed more consistent to base fitness measures on the
phenotype than on the genome.) Leaf count is in the range [1,
I n t e g e r .MAX_VALUE], b u t in p rac tice is un like ly to b e anyw here n ea r
I n t e g e r . MAX_VALUE.

I wanted to be able to read a fitness value in terms of functionality and
parsimony scores. A simple way to do this is to use decimal digits before
the decimal point to represent functionality, and those after the decimal
point to represent parsimony. This also ensures that functionahty takes
precedence over parsimony. A Java float has a 24-bit mantissa, with an
implied 1 bit in front after normalisation. This makes 25 bits, which can
represent 2" fixed-point values, or just over 7 decimal digits. I therefore
represented fitness by a fixed-point decimal number of the form:

ffff.ppp

where f f f f represents the functionality, and ppp the parsimony. Thus,
functionality was transformed into a value in the range [0, 9999], and
parsimony into a value in the range [0, 999], using the transformation
procedure described above.

Using this method it is simple to interpret a fitness of, say 9825.881 as
scoring 98.25% for functionality and 88.1% for parsimony. There is a slight

127

difference between functionality and parsimony scores. The maximum
functionality score of 9999 is usually achievable, since in the problems
considered, the ideal result is known. The maximum parsimony of 999 is
not usually achievable, because it corresponds to a phenotype of length 1.
Of course we do not usually know the minimum phenotype length in
advance. For example, the best solutions in the Annie problem scored
9999.876 and this is probably the highest achievable score.

It would have been possible to use multiobjective fitness, and might have
allowed for a smaller grain, which might be helpful. However, parsimony
and functionality are not independent and so Pareto optimisation quickly
results in convergence on solutions with good parsimony but poor
functionality, because parsimony is much easier to achieve. Multiobjective
fitness is therefore not a simple option.

5.2.6 Crossover

Although all genomes were the same size, 1 000 genes, not all genes were
needed for every ontogenic mapping. A parsimonious individual might only
use 100 genes. The genome in such a case consists of an active head of 100
genes followed by an inactive tail of 900 genes. If crossover treats all
possible crossover points as equally likely, then 9 times out of 10 the
crossover point will be in the tail. The child which inherits the head of the
genome will then be almost equivalent to the parent with the shorter head.
I say equivalent because later crossovers might show up differences.
In order to make crossover more effective, 1 introduced a version where the
crossover points are guaranteed to be in the head of both parents.

This form of crossover is similar to the pruning technique described in
[Ryan, 1998a]. However pruning is an operator that permanently modifies
genotypes — genes are thrown away. The form of crossover here simply
ensures that the crossover point is in the active region.

5.2.7 Hobson's choice

In each of the problems, several genes were used up in generating the
wrapper. This requires no evolution because there are no choices to make,
so all gene values select the same production. Nonetheless these “Hobson’s
choice” genes m ust exist in this implementation of the ontogenic mapping,
and m ust therefore use up some resources. For example, they may weaken
the effect of crossover by diluting the crossover point space with ineffective
crossover points. Any such effect is expected to be slight, though it could
trivially be avoided by modifiying the ontogenic mapping to only use up a
gene for a real choice.

128

The ontogenic mapping in [Ryan, 1998a] does not use up genes unless it is
necessary.

5.2.8 S-algol

The phenotype language chosen for the Gads 2 experiments is S-algol
[Morrison, 1979] [Kirby, 2000]. S-algol is a general-purpose programming
language which has the benefits of a pleasant grammar that makes it
particularly suitable as a teaching language. In structure, it follows the
general style of the Algol-like languages. Scalar data types include integers,
reals, booleans and strings.

Integer operators div and rem compute integer division and remainder,
respectively. For the purposes of GP, various procedures were defined.
Procedures d i v and r e m are forms of div and rem, protected against
division by zero. Procedure s l a s h is the real equivalent. Procedure s u b s t r
provides a form of substring extraction that is protected against indices
beyond either end of the string. Procedures f l o o r and c e i l i n g were also
added for the Tile problem. These are defined in the wrapper, near the end
of §B.l Syntax.

5.3 Problems and individual results

This section describes the problems and the results on an individual basis.

A range of problems was chosen to exercise different aspects of Gads 2.
Monkey

Evolve a string literal to test that the basic system is working.
Cart

The conventional cart-centering problem.
Tile

Mixed mode arithmetic.
Multiplexer

A standard example, involving boolean expressions and conditionals.
Power

Variable declaration, assignment and iteration.
Two Box

Procedure declaration and use.
Fact

Recursive procedure declaration and use.
Annie

Evolution of a main program.

129

Each of these problems is described in the following subsections. The
description gives the aim of the problem, the objective of the problem, the
subset of the S-algol rag that was used, how functionality was calculated,
and the individual qualitative results.

5.3.1 Monkey

The aim of the monlcey problem was to test the Gads 2 implementation.

The objective was to evolve the literal string " H e l lo , w o r ld I ' n ".

The monkey problem was named after the famous quotation:

"If an army of monkeys were strumming on typewriters, they might write all the
books in the British Museum. "

—Sir Arthur Eddington, The nature of the physical world, 1928

The virtual monlceys were not given such a difficult task, but the task is not
as simple as it appears. The kernel of the phenotype was an S-algol
l i t e r a l s t r i n g , so that the effective grammar was reduced to the
following subset of S-algol:

program: programmonkey.
programmonkey: preamblesymbol, phenotypemonkey,
postamblemonkeysymbol, endofprogram.
phenotypemonkey: phenotypemonkeybeginsymbol, literalstring,
phenotypemonkeyendsymbol.
endofprogram: spacesymbol, questionsymbol.
literalstring: spacesymbol, quotesymbol, quotesymbol; spacesymbol,
quotesymbol, chars, quotesymbol.
chars: character; character, chars.
character: ascii; special.
ascii: letter; digit; punctuation.
special: apostrophersymbol, specialfollow.
letter: letterlowerasymbol; letterlowerbsymbol; letterlowercsymbol;
letterlowerdsymbol
letterlowergsymbol
letterlowerj symbol
letterlowermsymbol
letterlowerpsymbol
letterlowerssymbol
letterlowervsymbol
letterlowerysymbol
letterupperbsymbol
letterupperesymbol
letterupperbsymbol
letterupperksymbol
letteruppernsymbol
letterupperqsymbol

letterloweresymbol
letterlowerbsymbol
letterlowerksymbol
letterlowernsymbol
letterlowergsymbol
letterlowerbsymbol
letterlowerwsymbol
letterlower 2 symbol
letteruppercsymbol
letterupperfsymbol
letterupperisymbol
letterupperlsymbol
letterupperosymbol
letterupperrsymbol

letterlowerfsymbol;
letterlowerisymbol;
letterlowerIsymbol;
letterlowerosymbol;
letterlowerrsymbol;
letterlowerusymbol;
letterlowerxsymbol;
letterupperasymbol ;
letterupperdsymbol;
letteruppergsymbol;
letterupperj symbol;
letteruppermsymbol;
letterupperpsymbol;
letterupperssymbol;

130

letteruppertsymbol; letterupperasymbol; letteruppervsymbol;
letterupperwsymbol; letterupperxsymbol; letterupperysymbol;
letterupperzsymbol.
digit: numeralOsymbol; numerallsymbol; numeral2symbol;
numeralSsymbol; numeral4symbol; numeralSsymbol; numeral6symbol;
numerallsymbol; numeralSsymbol; numeralSsymbol.
punctuation: spacesymbol; exclamationsymbol; hashsymbol;
dollarsymbol; percentsymbol; ampersandsymbol; roundlsymbol;
roundrsymbol; asterisksymbol; plussymbol; commasymbol; hyphensymbol;
periodsymbol; slashsymbol; colonsymbol; semicolonsymbol;
anglelsymbol; equalssymbol; anglersymbol; questionsymbol; atsymbol;
squarelsymbol; backslashsymbol; squarersymbol; caretsymbol;
underscoresymbol; apostrophelsymbol; curlylsymbol; barsymbol;
curlyrsymbol; tildesymbol.
specialfollow: letterlowernsymbol; letterlowerpsymbol;
letterlowerosymbol; letterlowerbsymbol; letterlowerbsymbol;
apostrophersymbol; quotesymbol.

Monkey thus comes down to evolving c h a r s . For each character, the
genome must first choose between a s c i i and s p e c i a l . If a s c i i is
chosen, the genome m ust then choose l e t t e r , d i g i t or p u n c tu a t io n ,
and then the individual character. Similarly, a s p e c i a l character involves
several choices. The ideal genome must produce a string of 15 characters in
several categories. This is not an efficient way to discover strings of
characters, but it is not intended as an exercise in efficiency.

Functionality was computed as follows. The observed value was the literal
string. The expected value was the target string, " H e l lo , w o r ld ! ' n".
Raw functionality was the RMS of the difference between ascii values of
observed characters and expected characters, with the shorter of the
observed and expected strings extended with null characters to the same
length as the longer string. For example, suppose the target string was
" H e llo " and the observed string was " H d lp ij" :

Observed : H d 1 p i j
Ascii : 72 100 108 112 105 106
Expected : H e 1 1 o NUL
Ascii : 72 101 108 108 111 0
Differences : 0 1 0 4 6 106
Squares : 0 1 0 16 36 11236

Sum of squares: 1 + 16 + 36 + 11236
= 11289

Mean square: 11289/6
= 1881.5

Root mean square: sqrt (1881.5)
= 43.4

The least possible value of raw functionality is 0. This is achieved when the
observed and expected strings are equal. The maximum value is S-algol's
maxreal, but this value is extremely unlikely because the probability of a

131

long string is vanishingly small due to the definition of c h a r s .
Consequently the maximum value of the raw functionahty was capped at a
value equal to the raw functionality of the empty string.

Adjusted functionality was computed from the raw functionality first by
reversing the scale (so that 0.0 represented the worst, not the best), and
then by scaling it into the range [0, 9999].

A typical run (res_pat_0/log.atholl.0)i produced the following series of best-
of-run phenotypes, starting in generation 0;

" ' 'q[A836L'b8"
.. >t;4E' ' ' ' 'p[='p' "0"
"2; 4E' ' ' ’ 'p[='p"’0"

{4{r't"’'t>cn"
"&v4E' ' ’p[878'o'b'p""'
"''Q4El't'"E>cn"
"''q [AF't6mp]'o"

''p[878'o'b'p'""
" ’o}ml8’o'p:eJ'7"

'>gD7'' ’pmpJ'7"
"7Qoh''7'pmpJ'7"
"7Qgh{''’pj_ml0"
"<tgh{7'p[eJSO’p"
"OXmo]'''pjp]'7"
"8Qo}'3'pvpj I 7"
"l}m}'3'pvpj|_"
"1{ra}'3'pvp]I
"7Qgh'3 'pvp]I
"7Qge{'''p [pc'c2"
”2' ̂[{] ’ ' 'pmpc'c2"
"lsgh{36mpc'c2"
"7tgh{'''pmpc'c2"
"7_gh{1'pmp]kc2"
"N_gh{1'pmp]kc2"
"Ntoh'''Ivpc'c2"
"7hge{'''pmpmkc2"
"8Xge{7''|py'c2"
"7fgh('''pxpmkc4"
"7fgh{''’pxpmkc2"
"N_gh{''lmpm'c2"
"N_ohv'''pvqckc2"
"5^mh{7''Ipmjc2"
"Tfgh{'''pxpmkc2"
"N_ohv'''pvqmkc4"
"N_ghv' ' 'pvqmkc2''
"7bgh{ ' ' ' ' xpmkc2 ''
"N_gb{''''Ipmkc2"
"N_ph{''''xpmkc2"
"N_ohv''''xpmkc2"

1 The run log is lag.athol.Q and can be found in the results directory res_pn tjO . The results directory identifies the parameters as run 0
of the client "athoH" witli Paterson-style with no parsimony.

132

N_gb{'' ''1pmk_#
N ghv7''ipmj_#"
Ndoh{'' ''xpmkc)
N o h { '' ''Ipmkc#
Ndmh{'' ''xpmkc)
Ndmhv''''1pmkc)
N ohv''''xpmkc#
N_mhv''''xpmkc#
N ohv'''"xpmkc#
Ndm h v '' '"xpmkc#
E^ohv''''xpmk_# t"
Ndmhv'' ' ' xpmk__# t"
Nbohv'''"vpmk_# t"
Ndmhv'' '"xpmk_# t"
Ndmhl'' ''xpmkc# t"
Ndmhv'''"xpmkc# b"
Gdghm'''"vpmk_# t"
Gdghm'''"xppkc# t"
Idmom'''"vppkc# t"
Gdmom'''"xprkc# t"
Gdmmm'' '"vppkc# t" :
Gdmkm'' '"xprkc# t"
Idmkn'' '"xprkc# t"
Gdmkn'' '"xprkd# t"
Gdmkn'' '"xprkd# n" '
Idmln'' '"xprld# t"
Gdmkn'' '"xprld! t"
Gdmln'' '"xprld1 t"
Gdmln'' '"xorld! t"
Gdmlo'' '"xprld! n"
Gemln'' '"xorld! n"
Gdmlo'' '"world I n"
Gemlo'' '"world! n"
Hemlo'' '"world ! n"
Hello'''"world ! n"

The length of the phenotype is always close to the target length of 15
characters. This aspect of the functionality is evidently quite effective.

The phenotype string does not appear remotely similar to the target until
very near the end. For example, it is not at all obvious that moving from
"T f gh{ ' ' ' pxpmkc2" to "Ndmhv ' ’ ' ' | pmkc) " represents an improvement.
This is presumably because the improvement is in terms of ascii values,
which are not immediately apparent to human vision. The distance from H
to T is greater than the distance from H to N, so we know that the first letter
has improved, even though there is no subjective impression of it. I
mention this because to begin with, I thought the system was not actually
working at all.

The target is not actually reached, because the run ends in a local minimum.
Between H e llo and w o r ld the expected value is com m asym bol,
sp acesy m b o l. Both of these are in the p u n c tu a t io n category. The
observed value is a pair of characters in the s p e c i a l f o l l o w category. (In
S-algol, single quote acts as an escape character.) Thus, to change either of

133

these characters requires two gene mutations: one for category and one for
the character. It is most unlikely that both gene changes will occur during
the production of one individual, so the changes m ust occur one at a time or
not at all. But doing either change results in a worse functionality. Given
the unfortunate choice of s p e c i a l f o l l o w characters in the first place,- the
system has actually done the best it can:

Observed: '
Ascii : 39 34
Expected : , S P
Ascii : 44 3 2
Differences : 5 2
Squares : 2 5 4

Sum of squares: 2 9

Mutating to choose p u n c tu a t io n rather than s p e c i a l f o l l o w would
mean that a punctuation character would be selected; but not one so close
to the expected value. Hence the system finds a less-than-perfect solution.

The Monkey experiment demonstrates that Gads 2 produces phenotypes
according to the grammar, and demonstrates evolution in the GA system.

5.3.2 Cart

The aim of the cart problem was to revisit a standard problem.

The objective was to evolve a control expression for a bang-bang rocket cart
as described in § 2 Gads 1. A human-designed solution to this problem is
shown below:

procedure expected (real x, v -> real)
- X - v*rabs(v)

The kernel of the phenotype was an S-algol ex p 3 r e a l . To keep the
phenotype language comparable to the original problem, several S-algol
nonterminals were redefined. For example, int, bool, string, conditional
expression, procedure, and so on were removed, leaving a reduced grammar
as follows:

program: programcart.
programcart: preamblesymbol, phenotypecart, postamblecartsymbol,
endofprogram.
endofprogram: spacesymbol, questionsymbol.
phenotypecart: phenotypecartbeginsymbol, expSreal,
phenotypecartendsymbol.
clausereal: expOreal.

134

clausel: spacesymbol, roundlsymbol.
clauser: spacesymbol, roundrsymbol.
expOreal: explreal.
clauseseparator: spacesymbol, commasymbol.
explreal: exp2real.
exp2real: expSreal.
expSreal: exp4real; exp4real, addop, exp4real.
addop: spacesymbol, plussymbol, newlinesymbol; spacesymbol,
hyphensymbol, newlinesymbol.
exp4real: expSreal; procslashsyrabol, clausel, expSreal,
clauseseparator, exp6real, clauser; expSreal, multopreal, exp6real.
expSreal: expSreal,
expSreal: literalreal; applreal; idrealc; clausel, clausereal,
clauser.
multopreal: spacesymbol, asterisksymbol.
literalreal: spacesymbol, roundlsymbol, hyphensymbol,
numerallsymbol, roundrsymbol.
applreal: applrabs.
idrealc: spacesymbol, letterlowerxsymbol; spacesymbol,
letterlowervsymbol.
applrabs: procrabssymbol, clausel, expOreal, clauser.

Functionality was computed as follows. A set of 20 test cases was
generated. Each test case was a starting position x and velocity v for the
cart, both uniformly distributed in the range (-0.75, +0.75), The same cases
were used throughout. The observed value was the simulated time taken to
centre the cart using the evolved control expression. The expected value
was the simulated time taken using the human-designed control expression.
Raw functionality was the RMS of the difference between observed time and
expected time, over the sample of test cases.

The least possible value of raw functionality is 0. This is achieved when the
observed and expected times are equal. (It is worth mentioning that the
optimal time of 2.02 seconds given in [Koza, 1992] is an artifact of the
simulation parameters. The simulation ends when the cart is within a
certain non-zero capture radius of the origin. An interaction of the capture
radius and the time quantum mean that it is possible to center the cart in
less than the theoretical minimum time.) The maximum value is the
simulated time limit, 10 seconds.

Adjusted functionality was computed from the raw functionality first by
reversing the scale (so that 0,0 represented the worst, not the best), and
then by scaling it into the range [0, 9999].

A typical run (res„pat_0/log.atholl.0) produced the following best-of-run
phenotype:

- X + SLASH (- V , rabs (SLASH (rabs { SLASH { - x , x)), V)))

135

The Cart experiment demonstrates that Gads 2 can produce phenotypes
comparable with those produced by Gads 1.

5.3.3 Tile 1, Tile 2

The aim of the tile problem was to demonstrate the evolution of an
expression involving more than one type.

The objective was to evolve an integer-valued expression for the number of
square unit tiles needed to cover a given right-angled triangle, with real­
valued sides. The tiles cover the triangle from the right angle. For example,
a triangle of sides 4.5 and 7.3 needs 23 tiles:

4 . 5

0.0 7 3

Figure 5-2; H ow many tiles?

As far as I know there is no closed expression for the number of tiles: it is
necessary to compute the number by adding up the number of tiles in each

136

column, which Involves iteration. A human-designed procedure for this is
as follows:

procedure expected (real x, y -> int)
{

let t 0
for i = 0 to FLOOR(x) do {

t := t + CEILING(y-i/x*y)
}
t

}

The kernel of the phenotype was an S-algol expO i n t . As usual, several S-
algol nonterminals were redefined, to reduce the grammar to the relevant
subset of S-algol. Also, procedures FLOOR and C E I L I N G were introduced,
because it seemed fairly likely they would be useful for this problem.

By mistake, version 1 of tile included v o id c l a u s e in the grammar. This
is valid S-algol, but introduced the unintended capacity for the tile
phenotype to write directly to standard output. Since the functionality of
the phenotype was passed to the GA engine by executing the phenotype and
reading its standard output, this meant that the phenotype could write its
own functionality, independently of how well it computed the number of
tiles. This mistake was fixed for version 2, which is shown below.

program: programtile.
programtile: preamblesymbol, phenotypetile, postambletilesymbol,
endofprogram.
endofprogram: spacesymbol, questionsymbol.
phenotypetile: phenotypetilebeginsymboL, expOint,
phenotypetileendsymbol.
clauseint: expOint.
clausereal: expOreal.
clausel: spacesymbol, roundlsymbol.
expOint: explint.
clauser; spacesymbol, roundrsymbol.
expOreal: explreal.
clauseseparator: spacesymbol, commasymbol.
explint: exp2int.
explreal: exp2real.
exp2int: exp3int.
exp2real: exp3real,
exp3int: explint; explint, addop, explint.
exp3real: explreal; explreal, addop, explreal; explint, addop,
explreal; explreal, addop, explint.
explint: expSint; procdivsymbol, clausel, expSint, clauseseparator,
expOint, clauser; procremsymbol, clausel, ex
pSint, clauseseparator, expOint, clauser; expSint, multopint,
expOint.
addop: spacesymbol, plussymbol, newlinesymbol; spacesymbol,
hyphensymbol, newlinesymbol.

137

explreal; expSreal; procslashsymbol, clausel, expSreal,
clauseseparator, expOreal, clauser; expSreal, multopreal
, expOreal.
expSint: expOint.
expOint: literalint; clausel, clauseint, clauser; applint.
multopint: spacesymbol, asterisksymbol.
expSreal: expOreal.
expOreal: literalreal; clausel, clausereal, clauser; applreal;
idrealc.
multopreal: spacesymbol, asterisksymbol.
literalint: spacesymbol, numeralOsymbol; spacesymbol, digits,
applint: applabs; applfloor; applceiling.
literalreal: spacesymbol, numeralOsymbol, periodsymbol,
numeralOsymbol; literalint, periodsymbol; literalint, pe
riodsymbol, digits; literalint, periodsymbol, digits,
letterloweresymbol, digits; literalint, periodsymbol, digi
ts, letterloweresymbol, addop, digits,
applreal: applrabs; applsqrt.
idrealc; spacesymbol, letterlowerxsymbol; spacesymbol,
letterlowerysymbol.
digits: digit; digit, digits.
digit: numeralOsymbol; numerallsymbol; numeral2symbol;
numeralSsymbol; numeral4symbol; numeralSsymbol; numeralOs
ymbol; numeral7symbol; numeralSsymbol; numeralOsymbol.
applabs: procabssymbol, clausel, expOint, clauser.
applrabs: procrabssymbol, clausel, expOreal, clauser.
applsqrt: procsqrtsymbol, clausel, expOreal, clauser.
applceiling: procceilingsymbol, clausel, expOreal, clauser.
applfloor: proofloorsymbol, clausel, expOreal, clauser.

Functionality was computed as follows. A set of 20 test cases was
generated. Each test case was a pair of real values x and y for a triangle,
both uniformly distributed in the range (1, 100). The same cases were used
throughout. The observed value was the number of tiles necessary
according to the evolved expression. The expected value was the actual
number of tiles necessary computed using the human-designed procedure.
Raw functionality was the RMS of the difference between observed value
and expected value, over the sample of test cases.

The least possible value of raw functionality is 0. This is achieved when the
observed and expected number of tiles are equal. The maximum value is S-
algol's maxint.

Adjusted functionality was computed from the raw functionality by taking
logs, reversing the scale (so that 0.0 represented the worst, not the best),
and then by scaling it into the range [0, 9999].

The phenotypes produced ranged from the short;

1 + 8 * 212

138

to the long and Impenetrable:

(1508 +
FLOOR (CEILING (SLASH { -
0.4e04 , y) +
+
X) * 9 -

X * 9.856)) +
(DIV { (REM ((REM ((REM (9 , { (0 * 4))) +
REM (7 , 4)) , 18707) +
DIV ((DIV (0 , { DIV ((REM (abs (REM ((REM (CEILING
{ (REM (0 , ((DIV (0 , (DIV { 0
, (374 -
DIV ((REM ((DIV (FLOOR (+
257.4e +

8 +
SLASH (+
(-
{ -
0.0 +
DIV ((FLOOR (+
sqrt (SLASH { (SLASH (0.6 , rabs (SLASH (rabs (DIV (

FLOOR (+
sqrt { SLASH (sqrt (SLASH (+
y , sqrt (SLASH (-
sqrt { SLASH (rabs ({ SLASH (rabs (SLASH (+
sqrt (SLASH (y , ((REM ((6) , 0) -
DIV (57069 , 0)) * 86 +

rabs (FLOOR (rabs (y) * rabs (REM (CEILING { SLASH (-
0.0 , (X * (SLASH (-
X , rabs (REM (7 , (REM (abs (DIV ((REM (FLOOR (27 *

4 -
SLASH ((SLASH ((DIV ((DIV (abs (REM ((DIV (0 , ((

REM (8 , 0) +
abs (DIV (9 , 0)) * 0)))) , 0)) , FLOOR { DIV (0 ,
(8 +
DIV (CEILING (713 -
SLASH (+
rabs (0 . 0) , 0 . 0)) , 0))) +
0.0)) +
0) , 0) +
0.0) , 0.0) +
0) , 0.0)) , 0) +
0) , 0) +
0) , 0))) +
0.0)) +
0.0) +
0 . 0))) , 0) +
0.0) +
0 . 0) * 0 +
0.0) * 0.0)) +
0) , 0.0) +
0) , 0.0) +
0.0) * 0.0 +
0.0) , 0.0) +
0.0) , 0.0) +
0)) +

139

0 . 0) , 0 . 0)) +
0) , 0) +
0 . 0) , 0 . 0))) +
0 . 0) , 0 . 0) +
0 . 0) * 0 . 0 +
0)) , 0)) +

0 . 0) , 0 . 0)) , 0)) , 0) +
0) , 0))) +
0)) +
0 } * 0)) +
0) +
0 . 0) , 0)) , 0) +
0) , 0)) , 0))) +

0) , 0)) , 0) +
0) , 0) +

0) * 0

The long phenotype has a tail of zeroes. This indicates that the ontogenic
mapping has used up all the genes in the genome. When this happens, and
the ontogenic mapping process requests the next gene to choose between
alternatives, it is given the value zero. This value results in the first
alternative of the production being chosen. The first production is arranged
to be the simplest; for example expO i n t is expanded via a series of
productions to the literal 0. Thus, when the genes have all been used, a tail
of default values results. This ensures that all expressions, parameter lists,
etc are finished off in the simplest grammatically correct fashion.

The most interesting phenotype which resulted from this problem, with
fitness 9258.0, (in version 1, resJcoz.O, log.strathspey.O) was: ,

DIV (CEILING (DIV (0 , 0) +
y * X) , 2) -
DIV (FLOOR (-
y +
SLASH (X , 0.91e -

2)) , 2)

Simplifying 0 . 91e to 1, and using the identities;

f lo o r { -x) = -ceiling (%)
ceiling (-%)= - floor {x)

this reduces to:

DIV (CEILING (X * y) , 2) +
DIV (CEILING (X + y) , 2)

140

In the example above, (x, y) = (7.333, 4.611), giving an evolved value of 21
tiles, as compared with the true value of 23 tiles. The evolved expression
can be seen to be composed of two subexpressions added together. The
first approximates the area of the triangle, and the second adds a
correction. In further tests, this expression was often exactly correct, never
more than a few tiles wrong, and always wrong in the same direction (ie
underestimating rather than overestimating).

The Tile experiment demonstrated that mixed mode expressions were
satisfactorily evolved by Gads 2, and the discovery of interesting algorithms.

5.3.4 Multiplexer

The aim of the multiplexer problem was to demonstrate the evolution of
boolean expressions involving z/clauses and boolean operators.

The problem is described in section 7.4.1 of [Koza, 1992]. The objective was
to evolve a 3-bit multiplexer. A human-designed expression for this is
shown below:

procedure expected (bool a2, al, aO,
d7. d 6 , d5 ,d4 ,d3, <

if a2
then if al

then if aO
then d7
else d6

else if aO
then d5
else d4

else if al
then if aO

then d3
else d2

else if aO
then dl
else dO

The kernel of the phenotype was an S-algol expO b o o l. As usual, several
S-algol nonterminals were redefined, to reduce the grammar to the relevant
subset of S-algol, which is shown below:

program: programmultiplexer.
programmultiplexer; preamblesymbol, phenotyperaultiplexer,
postamblemultiplexersymbol, endofprogram.
endofprogram: spacesymbol, questionsymbol.

141

phenotypemultiplexer: phenotypemultiplexerbeginsymbol, expObool,
phenotypemultiplexerendsymbol.
clausebool: expObool; ifsymbol, clausebool, thensymbol, clausebool,
elsesymbol, clausebool.
clausel: spacesymbol, roundlsymbol.
clauser: spacesymbol, roundrsymbol.
expObool: explbool; explbool, orsymbol, newlinesymbol, explbool.
explbool: exp2bool; exp2bool, andsymbol, newlinesymbol, exp2bool.
exp2bool: exp3bool; notop, exp3bool; exp3bool, eqop, exp3bool;
notop, clausel, exp3bool, eqop, exp3bool, clauser.
exp3bool: exp4bool.
notop: spacesymbol, tildesymbol.
eqop: spacesymbol, equalssymbol; tildeequalssymbol. |
exp4bool: expSbool.]
expSbool: exp6bool.
exp6bool: literalbool; clausel, clausebool, clauser; idboolc.
literalbool: truesymbol; falsesymbol.
idboolc: spacesymbol, letterloweresymbol, numeral2symbol;
spacesymbol, letterloweresymbol, numerallsymbol; spacesymbol,
letterloweresymbol, numeralOsymbol; spacesymbol, letterlowerdsymbol,
numeral?symbol; spacesymbol, letterlowerdsymbol, numeralSsymbol;
spacesymbol, letterlowerdsymbol, numeralSsymbol; spacesymbol,
letterlowerdsymbol, numeral4symbol; spacesymbol, letterlowerdsymbol,
numeral3symbol; spacesymbol, letterlowerdsymbol, numeral2symbol;
spacesymbol, letterlowerdsymbol, numerallsymbol; spacesymbol,
letterlowerdsymbol, numeralOsymbol.

Functionality was computed as follows. All 2048 combinations of the 11
input bits were generated. The observed value was the boolean value of the
evolved expression. The expected value was the correct value computed
using a perfect expression. Raw functionality was the count of the times
where the observed and expected values were equal, over the sample of test
cases.

The least possible value of raw functionality is 0. The maximum value is
2048.

Adjusted functionality was computed from the raw functionality by scaling
it into the range [0, 9999].

A typical phenotype is as follows:

d7 and ■
al = d7 or '
~ al and i
~ (dS ~= (if if ~ (true ~= (~ true and i
(~ d3 and i
~ ~ (if if ~ false or \
~ d l then if if ~ ((if ~ (~ (d7 = (if if (if if if if t

if if ~ ((false = (~ d4 or f
(i f (al and •
~ (true = ((- ((- (- (if if if (if - ((- (- (((|

~ ((true ~= ((i f if if if aO ~= (Î

142

~ (false ~= al) or
~ ((~ (false ~= (~ false or
false and
- ((~ true and
~ ({ if if ~ true and
(if if ~ (i f if if ~ false and
- (~ false) then if (~ ((if if ~ ((if if if if if (if

if if if ~ (" d7) and
~ (if ~ (false = true) and
(if if false and
(.if ~ ((~ aO and
((true ~= true and
~ ((if if if if - false and
(~ (if ~ (d2 = a2) and
~ ((~ (dO d3)) (~ true and
- (false (~ (~ (if if if if ~ (~ false and
~ (if if if false = false and
dO = d4 or
~ ((if false ~= (if true then true else true) and
true then true else true) = true) and
true then true else true then true else true then true else

true) or
true) or
true then true else true then true else true then true else

true then true else true) and
true or
true) and
true)) or
true)) or
true then true else true) and
true) = true then true else true then true else true then

true else true then true else true) = t
rue)) or
true) = true) = true) and
true then true else true) = true then true else true then

true else true) = true then true else t
rue) or
true then true else true then true else true then true else

true then true else true) = true and
true or
true then true else true then true else true then true else

true then true else true then true else
true) = true and
true) and
true then true else true then true else true) = true) and
true or
true) = true or
true then true else true else true then true else true then

true else true) and
true then true else true then true else true) = true or
true then true else true then true else true) = true)) =

true and
true)))) = true)) or
true then true else true then true else true then true else

true then true else true) or
true } or
true) = true) and
true) = true and

true) = true)) or
true) or

143

true) and
true or
true then true else true) and
true then true else true then true else true then true else

true))) = true } or
true) = true))) = true then true else true) and
true)) and
true or
true) or
true then true else true then true else true then true else

true then true else true then true else
true then true else true) = true and
true then true else true then true else true)) and
true) and
true or
true then true else true) - true or
true) or
true then true else true then true else true else true then

true else true) or j
true)) or |
true)) and j
true or :|
true then true else true then true else true)) j

I
Once again we can see the tail, this time composed of many occurrences of \
t r u e , which is the default boolean expression. j

The Multiplexer experiment demonstrates that Gads 2 successfully
generates boolean expressions, involving zf clauses and boolean operators.

5.3.5 Power

The aim of the power problem was to demonstrate the evolution of a
program involving the declaration and use of typed variables and iteration.

The objective was to evolve the body of a procedure to raise a real value x to
an integer power n. A human-designed solution to this is as follows;

procedure expected (real x; int n -> real)
{

let result := 1.0
for i = 1 to n do

result := result * x
result

)

The kernel of the phenotype was an artificial nonterminal defined to be a
sequence of void clauses and declarations, followed by a real expression
which was the value of the procedure. The human designed solution above
requires only one declaration (of result), one void clause (the for) and a

144

simple real expression (result). The phenotype kernel is therefore
considerably more general than is required. As usual, several S-algol
nonterminals were redefined, to reduce the grammar to the relevant subset
of S-algol, which is shown below:

program: programpower.
programpower: preamblesymbol, phenotypepower, postamblepowersymbol,
endofprogram.
endofprogram; spacesymbol, questionsymbol.
phenotypepower: phenotypepowerbeginsymbol, sequencevoid,
sequenceseparator, clausereal, phenotypepowerendsymbol.
sequencevoid: clausevoid; clausevoid, sequenceseparator,
sequencevoid; decllet; decllet, sequenceseparator, sequencevoid.
clausevoid: expOvoid; forsymbol, idintnew, spacesymbol,
equalssymbol, clauseint, tosymbol, clauseint, dosymbol, clausevoid;
idint, assignmentsymbol, clauseint; idreal, assignmentsymbol,
clausereal.
sequenceseparator: spacesymbol, semicolonsymbol, newlinesymbol.
decllet: declletint; declletreal.
clauseint: expOint.
clausereal: expOreal.
clausel: spacesymbol, roundlsymbol.
expOint: explint.
clauser: spacesymbol, roundrsymbol.
expOreal: explreal.
declletint: letsymbol, idintnew, assignmentsymbol, clauseint.
declletreal: letsymbol, idrealnew, assignmentsymbol, clausereal.
idintnew: idintnewsymbol.
idrealnew: idrealnewsymbol.
expOvoid: explvoid.
idint: spacesymbol, letterlowernsymbol.
idreal: spacesymbol, letterlowerxsymbol.
clauseseparator: spacesymbol, commasymbol.
explvoid: exp2void.
explint: exp2int.
explreal: exp2real.
exp2void: expSvoid.
exp2int: expSint.
exp2real: expSreal.
expSvoid: exp4void.
expSint: exp4int; exp4int, addop, exp4int.
expSreal: exp4real; exp4real, addop, exp4real; exp4int, addop,
exp4real; exp4real, addop, exp4int.
exp4void: expSvoid.
exp4int: expSint; procdivsymbol, clausel, expSint, clauseseparator,
expGint, clauser; procremsymbol, clausel, expSint, clauseseparator,
expGint, clauser; expSint, multopint, expGint.
addop: spacesymbol, plussymbol, newlinesymbol; spacesymbol,
hyphensymbol, newlinesymbol.
exp4real: expSreal; procslashsymbol, clausel, expSreal,
clauseseparator, expGreal, clauser; expSreal, multopreal, expGreal.
expSvoid: expGvoid.
expSint: expGint; a d d o p , expGint.
expGint: literalint; clausel, clauseint, clauser; idint.
multopint: spacesymbol, asterisksymbol.
expSreal: expGreal.
expGreal: literalreal; clausel, clausereal, clauser; idint; idreal.

145

multopreal: spacesymbol, asterisksymbol,
expGvoid: sequencel, sequencer; clausel, clausevoid, clauser;
sequencel, sequencevoid, sequencer,
sequencel: spacesymbol, curlylsymbol.
sequencer: spacesymbol, curlyrsymbol.
literalint: spacesymbol, numeralOsymbol; spacesymbol, digits,
literalreal: spacesymbol, numeralOsymbol, periodsymbol,
numeralOsymbol; literalint, periodsymbol; literalint, periodsymbol,
digits; literalint, periodsymbol, digits, letterloweresymbol,
digits; literalint, periodsymbol, digits, letterloweresymbol, addop,
digits.
digits: digit; digit, digits.
digit: numeralOsymbol; numerallsymbol; numeral2symbol;
numeralSsymbol; numeral4symbol; numeralSsymbol; numeralGsymbol;
nuraeralVsymbol; numeralSsymbol; numeralSsymbol.

Functionality was computed as follows. A set of 30 test cases was
generated. Each test case was a pair of real values x and n, both uniformly
distributed, x in the range (0, 10) and n in the range [0, 10]. The same cases
were used throughout. The observed value was the value of x" computed
according to the evolved expression. The expected value was computed
using the human-designed solution above. Raw functionality was the RMS
of the difference between observed value and expected value, over the
sample of test cases.

The least possible value of raw functionality is 0. This is achieved when the
observed and expected times are equal. The maximum value is maxreal

Adjusted functionality was computed from the raw functionality by taking
logs, reversing the scale (so that 0.0 represented the worst, not the best),
and then by scaling it into the range [0, 9999].

A typical phenotype (res_pat_0/log.dufftown.0) is as follows:

X 0.4e7 - n * n ;
n := DIV (+ n , 0) + DIV (n , (REM (811 , n) - REM (n ,
0))) ;
(SLASH (n , n) + SLASH (n , 0 . 76)) * x + SLASH (G.557e
+ 0 , n)

As can be seen in this example, no variables are declared and no iteration
takes place. The phenotype does not require either of these grammatical
constructions, it merely enables them. Many phenotypes declare variables
but never use them. For example (res_koz_0/log.atholl.O):

let real.O := DIV (- n , 0) - SLASH (- x , 0.0)
SLASH (n , (SLASH (x , 42.))) + + 7578471 * n

146

While (res_koz_0/log.kinclalth.O) shows that more than one declaration is
possible:

let int.O := DIV (n , (REM (1 , n))) ;
let real.l := SLASH { 09.0222 , 7.6) + (x * 0.5719072e + 01
+ REM (0 , n) } ;
+ n + REM (- (DIV (0 , (REM (- n , n))) + (n * (n -
DIV (+ n , n)))) , 0)

No best-of-run phenotype declared more than two variables. Use of
declared variables was rare. For example, (res„koz_0/log.coe.O) begins:

let real.O := SLASH (- (SLASH ((SLASH (- 0. , n)) , x)
) , n) - n ;
real.O := - n + - real.O ;

showing that the identifier r e a l . 0 was correctly added to the grammar
following its declaration.

Evolution of for clauses was much rarer. For example
(res„pat_0/log.ransom.O) shows both an evolved /hr clause and use of a
previously declared variable:

let int.O := DIV (0 , n) ;
for int.l = (int.O - DIV (int.O , n)) * int.O to n * n do
int.O := REM (- 0 , int.O) ;
n * 0.7e7

The grammar for this problem would support a nested for, though none was
produced as a best-of-run phenotype. None of the best-of-run phenotypes
used any declared variable in their final real expression.

Although this experiment failed to produce anything remotely like the
human-designed solution, it succeeded in its aim of demonstrating the
declaration and use of type-correct variables and iteration.

5.3.6 Two box

The aim of the two box problem was to demonstrate the evolution of a
procedure declaration and use. The problem is described in section 4 of
[Koza, 1994]. Four variants of the problem were investigated. None are
identical in all respects to the original Koza problems, but they do aim to

147

capture the spirit of the original. The variants present a progression
towards less prescriptive procedure declarations.

The objective in all variants is to evolve an expression for the difference in
volume of two cuboids. The cuboid dimensions are given as two sets of
three real values. A human-designed solution to this problem is as follows:

procedure expected
(real LO, WO, H O , Ll, Wl, HI -> real)

{
procedure volume

(real ARGO, ARGl, ARG2 -> real)
ARGO * ARGl * ARG2

volume (LO, WO, HO) -
volume (Ll, Wl, HI)

The variants of the problem are distinguished by their phenotype grammars
as follows:
Two Box 1 (Koza style: w ithout ADF)

A real expression involving only the real parameters LO, WO, HO, L l, Wl
and HI and retz/arithmetic operations +, —, * and SLASH.

Two Box 2 (Koza style: with ADF)
A non-recursive procedure of type (real, real, real -> real) and a real
expression as for Two Box 1, plus the declared procedure.

Two Box 3 (Paterson style: w ith unprescribed, non-recursive ADF)
A non-recursive procedure of type {reaV̂ -> real) (where real* means
zero or more reals) and a real expression as for Two Box 1, plus the
declared procedure.
S-algol supports recursion by default, so for this variant it was
necessary to implement a form of S-algol which did not support
recursion. This is described in §4.2.2.7 Procedure declarations.

Two Box 4 (Paterson style: with unprescribed, recursive ADF)
As for Two Box 3, but with recursion enabled.

The Two Box 1 kernel was a c l a u s e r e a l . As usual, several S-algol
nonterminals were redefined, to reduce the grammar to the relevant subset
of S-algol, which is shown below;

program: programtwoboxl.
programtwoboxl: preamblesymbol, phenotypetwoboxl,
postambletwoboxsymbol, endofprogram.
endofprogram: spacesymbol, questionsymbol.

148

phenotypetwoboxl: phenotypetwoboxbeginsymbol, clausereal,
phenotypetwoboxendsymbol.
clausereal: expOreal.
clausel: spacesymbol, roundlsymbol.
clauser: spacesymbol, roundrsymbol.
expOreal: explreal,
clauseseparator: spacesymbol, commasymbol.
explreal: exp2real.
exp2real: expSreal.
expSreal: exp4real; exp4real, addop, exp4real.
addop: spacesymbol, plussymbol, newlinesymbol; spacesymbol,
hyphensymbol, newlinesymbol.
exp4real: expSreal; procslashsymbol, clausel, expSreal,
clauseseparator, expGreal, clauser; expSreal, multopreal, expGreal.
expSreal: expGreal.
expGreal: idrealc; clausel, clausereal, clauser.
multopreal: spacesymbol, asterisksymbol.
idrealc: spacesymbol, letterupperlsymbol, numeralOsymbol;
spacesymbol, letterupperwsymbol, numeralOsymbol; spacesymbol,
letterupperhsyrabol, numeralOsymbol; spacesymbol, letterupperlsymbol,
numerallsymbol; spacesymbol, letterupperwsymbol, numerallsymbol;
spacesymbol, letterupperhsymbol, numerallsymbol.

The Two Box 2 kernel was a procedure declaration followed by a c l a u s e
r e a l . The procedure declaration was constrained to be of the specified
type. The prescribed parameter list of 3 reals was obtained by “unwinding”
the definition of p a r a m e t e r l i s t so that the procedure methods already
developed for the general parameter list could be re-used without
modification. The seed procedure PROG. REAL was included so that the
ADF could be added as an alternative to an existing production, without
having to introduce the whole production. As usual, several S-algol j
nonterminals were redefined, to reduce the grammar to the relevant subset]
of S-algol, which is shown below: |

program: programtwobox2.
programtwobox2: preamblesymbol, phenotypetwobox2,
postambletwoboxsymbol, endofprogram.
endofprogram: spacesymbol, questionsymbol.
phenotypetwobox2: phenotypetwoboxbeginsymbol, sequencevoid,
phenotypetwoboxendsymbol.
sequencevoid: declproc, sequenceseparator, clausereal.
sequenceseparator: spacesymbol, semicolonsymbol, newlinesymbol.
declproc: declprocreal.
clausereal: expOreal.
clausel: spacesymbol, roundlsymbol.
clauser: spacesymbol, roundrsymbol.
applproctypereal: proctyperealsymbol, clausel, expOreal, clauser.
expOreal: explreal.
declprocreal: procsymbol, idprocnew, roundlsymbol, parameterlist3,
arrowsymbol, typerealsymbol, roundrsymbol, sequenceseparator,
clausereal.
idrealnew: idrealnewsymbol.
idprocnew: idprocnewsymbol.
parameter: typerealsymbol, idrealnew.

149

j

parameterseparator: spacesymbol, semicolonsymbol.
idreal: spacesymbol, letterupperlsymbol, numeralOsymbol;
spacesymbol, letterupperwsymbol, numeralOsymbol; spacesymbol,
letterupperhsymbol, numeralOsymbol; spacesymbol, letterupperlsymbol,
numerallsymbol; spacesymbol, letterupperwsymbol, numerallsymbol; ..
spacesymbol, letterupperhsymbol, numerallsymbol.
clauseseparator: spacesymbol, commasymbol.
explreal: exp2real.
exp2real: expSreal.
expSreal: exp4real; exp4real, addop, exp4real.
addop: spacesymbol, plussymbol, newlinesymbol; spacesymbol,
hyphensymbol, newlinesymbol.
exp4real: expSreal; procslashsymbol, clausel, expSreal,
clauseseparator, expGreal, clauser; expSreal, multopreal, expGreal.
expSreal: expGreal.
expGreal: idreal; applreal; clausel, clausereal, clauser.
multopreal: spacesymbol, asterisksymbol,
applreal: applproctypereal.
parameterlistS: parameter, parameterseparator, parameterlist2.
parameterlist2: parameter, parameterseparator, parameterlistl.
parameterlistl: parameter.

The Two Box 3 kernel was, like the Two Box 2 kernel, a procedure
declaration followed by a c l a u s e r e a l . However, the procedure
declaration was less constrained; the parameter list was zero or more real
arguments. The seed procedure P R O C . R E A L was included so that the ADF
could be added as an alternative to an existing production, without having
to introduce the whole production. As usual, several S-algol nonterminals
were redefined, to reduce the grammar to the relevant subset of S-algol,
which is shown below:

program: prograratwoboxS.
programtwoboxS: preamblesymbol, phenotypetwoboxS,
postambletwoboxsymbol, endofprogram.
endofprogram: spacesymbol, questionsymbol.
phenotypetwoboxS: phenotypetwoboxbeginsymbol, sequencevoid,
phenotypetwoboxendsymbol.
sequencevoid: declproc, sequenceseparator, clausereal.
sequenceseparator: spacesymbol, semicolonsymbol, newlinesymbol.
declproc: declprocreal.
clausereal: expOreal.
clausel: spacesymbol, roundlsymbol.
clauser: spacesymbol, roundrsymbol.
applproctypereal: proctyperealsymbol, clausel, expOreal, clauser,
expOreal: explreal.
declprocreal: procsymbol, idprocnew, roundlsymbol, arrowsymbol,
typerealsymbol, roundrsymbol, sequenceseparator, clausereal;
procsymbol, idprocnew, roundlsymbol, parameterlist, arrowsymbol,
typerealsymbol, roundrsymbol, sequenceseparator, clausereal.
idrealnew: idrealnewsymbol.
idprocnew: idprocnewsymbol.
parameterlist: parameter; parameter, parameterseparator,
parameterlist.
parameter: typerealsymbol, idrealnew.

150

parameterseparator: spacesymbol, semicolonsymbol.
idreal: spacesymbol, letterupperlsymbol, numeralOsymbol;
spacesymbol, letterupperwsymbol, numeralOsymbol; spacesymbol,
letterupperhsymbol, numeralOsymbol; spacesymbol, letterupperlsymbol,
numerallsymbol; spacesymbol, letterupperwsymbol, numerallsymbol;
spacesymbol, letterupperhsymbol, numerallsymbol.
clauseseparator: spacesymbol, commasymbol,
explreal: exp2real.
exp2real: expSreal.
expSreal: exp4real; exp4real, addop, exp4real.
addop: spacesymbol, plussymbol, newlinesymbol; spacesymbol,
hyphensymbol, newlinesymbol.
exp4real: expSreal; procslashsymbol, clausel, expSreal,
clauseseparator, expGreal, clauser; expSreal, multopreal, expGreal.
expSreal: expGreal.
expGreal: idreal; applreal; clausel, clausereal, clauser.
multopreal: spacesymbol, asterisksymbol,
applreal: applproctypereal.

The Two Box 4 kernel (and consequently the context-free grammar) was
identical to the Two Box 3 kernel. The difference, namely the fact that
recursion was enabled in Two Box 4, was achieved by using a different
production method.

Functionality was computed for all variants as follows. A set of 10 test
cases was generated. Each test case was a set of 6 integer values LO, WO, HO,
Ll, Wl, and HI, all uniformly distributed in the range [1, 10]. The same
cases were used throughout. The observed value was the value of the
evolved expression. The expected value was the correct difference in the
cuboid volumes computed using the human-designed solution above. Raw
functionality was the RMS of the difference between observed value and
expected value, over the sample of test cases.

The least possible value of raw functionality is 0. This is achieved when the
observed and expected times are equal. The maximum value is maxreal.

Adjusted functionality was computed from the raw functionality by taking
logs, reversing the scale (so that 0.0 represented the worst, not the best),
and then by scaling it into the range [0, 9999].

A typical Two Box 1 phenotype (res_koz_0/log.atholl.O) is as follows:

({ (HO -
SLASH (Wl , WO)) * WO -
SLASH ((SLASH ((HI * (Ll * Wl) +
{ SLASH ((Wl) , { SLASH ((SLASH (Ll , WO) -
SLASH (HI , Wl)) , WO) -
Ll))) * Wl) , { SLASH (HO , HO } +
SLASH (HO , (HI * (SLASH (((HO * Wl +
Ll * HO) * Ll) , (LO * (SLASH ({ SLASH ((Wl * LO +

151

HI) , (HI * (SLASH (Wl , Wl)) -
SLASH (WO , (Ll * WO +
((Ll) * (SLASH (WO , { ({ SLASH (Ll , LO) -
SLASH ((SLASH (((SLASH { { SLASH ({ SLASH (((((

SLASH (Ll , (SLASH ((Wl - SLASH { Wl , LO)) , Wl))..))
) * (SLASH ((SLASH (WO , LO) -
{ WO * ((SLASH (HI , Ll) +
(LO * Ll +
(HI))) * (SLASH { (SLASH ((((LO * (WO * ((SLASH

{ Ll , (SLASH ((Wl * ((HO * WO) -
SLASH (((WO) +
HO) , ({ SLASH { HO , Ll)) * Ll)))) , Wl) +
WO))) -
(SLASH (LO , (SLASH (Wl , WO)))))) -
SLASH (((SLASH ((Ll +
SLASH (Ll , WO }) , { (Wl) -
WO)) +
SLASH ((HI * LO) , LO) } +
LO) , LO)) * LO)) , LO) +
LO) , LO))))) , LO) +
LO) +
LO) * LO) , LO) +
LO) , LO)) , LO))) , LO) +
LO) , LO)) * LO))))) * LO))))) , LO) +
LO) +
LO))))))) +
LO) , LO)) * LO +
LO) +
LO

The tail consists of LO which is the default real expression in this grammar.

A typical Two Box 2 phenotype (res_koz_l/log.inchmurrin.O) is shown
below.

procedure proc.O(real real.l ; real real.2 ; real real.3 ->
real) /
HO * real.2 /
(SLASH { (p r o c .0(PROC.REAL (PROC.REAL (WO * WO) *

PROC.REAL (SLASH (PROC.REAL (LO) , PROC.REAL (HI))) -
WO) * Ml , (SLASH (HO , HI)) * (SLASH (HO , (Wl *

PROC.REAL (SLASH { (Wl -
SLASH (PROC.REAL { SLASH (proc.0(PROC.REAL (SLASH (

PROC.REAL { WO * HO) , Wl)) , PROC.REAL (Wl) , PROC.REAL
(PROC.REAL (PROC.REAL (SLASH (HI , PROC.REAL (WO))))
) * (HI +
{ (proc.O{ SLASH (p roc.0((SLASH { WO , (SLASH (HO , Wl

) ~
{ SLASH (HO , WO)))) +
WO) * proc.O(SLASH (proc.O{ SLASH { LO , HO) , Wl , Ll -
(WO * proc.O(SLASH { PROC.REAL (Wl) , ((PROC.REAL (
SLASH (WO , LO))) * (Ll * PROC.REAL (SLASH (PROC.REAL (
PROC.REAL ({ PROC.REAL { PROC.REAL (HO))))) , ((SLASH
{ ((PROC.REAL ((Ll)) +
HO) * (((SLASH { Ll , Wl)) +
(PROC.REAL (Wl) * Wl) * HO))) , (HO * (PROC.REAL {

152

Wl)) +
LO))) +
PROC,.REAL (SLASH (p roc.0((H O * ((proc.O(SLASH ((HO
WO) , PROC.REAL (SLASH (proc. 0(HO , PROC.REAL { Hi)' f

SLASH { (((WO))) , WO) +
(LO)) , LO) +
LO)) , LO , LO) +
LO)) +
LO) , LO , LO) , LO)) * LO))) +
LO))) , LO , LO))) , LO) , LO , LO) +
LO , LO , LO) , LO) , LO , LO) * LO)))) , LO) +
LO) , LO)) , LO)))) +
LO) , LO)) , LO)) * LO

The phenotype begins with the prototype for procedure p r o c . 0, with the
three real parameters, named r e a l . 1, r e a l . 2 and r e a l . 3. The body
refers to HO and r e a l . 2, showing that the external parameters and the
procedure’s own parameters are in scope. The phenotype then ends with a
multi-line real expression involving the cuboid dimensions and the newly-
defined procedure p r o c . 0. Each call of the new procedure has the correct
number of parameters. The procedure parameters are not in scope in the
expression and so do not appear. The expression ends with a default tail.

Two Box 3 allows any number of reals in the procedure declaration. As
expected from the grammar, the most common number of reals is zero,
followed by 1, 2 and so on. The most observed was 6. A typical Two Box 3
phenotype (res_pat_l/log.brackla.O) with a procedure of type (-> real) is
shown below:

procedure proc.O(-> real) /
Wl * (SLASH (HI , (WO * WO +
WO))) ;
PROC.REAL (SLASH (HO , PROC.REAL (PROC.REAL (p r o c .0)))

+
SLASH (PROC.REAL (SLASH (PROC.REAL (SLASH (WO , proc.O)

(Wl) * (PROC.REAL (proc.O * Ll -
PROC.REAL (SLASH ((proc.O * { SLASH ({ SLASH ((SLASH (

PROC.REAL { WO * PROC.REAL ((SLASH ((SLASH (LO , proc.O)
+
SLASH (proc.O , proc.O)) , proc.O) -
HI) +
proc.O * WO) -
proc.O * Ll) , proc.O) -
Wl) , PROC.REAL ({ proc.O +
SLASH (PROC.REAL { (SLASH { PROC.REAL (proc.O +
SLASH (PROC.REAL (LO -
PROC.REAL (PROC.REAL (SLASH (proc.O , WO) +
HI) * PROC.REAL { SLASH { (SLASH (PROC.REAL ((SLASH {

proc.O , { ((SLASH (PROC.REAL (SLASH (PROC.REAL ((LO *
HI -
LO) * proc.O) , Ll)) , ((SLASH (proc.O , proc.O)) +
proc.O)) +
SLASH (PROC.REAL (SLASH (PROC.REAL ((proc.O) * ({ (LO

) +

153

(wo (proc.O -

((SLASH (

((SLASH { HI

PROC.REAL (proc.O)
(HO +
Ll * { proc.O +
SLASH (PROC.REAL (HO -
(PROC.REAL (SLASH (PROC.REAL { Ll)

PROC.REAL (SLASH (HO , proc.O) -
proc.O) , WO)) * (SLASH (HO , Ll)) +
(SLASH ((LO * Wl) , proc.O)))))))

, PROC.REAL (SLASH (WO , proc.O) -
PROC.REAL { SLASH { proc.O , PROC.REAL (SLASH ({ SLASH (

proc.O , HO) +
* ((LO)))))))))))

LO)) , LO) +

proc 0) , WO)))))
LO , LO) t LO) +
LO)) +
LO) LO) +
LO) , LO))) * LO) ,
LO > * LO +
LO) , LO)) +
LO)) +
LO) , LO)) +
LO) , LO))) * LO +
LO)) T LO) +
LO) , LO)) * LO +
LO

A typical Two Box 3 phenotype (res_pat_l/log.garioch.O) with a procedure of
type (real, real -> real) is shown below:

procedure proc.O(real real.l ; real real.2 -> real) ;
SLASH { real.l , (Ll)) ;
proc.O(WO * proc.O{ PROC.REAL { (SLASH (Wl , HO) +
SLASH ((WO) , proc.O(SLASH (PROC.REAL ((SLASH (Wl ,

LO) +
HI)) , HO) , SLASH (PROC.REAL (WO * p roc.0(PROC.REAL (

PROC.REAL (((HO +
(proc.O (PROC.REAL (LO) , SLASH (Wl , PROC.REAL (SLASH (

Wl , { PROC.REAL (SLASH { PROC.REAL { (WO * PROC.REAL {
SLASH { HO , (PROC.REAL (HO)))) -
Wl)) , PROC.REAL { (SLASH (HO , PROC.REAL (PROC.REAL (

SLASH { WO , (PROC.REAL (PROC.REAL (PROC.REAL (Ll * LO))

WO) * Ll))) * PROC.REAL (HO +
PROC.REAL (Wl +
PROC.REAL (PROC.REAL ((Ll +
WO))) * PROC.REAL (SLASH (((PROC.REAL { HO) -
Wl)) , { proc.O{ PROC.REAL { PROC.REAL ((p r o c .0 (

PROC.REAL (PROC,REAL (WO) * PROC.REAL (SLASH (Ll , { HI *
PROC.REAL (HI))))) , ((SLASH (Wl , PROC.REAL ((Wl *
Wl -
SLASH ((WO) , HI)) * PROC.REAL (PROC.REAL ((Ll)))

+
(HI)))) * ((Ll -
SLASH (PROC.REAL (SLASH ({ Ll) , Ll)) , HO))))) *

PROC.REAL (SLASH (PROC.REAL (proc.O(Ll -
HI , HI)) , PROC.REAL (PROC.REAL (SLASH { proc.O{ proc.0(

Wl -
WO , LO) * LO , LO) , LO)))) +
LO)) +

154

LO)) +
LO , LO))) +
LO)) * LO)) :)) * LO))) * LO
LO)))) +
LO) * LO))))) , LO)) , LO) +
LO)))) * LO , LO) , LO)

The procedure’s formal arguments are in scope only in the procedure body.
The procedure itself is in scope in the final clause, where each call has two
real arguments as required. There is a short tail.

The best individual found (res_pat_l/log.glenhaven.O) was:

procedure proc.O{ -> real) ;
LO ;
(proc.O * (WO * HO) -
Ll * PROC.REAL (Wl * HI))

Given that PROC. REAL is an identity procedure, this can be seen to be
equivalent to the correct value.

Two Box 4 allows the procedure to be recursive. However it was not until
the experiment had been concluded that it was realised that without
boolean expressions, any call of the recursive procedure, whether from
inside itself or from the final real clause, must lead to endless recursion,
resulting in a timeout and a functionality score of zero. Thus recursion,
while syntactically sound, was a semantic trap. (The next problem. Fact,
deals with recursion more fairly.) As a consequence examples of a Two Box
4 phenotype showing a recursive call of the procedure are rare, and they all
have the prototype (-> real). For example (res_koz_0/log.chivas.O):

procedure proc.O (-> real) ;
Ll +
proc.O ;
(LO) * PROC.REAL ({ SLASH (HO , Wl) +
PROC.REAL (PROC,REAL (SLASH (WO , Ll))) * PROC.REAL (

PROC.REAL ((PROC.REAL (SLASH (PROC.REAL (HO +
SLASH (PROC.REAL (SLASH (PROC.REAL (PROC.REAL { PROC.REAL
(PROC.REAL (H O * (W O - SLASH (HO , PROC.REAL (SLASH (
PROC.REAL (SLASH (LO , (SLASH (LO , Wl) -
SLASH { PROC.REAL ((SLASH (PROC.REAL (SLASH (PROC.REAL (

SLASH (PROC.REAL (PROC,REAL (HI) * (SLASH { PROC.REAL (
SLASH (WO r HO)) , PROC.REAL { SLASH (PROC.REAL (SLASH (
PROC.REAL (HI) , (PROC.REAL { SLASH (Ll , PROC.REAL (
SLASH (PROC.REAL (PROC.REAL ((SLASH (PROC.REAL ((Wl *
Ll) * (PROC.REAL (PROC.REAL (SLASH { PROC.REAL (PROC.REAL
(PROC.REAL (SLASH ((SLASH { PROC.REAL (PROC.REAL { SLASH
{ PROC.REAL (HO -
PROC.REAL (SLASH (PROC.REAL { SLASH (Wl , PROC.REAL {

PROC.REAL (SLASH (WO , PROC.REAL (SLASH (PROC.REAL (((
PROC.REAL (SLASH (((SLASH { HI , (PROC.REAL ((SLASH ((

155

PROC.REAL (HO * (SLASH ((SLASH ({ WO * PROC.REAL { (
SLASH (PROC.REAL ((SLASH (PROC.REAL ({ SLASH ({ SLASH (
PROC.REAL (SLASH (HI , Wl) +
SLASH { PROC.REAL { PROC.REAL (SLASH (PROC.REAL (SLASH (

PROC.REAL (SLASH (LO , PROC.REAL (SLASH { ((SLASH ((..
PROC.REAL { Ll +
PROC.REAL (LO)) * LO +
LO , LO) +
LO * LO) LO)))

LO)) LO))) r LO
LO , LO)) +
LO +
LO , LO)) / LO))
LO * LO +
LO LO +
LO))) LO)) +
LO) * LO +
LO LO) +
LO)) * LO +
LO) +
LO , LO))) f LO)
LO f LO) +
LO LO +
LO * LO) , LO) +
LO * LO +
LO * LO) +
LO , LO))) +
LO LO) +
LO) +
LO LO))) , LO)
LO LO)) +
LO LO))) +
LO LO)))) +
LO +
LO) * LO) , LO) +
LO LO)) , LO))
LO))

LO) } , LO)) LO) LO))

LO) LO) +

LO) , LO) +

)))) LO) LO) +

)) +

The procedure p r o c . 0 is endlessly recursive. To call it results in a zero
functionality score, and indeed it is not called in the final c l a u s e r e a l .

In all Two Box examples, the procedure body was typically one or two lines
long, while the final clause was aroimd twenty lines (not including the tail).
Given that both of these are derived from c la u s e r e a l , this difference is
surprising. A possible explanation — apart from error — is that the CFG
components of the grammar are not equal, since in the second case, the
defined procedure p r o c . 0 is available. In Two Box 4 the CFG components
are equal, but the semantics render comparison impossible.

Two Box 1 essentially replicates the earlier experiments such as Cart.

Two Box 2 demonstrates that Gads 2 can evolve a procedure body for a
given prototype and use it in an expression.

156

Two Box 3 demonstrates that Gads 2 can evolve a procedure prototype, a
non-recursive body for it, and an expression which uses it.

Two Box 4 demonstrates that Gads 2 can evolve a procedure prototype, a
recursive body for it, and an expression which uses it. The demonstration
of recursion is not entirely satisfactory because recursion was (by accident)
impossible to achieve. However, Gads 2 was able both to evolve recursive
programs, and to learn that doing so was ineffective.

5.3.7 Fact

The aim of the Fact problem was to demonstrate the evolution and use of a
recursive procedure.

The objective was to evolve a recursive factorial procedure. However, this
simple objective required a less-than-obvious wrapper to avoid making it
too specific. Real types were used to avoid integer overflow. The objective
was couched as follows: to evolve a procedure p of type (int -> real); and
then to evolve a real expression, possibly involving p and a given integer n;
the value of the real expression to be equal to factorial (ri). A human-
designed solution is as follows:

procedure expected (int n -> real)/
{

procedure factorial (int n -> real)
if n <== 0

then 1
else factorial(n-1)*n

factorial (n)
)

Here, f a c t o r i a l is the evolved procedure, and f a c t o r i a l (n) is the
evolved expression. As can be seen, the evolved program involves three
types: int, real and bool

The kernel of the phenotype was an artificial nonterminal defined to be a
procedure declaration followed by a c l a u s e r e a l . The procedure
declaration was constrained to be of type iint-> real), and recursion was
enabled. The procedure would therefore be in scope in its own body and in
the following c l a u s e r e a l . As usual, several S-algol nonterminals were
redefined, to reduce the grammar to the relevant subset of S-algol, which is
shown below;

program: programfact

157

programfact: preamblesymbol, phenotypefact, postarablefactsymbol,
endofprogram.
endofprogram: spacesymbol, questionsymbol.
phenotypefact: phenotypefactbeginsymbol, sequencevoid,
phenotypefactendsymbol.
sequencevoid: declproc, sequenceseparator, clausereal.
sequenceseparator: spacesymbol, semicolonsymbol, newlinesymbol.
declproc: declprocreal.
clauseint: expOint.
clausereal: expGreal; ifsymbol, clausebool, thensymbol, clausereal,
elsesymbol, clausereal.
sequencêbool: clausebool; sequencevoid, sequenceseparator,
clausebool.
clausebool: expObool; ifsymbol, clausebool, thensymbol, clausebool,
elsesymbol, clausebool.
sequencestring: clausestring; sequencevoid, sequenceseparator,
clausestring.
clausestring: expOstring; ifsymbol, clausebool, thensymbol,
clausestring, elsesymbol, clausestring.
clausel: spacesymbol, roundlsymbol.
expOint: explint.
clauser: spacesymbol, roundrsymbol.
applproctypereal: proctyperealsymbol, clausel, expOreal, clauser.
expOreal: explreal.
applproctypebool: proctypeboolsymbol, clausel, expObool, clauser.
expObool: explbool; explbool, orsymbol, newlinesymbol, explbool.
applproctypestring: proctypestringsymbol, clausel, expOstring,
clauser.
expOstring: explstring.
declprocreal: procsymbol, idprocnew, roundlsymbol, parameterlist,
arrowsymbol, typerealsymbol, roundrsymbol, sequenceseparator,
clausereal.
idintnew: idintnewsymbol.
idprocnew: idprocnewsymbol.
parameterlist: parameter.
parameter: typeintsymbol, idintnew.
idint: spacesymbol, letterlowernsymbol.
idreal: variablerealsymbol.
idbool: variableboolsymbol.
idstring: variablestringsymbol.
clauseseparator: spacesymbol, commasymbol.
explint: exp2int.
explreal: exp2real.
explbool: exp2bool; exp2bool, andsymbol, newlinesymbol, exp2bool.
explstring: exp2string.
exp2int: exp3int.
exp2real: exp3real.
exp2bool: exp3bool; notop, exp3bool; exp3int, eqop, exp3int;
exp3real, eqop, exp3real; exp3int, comparop, exp3int; exp3real,
comparop, exp3real; notop, clausel, expSint, eqop, expSint, clauser;
notop, clausel, expSreal, eqop, expSreal, clauser; notop, clausel,
expSint, comparop, expSint, clauser; notop, clausel, expSreal,
comparop, expSreal, clauser.
exp2string: expSstring.
expSint: exp4int; exp4int, addop, exp4int.
expSreal: exp4real; exp4real, addop, exp4real; exp4int, addop,
exp4real; exp4real, addop, exp4int.
expSbool: exp4bool.
notop: spacesymbol, tildesymbol.
eqop: spacesymbol, equalssymbol; tildeequalssymbol.

158

expSstring: exp4string.
comparop: spacesymbol, anglelsymbol; anglelequalssymbol;
spacesymbol, anglersymbol; anglerequalssymbol.
exp4int: expSint; procdivsymbol, clausel, expSint, clauseseparator,
expGint, clauser; procremsymbol, clausel, expSint, clauseseparator,
expGint, clauser; expSint, multopint, expGint.
addop: spacesymbol, plussymbol, newlinesymbol; spacesymbol,
hyphensymbol, newlinesymbol.
exp4real: expSreal; procslashsymbol, clausel, expSreal,
clauseseparator, expGreal, clauser; expSreal, multopreal, expGreal.
exp4bool: expSbool.
exp4string: expSstring; expSstring, multopstring, expSstring.
expSint: expGint; addop, expGint.
expGint: literalint; clausel, clauseint, clauser; idint.
multopint: spacesymbol, asterisksymbol.
expSreal: expGreal.
expGreal: idint; idreal; applreal; clausel, clausereal, clauser.
multopreal: spacesymbol, asterisksymbol.
expSbool: expGbool.
expSstring: expGstring.
multopstring: concatsymbol.
expGbool: literalbool; clausel, clausebool, clauser; sequencel,
sequencebool, sequencer; applbool; idbool.
expGstring: literalstring; clausel, clausestring, clauser;
sequencel, sequencestring, sequencer; procsubstrsymbol, clausel,
expOstring, clauseseparator, expOint, clauseseparator, expOint,
clauser; applstring; idstring.
sequencel: spacesymbol, curlylsymbol.
sequencer: spacesymbol, curlyrsymbol.
literalint: spacesymbol, numeralOsymbol; spacesymbol, digits.
applreal: applproctypereal.
literalbool: truesymbol; falsesymbol.
applbool: applproctypebool; appldigit; applletter.
literalstring: spacesymbol, quotesymbol, quotesymbol; spacesymbol,
quotesymbol, chars, quotesymbol.
applstring: applproctypestring; applcode; appliformat.
digits: digit; digit, digits.
chars: character; character, chars.
character: ascii; special.
ascii: letter; digit; punctuation.
special: apostrophersymbol, specialfollow.
letter: letterlowerasymbol; letterlowerbsymbol; letterloweresymbol;
letterlowerdsymbol
letterlowergsymbol
letterlowerj symbol
letterlowermsymbol
letterlowerpsymbol
letterloweresymbol
letterlowervsymbol
letterlowerysymbol
letterupperhsymbol
letterupperesymbol
letterupperhsymbol
letterupperhsymbol
letteruppernsymbol
letterupperqsymbol
letteruppertsymbol
letterupperwsymbol
letterupperzsymbol.

letterloweresymbol
letterlowerbsymbol
letterlowerksymbol
letterlowernsymbol
letterlowerqsymbol
letterlowertsymbol
letterlowerwsymbol
letterlowerzsymbol
letteruppercsymbol
letterupperlsymbol
letterupperlsymbol
letterupperlsymbol
letterupperosymbol
letterupperrsymbol
letterupperusymbol
letterupperxsymbol

letterlowerfsymbol;
letterlowerisymbol;
letterlowerlsymbol;
letterloweresymbol;
letterlowerrsymbol;
letterlowerusymbol;
letterlowerxsymbol;
letterupperasymbol;
letterupperdsymbol;
letteruppergsymbol;
letterupperj symbol;
letteruppermsymbol;
letterupperpsymbol;
letterupperssymbol;
letteruppervsymbol;
letterupperysymbol;

159

digit: numeralOsymbol; numerallsymbol; numeralSsymbol;
numeralSsymbol; numeral4symbol; numeralSsymbol; numeralGsymbol;
numeral?symbol; numeralSsymbol; numeralSsymbol.
punctuation: spacesymbol; exclamationsymbol; hashsymbol;
dollarsymbol; percentsymbol; ampersandsymbol; roundlsymbol;
roundrsymbol; asterisksymbol; plussymbol; commasymbol; hyphensymbol;
periodsymbol; slashsymbol; colonsymbol; semicolonsymbol;
anglelsymbol; equalssymbol; anglersymbol; questionsymbol; atsymbol;
squarelsymbol; backslashsymbol; squarersymbol; caretsymbol;
underscoresymbol; apostrophelsymbol; curlylsymbol; barsymbol;
curlyrsymbol; tildesymbol.
specialfollow: letterlowernsymbol; letterlowerpsymbol;
letterloweresymbol; letterlowertsymbol; letterlowerbsymbol;
apostrophersymbol; quotesymbol.
appldigit: procdigitsymbol, clausel, expOstring, clauser.
applletter: proclettersymbol, clausel, expOstring, clauser.
applcode: proccodesymbol, clausel, expOint, clauser.
appliformat: prociformatsymbol, clausel, expOint, clauser.

Inspection of the above grammar reveals that it includes support for the
string type. This was unintentional; but has been left in for future
comparison. Modifying grammars is not simple: it is easy to include
unwanted features and hard to find out where the leak is. In the above
grammar, the leak is a p p l b o o l. If exp6 b o o l is redefined without a p p l
b o o l on its RHS, the grammar supports boolean expressions but not
boolean procedures.

Functionality was computed as follows. A set of 10 test cases was
generated, evenly distributed over the range [1, 95] which is the largest
range that could not cause overflow in the evaluation process. The
observed value was the logarithm of the value returned by the evolved
expression. The expected value was the logaritlim of the value returned by
the the human-designed solution above. Raw functionality was the RMS of
the difference between observed value and expected value, over the sample
of test cases.

The least possible value of raw functionality is 0. This is achieved when the
observed and expected times are equal. The maximum value is log maxreal

Adjusted functionality was computed from the raw functionality by
reversing the scale (so that 0.0 represented the worst, not the best), and
then by scaling it into the range [0, 9999].

None of the best-of-run phenotypes produced a conditional expression,
though it is not obvious why they were selected out. The example
phenotype below is not best-of-anything, but it shows the features of
interest:

p r o c e d u r e o b s e r v e d (i n t n -> r e a l)
{

160

! < « « p h e n o t y p e b e g i n s
p r o c e d u r e p r o c . O (i n t i n t . l -> r e a l) ;
if if - (PROC.REAL (p r o c .0(DIV (+
(DIV { -
6 , (REM (-
(-
(REM (n , (REM { (REM (+
2 , { REM (n , (DIV (+
0 , { REM (-
n , (“
int.l * (DIV { (REM (+
n , { REM ((REM (+
{ ((6 +
n) * ((REM { -
int.l , int.l) -
REM (+
(DIV { (+
int.l * n +
REM (int.l , 47)) , int.l } +
DIV (73 , n)) , n))))) , { REM (+
(REM (65 , (+
4 * (REM (int.l , { REM (+
(REM (+
n , 0)) , (DIV (+
n , 0) -
0)))) +
REM ((REM (+
(REM (int.l , (DIV (((REM ((DIV ((int . 1) , n)

+
(~
(REM (-
0 , (REM (+
n , (0 * in t .1 -

n * (REM (n , (DIV ((n * 3 -
DIV ((REM (+
n , (REM (-
(REM {int.l , ((+
(DIV (int.l , 7) +
DIV { -
(-
52) , 0)) * (DIV (+
(REM (-
{ REM (-t-
(-
(REM (-
8 , ({ DIV ({ REM (-
n , ((-
4 * int.l))) -
0) , 252)))) +
REM ((REM (-
n , 1013) +
REM (n , 0)) , n)) -

+
({ REM (-
1 , n) -
REM (int.l , { +
(DIV (0 , 0) +
0)))) * 0)) , 0) +
0) , 0)) , 0) +

161

0) +
0 0))) , 0)
0)) +
0 0)) , 0) +
0)) +
0))))) +
0) +
0)) f 0)) 0 +
0 0))) +
0 0) +
0 0)) +
0))) , 0) +
0)) +
0 0 }) }) , 0
0)) +
0))))) , 0) +
0)) +
0) +
0) , 0)))) 0
0) +
n) +
n = n) and
true or

0) +

true then true else true then n else n ;
n

! » » > p h e n o t y p e e n d s
}

The first 4 and last 2 lines are in italics because they are prescribed; all else
is evolved. The body of procedure p r o c . 0 extends to the semicolon 4 lines
from the end. The next line is the c l a u s e r e a l that is returned as the
value of procedure o b se rv e d .

The body of p r o c . 0 contains boolean expressions and uses the parameters
n and i n t . 1 as it should. It is also recursive.

This experiment demonstrates that Gads 2 can evolve a recursive procedure.

5.3.8 Annie

The aim of the Annie problem was to demonstrate the evolution of a main
program with a full-sized context-sensitive grammar, that is, that Gads 2
successfully deals with the scalability problems of Gads 1.

In order for the main program to fit into the same scheme as the other
experiments, it was necessary that it had no wrapper. In effect it was its
own wrapper, and had the power to write its own functionality. The
maximum functionality was 9999, so a human-designed solution Is as
follows:

162

w r i t e 9 9 9 9 , " ' n"

This is about the simplest program imaginable. However, given the size of
the search space, it is not a trivial problem to solve. The kernel of the
phenotype was s e q u e n c e v o id . No S-algol nonterminals were redefined.
The full S-algol grammar as shown in §B was used, comprising 129
nonterminals and 165 terminals.

The Annie problem was named after the character who sings:

"Anything you can do, I can do better. "
—Irving Berlin, Annie Get Your Gun, 1946

Functionality was computed as follows. Whatever output the program
produced was read. If it could be interpreted as a real value using standard
input procedures, that was the functionality. A value less than 0 or greater
than 9999 was set to zero, so that it was not simply a m atter of outputting
maxreal. Annie has to get as close to 9999 as possible — but no more.

As might be expected the range of solutions was large. The most
parsimonious and highest functionality score was 9999.876, which was
achieved in three runs. This corresponds exactly to the human-designed
individual above. A more typical phenotype (res_pat_0/log.atholl.O) is
shown below:

let int.O := REM (length ("" ++ PROC.STRING { code ((REM {

maxint , INT) -
length (("52'o" ++ STRING)))) + + STRING)) , (DIV (+
{ DECODE (" ’p9") * maxint } , { write 9998. -

length (PROC.STRING (code (0 -
REM (-
DECODE ({ { (iformat (maxint * s.w -
0 * 2)) } + + ({ { STRING ++ { (code (DIV (7 , s.w)))

} } } + + ({ let real.l := DIV (-
maxint , r.w) -
REAL ;
STRING ++ PROC.STRING ({ iformat { +
0) ++ STRING) ++ { PROC.STRING { { let real.2 := REAL +
maxint * sqrt (-
s.w +
r.w * pi) /
PROC.STRING (('"'65") ++ { ":'n'"]'py" ++ { STRING ++ '"o"

) }) } ++ "'nS)") }) } ++ code (DIV (+
s.w , 04)))) }) , INT))) ++ { "" }) ,"'n" ;
procedure proc.3 { real real.4 -> int) /
REM (i .w , 0) ;

163

DIV { -
maxint , r.w) })))

The write clause begins on the 4th line and ends with the string " ' n" on the
5th-from-last line. It's obvious that the value 9998 has been evolved
because It is valuable. What the rest of the write statement does is not
obvious, and is probably not worth examining in detail.

This experiment demonstrates that Gads 2 can evolve main programs in a
fully-featured context sensitive language.

5.4 Comparative results

This section examines the results on a comparative basis.

The main observations of each run were the fitness of the best-of-run and
the number of evaluations needed to reach it. Each run was characterized
by a configuration and a random seed which was different for each run.
The configuration was partitioned into problem parameters and engine
parameters. Problem parameters were those which directly affected the
solution phenotype; the engine parameters were those wliich affected the
performance of the evolutionary process. On this basis, the grammar, which
includes the evaluation function and the wrapper, is the embodiment of the
problem parameters, while the GA system and the evolutionary parameters,
such as population size, are the engine.

The following tables give the main observations.

