Skip to main content

An Efficient Solution of the Resource Constrained Project Scheduling Problem Based on an Adaptation of the Developmental Genetic Programming

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 610))

Abstract

An adaptation of the Developmental Genetic Programming (DGP) for solving an extension of the Resource-Constrained Project Scheduling Problem (RCPSP) is investigated in the paper. In DGP genotypes (the search space) and phenotypes (the solution space) are distinguished and a genotype-to-phenotype mapping (GPM) is used. Thus, genotypes are evolved without any restrictions and the whole search space is explored. RCPSP is a well-known NP-hard problem but in its original formulation it does not take into consideration initial resource workload and it minimises the makespan. We consider a variant of the problem when resources are only partially available and a deadline is given but it is the cost of the project that should be minimized. The goal of the evolution is to find a procedure constructing the best solution of the problem for which the cost of the project is minimal. The paper presents new evolution process for the DGP as well as a comparison with other genetic approaches. Experimental results showed that our approach gives significantly better results compared with other methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A genotype in classical GAs represents a solution of the problem, while in the DGP a genotype comprises a procedure for constructing that solution.

References

  1. T. Ahn, S. Erenguc, The resource constrained project scheduling problem with multiple crashable modes: a heuristic procedure. Eur. J. Oper. Res. 107(2), 250–259 (1998). http://linkinghub.elsevier.com/retrieve/pii/S0377221797003317

    Google Scholar 

  2. J. Alcaraz, C. Maroto, A robust genetic algorithm for resource allocation in project scheduling. Ann. Oper. Res. 102, 83–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Blazewicz, J.K. Lenstra, A.H.G.R. Kan, Scheduling subject to resource constraints: classification and complexity. Discret. Appl. Math. 5, 11–24 (1983)

    Article  MATH  Google Scholar 

  4. P. Brucker, S. Knust, A. Schoo, O. Thiele, A branch-and-bound algorithm for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 107, 272–288 (1998)

    Article  Google Scholar 

  5. M. Deiranlou, F. Jolai, A new efficient genetic algorithm for project scheduling under resource constrains. World Appl. Sci. J. 7(8), 987–997 (2009)

    Google Scholar 

  6. E.L. Demeulemeester, W.S. Herroelen, New benchmark results for the resource-constrained project scheduling problem. Manag. Sci. 43, 1485–1492 (1997)

    Article  MATH  Google Scholar 

  7. E.L. Demeulemeester, W.S. Herroelen, Project scheduling—a research handbook, International Series in Operations Research, Management Science (Kluwer Academic Publishers, Boston, 2002)

    MATH  Google Scholar 

  8. S. Deniziak, Cost-efficient synthesis of multiprocessor heterogeneous systems. Control Cybern. 33, 341–355 (2004)

    MATH  Google Scholar 

  9. S. Deniziak, K. Wieczorek, Evolutionary optimization of decomposition strategies for logical functions, in Proceedings of 11th International Conference on Artificial Intelligence and Soft Computing, vol. 7269, Lecture Notes in Computer Science (2012), pp. 182–189

    Google Scholar 

  10. S. Deniziak, A. Gorski, Hardware/software co-synthesis of distributed embedded systems using genetic programming, Evolvable Systems: From Biology to Hardware (Springer, New York, 2008), pp. 83–93

    Chapter  Google Scholar 

  11. S. Deniziak, L. Ciopiński, G. Pawiński, K. Wieczorek, Cost optimization of real-time cloud applications using developmental genetic programming, in IEEE/ACM 7th International Conference on Utility and Cloud Computing. IEEE Computer Society (2014), pp. 182–189

    Google Scholar 

  12. A. Drexl, A. Kimms, Optimization guided lower and upper bounds for the resource investment problem. J. Oper. Res. Soc. 52, 340–351 (2001)

    Article  MATH  Google Scholar 

  13. T. Frankola, M. Golub, D. Jakobovic, Evolutionary algorithms for the resource constrained scheduling problem, in Proceedings of 30th International Conference on Information Technology Interfaces, vol. 7269, Information Technology Interfaces (2008), pp. 715–722

    Google Scholar 

  14. S. Hartmann, A competitive genetic algorithm for resource-constrained project scheduling. Nav. Res. Logist. 45, 733–750 (1998)