B-N annie cart fact monkey multi-
plexei

power tilel tile2 twobox twobox twobox twobox

koz 0 33 32 33 33 33 33 33 33 33 33 33 33
koz 1 33 33 33 33 33 33 32 33 33 33 33 33
pat_0 30 33 33 30 33 33 33 33 33 33 33 33
pat_l 33 32 33 31 33 33 33 33 33 33 33 33

Table 5-2: B-N: Sam ple size o f benefit sam ples

B-MN annie cart fact monkei m ul t i ­
plexer

power tilel tile2 twobox twobox twobox twobox

koz_0 9923
. 97

9999 8330 9753 6586
. 636

9741
.758

7231
.818

7083
.697

9951
.576

9935 9940
.424

9942
.212

koz 1 9661
.062

9999
.836

8373
. 995

9768
.431

6416
. 986

9741
.596

7094
.389

7003
. 607

9950
.212

9940
.046

9945
.447

9946
.443

pat_0 9815
.267

9999 8230
.121

9868 6459
.394

9740
.818

7006
. 97

7129
.788

9947
.758

9935
.061

9938
.848

9943
.333

pat_l 9970.0
32

9999
.841

8210
. 695

9835
.082

6290
.305

9741
. 142

7020
.398

7131
.305

9951
.795

9935
.411

9945
.874

9945
.378

Table 5-3: B-M N; M ean o f benefit sam ples

164

B-SD annie cart fact monkey m ul t i ­
plexer

power tilel tile2 twobox twobox twobox twobox

koz 0 349 0 326 145 395 3 469 499 12 4 7 11
.205 .381 .542 .883 .553 .365 . 661 . 191 .969 .71 .858

koz 1 1706.1 0 296 144 418 3 583 493 14 5 11 14
74 .012 .792 . 929 .472 .807 .392 .339 . 43 .297 .299 . 985

pat 0 974.36 0 217 106 285 3 375 434 6 4 6 11
9 . 999 .504 .05 .737 .457 .526 .722 .962 .548 L .277

pat 1 140 0 214 112 281 2 408 604 16 4 11 12
.959 .011 .833 .008 .655 .474 .65 .171 .82 .368 .028 .039

Table 5-4; B-SD; Standard deviation o f benefit samples

B-V annie cart fact monkey m u l t i -1

plexer
power tilel tile2 twobox twobox twobox twobox

koz 0 0 0 0 0 0 0 0 0 0 0 0 0
.035 .039 .015 .06 .065 .071 .001 .001 .001 .001

koz 1 0 0 0 0 0 0 0 0 0 0 0 0
.177 .035 .015 .065 .082 .07 .001 .001 .001 .002

pat 0 0 0 0 0 0 0 0 0 0 0 0 0
.099 .026 .011 .044 .054 .061 .001 .001 .001

pat 1 0 0 0 0 0 0 0 0 0 0 0 0
.014 .026 ,011 .045 .058 .085 .002 .001 .001

Table 5-5: B-V: C oefficient o f variation o f benefit sam ples

C-N koz 0 koz 1 pat 0 pat 1
annie 33 33 30 33
cart 32 33 33 32
fact 33 33 33 33
monkey 33 33 30 31
multiplexer 33 33 33 33
power 33 33 33 33
tilel 33 32 33 33
tile2 33 33 33 33
twoboxl 33 33 33 33
twobox2 33 33 33 33
twobox3 33 33 33 33
twobox4 33 33 33 33

Table 5-6: C-N: Sam ple size o f cost samples

165

C-MN koz 0 koz 1 pat 0 pat 1
annie 52348.485 7 8 9 5 4 . 5 4 5 54956.667 80616.6-67
cart 4562.500 2 9 6 2 1 . 2 1 2 7 2 9 5 . 4 5 5 28003.125
fact 8 8 9 2 4 . 2 4 2 9 1 6 2 1 . 2 1 2 94871.212 9 4 8 1 3 . 6 3 6

monkey 72924.242 72227.273 95240.000 95304.839
multiplexer 56863.636 5 1 5 6 0 .606 5 5 4 1 6 . 6 6 7 6 6 6 8 0 . 3 0 3

power 46772.727 47045.455 4 0 2 3 4 . 8 4 8 5 9 9 6 8 . 1 8 2
tilel 8 2 4 6 9 . 6 9 7 54031.250 62386.364 4 1 6 1 9 . 6 9 7
tile2 65166.667 50196.970 77380.303 4 4 2 8 7 . 8 7 9

twoboxl 6 2 8 6 3 . 6 3 6 6 2 1 6 6 . 6 6 7 8 5 5 1 3 . 6 3 6 84037.879
twobox2 4 8 0 4 5 . 4 5 5 94590.909 50407.576 95007.576
twoboxS 60833.333 78196.970 6 4 1 8 3 . 3 3 3 8 6 9 5 9 . 0 9 1
twobox4 59954.545 81560.606 80501.515 9 4 2 4 3 . 9 3 9

Table 5-7: C-MN: Mean o f cost sam ples

C-SD koz 0 koz 1 pat 0 pat 1
annie 27423.896 26004.916 18702.184 19895.864
cart 2 9 0 6 . 4 7 2 3 3 9 9 2 . 4 2 3 3038.924 13625.071
fact 2 1 4 4 0 . 3 6 8 19900.938 13188.176 13029.769

monkey 1 0 5 5 3 . 5 2 5 1 6 3 8 8 . 3 9 7 4135.661 4 7 9 6 . 1 6 8
multiplexer 2 9 1 3 7 . 4 1 0 3 2 2 9 7 . 3 8 7 3 2 5 0 4 . 7 3 7 2 9 2 8 3 . 1 5 9

power 39335.315 3 3 8 3 7 . 0 0 9 3 3 3 5 8 . 3 2 3 32194.783
tilel 2 7 6 9 8 . 6 9 7 4 2 7 5 7 . 3 6 8 39453.317 4 0 7 5 7 . 2 4 2
tile2 3 6 1 1 6 . 7 0 9 3 9 8 3 3 . 6 2 7 31675.271 40217.804

twoboxl 2 5 1 9 1 . 5 3 9 2 8 3 9 8 . 5 7 7 1 6 6 0 3 . 8 1 8 24141.727
twobox2 3 0 3 6 4 . 5 4 6 5658.863 2 8 3 9 3 . 4 4 1 4 8 7 0 . 4 4 9
twobox3 2 8 6 8 8 . 7 0 3 22040.424 28319.667 18115.866
twobox4 24259.136 17489.174 2 0 7 9 4 . 9 2 3 7 8 9 0 . 2 6 1

Table 5-8: C-SD: Standard deviation o f cost sam ples

C-V koz 0 koz 1 pat 0 pat 1
annie 0 . 5 2 4 0 . 3 2 9 0 . 3 4 0 0.247
cart 0 . 6 3 7 1.148 0.417 0 . 4 8 7
fact 0 . 2 4 1 0.217 0.139 0.137

monkey 0.145 0 . 2 2 7 0 . 0 4 3 0.050
multiplexer 0.512 0 . 6 2 6 0 . 5 8 7 0.439

power 0.841 0 . 7 1 9 0 . 8 2 9 0 . 5 3 7
tilel 0 . 3 3 6 0.791 0.632 0 . 9 7 9
tile2 0.554 0 . 7 9 4 0 . 4 0 9 0 . 9 0 8

twoboxl 0 . 4 0 1 0 . 4 5 7 0 . 1 9 4 0.287
twobox2 0 . 6 3 2 0.060 0.563 0.051
twobox3 0 . 4 7 2 0 .282 0 . 4 4 1 0.208
twobox4 0 . 4 0 5 0.214 0.258 0 . 0 8 4

Table 5-9: C-V: C oefficient o f variation o f cost sam ples

Table names begin with B or C, for benefit or cost respectively. In fact, no
attempt was made to render cost and benefit comensurate; there seemed to
be no reasonable way to do so. Benefit in these tables is simply fitness.

166

Table names end with N, MN, SD or y for sample size, sample mean, sample
standard deviation, or sample coefficient of vnnntzon respectively.

Annie through Twobox4 are problems in alphabetical order. Koz_0 through
Pat_l are engine configurations.

5.4.1 Pairwise comparison

Using the data in the above tables it is straightforward to compare any pair
of samples. But it is immediately apparent that pairwise comparison is of
limited use, because there are so many pairs. One obvious choice is to
compare Tile 1 and Tile 2, in each of the 4 engine configurations, for cost
and benefit. Given that the sample sizes are all over 30 there is no need to
use Student's T test — the usual Z test will do [Freund, 1979].

The test statistic for comparing two sample means is

Z = mi

I
where m is the sample mean, s the sample standard deviation, and n the
sample size. The critical value for Z in a two-sided alternative is ±1.96 at
5%. Applying this to the benefit and cost measurements for the tile
problems, we have:

Tile 1 Tile 2
config n m S n m S z

B koz_0 33 7231.818 469.365 33 7083.697 499.661 1.24
B koz_l 32 7094.389 583.392 33 7003.607 493.339 0.68
B pat_0 33 7006.970 375.457 33 7129.788 434.528 -1.23
B pat_l 33 7020.398 408.650 33 7131.305 604.171 -0.87

C koz_0 33 82469.697 27698.697 33 65166.667 36116.709 2.18
C koz_l 32 54031.250 42757.368 33 50196.970 39833.627 0.37
C pat„0 33 62386.364 39453.317 33 77380.303 31675.271 -1.70
C pat_l 33 41619.697 40757.242 33 r 44287.879 40217.804 -0.27

Table 5-10: comparison o f tile versions

The leftmost column has B or C for benefit or cost. The rightmost column
shows the Z value for each row. For example, the Z value 1.24 is the test
statistic for comparing the benefit observations of tile 1 and tile 2, under
the koz_0 configurations.

167

Only one Z value exceeds the critical value — the koz_0 cost comparison.
But given the 5% confidence level it is probably reasonable to conclude that
1 rejection of the null hypothesis in 8 tests is not significant, and that the
two versions of the tile problem behave indistinguishably.

1 have little doubt that other pairwise comparisons would show that other
pairs of problems and possibly of engines are similarly indistinguishable.
For a rigorous analysis this should be taken into account, for example by
pooling the relevant samples. However, I have kept the samples distinct for
the purposes of demonstrating the visualisation techniques in action.

5.4.2 Visualisation

Using the method described in §3.3 Visualisation, and the data given above,
we can produce cladograms for problems and engines.

168

The problem cladogram is shown below:

13462

(in

4127

)205

(vobox 3

(9) p i M annie
5 1 0 0

m
17446 tvobox 2

(n
6536

7 8 8 3

tvebox 4

7645
(10k— — i w o b o x 1

3572 U] 5927

8630
(2)

monkey

1932:

923 6

12292

2009

Hie 2

(6)

14130 tile I

(51

5649

3596
m ultiplexer

2829
(31

Î776
power

(41

fact

61917

CNM

cart

e vois / 10k

3 4 5 6
Figure 5-3: Problem cladogram (mean)

As already explained the diagram is a 2-dimensional representation of a set
of points in an n-dimensional space. The points in the n-dimensional space
are the problems; the 4-d space is defined by the cost (in evaluations)
measured by the four engine configurations.

The horizontal dimension of the diagram uses a rational scale to represent
distance. For example, the distance between the points power and cart is 2
829 + 61 917 = 64 746, which approximates the distance between these
points in the original 4-dimensional space. The horizontal scale is shown at

169

the foot of the diagram. The length of each horizontal arc is given above
the arc.

The vertical dimension is categorical, and simply places each point in i t s -
own category. Vertical lines do not represent distance. The vertical
categories are sorted by horizontal length, with shortest length first. Thus,
tile 2 lies above tile 1, and the entire tüe subtree lies above the entire
multiplexer-power-cart subtree.

The numbers in parentheses are the node numbers assigned by Phylip.
They are not significant but have been left in to identifiy the nodes.

For comparison, the following cladogram is based on the same data but uses
median rather than mean:

12404

(5,9:1

10209

6216

35835
Hie 2

m
14288

Hie I

2 0 6 5 5

31 0 2
 annie

m
83 4 6

Ivobox 2

(1,1

7214

9 3 1 6

10194

131
970:

twobox 3

(19) 10102

?644

-twobox 4

f i n 5857(11) monkey
6 2 9 8

306: (21

(n
5941 twobox I

28793

multiplexer

9417 power

fact

7162,
curt

C 4 v f 'N

3 4 5 6 7

Figure 5-4: Problem cladogram (median)

y 10k

170

At first glance figures 5-3 and 5-4 appear quite different, but on closer
inspection it turns out that much of the difference is not significant. At the
root, two numbers in parentheses indicate that two Phyhp nodes (nodes 5
and 9) coincide. In the main body of the diagram, three main subtrees
match those of the mean version. The vertical ordering is different, but as
the vertical scale is catergorical, that is not significant. The only structural
differences are in the middle subtree of the median cladogram, where there
has been some rearrangement of the clades.

The engine cladogram is shown below:

166
koz 1

188
koz 0

(1.3)

patO

pat 1
166

B - M N error = 0 . 0 0 9 0 3
 1 1--------

100 200

Figure 5-5: Engine cladogram (mean)

benefit

300

For comparison, the median version is also given:

100
pat 1

87

110
koz 1

pat 0
46

211
koz 0

B - M D N error = 0 . 0 332 6 benefit

200

Figure 5-6: Engine cladogram (median)

300

171

These diagrams represent the 4 points in the 12-dimensional engine space.
The unit of measure is benefit (ie fitness). With only 4 engines it is not
possible to learn much from these diagrams, but it is noteworthy that the
diagrams do detect the two ECJ parameter sets. The main clades of the
mean version correspond to the style, and the main clades of the median
version correspond to the parsimony option.

5.4.3 Rational scale comparison

The mean versions of the cladograms were used to compute weights for the
problems and engines, and then to compute the weighted mean
performance of problems and engines.

5.4.3.1 Problem weights — engine performance

Engine performance is a measure of how effective each engine was, in terms
of how fit the best-of-run was after 100k evaluations, averaged over the 12
problems.

The problem weights were as follows:

Problem Weight (%) Weight (absolute)
annie 4.4% 10249
cart 30.5% 71090
fact 12.3% 28722

monkey 6.5% 15227
multiplexer 2.5% 5881

power 5.2% 12002
tilel 8.9% 20678
tile2 6.8% 15786

twoboxl 5.5% 12730
twobox2 9.9% 22988
twoboxS 3.1% 7118
twobox4 4.5% 10430

Table 5-11: Problem weights

172

'4

The weighted and unweighted average and ranlced engine performance is
given in the following table:

Engine Weighted
mean

Unweighted
mean

Weighted
rank

Unweighted
rank

koz 0 9228 9035 1 1
koz' 1 9202 8987 2 4
pat 0 9198 9001 3= 2
pat 1 9198 8998 3= 3

Table 5-12: Engine performance

The mean values are shown on the chart below:

Engine performance

9250

9200

9150

9100

9050

9000

8950

8900

p a t_ l

8850
koz_D p a t_ 0

a w e ig h ted |
a unw eigh ted j

Figure 5-7: Engine performance

The overall increase in the weighted performance is due to the large weight
(30.5%) given to the Cart problem. The Cart problem is easy — the ideal
solution is always found — and the weighted engine performance reflects
this.

The effect of the weights on the ranked performance is to change the
obvious conclusion from parsimony pressure improves performance to Koza
style parameters are better than Paterson style. Of course these conclusions
are simphstic, given the variation in the data.

173

5 4.3.2 Engine w eights — probiem perform ance

Problem performance is a measure of how difficult each problem is, in
terms of how many evaluations were necessary to reach the best-of-run in
100k evaluations, averaged over the 4 engines.

174

The engine weights were as follows:

Engine Weight (%) Weight (absolute)
koz 0 29.2% 188
koz 1 25.7% 166
pat_0 14.8% 95
pat 1 30.3% 195

Table 5-13: Engine weights

The weighted and unweighted average and ranked problem performance is
given in the following table:

Problem Weighted
mean

Unweighted
mean

Weighted
rank

Unweighted
rank

annie 6 8 1 3 8 6 6 7 1 9 7 7
cart 1 8 5 10 17371 12 12
fact 9 2 2 8 2 9 2 5 5 8 1 1

monkey 8 2 8 2 9 8 3 9 2 4 2 2
multiplexer 58261 5 7 6 3 0 9 10

power 4 9 8 7 3 4 8 5 0 5 11 11
tilel 59811 6 0 1 2 7 8 8
tile2 56801 5 9 2 5 8 10 9

twoboxl 7 2 4 5 3 7 3 6 4 5 6 4
twobox2 7 4 5 8 7 7 20 1 3 4 6
twobox3 7 3 7 0 8 7 2 5 43 5 5
twobox4 7 8 9 3 8 7 9 06 5 3 3

Table 5-14: Problem performance

175

The mean values are shown on the chart below:

Problem performance

00000

90000

80000

70000

60000 +-
H w eigh ted
a unw eighted!

50000

40000

30000

20000

10000

Figure 5-8: Problem performance

There is little difference between the weighted and unweighted means.

Differences are more evident in the rankings, where pairs (9, 10) and (4, 6)
are swapped. These pairs are (multiplexer, tile2) and (twoboxl, twobox2)
respectively. Given the slight effect of the weighting and the variance in the
underlying data it would be unwise to attach any significance to this change
in ranking.

176

Conclusions

This section discusses the contribution of this research to GP, its
limitations, and suggests directions for future work.

6.1 Contribution

The contributions of this thesis are shown below in order of significance as
it appears at the time of writing.

6.1.1 Context sensitivity

Gads provides a scalable solution for evolving type-correct software in
independently-chosen context-sensitive languages.

Up till now, small phenotype languages have been the only option. The lack
of a general mechanism for context sensitivity meant that only small
grammars were feasible, whether they were tightly or loosely coupled to the
evolutionary engine. Gads extends GP to loosely coupled full-size context-
sensitive phenotype languages. The implications of this remain to be
explored. The obvious possibility is that more complex programs in human
programming languages such as Java or C, including data structures and
procedures, can be evolved entirely from scratch. Gad also presents the
possibility of defining new languages for circuit design, scheduling, or other
problem domains, and evolving solutions in these languages.

6.1.2 Non genetic search

The ontogenic mapping enables non-genetic optimisation systems to
perform automatic programming.

Any system that can search for optimal solutions in a space represented by
a list or array of integers, directed by an objective function, can now search
for sentences in context-sensitive languages. For example SA, ES or possibly
even neural nets could evolve programs, and thus open other avenues to
automatic programming.

177

6.1.3 Perform ance

Separation of genotype and phenotype, with the ontogenic mapping,
provides improvement in evolutionary performance over SGP. This was
noted in §2 Gads 1 and has been independently confirmed in [Freeman,
1998] and [O’Neill, 2001c].

6.1.4 Statistics

The initial discussion in §3.1 Statistical perspective gives useful insights into
what can be investigated. Matching the components of the GP system with
the corresponding components of the statistical model is non-trivial, and
helps to avoid conceptual blunders.

§3.2 Performance comparison gives a much-needed foundation to the use of
statistical tests in comparing performance of GP systems.

§3.3 Visualisation suggests new ways to represent experimental GP data.

6.1.5 Languages and compilers

Rags reveals many features of the phenotype language that were probably
unintentional. For example, 5 + + — + 6 is valid S-algol, but it probably
should not be. Rags could be a useful tool in the design of programming
languages and in the testing of compilers.

6.1.6 Solution

The solution to the tile problem is a minor contribution. This solution is a
good example of GP at work. Faced with a problem for which there may
well be no closed-form solution, GP is nonetheless able to find an
approximate solution. This particular example m ust also be counted a
success for Gads 2, as it demonstrates the evolution of an expression
involving mixed types.

6.2 Limitations

The main limitation is that this thesis is broad rather than deep. It covers a
wide range of topics, but does not deal with any of them in great depth.
Experimental results are given, but little or no theoretical analysis.

178

6.2.1 S tatistics

Some of the analysis in §3.2 Performance comparison has little theoretical
foundation. Measures such as delta, although plausible, may have flaws a‘s
yet undiscovered.

The data underlying §3.3 Visualisation is sample means. The means are
treated as points instead of estimates, which is an over-simplification. A
more robust method would take the standard error of the mean into
account when producing the cladogram and again when the performance of
engines and problems is reduced to a rational scale. The final result should
be that each engine or problem is represented by an interval on the rational
scale, not a by point.

6.2.2 Rags implementation

The implementation of rags is suitable for a proof-of-concept, but it is not a
polished product. It is a single-use design consistent with Brooks' advice:
plan to throw one away [Brooks, 1995].

An aspect of this is that Gads 2 is not optimised for performance. Its
performance as recorded here provides a baseline; we may expect tuning to
produce better performance though there is as yet no concrete evidence on
which to base this expectation.

6.3 Questions from Gads 1

This section revisits §2.6 Questions raised.

6.3.1 Specifying sentence distribution

The issue of biasing the grammar to make some sentences more likely than
others is still to be investigated. Would it be helpful to attach weights to
production alternatives so that some were more likely to be chosen than
others? If so, how would the weights be set? Could they be evolved? Would
they apply to the entire run or could they vary from one individual to
another?

6.3.2 Moving away from Lisp

The goal of using a language other than Lisp is achieved in §5 Gads 2.

179

6.3.3 Functions, work variables, etc

The goal of evolving re-usable functions and work variables is achieved in
§5 Gads 2.

6.3.4 Choosing sentence distribution

A study of the rule frequencies in the derivation of real programs has not
been carried out.

6.3.5 Statistical analysis

The weakness of the analysis in §2 Gads 1 is addressed satisfactorily in
§3 Statistics.

6.3.6 Sequential chromosomes

This question has been addressed to some extent in [Keijzer, 2001].

6.3.7 Gene effectiveness

This question is specific to Gads 1. As Gads 2 uses translation the question
is no longer of interest.

6,3.8 Genetic operations

Different crossover techniques are discussed in [O'Neill, 2001b] and
[Keijzer, 2001].

6.3.9 Initial distribution

A comparison of generation 0 from Gads and SGP is still to be made.

6.4 Future work

This section presents a number of questions raised by this thesis, including
those still open in §6.3 Questions from Gads 1 above.

180

6.4.1 S tatistics

The main theme of §3 Statistics is the application of statistics to GP. GP
systems exhibit behaviour that is much more complex than traditional
computer science is used to dealing with, possibly more hke biology than
engineering. For this reason, we should look to statistics and the life
sciences to see what tools and techniques can be adapted for GP.

There is a sizeable body of statistics (eg [Morrison, 2001], [Felsenstein,
1995]) dedicated to problems such as visualisation, which should be
investigated. Latent variable models (eg [Loehlin, 1992]) offer another
avenue which should be investigated.

§3.1.2 Populations and samples makes a claim that is empirically testable,
namely that generation 0 can be treated as a sample but generation n > 0
cannot, and the effect is greater as n increases. According to the Central
Limit Theorem, the sampling distribution of the mean approximates the
normal distribution [Freund, 1979]. That is, if we take large (> 30) samples
of a population and compute their means, these means are distributed
normally. This is true whatever the population distribution. To test the
claim, proceed as follows. For a range of problems and engines, and li
taking a suitable range of values, say 0, 10, 20, 30, 40, and 50 in turn, let the
GP system run to generation n, and measure the mean fitness (or size, or
any other performance measure you like). (The range of values for n is not
strictly necessary: only the largest value really needs to be tested. But a
range should show a trend which is more convincing than a single point.)
Do this 30 times with the same configuration and a different RNG seed. Use
a goodness-of-fit test to decide whether the means of a configuration are
normally distributed. If the argument in §3.1.2 is sound, the means should
always be normally distributed when m = 0, and in general less so as n
increases.

It could be argued that there is no need to test this claim as it has been
mathematically proven. This is not quite so. The Central Limit Theorem is
a theorem, and may be taken as proven, but that is not what is being tested.
The test is whether the analysis made in §3.1.2 Populations and samples is
sound. That analysis makes a prediction which can be tested by
experiment. The behaviour of GP systems is sufficiently complex that
empirical verification of theoretical predictions is valuable.

What is needed is a reference work entitled Statistical techniques for
evolutionary computation.

181

6.4.2 Gram m ars

Theoretical aspects of rags should be explored. For example: what kind of
language is necessary for the production methods? Do rags restrict how '
scope is defined? Are there useful subclasses of CFGs?

An implementation of rags designed for other researchers to use, probably
in Java, would make this a useful tool. Rags for other languages (such as C,
C++, Java) could be developed.

A method to avoid having to generate an mdividual's PT and flattening it
into a character string, only for a compiler to have to read it and reconstruct
the PT, would greatly improve wall-clock performance.

All the languages considered so far have in common the property that
identifiers are introduced and then used. Not all problems fit this model.
An example of a different model is the children's game in which a set of
randomly chosen integers have to be combined into an expression whose
value is equal to some goal. For example, if the set was {5, 7, 19, 20, 56} and
the goal was 44 then a solution would be:

5 6 - (5 + 7)* (2 0 -1 9)

The player starts with the complete set of integers, but each one can only be
used once. When any given integer is used, it creates a context in which the
set of available integers has been reduced. For a rag, this requires removing
alternatives from the language, not adding them.

6.4.3 Performance comparison

§5 Gads 2 aims to carry out a deeper investigation of Gads 2. An original
aim was to compare the performance of Gads 2 with that of an SGP system.
This was not done, and §5 Gads 2 was reduced to a demonstration of Gads
2 and a rough baseline of its performance. A comparison remains
necessary.

The notion of comensurate cost and benefit, introduced in §3.3
Visualisation, is not used in §5 Gads 2. The need for this concept, and its
use in practice, therefore remains to be demonstrated.

See also §6.3.9 Initial distribution.

182

6.4.4 Analysis of Gads

See also §6.3.6 Sequential chromosomes and §6.3.8 Genetic operations.

6.4.5 GP system design

GP is expected to discover every wheel from scratch. This is more apparent
in Gads 2 than in SGP, since Gads 2 can use a standard programming
language, with all the usual programming concepts. But the conceptual
level of the constructs in a programming language such as S-algol or Java is
extremely low compared to the level at which human programmers work.
We don't expect a totally inexperienced programmer to discover and
implement concepts like stacks or linked lists, every time they have to write
a program; so why should GP? What is needed is a library of programming
strategies, which the GP system can draw on. Strategies might include, for
example, divide-and-conquer, induction, tail recursion, or to-do-lists. It is
not immediately obvious which strategies to include, or how they could be
represented. Something like this has been done in functional languages,
which have the expressive power to represent a strategy like divide-and-
conquer as a (very) high-order function.

See also §6.3.1 Specifying sentence distribution and §6.3.4 Choosing sentence
distribution.

6.4.6 Biological analogy

[de Jong, 2001] describes an experiment in which the population diversity is
explicitly maintained. This illustrates a point which is often made, namely
that the pressure behind biological evolution is replication, not adaptation.
Adaptation is possible because of replication, not vice versa. In biological |
terms, programs like cart-centring are probably the most successful, j
because so many copies of this program exist. The purpose of GP for
humans is not replication but adaptation. (It is permissible to use the term
purpose here; biological evolution has no purpose.) It is therefore a mistake
to aim to simulate biological evolution in all its aspects. GP should identify
and adopt just those aspects of biological evolution which result in
adaptation.

An analogy between GP and biological evolution implies a correspondence
between the two sides. There seems to me to be a mismatch between the
information content of the supposedly matched terms. The biological side
carries much more information than the GP side; in other words, GP uses
terms that imply more information content than they actually contain. The
most obvious example is perhaps the GP use of the term gene, which in GP
usage can contain as little as 1 bit of information, while in biology might
contain several hundred bits of information.

183

I would therefore propose an analogy as follows, with the aim of achieving a
closer fit in terms of information content, and of not giving a biological
word a radically different meaning in GP.. First, the biological term base
should correspond to the GP term bit. These are close in information
capacity, and both are units at the lowest end of their respective scales. By
direct analogy, a GP codon should then be a contiguous group of bits, and a
GP gene should be a sequence of codons. (This is a change from current GP
usage, where gene is often synonymous with codon.)

The biological term translation, which associates codons with amino acids
(the full biological process is not relevant here) should correspond to the GE
or Gads translation which maps codons to rules in the grammar. The Gads
term ontogenesis should be replaced by procedure synthesis, corresponding
to protein synthesis.

In terms of these definitions, most GP systems deal with single-gene
individuals. Further, the typical GP individual corresponds not to a whole
biological organism but to a single protein. In terms of information content,
matching GP individuals with proteins is more reasonable than matching
them with entire organisms.

Clarifying the analogy is not an exercise in pedantry. The purpose of an
analogy is to carry ideas from one discipline to another. I have suggested
that GP currently operates at the level of the single gene and protein
synthesis. Perhaps this is the natural limit of GP. But if we wish to consider
evolving software orders of magnitude more complex than GP can currently
produce, we will need new ways to go about it. The biological analogy
suggests a way forward. In biology, a chromosome consists of several
genes, and an entire eukaryotic genotype consists of several chromosomes.
These organisational structures could correspond to the organisational
structures in an object-oriented program. Each gene could represent a
method or attribute; each chromosome a class, and the entire genotype a
complete program. By organising GP in this way, we might be able to tackle
problems far in excess of any currently being investigated.

184

A References
[Angeline, 1996a]

[Bratley, 1983]

[Brooks, 1995]

[Bruhn, 2002]

[Bryson, 1975]

[Clack, 1997]

[Cohen, 1995]

[Conover, 1971]

[Daida, 1997]

[Darwin, 1859]

[de Jong, 2001]

An investigation into the sensitivity of genetic
programming to the frequency of leaf selection during
subtree crossover. Angeline, Peter J. Pp 21-29. In;
Genetic Programming 1996. Proceedings of the first
annual conference. Eds: Koza, John R; Goldberg,
David E; Fogel, David B; Riolo, Rick. The MIT Press.
1996. ISBN 0-262-61127-9.
A guide to simulation. Bratley, Paul; Fox, Bennett L;
Schrage, Linus F. Springer-Verlag. 1983. ISBN
038790820X.
The mythical man-month. Essays on software
engineering. Ed 20th Anniversary. Brooks, Frederick
P. Addison-Wesley Publishing Company. 1995. ISBN
0201835959.
Genetic programming over context-free languages
with linear constraints for the knapsack problem.
First results. Bruhn, Peter; Geyer-Schulz, Andreas.
Evolutionary Computation. Vol 10. No 1. Pp 51-74.
Massachusetts Institute of Technology.
Applied optimal control. Bryson, Arthur E; Ho, Yu-
Chi. Hemisphere.
Performance enhanced genetic programming. Clack,
Chris; Yu, Tina. In: Proceedings of the sixth
conference on evolutionary programming. Eds:
Angeline, Peter J; Reynolds, Robert G; McDonnell, John
R; Eberhart, Russ. Lecture notes in computer science.
Vol 1213. Springer-Verlag.
Empirical methods for artificial intelligence. Cohen,
Paul R. The MIT Press. 1995. ISBN 0-262-03225-2.
Practical nonparametric statistics. Conover, William
Jay. John Wiley & Sons. 1971. ISBN 0-471-16851-3.
Challenges with verification, repeatability and
meaningful comparisons in genetic programming.
Daida, Jason M; Ross, Steven; McClain, Jeffrey; Ampy,
Derrick; Holczer, Michael. Pp 64-70. In: Genetic
Programming 1997. Proceedings of the second annual
conference. Eds: Koza, John R; Deb, Kalyanmoy;
Dorigo, Marco; Fogel, David B; Garzon, Max H; Iba,
Hitoshi; Riolo, Rick. Morgan Kaufmann Publishers.
1997. ISBN 1-55860-483-9.
On the origin of species by means of natural selection.
Or, the preservation of favoured races in the struggle
for life. Darwin, Charles. URL
http://www.infidels.org/library/historical/charles_dar
win/origin_of_species/index.shtml.
Reducing bloat and promoting diversity using multi­
objective methods, de Jong, Edwin D; Watson,
Richard A; Pollack, Jordan B. Pp 11-18. In: GECCO-
2001, Proceedings of the genetic and evolutionary
computation conference. Eds: Spector, Lee; Goodman,

185

http://www.infidels.org/library/historical/charles_dar

[Deransart, 1988]

[Felsenstein, 1995]

[Ferreira, 2001]

[Fitch, 1967]

[Freeman, 1998]

[Freund, 1979]

[Holland, 1992]

[Hopcroft, 1969]

[Horner, 1996]

[Keijzer, 2001]

[Keller, 1996]

Erik D; Wu, Annie S; Langdon, William B; Voigt, Hans-
Michael; Gen, Mitsuo; Sen, Sandip; Dorigo, Marco;
Pezeshk, Shahram; Garzon, Max H. Morgan Kaufmann
Publishers. 2001. ISBN 1-55860-774-9.
Attribute grammars. Definitions, systems and
bibliography. Deransart, Pierre; Jourdan, Martin;
Lorho, Bernard. Springer-Verlag. 1988. ISBN 3-540-
50056-1.
PHYLIP. Phylogeny inference package. Ed 3.57c.
Felsenstein, Joseph. URL
http://evolution.genetics.washingtoii.edu/phylip.html.
Downloaded 12-Jun-1998.
Gene expression programming. A new adaptive
algorithm for solving problems. Ferreira, Candida.
URL http://www.gene-expression-
programming.com/webpapers/gep.pdf. Downloaded
lO-Oct-2001.
The construction of phylogenetic trees. A generally
applicable method utilizing estimates of the mutation
distance obtained from cytochrome c sequences.
Fitch, Walter M; Margoliash, Emanuel. Science. Vol
155. No 3760. Pp 279-284.
A linear representation for GP using context free
grammars. Freeman, Jennifer J. Pp 72-77. In: Genetic
programming 1998. Proceedings of the third annual
conference. Eds: Koza, John R; Banzhaf, Wolfgang;
Chellapilla, Kumar; Deb, Kalyanmoy; Dorigo, Marco;
Fogel, David B; Garzon, Max H; Goldberg, David E; Iba,
Flitoshi; Riolo, Rick. Morgan Kaufmami Publishers.
1998. ISBN 1-55860-548-7.
Modern elementary statistics. Ed 5. Freund, John E.
Prentice/Hall. 1979. ISBN 0-13-593376-5.
Adaptation in natural and artifical systems. An
introductory analysis with applications to biology,
control and artificial intelligence. Holland, John H.
The MIT Press. 1992. ISBN 0-262-58111-6.
Formal languages and their relation to automata.
Hopcroft, John E; Ullman, Jeffrey D. Addison-Wesley
Publishing Company. 1969.
A C++ class library for genetic programming. The
Vienna University of Economics Genetic Programming
Kernel. Ed 1. Horner, Helmut. Vienna University of
Economics. 1996.
Ripple Crossover in Genetic Programming. Keijzer,
Maarten; Ryan, Conor; O’Neill, Michael; Cattolico,
Mike; Babovic, Vladan. Pp 74-86. In: Genetic
programming. Proceedings of EuroGP'2001. Eds:
Miller, Julian F; Tomassini, Marco; Lanzi, Pier Luca;
Ryan, Conor; Tettamanzi, Andrea G B; Langdon,
William B. Lecture notes in computer science. Vol
2038. Springer-Verlag. ISBN 3-540-41899-7.
Genetic programming using genotype-phenotype

186

http://evolution.genetics.washingtoii.edu/phylip.html
http://www.gene-expression-

[Kirby, 2000]

[Koza, 1992]

[Koza, 1994]

[Koza, 1996a]

[Koza, 1997a]

[Koza, 1998c]

[Lawrence, 1997]

[Loehlin, 1992]

[Luke, 1997]

[Luke, 1998]

mapping from linear genomes into linear phenotypes.
Keller, Robert E; Banzhaf, Wolfgang. In: Genetic
Programming 1996. Proceedings of the first annual
conference. Eds: Koza, John R; Goldberg, David E;
Fogel, David B; Riolo, Rick. The MIT Press. 1996.
ISBN 0-262-61127-9.
S-algoI & Napier 88. Eds: Kirby, Graham; Brown,
Alfred; Connor, Richard; Cutts, Quintin; Dearie, Alan;
Morrison, Ron; Munro, Dave. URL ftp://ftp.dcs.st-
and.ac.uk/pub/Software/PROG_LANGS. Downloaded
18-Apr-2002. School of Computer Science, University
of St Andrews.
Genetic programming. On the programming of
computers by means of natural selection. Koza, John
R. The MIT Press. 1992. ISBN 0-262-11170-5.
Genetic Programming II. Automatic discovery of
reusable programs. Koza, John R. The MIT Press.
1994. ISBN 0-262-11189-6.
Four problems for which a computer program evolved
by genetic programming is competitive with human
performance. Koza, John R; Bennett III, Forrest H;
Andre, David; Keane, Martin A. In: Proceedings of
1996 IEEE International Conference on Evolutionary
Computation (ICEC’96). IEEE Press. 1996. ISBN 0-
7803-2902-3.
Genetic Programming 1997. Proceedings of the
second annual conference. Eds: Koza, John R; Deb,
Kalyanmoy; Dorigo, Marco; Fogel, David B; Garzon,
Max H; Iba, Hitoshi; Riolo, Rick. Morgan Kaufmann
Publishers. 1997. ISBN 1-55860-483-9.
Evolutionary Design of Analog Electrical Circuits
using Genetic Programming. Koza, John R; Bennett III,
Forrest H; Andre, David; Keane, Martin A. In:
Proceedings of Adaptive Computing in Design and
Manufacture Conference. 1998.
On the distribution of performance from multiple
neural network trials. Lawrence, Steve; Back, Andrew
D; Tsoi, Ah Chung; Giles, C Lee. IEEE Transactions on
Neural Networks, Vol 8. No 6. Pp 1507-1517.
Latent variable models. An introduction to factor,
path and structural analysis. Ed 2. Loehlin, John C.
Lawrence Erlbaum Associates. 1992.
A comparison of crossover and mutation in genetic
programming. Luke, Sean; Spector, Lee. Pp 240-248.
In: Genetic Programming 1997. Proceedings of the
second annual conference. Eds: Koza, John R; Deb,
Kalyanmoy; Dorigo, Marco; Fogel, David B; Garzon,
Max H; Iba, Hitoshi; Riolo, Rick. Morgan Kaufmann
Publishers. 1997. ISBN 1-55860-483-9.
A revised comparison of crossover and mutation in
genetic programming. Luke, Sean; Spector, Lee. Pp
208-213. In: Genetic programming 1998. Proceedings

187

ftp://ftp.dcs.st-

[Luke, 2001]

[Macki, 1982]

[Merelo, 1996]

[Michalewicz, 1994]

[Montana, 1995]

[Morrison, 1979]

[Morrison, 2001]

[Naur, 1963]

[Nordin, 1994a]

[O’Neill, 2001b]

[O’Neill, 2001c]

[Pagan, 1981]

[Paterson, 1996]

of the third annual conference. Eds: Koza, John R;
Banzhaf, Wolfgang; Chellapilla, Kumar; Deb,
Kalyanmoy; Dorigo, Marco; Fogel, David B; Garzon,
Max H; Goldberg, David E; Iba, Hitoshi; Riolo, Rick.
Morgan Kaufmann Publishers. 1998. ISBN 1-55860-
548-7.
ECJ. A Java-based evolutionary computation and
genetic programming research system. Ed 8. Luke,
Sean. URL
http://www.cs.umd.edU/projects/plus/ec/ecj/ec.tar.g
z. Downloaded 7-Mar-2002.
Introduction to optimal control. Macki, Jack; Strauss,
Aaron. Springer-Verlag. 1982.
Genetic algorithms from Granada, Spain. Merelo, J J.
URL ftp://kal-el.ugr.es/GAGS/GAGS-.95.tar.gz.
Genetic algorithms + Data structures = Evolution
programming. Michalewicz, Zbigniew. Springer-
Verlag. 1994. ISBN 3-540-58090-5.
Strongly typed genetic programming. Montana, David
J. Evolutionary Computation. Vol 3. No 2. Pp 199-
230.
S-algol reference manual. Technical report CS/79/1,
School of Computer Science, University of St Andrews.
Morrison, Ron. 1979.
Society of systematic Australian biologists. Website.
Ed: Morrison, David. URL
http://www.science.uts.edu.au/sasb/. Downloaded
12-Aug-2002. University of Technology, Sydney.
Revised report on the algorithmic language Algol 60.
Eds: Naur, P; Woodger, M. Communications of the
ACM. Vol 6. No 1. Pp 1-17.
A compiling genetic programming system that
directly manipulates the machine code. Nordin, Peter.
Pp 311-331. In: Advances in genetic programming.
Ed: Kinnear Jr, Kenneth E. The MIT Press. 1994. ISBN
0-262-11188-8.
Automatic programming in an arbitrary language:
evolving programs with grammatical evolution. A
thesis for the PhD degree submitted to the University
of Limerick. O’Neill, Michael. 2001.
Grammatical evolution. O’Neill, Michael; Ryan, Conor.
IEEE Transactions on Evolutionary Computation. Vol
5. No 4. Pp 349-358.
Formal specification of programming languages. A
panoramic primer. Pagan, Frank G. Prentice-Hall.
1981. ISBN 0-13-329052-2.
Distinguishing genotype and phenotype in genetic
programming. Paterson, Norman R; Livesey, Michael
J. Pp 141-150. In: Genetic Programming 1996.
Proceedings of the first annual conference. Eds: Koza,
John R; Goldberg, David E; Fogel, David B; Riolo, Rick.
The MIT Press. 1996. ISBN 0-262-61127-9.

188

http://www.cs.umd.edU/projects/plus/ec/ecj/ec.tar.g
ftp://kal-el.ugr.es/GAGS/GAGS-.95.tar.gz
http://www.science.uts.edu.au/sasb/

[Paterson, 2000]

[Ryan, 1998a]

[Spector, 2002]

[Whlgham, 1996]

[Whitley, 1995]

[Wolpert, 1995]

[Wolpert, 1997]

Performance comparison in genetic programming.
Paterson, Norman R; Livesey, Michael J. Pp 253-260.
In: GECCO-2000. Late-breaking papers at the genetic
and evolutionary computation conference. Ed:
Whitley, Darrell. Morgan Kaufmann Publishers. 2000.
ISBN 1-55860-708-0.
Grammatical evolution. Evolving programs for an
arbitrary language. Ryan, Conor; Collins, J J; O’Neill,
Michael. Pp 83-95. In: Proceedings of the first
European workshop on genetic programming. Eds:
Banzhaf, Wolfgang; Poli, Riccardo; Schoenauer, Marc;
Fogarty, Terence C. Springer-Verlag. 1998. ISBN 3-
540-64360-5.
Genetic programming and autoconstructive evolution
with the Push programming language. Spector, Lee;
Robinson, Alan. Genetic programming and evolvable
machines. Vol 3. Pp 7-40. Kluwer Academic
Publishers.
Grammatical bias for evolutionary learning. A thesis
submitted to the School of Computer Science,
University College, University of New South Wales,
Australian Defence Force Academy, for the degree of
Doctor of Philosophy. Whigham, Peter Alexander.
1996.
Genetic Algorithms and Neural Networks. Whitley,
Darrell. Pp 203-216. In: Genetic Algorithms in
Engineering and Computer Science. Eds: Winter, G;
Periaux, Jacques; Galan, M; Cuesta, P. John Wiley &
Sons. 1995.
No free lunch theorems for search. Wolpert, David H;
Macready, William G. URL
http://www.santafe.edu/sfi/publications/W orking-
Papers/95-02-010.ps. Downloaded 23-Aug-2002.
No free lunch theorems for optimization. Wolpert,
David H; Macready, William G. IEEE Transactions on
Evolutionary Computation. Vol 1. No 1. Pp 67-82.
IEEE Press.

189

http://www.santafe.edu/sfi/publications/Working-

B S-algol rag

The Java code is included here as an aid to understanding details of the
implementation. However it must be stressed that this implementation is
intended to be a single-use, throw-away design as suggested in [Brooks,
19951.

;
The rag is given in three parts: 4
B.l Syntax I

The context-free syntax component of the rag. '
B.2 The production methods. ■

The class definitions for Node and S_algolNode. j
B.3 Object creation 1

The class definition for the initialiser which sets up the run-time |
objects for the grammar at the start of each run. |

i

A Perl script (not shown) translates the CFG in §B.l Syntax into Java |
statements which are combined with a standard header and footer to |
produce the R A G ln i t i a l i z e r class shown in §B.3 Object creation. This
class is called by the ECJ GA at the start of each run, and sets up the objects
that define the rag (ie terminals, nonterminals, serial counter for identifiers,
etc).

The Node class contains the default production method. Its extension
S.algolNode contains production methods specific to S-algol. Each method
is identified by a number. The R A G ln i t i a l i z e r class shown in §B.3
Object creation uses these numbers to associate a production method with
the corresponding production.

B.l Syntax

The syntax below is switched to the Fact problem, as indicated by the first
production.

Rules

######## ########
Session
######## ########

IMPORTANT! The structure of the following lines
is used by ec.experiment.nrp.rag.ecj.RAGProblem4
to locate the phenotype.

190

Use next line (program:) to choose a program. j
Then arrange that the corresponding section is
uncommented in Phenotypes.

program; program fact.

program monkey:
preamble symbol,
phenotype monkey, postamble monkey symbol,
end of program.

program cart:
preamble symbol,
phenotype cart, postamble cart symbol,
end of program.

program tile :
preamble symbol,
phenotype tile, postamble tile symbol,
end of program.

program multiplexer:
preamble symbol,
phenotype multiplexer, postamble multiplexer symbol,
end of program.

program power;
preamble symbol,
phenotype power, postamble power symbol,
end of program.

Two Box is in 4 versions:
#
Two Box 1 (Koza style: without ADF).
Two Box 2 (Koza style: with ADF).
Two Box 3 (Paterson style: with unprescribed, non-recursive
ADF) .
Two Box 4 (Paterson style : with unprescribed, recursive ADF).
#
The phenotype is problem-specific, but the rest of the wrapper
is common to all 4 versions.

program two box 1 :
preamble symbol,
phenotype two box 1, postamble two box symbol,
end of program.

program two box 2 :
preamble symbol,
phenotype two box 2, postamble two box symbol,
end of program.

program two box 3 :
preamble symbol,
phenotype two box 3, postamble two box symbol,
end of program.

program two box 4 :
preamble symbol,
phenotype two box 4, postamble two box symbol,
end of program.

program fact:
preamble symbol,
phenotype fact, postamble fact symbol,
end of program.

program annie:
preamble symbol,

191

phenotype annie, postamble annie symbol,
end of program.

end of program: space symbol, question symbol.

sequence void; clause void;

clause void, sequence separator, sequence void;

decl let;

decl let, sequence separator, sequence void;

decl proc;

decl proc, sequence separator, sequence void.

sequence int; clause int;

sequence void, sequence separator, clause int.

sequence real: clause real;

sequence void, sequence separator, clause real.

sequence bool: clause bool;

sequence void, sequence separator, clause bool.

sequence string: clause string;

sequence void, sequence separator, clause string.

sequence separator:
space symbol, semicolon symbol, newline symbol.

appl proc type void:
proc type void symbol.

appl proc type int:
proc type int symbol,
clause 1, expo int, clause r.

appl proc type real:
proc type real symbol,
clause 1, expO real, clause r.

appl proc type bool:
proc type bool symbol,
clause 1, expO bool, clause r.

I

appl proc type string: |
proc type string symbol, Î
clause 1, expO string, clause r. !

######## ######## !
Declarations ■
j

decl let: decl let int; i
decl let real; :

decl let bool; I
i

decl let string. \

decl proc: decl proc void; ■

192 :

.1
I

decl proc int;

decl proc real;

decl proc bool ;

decl proc string

decl let int;
let symbol, id int new, assignment symbol, clause int.

decl let real;
let symbol, id real new, assignment symbol, clause real,

decl let bool:
let symbol, id bool new, assignment symbol, clause bool.

decl let string:
let symbol, id string new, assignment symbol, clause string.

decl proc void:
proc symbol, id proc new,
sequence separator,
clause void;

proc symbol, id proc new,
round 1 symbol, parameter list, round r symbol,
sequence separator,
clause void. |

1
decl proc int: |

proc symbol, id proc new,
round 1 symbol, arrow symbol, type int symbol, round r symbol,
sequence separator,
clause int; 4

I
proc symbol, id proc new, !
round 1 symbol, parameter list, arrow symbol, type int symbol, I

round r symbol, j
sequence separator, j
clause int. j

decl proc real: ;
proc symbol, id proc new, |
round 1 symbol, arrow symbol, type real symbol, round r j

symbol,
sequence separator, Î
clause real; {

1
proc symbol, id proc new,]
round 1 symbol, parameter list, arrow symbol, type real j

symbol, round r symbol, j
sequence separator, f
clause real. l

decl proc bool: I
proc symbol, id proc new, ■
round 1 symbol, arrow symbol, type bool symbol, round r j

symbol, i
sequence separator, I
clause bool; j

proc symbol, id proc new, |
round 1 symbol, parameter list, arrow symbol, type bool !

symbol, round r symbol, I
sequence separator, j
clause bool. Î

decl proc string: I

193 i

proc symbol, id proc new,
round 1 symbol, arrow symbol, type string symbol, round r

symbol,
sequence separator,
clause string;

proc symbol, id proc new,
round 1 symbol, parameter list, arrow symbol, type string

symbol, round r symbol,
sequence separator,
clause string.

id int new: id int new symbol.

id real new: id real new symbol.

id bool new: id bool new symbol.

id string new: id string new symbol.

id proc new: id proc new symbol.

parameter list: parameter;

parameter, parameter separator, parameter list.

parameter: type int symbol, id int new;

type real symbol, id real new;

type bool symbol, id bool new;

type string symbol, id string new.

parameter separator: space symbol, semicolon symbol.

######## ########
Clauses
######## ########

########
Clauses “ void
########
clause void: expO void;

if symbol, clause bool,
do symbol, clause void;

if symbol, clause bool,
then symbol, clause void,
else symbol, clause void;

while symbol, clause bool, do symbol, clause void;

for symbol, id int new, space symbol, equals symbol, clause
int.

to symbol, clause int,
do symbol, clause void;

write;

id int, assignment symbol, clause int;

id real, assignment symbol, clause real;

id bool, assignment symbol, clause bool;

id string, assignment symbol, clause string.

194

write: write symbol, write list, write newline,

write list: clause writable;

clause writable, clause separator, write list.

<write newline> is added to S-algol
to ensure that output actually appears.
write newline; clause separator, quote symbol, apostrophe r symbol,
letter lower n symbol, quote symbol,

clause writable: clause int;

clause real;

clause string;

clause bool.

clause separator: space symbol, comma symbol.

########
Clauses - int
########
clause int: expO int;

if symbol, clause bool,
then symbol, clause int,
else symbol, clause int.

########
Clauses - real
########
clause real: expO real;

if symbol, clause bool,
then symbol, clause real,
else symbol, clause real.

########
Clauses - bool
########
clause bool: expO bool;

if symbol, clause bool,
then symbol, clause bool,
else symbol, clause bool.

########
Clauses - string
########
clause string: expO string;

if symbol, clause bool,
then symbol, clause string,
else symbol, clause string.

######## ########
Expressions
######## ########

########
Expressions - level 0
########

195

expo void: expl void.

expo int: expl int.

expO real: expl real.

#
#

<new
from

line symbol> is added here to prevent long lines
building up - they crash the S-algol compiler.

expO bool: expl bool;

expl bool, or symbol, newline symbol, expl bool.

expO string: expl string.

########
Expressions
########

- level 1

expl void: exp 2 void.

expl int: exp2 int.

expl real; exp2 real.

#
#

<new
from

line symbol> is added here to prevent long lines
building up - they crash the S-algol compiler.

expl bool: exp2 bool;

exp 2 bool, and symbol, newline symbol, exp2 bool.

expl string: exp2 string.

########
Expressions - level 2
########

S-algol says:

<exp2> ::= [~]<exp3>[<rel_op><exp3>]

which permits

- 0 = 0

but this generates a type error.
To avoid this we add round brackets.

exp2 void: exp3 void.

exp2 int: exp3 int.

exp2 real: exp3 real.

exp2 bool: exp3 bool;

not op, exp3 bool;

exp3 int, eg op, exp3 int;

exp3 real, eq op, exp3 real;

exp3 bool, eq op, exp3 bool;

exp3 string, eq op, exp3 string;

exp3 int, compar op, exp3 int;

196

exp3 real, compar op, exp3 real;
exp3 string, compar op, exp3 string;
not op, clause 1, exp3 int, eq op, exp3 int, clause r;
not op, clause 1, exp3 real, eq op, exp3 real, clause r;
not op, clause 1, exp3 bool, eq op, exp3 bool, clause r ;
not op, clause 1, exp3 string, eq op, exp3 string, clause r ;
not op, clause 1, exp3 int, compar op, exp3 int, clause r ;
not op, clause 1, exp3 real, compar op, exp3 real, clause r ;
not op, clause 1, exp3 string, compar op, exp3 string, clause

exp2 string: exp3 string.
not op: space symbol, tilde symbol,
eq op: space symbol, equals symbol;

tilde equals symbol,
compar op: space symbol, angle 1 symbol;

angle 1 equals symbol;
space symbol, angle r symbol;
angle r equals symbol.

########
Expressions - level 3
########
exp3 void: exp4 void.
exp3 int : exp4 int;

exp4 int, add op, exp4 int.
exp3 real: exp4 real;

exp4 real, add op, exp4 real;
exp4 int, add op, exp4 real;
exp4 real, add op, exp4 int.

exp3 bool: exp4 bool.
exp3 string: exp4 string.
<new line symbol> is added here to prevent long lines
from building up - they crash the S-algol compiler,
add op: space symbol, plus symbol, newline symbol;

space symbol, hyphen symbol, newline symbol.
########
Expressions - level 4
########

S-algol defines

197

<exp4> ;:= <exp5>[<nult_op><exp5>]*
<exp5> ; := <[add_op.']<exp6>

which produces
4 * + 6

which gives rise to a precedence error.
So I have redefined exp4 ir. terms of exp6.
Division (div, rera, /) uses protected procedure calls

exp4 void: exp5 void.
exp4 int: exp5 int;

proc div symbol, clause 1,
exp5 int, clause separator,
exp6 int, clause r ;

proc rem symbol, clause 1,
exp5 int, clause separator,
exp6 int, clause r;

exp5 int, mult op int, exp6 int.
exp4 real; exp5 real;

proc slash symbol, clause 1,
exp5 real, clause separator,
exp6 real, clause r;

exp5 real, mult op real, exp6 real.
exp4 bool : exp5 bool.
exp4 string: exp5 string;

exp5 string, mult op string, exp5 string.
mult op int: space symbol, asterisk symbol.
div symbol;
rem symbol.
mult op real: space symbol, asterisk symbol.
space symbol, slash symbol,
mult op string: concat symbol.
########
Expressions - level 5
########
expS void;
exp5 int:

exp5 real:

exp5 bool:

exp6 void.
exp6 int;
add op, exp6 int.
exp6 real;
add op, exp6 real.
exp6 bool.

198

exp5 string; exp6 string.

########
Expressions - level 6
########
Substring (x[y) uses a protected procedure call.

exp6 void: sequence 1, sequence r;

clause 1, clause void, clause r;

sequence 1, sequence void, sequence r.

exp6 int : literal int;

clause 1, clause int, clause r;
sequence 1, sequence int, sequence r;

appl int;

id int;
id int c .

exp6 real: literal real;

clause 1, clause real, clause r ;

sequence 1, sequence real, sequence r ;
appl real;

id int;
id int c;

id real;
id real c.

exp5 bool: literal bool;
clause 1, clause bool, clause r;

sequence 1, sequence bool, sequence r ;
appl bool;
id bool.

exp6 string: literal string;
clause 1, clause string, clause r;
sequence 1, sequence string, sequence r ;
proc substr symbol, clause 1,

expO string, clause separator,
expO int, clause separator,
expO int, clause r;

appl string;

id string.
clause 1: space symbol, round 1 symbol.

199

clause r: space symbol, round r symbol,

sequence 1; space symbol, curly 1 symbol,

sequence r; space symbol, curly r symbol.

######## ########
Literals
######## ########
The use of space must be made explicit for literal int.
Allowing an <add_op> in a literal int can lead to
#
5 * -6
#
which is illegal, so I have removed this option.
Negative literals are already provided for by exp5 (qv).
This requires an explicit add op before the exponent of
a scientififc notation real.

These are minor language glitches which have come to
light - they are not significant for GP.

literal int: space symbol, numeral 0 symbol;

space symbol, digits.

literal real: space symbol, numeral 0 symbol, period symbol, numeral 0
symbol;

literal int, period symbol;

literal int, period symbol, digits;

literal int, period symbol, digits, letter lower e symbol,
digits ;

literal int, period symbol, digits, letter lower e symbol, add
op, digits.
literal bool: true symbol;

false symbol.
literal string: space symbol, quote symbol, quote symbol;

space symbol, quote symbol, chars, quote symbol,
chars: character;

character, chars.
char is renamed character to avoid conflict with Java char,
character: ascii;

special.
ascii: letter;

digit;
punctuation.

letter: letter lower a symbol; letter lower b symbol; letter
lower c symbol;

letter lower d symbol; letter lower e symbol; letter lower f
symbol;

200

letter lower g symbol
letter lower j symbol
letter lower m symbol
letter lower p symbol
letter lower s symbol
letter lower v symbol
letter lower y symbol
letter upper b symbol
letter upper e symbol
letter upper h symbol
letter upper k symbol
letter upper n symbol
letter upper q symbol
letter upper t symbol
letter upper w symbol
letter upper z symbol.

digit;
digit, digits.

letter lower h symbol
letter lower k symbol
letter lower n symbol
letter lower q symbol
letter lower t symbol
letter lower w symbol
letter lower z symbol
letter upper c symbol
letter upper f symbol
letter upper i symbol
letter upper 1 symbol
letter upper o symbol
letter upper r symbol
letter upper u symbol
letter upper x symbol

symbol;
symbol;
symbol;
symbol;
symbol ;
symbol;
symbol;
symbol;
symbol;
symbol;
symbol;
symbol;
symbol;
symbol;
symbol;

digits :

digit: numeral 0 symbol; numeral 1 symbol; numeral 2 symbol; numeral
3 symbol; numeral 4 symbol;

numeral 5 symbol; numeral 6 symbol; numeral 7 symbol; numeral
8 symbol; numeral 9 symbol.
punctuation: space symbol; exclamation symbol; hash symbol; dollar symbol;

percent symbol; ampersand symbol; round 1 symbol; round r
symbol;

symbol;

symbol;

special:

letter lower i
letter lower 1
letter lower o
letter lower r
letter lower u
letter lower x
letter upper a
letter upper d
letter upper g
letter upper j
letter upper m
letter upper p
letter upper s
letter upper v
letter upper y

asterisk symbol; plus symbol; comma symbol; hyphen symbol;
period symbol; slash symbol; colon symbol; semicolon symbol;
angle 1 symbol; equals symbol; angle r symbol; question
at symbol; square 1 symbol; backslash symbol; square r symbol;
caret symbol; underscore symbol; apostrophe 1 symbol; curly 1
bar symbol; curly r symbol; tilde symbol.
apostrophe r symbol, special follow.

special follow; letter lower n symbol;
letter lower p symbol;
letter lower o symbol;
letter lower t symbol;
letter lower b symbol;
apostrophe r symbol;
quote symbol.

######## ########
Standard identifiers
######## ########

Standard identifiers are no different to programmer-declared ones,
except that they are in the root grammar.

201

id int!

id int c:
id real:
id real c:

id bool;
id string:

variable int symbol;
real width symbol;
string width symbol;
int width symbol.
maxint symbol.
variable real symbol,
epsilon symbol;
pi symbol;
maxreal symbol.
variable bool symbol,
variable string symbol.

######## ########
Standard procedures
######## ########
Procedures floor and ceiling are enhancements,
appl void:
appl int:

appl real:

appl bool:

appl string:

appl proc type void.
appl proc type int;
appl abs;
appl decode;
appl find substr;
appl length;
appl random;
appl truncate.
appl proc type real;
appl atan;
appl cos ;
appl exp;
appl In;
appl rabs;
appl sin;
appl sqrt.
appl proc type bool;
appl digit;
appl letter,
appl proc type string;

202

appl abs;

appl atan:

appl code;
appl iformat.

proc abs symbol,
clause 1, expO int, clause r.

proc atan symbol,
clause 1, expO real, clause r.

appl ceiling:
proc ceiling symbol,

clause 1, expO real, clause r.
appl code:

proc code symbol,
clause 1, expO int, clause r.

appl cos :
proc cos symbol,

clause 1, expO real, clause r .
appl decode:

proc decode symbol,
clause 1, expO string, clause r.

appl digit:
proc digit symbol,

clause 1, expO string, clause r.
appl exp:

proc exp symbol,
clause 1, expO real, clause r.

appl find substr:
proc find substr symbol,

clause 1, expO string, clause separator, expO string,
clause r.
appl floor:

proc floor symbol,
clause 1, expO real, clause r.

appl iformat:
proc iformat symbol,

clause 1, expO int, clause r.
appl length:

proc length symbol,
clause 1, expO string, clause r.

appl letter;
proc letter symbol,

clause 1, expO string, clause r.
appl In:

proc In symbol,
clause 1, expO real, clause r.

appl rabs:
proc rabs symbol,

clause 1, expO real, clause r.
appl random:

proc random symbol,
clause 1, expO int, clause r.

203

appl sin:
proc sin symbol,

clause 1, expO real, clause r.
appl sqrt:

proc sqrt symbol,
clause 1, expO real, clause r.

appl truncate;
proc truncate symbol,

clause 1, expO real, clause r.
######## ########
Phenotype
######## ########

There is one subsection per problem.
#
In each subsection, there is a production with LHS
of the form
#
phenotype problem:
#
followed by zero or more productions which redefine
notions that were already defined in the main body of
the grammar above,
#
To choose problem X, first check that the production
for _program__ is program X_ at the head of this file.
#
Then uncomment all productions in the problem X subsection
below.
#
Finally, in each of the other problem subsections,
comment all productions except the first (ie except the
production with LHS of the form:
#
phenotype _problem_:
########
Monkey
########
phenotype monkey :

phenotype monkey begin symbol,
literal string,
phenotype monkey end symbol.

########
Cart
########
phenotype cart;

phenotype cart begin symbol,
exp3 real,
phenotype cart end symbol.

#@clause real: expO real.
#@
#@exp3 real:
#@ exp4 real;

exp4 real, add op, exp4 real.
#@
#@exp6 real:
#0 literal real;
#0 appl real;
#0 id real c;
#0 clause 1, clause real, clause r.

204

#@literal real:
#@ space symbol, round 1 symbol, hyphen symbol, numeral 1 symbol,
round r symbol.
#@
#@appl real;
#@ appl rabs.
#0
#0id real c :
#0 space symbol, letter lower x symbol;
#0 space symbol, letter lower v symbol.
########
Tile
########

phenotype tile :
phenotype tile begin symbol,
expO int,
phenotype tile end symbol.

Redefine clause int and clause real to avoid sequences.
#0clause int: expO int.
#0
#0clause real: expO real.
#0
#0exp5 int: exp6 int.
#0
#0exp6 int:
#0 literal int;
0
#0 clause 1, clause int, clause r;
0
#0 appl int.
0
#0exp6 real:
#0 literal real;
#0
#0 clause 1, clause real, clause r;
#0
#0 appl real;
#0
#0 id real c .
#0
#0appl int:
#0 appl abs;
#0
#0 appl floor;
#0
#0 appl ceiling.
#0
#0appl real: j
#0 appl rabs; |
0 j
#0 appl sqrt. :
#0id real c : j
#0 space symbol, letter lower x symbol; ,
#0 space symbol, letter lower y symbol. |
######## ;
Multiplexer |
######## i

tphenotype multiplexer: |
phenotype multiplexer begin symbol, !
expO bool, I
phenotype multiplexer end symbol. |

#0exp2 bool: exp3 bool; ^
1

205 *

#0 not op, exp3 bool;
#0
#0 exp3 bool, eq op, exp3 bool;
#0
#0 not op, clause 1, exp3 bool, eq op, exp3 bool, clause r.
#0
#0exp6 bool: literal bool;
#0
#0 clause 1, clause bool, clause r ;
#0
#0 id bool c.
#0
#0id bool
#0

c :
space symbol. letter lower a symbol, numeral 2 symbol;

#0 space symbol, letter lower a symbol, numeral 1 symbol;
#0 space symbol, letter lower a symbol. numeral 0 symbol;
#0 space symbol. letter lower d symbol, numeral 7 symbol;
#0 space symbol, letter lower d symbol, numeral 6 symbol;
#0 space symbol, letter lower d symbol. numeral 5 symbol;
#0 space symbol. letter lower d symbol, numeral 4 symbol;
#0 space symbol, letter lower d symbol, numeral 3 symbol;
#0 space symbol. letter lower d symbol, numeral 2 symbol;
#0 space symbol. letter lower d symbol, numeral 1 symbol;
#0 space symbol, letter lower d symbol, numeral 0 symbol.
########
Power
########
phenotype power:

phenotype power begin symbol,
sequence void, sequence separator,
clause real,
phenotype power end symbol. j

#0sequence void: |
#0 clause void; •
0 I
#0 clause void, sequence separator, sequence void;
#0 I
#0 decl let; I
0 I
#0 decl let, sequence separator, sequence void.
#0 i
#0decl let: 1
#0 decl let int; j
#0 I
#0 decl let real. J
#0 I
#0clause void: |
#0 expO void; ■
#0 ;
#0 for symbol, id int new, space symbol, equals symbol, clause !
int,
#0 to symbol, clause int, |
#0 do symbol, clause void; j
0 I
#0 id int, assignment symbol, clause int; i
#0
#0 id real, assignment symbol, clause real.
#0clause int:

expO int.
#0clause real:
#0 expO real.
#0
#0exp6 int:

206

#@
#0
#0

#0
#0exp6 real!
#0
#0
#0
#0
#0

#0
#0id int:

#0id real:

literal int;

clause 1, clause int, clause r;

id int.

literal real;

clause 1, clause real, clause r ;

id int;

id real.

space symbol, letter lower n symbol,

space symbol, letter lower x symbol.

########
Two Box 1 (Koza style: without ADF).
########
The Two Box 1 phenotype is :
(1) A real clause involving only:
variables LO, WO, HO, LI, W1 and HI
operators +, -, * and SLASH

phenotype two box 1 :
phenotype two box begin symbol,
clause real,
phenotype two box end symbol.

#0clause real:

0
#0exp3 real:
#0
#0
#0
#0exp5 real:

#0exp6 real:
#0
#0
#0
#0id real c:

expO real.

exp4 real;
exp4 real, add op, exp4 real.

exp6 real.

id real c ;
clause 1, clause real, clause r.

#0 space symbol, letter upper 1 symbol, numeral 0 symbol;
#0 space symbol. letter upper w symbol, numeral 0 symbol;
#0 space symbol. letter upper h symbol, numeral 0 symbol;
#0 space symbol, letter upper 1 symbol, numeral 1 symbol;
#0 space symbol, letter upper w symbol, numeral 1 symbol;
#0 space symbol, letter upper h symbol, numeral 1 symbol.

########
Two Box 2 (Koza style: with ADF)
########

The Two Box 2 phenotype is :
(1) A non-recursive procedure of type

(real, real, real -> real)
(2) A real clause involving only:

seed procedure PROC.REAL
variables LO, WO, HO, LI, W1 and HI
operators +, -, * and SLASH
procedure as declared above

207

#
Assignment is not supported.
#
The non-recursive nature is controlled
by the choice of production method.

phenotype two box 2 :
phenotype two box begin symbol,
sequence void,
phenotype two box end symbol.

#0sequence void;
#0 decl proc, sequence separator, clause real.
#0
#0decl proc;
#0 decl proc real.
#0
#0decl proc real:
#0 proc symbol, id proc new,
#0 round 1 symbol, parameter list 3, arrow symbol, type real
symbol, round r symbol,
#0 sequence separator,
#0 clause real,
#0
#0# The odd way to get exactly three parameters means
#0# we can use the existing production methods.
#0
#0parameter list 3 :
#0 parameter, parameter separator, parameter list 2.
#0
#0parameter list 2 :
#0 parameter, parameter separator, parameter list 1.
#0
#0parameter list 1;
#0 parameter.
#0
#0parameter :
#0 type real symbol, id real new.
#0
#0clause real:
#0 expO real.
#0
#0exp3 real:
#0 exp4 real;
#0 exp4 real, add op, exp4 real.
#0
#0exp5 real: exp6 real.
#0
#0# <id real> is 1st alternative to avoid default loop.
#0
#0exp6 real:
#0 id real;
#0 appl real;
#0 clause 1, clause real, clause r.
#0
#0# <id real> must exist so that <parameter> can extend it
#0# with formal arguments. But there is no assignment.
#0
#0id real:
#0 space symbol, letter upper 1 symbol, numeral 0 symbol;
#0 space symbol, letter upper w symbol, numeral 0 symbol;
#0 space symbol, letter upper h symbol, numeral 0 symbol;
#0 space symbol, letter upper 1 symbol, numeral 1 symbol;
#0 space symbol, letter upper w symbol, numeral 1 symbol;
#0 space symbol, letter upper h symbol, numeral 1 symbol.
#0
#0# <appl real> must exist so that <decl p r o O can extend it
#0# with the defined ADF. It is given a harmless initial value.

208

#0appl real:
#0 appl proc type real.

########
Two Box 3 (Paterson style: with unprescribed, non-recursive ADF).
########
The Two Box 3 phenotype is :
(1) A non-recursive procedure of type
(real* -> real)
where real* means zero or more reals. For example:
(-> real)
(real, real, real -> real)
(2) A real clause involving only:
seed procedure PROC.REAL
variables LO, WO, HO, LI, W1 and HI
operators +, -, * and SLASH
procedure as declared above

phenotype two box 3 :
phenotype two box begin symbol,
sequence void,
phenotype two box end symbol.

#0sequence void:
#0 decl proc, sequence separator, clause real.
#0
#0decl proc:
#0 decl proc real.
#0
#0parameter :
#0 type real symbol, id real new.
#0
#0clause real:
#0 expO real.
#0 !
#0exp3 real: |
#0 exp4 real; ;
#0 exp4 real, add op, exp4 real. |
#0 I
exp5 real: exp6 real. !
#0 j
#0# <id real> is 1st alternative to avoid default loop. j
#0 I
#0exp6 real: |
#0 id real; j
#0 appl real; j
#0 clause 1, clause real, clause r. I
#0 I
#0# <id real> must exist so that <parameter> can extend it I
#0# with formal arguments. But there is no assignment. i
0 ;
#0id real; j
#0 space symbol, letter upper 1 symbol. numeral 0 symbol;
#0 space symbol, letter upper w symbol, numeral 0 symbol;
#0 space symbol, letter upper h symbol, numeral 0 symbol;
#0 space symbol, letter upper 1 symbol. numeral 1 symbol;
#0 space symbol, letter upper w symbol. numeral 1 symbol;
#0
#0

space symbol. letter upper h symbol, numeral 1 symbol.
#0# <appl real> must exist so that <decl proO can extend it
#0# with the defined ADF It is given a harmless initial value.
0
#0appl real;
#0 appl proc type real.
########
Two Box 4 (Paterson style: with unprescribed, recursive ADF).
########

209

The Two Box 4 phenotype is:
(1) A possibly recursive procedure of type
(real* -> real)
where real* means zero or more reals. For
(-> real)
(real, real, real -> real)
(2) A real clause involving only:
seed procedure PROC.REAL
variables LO, WO, HO, LI, Wl and
operators +, -, * and SLASH
procedure as declared above

phenotype two box 4 :
phenotype two box begin symbol,
decl proc, sequence separator, clause real,
phenotype two box end symbol.

The productions for Two Box 4 are the same as for Two Box 3.
The difference is in the RAGlnitializer.suffix.

########
Fact.
########
phenotype fact:

phenotype fact begin symbol,
sequence void,
phenotype fact end symbol.

sequence void:
decl proc, sequence separator, clause real.

Procedure; (int -> real),
decl proc:

decl proc real.

decl proc real;
proc symbol, id proc new,
round 1 symbol, parameter list, arrow symbol, type real

symbol, round r symbol,
sequence separator,
clause real.

Simple ints only,
clause int; expO int.

Proc has just one int parameter,
parameter list: parameter.

parameter:
type int symbol, id int new.

Remove references to strings,
exp2 bool;

exp3 bool;
not op, exp3 bool;
exp3 int, eq op, exp3 int;
exp3 real, eq op, exp3 real;
exp3 int, compar op, exp3 int;
exp3 real, compar op, exp3 real;
not op, clause 1, exp3 int, eq op, exp3 int, clause r ;
not op, clause 1, exp3 real, eq op, exp3 real, clause r;
not op, clause 1, exp3 int, compar op, exp3 int, clause r ;
not op, clause 1, exp3 real, compar op, exp3 real, clause r,

exp5 real: exp6 real.

<id real> is 1st alternative to avoid default loop.

210

exp6 int: literal int;
clause 1, clause int, clause r;
id int.

exp6 real:
id int;
id real;
appl real;
clause 1, clause real, clause r.

<id int> must exist so that <parameter> can extend it
with formal arguments. But there is no assignment.

id int;
space symbol, letter lower n symbol.

<appl real> must exist so that <decl p r o O can extend it
with the defined ADF. It is given a harmless initial value.

appl real:
appl proc type real.

########
Annie.
########
phenotype annie:

phenotype annie begin symbol,
sequence void,
phenotype annie end symbol.

######## ######## ######## ######## ######## ######## ######## ########
Representation table
######## ######## ######## ######## ######## ######## ######## ########
Symbols

######## ######## ######## ########
Wrapper
######## ######## ######## ########
The wrapper consists of:
#
preamble symbol
Contains the code for implementing Rag, for
protected S-algol operations, and for common evaluation
procedures. The preamble is common to all problems,
though not all of it is used by all problems.
#
phenotype <problem> begin symbol
phenotype <problem> end symbol
The phenotype begin and end symbols contain comments
to help locate the phenotype in the wrapper.
#
All problems except Annie are wrapped in a procedure,
whose prototype varies from problem to problem. The
begin and end symbols contain the problem-specific
procedure prototype and {} to enclose the procedure body,
which is the actual phenotype.
#
postamble <problem> symbol
The postamble is problem-specific. It has whatever is
needed to evaluate the phenotype and output its
functionality. For Annie, the phenotype is responsible
for everything, so the postamble is just a rump.

preamble symbol: %
let DEBUG = false I Control debug output.

211

I Seed variables,
let INT := 0
let REAL := 0.0
let BOOL := false
let STRING :=

! Seed procedures,
procedure PROG.VOID

{}
procedure PROG.INT(int x -> int)

{X}
procedure PROG.REAL(real x -> real)

{X}
procedure PROG.BOOL(bool x -> bool)

{X}
procedure PROG.STRING(string x -> string)

{X}

! Protected procedures,
procedure DEGODE(string s -> int)

if s = "" then 0 else decode(s)
procedure DIV(int n, d -> int)

if d = 0 then 0 else n div d
procedure REM(int n, d -> int)

if d = 0 then 0 else n rem d
procedure SLASH(real n, d -> real)

if rabs(d) < le-6 then 0 else n / d
procedure SUBSTR(string s; int i, j ~> string) ! Java indexing semantics,

if 0 <= i and i < j and j <= length(s) then s(i+l|j-i) else

1 Enhancements to S-algol.
procedure FLOOR (real x int)

truncate(x)

procedure GEILING (real x -> int)
{
let t = truncate(x)
if X = t then t else t+1
}

i Evaluation procedures,
let Seed := 635547864
procedure random.real (-> real) ! Returns uniform in (0.0, 1.0).

{
Seed ;= random (Seed)
Seed/maxint
}

let LOG = true ! Named constants ...
let REV = true ! ... to make call to map ...
let SGA = true ! ... easier to understand.
let MAX.FUNGTIONALITY = 9999 ! Functionality is in [0,
MAX.FUNCTIONALITY].
let LOG.MAXINT = In(maxint) ! Useful constant,
let LOG.MAXREAL = In(maxreal) ! Useful constant.
procedure map (bool log, rev, sea; real in.min, in.max, in.obs -> real); {

if DEBUG do write "MAP; log; ", log, "; rev: ", rev, "; sea: ", sea,
"; in.min; ", in.min, "; in.max; ", in.max, "; in.obs: ", in.obs, ")'n"

I Prepare the output observation,
let out.obs ;= in.obs

! Convert to log scale.
I out.obs in [log.in.min, log.in.max]
if log do {

if in.min = 0 do {write "***** map; FP exception: log (0);
in.min.'n"; abort}

212

if in.max = 0 do {write "***** map: FP exception; log (0);
in.max.'n"; abort}

if out.obs = 0 do {write "***** map; FP exception: log (0)
out.obs.'n "; abort}

in.min := In (in.min)
in.max ;= In (in.max)
out.obs :== In (out.obs)
if DEBUG do write "LOG; in.min: ", in.min, in.max:",

in.max, out.obs: ", out.obs, "'n "
}
! Reverse the sense of the scale.
! out.obs in [in.min, in.max]
if rev do {

out.obs ;= in.min + in.max - out.obs
if DEBUG do write "REV: out.obs; ", out.obs, "'n "

}
! Apply a scaling factor,
if sea do {

out.obs ;= (out.obs - in.min)/(in.max-
in.min)*MAX.FUNCTIONALITY

if DEBUG do write "SCA: out.obs; ", out.obs, ” 'n"
}
! Trim and cap result.
out.obs := truncate (out.obs+0.5)
if out.obs < 0 do out.obs ;= 0
if out.obs > MAX.FUNCTIONALITY do out.obs := MAX.FUNCTIONALITY

I Return.
out.obs

}
! Set up 10 environment,
i.w := 0
s.w : = 0
r.w :== 0

######## ########
Monkey
######## ########
phenotype monkey begin symbol:
procedure observed (-> string)
{
I « « < phenotype begins

phenotype monkey end symbol:
l » » > phenotype ends
}

postamble monkey symbol: %
! Evaluation parameters.
let BANANA = "Hello, world!'n"

I Ideal phenotype,
procedure expected (-> string)
BANANA

I Compute RMS difference between Ascii of observed and expected,
procedure RMS (string obs, exp -> real)

{
if DEBUG do write "obs, exp; obs, "'", exp, "'"'n '
let rms := 0.0

213

let s := length (obs); if length (exp) > length (obs) do s :==
length(exp)

for i = 0 to s-1 do
{
let o = SUBSTR(obs,i,i+1)
let e = SUBSTR(exp,i,i+l)
let d = DECODE(o)-DECODE(e)
if DEBUG do write "o, e, d: o, " ' ", e, ", d,

" ' n "
rms := rms + d*d
}

rms ;= sqrt(rms/s)
if DEBUG do write "rms; ", rms, "'n "
rms

}

! Write the functionality.
write map (-LOG, REV, SCA, 0, RMS("", expected), RMS(observed, expected)),
II I ^ '1

######## ########
Cart
######## ########

phenotype cart begin symbol; %
procedure observed (real x, v -> real)
{
! « « < phenotype begins
%
phenotype cart end symbol ; %
! » » > phenotype ends
}
%

postamble cart symbol: %
! Evaluation parameters.
let CASES = 20 S Number of test cases,
let TAU = 0 . 0 2 ! Time step,
let RAD = 0.11 Target radius in (x, v) space
let EOT = 1 0 1 Time limit in simulated seconds

! Ideal phenotype.
procedure expected (real x, v -> real)
-X - v*rabs(v)

1 Simulate cart.
procedure time.to.center(real x, v; (real, real -> real) control -> real)

{
let t := 0.0
while t < EOT and x*x+v*v > RAD * RAD do

{
let a = if control (x, v) < 0 then -0.5 else +0.5
t := t + TAU
X := X + TAU * V + TAU*TAU*a/2
v := V + TAU * a
}

t
>

1 Compute RMS difference between observed and expected,
let rms := 0.0
if DEBUG do write "x 't v 't o 't e 't d 'n "
for i = 1 to CASES do

{
let X = random.real*l.5-0.75
let V = random.real*1.5-0.75
let o = time.to.center (x, v, observed)

214

let e == time. to. center (x, v, expected)
let d = o - e
if DEBUG do write x, "'t", v, " ’t", o, "'t", e, "'t", d, "'n "
rms := rms + d*d
>

rms := sqrt(rms/CASES)
if DEBUG do write "rms = ", rms, "'n "

I Write the functionality.
write map (-LOG, REV, SCA, 0, EOT, rms), "'n "
%

######## ########
Tile
######## ########
phenotype tile begin symbol : %
procedure observed (real x, y -> int)
{
! « « < phenotype begins
%

phenotype tile end symbol ; %
! » » > phenotype ends
}
%
postamble tile symbol: %
! Evaluation parameters.
let CASES = 2 0 ! Number of test cases.

! Ideal phenotype.
procedure expected (real x, y -> int)
{

let t := 0
for i = 0 to FLOOR(x) do {

t := t + CEILING(y-i/x*y)
}
t

}
1 Compute RMS of difference between observed and expected,
let rms := 0.0
if DEBUG do write "x't y 't o 't e 't d ’n"
for i = 1 to CASES do

{
let X = truncate(random.real*100)+1
let y = truncate(random.real*100)+l
let o = 0.0+observed (x, y) ! Use real to avoid int overflow
let e = 0.0+expected (x, y) ! Use real to avoid int overflow
let d = o - e
if DEBUG do write x, "'t ", y , "'t ", o, "'t ", e, "'t ", d, "'n "
rms := rms + d*d
}

rms ;= sqrt(rms/CASES)
if DEBUG do write "rms = ", rms, "'n "

! Write the functionality,
write map (LOG, REV, SCA, 1, maxint, rms+1), "'n "
%

######## ########
Multiplexer
######## ########

phenotype multiplexer begin symbol: %
procedure observed (bool a2, al, aO, d7, d6, d5 ,d4 ,d3, d2, dl, dO -> bool
{
1 « < « phenotype begins

215

phenotype multiplexer end symbol:
l » » > phenotype ends
}

postamble multiplexer symbol;
I Evaluation parameters.
let CASES = 2 0 4 8 ! Number of test cases.

! Ideal phenotype.
procedure expected (bool a2, al, aO, d7, d6, d5 ,d4 ,d3, d2, dl, dO -> bool)
{

if a2
then

else

if al
then if aO

then d7
else d6

else if aO
then d5

if al
else d4

then if aO
then d3
else d2

else if aO
then dl
else do

Compute raw functionality = count of correct results in all cases!
let f
let a2
let al
let aO
let d7
let d6
let d5
let d4
let d3
let d2
let dl
let do

= 0 ! Functionality = count of correct results,
false
false
false
false
false
false
false
false
false
false

;= false
if DEBUG do write "e'to'tf'n"
for c = 1 to CASES do

{
if DEBUG do write "Case c,
let i — 0 — 1 a2 = i rem 2 = 0
i ;= i div 2 al = i rem 2 = 0
i := i div 2 aO = i rem 2 = 0
i ; = i div 2 d7 = i rem 2 = 0
i ;= i div 2 d6 = i rem 2 = 0
i := i div 2 d5 = i rem 2 = 0
i : = i div 2 d4 = i rem 2 = 0
i ;= i div 2 d3 = i rem 2 = 0
i : = i div 2 d2 = i rem 2 = 0
i ;= i div 2 dl = i rem 2 = 0
i : = i div 2 do i rem 2 = 0
let o = observed (a2 , al , aO , d7, d6, d5 ,d4 ,d3, d2, dl, dO)
let e := expected (a2, al,
if e = o do f : = f + l
if DEBUG do write e, "'t ",
}

aO, d7, d6, d5 ,d4 ,d3, d2, dl, dO)

o , " ' t " , f , " ' n "

1 Write the functionality,
write map (-LOG, -REV, SCA, 0, CASES, f), "'n'

216

######## ########
Power
######## ########

phenotype power begin symbol:
procedure observed (real x; int n -> real)
{
! Re-initialise seed variables
INT := 0
REAL ;= 0.0
BOOL := false
STRING ;=
! « < « phenotype begins

phenotype power end symbol;
! » » > phenotype ends
}

postamble power symbol: %
I Evaluation parameters.
let CASES = 3 0
let MAX.X = 1 0 ! X is in (0, MAX.X).
let MAX.N = 1 0 ! n is in [0, MAX.X],

! Ideal phenotype.
procedure expected (real x; int n -> real)
{

let result := 1.0
for i = 1 to n do

result := result * x
result

}
I Compute RMS difference beteen observed and expected,
let rms := 0.0
if DEBUG do write "c't x 't n 't o 't e 't d 'n"
for c = 1 to CASES do

{
let X = random.real*MAX.X
let n = truncate(random.real*MAX.N) + 1
let o = observed (x, n)
let e = expected (x, n)
let d = o - e
rms := rms + d * d
if DEBUG do write c, "'t ", x, "'t ", n, "'t", o, "'t ", e, "'t", d,

" ' n "
}

rms := sqrt(rms/CASES)
if DEBUG do write "rms ", rms, "'n "

! Write the functionality.
write map (LOG, REV, SCA, 1, maxreal, rms+1), "'n "
%
######## ########
Two Box
######## ########

phenotype two box begin symbol: %
procedure observed (real L O , WO, HO, LI, Wl, HI -> real)
{
! « « < phenotype begins
%

phenotype two box end symbol : %
l»>>> phenotype ends

217

postamble two box symbol; %
! Evaluation parameters.
let CASES = 10
let RANGE = 10 ! Each dimension is in [0, RANGE],

! Ideal phenotype.
procedure expected (real LO, WO, HO, Ll, Wl, HI -> real)
{

procedure volume (real ARGO, ARGl, ARG2 -> real)
ARGO * ARGl * ARG2

volume (LO, WO, HO) - volume (Ll, Wl, HI)
>
! Compute RMS difference between observed and expected
let rms := 0.0
if DEBUG do write "Case LO WO HO Ll Wl Hi Obs

Exp Obs-Exp'n"
for c = 1 to CASES do

{
J Define fitness cases, as in [Koza, 1994].
let LO = truncate(random.real*RANGE) + 1
let WO = truncate(random.real*RANGE) + 1
let HO = truncate(random.real*RANGE) + 1
let Ll = truncate(random.real*RANGE) + 1
let Wl = truncate(random.real*RANGE) + 1
let HI = truncate(random.real*RANGE) + 1
let o = observed (LO, WO, HO, Ll, Wl, HI)
let e = expected (LO, WO, HO, Ll, Wl, HI)
let d = o - e
rms ;= rms + d * d
if DEBUG do write c, '"t", LO, " ' t" , WO, " ' t" , HO, " 't" , Ll, " ' t'

Wl, "'t ", HI, "'t ", fformat(o,3,1), "'t", fformat(e,3,1), "'t ",
fformat(d,3,1), "'n"

}
rms := sqrt(rms/CASES)
if DEBUG do write "rms = ", rms, "'n"

I Write the functionality.
write map (LOG, REV, SCA, 1, maxreal, rms+1), "'n"
%

######## ########
Fact
######## ########
phenotype fact begin symbol: %
procedure observed (int n -> real)
{
! < « « phenotype begins
%

phenotype fact end symbol : %
! » > » phenotype ends
}

postamble fact symbol: %
! Evaluation parameters.
let CASES = 1 0
let RANGE = 95 1 Largest number such that rms cannot overflow.

I Ideal phenotype.
procedure expected (int n -> real); {

procedure factorial (int n -> real)
if n <= 0 then 1 else factorial(n-1)*n

218

}
factorial (n)

! Compute RMS difference between observed and expected
let rms ;= 0.0
if DEBUG do write "Case n o e d
for c = 1 to CASES do

{
let n = truncate (c / CASES * RANGE + 0.5)
let o = In (1+rabs(observed (n)))
let e = In (1+rabs(expected (n)))
let d = o - e
rms := rms + d * d
if DEBUG do write c, "'t ", n, t", o, " ’t", e, "'t ", d, "'t", rms,

}
rms ;= sqrt(rms/CASES)
if DEBUG do write "rms = ", rms, "'n "

1 Write the functionality.
write map (-LOG, REV, SCA, 1, In(maxreal), rms+1), "'n'
?
%

######## ########
Annie
######## ########
phenotype annie begin symbol: %
l « « < phenotype begins

phenotype annie end symbol:
l»>>> phenotype ends

postamble annie symbol:

######## ######## ######## ########
Preamble symbols
######## ######## ######## ########

variable int symbol:
variable real symbol:
variable bool symbol:
variable string symbol;

proc type void symbol;

proc type int symbol:

proc type real symbol:

proc type bool symbol;

proc type string symbol:

proc decode symbol ;

proc div symbol:

proc rem symbol:

proc slash symbol:

proc substr symbol:

" INT"
" REAL"
" BOOL"
" STRING"

" PROC.VOID’

" PROC.INT"

" PROC.REAL’

’’ PROC.BOOL’

PROC.STRING"

DECODE"

DIV"

REM"

SLASH"

SUBSTR"

219

######## ######## ######## ########
Reserved words
######## ######## ######## ########
and symbol:
by symbol:
div symbol;
do symbol;
else symbol:
false symbol :
for symbol:
if symbol:
let symbol:
or symbol:
proc symbol:
rem symbol:
then symbol:
true symbol:
to symbol;
type int symbol;
type bool symbol :
type real symbol:
type string symbol:
type void symbol :
while symbol:
write symbol :

and"
by"
div"
do"
else"
false"
for"
if"
let"
or"
procedure'
rem"
then"
true"
to"
int"
bool "
real"
string"
void"
while"
write"

######## ######## ######## ########
Predeclared identifiers - procedures
######## ######## ######## ########

Procedure decode is redefined above as a protected procedure

proc abs symbol: " abs "
proc atan symbol : " atan"
proc ceiling symbol: " CEILING"
proc code symbol : " code"
proc cos symbol: " cos"
proc digit symbol: " digit"
proc exp symbol; " exp "
proc find substr symbol: " find.substr"
proc floor symbol: " FLOOR"
proc iformat symbol: " iformat"
proc length symbol : " length"
proc letter symbol : " letter"
proc In symbol ; " In"
proc rabs symbol; " rabs"
proc random symbol: " random"
proc sin symbol: " sin"
proc sqrt symbol; " sqrt"
proc truncate symbol: " truncate"
######## ######## ######## ########
Predeclared identifiers - variables
######## ######## ######## ########
epsilon symbol: " epsilon"
int width symbol : " i.w"
maxint symbol: " maxint"
maxreal symbol; " maxreal"
pi symbol: " pi"real width symbol : " r.w"
string width symbol: " s.w"

######## ######## ######## ########
Punctuation - composite
######## ######## ######## ########

arrow symbol: " ->"

220

assignment symbol;
concat symbol :
angle r equals symbol :
angle 1 equals symbol:
tilde equals symbol:

++■
>=’
<='

######## ######## ######## ########
Letters
######## ######## ######## ########

letter lower a symbol: "a"
letter lower b symbol; "b"
letter lower c symbol; "c "
letter lower d symbol: "d"
letter lower e symbol: "e"
letter lower f symbol : "f "
letter lower g symbol; "g"
letter lower h symbol: "h"
letter lower i symbol: "i"
letter lower j symbol: "j"
letter lower k symbol: "k"
letter lower 1 symbol : "1"
letter lower m symbol: "m"
letter lower n symbol; "n"
letter lower o symbol; "o"
letter lower P symbol; "p"
letter lower q symbol; "q"
letter lower r symbol: "r"
letter lower s symbol; "s"
letter lower t symbol : "t"
letter lower u symbol: "u"
letter lower V symbol; "v"
letter lower w symbol: "w"
letter lower X symbol; "x"
letter lower y symbol: "y"
letter lower z symbol: " Z "
letter upper a symbol: "A"
letter upper b symbol; "B"
letter upper c symbol: "C"
letter upper d symbol: "D"
letter upper e symbol; "E"
letter upper f symbol : "F"
letter upper g symbol; "G"
letter upper h symbol: "H"
letter upper i symbol: "I"
letter upper j symbol: "J"
letter upper k symbol: "K"
letter upper 1 symbol: "L"
letter upper m symbol: "M"
letter upper n symbol; "N"
letter upper o symbol: "0"
letter upper P symbol: "P"
letter upper q symbol : "Q"
letter upper r symbol: "R"
letter upper s symbol: "S"
letter upper t symbol: "T"
letter upper u symbol: "U"
letter upper V symbol; "V"
letter upper w symbol; "W"
letter upper X symbol: "X"
letter upper y symbol; "Y"
letter upper z symbol; "Z"
######## ######## ######## ########
Numerals
######## ######## ######## ########

numeral 0 symbol :
numeral 1 symbol ;

"0"
"1"

221

numeral 2 symbol: "2
numeral 3 symbol: "3
numeral 4 symbol : "4
numeral 5 symbol : "5
numeral 6 symbol; "6
numeral 7 symbol; "7
numeral 8 symbol: "8
numeral 9 symbol: "9
######## ######## ######## ########
Punctuation - simple - in Ascii order
######## ######## ######## ########

space symbol; ” "
exclcimation symbol : " ! "
quote symbol : '"'
hash symbol; "#"
dollar symbol: "
percent symbol;
ampersand symbol:
apostrophe r symbol: "'"
round 1 symbol : "("
round r symbol : ") "
asterisk symbol: "*"
plus symbol; "+"
comma symbol; ","
hyphen symbol;
period symbol: ". "
slash symbol; "/"
colon symbol: ":"
semicolon symbol: ";"
angle 1 symbol: "<"
equals symbol; "="
angle r symbol; ">"
question symbol: "?"
at symbol:
square 1 symbol ; "["
backslash symbol : "\"
square r symbol ; "]"
caret symbol : " "
underscore symbol:
apostrophe 1 symbol:
curly 1 symbol : "{"
bar symbol: "|"
curly r symbol ; "}"
tilde symbol;
newline symbol: "

######## ######## ######## ########
Placeholders
######## ######## ########

id int new symbol: " idlntNew"
id real new symbol: " idRealNew"
id bool new symbol: " idBoolNew"
id string new symbol; " idStringNew'
id proc new symbol: " idProcNew"

222

B.2 Production methods

The production methods are coded in the node constructor. A general Node
class is presented, followed by the specialised SalgolNode.

B.2.1 Node

// Node - a Node in a parse tree.

// This is an abstract class. It has to be specified for each
// language because the production methods are language-specific.
// This is not good. It would be better to devise a virtual
// machine code for production methods in the longer term.
// Then the language-specific detail could go into the grammar,
// and a more general Node class would interpret it.

package ec.experiment.nrp.rag;
import j ava.io.* ;
public abstract class Node { ^

public Node () {
}
// INHERITED ATTRIBUTES

// The Symbol at this node,
public Symbol s = null;

// SYNTHETIC ATTRIBUTES

// Children of this node,
public Node[] child = null;
public int childCount = 0;

// PRODUCTION METHODS

// Apply specified production method. This method must be
// overridden to cater for non-default production methods,
public void applyMethod(int m. ReflexiveAttributeGrammar RAG, Symbol

s. Symbol[] RHS, Genotype g) {
switch (m) {
case 0:

method_0 (RAG, (NonTerminal)s , RHS, g);
break;

default :
System.out.printIn (" Node; applyMethod: error:

unexpected method number : " + m);
>

}
public static final int METHOD_DEFAULT = 0;
public void method_0 (ReflexiveAttributeGrammar RAG, NonTerminal LHS,

Symbol[] RHS, Genotype g) {
// Beginning.
// System.out.printIn (" Node : method_0: beginning.");

// Descend into subtree.
for (int i = 0; i < this.child.length; i++) {

// System.out.printIn (" Node; creating child node; "
+ i) ;

// Uncomment next line with specific Node subclass.

223

// child[i] = new Node(RAG, RHS[i], g);
}

// Completed.
// System.out.printIn (" Node: method_0; completed.");

}
// CONSTRUCTORS

public Node (ReflexiveAttributeGrammar RAG, Symbol s. Genotype g) {

// System.out.printIn (" Node; beginning symbol; " +
s.getName())

s .getName())
}

// Note the Symbol at this node,
this.s = s ;

// If the Symbol s is a Terminal, we are finished,
if (s instanceof Terminal)

{
return;
}

// Use Genotype g to choose a production for this NonTerminal,
Production p = ((NonTerminal)s).getProduction(g);

// Get the RHS of this production.
Symbol[] RHS = p .getRHS();

// Prepare to have children.
// this.child = new Node[RHS.length];

// Apply specified method.
applyMethod(p.getMethodNumber(), RAG, s, RHS, g);

// System.out.println (" Node: completed symbol; " +

// PHENOTYPE

public String getLeaves () {
if (child == null) {

return (s.getName());
} else {

String leaves =
for (int i = 0; i < this.child.length; i++) {

leaves = leaves + child[i].getLeaves();
}
return (leaves);

}
}
public void writeLeaves (FileOutputStream fos) throws lOException {

if (child == null) {
fos.write(s .getName().getBytes());

} else {
for (int i = 0; i < this.child.length; i++) {

child[i].writeLeaves(fos);
}

}
}
public int countLeaves () {

if (child == null) {
return (1);

} else {
int leaves = 0 ;
for (int i = 0; i < this.child.length; i++) {

224

l e a v e s = l e a v e s + c h i l d [i] . c o u n t L e a v e s () ;

}return (leaves);
}

}

B.2.1 S_algolNode extends Node

// S_algolNode - a S_algoINode in a parse tree.
1

package ec.experiment.nrp.rag.ecj; j
import ec.experiment.nrp.rag.*;
import ec.experiment.nrp.rag.s_algol.* ; I
public class S__algolNode extends Node {

public S_algolNode () {
> ;
// SYNTHETIC ATTRIBUTES j

I// S_algolPrototype - synthesized by procedure declarations. j
S_algolPrototype prototype = null; |

1// S_algolParameter - synthesized by parameter_.
S_algolParcuneter parameter = null;

I// S__algolParameterList - synthesized by _parameter list_. j
S_algolParameterList parameterList = null; i
// PRODUCTION METHODS I

I// Apply specified production method. This method must be |
// overridden to cater for non-default production methods. |
public void applyMethod(int m. ReflexiveAttributeGrammar RAG, Symbol \

s. Symbol[] RHS, Genotype g) { ;l
switch (m) { j
case 0 ; !

methodO (RAG, (NonTerminal)s , RHS, g); !
break; |

case 1: ;
method_l (RAG, (NonTerminal)s, RHS, g); j
break; '

case 2 ; I
method_2 (RAG, (NonTerminal)s, RHS, g); j
break; >

case 3:
method_3 (RAG, (NonTerminal)s, RHS, g); ;
break;

case 4 : !
method_4 (RAG, (NonTerminal)s, RHS, g); j
break; ■

case 5: |
method_5 (RAG, (NonTerminal)s , RHS, g); |
break; t

case 6 ; j
method_6 (RAG, (NonTerminal)s, RHS, g);
break;

case 7 :
method_7 (RAG, (NonTerminal)s, RHS, g, true);
break;

case 8:
method_8 (RAG, (NonTerminal)s, RHS, g);
break;

225

c a s e 9 :
method_9 (RAG, (NonTerminal)s, RHS, g);
break;

case 10:
method_7 (RAG, (NonTerminal)s, RHS, g, false);
break;

default:
System.out.println (" SalgolNode: applyMethod:

error: unexpected method number: " + m);
}

}
public static final int METHOD_DEFAULT = 0;
public void method_0 (ReflexiveAttributeGrammar RAG, NonTerminal LHS,

Symbol[] RHS, Genotype g) {
// Beginning.
// System.out.println (" S_algoINode: method 0 : beginning:

this.child.length = " + this.child.length);
// System.out.println (" S algoINode : method 0 : beginning;

RAG == null; " + (RAG==null));
// System.out.println (" SalgoINode: m e t hodO: beginning:

LHS == null: " + (LHS==null));
// System.out.println (" S_algolNode: m e t hodO: beginning:

RHS == null: " + (RHS==null));
// System.out.println (" S_algolNode; m e t hodO: beginning: g

== null; " + (g==null));
// Descend into subtree.
for (int i = 0; i < this.child.length; i++) {

// System.out.println (" SalgolNode: creating.child
node ; " + i);

child[i] = new S_algoINode(RAG, RHS[i], g) ;
// System.out .println (" S__algoINode: creating child

node; " + i + " completed.");
}
// Completed.
// System, out. println (" S__algolNode: methodO : completed.");

>
public static final int METHOD_ID_NEW = 1;
public void methodl (ReflexiveAttributeGrammar RAG, NonTerminal LHS,

Symbol[] RHS, Genotype g) {
// This production method processes the following

NonTerminals;
// id int new ^
// id real new ;
// id bool new |
// id string new Ï
// id proc new .{
// In each case the processing is the same; I
// 1. Create a new identifier. |
// 2. Declare it as a Terminal Symbol. I
// 3. Make it this node's Symbol. !
// Beginning, Î
// System.out.println (" S_algolNode: method_l; beginning."); |
// Create a new identifier. i
// - the NonTerminal name will be one of these strings: |
// " <idIntNew>" ,|
// " <idRealNew>" j
// " <idBoolNew>" i
// " <idStringNew>" I
// " <idProcNew>" i
I I - decide which by getting char at 4. t
String type = s .getName(); I
// System.out.println (" S_algolNode: method_l; type: " + I

type); 1

226

char typeChar = type.charAt(4);
String i = null;
switch (typeChar) {
case 'I ';

i = Identifier,getld("int") ;
break;

case ’R ':
i = Identifier.getld("real") ;
break;

case 'B ’;
i = Identifier.getld("bool") ;
break;

case 'S':
i = Identifier.getld("string");
break;

case 'P':
i = Identifier.getld("proc") ;
break;

default :
System.out.println (" S_algolNode: error:

unexpected type initial; " + typeChar);
}
// Declare new id as a Terminal Symbol.
Terminal terminal = new Terminal (i);
// Make it this S_algolNode's Symbol,
this.s = terminal;
this.child = null;

}

// Completed.
// System.out.println (" S algolNode: meth o d l : completed.");

public static final int METHOD_CLAUSE_FOR = 2;
public void method_2 (ReflexiveAttributeGrammar RAG, NonTerminal LHS,

Symbol[] RHS, Genotype g) {
// Beginning.
// System.out.println (
// System.out.println (

" + (RAG==null));
// System.out.println (

" + (LHS==null));
// System.out.println (

" + (RHS==null));
// System.out.println (

+ (g==null));

S a1goINode : method_2; beginning.");
S_algolNode: method_2: RAG is null;
S__algolNode: method 2 : LHS is null;
S_algoINode : method 2 : RHS is null;
S_algolNode: method_2: g is null: "

children.");

// Production;
// 0 for symbol,
// 1 id int new,
// 2 space symbol,
// 3 equals symbol,
// 4 clause int,
// 5 to symbol,
// 6 clause int,
// 7 do symbol,
// 8 clause void.
// Expand all children except the final clause void.
// System.out.println (" S_algolNode; method_2; expand first
for (int i = 0; i < 8; i++) {

child[i] = new S_algoINode(RAG, RHS[i], g);
}

terminal.");
// Get the <id int new> Terminal.
// System.out.println (" S_algolNode; method_2; new
Terminal t = (Terminal)(child[1].s);

227

// System.out.println (" SalgolNode: method_2; new terminal
is null; " + (t==null));

// Make new Production.
// id int c; <id int new>.
// System.out.println (" S_algolNode; method_2: new

production.");
Production p = new Production (RAGInitializer.idlntC, new

Symbol[] {t});
// System,out.println (" SalgolNode: method_2; new

production is null: " + (p==null));

// Push the new Production onto the grammar.
// System.out.println (" SalgolNode; method_2; push.");
// System.out.println (" S algolNode; method 2 : RAG is null:

" + (RAG==null));
RAG.addProduction(p);

child.")

}

// Expand the clause void node.
II System.out.println (" SalgolNode: method_2; expand last
child[8] = new SalgoINode (RAG, RHS[8], g);
// Pop the Production from the grammar.
// System.out.println (" S_algoINode: method_2: pop.");
RAG.removeProduction();
// Completed.
// System.out.println (" S_algolNode: method_2; completed.");

public static final int METHOD_DECLARATION = 3 ;
public void method_3 (ReflexiveAttributeGrammar RAG, NonTerminal LHS,

Symbol[] RHS, Genotype g) {
// This production method processes the following Productions:
// 0 decl,
// 1 sequence separator,
II 2 sequence void.
// The declaration may be for an int, real, bool or string.
// In each case the processing is the same:
// 1. Expand all children except the final sequence void.
// 2 . Get the Terminal declared in child[0].
// 3. Make a Production for the Terminal.
// 4. Push the Production onto the grammar.
// 5. Use the grammar to expand child[2].
// 6. Pop the Production.
// Beginning.
// System.out.println (" S algolNode; method_3: beginning.");
// 1. Expand all children except the final sequence void,
for (int i = 0; i < 2; i++) {

II System.out.println (" S algolNode: method_3;
expanding child " + i);

child[i] = new S_algolNode(RAG, RHS[i], g);
}
// 2 . Get the Terminal declared in child[0].
// It's at decl -> decl _type_ -> id _type_ new
// but by now it's been changed from id _type_ new
II to an identifier of the form _type_._n_
/ / e g "int.O" or "bool.2 7 " .
// where _type__ = int, real, bool or string
Terminal t = (Terminal)(child[0].child[0].child[1].s);
// 3. Make a Production for the Terminal.
// The production is of the form:
// id _type_; id _type_ new.
Production p = null;

228

{t})

{t})

{t})

I l Get the first letter of its type (i, r, b or s):
char typeChar = t .getName().charAt(1);
switch (typeChar) {
case 'i ':

p = new Production (RAGInitializer.idint, new Symbol[)

break;
case 'r ’;

p = new Production (RAGInitializer.idReal, new Symbol[]

break;
case ’b ':

p = new Production (RAGInitializer.idBool, new Symbol[]

break;
case 's':

p = new Production (RAGInitializer.idString, new
Symbol[) {t});

break;
default;

System.out.println(" S_algolNode; method!: error;
unexpected typeChar; " + typeChar);

}
// 4. Push the Production onto the grammar.
RAG.addProduct ion(p);
// 5. Use the grammar to expand child[2].
child[2] = new S algolNode (RAG, RHS[2], g);
// 6. Pop the Production.
RAG.removeProduction();
// Completed.
// System.out.println (" S_algolNode; method_3: completed.");

}
public static final int METHOD_PARAMETER = 4;
public void method_4 (ReflexiveAttributeGrammar RAG, NonTerminal LHS,

Symbol[] RHS, Genotype g) {
// This production method processes the following Productions;
/ / parameter 0 :
II 0 int symbol,
// 1 id int new.
/ / parameter_l;
// 0 real symbol,
// 1 id real new.
/ / parameter_2;
// 0 bool symbol,
// 1 id bool new.
/ / parameter_3;
// 0 string symbol,
II 1 id string new.
// That is, 4 alternatives each comprising a type and a
// new identifier.
// In each case the processing is the same :
// 1. Expand all children in the usual way.
II 2. Let type = Terminal declared in child[0].
// 3. Let name = Terminal declared in child[1].
// 4. Create a SalgolParameter object.
// Beginning.
// System.out.println (" S_algoINode; method 4 ; beginning.");
// 1. Expand all children in the usual way.
method_0 (RAG, LHS, RHS, g);
// 2. Let type = Terminal declared in child[0].
Terminal type == (Terminal)(child[0]. s) ;

229

// 3. Let name = Terminal declared in child[l].
Terminal name = (Terminal)(child[1].s);
// 4. Create a S_algolParameter object,
parameter = new S_algolParameter(type, name);
// Completed.
// System.out.println (" SalgoINode; method_4; completed.");

}
public static final int METHOD__PARAMETER_LIST_0 = 5;
public void method_5 (ReflexiveAttributeGrammar RAG, NonTerminal LHS,

Symbol[] RHS, Genotype g) {
// This production method processes the following Productions;
// parameter list; parameter.
// The processing is as follows;
// 1. Expand all children in the usual way.
// 2. Start new S_algolParameterList.
// Beginning.
// System.out.printIn (" S_algolNode; method_5: beginning.");
// 1. Expand all children in the usual way.
method_0 (RAG, LHS, RHS, g);
// 2. Start new S_algolParameterList.
parameterList = new

S_algolParameterList(((S_algolNode)child[0]).parameter);
// Completed.
// System.out.println (" S algolNode; methods : completed.");

}
public static final int METH0D_PARAMETER__LIST_1 = 6;
public void method 6 (ReflexiveAttributeGrammar RAG, NonTerminal LHS,

Symbol[] RHS, Genotype g) {
// This production method processes the following Productions;
// parameter list ; parameter, parameter separator,

parameter list.
// The processing is as follows:
// 1. Expand all children in the usual way.
// 2. Add to S algolParameterList.
// 3. Delete child's parameterList to avoid space leak.
// Beginning.
// System.out.println (" S_algolNode; method_6; beginning.");
// 1. Expand all children in the usual way.
method_0 (RAG, LHS, RHS, g);
// 2. Add to S__algolParameterList.
parameterList = new

S_algolParameterList(((S algolNode)child[0]).parameter,
((S_algolNode)child[2]).parameterList);

// 3. Delete child's parameterList to avoid space leak.
((S_algolNode)child[1]).parameterList = null;
// Completed.
// System.out.println (” S_algoINode: method_6; completed.");

>
public static final int METHOD_DECL_PROC = 7;
public static final int METHOD_DECL_PROC_NONREC = 10;
public void method_7 (ReflexiveAttributeGrammar RAG, NonTerminal LHS,

Symbol[] RHS, Genotype g, boolean recursionEnabled) {
// This production method processes the following Productions;
// declProcVoid 0:

230

// 0 procSymbol,
// 1 idProcNew,
// 2 sequenceSeparator
// 3 clauseVoid.
// declProcVoid_l:
// 0 procSymbol,
// 1 idProcNew,
// 2 roundLSymbol,
// 3 parameterList,
// 4 roundRSymbol,
// 5 sequenceSeparator
// 6 clauseVoid.
// declProcInt 0:
// 0 procSymbol,
// 1 idProcNew,
// 2 roundLSymbol,
// 3 arrowSymbol,
// 4 typelntSymbol,
// 5 roundRSymbol,
// 6 sequenceSeparator
// 7 clauseint.
// declProcInt 1;
// 0 procSymbol,
// 1 idProcNew,
// 2 roundLSymbol,
// 3 parameterList,
// 4 arrowSymbol,
// 5 typelntSymbol,
// 6 roundRSymbol,
// 7 sequenceSeparator
// 8 clauseint.
// declProcReal 0 :
// 0 procSymbol,
// 1 idProcNew,
// 2 roundLSymbol,
// 3 arrowSymbol,
// 4 typeRealSymbol,
// 5 roundRSymbol,
// 6 sequenceSeparator
// 7 clauseReal.
// declProcReal 1;
// 0 procSymbol,
// 1 idProcNew,
// 2 roundLSymbol,
// 3 parameterList,
// 4 arrowSymbol,
// 5 typeRealSymbol,
// 6 roundRSymbol,
// 7 sequenceSeparator
// 8 clauseReal.
// declProcBool 0:
// 0 procSymbol,
// 1 idProcNew,
// 2 roundLSymbol,
// 3 arrowSymbol,
// 4 typeBoolSymbol,
// 5 roundRSymbol,
// 6 sequenceSeparator,
// 7 clauseBool.
// declProcBool 1 :
// 0 procSymbol,
// 1 idProcNew,
// 2 roundLSymbol,
// 3 parameterList,
// 4 arrowSymbol,
// 5 typeBoolSymbol,
// 6 roundRSymbol,
// 7 sequenceSeparator,
// 8 clauseBool.

231

extra
recursion.
declarations
they

investigate

method 10.

/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /

/ /

/ /

/ /

/ /
/ /

/ /
/ /
/ /

declProcString_0;
0 procSymbol,
1 idProcNew,
2 roundLSymbol,
3 arrowSymbol,
4 typeStringSymbol,
5 roundRSymbol,
6 sequenceSeparator,
7 clauseString.
declProcString_l :
0 procSymbol,
1 idProcNew,
2 roundLSymbol,
3 parameterList,
4 arrowSymbol,
5 typeStringSymbol,
6 roundRSymbol,
7 sequenceSeparator,
8 clauseString.

That is, productions for procedure declaration, with or
without parameters, returning any type. These productions
come in several forms which we must distinguish. The
simplest way is by counting how many children the node has,
though it's a bit of a kludge. The children are numbered
above for convenience. It can be seen that the number of
children is always 4, 7, 8 or 9.
The processing is as follows;
1. Expand all children in the usual way except last child.
2. Let prototype = new S_algolPrototype object.
3. Compute prototype.name.
4. Compute prototype.parameter.
5. Compute prototype.returnType.
6. Apply productions to grammar.
7. Expand last child.
8. Remove productions from grammar.
This method is different to others in that it takes an
boolean parameter which indicates whether to enable
If recursion is enabled (ie true), the external
are made available inside the procedure body. Otherwise
are not. This is not an S_algol issue; Salgol supports
recursion, end of story. The choice is provided to
the effect of recursion on Gads performance.
To enable recursion, use method_7. To disable it, use

// Beginning.
// System.out.println (" S_algolNode: method 7 ; beginning.");
// 1. Expand all children in the usual way except last child,
for (int i == 0; i < child.length-1 ; i++) {

// System.out.println (" S_algolNode: method_7;
expanding child " + i);

child[i] = new S_a1goINode(RAG, RHS[i], g);
}

prototype.");
// 2. Let prototype = new S_algolPrototype object.
// System.out.println (" S_algolNode; method_7: creating
prototype = new S_algolPrototype();

232

// 3. Compute prototype.name,
// System.out.println (" S_algolNode: method 7 : setting

name.");
prototype.setName((Terminal)(child[l].s));
// 4. Compute prototype.parameter.
// If the number of children is 4 or 8, there are no

parameters.
// The prototype’s parameter list is empty by default so in

this
// case there is nothing to do.
// If there are parameters, the parameterList is always

child[3]'.
// System.out.printIn (" S_algoINode: method_7: testing

child.length.");
if (child.length == 7 || child.length ==9) {

// System.out.println (" S_algolNode: method_7:
setting parameter.");

prototype.setParameter(((S algolNode)child[3]).parameterList);
}

// 5. Compute prototype.returnType.
// If the number of children is 7 or less, we are expanding
// a _decl proc void_ node, so the type is void. Otherwise,
// the type symbol is always the third last child,
if (child.length <= 7) {

// System.out.println (" S_algolNode: method_7:
setting void type.");

prototype.setType(RAGInitializer.typeVoidSymbol);
} else {

// System.out.println (" S_algoINode: method 7 :
setting other type.");

prototype.setType((Terminal)(child[child.length-4].s));
>

// 6. Apply productions to grammar.
// System.out.println (" S_algolNode: method_7: applying

internal.");
prototype.applylnternal(RAG);
if (recursionEnabled) {

// System.out.println (" S_algolNode: method_7:
applying external.");

prototype.applyExternal(RAG);
}

// 7. Expand last child.
// System.out.println (" S algoINode : method 7 : expanding

last child.");
child[child.length-1] = new SalgolNode(RAG, RHS[child.length-

1]. g) ;
// 8. Remove productions from grammar,
if (recursionEnabled) {

// System.out.println (" SalgolNode: method_7:
removing external.");

prototype.removeExternal(RAG);
}
// System.out.println (" S_algoINode ; method_7; removing

internal.")

}

prototype.removeInternal(RAG);
// Completed.
// System.out.println (" S_algolNode: method_7: completed.");

public static final int METH0D_SEQUENCE_V0ID__5 = 8;
public void methods (ReflexiveAttributeGrammar RAG, NonTerminal LHS,

Symbol[] RHS, Genotype g) {

233

void.

sequenceVoid,

arguments

which

// This production method processes the following production;
/ /
// sequence void: decl proc, sequence separator, sequence

/ /
// It applies the external declarations of declProc to
/ /s o that the procedure is in scope in the sequence.
/ /
// A typical external declaration looks like this :
/ /
// appl string:
// id proc,
// clausel,
// expO int,
// clause separator,
// expO real,
// clause separator,
// expO bool,
// clause r.
/ /
// The type of the procedure and the number and type of the
// are variable.
/ /
// The processing is as follows. The S_algolPrototype object
// describes the procedure is obtained by navigating the parse
// tree to the node where the object is held (as the synthetic
// attribute "prototype"). This object is always at the same
// relative position:
/ /
// child[0].child[0].prototype
/ /
// whatever the procedure type or parameters.
/ /
// In detail the steps are;
// 1. Expand all children in the usual way except last child.
// 2. Let prototype = created S_algolPrototype object.
// 3. Apply external productions to grammar.
// 4. Expand last child.
// 5. Remove external productions from grammar.
// Beginning.
// System.out.println (" S_algolNode: method_8: beginning.");
// 1. Expand all children in the usual way except last child,
for (int i = 0; i < this.child.length-1; i++) {

// System.out.println (" S algolNode: (1) creating
child node: " + i);

child[i] = new S_algoINode(RAG, RHS[i], g);
}

// 2. Let prototype = created S algolPrototype object.
// System.out.println (" S algolNode: method 8 : (2)

prototype.");
SalgolPrototype prototype =

((SalgolNode)(child[0].child[0])).prototype;
// 3. Apply external productions to grammar.
// System.out.println (" S algolNode: method s : (3)

applyExternal");
prototype.applyExternal(RAG);

child");

1] / g) ;

// 4. Expand last child.
// System.out.println (" S_algoINode : method 8 : (4) last
child[child.length-1] = new S_algolNode(RAG, RHS[child.length-

234

// 5. Remove external productions from grammar.
// System.out.println (" S algolNode: methods : (5) remove");
prototype.removeExternal(RAG);
// Completed.
// System.out.println (" S algolNode: method 8 ; completed.");

}

public static final int METHOD_LITERAL = 9 ;
public void method_9 (ReflexiveAttributeGrammar RAG, NonTerminal LHS,

Symbol[] RHS, Genotype g) {
// This production method processes the following productions:
/ /
// literal int:
// literal real;
// literal bool :
II literal string:
/ /
II That is, all the literal types. The effect of this method

I S

literals,

the

is
S_algol.)

11 t o dispense with the micro-syntax definition of these
// The reason for using this method is principally to avoid
// overflow in arithmetic literals, and partly for efficiency.
I I
I I The processing method is to generate a random literal of
// required type, and convert this node from a nonterminal to
// a terminal.
/ /
// Note that negative literals are not supported - the effect
// achieved by the unary minus. (This is a change from

// Beginning.
// System, out .println (" S_algolNode: raethod_9 ; beginning."); *|
// Generate appropriate literal and make it a Terminal. j
Terminal terminal = null; j
if (LHS == RAGInitializer.literalint) { !

terminal = new Terminal (I
" "tString.valueOf(Ï

(int)(i
Math.random()*Include.MAXINT

) i

} else if (LHS == RAGInitializer.literalReal) {
terminal = new Terminal (I

" + (I
String.valueOf(:

(in t)(■
Math.random()*Include.MAX_INT 1

)*Math.pow(:
1 0 , !
(int)(<

Math.random()*Include.MAX_REAL_EXP

)

)

)
).toLowerCase() // Convert E to e in

scientific notation
) ;

} else if (LHS == RAGInitializer.literalBool) {
terminal = new Terminal (

" "tString.valueOf(Math.random() < 0.5)

235

) ?
} else if (LHS == RAGInitializer.literalString) {

// Generate a string whose length is...
/ /
// 0 with probability 50%
// 1 with probability 25%
// 2 with probability 12.5%
// 3 with probability 6.25%
/ /
/ /
I / and whose characters are drawn uniformly from ascii
// and the S-algol specials.
I! Compose ascii alphabet.
String lower = "abcdefghijklmnopqrstuvwxyz";
String upper = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
String digit = "0123456789";
String punct = " !#$%&()*+,-./: ;<=>?@ [| ;
String alphabet = lower+upper+digit+punct;
// Compose special alphabet.
String specialf = "npotb'\ ;
II Prepare a target string.
String s = "";
// With probability 50% add another character,
while (Math.random() <0.5) {

// Choose a char at random from alphabet +
specialf.

int i =
(int)(Math.random()*(alphabet.length()+specialf.length()));

String x = "";
if (i < alphabet.length()) {

X = String.valueOf(alphabet.charAt(i));
} else {

X = " ' " +
String.valueOf(specialf.charAt(i-alphabet.length()));

}

// Apend it to the target string,
s = s + x;

}
terminal = new Terminal (" \""+s+"\"");

} else {
System. out. println (" S_algolNode: method__9 : error:

unexpected LHS: " + LHS.toString());
} I
// Make it this S_algolNode's Symbol. i
this.s = terminal; |
this.child = null; |
// Completed.]
// System, out .println (" S__algolNode ; method_9 : completed."); *

}

public S_algolNode (ReflexiveAttributeGrammar RAG, Symbol s. Genotype j
g) < t

I// System.out.println (" S_algoiNode : beginning symbol: " + |
s . getName ()) ; -i

// System.out.println (" S algolNode: beginning: RAG == null: |
" + (RAG==null)); j

// System.out.println (" S_algolNode: beginning: s == null: " \
+ (s==null)); I

// System.out.println (" S_algolNode: beginning: g == null : " |
+ (g==null)); |

236

s .getName{))
}

}

// Note the Symbol at this node,
this.s = s;

/ / I f the Symbol s is a Terminal, we are finished.
// System.out.println (" S_algolNode; finished?");
if (s instanceof Terminal)

{
return;
}

// Use Genotype g to choose a production for this NonTerminal,
// System.out.println (" S_algolNode: getProduction");
Production p = ((NonTerminal)s).getProduction(g);

// Get the RHS of this production.
// System.out.println (" S_algoINode: getRHS");
Symbol[] RHS = p .getRHS();

// Prepare to have children.
// System.out.println (" S algolNode: new node");
this.child = new SalgoINode[RHS.length];

// Apply specified method.
// System.out.println (" S_algoINode: apply");
applyMethod(p.getMethodNumber(), RAG, s, RHS, g);

// System.out.println (" S_algolNode; completed symbol: " +

B.3 Object creation

The following class is generated from the rag definition. The part between
the lines

// INSERT S_algol.java below this line
// INSERT S_algol.java above this line

is generated automatically from the rag, by means of a Perl script. To save
space I have replaced large chunks of this with ellipsis. Following this
comes a section which sets the production method numbers specific to this
problem (ie Fact). To control multiple versions, this section is written by
giving a "patch" which deviates from the "standard" production methods.

package e c .experiment.nrp.rag.ecj;
import ec.experiment.nrp.rag.*;
import ec.vector.*;
import ec. * ;
import ec.simple.*;
import ec.util.*;

// RAGInitializer - sets up objects for this problem
public class RAGInitializer extends SimpleInitializer {

237

// Public Symbols - these are S_algol Symbols used in other places.
// Defined here to avoid unnecessary searching by name,
public static ReflexiveAttributeGrammar S algol = null;
public static Terminal roundLSymbol;
public static Terminal roundRSymbol;
public static Terminal typeVoidSymbol;
public static NonTerminal program;
public static NonTerminal idint;
public static NonTerminal idlntC;
public static NonTerminal idReal;
public static NonTerminal idBool;
public static NonTerminal idString;
public static NonTerminal expOVoid;
public static NonTerminal expOInt;
public static NonTerminal expOReal;
public static NonTerminal expOBool;
public static NonTerminal expOString;
public static NonTerminal applVoid; !
public static NonTerminal applint; j
public static NonTerminal applReal; J
public static NonTerminal applBool; i
public static NonTerminal applString; I
public static NonTerminal clauseSeparator; |
public static NonTerminal literalint; |
public static NonTerminal literalReal; !
public static NonTerminal literalBool; |
public static NonTerminal literalString;

1public void setup(final EvolutionState state, final Parameter base) { |
super.setup(state,base); !

i// System.out.println(" RAGInitializer: beginning."); î
// INSERT Sa l g o l .java below this line I
Terminal procTypeVoidSymbol = new Terminal(" PROC.VOID"); j
Terminal procTypeIntSymbol = new Terminal(" PROC.INT"); j

Terminal procTypeRealSymbol = new Terminal(" PROC.REAL"); |
Terminal procTypeBoolSymbol = new Terminal(" PROC.BOOL"); j
Terminal procTypeStringSymbol = new Terminal(" PROC.STRING"); Î
Terminal letSymbol = new Terminal(" let"); j
Terminal assignmentSymbol = new Terminal(" ;="); :
Terminal procSymbol = new Terminal(" procedure"); !
Terminal roundLSymbol = new Terminal("("); |
Terminal roundRSymbol == new Terminal (")"); ;
Terminal arrowSymbol = new Terminal (" - > ") ; i

Terminal divSymbol = new Terminal(" div"); !
Terminal remSymbol = new Terminal(" rem");
Terminal typeVoidSymbol = new Terminal(" void");
NonTerminal program = new NonTerminal("program”);
NonTerminal programFact = new NonTerminal("programFact"); j
NonTerminal programMonkey = new NonTerminal("programMonkey");]
NonTerminal applCode = new NonTerminal{"applCode"); î
NonTerminal appl I format = new NonTerminal ("appllformat"); j
NonTerminal applCeiling = new NonTerminal("applCeiling"); I
NonTerminal applFloor = new NonTerminal("applFloor"); |
Production programO = new Production(program, new Symbol[] {programFact}); |
Production programFact_0 = new Production(programFact, new Symbol[] 1
{preambleSymbol, phenotypeFact, postambleFactSymbol, endOfProgram}); '
Production programMonkey_0 = new Production(programMonkey, new Symbol!]
{preambleSymbol, phenotypeMonkey, postambleMonkeySymbol, endOfProgram});
Production phenotypeMonkey 0 = new Production(phenotypeMonkey, new Symbol[]
{phenotypeMonkeyBeginSymbol, literalString, phenotypeMonkeyEndSymbol});
Production endOfProgramO = new Production(endOfProgram, new Symbol[]
{spaceSymbol, questionSymbol});

238

Production applCode 0 = new Production(applCode, new Symbol[]
{procCodeSymbol, clauseL, expOint, clauseR});
Production appllformat__0 = new Production(appllformat, new Symbol[]
{procIformatSymbol, clauseL, expOint, clauseR});
Production applCeiling_0 = new Production(applCeiling, new Symbol{]
{procCeilingSymbol, clauseL, expOReal, clauseR});
Production applFloorO = new Production(applFloor, new Symbol[]
{procFloorSymbol, clauseL, expOReal, clauseR});
ReflexiveAttributeGrammar S__algol = new ReflexiveAttributeGrammar();
S_algol.addTerminal(preambleSymbol);
S_algol.addTerminal(postambleMonkeySymbol);
S_algol.addTerminal(postambleCartSymbol);
Sa l g o l .addTerminal(postambleTileSymbol);
S_algol.addTerminal{postambleMultiplexerSymbol);
S_algol.addTerminal(postamblePowerSymbol);
S_algol.addTerminal(phenotypeAnnieBeginSymbol);
S__algol. addTerminal (phenotypeAnnieEndSymbol) ;
S_algol.addTerminal{bySymbol);
S_algol,addTerminal(divSymbol);
S_algol.addTerminal(remSymbol);
S_algol.addTerminal(typeVoidSymbol);
S_algol.addNonTerminal(program);
S__algol. addNonTerminal (programFact) ;
S_algol.addNonTerminal(programMonkey);
S_algol.addNonTerminal(phenotypeMonkey) ;
S_algol.addNonTerminal(endOfProgram);
S_algol.addNonTerminal{applSin);
S_algol.addNonTerminal(applSqrt);
S algo1,addNonTerminal(applDigit);
S_algol.addNonTerminal(applLetter);
S_algol.addNonTerminal(applCode);
S_algol.addNonTerminal(appllformat);
S_algol.addNonTerminal(applCeiling);
S_algol.addNonTerminal{applFloor);
S_algol.addProduction(programO);
S__algol. addProduction (programFact O) ;
S a l g o l .addProduction(programMonkeyO);
S_algol.addProduction(phenotypeMonkey_0);
S_algol.addProduction(endOfProgramO);
S_algol.addProduction(programCart 0);
S_algol.addProduction(phenotypeCart_0);
S_algol.addProduction(programTile_0);
S_algol.addProduction(phenotypeTileO);
S_algol.addProduction(applLetter 0);
S_algol.addProduction(applCodeO);
S_algol.addProduction(applIformat_0);
S_algol.addProduction(applCeiling_0);
S_algol.addProduction(applFloorO);
// INSERT Salgol.java above this line

// Patch for Fact,
// parameterl deleted
// parameter_2 deleted
// parameter_3 deleted
// pareuneterList_l deleted
// declProcReal_l deleted
// sequenceVoid__3 deleted
// sequence Void 5 renamed sequenceVoid__0
// Set method numbers in selected Productions.
// This way of setting method numbers is a kludge
// because the BNF is not up to it in the .rag file.
// The methods are defined in SalgolNode.
// Methods to introduce new IDs.
idIntNew_0.setMethodNumber(S_algoINode.METHOD_ID_NEW);

239

idRealNew_0.setMethodNumber(S_algolNode,METHOD_ID_NEW);
idBoolNew_0.setMethodNumber(S algolNode.METHOD_ID_NEW);
idStringNew_0.setMethodNumber(S_algolNode.METHOD_ID_NEW);
idProcNew 0.setMethodNumber(S_algoINode.METHOD_ID_NEW);
// clause void: for symbol, id int new, ...
clauseVoid_4.setMethodNumber(S_algolNode.METHOD__CLAUSE_FOR);
// sequence void : decl let, sequence separator, sequence void.
/ /

sequenceVoid_3.setMethodNumber(S_algoINode.METHOD_DECLARATION);
// parameter: _type_ symbol, id _type_ new.
// for _type_ = int, real, bool, string.
parameter_0 . setMethodNumber (S_algolNode .METHOD__PARAMETER) ;
// parameter_l.setMethodNumber(SalgolNode.METHOD_PARAMETER);
// parameter_2 . setMethodNumber (S_algoINode .METHOD__PARAMETER) ;
// parameters.setMethodNumber(SalgoINode.METHOD PARAMETER);
// parameter list: parameter.

parameterList 0.setMethodNumber{S_algolNode.METHOD_PARAMETER_LIST_0);
// parameter list: parameter, parameter list.
/ /

parameterList_l.setMethodNumber(S_algolNode.METHOD_PARAMETER_LIST_l);
// decl proc _type_: ...
// for _type_ = int, real, bool, string.
declProcVoid 0.setMethodNumber(S__algoINode.METHOD_DECL_PROC);
declProcVoid_l.setMethodNumber(S_algolNode.METHOD_DECL_PROC);
deciProclnt_0.setMethodNumber(S_algolNode.METHOD_DECL_PROC);
declProcInt_l.setMethodNumber(S_algolNode.METHOD_DECL_PROC);
declProcRealO.setMethodNumber(S_algolNode.METHOD_DECL_PROC);
/ /

declProcReal_l.setMethodNumber(S_algoINode.METHOD_DECL_PROC);
declProcBool O . setMethodNumber (S_algoINode .METHOD__DECL_PROC) ;
declProcBool_l.setMethodNumber(S_algolNode.METHOD_DECL__PROC);

declProcString 0.setMethodNumber(S_algolNode.METHOD_DECL_PROC);
declProcString_l.setMethodNumber(S_algolNode.METHOD_DECL_PROC);

// sequence void: declProc, sequenceSeparator, sequenceVoid
/ /

sequenceVoid_5.setMethodNumber(S_algolNode.METH0D_SEQUENCE_V0ID_5);
sequenceVoid_0.setMethodNumber(S_algolNode.METH0D__SEQUENCE_V0ID_5);

// Set public static Symbols.
RAGInitializer.S algo1 = S_algol;
RAGInitializer.roundLSymbol = roundLSymbol;
RAGInitializer.roundRSymbol = roundRSymbol;
RAGInitializer.typeVoidSymbol = typeVoidSymbol;
RAGInitializer.program = program;
RAGInitializer.idInt = idInt;
RAGInitializer.idlntC = idlntC;
RAGInitializer.idReal = idReal;
RAGInitializer.idBool = idBool;
RAGInitializer.idString = idString;
RAGInitializer.expOVoid = expOVoid;
RAGInitializer.expOInt = expOInt;
RAGInitializer.expOReal = expOReal;
RAGInitializer.expOBool = expOBool;
RAGInitializer.expOString = expOString;
RAGInitializer.applVoid = applVoid;
RAGInitializer.applint = applint;
RAGInitializer.applReal = applReal;
RAGInitializer.applBool = applBool;

240

RAGInitializer.
RAGInitializer.
RAGInitializer.
RAGInitializer.
RAGInitializer.
RAGInitializer,

applString = applString;
clauseSeparator = clauseSeparator;
literalint = literalint;
literalReal = literalReal;
literalBool = literalBool;
literalString = literalString;

// Mark this position.
S_algol.mark();

// System.out.println(" RAGInitializer: completed.");

241