    Article  MATH  Google Scholar 

  15. S. Hartmann, D. Briskorn, Survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. 207, 1–15 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Hendrickson, T. Au, Project management for construction: fundamental concepts for owners, engineers, architects, and builders, Chris Hendrickson (2008)

    Google Scholar 

  17. R.E. Keller, W. Banzhaf, The evolution of genetic code in genetic programing, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999). Information Technology Interfaces (1999), pp. 1077–1082

    Google Scholar 

  18. R. Klein, Resource-constrained scheduling problems (Springer, Berlin, 2000)

    Book  Google Scholar 

  19. R. Kolisch, S. Hartmann, Experimental investigation of heuristics for resource-constrained project scheduling: An update. Eur. J. Oper. Res. 174, 23–37 (2006)

    Article  MATH  Google Scholar 

  20. R. Kolish, A. Sprecher, Psplib—a project scheduling library. Eur. J. Oper. Res. 96, 205–216 (1996)

    Article  Google Scholar 

  21. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, MA, USA, 1992)

    MATH  Google Scholar 

  22. J.R. Koza, R. Poli, Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques (Springer, New York, 2005)

    Google Scholar 

  23. J. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, G. Lanza, Genetic Programming IV: Routine Human-Competitive Machine Intelligence (Kluwer Academic Publishers, Boston, 2003)

    Google Scholar 

  24. A. Mingozzi, V. Maniezzo, S. Ricciardelli, L. Bianco, An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation. Manag. Sci. 44, 714–729 (1998)

    Article  MATH  Google Scholar 

  25. R.H. Möhring, A.S. Shulz, F. Stork, M. Utez, Solving project scheduling problems by minimum cut computations. Manag. Sci. 49(3), 330–350 (2003)

    Article  MATH  Google Scholar 

  26. H. Nübel, The resource renting problem subject to temporal constraints. OR-Spektrum 23(3), 359–381 (2001)

    Article  MATH  Google Scholar 

  27. G. Pawiński, K. Sapiecha, Resource allocation optimization in critical chain method. Ann. Universitatis Mariae Curie-Sklodowska sectio Informaticales 12(1), 17–29 (2012)

    Google Scholar 

  28. G. Pawiński, K. Sapiecha, Cost-efficient project management based on distributed processing model, in Proceedings of the 21th International Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP 2013), IEEE Computer Society (2013), pp. 157–163

    Google Scholar 

  29. G. Pawiński, K. Sapiecha, Cost-efficient project management based on critical chain method with partial availability of resources. Control Cybern. 43(1), 1485–1492 (2014)

    Google Scholar 

  30. G. Pawiński, K. Sapiecha, A developmental genetic approach to the cost/time trade-off in resource constrained project scheduling, in 2014 Federated Conference on Computer Science and Information Systems (FedCSIS), IEEE (2014), pp. 171–179

    Google Scholar 

  31. M. Pinedo, X. Chao, Operations Scheduling with applications in Manufacturing, 2nd edn. (Irwin/McGraw-Hill, Boston, 1999)

    MATH  Google Scholar 

  32. M.E. Skowronski, P.B. Myszkowski, M. Adamski, P. Kwiatek, Tabu search approach for multi-skill resource-constrained project scheduling problem, Federated Conference on Computer Science and Information Systems (FedCSIS 2013), IEEE (2013), pp. 153–158

    Google Scholar 

  33. J.D. Watson, N.H. Hopkins, J.W. Roberts, J.A. Steitz, A.M. Weiner, Molecular Biology of the Gene (Benjamin Cummings, Menlo Park, 1992)

    Google Scholar 

  34. J. Weglarz, J. Józefowska, M. Mika, G. Waligóra, Project scheduling with finite or infinite number of activity processing modes-a survey. Eur. J. Oper. Res. 208(3), 177–205 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Pawiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pawiński, G., Sapiecha, K. (2016). An Efficient Solution of the Resource Constrained Project Scheduling Problem Based on an Adaptation of the Developmental Genetic Programming. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. Studies in Computational Intelligence, vol 610. Springer, Cham. https://doi.org/10.1007/978-3-319-21133-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21133-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21132-9

  • Online ISBN: 978-3-319-21133-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics