
University of Exeter
College of Engineering, Mathematics and Physical Sciences

Genetic programming and cellular
automata for fast flood modelling

on multi-core CPU and many-core
GPU computers

Michael J Gibson

24 August 2015

Supervised by Dr. Edward C. Keedwell and Prof. Dragan Savić

Submitted by Michael J Gibson to the University of Exeter as a thesis for the

degree of Doctor of Philosophy in Computer Science, 24 August 2015.

This thesis is available for Library use on the understanding that it is copyright

material and that no quotation from the thesis may be published without proper

acknowledgement.

I certify that all material in this thesis which is not my own work has been identified

and that no material has previously been submitted and approved for the award

of a degree by this or any other University.

(signature) ….…………………….................................... M.J.Gibson

 2

Abstract

Many complex systems in nature are governed by simple local interactions,

although a number are also described by global interactions. For example, within

the field of hydraulics the Navier-Stokes equations describe free-surface water

flow, through means of the global preservation of water volume, momentum and

energy. However, solving such partial differential equations (PDEs) is

computationally expensive when applied to large 2D flow problems. An

alternative which reduces the computational complexity, is to use a local

derivative to approximate the PDEs, such as finite difference methods, or Cellular

Automata (CA). The high speed processing of such simulations is important to

modern scientific investigation especially within urban flood modelling, as urban

expansion continues to increase the number of impervious areas that need to be

modelled. Large numbers of model runs or large spatial or temporal resolution

simulations are required in order to investigate, for example, climate change,

early warning systems, and sewer design optimisation. The recent introduction of

the Graphics Processor Unit (GPU) as a general purpose computing device

(General Purpose Graphical Processor Unit, GPGPU) allows this hardware to be

used for the accelerated processing of such locally driven simulations. A novel

CA transformation for use with GPUs is proposed here to make maximum use of

the GPU hardware. CA models are defined by the local state transition rules,

which are used in every cell in parallel, and provide an excellent platform for a

comparative study of possible alternative state transition rules. Writing local state

transition rules for CA systems is a difficult task for humans due to the number

and complexity of possible interactions, and is known as the ‘inverse problem’ for

CA. Therefore, the use of Genetic Programming (GP) algorithms for the

automatic development of state transition rules from example data is also

investigated in this thesis. GP is investigated as it is capable of searching the

intractably large areas of possible state transition rules, and producing near

optimal solutions. However, such population-based optimisation algorithms are

limited by the cost of many repeated evaluations of the fitness function, which in

this case requires the comparison of a CA simulation to given target data.

Therefore, the use of GPGPU hardware for the accelerated learning of local rules

is also developed. Speed-up factors of up to 50 times over serial Central

Processing Unit (CPU) processing are achieved on simple CA, up to 5-10 times

speedup over the fully parallel CPU for the learning of urban flood modelling rules.

 3

Furthermore, it is shown GP can generate rules which perform competitively

when compared with human formulated rules. This is achieved with

generalisation to unseen terrains using similar input conditions and different

spatial/temporal resolutions in this important application domain.

 4

I would like to thank my supervisors Dr. Ed Keedwell and

Prof. Dragan Savic for their patience, support, vision and

experience during my PhD. Secondly I would like to thank

both Dr. Albert Chen and Dr. Michele Guidolin whose work

with UIM and the CADDIES API/flooding frame work

respectively have helped immensely with this project. I

would also like to thank my friends and family who support

and understanding during my PhD has allowed me to

follow my passion; I would especially like to thank my

mother Christine McAdam without whose support it would

not have been possible to complete this work. I would also

like the thank my friends Robert Parker, Ian Alldis, and

Ben Morgan for their patience and support. Special thanks

to my Badminton crew Paul Ritchie, Lena Sundukova,

Arjaree Saengsatien and so many more colleague and

friends for their support.

This was partially supported by EPSRC grant number:

EP/H015736/1 - Simplified Dual-Drainage Modelling for

Flood Risk Assessment in Urban Areas.

 5

Contents
Abstract .. 2

List of Tables.. 12

List of Figures .. 15

Publications.. 24

Chapter 1: Introduction .. 25

1.1 Background ... 28

1.1.1 Urban flood Modelling .. 28

1.1.2 Cellular Automata ... 28

1.1.3 Genetic Programming .. 29

1.2 Hypothesis ... 29

1.3 Aims of research ... 31

1.3.1 Objectives .. 31

1.4 Thesis structure ... 33

1.5 Novelty of the work .. 35

1.6 Glossary of terms .. 37

1.6.1 Definitions .. 37

1.6.2 List of terms .. 38

Chapter 2: Literature review ... 40

2.1 Cellular automata .. 40

2.1.1 Introduction .. 40

2.1.2 Applications .. 47

2.1.3 Urban flood modelling .. 53

2.1.4 CA for Urban flood modelling ... 55

2.1.4.1 Dottori and Todini technique .. 57

2.1.4.2 Ghimire et. al.’s technique ... 61

2.1.4.3 Hunter and Bates et. al.’s technique .. 64

2.1.5 Conclusion ... 68

2.2 Genetic Programming.. 69

 6

2.2.1 Introduction .. 69

2.2.2 Applications .. 73

2.2.3 Genetic Programming and Cellular Automata 78

2.2.4 Alternatives to GP for learning CA state transition rules 79

2.2.5 Conclusion ... 80

2.3 GPGPU computing .. 80

2.3.1 Introduction .. 80

2.3.2 Cellular Automata GPU computing .. 82

2.3.3 Genetic Programming GPU literature 85

2.3.4 Conclusion ... 88

Chapter 3: GPU computing .. 89

3.1 Introduction .. 89

3.1.1 Multi-core CPU and Many-core GPU computing 91

3.2 Relevant literature ... 92

3.3 Method .. 92

3.3.1 Rule sets .. 92

3.3.1.1 Pseudo code for the game of life rule set function ... 93

3.3.1.2 Pseudo code for the Multi-State Game Of Life (MSGOL) rule set function 93

3.3.1.3 Pseudo code for the Multi-State Game Of Life (MSGOL4) rule set function ... 94

3.3.2 Novel CA-GPU Representation .. 94

3.4 Experimental Set up .. 96

3.5 Experimentation .. 101

3.5.1 Lattice size and workgroup tests .. 101

3.5.1.1 Method .. 101

3.5.1.2 Experimental set up ... 101

3.5.1.3 Experimental results .. 102

3.5.1.4 Conclusion ... 105

3.5.2 Lattice size and GPU Memory types tests............................ 105

3.5.2.1 Experimental Set up .. 105

3.5.2.2 Experimental Results ... 106

 7

3.5.2.3 Discussion .. 108

3.5.2.4 Conclusions.. 108

3.5.3 Initial configuration distribution probability and Activity tests 108

3.5.3.1 Experimental set up ... 109

3.5.3.2 Experimental results .. 109

3.5.4 Number of states tests ... 112

3.5.4.1 Method .. 113

3.5.4.2 Experimental set up ... 113

3.5.4.3 Experimental Results ... 114

3.5.4.4 Further experimentation with multi-state game of life variants 116

3.5.4.5 Experimental Results ... 118

3.5.4.6 Conclusions.. 119

3.5.5 Data types .. 120

3.5.5.1 Experimental set-up .. 120

3.5.5.2 Experimental Results ... 120

3.5.6 Neighbourhood size tests ... 123

3.5.6.1 Method .. 123

3.5.6.2 Experimental set up ... 125

3.5.6.3 Experimental Results ... 126

3.5.7 Generational size tests ... 131

3.5.7.1 Method .. 132

3.5.7.2 Experimental set up ... 132

3.5.7.3 Experimental Results ... 133

3.6 Discussion ... 136

3.7 Conclusions ... 138

Chapter 4: GP learning of Cellular Automata state transition rules 141

4.1 Introduction .. 141

4.1.1 Background .. 141

4.1.2 Chapter Structure ... 141

4.2 Methodology .. 143

4.2.1 GP CA interface/representation ... 143

4.2.1.1 Game Of Life binary state GP interface ... 143

4.2.2 GP CA Fitness function .. 144

 8

4.2.3 GP CA Evolutionary Algorithm ... 145

4.2.4 GP CA GPU computing method ... 147

4.2.4.1 Novel GP CA method for combined parallelism for more efficient GPU

computing ... 147

4.2.4.2 GP decision tree evaluation ... 149

4.2.4.3 Hardware difference of the power function between CPU and GPU 149

4.2.4.4 Parallel fitness function ... 150

4.3 GP CA - The Game of Life experimentation 150

4.3.1 Experimental setup .. 151

4.3.2 Experimental results ... 155

4.4 Conclusions ... 157

Chapter 5: GP CA real-world flood modelling .. 159

5.1 Introduction .. 159

5.1.1 Chapter Structure ... 159

5.2 Methodology .. 160

5.2.1 Real world hydraulic GP interface .. 160

5.3 Experimental setup .. 162

5.3.1 Hill and Pond - Training case ... 166

5.3.2 Testing and validation simulation cases 167

5.3.2.1 EAT-2 Test case ... 167

5.3.2.2 EAT-1 Test case ... 168

5.3.3 Human competition .. 170

5.3.3.1 Ghimire formulation .. 170

5.3.3.2 Dottori and Todini formulation .. 172

5.3.3.3 Bates and Hunter formulation ... 173

5.3.3.4 Bates and Hunter Flow Limited formulation ... 174

5.4 Training GP with fixed spatial and temporal resolution 175

5.4.1 Introduction .. 175

5.4.2 Experimental setup .. 176

5.4.3 Training Results ... 178

5.4.4 Processing times and speed-ups from GPU computing 179

 9

5.5 Testing of trained GP with fixed spatial and temporal resolution

 183

5.5.1 Introduction .. 183

5.5.2 Experimental setup .. 183

5.5.2.1 Remainder of training case .. 183

5.5.2.2 Validation on the same terrain with different rain profile 184

5.5.2.3 Testing on a different terrain (EAT2) .. 185

5.5.3 Results ... 185

5.5.3.1 Remainder of training case .. 185

5.5.3.2 Validation on the same terrain with different rain profile 191

5.5.3.3 Testing on a different terrain (EAT2) .. 193

5.6 Conclusions ... 196

Chapter 6: GP CA real-world flood modelling generalisation to

spatiotemporal resolution ... 198

6.1 Introduction .. 198

6.1.1 Chapter Structure ... 198

6.2 Training GP for temporal generalisation of CA rules 199

6.2.1 Introduction .. 199

6.2.2 Human formulations and static temporal resolution trained GP

performance. .. 201

6.2.3 Experimental setup .. 202

6.2.4 Training results ... 202

6.2.5 GP bloat Results .. 204

6.2.6 Conclusions .. 208

6.3 Testing GP trained for temporal generalisation of CA rules 208

6.3.1 Introduction .. 208

6.3.2 Experimental setup .. 209

6.3.2.1 Remainder of training case .. 209

6.3.2.2 Testing on the same terrain with different rain profile 210

6.3.2.3 Testing on a different terrain (EAT2) with uniform rain input 210

6.3.2.4 Testing on a different terrain (EAT1) with inflow conditions 210

 10

6.3.2.5 Testing on a different terrain (EAT2) with inflow conditions 210

6.3.3 Rain condition results ... 211

6.3.3.1 Remainder of the training simulation validation ... 211

6.3.3.2 Testing on the same terrain with different rain profile 212

6.3.3.3 Testing on a different terrain (EAT2) with uniform rain input 213

6.3.3.4 Results summary ... 214

6.3.4 Discussion .. 214

6.3.5 Inflow condition results ... 219

6.3.5.1 Testing on a different terrain (EAT1) with inflow conditions 219

6.3.5.2 Testing on a different terrain (EAT2) with inflow conditions 221

6.3.6 Conclusions .. 223

6.4 Training GP for temporal and spatial generalisation of CA rules

 224

6.4.1 Introduction .. 224

6.4.2 Experimental set-up ... 226

6.4.3 Experimental Results ... 228

6.4.4 Conclusions .. 230

6.5 Conclusions ... 231

Chapter 7: Conclusions and discussion ... 234

7.1 Conclusions ... 234

7.2 Discussions and future work .. 239

Chapter 8: Bibliography ... 242

Chapter 9: Appendices .. 250

9.1 Appendix 1: The power function, differences on CPU and GPU

hardware 250

9.1.1 Introduction .. 250

9.1.2 Experimental setup .. 250

9.1.3 Experimental Results ... 251

9.2 Appendix 2: The simple GP language 253

9.3 Appendix 3: Extended training with GP for temporal generalisation

of CA rules 254

 11

9.3.1 Introduction .. 254

9.3.2 Experimental set-up ... 254

9.3.3 Training results ... 255

9.3.4 Conclusions .. 255

 12

List of Tables

Table 2.1, Dottori and Todini results on the open 1D channel tests at various cell sizes, and

time steps. Where an “N” indicates that the simulation produces significant oscillations on the

solution, while “Y” indicates a stable solution. NC ts indicates the minimum time step computed

by the Neumann condition (discussed later) [66]. ... 58

Table 2.2, Results for Dottori and Todini case 2, Where a “N” indicates that the simulation

produces significant oscillations on the solution, while “Y” indicates a stable solution. NC ts,

indicates the minimum time step computed by the Neumann condition. 59

Table 2.3, Problem domains used in EuroGP and GECCO GP track papers 2009-2012,

from the ‘Better GO benchmarks: community survey results and proposals’ [83] 73

Table 2.4, ‘Better GP benchmarks: community survey results and proposals’ [83] A

proposed blacklist of benchmark problems. .. 74

Table 2.5, ‘Better GP benchmarks: community survey results and proposals’ [83] A list of

proposed benchmark problems for symbolic regression for GP. In the training and testing sets,

U[a,b,c] is c uniform random samples drawn from a to b, inclusive, E[a,b,c] is a grid of points

spaced with an interval of c, from a to b inclusive. .. 75

Table 2.6, Results showing the number times faster evaluating floating point based

expressions is on the GPU, compared to the CPU implementation. An increase of less than 1

shows that the CPU is more efficient [49]. .. 86

Table 2.7, Results for regression experiments, showing the number of times faster

evaluation evolved GP expressions is on the GPU, compared to CPU implementations. The

maximum expression length is the number nodes in the CGP graph [49]. 87

Table 3.1, Full specifications of machines used for testing [108] [109]. 98

Table 3.2, Estimations of biases for the first 5 neighbourhood radius sizes used in

experiments in this section, which correspond roughly to the centre of the discovered habitable

zones. .. 125

Table 4.1, The 16 possible variable inputs (where mainCell column shows the current state

of the main cell, and Live neighbouring cell count shows the number of alive neighbour), and

expected outputs of the main cell in the next time step. ... 152

Table 4.2, Terminal and Operator set used for the GP system, for learning the Game of

Life rule set. ... 153

Table 4.3, The Genetic Programming parameters applied game of life in tests. 154

Table 4.4, The 16 possible variable inputs, and expected outputs, and the one GP run

which matched the target but didn’t perfectly match all the state transitions. Incorrect outputs are

highlighted in bold. .. 156

Table 5.1, Terminal and operator set used for the GP system when applied to flood

modelling, where the new power operator is highlighted in bold. ... 163

Table 5.2, The Genetic Programming parameters applied in real-world urban flood

modelling tests... 165

Table 5.3, Full specifications of machines used for in real-world urban flood modelling tests

[112] ... 165

 13

Table 5.4, Details of the training simulation utilised in this section. 176

Table 5.5, Fitness scores on the hill and pond test case, starting t = 0 and progressing up

to the respective time. The best scores are highlighted in bold. ... 177

Table 5.6, Fitness scores (1/RMSE) for the training case from t = 0 up to the respective

time shown, for the CPU and GPU trained populations; also showing the maximum and mean

fitness for both groups of populations and all GP individuals at each training time. Manning’s

formulations, limited, zero and large flows are shown for reference. Those highlighted in bold have

exceeded the score of the human formulations on the respective training simulation time...... 178

Table 5.7, Processing times for each complete GP optimisation run, for both the CPU and

the GPGPU, given the number of hours of the training simulation applied. The speed-up factor of

the GPGPU over the CPU is shown, along with a breakdown of the processing times in minutes,

hours, and days. .. 180

Table 5.8, Testing time periods applicable to each training case in this section, when using

the remainder of the training simulation case for testing. ... 184

Table 5.9, Testing time periods applicable to each training case, when using the remainder

of the training simulation case for validation, and which table display these results. 185

Table 5.10, Fitness scores (1/RMSE) for the training case from respective time shown up

to t =12, for the 1 hour CPU and GPU trained populations; also showing the maximum and mean

fitness for both groups of populations and all GP individuals at each training time. Manning’s

formulations, Limited, zero and large flows are shown for reference. 186

Table 5.11, Fitness scores (1/RMSE) for the training case from respective time shown up

to t =12, for the 2 hour CPU and GPU trained populations; also showing the maximum and mean

fitness for both groups of populations and all GP individuals at each training time. 188

Table 5.12, Fitness scores (1/RMSE) for the training case from respective time shown up

to t =12, for the both the 4 and 6 hour, CPU and GPU trained populations; also showing the

maximum and mean fitness for both groups of populations and all GP individuals at each training

time. ... 190

Table 5.13, Fitness scores (1/RMSE) for the Manning’s formulations and limited, zero flow,

and large flow (1,000) on the entire validation case, using the hill and pond terrain but modified

rain profile. ... 191

Table 5.14, Fitness scores (1/RMSE) for the validation case from t = 0 up to t = 12, for the

CPU and GPU trained populations trained at the respective length on the training simulation; also

showing the maximum and mean fitness for both groups of populations and all GP individuals at

each training time. ... 192

Table 5.15, Fitness scores (1/RMSE) for the Manning’s formulations, limited, zero flow, and

large flow (1,000) on the entire validation case, using the EAT2 terrain scaled up to 50m, with

0.01n roughness factor, and a rain profile of 40mm/r for the first hour; simulation was run up to t

= 4 hour. .. 194

Table 5.16, Fitness scores (1/RMSE) for the EAT2 scaled to 50m, and 0.01n roughness

factor (with 40mm/h rain for first hour) validation case from t = 0 up to t = 4, for the CPU and GPU

trained populations trained at the respective length on the training simulation; also showing the

 14

maximum and mean fitness for both groups of populations and all GP individuals at each training

time. Those highlighted bold have outperform the Manning’s formulations. 195

Table 6.1, Fitness scores (1/RMSE of all cells in all time steps) of the Manning’s formula

and a the GP populations trained with a 0.5, 1, and 2 second time step; run on the hill and pond

test case for 4 hours of simulation time. Also shown are the fitness scores of the Manning’s

formulations and Limited on the same simulation time and time steps. 203

Table 6.2, Maximum number of nodes possible for full GP trees at each depth, for both

binary and ternary trees. ... 207

Table 6.3, Fitness scores (1/RMSE of all cells in all time steps) of the Manning’s formulation

and Bates limited, as well as the GP populations trained with a 0.5,1, and 2 second time step; run

on the hill and pond test case for 8 hours of simulation time, from t = 4hours up to t = 12hours.

 ... 211

Table 6.4, Fitness scores (1/RMSE of all cells in all time steps) of the Manning’s

formulations and Bates limited, and the GP populations trained with a 0.5,1, and 2 second time

step; run on the hill and pond test case, with a different rain fall profile (10mm/h for 2 hours), for

a full 12 hours of simulation time, from t = 0 hours up to t = 12hours. 212

Table 6.5, Fitness score (1/RMSE of all cells in all time steps) of the Manning’s formulations

and Bates limited, and a the GP populations trained with a 0.5,1, and 2 second time step; run on

the EAT2 case for 4 hours of simulation time, from t = 0 hours up to t = 4 hours. Those score

which have exceeded that of all the human competitors are highlighted in bold. 213

Table 6.6, Fitness scores (1/RMSE of all cells in all time steps) of the Manning’s

formulations and a the GP populations trained with a 0.5,1, and 2 second time step; Tested on

the EAT1 case for a full 20 hours of simulation time, from t = 0 hours up to t = 20 hours. 220

Table 6.7, Fitness scores (1/RMSE of all cells in all time steps) of the Manning’s formula

and a the GP populations trained with a 0.5,1, and 2 second time step; run on the EAT2 case for

8 hours of simulation time, from t = 0 hours up to t = 8 hours; with inflow conditions. 223

Table 6.8, Fitness scores (1/ average RMSE of each test case) and the Mean fitness’s

(1/RMSE of each test case) for the human formulated rule sets. ... 227

Table 6.9, Fitness scores (1/RMSE) for each of the test cases, for the bates Limited

formulation, on the hill and pond test case for 4 hours of simulation time, at various combinations

of cell size and time step. .. 227

Table 6.10, Fitness scores (1/RMSE) for each of the test cases, for the fittest individual

from the fittest of the 10 populations (GP 4). .. 228

Table 9.1, Fitness scores (1/average RMSE), of the 6 worst cases of the two population of

the different CPU and GPU hardware. The one fitness score highlighted between the two

implementations has scored the same value but is placed in a different position. 251

 15

List of Figures

Figure 2.1, Von Neumann Neighbourhood, attributed to the original 29-state Von Neumann

Cellular Automaton. ... 43

Figure 2.2, Moore Neighbourhood. ... 44

Figure 2.3, A ‘still life’ (Block shown left), and an oscillating life (Blinker shown middle and

right). ... 48

Figure 2.4, A South-East aligned Glider, Showing the 5 steps required to move the entire

glider one step [50]. ... 48

Figure 2.5, The finite state automaton representation of the game of life state transition rule

[50]. .. 49

Figure 2.6, The Hardy-Pomeau-Pazzis (HPP) model. The black arrows are for cell-

occupation. In (a) and (b) the lattice is shown at two successive times (taken from Frisch et. al.

[2]). .. 51

Figure 2.7, The Frisch-Hasslacher-Pomeau (FHP) model with binary head-on and triple

collisions at two successive times. (Frisch et. al. [2]). ... 52

Figure 2.8, Szkoda et. al.’s method for creating a triangular (a) lattice our of regular lattice

by shifting every second row by half the lattice constant (b) [21]. ... 52

Figure 2.9, Collisions rules for the FHP Cellular Automata system [21]. 53

Figure 2.10, The state of each node is represented by an 8-bit word. Bits 0-5 mapped into

particles with given non-zero velocities, bit 6 corresponds to a particle at rest and but 7 controls

whether the node is a boundary node [21]. ... 53

Figure 2.11, Side view a cell represented by the continuous values terrain level, and water

depth, which summed together equal the water level, stored within each cell of an open channel

CA system. .. 55

Figure 2.12, Demonstrates how the outflows are calculated within the Cellular Automata

system, between the main cell and each neighbour of the Von Neumann neighbourhood. Centrally

showing a side view of the terrain and water levels of the selected two cells, and a plan view of

the neighbour on the right. .. 56

Figure 2.13, The two stages of the CA flood system. Stage 1 for every pair of cells an

outflow is calculated, stage 2 every cell updates water depths by means subtracting outflows and

adding inflows. ... 57

Figure 2.14, Dottori and Todini, case 2, water stages/depths computed by CA model after

30 minutes (left) and 1 hour (right) from simulation start. The outlet is located in the lower right

corner. ... 60

Figure 2.15, Ghimire CA flooding state transition rule: (a) Cells ordered in NH according to

their ranks;L1-L4 are layers of free spaces between the water levels of the two cells that area

available within NH for water distribution, the numbers shown are cell ranks. In this diagram the

ground level for each cell is shown in dark grey and the water level light grey, (b) an example of

the outflow fluxes (shown by arrows) from the central cell having rank 3 to its neighbouring cells

[65]. .. 61

 16

Figure 2.16, Hypothetical ‘Hill and Pond’ terrain, and given test points; taken from Ghimire

et. al. [65]. .. 62

Figure 2.17, Resulting water depths using UIM and the Ghimire et. al. rule [65] at the (a)

pond,(b) left of crest, (c) right of crest, and (d) crest points of the hypothetical ‘Hill and Pond’

terrain, and given test point. .. 63

Figure 2.18. Stockbridge Keighley terrain, with sample points 1-6 drawn [65]. 63

Figure 2.19, Resulting water depths from UIM and the Ghimire rule set, for the 6 test points

of the Keighley test case [65]. ... 64

Figure 2.20, A pair of cells, where the left cell is the main outflowing cell, as it has the higher

water level. However terrain level of the main (left) cell is lower than that of the cell it is outflowing

to. It makes sense that water between the dotted line and terrain level of left cell, shouldn’t be

included in outflow calculations, as it is the higher water level that drives the outflow. 65

Figure 2.21, Demonstrates what the physics of the flow rate means, i.e. that water will

perturb through the given area, by multiplying the time at that flow rate, finds the distance of flow.

Effectively the entire block of water is seen to have the given velocity....................................... 66

Figure 2.22, Illustration of the chequerboard oscillations between two adjacent cells [63].

(a) At end of time step t, the level in the cell i, j has for the first time risen above that of cell i-1,j.

(b) At the end of the time step t + ∆t, the discharge from i,j to i-1,j, should be equal to zero as the

levels in each cell are equal. (c) However, an oscillation begins to develop as a result of the low

free surface gradient between the two cells. (d) The erroneously high flow causes a back flow at

t + 2∆t. ... 67

Figure 2.23, Flow limiter formula, used by Hunter and Bates et. al. where the flow rates are

first calculated by the Manning’s formula (Shown in Equation 0.6), then the minimum between the

above and that outflow is calculated [63].. .. 67

Figure 2.24, Hunter and Bates et. al. formulation of the Von Neumann stability condition,

which the minimum flow in the neighbourhood, and the square of the cell size to calculate the

time step for stability. ... 68

Figure 2.25, A very basic GP parse tree for Equation 2.7. ... 70

Figure 2.26, 2-point cross-over of same sized linear chromosomes, commonly used in EA

and GA systems. ... 71

Figure 2.27, Sub-tree cross-over in GP, two different sub-trees are selected from the two

parent trees, and exchanged to create the new off-spring tree [74]. .. 71

Figure 2.28, A parse tree for the list for the LISP S-expression (+ 1 2 (IF (> TIME

10) 3 4)) depicted as rooted, point-labelled tree with ordered branches [6]. 72

Figure 2.29, Neighbourhood for a Cellular Neural Network, where weighted and possibly

even function based elements connect the main cell to each of the Moore neighbourhoods cells

[36]. .. 79

Figure 2.30, Theoretical maximum processing power (measured in Giga Floating Point

Operations Per Second, GFLOP/s), between modern CPU and GPU, in both single and double

precision [100]. .. 81

Figure 2.31, Illustration of how arrays, representing the test cases, are converted into

textures. These textures are then manipulated (in parallel) by small programs inside each of the

 17

pixel shaders. The result is another texture, which can be converted back to a normal array for

CPU based processing. [49] .. 85

Figure 3.1, How the four quadrants of the single grid are folded into a single grid with four

layers Red, Green, Blue and Alpha [104]. ... 95

Figure 3.2, How the four quadrants of the single grid are folded into a single grid with four

layers Red, Green, Blue and Alpha [105]. ... 95

Figure 3.3, The abstract hierarchy presented by OpenCL [107]..................................... 100

Figure 3.4, Speed ups over the serial implementation for OpenMP and OpenCL on the

GPU and CPU, at 1,000 generations on Machine A, and 10,000 generations on Machine B, for

lattice sizes of 128x128 to 2048x2048, at increments of 32x32. .. 102

Figure 3.5, Cell update rates (per second) for the serial implementation, OpenMP and

OpenCL on the GPU and CPU, at 1,000 generations on Machine A, for lattice sizes of 128x128

to 2048x2048, at increments of 32x32. ... 103

Figure 3.6, Speed ups over the serial implementation for OpenMP and OpenCL on the

GPU and CPU, at 10,000 generations on Machine B, for lattice sizes of 128x128 to 2048x2048,

at increments of 32x32. ... 103

Figure 3.7, Processing times for OpenCL on the GPGPU, and for Machine A only on the

OpenCL CPU, OpenMP and Serial implementations, for 500x500 to 600x600 lattice sizes in

increments of 1x1, with a workgroup size of 16x16. ... 104

Figure 3.8, Machine A, Speed ups over CPU serial implementation for parallel CPU

(OpenMP), and the OpenCL memory algorithms on the GPGPU. ... 106

Figure 3.9, Machine B, Speed ups over CPU serial implementation for parallel CPU

(OpenMP), and OpenCL memory algorithms on the GPGPU. ... 106

Figure 3.10, Machine A, Cell update rates (per second) for CPU serial implementation,

parallel CPU (OpenMP), and the OpenCL memory algorithms on the GPGPU. 107

Figure 3.11, Machine B, Cell update rates (per second) for CPU serial implementation,

parallel (OpenMP) implementations, and OpenCL memory algorithms on the GPGPU. 107

Figure 3.12, Average (mean) neighbourhood live cell counts per cell over the entire

simulation for a range of initial configuration distribution probability/chances of live cell creation in

the initial configuration (left), and the processing time on a single CPU core for the same ranges

(right), processed at a lattice size of 512x512 for 1,000 generations. 109

Figure 3.13, Average neighbourhood live cell counts per cell over the entire simulation,

when using an initial configuration distribution probability of 50% for a range of lattice sizes of

128x128 to 2048x2048, at increments of 32. (left) Note the difference in the scale of the y-axis,

and the processing time on a single CPU core for the same ranges (right), for 1,000 generations.

 ... 110

Figure 3.14, Speed-ups relative to the serial implementation for OpenMP, and OpenCL on

the GPGPU (workgroup size of 16x16) on a 512x512 lattice size at 1,000 generations, over a

range of initial configuration distribution probability values from 1% to 99% at intervals of 1%;

results shown for Machine B. .. 111

Figure 3.15, Cell update rates (per second) for serial implementation, OpenMP, and

OpenCL on the GPGPU (workgroup size of 16x16) on a 512x512 lattice size at 1,000 generations,

 18

over a range of initial configuration distribution probability values from 1% to 99% at intervals of

1%; results shown for Machine B. ... 112

Figure 3.16, Speed-ups over the serial implementation for OpenMP, and OpenCL at a

lattice size of 16x16, for 1,000 generations on Machine A, and 10,000 on Machine B. Showing

resulting for the MSGOL and MSGOL4 rule sets with 2 to 10 states. 114

Figure 3.17, Cell update rates (per second) for serial implementation, OpenMP, and

OpenCL at a lattice size of 16x16, for 1,000 generations on Machine A. Showing results for the

MSGOL and MSGOL4 rule sets with 2 to 10 states.. 115

Figure 3.18, Cell update rates (per second) for serial implementation, OpenMP, and

OpenCL at a lattice size of 16x16, 10,000 on Machine B. Showing results for the MSGOL and

MSGOL4 rule sets with 2 to 10 states. .. 115

Figure 3.19, Binary decision tree version of the MSGOL rule set, with leaf nodes labelled

A-E. With the variables ‘NH_Count’ which represents the number of live neighbouring cells, and

‘mainCell’ to represent the central main cell's value, and finally ‘states’ to represent the

number of states variable. ... 117

Figure 3.20, Average neighbouring cell counts for each cell and the proportion of cells over

the entire simulation taking each possible leaf node through the rule sets MSGOL (which has leaf

nodes A-E as shown in Figure 3.19. ... 118

Figure 3.21, Average neighbourhood live cell counts, and proportion of cells over the

simulation taking each leaf node for MSGOL4 rule set, on Machine A..................................... 118

Figure 3.22, Processing times of the OpenMP implementations of MSGOL and MSGOL4

in comparison to each other for 2-10 states (left), shown (right) the theory of the arithmetic

complexity by showing the average neighbourhood count (shows the number of increments of a

counter, on average), plus the proportions of cells on average over the whole simulation which

perform an arithmetic operation. In the case of MSGOL this is leaf nodes B and E, and for

MSGOL4 leaf node C and F. ... 119

Figure 3.23, Processing times from the game of life with a 50 percent active distribution

and run for 1,000 generation, at various grid sizes, and with the 4 different data types, on the

GPU. .. 120

Figure 3.24, Processing times for the OpenMP implementation, with 1,000 generations of

the game of life with a 50 percent initial distribution configuration. ... 121

Figure 3.25, Speed-ups of the GPGPU over the CPU of several different grid sizes, for

1,000 generations, using different base data types of char, int, float and double floating point

numbers. .. 122

Figure 3.26, Cell update rates (per second) on the GPGPU at a range of different grid

sizes, for 1,000 generations, using different base data types of char, int, float and double floating

point numbers, on machine B. ... 122

Figure 3.27, Cell update rates (per second) on the serial CPU implementation at a range

of different grid sizes, for 1,000 generations, using different base data types of char, int, float and

double floating point numbers, on machine B. .. 123

 19

Figure 3.28, Average live neighbours and live cell counts for initial configuration distribution

probability of 0% to 67.5% at intervals of 2.5%, for a 512 lattice size and 1,000 generations, for

the neighbour radius sizes 1 to 5. ... 126

Figure 3.29, Relative speed improvements of the GPGPU and the OpenMP

implementation, over the serial implementation with a variable neighbourhood size. Results

shown for a 512x512 sized lattice, for 1,000 generations on Machine A, and 10,000 generations

on machine B. Seeding with a zero initial configuration distribution probability and therefore no

activity. ... 127

Figure 3.30, Cell update rates (per second) for the serial CPU implementation, GPGPU

and OpenMP, with a variable neighbourhood size. Results shown for a 512x512 sized lattice,

1,000 generations on machine A. Seeding with a zero initial configuration distribution probability

and therefore no activity. ... 127

Figure 3.31, Cell update rates (per second) for the serial CPU implementation, GPGPU

and OpenMP, with a variable neighbourhood size. Results shown for a 512x512 sized lattice,

10,000 generations on machine B. Seeding with a zero initial configuration distribution probability

and therefore no activity. ... 128

Figure 3.32, Relative speed improvements of the GPGPU and the OpenMP

implementation, over the serial implementation with a variable neighbourhood size. Results

shown for a 512x512 sized lattice, for 1,000 generations on machine A, and 10,000 generations

on machine B. Seeding with the ‘initial configuration distribution probability relative to the radius’

as shown in Equation 1, to produce activity in all simulations. ... 129

Figure 3.33, Cell update rates (per second) for Serial CPU implementation, 129

GPGPU (OpenCL), and parallel CPU (OpenMP) with a variable neighbourhood size.

Results shown for a 512x512 sized lattice, for 1,000 generations on machine A. Seeding with the

‘initial configuration distribution probability relative to the radius’ as shown in Equation 1, to

produce activity in all simulations. ... 129

Figure 3.34, Cell update rates (per second) for Serial CPU implementation, 130

GPGPU (OpenCL), and parallel CPU (OpenMP) with a variable neighbourhood size.

Results shown for a 512x512 sized lattice, for 10,000 generations on machine B. Seeding with

the ‘initial configuration distribution probability relative to the radius’ as shown in Equation 1, to

produce activity in all simulations. ... 130

Figure 3.35, Ratio of the average live neighbouring cell count (activity) for each radius,

against the neighbourhood size in cells, for a 512 sized lattice and 1,000 generations (I.e. the

predicted speed-up level from Equation 2). .. 131

Figure 3.36, Speed ups over the serial implementation, for OpenMP and OpenCL on the

CPU and GPU, for a spread of generations, at lattice sizes of 512x512, 1024x1024, and

2048x2048. .. 133

Figure 3.37, Cell update rates (per second) for serial implementation, OpenMP, and

OpenCL on the CPU and GPU, for a spread of generations, at lattice sizes of 512x512, on

Machine A. ... 134

 20

Figure 3.38, Cell update rates (per second) for serial implementation, OpenMP, and

OpenCL on the CPU and GPU, for a spread of generations, at lattice sizes of 512x512, on

Machine B. ... 134

Figure 3.39, Average neighbourhood counts (Mean number of live neighbouring cells), for

a spread of generations, at lattice sizes of 512x512, 1024x1024, and 2048x2048. 135

Figure 4.1, Illustration of how a new population is derived from the current population within

the generational GP system. ... 146

Figure 4.2, Flow chart of the GPCA optimisation systems process. 146

Figure 4.3, Demonstrates how the system is parallelised, on the left, the CA grid is

extended as many times as there are GP decision trees which are applied as the state transition

rule for all the cells in each section (where no interaction between section/repetition of the terrain

is allowed).The subscript after the GP denotes which GP tree of the population is currently being

utilised, and n is a variable from 1 to the number of GP in the population. On the right, within each

section of the CA that particular GP decision tree is applied within every cell. 148

Figure 4.4, A human programmed GP tree which will clearly produces the required state

transition in Table 4.1, and therefore is valid version of the game of life rule set (one of many

possible instantiations). ... 154

Figure 4.5, Error score (RMSE) of the fittest individual with each of the 10 populations.

 ... 155

Figure 4.6, An example evolved version of the game of life rule set. 157

Figure 5.1, Side view of a cell as represented by the continuous values the terrain level,

and water depth, which summed together equal the water level, stored within each cell of an open

channel CA system (repeated from Figure 2.11). ... 160

Figure 5.2, Demonstrates how the outflows are calculated within the Cellular Automata

system, between the main (central) cell and each neighbour of the Von Neumann neighbourhood

(repeated from Figure 2.12). Centrally showing a side view of terrain and water levels in the pair

of cells highlighted in the Von Neumann neighbourhood, Right, showing a plan view of the

neighbourhood... 161

Figure 5.3, Two stages of the CA flood system. Stage 1 for every pair of cells an outflow is

calculated, stage 2 every cell updates water depths by means subtracting outflows and adding

inflows (repeated from Figure 2.13). ... 162

Figure 5.4, Hypothetical ‘Hill and Pond’ terrain, and given test points; taken from Ghimire

et. al. [65] (also shown in Figure 2.16). ... 166

Figure 5.5, EAT2 test case original terrain (Plan view), at 2,000m square with 100x100

cells; which is scaled up to a 5,000m square terrain by increasing the cell size to 50m 168

Figure 5.6, Plan (top) and profile (bottom) views of the EAT1 terrain (DEM - Digital elevation

Model), also showing the two test points in the plan view. ... 169

Figure 5.7, Varied bordering water level event which drives the input to EAT1 test case.

 ... 170

Figure 5.8, Manning’s formula, combined with the discharge formula, in GP tree form; used

to calculate the volume of water to transfer between a pair of cells, using the Ghimire

implementation of the hydraulic radius. ... 171

 21

Figure 5.9, Manning’s formula, combined with the discharge formula, in GP tree code form

(scaled down version of C code); used to calculate the volume of water to transfer between a pair

of cells, using the Ghimire implementation of the hydraulic radius. .. 171

Figure 5.10, Manning’s formula, combined with the discharge formula, in GP tree form;

used to calculate the volume of water to transfer between a pair of cells, using the Dottori and

Todini implementation of the hydraulic radius. .. 172

Figure 5.11, Manning’s formula, combined with the discharge formula, in GP tree code form

(scaled down version of C); used to calculate the volume of water to transfer between a pair of

cells, using the Dottori and Todini implementation of the hydraulic radius. 172

Figure 5.12, Manning’s formula, combined with the discharge formula, in GP tree form;

used to calculate the volume of water to transfer between a pair of cells, using the Bates and

Hunter implementation of the hydraulic radius. ... 173

Figure 5.13, Manning’s formula, combined with the discharge formula, in GP tree code form

(scaled down version of C code); used to calculate the volume of water to transfer between a pair

of cells, using the Bates and Hunter implementation of the hydraulic radius. 173

Figure 5.14, Flow limiter formula, used by Hunter and Bates et. al. where the flow rates are

first calculated by the Manning’s formula (Shown in Equation 6.1 then the minimum between the

above and that outflow are calculated previous shown in Figure 2.23) 174

Figure 5.15, Manning’s formula, combined with the discharge formula, and Bates & Hunter

limiting cap, in GP tree form; used to calculate the volume of water to transfer between a pair of

cells, using the Bates and Hunter limited implementation of the hydraulic radius. 174

Figure 5.16, Manning’s formula, combined with the discharge formula, and Bates & Hunter

limiting cap, in GP tree code form (scaled down version of C); used to calculate the volume of

water to transfer between a pair of cells, using the Bates and Hunter limited implementation of

the hydraulic radius. .. 175

Figure 5.17, Processing times for each complete GP optimisation run for both the CPU and

GPGPU in days of processing time, given the number of hours of the training simulation applied.

 ... 180

Figure 5.18, Processing time in seconds for each generation on the CPU, which includes

all 10 population processed at the in the same batch, for each amount of simulation training time

used. .. 181

Figure 5.19, Processing time in seconds for each generation on the GPGPU, which

includes all 10 population processed at the in the same batch, for each amount of simulation

training time used. ... 182

Figure 5.20, Speed-ups of the GPGPU over the CPU runs for each generation (including

all 10 populations in each generation). ... 182

Figure 5.21, Mean fitness score (1/RMSE) of the GPGPU, CPU, and both combined runs

for varying amounts of simulation time used for training, for the hill and pond test case with the

altered rain profile (From Table 5.13). ... 193

Figure 5.22, Mean fitness score (1/RMSE) of the GPGPU, CPU, and both combined runs

for varying amounts of simulation time used for training, for the EAT2-rain test case. 196

 22

Figure 6.1, Fitness scores the Manning’s formulations (Ghimire, Dottori and Todini, Bates)

and the limited Bates formulation, along with the fitness scores for the previous trained GP

populations (average of all best individuals, all trained at 1 second time step, for 1, 2, 4 and 6

hours of the training simulation). Results shown for the Hill and pond test case for the 4hours, at

various time steps from 0.1 seconds up to 10 seconds, at intervals of 0.1 seconds. 202

Figure 6.2, Fitness scores of the Manning’s formulations (Ghimire, Dottori and Todini,

Bates) and the limited Bates formulation, along with the fitness scores for the trained GP

populations (all trained at 0.5, 1, and 2 second time step, for 4 hours of the training simulation),

showing the best individual and the mean of all the 10 best individuals. Results are shown for the

Hill and pond test case for the 4hours, at various time steps from 0.1 seconds up to 10 seconds,

at intervals of 0.1 seconds. .. 204

Figure 6.3, Fitness of the fittest individual within each of the 10 populations, trained on hill

and pond test case at 50m cell size, and 0.5, 1, and 2 second time steps. 205

Figure 6.4, Depths of the fittest individual within each population and the mean of each of

these 10 individuals at each generation of the optimisation process. 206

Figure 6.5, Number of nodes within each of the fittest GP tree for each of the 10 populations

and the mean of these is displayed in black. .. 206

Figure 6.6, GP’s Maximum and Mean scores of the 10 populations for each of the test

cases, as well as that of the 4 different human formulations. ... 214

Figure 6.7, Water depths at the ponding point in the hill and pond test case, for UIM, and

the Manning’s formula, and the GP 0 individual, over the course of the 12 hours of simulation;

with a 2 second time step for the CA models. ... 215

Figure 6.8, Water depths at the Crest Left point in the hill and pond test case, for UIM, and

the Manning’s formula, and the GP 0 individual, over the course of the 12 hours of simulation;

with a 2 second time step for the CA models. ... 216

Figure 6.9, Water depths at the Crest Centre point in the hill and pond test case, for UIM,

and the Manning’s formula, and the GP 0 individual, over the course of the 12 hours of simulation;

with a 2 second time step for the CA models. ... 216

Figure 6.10, Water depths at the Crest Right point in the hill and pond test case, for UIM,

and the Manning’s formula, and the GP 0 individual, over the course of the 12 hours of simulation;

with a 2 second time step for the CA models. ... 217

Figure 6.11, Water depths at the Old Outlet point in the hill and pond test case, for UIM,

and the Manning’s formula, and the GP 0 individual, over the course of the 12 hours of simulation;

with a 2 second time step for the CA models. ... 217

Figure 6.12, Fitness scores (1/RMSE of all cells in all iterations) of the Manning’s

formulations, on the EAT1 case scaled to 50m cell size and made 1 Dimensional, and 0.01n

roughness factor; on various time step. .. 219

Figure 6.13, Water level at the test point 1, on the EAT1 case scaled to 50m cell size, and

0.01n roughness factor, UIM is shown at its original time step settings, but the Ghimire version of

the Manning’s formula and trained GP individuals 0, 4, and 9 are shown at a time step of 0.5

seconds. Time period shown from t = 0 seconds up to t = 72,000 seconds, which equates to 20

hours of simulation time. ... 221

 23

Figure 6.14, Fitness scores (1/RMSE of all cells in all iterations) of the Manning’s

formulations and Bates Limited, on the EAT2 case scaled to 50m cell size, and 0.01n roughness

factor, and inflow conditions; at various time step... 222

Figure 6.15, Fitness scores of Bates Manning’s formulation and the Bates Limited

formulation, on the Hill and Pond test case, with a 50m, 25m, and 2m cell sizes. Note a logarithmic

base 10 scale is used on the time step (x-axis). ... 225

Figure 6.16, Fitness scores (1/average RMSE of each test case) of the fittest individual

within each of the 10 populations, and the average of these 10 fitness scores. 228

Figure 6.17, Fitness scores of Bates Manning’s formulation and the Bates Limited

formulation, on the Hill and Pond test case, with a 50m, 25m, and 2m cell sizes. Finally these are

contrasted against the best scoring GP individual in the best population (GP4). Note a logarithmic

base 10 scale is used on the time step (x) axis. ... 229

Figure 9.1, Fitness scores (1/average RMSE) of the fittest individual in each population,

run on the CPU and GPU. Where the fitness scores are calculated by the respective hardware

during each optimisation run. .. 252

Figure 9.2, Absolute difference between the fitness scores of the each final population

evaluated on the alternate hardware, where the x-axis represents the ranking of the GP individual

within the population. ... 253

Figure 9.3, Specification of the simple recursive decent language used in this thesis to

specify GP decision trees. ... 254

Figure 9.4, Fitness of the fittest individual within each of the 10 populations, trained on hill

and pond test case at 50m cell size, and 0.5, 1, and 2 second time steps. 255

 24

Publications

Some of the material presented in this thesis has previously been published

in the following:

Journals:

 “An investigation of the efficient implementation of Cellular Automata on

Multi-core CPU and GPU hardware”, M Gibson, E Keedwell, D Savic,

(2015), Journal of Parallel and Distributed Computing 77, p11-25

(available online at:

http://www.sciencedirect.com/science/article/pii/S0743731514002044)

Conferences:

 “CADDIES: A New Framework for Rapid Development of Parallel Cellular

Automata Algorithms for Flood simulation”, M Guidolin, A Duncan, B

Ghimire, M Gibson, E Keedwell, A Chen, S Djordjevic, D Savic, 2012.

Proceedings of the 10th International Conference on Hydroinformatics

(HIC 2012), Hamburg, Germany, 14-18 July 2012, (available online at:

https://ore.exeter.ac.uk/repository/handle/10036/3742).

 “Understanding the efficient parallelisation of cellular automata on CPU

and GPGPU hardware”, M Gibson, E Keedwell, D Savic, 2013, Proceeding

of the fifteenth annual conference companion on Genetic and Evolutionary

Computation Conference (GECCO), p171-172, Amsterdam, ACM,

(available online at: http://dl.acm.org/citation.cfm?id=2464660)

 “Genetic Programming for Cellular Automat Urban Inundation Modelling”,

M Gibson, E Keedwell, D Savic, 2014,Proceeding of the 11th international

Conference on Hydroinformatics (HIC 2014), New York, USA, 17-21

August, (available online at:

http://academicworks.cuny.edu/cc_conf_hic/414/)

http://www.sciencedirect.com/science/article/pii/S0743731514002044
https://ore.exeter.ac.uk/repository/handle/10036/3742
http://dl.acm.org/citation.cfm?id=2464660
http://academicworks.cuny.edu/cc_conf_hic/414/

 25

Chapter 1: Introduction

With the urbanisation of the modern world, there is an ever increasing

replacement of permeable with impermeable surfaces, which leads to greater

amounts of run-off for sewer systems to handle. Furthermore, climate change

leads to a greater uncertainty and variability in rainfall. Therefore, the need for

computationally efficient flood modelling methods is steadily increasing; both in

the need for early warning system and for modern city’s resilient design. Such

models come in three forms, with each suiting a particular type of modelling: 1D

models, which are often used to model flow within pipes and sewer systems, 2D

systems used to model overland and pluvial flow, and finally 3D modelling

commonly used for free-surface water flow or atmospheric weather modelling.

Where lower dimensionality models can be used they are far less accurate for

each scenario and with the increased dimensionality there is an increase in

computational costs. Similarly, the spatial and temporal resolution of these

models maybe increased to obtain greater accuracy, but this comes again at an

increased computational cost. For very large resolution models, over large spatial

areas and simulation times, or where large ensembles of simulation are required

for design validation, the processing time becomes intractable or at least

infeasible.

The work in this thesis is concentrated on 2D models for pluvial and

overland flooding models; of which there are a wide variety of existing software

packages, as shown by the UK Environment Agency Report from 2013

“Benchmarking the latest generation of 2D hydraulic modelling packages” [1],

with as many as 13 different tools being used. This is due to there being no

agreement on the best way to accurately model flooding at various scales, without

using full Navier-Stokes based simulations, which are computationally expensive.

The majority of these models are based on a regular grid, and on the Shallow

Water Equations (SWE) which themselves are computationally complex to solve

for large areas. A more recent approach makes use of finite difference models

which approximate the derivative of the SWE. These are then solved locally to

each cell or inter-cell edge. This approach bears similarities with the computer

science technique for modelling complex system, in particular Cellular Automata

(CA). These approaches present the opportunity to increase processing speeds

 26

through the use of modern multi-core and many-core technologies, due to the

parallelism of the algorithm. Cellular Automata require a state transition rule

which governs the change in state of the grid from one iteration to the next, in a

similar way to the approximate derivative in the finite difference model. The same

rule is processed for many cells and their neighbourhoods, which gives the CA

algorithms its inherent parallelism.

In this thesis two main approaches are taken to tackle the computational

complexity of the problem within urban flood modelling systems. Firstly, Cellular

Automata based models are developed to utilise modern multi-core CPU and

many-core GPGPU, and a series of experiments are carried out to understand

the efficiency of this parallelisation in relation to the algorithmic parameters.

Secondly, as the temporal and spatial resolutions of the CA model directly

influence the processing time, then coarser models are required to maintain

accuracy to a reasonable level in order to gain further increases in processing

speed efficiency. The model accuracy at different resolutions is limited by the

local approximation represented by the state transition rule of the CA that drives

the various flow rates. The state transition rule must take account of different

spatial and temporal resolutions, as well as the various terrain and water levels

to produce a reasonably accurate approximation of the globally driven rules.

There exists a body of literature where researchers and engineers have derived

state transition rules for flood modelling to maximise the temporal resolution of

their CA models, while maintaining accuracy at different spatial resolutions.

Therefore, experimentation is carried out to understand the feasibility of learning

such a specific state transition rule, via the use of an artificial intelligence

algorithm. Genetic Programming (GP) is chosen as it is capable of learning from

data, and creating innovative results, as well as searching an intractable search

space while producing ‘good’ solutions (‘good’ in terms of being reasonably close

to the global optimum). However, unlike other Evolutionary or Genetic Algorithms,

GP does not have a fixed sized chromosome and so is capable of evolving entire

computer programs, or formulae. This allows for the possibility of entirely

automatic derivation of the local state transition rule from given data, where many

other algorithms can only tune a set number of parameters of a model. Having

developed a system that is capable of encoding a number of the human

formulated state transition rules for flood modelling, these are tested against the

 27

generated rules to make a comparison. The hypothesis tested in this thesis is

that the derived local rules should be capable of operating in similar conditions

but with different input terrain and water level distributions due to way that they

are only programmed with local knowledge. Therefore, the Genetic Programming

Cellular Automata system (GPCA) may be trained once, and then allow for the

operation of the rules on unseen data sets, and experimentation is carried out

within this thesis to validate this theory.

All evolutionary algorithms, of which GP is member, require a method for

the evaluation of the fitness of potential solutions. In this case it requires the

processing a CA simulation and comparison to example input. The evaluation of

the fitness function is known to be the overwhelmingly large computational

element of Evolutionary Algorithm’s (EA), especially due to the need for the

evaluation to be carried out for multiple candidate solutions. The GPCA system

proposed in this thesis, requires the simulation of a CA model using the given GP

rules as the state transition rule, and therefore makes additional use of the earlier

work with many and multi-core processors. This then achieves parallelisation and

acceleration of the learning of state transition rules, through the use of a novel

combination of the parallelism drawn from both the GP and the CA algorithms

together.

Later work in this thesis will tackle the questions of whether the GP can

evolve real world CA state transitions rules at a single set of spatial and temporal

resolutions and how well these may generalise to other simulation inputs like

terrain layouts, and different rates of rain input. The experimentation is then

extended to include first various temporal resolutions at a single spatial

resolution, and finally a scale of both spatial and temporal resolutions. This

method allows for a comparison of the effectiveness of training on a single

temporal resolution compared to a spread of temporal resolutions. Finally, this

investigation begins to tackle the trade-off between the resolution of the

simulations and the accuracy of the simulations produced by each rule. As

demonstrated in Chapter 3: (Sections 3.5.1, 3.5.2, 3.5.7), the spatial and temporal

resolutions of the simulation heavily influence the real world processing times.

Therefore, this trade-off actually weighs the computational time against the

accuracy of simulations. This leads to the exciting opportunity to use both

 28

computer science methods and modern hardware to accelerate the processing

of real-world urban flood modelling.

1.1 Background

1.1.1 Urban flood Modelling

The underlying physics of hydraulic movement of liquids is reasonably well

understood in the Navier-stokes equations [2] [3], which are partial differential

equations. Such equations describe the preservation of mass, momentum and

energy on a global scale. Therefore, performing full Computational Fluid

Dynamics (CFD) is very computationally expensive, as it must simulate many

particles in a 3D environment calculating each particle’s velocity while balancing

the mass, momentum and energy between all particles within the system. For the

purposes of modelling very large systems, these kinds of simulations are

completely impractical. Therefore, modelling communities have used simplified

models, in order to perform simulation in a tractable amount of time.

1.1.2 Cellular Automata

Recently, urban flood models have been based on CA systems, which are

locally driven deterministic simulations. CA are based on a grid, where each grid

location is referred to as a ‘cell’. Each cell is updated using the same state

transition rule, and all cells are updated in parallel. The state transition rule of

each cell only uses local neighbourhood state information to that cell. Cellular

Automata present an abstract model of complexity based on the emergent

behaviour of many simple identical interacting parts. In this way they create an

abstract model of the universe, where the laws of physics are encoded as the

local state transition rules. Having a single rule which precisely and

deterministically describes the movements of fluid over a surface greatly reduces

the computational complexity of the hydraulic simulation, over the full 3D Navier-

Stokes models. These methods represent water volumes within each cell, and

thus represent the 3D structure of the fluids in a 2D format with the addition of

water depths within each cell.

In computer science, simple CA models have been well studied [4] [5], such

as the game of life (described in section 2.1.1), which only has two states - dead

 29

or alive (zero or one respectively). Even with very few states and a very simple

state transition rule, there still are many complex interactions which can occur.

However, creating the state transition rules with specifically desired global

complex interactions is difficult for human developers. This is because any single

change to a state transition rule will affect the entire simulation. Therefore, a way

must be found to only affect the desired sections through the complex

interactions, known as the inverse problem.

1.1.3 Genetic Programming

Evolutionary and Genetic algorithms (EA/GA) [6] [7] are powerful search

methods, although they are limited by the fact that they can only search a fixed

number of decision variables. They must use an implicit model based on these

decision variables in order to establish the given fitness for each individual. By

contrast, GP operates on a variable number of decision variables, and even

selects for the important variables as well as optimising the solution. GP can

develop entire computer programs, and thus can develop an entire model.

Genetic Programming, offers a powerful search algorithm, capable of exploring

variable degrees of complexity within its solutions. Parsimony can be included as

part of the selection criteria for GP, allowing the evolutionary power to be

harnessed to search and optimise the solution’s accuracy and parsimony.

1.2 Hypothesis

1. Using Genetic Programming to train the state transition rules for CA, and

presenting entire simulations as training data will create rule sets which

have good generalisation properties to other unseen initial conditions. I.e.

the training set of a simulation may not contain all the state transitions of

the target or the underlying CA rule, but by having a distributed rule

programmed by GP, the rule generated should interpolate well to other

input conditions. Such a method should be applicable to almost any type

of CA system, so long as an interface between the local CA rule and GP

system can be established. This interface should declare how the GP rule

is instantiated within the local CA neighbourhood, in order to guarantee

uniformity, and mass preservation if required. Also the interface should

 30

declare how the neighbouring states in the local CA neighbourhood lead

to the GP variables and the next cell state output.

In Chapter 4:, the GPCA system uses a Game of Life simulation and

attempts to find the Game Of Life rule set. The results show that the

majority of rules generated match the Game of Life rules even though the

simulation presented does not represent all state transitions of the Game

of Life. In Chapter 5: the GPCA system is trained upon the output of a real-

world hydraulic modeller (UIM), and is tested on unseen water level inputs,

and different terrain inputs to determine the generated rules ability to

generalise to unseen data. The limits of this generalisation are seen in

Chapter 6:, where the training and testing are extended to include multiple

spatiotemporal resolutions, and testing also includes radically different

inflow conditions.

2. For real world CA systems, the spatial and temporal resolution variables

(Cell size and time step) are static for all cells and iterations of a single

simulation, and alter the entire dynamics of the resulting simulation.

Training on a number of different simulations, each with different values

for one of the simulation static variables of cell size and/or time step, will

allow the GPCA system to learn the higher level dynamics. This should

create rules which can not only generalise to different initial conditions, but

also to different temporal and spatial resolutions. In this way it may be

possible to create rules which can operate at higher time step factors than

previous rules with acceptable accuracy, thereby producing faster

computational rule sets.

In Chapter 6: training and testing of the GPCA system is conducted at

different spatiotemporal resolutions, and testing is also conducted on

different water level and terrain inputs. In section 6.2 rules are trained and

tested for their generalisation to the timestep property, and by creating

rules which can operate at higher time steps, this creates faster rules.

Finally in section 6.4, rules generated with both cell size (spatial) and time

step (temporal) variation, are used to tackle the more complex trade-off

between speed and accuracy, and demonstrate that the system can learn

the rules behind this complex dynamic competitively with the most modern

human formulated rules.

 31

1.3 Aims of research

The primary aim of this research is to automatically produce fast and

accurate flood modelling systems, through the application of computer science

methodologies including algorithmic parallelisation and Artificial Intelligence. A

further aim is to compare the automatically generated rules against existing

(human derived) rules, and be able to compare their effectiveness in a

quantitative manner.

1.3.1 Objectives

The following is a list of objectives tackled within this thesis:

1. The investigation of the parallelisation of CA systems upon modern many-

core GPGPU technologies, and the effect of varying the standard CA

parameter such number of cells, initial configuration and activity, number of

states, neighbourhood size, and number of generations on the speed-ups

obtained. Also to investigate the effects on the relative speed-ups obtained,

of varying GPGPU parameters such as the workgroup size, GPU memory

type, and the base data type used to store states. This investigation is

intended to ensure that the relationship between the CA parameters and the

relative speed-ups of the GPGPU over the CPU are well understood, such

that when later work in this thesis can maximise speed-ups from the GPGPU

when combining GP and CA systems.

2. The development of a CA system for flood modelling, based on existing

models from literature, which is capable of expressing a spectrum/range of

variable state transition rules. It is intended that these state transition rules

should always ensure uniformity to direction of flooding flow and should

preserve the water volume across the grid. This will allow for the derivation of

state transition rules which can concentrate on finding the correct flow rates

given the water, terrain levels and spatial and temporal resolutions across the

grid. Leading to the development of a GP system for the optimisation of CA

state transition rules. Such a system should take advantage of previous

research conducted after Objective 1, in order to obtain the best speed-ups

 32

possible by accelerating the evaluation of CA fitness functions upon the

GPGPU.

3. An investigation of the effectiveness of the combined GPCA system from

Objectives 1 and 2, to learn a known CA rule set such as the Game of Life.

This will allow for the calibration and confirmation that the system can find the

correct underlying state transition rule from an example CA simulation.

4. An investigation of the effectiveness of the combined GPCA to learn flooding

modelling state transition rules based on example simulation data.

4.1. Quantify the simulation time needed during training on a fixed set of

spatial and temporal resolutions, and prove that the combined GPCA

system can learn state transition rules which are competitive amongst

human CA flood modelling rules.

4.2. The proof of hypothesis 1, through the testing of derived state transitions

rules from objective 4.1 on unseen data, including unseen sections of the

training test case and completely different terrain.

4.3. An investigation of the effectiveness of the combined GPCA system to

learn flood modelling CA state transition rules which are capable of

operating competitively at a range of temporal resolutions. By creating

rules which can produce competitive accuracies at higher time step

factors (temporal resolutions) than human formulated CA state transition

rules, this will begin to tackle the trade-off problem of creating faster rules.

Thereby tackling the ultimate aim of creating faster rule sets through the

use of machine learning techniques to derive the CA state transition rules

for flood modelling systems (hypothesis 2).

4.4. An investigation of the limits of hypotheses 1, by testing of those rules

generated during training conducted in Objective 4.3, upon different

inputs including: unseen parts of the training test case, a completely

 33

different terrain, and finally on different ‘boundary conditions’ (the type of

inflow used in the test cases, e.g. uniform rain, or a lateral inflow).

4.5. Finally, an investigation of the ability of the GPCA system to learn CA

state transition rules that can operate successfully at a range of both

spatial and temporal resolutions. Demonstrating how the proposed

system can adapt to the complex set of inputs including spatial and

temporal resolutions, and the local terrain and water levels in order to

further tackle the complex trade-off created by the resolution of the

simulation (both spatial and temporal) and the accuracy of the resulting

water movements over the entire simulation area and duration. A

comparison can then be made between the performance in terms of this

trade-off with the very latest human formulated CA flooding modelling

rules and those generated by the proposed GPCA system (hypothesis 2).

1.4 Thesis structure

Chapter 1: introduces the problem and the scope of this thesis, its

background, aims, hypothesis and novelties.

Chapter 2: performs an in-depth literature review, starting off with the origin

and purpose of Cellular Automata systems within computer science, leading to

their use for real world urban flood modelling. Then the literature pertaining to

Genetic Programming, and alternative methods used to learn cellular automata

state transition rules is reviewed. Finally, the literature that involves the

application of many-core hardware (GPGPU’s) to speed up both CA and genetic

programming systems is investigated.

Chapter 3: performs an in-depth investigation of the effects of utilising

modern many-core GPGPU hardware to speed up the processing of CA.

Specifically, this chapter investigates the effects of varying the CA parameters

such as lattice size, initial configuration, number of states and amounts of activity,

data types, neighbourhood size, and number of generations/iterations.

Furthermore, the effects of varying the GPGPU specific parameters such as work

group size and GPU memory types used are also investigated. This allows for a

 34

better understanding of how speed-up on modern hardware is affected, and thus

leads onto the methodology in the next chapter.

Chapter 4: carries out experimentation using GP to learn CA state transition

rules for the simple binary Game of Life rule set. Chapter 4:, section 4.2

introduces the methodology of using genetic programming to find specific cellular

automata state transition rules. This chapter details how the GP is interfaced with

the CA neighbourhood for the Game of Life. Details of the fitness function and

evolutionary algorithm used to drive the GP system are also given here. Lastly,

details are given of a novel method of using parallelism for both the GP algorithm

population and the CA’s cell population. This allows for smaller training cases to

be used while still saturating the many-core GPGPU hardware with enough

parallel elements, and therefore reducing overall processing time for the

optimisation process. Chapter 4:, section 4.3 then describes experiments used to

demonstrate this system’s ability to find representations of the Game of Life rule

set given a target CA simulation. As the game of life rule set is known (i.e., the

global optimum for the GP search), the system can be verified before tackling the

real-world problem where the best rule sets are not so clear.

 The GPCA methodology is then extended in Chapter 5: to tackle the real-

world problem of finding rule sets which can perform urban flood modelling. The

methodology for the updated interface between the GP and the CA

neighbourhood for real-world flood models is described in section 5.2. Section

5.3 details the experimental set-up used for the real-world experiments, including

the flooding test cases and the human competitor rules sets from literature. The

first set of real world experiments, in section 5.4 are carried out on a fixed set of

spatial and temporal resolutions (cell size and time step), and vary the amount of

simulation time used for training. Experiments are then carried out in section 5.5

to see how well rules trained on different lengths of simulation generalise to

different input conditions. For example, different terrain configurations, initial

water levels, and different rain input conditions are used to test this ability. These

experiments are intended to prove hypothesis 1, by demonstrating the ability of

the GPCA system to learn rules which can then generalise to other initial

conditions and inputs (at a single spatial and temporal resolution).

 35

Chapter 6: then extends the experimentation on real-world flood models to

include an investigation into the development of rules that can operate at different

spatial and temporal resolutions. It is anticipated that this will then tackle the

trade-off between the real-world processing time and the accuracy of simulations

produced from the trained rule sets, and thereby provide a weight of evidence for

hypothesis 2. The trade-off is tackled by training rule sets which can produce

reasonable accuracy at competitively high time steps against the latest human

rule sets from literature. First in section 6.2, rule sets are trained on a single

spatial resolution and a sparse number of temporal resolutions, then the

generalisation of Genetic Programs trained on a single time step are compared

to those trained on many. Lastly in section 6.4, experiments are carried out to

train GPCA state transition rules that are capable of operating over many spatial

and temporal resolutions. There is a further relation between the cell size (spatial

resolution) and the trade-off of accuracy and computational speed determined by

the temporal resolution, which is tackled by training rules for multiple spatial and

temporal resolutions and accuracy. Finally, Chapter 7: draws conclusions and

final discussions from the thesis.

1.5 Novelty of the work

 Genetic Programming has been used previously to create the state

transition rules for Cellular Automata systems, given the expected large

scale outcomes. These have only been implemented on small scale 1D

CA cases, and where the final solution of the CA was the expected

outcome of the combination of many instances of the state transition rule

in a spatial configuration. In contrast, this thesis explores a new approach

of using GP for the creation of very specific and complex 2D CA

simulations, i.e., where the entire course of the CA simulation in space and

time is the desired global reaction.

 A novel method for utilising the combined parallelisation of the GPCA

system, such that it can be completed in a reasonable amount of time, is

developed in this thesis. The method harnesses the parallelism drawn

from the both the multiple individuals within the GP population and the

multiple cells of CA. This method allows for the use of a smaller target

simulation for the fitness function, while still saturating the GPGPU with

 36

sufficient work. Therefore, the method allows the entire process to be

completed within a tractable amount of time. Finally, the methodology is

extended to include the parallelism from multiple populations of GP

individuals, during trials.

 A novel method for the acceleration of processing CA on modern highly

parallel GPU hardware is developed and validated. The specific texture

memory of the GPU hardware, which has four layers (Red, Green, Blue,

and Alpha) is exploited to process 4 cells per thread and to allow for the

use of the GPUs wider memory lanes. While the utilisation of these four

layers by itself is not unique, the method of folding the lattice such that

neighbouring values for cells on different layers can be collected efficiently

using hardware ‘swizzling’ operations is novel.

 The multi-state interpretations of the Game of life (Sections 3.3.1). These

are novel integer state CA state transitions rules, which produce

interesting patterns for study. These rules are extensions on the Game of

life rules, and reproduce it when the number of states is two (i.e. binary),

but produce different behaviour when using greater number of states.

 The interpretation of the Game of Life rule set has an element of novelty,

as there are many ways to represent the same state transition rule, using

decision trees. Not only are the human formulations of the Game of life

decision tree novel, but so are the trained representations.

 The extensive testing of the effects of the CA parameters on the speed-

ups obtained from many-core GPU is novel and contains novel

discoveries, in that it confirms for the main causes of computational

complexity are the number of cells and CA generations including for the

GPU. It is found that the speed-ups increase up to a plateau, as the over

heads of parallelisation are overcome. Finally, the investigation yields

novel discoveries of how the neighbourhood size (amount of memory look-

up per cell) and the amount of ‘activity’ (number of cells carrying out

calculations) affect the relative performance of many-core CPU over multi-

core CPU.

 37

 Using an example CA simulation of the Game of Life rule set as target

(which only contains a sub-set of all the state transitions) in order to learn

the specific under lying CA rule set, has not been attempted before. The

use of Genetic Programming on a continuous scale CA system, to learn

the binary state Game of Life rules sets, is novel.

 Application of GP for learning the state transition rule of a continuous CA,

i.e., real world applications flooding applications.

o GP has not been applied to learning a real world continuous-CA

state transition rule, until now.

o No one has before considered the effects of the spatial and

temporal resolution of a real world model will have on a GP system

learning the state transition rules of a CA (sections 6.2, 6.4).

 The comparison on the current best competing urban flood modelling state

transition rules from the literature with those created by the automated

GPCA system.

1.6 Glossary of terms

1.6.1 Definitions

Chromosome
In an analogy with natural genetics, where a
group of individual ‘genes’ are often referred to as
a chromosome

Cross-over
Recombining two or more candidate solutions to
create a new candidate solution.

Elitism

When applied to evolutionary algorithms, this
refers to the number of best individuals within the
population which are directly passed to the next
generation so as the ensure that the best do not
get any worse

Fitness

This is an inverse measure of the error of an
individual; this allows for a minimisation problem
to become a maximisation one and that fitness
proportionate selection can be performed.

 38

Gene
An individual variable within the genetic
information of an individual candidate solution

Genotype/Genotypical
behaviour

The literal encoding of the genetic information of a
candidate solution

Locus/Loci
The point or points within the genetic information
of candidate solution where the genetic
information is divided.

Phenotype/Phenotypical
behaviour

The resulting solution created by the interaction of
the genetic information of candidate solution

1.6.2 List of terms

ADF Automatically Defined Functions

ALU Arithmetic logic unit

ANN Artificial Neural Network

CA Cellular Automata

CFL condition Courant-Friedrichs-Lewy condition

CGP Cartesian Genetic Programming

CPU Central Processing Unit

CUDA Compute Uniform Device Architecture

EA Evolutionary Algorithm

EAT Environment Agency Test

FHP
Frisch Hasslacher Pomeau - Lattice gas
Boltzmann method

FPGA Field Programmable Gate Array

GA Genetic Algorithm

GEP Gene Expression Programming

Gflops Giga Floating Point Operation per Second

GOL Game Of Life

GP Genetic Programming

GPCA Genetic Programming Cellular Automata

GPGPU General-Purpose Graphics Processing Unit

GPU Graphics Processing Unit

HPP
Hardy Pomeau Pazzis - Lattice gas
Boltzmann method

LGP Linear Genetic Programming

MEP Multi-Expression Programming

 39

MLP Multi-Layer Perceptron

MSGOL Multi-State Game Of Life

NaN Not A Number

PDE Partial Differential Equations

RAM Random Access Memory

RGB Red Green Blue

RMSE Root Mean Squared Error

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SWE Shallow Water Equations

TSP Travelling Salesman Problem

UIM Universal Inundation Model

vant Virtual Ant

VSM Virtual State Machine

 40

Chapter 2: Literature review

In the following sections, the current literature pertaining to Cellular

Automata (CA) is reviewed in section 2.1. This section covers a brief history of

CA, and then examines a number of CA models, working towards the more

complex continuous CA for hydraulic modelling which are used for flood

modelling. In section 2.2, Genetic Programming (GP) literature is reviewed, and

section 2.2.3 focuses on the few examples of GP applied to learning CA state

transition rules. Finally, both CA and GP algorithms are highly parallelisable,

where the fitness function of the GP is known to take the majority of processing

time. Therefore the literature pertaining to GPU processing of both CA and GP is

investigated in section 2.3.

2.1 Cellular automata

2.1.1 Introduction

The umbrella term Cellular Automata (CA), represents a spatially discrete

grouping of Automata (or simple abstract machines), and thus the collection

forms a cellular grouping of many small component parts. The most common and

basic instantiations of CA use a regular grid, where all the cells follow the same

automaton (state transition rule), and commonly a binary state is use. A key

element of the CA model is that interactions between the cells are local and

parallel. The local cells form what is known as the neighbourhood, which defines

which cells are adjacent to which other cells, commonly forming a regular pattern.

Cellular Automata are of great interest to the computer science, physics,

mathematical fields, due to their theoretical importance and capability to simulate

physical systems.

John Von Neumann [8] was one of the founding fathers of field of study

currently labelled as Computer Science who, through the study of Logic and

Automata, and early digital computers, put forward ideas of a new field between

Logic and ‘Neurology’, and noted similarities with the field of thermodynamics [9].

His initial work in philosophy, mathematics, psychology, and neurophysiology

guided his attempt to construct a general theory of automata. He used both man-

made mechanical and electrical devices, and natural complex mechanisms to

forward his argument for the study of how complex systems originate from the

 41

combination of simple mathematical logical operators. Von Neumann was keenly

interested in “self-reproducing automata”, whereby the word automata simply

means a machine or mechanism of some form.

Von Neumann is attributed with the general architecture of today’s electrical

digital computer systems (Henceforth referred to simply as a computer device),

known as the ‘Von Neumann Architecture’. Such a computer device requires an

ALU (Arithmetic Logic Unit), a memory, and a controller, as well as information

buses between the above that connect the controller to the input/output system.

The beauty of this architecture lies in its simple generic nature, in that the ALU is

capable of processing a number of simple mathematical and logic operations

upon some given data. The controller is responsible for collecting the instruction

for the relevant mathematical or logic operation, and the data upon which is

operates from the memory, delivering these to the ALU, collecting the result and

storing it in memory again. The controller is also responsible for interpreting

inputs (storing results to memory if required to affect processing), as well as which

bit of memory to interpret as instruction and which are data; finally, it is

responsible for interpreting the instruction from the ALU or memory to give the

necessary outputs. Thus the true beauty in this architecture is that the idea of a

‘program’ has been developed, in a sense a virtual machine, which operates upon

a generic simple machine, and exists in the same space as the data upon which

it operates. In a sense, a CA is an extension of this design, in that each

automaton in each cell represents an ALU. Instructions in CA cells are received

from the neighbouring cells data and in a similar way the program and data may

exist in the same memory space. So a CA can be viewed as an abstractly

distributed computing device, containing many ALU, and where the spatial

distribution of data has implications for its purpose.

Von Neumann was critically aware of the other founding father of computer

science, Alan Turing; noting that

“For the question which concerns me here, that of ‘self-reproduction’ of

automata, Turing's procedure is too narrow in one respect only. His automata are

purely computing machines. Their output is a piece of tape with zeroes and ones

on it. What is needed for the construction to which I referred is an automaton

whose output is other automata.” [9].

 42

So Von Neumann’s true intention in the creation of his first Cellular

Automata is likely to have been the search for truly undirected evolution, and the

study of its properties. However, Von Neumann was also keen that these

automata not only be self-reproductive but also perform some useful

computation, thereby being a truly undirected evolution of computation, which

may answer many questions about our own existence. Unfortunately Von

Neumann never finished his work in this area due to his tragic early death in 1957

and this work remained under-reported until Arthur W. Burk collected his works

on the ‘general theory of [complex] automata’ together in 1966 [10].

 Von Neumann’s CA has 29-states and was explicitly designed to

demonstrate the idea of a possibly useful CA (or rather a certain level of

complexity) capable of self-reproduction. McMullin [11] examines the importance

of Von Neumann’s contribution to the area of self-reproductive automata, and

indeed the enigmatical question of exactly why this interested him so. In

McMullin’s 2000’s paper, he puts forth the idea that the self-reproductive

elements Von Neumann’s designs are “trivial, though highly serendipitous” [11],

in that Von Neumann was searching for what he calls “the evolutionary growth of

complexity”. I.e. the question is how do machines construct other machines that

are more ‘complex’, as we are aware occurs in biological machines (i.e. biological

life seems to tend to evolve towards greater complexity). Whereas Von Neumann

himself pointed out how it is obvious that most man made machines can only

generally construct simpler machines, and are far less resistant to error. His idea

was to investigate both the mechanical and computational power that biological

evolution has endowed upon us humans.

Von Neumann’s original construction can be viewed from a slightly different

perspective; i.e. in the light of the Von Neumann architecture, the cellular space

and state transition rule represent an abstract view of a complex emergent

system based on local state transition rules and from another perspective an

abstract model of the universe. Even global rules like gravity (which is the obvious

example Burk uses as a rule based on the distance of two objects, i.e. is not

locally driven) could plausibly be driven by local approximate rules, given some

medium through which to communicate the information, in the case of gravity this

is space itself. We must acknowledge that any model we create of the universe

will have some element of approximation due to it being a model which is not at

 43

the same resolution as the universe itself. By acknowledging this we know that

our model will inevitably have some element of approximation. The base

mathematical concept of Finite Volume Methods takes such a global rule as the

conservation of mass and energy, and creates an approximate mathematical

derivative of the partial differential equations, and in a similar way any rule we

generate locally based on such global rules will have some element of

approximation, which is covered later in this thesis.

In Von Neumann’s original description he made great effort to ensure that

the formulation of his state transition rule was not the source of the Turing

complete computation capability, but that the state transition rule represents the

laws of the abstract universe the cellular space creates [12]. However, in the time

since his death other great minds have taken up the idea of the using the cellular

space, and different state transition rules to investigate a number of different

scientific fields. There are even countless variations including: irregular meshed

CA [13] [14] [15], and heterogeneous CA [16] [17] where the state transition rule

is different in different cells. However, this thesis focuses on just the ‘standard

CA’ as it is already a large umbrella term. Lastly on the subject of the origin and

purpose of CA, one of the classical neighbourhood patterns commonly used is

attributed to Von Neumann due to the it’s use within the original 29-state CA he

developed.

Figure 2.1, Von Neumann Neighbourhood, attributed to the original 29-state
Von Neumann Cellular Automaton.

The next advance in the field of Cellular Automata was developed by John

Conway with the publication of his initial study of the CA he called ‘The Game Of

Life’ (GOL), in the 1970’s [4]. The GOL has only two states (dead – 0, and alive

– 1), in a 2 dimensional infinite regular field of cells. The Moore neighbourhood is

used which, similarly to the Von Neumann neighbourhood (Figure 2.1) only

- Main Cell

- Neighbouring Cell

 44

includes cells within a radius of 1, however within the Moore neighbourhood

interpretation the diagonal cells are included as shown in Figure 2.2.

Figure 2.2, Moore Neighbourhood.

The rule set for the game of life is originally described as follows:

1. Survivals. Every cell with two or three neighbouring cells alive, survives until

the next generation.

2. Deaths. Every cell with four or more live neighbours dies from

overpopulation. Every cell with one live neighbour or none dies from

isolation.

3. Births. Each dead cell with exactly three live neighbours (no more, no less),

becomes alive in the next generation.

Thus it can be determined what should happen when a cell is currently alive

and how it transitions to dead, similarly it can be determined when a dead cell

becomes alive, forming a complete state transition rule, for all configurations.

Importantly due to the way that the state transition rule is based on the number

of live cells within the neighbourhood, it is spatially uniform. These rules were

carefully chosen by Conway via experimentation in order to produce interesting

pattern development; and at this early point several observations of the global

behaviour of the game of life were made, including the nature for apparently

random patterns to emerge with a great level of complexity. However, many

populations will converge to collections of “still lifes”, which either don’t change at

all or oscillate back and forth between two states. The apparent emergence of

very complex patterns from simple local rules pushed the study of CA forward

greatly; with Conway offering a $50 reward for those persons who could prove

the existence of an initial starting configuration which could go on expanding

indefinitely. I.e. a “gun” which would produce “gliders”, which would then self-

- Neighbouring Cell

- Main Cell

 45

propagate themselves outwards; or a “puffer train” a configuration which would

move and leave a trail of “smoke” behind” [4]. This prize was indeed won with the

discovery of a continuous glider gun. Later the game of life was shown to be

Turing complete in 1982 [18].

Although as described by McMullin [11] and others like Langton and

Herman [19] who have tackled the specific problem Von Neumann faced of

producing self-reproductive and Turing complete automata, the Game of Life

allowed computer scientists to look at problems from a different angle. If such

very simple state transition rules as the game of life can lead to such complex

patterns and interactions (to the level of Turing completeness), then how can

such simple rules lead to such complex behaviours, i.e. do all rules lead to such

behaviour. This problem was tackled by Stephen Wolfram who developed a

classification for cellular automata.

In 1984 Stephen Wolfram, made an extensive study of 1D cellular automata

in order to investigate the properties of the emergent patterns in space time [20]

[5]; whereby he classify the behaviours into four distinct classes:

1. Spatially homogenous, most patterns evolve quickly to a stable state with no

change thereon.

2. Sequence of simple stable or periodic structures.

3. Chaotic aperiodic behaviour, nearly all patterns evolve in a pseudo-random

way, and any stable structures are quickly destroyed by noise.

4. Complicated localized structure, some propagating; this is the most

interesting class which is capable of all the behaviours of the above classes

and is thought to be capable of universal computation (Turing

completeness).

In fact, Wolfram likened these to the four forms of form language:

1. Regular languages: no memory required.

2. Context-free languages: memory arranged as a last-in, first-out stack.

3. Context-sensitive languages: memory as large as input word required.

4. Unrestricted languages: arbitrarily large memory required (general Turing

machines)

Logically also he deduces that if other rules sets can be Turing complete,

then the famous ‘halting-problem’ should apply, such that for a given starting

configuration it is impossible to determine if it will reach a stable conclusion in a

 46

finite time; of which the game of life is an example in 2D. At the same time as

Wolfram studied the more mathematical and computer science (complex

systems) elements of CA, Christopher Langton was studying their use further for

the study of artificial life.

As well as tackling the self-replication problems from different angles,

Langton [19] looks at the deeper question, asked by Lehninger in a previous

Biochemistry text:

 “If living organisms are composed of molecules that are intrinsically

inanimate, why is it that living matter differs so radically from non-living matter,

which also consists of inanimate molecules? Why does the living organism

appear to be more than sum of its inanimate parts? Philosophers once answered

that living organisms are endowed with mysterious and divine life-force. But this

doctrine, called vitalism, has been rejected by modern science, which seeks

rational and, above all, testable explanations of natural phenomena. The basic

goal of the science of biochemistry is to determine how the collections of

inanimate molecules that constitute living organisms interact with each other to

maintain and perpetuate the living state…” [19].

This further brings the study of Cellular automata back toward that of the real

world, and not just that of mathematics and computer science, but of underlying

physics and chemistry of the real world. Indeed, Langton uses the idea that he is

modelling ‘artificial molecules’ which are free to roam around in an “abstract

computer space” and interact, by means of ‘virtual automata’. Langton performs

an in-depth study of several different models of artificial life interactions, and

concludes that

“Cellular automata provide us with good artificial universes within which we can

embed artificial molecules in the form of virtual automata. Since virtual automata

have the computational capacity to fill many of the functional roles played by the

primary biomolecules …” [19].

Since these seminal works Cellular Automata have been used to model an

enormous variety of different modelling purposes.

 47

2.1.2 Applications

There are a wide variety of scientific papers using CA models, for a large

number of modelling uses and disciplines. These applications include but are not

limited to:

 Physics (Fluid/turbulent fluid flow [21] – lattice Boltzmann methods [2] [3]

[22] [23] [24], reaction-diffusion [25] [26] [27], laser dynamics [28],

magnetization [29], collision detection, fracture modelling [30])

 Chemistry/Biophysics (reaction-diffusion [31], artificial life)

 Biology (system biology [32], cell simulation internal-chemical/reaction

diffusing within an e-coli cell [31], groups of cells-Keratinocyte skin cells

[33], cardiac tissue [34], artificial life/systems [35] [36], tumour cell

growth, bacteria swarming, epidemiology [37], viral infection/epidemic

spreading [38])

 Computer Science(image processing/visualisation [20] [35] [36] [37] [39]

[40] [41], algorithmic study/benchmarking [24] [21] [38] [33] [37] [42] [43]

[44] [45] [46] [47] [48], cellular programming/GA/GP-classification [43]

[49] [50], cognitive science [51], cryptography [38], computer graphics

and animation, distributed computing [27])

 Geography/Environmental sciences (population movements/dynamics

[38] [52], land uses/deforestation [53] [46] [54], forest-fires [38], wildfires

[55])

 Engineering (wet chemical etching [40], designing hardware (FPGA) to

run CA, communications [38])

 Mathematics [5]

 Hydroinformatics (fluid dynamics [24] [21] [49], sewer optimisation [56],

pluvial flood modelling [57])

 Economics (stock markets [58] [59] [38])

This variety of applications demonstrates the wide applicability of CA

models and in many cases illustrates that the discretisation of time and space for

use with a CA model is able to provide results of acceptable accuracy with greater

efficiency than traditional models. A number of these models will now be

discussed, paying attention to how the state transition rules lead to the overall

modelling behaviour, starting with a simpler rule set of the game of life [18], and

leading on to more complex rules and behaviours.

The game of life (GOL) state transition rule is remarkably simple, as has

been demonstrated above (section 2.1.1). However this gives rise to an even

greater variety of emergent behaviours in the form of small collections of live cells

[25] [50]. Such behaviours as ‘static lifes’ or ‘still lifes’ which either tend to remain

 48

completely static or oscillate back and forth between two states while remaining

still in the cellular space; examples include the ‘blinker’ (oscillates with a period

of 2 iterations) and ‘block’(a still life) (shown in Figure 2.3).

Figure 2.3, A ‘still life’ (Block shown left), and an oscillating life (Blinker shown
middle and right).

The ‘Glider’ is another important form of emergent life, which has the

property of moving through the cellular space; or from another point of view it

doesn’t move but rather through its period it recreates a new version of itself in a

new position, having destroyed the original version. Shown below is the most

famous of these discovered in the game of life, known as ‘The glider’ (Shown in

Figure 2.4).

Figure 2.4, A South-East aligned Glider, Showing the 5 steps required to move
the entire glider one step [50].

These emergent behaviours can be observed at various levels; indeed

using the knowledge of some of the more basic life-forms, it is possible to

construct basic logic gate circuits within the cellular space [50]. All this richness

in global behaviour is created from the interaction in space and time of a very

simple finite state automaton (Shown in Figure 2.5)

Block Blinker (1) Blinker (2)

 1 2 3 4 5

 49

Figure 2.5, The finite state automaton representation of the game of life state
transition rule [50].

Figure 2.5 demonstrates that the state transition rules may be represented

in a number of forms; so long as the rule is able to create a new state for the main

cell based on the states of the neighbouring cells. The GOL rule set requires that

the number of live neighbour cells is counted, in order that the finite state

automaton is able to produce the new state of the main cell. It is this element of

counting the neighbouring cell which maintains the uniformity of both the local

rule and global behaviours (for example the same glider behaviour seen in Figure

2.4 can be created in all four diagonal directions).

Stephen Wolfram uses another interesting rule set variation [60], whereby

every possible combination/configuration of the main and neighbouring cells is

given either a value for the new state (which is either 0 or 1); thus a binary string

is created (and more easily read by humans as an integer number). Known as a

full look-up table, as the state transition rule no longer needs to count the total

live neighbouring cells, it simply determines which configuration within the table

matches the current configuration and looks-up the resulting main cell’s new

state. Such a method does not necessarily preserve the uniformity of the given

rule sets if they are varied. However, either method preserves the fact that the

state transition rule is completely deterministic, in that for every configuration of

the main and neighbouring cells, there is a corresponding new state for the main

cell and it is always the same resulting new state.

In 1986 Christopher Langton developed an interesting rule set; which can

be viewed as either a Cellular Automaton, or as 2-dimensional Turing Machine

 50

[19] [61]; whereby we imagine that at least one virtual-ant (vant) is placed within

the cellular space, and this vant has current direction (North, South, East or

West), and all cells have one of two states (known as to-left and to-right).

Obviously if we are to view this system as a cellular automaton then we need one

single local rule which takes into account the interactions of the vant with the

other cells; thus we can create what Langton calls a Virtual State Machine (VSM).

It is the VSM that represents the global behaviours of the vant in the local

neighbourhood, and represents the concept of the vant moving through the

system. Langton’s Ant rule provides a variation to the Game of life. In the Game

of Life, the movement of collections of cells is not directly encoded within the local

state transition rule, while in Langton’s Ant rule set the vant’s movement is clearly

written into the local rule. However, if we view the movement/change in the global

pattern (i.e. movement of the trail left by vant’s) these elements of movement are

an emergent behaviour. It is possible to use knowledge of how the vant moves

through the system, and move/alter the trails in order to construct circuits and

logic gates within the cellular space. Using this we are able to construct a system

which can simulate the functions of a Turing machine and is therefore capable of

universal computation. If we assume there is only ever one vant within the

simulation then we would only require a 10 state system, 2 non vant states, and

8 states of the vant (two different states of the underlying system multiplied by

the four possible vant directions). In this way Langton has created a local state

transition rule which at each turn destroys the vant in its current position and

knows which cell should receive the new vant. This would generate a uniform

local state transition rule, which would be able to receive the vant from any

direction dependent on its current state.

An important CA rule set used for hydrodynamics is the lattice-gas or Lattice

Boltzmann model. These models have been well studied, and are based on

modelling the convection movements within incompressible gases or liquids.

Frisch et. al. [2] discuss how a Lattice-gas system is modelled by placing particles

of unit mass and unit speed upon the grid, and having these particles moving

between cells in the directions of the lattice. No more than one particle is to be

found at a given time and node (as shown in Figure 2.6 taken from Frisch [2]).

Such systems, model the universe at the level of particles, and use simple

deterministic collision rules which will conserve mass and momentum. These are

 51

performed in two stages; firstly, the collision stage using simple bitwise states to

indicate the direction, and the second step is one of propagation.

Figure 2.6, The Hardy-Pomeau-Pazzis (HPP) model. The black arrows are for
cell-occupation. In (a) and (b) the lattice is shown at two successive times

(taken from Frisch et. al. [2]).

More commonly, it has been found more effective to use a hexagonal grid,

due to the fact that energy would be conserved within each column and row of a

square grid, causing a less realistic spread of particles (Shown in Figure 2.7).

Shown in Figure 2.9 and Figure 2.10, are the simple deterministic collision rules

for the system.

 52

Figure 2.7, The Frisch-Hasslacher-Pomeau (FHP) model with binary head-on
and triple collisions at two successive times. (Frisch et. al. [2]).

In actual fact as it is the vertices of the hexagonal grid upon which the

particles sit and move, it is actually a triangular mesh used; as shown by Szkoda

et. al. [21] in Figure 2.8.

Figure 2.8, Szkoda et. al.’s method for creating a triangular (a) lattice our of
regular lattice by shifting every second row by half the lattice constant (b) [21].

 53

Figure 2.9, Collisions rules for the FHP Cellular Automata system [21].

Figure 2.10, The state of each node is represented by an 8-bit word. Bits 0-5
mapped into particles with given non-zero velocities, bit 6 corresponds to a
particle at rest and but 7 controls whether the node is a boundary node [21].

Considering a simple incompressible fluid within a regular square lattice,

and using the von Neumann neighbourhood, assume gravity drives the water

level down to a median level, and friction stops the majority of the effects of

momentum on a flat terrain. In this case, the rule set is very simple, in that water

levels within the neighbourhood can be averaged out (mean) to produce the new

water level.

While this can produce some very elegant global reactions, it has two major

drawbacks in that it can only operate within a flat terrain, and operates at a fix

rate with little to no reference to real world simulation time.

2.1.3 Urban flood modelling

The physics of fluid dynamics are well understood, where the Navier-Stokes

Equations [3] describe the movements of incompressible liquids such as water,

known as the Shallow Water Equations (SWE). These equations are partial

differential equations which preserve the volume, momentum/energy of the

system. However, solving such equations requires large amounts of

computational power as the Navier-stokes equations do not describe the

 54

movements at any particular point, but rather the preservations of volume and

energy across the system.

With the increase of urban creep, whereby cities tend to grow and the

amount of impervious ground is enlarged, city planners, their residents and

planners face increasing challenges with flooding. Also with more volatile and

uncertain weather conditions, further increases the problems for engineers in the

design of cities and their sewer networks. In order to design better cities, sewer

systems and other Sustainable Urban Drainage System (SUDS), and in order to

test such system under many conditions before the expensive process of

construction, many simplified modelling systems have been created. Due to the

need to produce high detail models, and varying conditions such as different

weather inputs, and different engineering solutions to high risk flooding areas, or

early warning systems, simplified 2D models are generally used [62] [1].

The UK Environment Agency, along with the water companies are

responsible for maintaining public water ways and sewer systems in the UK. In

this capacity they have benchmark tested a number of state of the art modelling

packages including ANUGA, Flowroute-i, InfoWorks ICM, ISIS 2D, ISIS2D GPU,

JFLOW+, MIKE FLOOD, SOBEL, TUFLOW, TUFLOW GPU, TUFLOW FV and

UIM [1]. These packages which use simplified equations, which have been

grouped in to three categories:

1. LISFLOOD-FP and RLSM EDA, which solve a version of the SWE

neglecting the advective acceleration term (referred to as ‘3-term’

models)

2. ISIS Fast Dynamic, which utilizes Manning’s uniform flow law and

UIM which solves the SWE without the acceleration terms (referred

to as ‘2-term’ models)

3. ISIS Fast and RFSM direct, which are based mainly on continuity and

topographic connective, and therefore predict only a ‘final’ state of

inundation, that is, there are no variations in time (referred to as ‘0-

term’ models) [1]

The majority of these models use a 2D storage cell system based on a

regular raster grid. Due to the simplification of the full SWE equations used by

 55

many modern models, they form a good approximation of the models using the

full equation, with much less computational complexity. Processing times are

increasingly important for large spatial scale problems (large extent, fine grain

resolutions, or even large numbers of simulations), while maintaining reasonable

accuracy. In recent years a shift towards localised and even CA models has been

proposed to reduce the computational complexity further still.

The models studied in this thesis, are 2D non-inertia models, where UIM

[62] and the Hunter [63]/Bates [64] models are based on the Saint Venant

equations in which the inertial terms are neglected by the assumption that the

acceleration terms of the water flow on the land surface are relatively small

compared with gravity and friction terms [65].

2.1.4 CA for Urban flood modelling

Open Channel systems, are examples of continuous CA, which represent

the state as a floating point/real value. Open Channel system represent water

depths within each cell, also a terrain height is often stored, where the water

volume sits on top of the simulated terrain (Shown in Figure 2.11). The terrain

levels are fixed and do not change during a simulation, but the water depths and

levels change over time.

Figure 2.11, Side view a cell represented by the continuous values terrain level,
and water depth, which summed together equal the water level, stored within

each cell of an open channel CA system.

The global physics of water are well understood, using the Navier-Stokes

equations, which preserve the mass, momentum and energy within a system.

Open Channel CA simplify this approach by preserving mass locally and

therefore globally, and assuming that gravity drives most of the movement, while

friction negates most of the effects of conservations of energy/momentum. These

are the CA systems which are investigated in more detail, and later in this thesis

used for experimentation.

Water Depth

Terrain Level
Water Level

 56

 CA systems use a similar two stage system to the Lattice-gas models and

must first establish the outflows from a cell in the four orthogonal directions; i.e.

using the Von Neumann Neighbourhood, as shown in Figure 2.12 and Figure

2.13.

Figure 2.12, Demonstrates how the outflows are calculated within the Cellular
Automata system, between the main cell and each neighbour of the Von

Neumann neighbourhood. Centrally showing a side view of the terrain and
water levels of the selected two cells, and a plan view of the neighbour on the

right.

As is common to most known Open Channel CA, they make the basic

assumption that the water can only flow from the cell with the higher surface Level

to cell with the lower water surface level, which establishes the direction of flow

(also assuming momentum is largely negated by frictional forces). In order to

balance the water volume, the model only calculates outflows from each main

cell to its neighbours, as those neighbours where the water level is higher, will

themselves create an outflow to this main cell. The total amount of water leaving

a cell in up to all four directions cannot be allowed to exceed the volume of water

within the main cell otherwise volumes will be created and/or destroyed across

the grid. Therefore a two stage system is utilised where in the first stage all the

cells established outflows to all the necessary neighbours, as shown in Figure

2.13. A second stage then removes outflows from the current water level, while

adding inflows from other cells and in doing so balances the water mass across

the grid while allowing for lateral and horizontal movement of water.

 57

Figure 2.13, The two stages of the CA flood system. Stage 1 for every pair of
cells an outflow is calculated, stage 2 every cell updates water depths by means

subtracting outflows and adding inflows.

This kind of two stage CA system is rather different from most previous

models but maintains the key elements of local state transition rules, which are

uniform in each direction. They are also complete in that they provide an output

for every possible input. However, this is in the form an equation commonly

representing the flow rate from one upstream cell to another. In the following

sections a number of key open-channel systems are investigated.

2.1.4.1 Dottori and Todini technique

A key example of this kind of Open Channel CA is that of Dottori and Todini

[66], as they use a very direct method of calculating the outflows from each cell

to its neighbouring cells. As has become a common approach with open channel

techniques, the Manning’s formula is utilised (Equation 2.1), which can calculate

the flow in an open channel such as a river for example. The Manning’s formula

only calculates the flow rates, and needs to be coupled with the discharge formula,

shown in Equation 2.2, in order to calculate the volume of water transferred in the

given time step.

Equation 2.1 V =
1

n
R

2

3S
1

2

Equation 2.2 Q = VAT

The Manning’s formula is shown in Equation 2.1; Where V represents the

volume metric flow rate, n is the Manning’s frictional coefficient, R is the hydraulic

 58

radius, and S is the hydraulic gradient. The discharge formula is then used to

calculate the volume of water transferred, shown in Equation 2.2. Where Q is the

transfer volume, A is the cross-sectional area of flow, and T is the amount of time

at this flow rate. The hydraulic radius (R) interpretation differs from the Ghimire

[65], Dottori and Todini [66], and Bates [64] methods; and the hydraulic gradient

(S) is the difference between the water levels divided by the distance between

the centroids of the cells (which in a regular grid is the cell size). The Dottori and

Todini method uses the arithmetic mean between the main cell and the

neighbouring cells depth, to calculate the hydraulic radius (R) in the Manning’s

formula. They are unclear as to exactly how they control the flows when the total

from one cell exceeds the volume present, saying:

 “Every discharge calculation step includes a control on volumes; which

avoids that the volume of water flowing out of a cell is greater than the sum of the

volume stored in the cell itself and the incoming volumes from adjacent cells.”

[66].

The system then proceeds to use two simple test cases to test the stability

of the schema. Firstly, an open 1D channel of length 50km, and width 250m, and

a slope of 10-4, and a Manning’s roughness factor of 0.05 m-1/3s. Using 3 different

cell sizes, of 125mx250m, 250mx250m, and 500mx250m, Dottori and Todini test

different spatial resolutions (notably by varying the longitudinal grid resolution).

Their results are validated against the Hydraulic Engineering Centre (HEC),

Hydraulic Reference Manual (HEC RAS). I.e. this is a well-known hydraulic test

case. Table 2.1, shows their results, where they test at various time steps on

each of the cell sizes.

Table 2.1, Dottori and Todini results on the open 1D channel tests at various
cell sizes, and time steps. Where an “N” indicates that the simulation produces
significant oscillations on the solution, while “Y” indicates a stable solution. NC

ts indicates the minimum time step computed by the Neumann condition
(discussed later) [66].

Here in Table 2.2, Dottori and Todini note that “As expected, the reduction

of cell size decreases the model stability, and vice versa; however, the accuracy

 59

of the solution is not compromised by spatial discretisation until water level

oscillation becomes significant ” (Shown in Table 2.2). This demonstrates how

there is a relation between the cell size and the maximum time step, at which

their schema is capable of operating. They use a common approach of calculating

the RMSE (Root Mean Squared Error) of their model against their control model

(HEC-RAS), and find the maximum to be well below 4cm. It is also noted that the

control mode (HEC-RAS) uses the full De Saint Venant Equations. Processing of

their simulation is performed in less than 4 seconds, showing the computational

efficiency of the local schema.

The second test case is that of horizontal plane, as they note “routing on a

flat slope is a case in which hydraulic models may be more subjected to instability,

particularly when flow velocity and water surface slope are reduced. Considering

explicitly diffusive models like CA models, the two instability factors are the use

of high resolution grids (cell sizes below 10m) and the presence of deep water

stages.” [66]. They use a horizontal plane, at two grid resolutions of 10x10 cells

of 20x20m size, and 20x20 with a 10x10m size. The water depths are set to 3m

across the whole plane, with no subsequent incoming water. The water is drained

via a weir located in one corner. They also noted that “such initial conditions are

chosen because tests with incoming discharge have shown that the magnitude

of oscillations seem to be only a function of the water stage and cells size” [66].

The results are shown in Table 2.2, and Figure 2.14.

Table 2.2, Results for Dottori and Todini case 2, where a “N” indicates that the
simulation produces significant oscillations on the solution, while “Y” indicates a

stable solution. NC ts, indicates the minimum time step computed by the
Neumann condition.

 60

Figure 2.14, Dottori and Todini, case 2, water stages/depths computed by CA
model after 30 minutes (left) and 1 hour (right) from simulation start. The outlet

is located in the lower right corner.

From Table 2.2, and Figure 2.14, it can be seen that the instability increases

when increasing the time step or decreasing the cell size, and vice versa. They

conclude that stability is primarily dependent on the spatial and temporal

resolution, like other explicit models, and therefore a stability condition is required.

They first consider the Von Neumann stability condition, shown in Equation 0.3

[66]. Where ∆t is the minimum time step, and ∆𝑥 is the cell size, n is the manning

roughness coeffiecnt, R is hydraulic radius and S is the hydraulic gradient.

Equation 2.3 ∆𝑡 =
∆𝑥2

4
𝑚𝑖𝑛 (

2𝑛

𝑅5 3⁄ 𝑆
1

2)

Importantly they note that the FLO2D model, based on the full shallow water

equations, uses the Courant-levy-Friedrich (CLF) condition, shown in Equation

2.3.

Equation 2.4 ∆𝑡 = 𝐶∆𝑥/(𝑣)

Where ∆t is the time step, C is a coefficient which depends on the adopted

explicit algorithm, ∆x is the cell size, and v is the velocity (generally the largest

within the grid); although Dottori and Todini note that the CFL condition is not

suitable for CA models since the diffusive approximation needs more stringent

conditions. However, it was found that the models maintained stability with

greater time steps than those computed by the Neumann stability condition

(Equation 2.4).

 61

2.1.4.2 Ghimire et. al.’s technique

The work by Ghimire et. al. [65] distributes the water from the main cell to

the lowest downstream neighbour, before working its way up to the next most

downstream neighbour until the water levels are matched, or all the water of the

main cell flows out to the downstream neighbours (as shown in Figure 2.15, taken

from [65]). They then use the Manning’s formula to establish how much time has

passed given the largest flows (both within each neighbourhood and then globally

across the grid), thus allowing it to adapt the time step to the flow conditions. The

method uses the water depth within the main cell as the hydraulic radius (R)

within the Manning’s formula. The authors found it necessary to use a relaxation

parameter in order to stop excessive oscillations from occurring as it over-shot in

some areas, by trying to go at the maximum limits of the CFL condition.

Figure 2.15, Ghimire CA flooding state transition rule: (a) Cells ordered in NH
according to their ranks;L1-L4 are layers of free spaces between the water

levels of the two cells that area available within NH for water distribution, the
numbers shown are cell ranks. In this diagram the ground level for each cell is
shown in dark grey and the water level light grey, (b) an example of the outflow
fluxes (shown by arrows) from the central cell having rank 3 to its neighbouring

cells [65].

They then employ a hypothetical terrain for testing, consisting of 30 x 20

cells, at a 50m resolution; “The terrain consists of both forward and reverse

slopes of 0.2%. It also has a lateral slope of 0.1 toward the outlet”, where the

outlet was removed for consistency (Shown in Figure 2.16). A roughness factor

 62

0.01n is applied across the terrain, and a rain fall of 20mm/h for the first hour of

the simulation is used as input for the water depths.

Figure 2.16, Hypothetical ‘Hill and Pond’ terrain, and given test points; taken
from Ghimire et. al. [65].

The Ghimire rule set represents a truer CA approach in that the rule set for

establishing outflows is based on the neighbouring values, as opposed to a

formula between a pair of cells replicated for each neighbour. However, it then

only uses the downhill neighbours, and calculates the outflows for each edge in

a similar 2 stage system to the Dottori and Todini technique. Ghimire et. al. do

use a novel ranking (or ordering) system to establish outflows within their rule set.

Shown in Figure 2.17 are the results of the of the Ghimire et. al. [65] model

compared to the UIM model [62] on the Hill and Pond test case. This test case is

later used for training and validation in Chapter 4:.

 63

Figure 2.17, Resulting water depths using UIM and the Ghimire et. al. rule [65]
at the (a) pond,(b) left of crest, (c) right of crest, and (d) crest points of the

hypothetical ‘Hill and Pond’ terrain, and given test point.

It is noted that the results shown in Figure 2.17 are using a 0.7 relaxation

parameter setting. It should also be noted that they [65] use a capped version of

the Manning’s formula in their time step calculations. Ghimire et. al., also use a

real world test case, with a 2m resolution, Keighley from the UK, to test the rule

set (shown in Figure 2.18), Consisting of 377 x 269 cells.

Figure 2.18. Stockbridge Keighley terrain, with sample points 1-6 drawn [65].

The abstract shape of the terrain is represented by using an encompassing

regular terrain and ‘no data’ cells where the terrain extent is not covered. The

 64

resulting comparisons of the water depths for the rule set on the Keighley test

case are shown in Figure 2.19, for the 6 test points.

Figure 2.19, Resulting water depths from UIM and the Ghimire rule set, for the 6
test points of the Keighley test case [65].

The results from Figure 2.17 and Figure 2.19, show there is certainly a

degree of variation between the models, however the general trends are also

certainly followed. In order to calculate the time step that generates a stable

simulation the authors use the CFL condition, in a slightly different form to that of

Equation 2.3, shown in Equation 2.4. Although the use of a relaxation parameter

within the main rule set, means that the entire process can be scaled back for a

particular amount for a particular simulation, and they conclude that a method is

require for the automatic calibration of this relaxation parameter (α).

Equation 2.5 ∆𝑡 = 𝛼∆𝑥/𝑣

2.1.4.3 Hunter and Bates et. al.’s technique

First established by Hunter et. al. in 2005 [63], then advanced by Bates et.

al. 2010 [64] this method functions by firstly simplifying the Manning’s formula

 65

and discharge formula together and separating out the time step element (shown

in Equation 2.6). I.e. the volume transfer rate is calculated.

Equation 2.6 𝑄 =
1

𝑛
𝑅

5

3𝑆
1

2∆𝑦

They also use the difference between the water level (free surface height)

in the main cell, and the highest of the two terrain levels between the main and

neighbouring cell, to calculate the hydraulic radius (R). This key element ensures

that where the water level of the main cell is higher, but the terrain level of the

main cell is lower than the neighbouring cell (as shown in Figure 2.20), then water

is only allowed to flow through the smaller area. The hydraulic radius (R) has

been calculated as the entire water depth of the main cell (Ghimire), or the mean

of the two cell water depths (Dottori and Todini).

Figure 2.20, A pair of cells, where the left cell is the main outflowing cell, as it
has the higher water level. However, terrain level of the main (left) cell is lower
than that of the cell it is outflowing to. It makes sense that water between the

dotted line and terrain level of left cell, shouldn’t be included in outflow
calculations, as it is the higher water level that drives the outflow.

The area of outflow (A), which is the cell size, multiplied by the outflowing

depth, is factored into the Manning’s formula leaving just the time step outside

(shown in Equation 2.6). Notably the hydraulic radius in this formula is raised to

the power of 5/3, as opposed to 2/3 in previous techniques, which would then

multiply by the outflowing depth (which is equivalent to the hydraulic radius).

Having then multiplied by the cell size, the outflow area (A) from the discharge

formula is completely factored into this single formula, leaving the time step as

an independent variable. Apart from the change to the hydraulic radius (R)

interpretation in the above techniques, these changes only constitute

mathematical simplification and manipulation.

Outflow Depth

 66

However, Hunter and Bates et. al., develop a key technique for limiting the

flow rates, by considering the physical limitations of applying the Manning’s

formula to such a CA system. That is, the Manning’s formula calculates a flow

rate (or velocity per unit area) in the given lateral direction across the grid,

however when this is combined with an especially large time step, the flow

according to the Manning’s formula will cover a range greater than that of next

cell (neighbourhood radius), as shown in Figure 2.21. As it is not possible for

water to move further than a radius of single neighbourhood within a single

iteration, then these excessive flows cause an incorrectly large water level in the

next cell in the next iterations, as opposed to correctly flowing further laterally.

This in turn cause the false diffusion effect shown in Figure 2.22, whereby even

one incorrectly large flow causes feedback that spread across the simulation

destroying its overall quality.

Figure 2.21, Demonstrates what the physics of the flow rate means, i.e. that
water will perturb through the given area, by multiplying the time at that flow
rate, finds the distance of flow. Effectively the entire block of water is seen to

have the given velocity.

Outflow Direction

 67

This also occurs when the water levels are very similar, as is shown by

Hunter & Bates [63] work in Figure 2.22.

Figure 2.22, Illustration of the chequerboard oscillations between two adjacent
cells [63]. (a) At end of time step t, the level in the cell i, j has for the first time

risen above that of cell i-1,j. (b) At the end of the time step t + ∆t, the discharge
from i,j to i-1,j, should be equal to zero as the levels in each cell are equal. (c)
However, an oscillation begins to develop as a result of the low free surface
gradient between the two cells. (d) The erroneously high flow causes a back

flow at t + 2∆t.

Therefore Hunter and Bates, develop a flow limiter to ensure that the flow

does not ‘over’ or ‘undershoot’, and is a function of flow depth, grid cell size and

time step (Shown in Figure 2.23).

Figure 2.23, Flow limiter formula, used by Hunter and Bates et. al. where the
flow rates are first calculated by the Manning’s formula (Shown in Equation 0.6),

then the minimum between the above and that outflow is calculated [63]..

Hunter and Bates note that “This limiter replaces fluxes calculated using

Manning’s equation with values dependant on model parameters, and hence

when the flow limiter is in use floodplain flows are sensitive to grid cell size and

time step, and insensitive to Manning’s n.” [63]. While they note there is still a

stability issue with small cell sizes, and/or high time steps; stability is increased

over that of previous works by a factor of 2, and the Hunter-Bates rule set with

the flow limitation uses the Von Neumann stability condition shown in Figure 2.24.

This operates at much higher time steps than previous formulations.

 68

Figure 2.24, Hunter and Bates et. al. formulation of the Von Neumann stability
condition, which the minimum flow in the neighbourhood, and the square of the

cell size to calculate the time step for stability.

2.1.5 Conclusion

This section has studied the applications and science behind Cellular

Automata. There are many different applications of CA, for a wide variety of fields

of study and modelling environments. There is an even greater variety of methods

for the definition of the state transition rules, however the majority of rule sets and

methods for defining variable rule sets are explicitly designed to ensure that

provide the same result given the same input from different directions (referred

to as uniformity to direction). The design of the state transition rule is highly

dependent on each application.

While limitations and approximations of the systems exist, overall CA are

seen as a good modelling system. The models investigated in this thesis are

limited to non-inertia models, being based on the Saint Venant equations in which

the inertial terms are neglected by the assumption that the acceleration terms of

water flow on land surfaces are relatively small compared with gravity and

frictional terms [65]. CA are included amongst these 2D non-inertia models and

are shown to be capable of making a reasonably good approximation of actual

flow patterns. Due to the local nature of the CA, there is a limiting factor for the

maximum flow rate, as flows can only propagate across a single cell within a

single iteration (known as light speed within CA). Excessive flows have been

shown to cause large oscillations, which destroy the quality of the overall

simulation. A number of flow limiters have been created however there remains

a relation between the maximum time step, the cell size, and the flow rates. Within

these limitations CAs can offer a good approximation of the global mechanics of

fluid dynamics while using a local state transition rule to drive the system. By

using a locally driven rule, simulation can be performed in a much less

computationally complex framework. Furthermore, CA and such locally driven

 69

systems are inherently parallel, which may make good use of modern hardware

to further speed up the production of reasonably good simulations.

2.2 Genetic Programming

2.2.1 Introduction

Genetic Programming (GP) first used by J Koza [6] [7] is an evolutionary

algorithm which uniquely operates on a variable sized chromosome, commonly

in a tree structure. The algorithm maintains a population of candidate solutions,

with each tested to establish a fitness score, where fitness is calculated by testing

each candidate solution and finding its error compared to some given model.

Fitter candidate rules are selected stochastically, taking into account the fitness

of the solution, for example by using fitness proportionate roulette selection or

tournament selection. The selected candidates then have genetic operators

applied upon them, such as crossover and mutation. A given set of operators and

terminal values are used in the tree structure, with some operators such as

division needing protection from spurious inputs (e.g. divide by zero).

The umbrella term of Genetic Programming covers most techniques that

evolve computer programs and there are many different varieties of GP including:

Cartesian GP [67] [68], Linear GP [69] [70] [71] where linear GP also Includes

Multi-Expression Programming (MEP), Gene Expression Programming (GEP)

and Grammatical Evolution (GE) [72]. However, with the ‘standard’ Koza style

GP the key element is that they operate upon a tree structure (or program, as

they too can be represented as an abstract syntax tree). A program that is a list

of instructions may be viewed as a tree structure, or a basic mathematical formula

(as shown in Figure 2.25, [73] which shows the GP parse tree for Equation 2.7).

Equation 2.7 (𝑥 ∗ 𝑥) + 2

 70

Figure 2.25, A very basic GP parse tree for Equation 2.7.

The key underlying idea, and variation between Genetic Algorithm (GA) and

Genetic Programming, is they will operate upon/represent a variable size of

chromosome. The tree structure is ideal for representing logical groupings (or

nested groups) of functions and operators (sub-formulae), which in the case of

Equation 2.7, might be the (𝑥 ∗ 𝑥) element/sub-tree. The reason for this

representation is primarily to allow for cross-over of two different sized

chromosomes. While GA and EA produce a static sized chromosome which tends

to require further interpretation, GP produces a variable program or formula.

Where machine learning techniques such as an Artificial Neural Network use a

fixed number of hidden units and can only match a certain degree of polynomial,

GP can express both a very simple formula and a very complex one, which allows

for a lot more freedom of movement within the search space.

Crossover in GA and EA is easily performed because the two parent

chromosomes will be of the same length. They can therefore be aligned easily

and equal amounts of material can be exchanged. This will either be a multi-point

crossover or a single point crossover, where genes are taken from one parent

chromosome up until one of these locus points, and then genes are taken from

the alternate parent until the next locus point (a 2 point cross-over of linear

chromosomes of the same size is shown in Figure 2.26). Often GA systems will

use a probability of selecting a gene from either particular parent. However, GP

has variable length chromosomes, and so these simple forms of cross-over are

not so easily executed.

 71

Figure 2.26, 2-point cross-over of same sized linear chromosomes, commonly
used in EA and GA systems.

To tackle this, Koza developed the sub-tree crossover system as shown in

Figure 2.27, whereby a sub-tree is selected from both parent trees, and both

entire sub-trees are exchanged between the position where the former sat in the

opposite parent tree. This is analogous to the 2-point cross-over shown in Figure

2.27, in that a block of one parent is exchanged with a continuous block from the

other parent. However, a major difference is that the locations of the blocks of

code can change, and therefore so can their form and function.

Figure 2.27, Sub-tree cross-over in GP, two different sub-trees are selected
from the two parent trees, and exchanged to create the new off-spring tree [74].

Due to the tree structure, expressions are commonly expressed in reverse

Polish notation, for example using languages like LISP. An example LISP

expression is shown in Figure 2.28, demonstrating how more complex formulae

can be composed, and commonly 2-3 branch nodes are used.

 72

Figure 2.28, A parse tree for the list for the LISP S-expression (+ 1 2 (IF (>

TIME 10) 3 4)) depicted as rooted, point-labelled tree with ordered

branches [6].

A key problem with having a variable sized chromosome in GP is what is

known as ‘program bloat’ [75] [76] [77] [78] [79] [80]. It is commonly thought that,

expanding volumes of ‘junk’ code which does not affect the individual GP tree’s

performance (sometimes using the biology analogy “introns”) [81], causes the

bloat. Experiments by Langdon and Poli [81] on dynamic fitness cases, find that

large penalties do not affect program bloat. Often an upper cap is placed upon

the number of nodes (branch and terminal/leaf nodes) or the depth of the tree.

[82]

Genetic Programming is a relatively new field, with its first conception in the

early 1990’s by Koza, however it does extend the relatively well established fields

of evolutionary algorithms, and machine learning. As shown by a recent

community survey (2013) [83], there are a wide variety of GP application domains

(shown in Table 2.3).

 73

2.2.2 Applications

Table 2.3, Problem domains used in EuroGP and GECCO GP track papers
2009-2012, from the ‘Better GO benchmarks: community survey results and

proposals’ [83] .

Technically GP could be applied to many more machine learning

applications/problems, as at its core is the idea of being able to evolve entire

computer programs. However, as it is a relatively new field, there is still much

research to be done to fully understand the field. Therefore, researchers perhaps

more often opt for ‘better understood’ machine learning algorithms. It is clear from

Table 2.3, that a large number of applications are concentrated on symbolic

regression problems. This is due to a number of factors, firstly the fact that unlike

other machine algorithms (e.g. Artificial Neural Networks (ANN)), GP produces a

human-readable formula. Secondly by limiting GP to operating without loops or

recursion (such as mathematical formula, as shown in Figure 2.25 and Figure

2.28), there is no need to tackle the halting problem. I.e. a GP with forms of

memory, and/or capable of looping, could either take a very long to time to come

to its conclusion, or never stop.

The third reason for symbolic regression GP application volume seen in

Table 2.3 is possible due to the ease with which data can be produced and tested.

 74

Classification and Boolean application figures seen in Table 2.3 are probably

explained by similar reasons to those of symbolic regression. Whereas path

finding and planning demonstrates how the tree structure lends itself to these

kinds of problems.

Table 2.4, ‘Better GP benchmarks: community survey results and proposals’
[83] A proposed blacklist of benchmark problems.

Table 2.4, ‘Better GP benchmarks: community survey results and proposals’

A proposed blacklist of benchmark problems. shows a number of problems the

GP community has suggested for ‘blacklisting’, due to fact that many of these

problems are simply “too easy” [83] for GP, or rather GP is known to lend itself to

solving these problems easily. A number of more complex problems are

suggested, including multiple output multipliers to replace parity and multiplexers

and more complex classifiers and planning and control applications including

Mario gameplay and physical TSP (Traveling Salesman Problem). Also the

community begins to establish some benchmarks for the symbolic regression

cases, which are shown in Table 2.5.

 75

Table 2.5, ‘Better GP benchmarks: community survey results and proposals’
[83] A list of proposed benchmark problems for symbolic regression for GP. In

the training and testing sets, U[a,b,c] is c uniform random samples drawn from a
to b, inclusive, E[a,b,c] is a grid of points spaced with an interval of c, from a to

b inclusive.

The problems suggested in Table 2.5, show a minimum amount of

complexity for which GP should be applied, as well as demonstrating how GP

tends to be trained and tested on similar ranges. GP searches multiple levels of

complexity by combining (stringing together or nesting) relatively simple

mathematical operations and terminal values (static values and variables), and

therefore should be applied to reasonable level of complexity for the target

formula.

In a recent paper titled ‘open issues in genetic programming’ [84], they again

confirm that “GP has not reached the popularity of other machine learning

methods. At the current time, GP does not seem to be universally recognized as

a mainstream and trusted problem solving strategy, despite the fact that in the

last decade GP has been shown to outperform some of these methods in main

important applications” [84]. However, there is room for optimism, as GP has

been accepted in platforms like MatLab, and Mathematica. Also GP has been

shown to be capable of solving real-world problems, and demonstrating routine

human competitiveness.

 76

The research field of GP has a number of open issues identified, including

[84]:

 Identifying appropriate representation for GP

There are a number of different representations besides the standard pre-

dominant tree-based form popularised by Koza, including binary string machine

code, finite state automata, and generative grammatical encodings. Other

representations include graphs, strongly-typed, linear, linear-trees, and linear-

graph [84].

 Fitness landscapes and problem difficulty in GP

The choice of genetic operators and fitness functions will have a large sway on

how the GP is capable of learning the given system. More research is required in

order to establish the links between types of fitness functions, and different

operator sets, and performance of GP.

 Static versus dynamic problems

Given that natural evolution is only really concerned with the survival and

reproduction of species, the challenges that are presented for each individual’s

survival tends to be fairly different. It is currently thought that more dynamic test

environments for the GP training would result in greater diversity and perhaps

better generalisation (i.e. increased adaptiveness of individuals) [84].

 The influence of biology on GP

The fields of evolutionary computation and GP have two main goals, firstly to

reverse engineer or rather come to understand the mechanics of natural evolution

better. Secondly to harness and understand the mechanics/algorithms of natural

evolution such that they can be applied to other problem areas [84].

 Open-ended evolution in GP

Stemming from work by Von Neumann and Turing, and others, is the idea of

evolution with no clear goal. Natural evolution appears to have no clear fitness

function, yet somehow the complexity of life forms has increased continually.

 77

Recent work by Moore and co-workers [85], show the essential ingredients of

open-ended evolution are (i) a dynamically changing fitness landscape, (ii)

availability of co-evolutionary processes, (iii) search with continuously injected

randomness [84].

 Generalisation in GP

How to ensure that the evolved GP have good properties of generalisation (i.e.

does not over fit the training data)? “A large amount of literature and of well-

established results exists concerning the issue of generalisation for many non-

evolutionary Machine Learning strategies” [84]. A common agreement of many

researchers is the so called “minimum description length principle”, which states

that the best model is the one that minimises the amount of information needed

to encode it. However it has been noted in the aptly named paper “The role of

Occam’s razor in knowledge discovery” [86] , that the above argument of

minimum description length, should be taken with care as too much emphasis on

minimising complexity can prevent the discovery of more complex yet more

accurate solutions. It has also been suggested that bloat is related to over fitting,

however recent work by Vanneschi et. al. (2009) [87] clearly shows that GP

systems can be defined that bloat and do not over fit data, and vice versa. Thus,

bloat and over fitting seem to be two different phenomena.

 GP Benchmarks

As GP is capable of solving such a wide range of problems, and in a wide variety

of ways, some of the unique facets of GP mean that the community continues in

very recent years to attempt to establish a better set of benchmark problems

specifically for the GP field, as shown by [83].

 GP and modularity

Many modern high level computer languages have the concept of functions, and

even nature begins to block groups of DNA together in to chromosomes. How

can this kind of modularity be incorporated or even derived by the evolutionary

system? The first attempts came through Koza’s [6] Automatically Defined

Function (ADFs), although little study was done on the theoretical background.

The first steps towards a theoretically motivated study of ADFs is probably

 78

represented by [88], where an algorithm for the automatic discovery of building

blocks in GP called ‘adaptive representation through learning’ is proposed. Linear

GP has other ways to evolve modularity, by reusing contents of registers; memory

in LGP can be considered a substitute for ADFs in tree-based GP [84].

2.2.3 Genetic Programming and Cellular Automata

There have been a number of cases of the application of GP for the learning of

CA state transition rules, although most of these studies do not use continuous

CA, but most commonly the binary state CA or a similar low number of states.

For example Andre & Koza discover a better than any known rule by means of

genetic programming for the majority classification problem [89]. In this case a 1

dimensional binary state CA is used, with a neighbourhood radius of 3, which

allows for complex interactions of the rule sets. The problem is to create a rule

set which will after a certain number of generations finds the state the majority of

cells were in at the initial condition. It does this by means of altering the states of

the cells, such that at the conclusion all cells have changed to the majority case.

The resulting state transition rule is encoded as a 7x7 bit string of binary values,

totalling a 149 bit string. The best evolved system results in an accuracy of

82.326%, which exceeds that of any human designed rules. The number of test

cases used for each fitness case is in the order of 106 to 107.

Other examples of Genetic Programming in CA include [90], again Koza,

although this time working on using 1D CA to produce pseudo-random

sequences and using entropy as the fitness function. Koza in this paper states

“The problem of designing a state-transition rule that, when it operates in each

cell of the cellular space, produces a desired overall emergent behaviour is called

the ‘inverse’ problem for Cellular Automata” [90].

The only sources of learning of continuous CA state transition rules, comes from

the use of CA for image processing, often for edge detection [91]. However, such

methods use Genetic Algorithms or EA, and use very simple state transition rules,

where the optimisation is only calibrating the human created rule.

 79

2.2.4 Alternatives to GP for learning CA state transition rules

The majority of works that have used machine learning algorithms to

develop CA state transition rules, use a genetic algorithm and tend to operate on

binary state CA [92] [93] [94]. The majority of these tackle problems such as the

majority task, as Andre & Koza [89] did with GP. GA is a good match for this sort

of problem because of the binary state available to each cell, where there is a

limited number of combinations at the neighbourhood level, and a binary gene

may represent the resulting state of the main cell for each neighbourhood

configuration. I.e. using a numbering system like Wolfram’s code [5], it is possible

to represent easily every combination in a binary string.

There are a number of CA which are used to model land uses and people

movements, and a number of these methods use machine learning algorithms to

calibrate a number of the model parameters [95]. The underlying mathematical

framework for the state transition rules are developed by humans, but by allowing

an element of calibration, such methods can easily learn an effective state

transition rule.

A number of other methods propose adaptive or self-programming state

transition rules [96] [58] [53] , where the state transition rule learning is done

during the evolution of the CA. The majority of these kinds of systems are

developed for either stochastic or heterogeneous CA.

Another interesting CA technique is the use of what is termed a Cellular

Neural Network [36] [97] [98], whereby the state transition rule of the CA is a form

of neural network (Shown in Figure 2.29).

Figure 2.29, Neighbourhood for a Cellular Neural Network, where weighted and
possibly even function based elements connect the main cell to each of the

Moore neighbourhoods cells [36].

 80

Cellular Neural Networks are commonly used for image processing, due to

their ability to represent a wide range of different graphics kernels, and the

analogy with graphical filtering. They tend to use a very direct relation between

the neighbouring cells and the new state, and may not be uniform, and they are

not designed to represent complex functions between each cell.

2.2.5 Conclusion

Genetic Programming is capable of learning complex formulae, and has

been shown to be capable of deriving state transition rules for simple CA systems.

While there is a limited amount of work pertaining to the learning of state transition

rules, the majority is aimed at either binary state CA or calibration of simple land

use CA. A number of genetic algorithms have been applied to learning CA state

transition rules, or their calibration and this has proven successful in a number of

areas. Therefore, it appears reasonable to conclude that applying genetic

programming to the learning of more complex continuous CA state transition rule

should be able to derive rules with some success. Furthermore, GP is capable of

producing human readable formula as the result of his optimisation, which may

then be of use to human designers.

2.3 GPGPU computing

2.3.1 Introduction

The Graphics Processing Unit (GPU) has in recent years become not just a

powerful graphics engine, but also a highly parallel programmable processor,

featuring peak arithmetic and memory bandwidth that substantially outpaces its

CPU counterparts [99]. In fact in recent years, due to the heavy parallelism of the

GPU hardware, their processing power (Giga Floating Point Operations Per

Second, GFLOP/s), has increased at a greater rate than their CPU counter parts,

as shown in Figure 2.30.

 81

Figure 2.30, Theoretical maximum processing power (measured in Giga
Floating Point Operations Per Second, GFLOP/s), between modern CPU and

GPU, in both single and double precision [100].

Although CPU and GPU have become progressively more parallel in recent

years, the number of independent cores within a CPU is dwarfed by those

available in a GPU. This difference is exemplified by the differing terminology

used for CPUs, multi-core computing, and GPUs many-core computing. This

different terminology refers not just to the sheer number of cores within the GPU

compared to the CPU, but also the way in which the CPU cores are more

independent than GPU cores.

In recent years, the GPU has been harnessed for more general purpose

processing than solely graphics, and can be known as a GPGPU (General

Purpose Graphics Processing Unit). By harnessing appropriately parallel

algorithms, which fit the GPU’s radically different hardware, large increases in

processing speed over than of a modern CPU can be gained [46] [48] [101] [23]

[26].

A key attribute of both Cellular Automata and Genetic Programming, is the

parallelism of the algorithms. Both CA and GP have different properties at an

algorithm level and therefore different amounts of parallelism. The key

 82

parameters of each algorithm, for example with CA the size of the grid (number

of cells), number of iterations, complexity of the state transition rules, and

neighbourhood size, will all have an effect of the level of parallelism of the

algorithm. For GP the size of the tree which has to be parsed and the complexity

of the operations and perhaps even some of the evolutionary parameter will have

a play on the parallelism. The following observations were made in our paper ‘An

investigation of the efficient implementation of cellular automata on multi-core

CPU and GPU hardware’ [101], referring to existing literature on the properties of

CA acceleration upon GPU hardware.

2.3.2 Cellular Automata GPU computing

There are few attempts in the literature to develop parallel CA algorithms

and to investigate how exactly they will interact with many-core technologies.

There are a number of examples of implementations which are discussed below;

however, few of these investigate the spread of possible speed-ups, or how the

variation of the CA’s base parameters (e.g. lattice size, number of generations,

number of states/data types, neighbourhood sizes, or rule complexity) affects

these speed ups.

Recent approaches to the use of CPU and GPU computing to speed up CA

execution include Lopez-Torres et. al. (2012) who used CA to simulate laser

dynamics, and noted in summary of recent CA-GPGPU works that “Depending

on application, they are offering a 10 to 100 times speed up at price points

extremely affordable” [38]. Rybacki et. al. (2009) examine and benchmark CA

algorithms and investigate different levels of multi-threading with either a “brute

force” or sparse (“discrete” which only applies the rule set to those cells that might

change) method of implementation, on both the CPU and GPGPU of several

machines. They use five different rules sets: the game of life, parity, majority,

wireworld, and a benchmark case. They find that “there is no perfect algorithm

for everything” [42], which is largely due to the discrete algorithms being

outperformed on the GPGPU, but they note that this is due to the small size of

the grid and/or the small number of living cells after the first few generations. This

work highlights the issue of sufficient parallelism, if a CA with a low number of

cells (and therefore low number of parallel elements) is applied to hardware with

a large number of cores there is a high likelihood that computational resources

 83

will be wasted due to the lack of sufficient algorithmic parallelism. The algorithmic

representation must match the many-core nature of the GPGPU and sparse

representations either don’t work well or are difficult to code on the GPGPU. Also,

if a rule set is somehow known to produce little to no activity (the number of cells

alive and/or changing value over the whole simulation) within a given grid and

initial configuration then it may still be more efficient to use a sparse

representation on the CPU, as there is relatively little computational work to be

done.

There are circumstances where a sparse implementation has been

implemented on a GPGPU, for example Ferrando et. al. (2011) [40] have

employed an Oct-tree representation which subdivides a 3 dimensional cube of

space into 8 smaller cubes at each branch of the tree. Although this does mean

that the tree structure must be stored and manipulated using the CPU, a lot of

processing can still be carried out on the GPGPU. This is done by means of the

CPU organising the tree structure, which then issues commands to the GPGPU

to order the respective array of ‘memory clusters’. These memory clusters are

organised linearly upon the GPGPU, and each contains all the information

needed to process a single cell (i.e. the cell and its neighbour’s states), these can

then be processed in bulk by the GPGPU. The optimised use of further GPGPU

data structures are used to minimise the amount of traffic between the CPU and

GPGPU, which is known to be a bottleneck. However, Ferrando et. al. [40] are

more keenly interested in carrying out the high resolution of simulation in feasible

amounts of time, and so do not directly claim that this approach provides speed

ups because their system works as a co-operation of the CPU and GPGPU.

Of particular interest is work by Zaloudek et. al. (2010) [43], in which they

examine the evolution of 1D CA systems, using Nvidia’s Compute Uniform Device

Architecture (CUDA). CUDA describes both Nvidia’s architecture and high level

language for its manipulation. Zaloudek et. al. examine the possibility of

parallelisation at the level of cells, but also at an evolutionary CA system level

which requires a population of solutions be evaluated, often with each possible

solution (state transition rule set) needing to be run under a number of initial

conditions in order to reach an average fitness. They have examined the

possibility of parallelising their algorithm in terms of ‘training vectors’ and

‘individual solutions’, as well as by cells. The results are encouraging in favour of

 84

using parallelisation at the ‘training vectors’ and ‘individual solutions’ levels.

However, this is due to the fact that they confine themselves to the very closest,

fastest and conversely smallest forms of memory on the GPGPU (known as ‘local

memory’, analogous with cache memory on the CPU). This severely limits the

size of CA grids which they can simulate mainly due to the way that

synchronisation works differently on a GPGPU with current limits at 1024

threads/cells. They show that this local memory can allow for a huge processing

speed increases where they show a CA simulation (without any evolution) for

50,000 generations/fitness evaluation has a speed up of 489.75 times on one

machine and 621.68 on another [43]. These speed-ups are exceptional and are

at the high-end of the findings here. One possible source of disparity between

their results and those shown in Chapter 3:, is the use of local memory, although

experiments by the authors of this paper, tailored towards these hardware

specific parameters [48] explains in greater detail how this local memory may

benefit some machines, and the limitations of using the GPGPUs specific

memory types. This work showed that local memory is indeed faster in all

machines than the GPGPUs main (global) memory, but due to limitation on the

number of threads/cells that speed-up factors of 2.5x-5x are obtained with these

local memory implementations. However, by using the global memory to allow for

synchronisation of much larger grids, greater speed-ups of up to nearly 50x are

obtained. The final significant finding of this study is they show that the workgroup

(OpenCL) or block size (CUDA), is vitally important to the speed up of GPGPU

processing, and should be selected from the small spectrum of possible sizes

though empirical testing. In the work below, this limiting factor is investigated

along with the effects of these models on the GPGPU. Lastly Brodtkorb et. al.

[47] perform a good review of current trends in GPGPU computing, and say

“reporting a speedup of hundreds of times or more holds no scientific value

without further explanation supported by detailed benchmarks and profiling

results.” [47].

Collectively, the literature demonstrates that there is considerable interest

in the use of multi-core and GPU computing to parallelise cellular automata for

specific applications. Papers such as [43] have investigated a more general-

purpose approach to the parallelisation of the technique but this experimentation

is conducted with a hybrid 1D CA/EA algorithm and with variety of vectors but

 85

single lattice size. However, the literature is lacking a discussion of how the base

CA parameters such as lattice size, neighbourhood size, number of states and

iterations (generations) affects processing speed-ups on the GPGPU.

2.3.3 Genetic Programming GPU literature

Work by Harding and Wolfgang [49] investigates the properties of

parallelising Genetic Programming, stating “it is well known that fitness evaluation

is the most time consuming part of the genetic programming (GP) system. This

limits the types of problems that may be addressed by GP, as large number of

fitness cases make GP runs impractical.” [49]. At this point in time (2007), they

are limited to the use of OpenGL, which is primarily intended for the generation

of graphics but was used for more general purpose process until the introduction

of OpenCL and CUDA. Figure 2.31, shows how the graphics pipeline is used for

more general purpose programming.

Figure 2.31, Illustration of how arrays, representing the test cases, are
converted into textures. These textures are then manipulated (in parallel) by

small programs inside each of the pixel shaders. The result is another texture,
which can be converted back to a normal array for CPU based processing. [49]

Harding and Wolfgang [49], state that “Typically parsing a GP expression

involves traversing the expression tree in a bottom-up, breadth first manner. At

each node visited the interpreter performs the specified function on the inputs to

the node, and outputs the results as the node output. The tree is re-evaluated for

every input set. Hence, for 100 test cases, the tree would be executed 100 times”

 86

[49]. Using the GPU, they are able to parallelise the process, so the GP tree is

only parsed once, with each test case applied in parallel. One advantage of such

a system, it is claimed by the authors, is that this reduces the amount of times

that the switch case needs to be accessed; although this may not be the case,

dependant on how hardware accesses the data for each parallel element. The

GP population and genetic algorithm are applied on the CPU, with the GPU

performing the evaluation of the GP trees.

An important factor in the final performance is that the “release build

configuration” is utilised. I.e. this means that compiler optimisation is enabled,

which results in much faster processing programs, and makes for a reasonable

comparison of processing speeds. In their experiments the GP trees are

randomly generated, with a given number of nodes. Experiments are carried on

floating point, binary and real world test cases. The function set used on the

floating point tests, are +, -, *, and /. The resulting speed up factors, are recorded

in Table 2.6 (where a value greater than 1 indicates the GPU is faster, and less

than 1 the CPU).

Table 2.6, Results showing the number times faster evaluating floating point
based expressions is on the GPU, compared to the CPU implementation. An

increase of less than 1 shows that the CPU is more efficient [49].

The results here are of that of Cartesian GP, although the authors claim

similar advantages for linear and tree based GP. They also state that “many

typical GP problems do not have large sets of fitness cases for two reasons: First,

evaluation has always been considered computationally expensive. Second, we

currently find it very difficult to evolve solutions to harder problems. With the ability

to tackle large problems in reasonable time we have to also find innovative

approaches that let us solve these problems. Traditional GP has difficulty with

 87

scaling. For example, the largest evolved multiplier has 1024 fitness cases on a

GPU” [49]. The authors confirm that small sets of fitness cases, the overheads of

transferring data and the shader programs to the GPU outweighs the advantages

of the increased processing speed, resulting in overall the CPU being more

efficient at these small numbers of test cases. The results in Table 0.6,

demonstrate that increasing the number of test cases, and/or increasing the

number of expressions in the GP tree to be evaluated, will both result in large

performance increases upon the GPU. Although the precise scale of these

speed-ups seems rather high if we consider the brute processing power of

modern GPU’s (in terms of FLOPS, floating point operations per second), is on

average about 5-10 time that of the modern CPU.

Experimentation is also carried out by Harding and Wolfgang [49] on a

toy/benchmark test case, where they perform regression upon Equation 2.8.

Equation 2.8 𝑥6 − 2𝑥4 + 𝑥2

 A number of test cases are drawn randomly from a uniform distribution

between -1 and +1. They allow for the length of GP expression (which is again

implemented using Cartesian GP), to vary between 1 and the maximum size

indicated in Table 2.7. The GP was run for 200 generations to allow for

convergence, and again using the same simple function set (notably division by

zero results in “infinity”).

Table 2.7, Results for regression experiments, showing the number of times
faster evaluation evolved GP expressions is on the GPU, compared to CPU

implementations. The maximum expression length is the number nodes in the
CGP graph [49].

It is unfortunate that the authors do not also report the actual processing

times of these experiments, as even with these large speed-up factors, there may

still be a limiting point. However, with at least 100 test cases, and at least a

 88

maximum number of expressions of 100, speed-ups can be gained from use of

the GPU. The greatest speed ups are once again, with either very large number

of test cases and/or large numbers of GP node expressions.

Where we plan to run Genetic Programming within a Cellular Automaton,

we can expect a similar pattern, whereby sufficiently sized GP trees and test

cases will be required in order to gain speed-up upon the GPU.

2.3.4 Conclusion

There is obviously great interest in the parallelisation of both CA and GP

algorithms, and a great variety of speed-ups for both algorithms have been

demonstrated on various different test cases. There is an understanding that the

number of nodes within the GP tree relates to the speed-ups gained, where larger

number of nodes means a greater amount of time spent on each and therefore

more parallelism. Whereas CA demonstrate a more a number of very different

parameters relating to their spatial and temporal layouts, and there is a much

larger variety of speed-ups reported. This may be attributed to the different types

of memory used in the GPU hardware, and the different access patterns. There

is little understanding in the literature demonstrated of how the key CA parameter

of grid size, number of generations, number of states/base data type, size and

shape of neighbourhood, or complexity of state transition rule affect the relative

speed-ups obtained.

 89

Chapter 3: GPU computing

The introduction has illustrated that the potential for cellular automata as a

modelling tool in areas such as urban flooding are only just starting to be realised.

Although CA are computationally efficient in comparison with other models, they

still represent a significant computational cost if the model run has to be repeated

a large number of times. As the ultimate goal is to use genetic programming to

determine new rulesets for a CA, the CA will be executed within the objective

function calculation of a population based metaheuristic. This will necessitate

many thousands of runs of the CA and so greater computational savings are

required. This chapter investigates the potential for cellular automata to be

parallelised on modern GPU systems. Programming for GPU systems requires a

detailed understanding of the underlying hardware and novel lattice

representations to take full use of the additional computational power. This

chapter investigates these aspects on the well understood Game of Life ruleset

and some novel extended multi-state rulesets, as the investigation is intended to

bridge the gap between such well understood rulesets potentially much more

complex real world rules such as urban flood modelling. The investigations in this

chapter are carried out on two different graphics cards, in order to determine any

major difference between the generations of GPU. The literature on the effects of

the Genetic Programming parameter on the GPU speed-ups shows how the

number of nodes within the GP trees affects the processing speeds for example.

The effects of the base parameters of CA on GPU speeds-up factors are less well

understood. Therefore, the experimentation in this chapter investigates the

effects of such CA base parameters as the lattice size, neighbourhood size,

number of generations, the number of states and data types used to store the

state, and the initial configurations and activity levels within the simulation.

Experimentation is also carried out on the GPU specific parameters which relate

to the CA execution such as the workgroup size and GPU memory types. Parts

of the following are drawn from the papers [101] and [48].

3.1 Introduction

Modern hardware is becoming increasingly parallel in nature with modern

commercially available single CPUs equipped with up to 8 cores, and Graphical

Processing Units (GPUs) having many hundreds or even thousands of cores (e.g.

 90

the latest Nvidia cards have between 3072 - 5740 cores [102] [103]). This

increase in parallelism provides the opportunity for such inherently parallel

algorithms as CA to provide large speed increases in processing. However, there

is the need to understand the scalability of this effect, especially with regards to

the CA base parameters and the specification difference between the CPU and

GPU hardware in question.

In recent years the development of the GPU into a processor capable of

General Purpose processing has received particular attention, due to fact that

GPUs have needed even greater parallelism than their CPU counterparts. The

literature shows that although methods for parallelisation on the CPU are fairly

well established and understood that some of the unique architectural differences

between the General Purpose-GPU (GPGPU) and CPU are not so well known.

GPGPU computing is still very much an expert field, which means that there are

few comprehensive studies of the performance and scalability of the performance

gains possible through GPGPU computing, particularly for cellular automata.

Cellular automata (CA) are excellent techniques for the efficient simulation of a

wide variety of systems and natural phenomena, in addition to being interesting

from a theoretical perspective.

In this chapter, the new open standard OpenCL is used to perform

benchmark tests using the well-studied ‘game of life’ cellular automaton [25]

along with some novel variants. Experimentation is conducted on a variety of

different parameterisations of cellular automata that impact performance, notably

the lattice size, the number of states, the neighbourhood size, the complexity of

the state transition rule sets, and population levels within the random initial

configuration by assigning the chances of a cell being alive in the initial

configuration (initial configuration distribution probability). Also experimentation is

carried out on GPU specific parameters such as the data types used to store the

states, and the different GPU memory types available. With the availability of

such unique memory structures as the ‘image/texture’ memory, which is designed

to store a vector of 4 values Red, Green, Blue, and Alpha levels, a novel method

for the utilisation of such memory structure for the processing of CA is proposed

in the Folding method.

 91

 It is found that each of these key parameters affects the ability of multi-core

CPU and GPU architecture to speed-up CA execution. In addition, these key CA

parameters cover the majority of variations in CA that might be implemented to

simulate a variety of natural systems. Through the intensive study of the multi-

core/many-core speed-up available for a wide variety of parameter settings, it is

possible to infer some general properties of CA efficiency operating on multi-core

CPU and GPGPU hardware. This is particularly useful as it should also be

possible to extend these inferences to the more complex urban flood modelling

rules sets, and possible variant rule sets that GP could create. This kind of

extensive study would be more difficult with the real world urban flood modelling

rules sets due to the much larger space of possible variations.

3.1.1 Multi-core CPU and Many-core GPU computing

With the wide variety of disciplines and applications for CA suggested in the

literature review, a growing number of modellers are harnessing the inherent

parallelism of the CA algorithm in modern hardware, i.e. multi-core CPUs and

many-core GPUs. This is motivated by the idea that the multi-core nature of most

modern CPUs which is allowing Moore’s law to continue to predict processing

speed increase. [33]. Also several sources suggest that co-processors like

GPGPUs, with their inherently many-core nature, may be increasing in

performance at a quicker rate than their CPU counter parts [30], with Fan et. al.

stating that: “Driven by the game industry, GPU performance has approximately

doubled every 6 months since the mid-1990s, which is much faster than the

growth rate of CPU performance that doubles every 18 months on average

(Moore’s law), and this trend is expected to continue.” [23]. Although this

publication dates from some eight years ago and it is now an established fact that

significant increases in computational power in many areas will need to be

achieved through the use of parallelism rather than the increase in performance

of a single core. Therefore, the scientific community needs algorithms which will

scale to take advantage of this emerging parallelism, such as CA, and to

understand how these algorithms will scale to the emerging hardware available.

 92

3.2 Relevant literature

A vast number of different speed ups have been reported [32] [36] [46] [23]

[40] [37] [55] [44] [57] [28] [27] [24] [38] [33] [21], Which vary drastically from small

scale speed ups of 5-10x, up to large scales of the thousands. Where it should

be noted that the overall computing power of the modern GPU is on average

approximately 5-10x in terms of GFLOPs, although the different memory access

patterns on different hardware and different levels of algorithmic parallelism may

allow for some higher scores. Understanding how the key CA parameter such as

grid size, number of generations, number of states, neighbourhood size, initial

configuration set up and the complexity of the state transition rules will affect the

different levels of algorithm parallelism will be very important in understanding the

levels of relative speed-ups obtained.

3.3 Method

It is suspected that the rule set will play a large role in the computational

properties of CA on GPU hardware, and in order to investigate the different

effects of the base CA parameters a simple well known and investigated rule set

of the Game of life is utilised. As more complex real world rule sets like urban

flood modelling will use far more states, perhaps even a continuous scale, these

investigations include experimentation on novel extensions of the Game of life so

as to use multiple states. Furthermore, experimentation is also carried out on the

base data type which carries the state of each cell of the CA, be that an integer

or a floating point (i.e. continuous data type).

3.3.1 Rule sets

In the majority of tests, the well-studied ‘game of life’ rule set is used, which

has 2 states and a Moore neighbourhood. This is often instantiated by means of

some form of look up from the possible previous states of a cell and its neighbours,

mapped to the corresponding next state of the main cell (current cell under

evaluation). However, to allow for more complex systems with variable number

of states and neighbourhood sizes, a programmatic function is used here (a

series of C if-statements) which forms the basis of a decision tree. The basic

definition of the game of life states there are two states known as dead (zero),

and alive (one), and that if a cell is currently dead and has 3 live neighbours then

 93

it becomes alive, and if it is currently alive and has 3 or 2 live neighbours then it

remains alive otherwise becoming dead. This is interpreted in pseudo-code as

follows in sections 3.3.1.1, 3.3.1.2, and 3.3.1.3 .

Since the ‘game of life’, is confined specifically to two states and a Moore

neighbourhood, a number of new rule sets have been created based on the

decision tree which demonstrates the compactness and simulation variety

possible. Also this enables the testing of the effect of variable numbers of states

and neighbourhood sizes without excessively large look-up tables. Two of the

most interesting rule sets which demonstrate the relationship between activity

and speed increases are shown in rule sets MSGOL (Multi-State Game Of Life)

and MSGOL4 (Multi-State Game Of Life version 4) in section 3.3.1.2, and 3.3.1.3,

respectively. In order to test the effects of different neighbourhood sizes, the

adaptive nature of such decision tree based rule sets is demonstrated further, by

using the same ‘game of life’ rule set (section 3.3.1.1) and an extended Moore

neighbourhood where the size of the radius of the neighbourhood is defined by a

user-specified parameter.

3.3.1.1 Pseudo code for the game of life rule set function

Below is the code interpretation of the game of life rule set. Where ‘mainCell’

variable contains the current value (state) of the central main cell, and should

finish with the next state of the main cell. The ‘NH_Count’ variable holds the

number of live cells in the neighbourhood excluding the main cell.

if(mainCell == ALIVE)

 if(!(NH_Count == 3 OR NH_Count == 2))

 mainCell = DEAD;

else

 if(NH_Count == 3)

 mainCell = ALIVE;

3.3.1.2 Pseudo code for the Multi-State Game Of Life (MSGOL) rule set function

This rule set implements a simple multistate conversion of the Game of Life

where the state represents the energy of the organism rather than a simple

alive/dead delineation. The rules are constructed so that the rule that would

usually lead to a cell becoming alive, increases energy and the rule leading to

 94

death decreases it. Death only occurs when the cell reaches the lowest possible

state.

if(NH_Count == 3)

 if(mainCell != states-1)

 ++mainCell;

else

 if(NH_Count != 2)

 if(mainCell != DEAD)

 --mainCell;

3.3.1.3 Pseudo code for the Multi-State Game Of Life (MSGOL4) rule set

function

MSGOL4 is a modified version of MSGOL and has a more stringent

requirement for life in addition to a distinction between having too many or too

few neighbours which results in immediate death or loss of a single energy level

respectively. Also once a cell is at its maximum energy level another increase

will cause immediate death, except when there are only two states, which

maintains the rule sets ability to mimic the ‘Game of life’. This rule set has been

developed to gain a better understanding of the effect of activity levels on

potential GPU speed-up.

if(NH_Count == 3)

 if(mainCell != states-1)

 ++mainCell;

 else

 if(mainCell != 1)

 mainCell = DEAD;

else

 if(NH_Count != 2)

 if(NH_Count < 2)

 if(mainCell != DEAD)

 --mainCell;

 if(NH_Count > 3)

 mainCell = DEAD;

3.3.2 Novel CA-GPU Representation

In section 3.5.2, a novel use of the GPU’s image/texture memory is created,

termed as Lattice folding. As the GPU texture memory is specifically designed to

carry a vector of four values for the Red, Green, Blue, and Alpha values of a pixel.

This can be utilised to store the states of four cells, and therefore increase the

amount of processing within each thread, and utilise the wider memory lanes

 95

specifically designed to carry the per pixel data (i.e. a vector of four values). This

method also makes use of specifically designed hardware operations within the

GPU called swizzling, which can efficiently reorder the vectors of values within

hardware.

The method is called lattice folding, as it mimics the process of folding a

piece of paper into four quarters, as shown in Figure 3.1, and Figure 3.2. The

method of utilising the different colours of the texture image is not entirely novel

(Figure 3.2), however the orientation of folding the grid for the application of the

neighbourhood based CA system is.

Figure 3.1, How the four quadrants of the single grid are folded into a single grid
with four layers Red, Green, Blue and Alpha [104].

Figure 3.2, How the four quadrants of the single grid are folded into a single grid
with four layers Red, Green, Blue and Alpha [105].

By folding the grid, the orientation of the border conditions can be controlled.

Cells which are not located directly next to a fold in the grid, can collect the

neighbouring values from the folded grid and thusly collect the states of four

 96

neighbourhoods in a single thread. The resulting 4-layered grid has two borders

which represent folds in the original grid, and two borders which represent the

original borders. On the folded borders, the neighbouring vectors are reflected

inwards, and then depending on which way the grid was folded and which border

determines the correct swizzling operations. The swizzling operation re-orders

the vector of values, which re-align each colour value which the correct colour

layer for neighbouring collection at the folded borders.

3.4 Experimental Set up

The C/C++ language and MSVC 2010 SDK compiler are used, and an

application profiler was used to ensure that the program did not make excessive

memory allocations, which were found to cause large slowdowns in processing

in the CPU implementation that could therefore skew comparisons. The ‘/O2’

level of compiler optimisation was also used. The state value of each cell was

stored in a single byte (C style ‘char’ or ‘unsigned char’), and used a single array

to store the lattice, apart from in section 3.5.5, where experimentation is carried

out using char, int, floating and double data types. The experiments below are

limited to square grids, and only use a static border condition (of dead cells).

Although other border conditions exist, such as wrap-around or reflect inwards,

these would require slightly more work at each generation. It was determined that

the best way to deal with border conditions is to pad the grid with a border apron

of cell values as large as the neighbourhood radius (one in the case of the classic

Moore neighbourhood).

A second grid (also padded with this border apron) is created and these two

memory spaces are used alternately as the current grid and the new grid, for

each generation. Importantly the implementation increments a counter for each

live cell in each cell's neighbourhood, as opposed to adding the value of every

neighbouring cell to a counter. This becomes very important in demonstrating

how variable arithmetic (computational work) can cause variable speed-ups (I.e.

conditional branching around the arithmetic work dependant on the automaton’s

current state and neighbouring states causes far greater variation in processing

speed with the CPU compared that of the GPGPU). Another method to

accomplish this would be to use a look up table, however this look-up table would

be very large, and every cell would need access to it. This design would be sub-

 97

optimal for the CPU, but may be favourable for the GPU’s relative speed-up.

However, since more complex rules are likely to be built from more programmatic

forms, the method of having a count of neighbouring values and a programmatic

function is utilised to investigate these properties.

A simple testing framework is developed where the initial grid and the

parameters (e.g. grid size, number of generations) are passed into a function

which processes the whole CA simulation, and the system clock is used to record

how long it takes for the resulting final grid to be returned. Since it is expected to

be difficult to time the processing on the GPU at intervals within the simulation

fairly, the simulations are repeated for each generational experiment. Each

experiment is repeated 15 times in order to gain an average timing result.

In order to achieve parallelisation on the CPU the common shared memory

model called OpenMP [106] is used, which generates worker threads at each

generation for each cell in the lattice. The compiler then generates code which

composes a single master thread, and at each generation launches worker

threads for each cell, these are then distributed and time-sliced by the operating

system between the CPU cores.

Finally, the new open-standard language/API called OpenCL is used,

designed specifically for parallel hardware such as the GPGPUs, and multi-core

CPUs. For detailed information the reader is referred to the OpenCL specification

[107]. The experiments include a small amount of compilation time for the kernel

in every test (although this is from an intermediate form), and the transfer time to

and from the GPGPU. Special hardware in the GPGPU time-slices these threads,

and load balances between hardware sub-groups of each workgroup which need

to access memory and those which need processing, and in this way can hide a

lot of processing time behind memory latency. Work by Zaloudek et. al. [43]

shows that the workgroup size affects the processing time by affecting how the

hardware time-slices threads (referred to a SIMT – single instruction multiple

threads). Therefore, initially 2-3 different workgroup sizes are used, to determine

the fastest, and the workgroup size is set to this for the remainder of the tests;

however, it has been shown that each different machine may require auto-tuning

in order to determine the optimum workgroup size.

 98

A key aspect of a study such as this is the hardware used to determine the

level of speed-up obtained by the algorithms. The comparison between a single

core benchmark and the multi-core implementation will depend to a great degree

on the hardware involved. Therefore, during testing two very different machine

set ups have been used, firstly Machine A is a Dell XPS M1530 laptop, and is

approximately 4-5 years old at the time of testing. Machine B is a recently

constructed PC tower unit which contains a modern Core-i7 processor and latest-

generation ‘Fermi’ Nvidia graphics card. The full specification of each machine

is shown below.

Table 3.1, Full specifications of machines used for testing [108] [109].

Machine Machine A Machine B

Type
Dell XPS M1530

laptop
PC workstation

Age 4-5 years Recent

CPU
Intel Core2 Duo

T8100 @ 2.1GHz
Intel Core-I7-2600

@3.4Ghz

CPU cores 2
4 (8 with Hyper-
Threading)

GPGPU
Nvidia GeForce

8600M
Nvidia GTX 560 Ti

GPU
Processing

elements (CUDA
cores)

32 384

GPU Compute
cores

4 8

GPU speed
(Core, Shader,
Memory MHz)

475, 950, 700
1645, 822,

1000/4000

GPGPU bus
type

PCI-E x 16 PCI-E 2.0 x 16

Visualisation of the rule sets was achieved through a basic OpenGL

interface; also the outputs from the GPGPU algorithms were found to match the

CPU implementations exactly. OpenCL possesses interoperability with OpenGL

which opens up the possibility to be able to accelerate visualisation as well as

processing.

 99

A key difference between the CPU and GPGPU is that the GPGPU is firstly

a co-processor which has its own independent RAM memory, meaning that data

must be transferred along the bottleneck of the PCI connection. Secondly the

GPGPU has distinct architectural differences to the CPU, for example whereas

CPU cores may run independently from each other (i.e. operate on different

sections of code at the same time, by virtue of each possessing its own program

counter) the modern GPGPU has a hierarchy of processing cores. OpenCL calls

each core capable of operating independently a ‘compute unit’ (Nvidia/CUDA call

this a ‘Streaming-Multi Processor’); each compute unit may possess one to many

‘processing elements’ (Nvidia/CUDA call this a CUDA core), where each

processing element may run a thread in an SIMD (Single Instruction Multiple

Data) fashion within each compute core. A single workgroup is only ever

processed on a single compute core, which allows the GPGPU hardware further

parallelism by allowing it to distribute workgroups to compute cores as it sees fit.

It attempts to best use the hardware (number of compute cores) available, much

in the same way that the operating system and CPU distribute threads amongst

its cores.

However, the modern GPGPU uses yet another level of parallelism within

each workgroup and compute core, known as SIMT (Single Instruction Multiple

Thread). Where a workgroup possesses more threads than processing elements

with the compute core, the hardware may swap between many groups of threads

with each group at different stages within the code. This allows the GPGPU to

put its processing elements to best use, i.e. if one group of threads is waiting on

a memory request, then another group which isn’t may be used for processing.

This allows the GPGPU hardware to maintain far more simultaneous thread

processing compared to the CPU. The majority of this is abstracted away from

the programmer (Shown in Figure 3.3), apart from the workgroup size. OpenCL

and the underlying GPGPU hardware stipulate both an upper limit on the number

of threads within a workgroup (size), and that the lattice of cell/threads must be a

multiple of the workgroup size in each dimension.

 100

Figure 3.3, The abstract hierarchy presented by OpenCL [107].

The abstract hierarchy for the OpenCL standard is shown in Figure 3.3,

where the workgroup specifies which thread/work items are to be performed on

the same compute unit. Firstly, there are more threads per work group than there

are processing elements within each compute unit, therefore the hardware can

be responsible for the firstly layer of SIMT whereby groups of waiting threads can

be swapped for groups of threads needing processing within each compute unit.

The second layer of SIMT again allows the hardware to decide which workgroup

to process on which compute unit, and in which order, as again there are likely to

be more workgroups than compute units. Since each workgroup is isolated to a

single compute unit, the hardware’s distribution of these to the number of

hardware compute unit can cause what is called ‘load balancing’. This occurs

when the number of workgroups and the amount of time they take to process

does not suit the number of hardware compute units. A simplified example might

be, if the hardware in question has 8 compute cores, and is asked to 9

workgroups, and then no matter how it distributes the workgroups, it will have

entire compute cores standing waiting.

 101

3.5 Experimentation

In sections 3.5.1, the lattice size (i.e. the number of cells) and the size of the

workgroups are varied to understand this relationship. In section 3.5.2 these

experimentation are extended to include different memory types available upon

the GPU and the use of the novel lattice folding methods are applied. In sections

3.5.3, the effects of the initial configurations and activity throughout the

simulations are investigated. In section 3.5.4 the novel multi-state extensions of

the Game of Life are utilised to investigate the variation that a larger numbers of

states might have. This is extended in section 3.5.5, by using different base data

types such as char, int, float and double to carry the state of each cell. In section

3.5.6 the effects of changing the neighbourhood size is investigated, and finally

in section 3.5.7 the effects of various length of CA simulation are investigated.

3.5.1 Lattice size and workgroup tests

The wide variety of application domains for cellular automata means that a

commensurate range of lattice sizes are possible. The lattice size is therefore the

first variable to be investigated here.

3.5.1.1 Method

In order to allow the processing of any size of lattice, any size which is not

a multiple of the workgroup size is padded up to the nearest with threads/cells

which do nothing. For these reasons two sets of lattices size tests are conducted

with the first testing a wider spectrum of lattice sizes, and second testing a smaller

spectrum but at much finer granularity along with testing 3 different workgroup

sizes (8x8, 16x16, and 32x32).

3.5.1.2 Experimental set up

A random initial lattice configuration of live and dead cells is created, using

a seed value and a 50% chance (initial configuration distribution probability) of

each cell being made alive or dead. Tests are run for 1,000 generations on

Machine A, and 10,000 generations on Machine B because Machine B is much

faster making such longer runs more feasible. Lattice sizes begin at 128x128 and

proceed at increments of 32x32 up to 2048x2048, also a spread of lattice sizes

from 500x500 to 600x600 at increments of 1x1 are presented. Experiments are

 102

conducted at workgroups sizes of 8x8 and 16x16 on both machines, but as

Machine A is limited to a maximum of 512 threads per workgroup and Machine B

is limited to a maximum of 1024, a workgroup size of 32x32 could only be used

on Machine B. With these experiments OpenCL is utilised on the both the CPU

and GPGPU.

3.5.1.3 Experimental results

Machine A

Machine B

Figure 3.4, Speed ups over the serial implementation for OpenMP and OpenCL
on the GPU and CPU, at 1,000 generations on Machine A, and 10,000

generations on Machine B, for lattice sizes of 128x128 to 2048x2048, at
increments of 32x32.

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

1.6E+4 8.5E+5 1.7E+6 2.5E+6 3.4E+6 4.2E+6

Sp
e

e
d

 u
p

 f
ac

to
r

o
ve

r
se

ri
al

Number of grid cells

OpenMP OpenCL CPU wg16

OpenCL GPU wg16 OpenCL CPU wg8

OpenCL GPU wg8

0

10

20

30

40

1.6E+4 8.5E+5 1.7E+6 2.5E+6 3.4E+6 4.2E+6
Sp

e
e

d
 u

p
 f

ac
to

r
o

ve
r

se
ri

al

Number of grid cells

OpenMP OpenCL CPU wg32

OpenCL GPU wg32 OpenCL CPU wg16

OpenCL GPU wg16 OpenCL CPU wg8

OpenCL GPU wg8

 103

Figure 3.5, Cell update rates (per second) for the serial implementation,
OpenMP and OpenCL on the GPU and CPU, at 1,000 generations on Machine

A, for lattice sizes of 128x128 to 2048x2048, at increments of 32x32.

Figure 3.6, Speed ups over the serial implementation for OpenMP and OpenCL
on the GPU and CPU, at 10,000 generations on Machine B, for lattice sizes of

128x128 to 2048x2048, at increments of 32x32.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1 2 3 4

C
e

ll
u

p
d

at
e

s
p

e
r

se
co

n
d

B
ill

io
n

s

Number of grid cells

Millions

Serial OpenMP OpenCL GPU wg16 OpenCL GPU wg8

0

1

2

3

4

5

6

0 1 2 3 4

C
e

ll
u

p
d

at
e

s
p

e
r

se
co

n
d

B
ill

io
n

s

Number of grid cells

Millions

Serial OpenMP OpenCLGPU wg32

OpenCL GPU wg16 OpenCL GPU wg8

 104

Figure 3.4 demonstrates several key factors involved with lattice and

workgroup sizes; firstly OpenCL running on the CPU is not very competitive,

whereas OpenMP appears to scale fairly well to the number of CPU cores.

Although OpenCL on the GPGPU performs up to 40x that of the serial CPU

implementation on Machine B (the newer of the two machines), this is not in scale

with the number of processing cores, although later in this chapter the question

of which factors lead to this level of performance increase are addressed.

Secondly it is clear to see that small lattice sizes are affected by the overheads

of parallelisation which on the GPGPU include the transfer and as such gain

lesser performance increases than larger lattices, with this stabilising at

approximately 800x800 sized lattices. A workgroup size of 16x16 shows the best

performance increases across both machines, and is therefore utilised in the

experiments in the rest of this chapter. Finally it can be seen in Figure 3.4 that for

particular grid sizes, performance decreases abruptly. On Machine A this occurs

at lattice sizes of 512x512, 1024x1024, 1536x1536, and 2048x2048; whereas on

Machine B this occurs at lattice sizes of 1344x1344 and 2016x2016. This is

shown in Figure 3.7 to be due to the number of workgroups, and is therefore

attributed to load balancing of the number of work groups to the number of

hardware compute cores.

Machine A

Machine B

Figure 3.7, Processing times for OpenCL on the GPGPU, and for Machine A
only on the OpenCL CPU, OpenMP and Serial implementations, for 500x500 to

600x600 lattice sizes in increments of 1x1, with a workgroup size of 16x16.

4

5

6

7

8

9

10

11

12

2.5E+5 2.7E+5 2.9E+5 3.2E+5 3.4E+5 3.6E+5

P
ro

ce
ss

in
g

Ti
m

e
(S

e
co

n
d

s)

Number of grid cells

Serial OpenMP OpenCL CPU OpenCL GPU

0.5

0.55

0.6

0.65

0.7

0.75

2.5E+5 2.7E+5 2.9E+5 3.2E+5 3.4E+5 3.6E+5

P
ro

ce
ss

in
g

Ti
m

e
(S

e
co

n
d

s)

Number of grid cells

OpenCL GPU

 105

Figure 3.7 shows that both the CPU (sequential and parallel), and GPGPU

approaches all scale linearly with the number of cells being processed, which

demonstrates that the CA's complexity is based around the work in each cell.

Where the GPGPU shows abrupt performance decreases (shown in Figure 3.7),

this is associated with ‘load balancing’ of the workgroups to available compute

cores of the GPGPU. Figure 3.7 indicates that the load balancing should be

associated with the number of workgroups within the given lattice sizes. This is

illustrated by the way that the performance on the GPGPU steps abruptly after

each 16 successive grid size, where the number of workgroups changes.

3.5.1.4 Conclusion

Both CPU and GPGPU show linear increases in processing time with the

number of cells/threads, however due to transfer and other overheads there is an

offset, and due to the greater computational power of the GPGPU its processing

times increase at a lesser gradient; therefore, a sufficiently large grid is required

in order to gain the most efficient use of GPGPU hardware and thus the greatest

speed-up factor. Where this result is somewhat expected, it is informative to see

the scale of this threshold number of cells/threads is relatively large compared to

the number of hardware cores upon the GPGPU. In addition, there are exceptions

where particular lattice sizes or rather the number of workgroups within, give

lesser performance than lattice sizes with similar numbers of workgroups; this is

attributed to the way GPGPU hardware distributes workgroups to be processed

between available compute cores.

3.5.2 Lattice size and GPU Memory types tests

3.5.2.1 Experimental Set up

The GPGPU present three memory types including ‘global memory' which

is essentially the RAM on the GPU card; ‘local memory’ which is on-chip and

therefore much faster but limited in space and scope to a single compute core;

and finally ‘image memory’ (sometimes referred to as texture memory) which is

memory specific to the native task of the GPGPU as a graphics processor and is

cache-lined even in older models as well as having special hardware for dealing

with border conditions. Tests are conducted using the novel texture based

 106

memory layout described in section 3.3.2, and finally, tests are also performed

with vectorisation (folding) and global memory.

3.5.2.2 Experimental Results

Figure 3.8, Machine A, Speed ups over CPU serial implementation for parallel
CPU (OpenMP), and the OpenCL memory algorithms on the GPGPU.

Figure 3.9, Machine B, Speed ups over CPU serial implementation for parallel
CPU (OpenMP), and OpenCL memory algorithms on the GPGPU.

1

2

3

4

5

6

7

8

9

10

11

12

16384 1016384 2016384 3016384 4016384

S
p

ee
d

 u
p

 f
a
ct

o
r

o
v
er

 s
er

ia
l

Number of grid cells

Global_Mem Local_Mem

Basic_Image Folded_Image

Folded_Global_Mem OpenMP

0

5

10

15

20

25

30

35

40

45

50

16384 1016384 2016384 3016384 4016384

S
p

ee
d

 u
p

 f
a
ct

o
r

o
v
er

 s
er

ia
l

Number of grid cells

Global_Mem Local_Mem

Basic_Image Folded_Image

Folded_Global_Mem OpenMP

 107

Figure 3.10, Machine A, Cell update rates (per second) for CPU serial
implementation, parallel CPU (OpenMP), and the OpenCL memory algorithms

on the GPGPU.

Figure 3.11, Machine B, Cell update rates (per second) for CPU serial
implementation, parallel (OpenMP) implementations, and OpenCL memory

algorithms on the GPGPU.

0

50

100

150

200

250

300

350

400

0 1 2 3 4

C
e

ll
u

p
d

at
e

s
p

e
r

se
co

n
d

M
ill

io
n

s

Number of grid cells

Millions

Serial Global_Mem Local_Mem

Basic_Image Folded_Image Folded_Global_Mem

0

1

2

3

4

5

6

7

0 1 2 3 4

C
e

ll
u

p
d

at
e

s
p

e
r

se
co

n
d

B
ill

io
n

s

Number of grid cells

Millions

Serial Global_Mem Local_Mem

Basic_Image Folded_Image Folded_Global_Mem

 108

3.5.2.3 Discussion

One of the major advantages of the folded texture method is that it has

automatic use of caching so as the re-accessing time of the data, when each cell

is accessed as both a main cell and a neighbour for a number of other cells.

However, the more modern of the two GPU’s has automatic caching on its global

memory which leads to a less gain in using this method compared to that of the

older GPU. Additional gains are still possible by using such a tailored method to

the graphical hardware in question.

3.5.2.4 Conclusions

Figure 3.8 and Figure 3.9 shows a marked difference in performance

between the two tested machines, due to the introduction of cache-lined global

memory in the Fermi (Machine B) generation of GPGPU’s. Local and image

memory gain greater speed-ups than global memory alone on Machine A,

whereas on Machine B local and image memories are less efficient than global

memories due to the more efficient caching and the need to explicitly copy data

to the local and image memories. When vectorisation (folding) is applied both

global and image memories show an increase in performance. For Machine A,

the vectorised image/texture memory performance best, but for Machine B, it is

the vectorised global memory that is the top performer. This is due to the more

efficient cache-line global memory of the Fermi chip with Machine B.

3.5.3 Initial configuration distribution probability and Activity tests

A further variation in cellular automata is the extent to which their

formulation in terms of starting conditions and rule sets leads to activity (i.e. the

number of ‘alive’ cells) over the life of the CA. The standard 2-state game of life

from random conditions for instance is known to produce a set of short-lived static

and mobile structures (e.g. gliders) and will eventually converge on a stable state

that will include some oscillating structures. Clearly, the number of alive cells in

the CA will change over time, and in the case of the game of life, will start high

and converge to a stable minimum. The following work investigates the impact of

the ratio of ‘alive’ cells in the initial CA and records the level of activity in the CA

to determine their effect on the potential speed-up of the CA on GPU hardware.

This allows for an investigation of the effects of the resulting simulations produced

 109

by the CA have on the processing speed up provided by the GPU, where such

understanding can only come from an understanding of the rule set in questions.

3.5.3.1 Experimental set up

A separate implementation is used to count the number of live cells (those

with a state of 1) and the number of live neighbouring cells for each cell to ensure

that the timing results are not biased. Having counted the number of live cells and

neighbours for every cell in every generation, an average proportion is calculated

by dividing by the number of cells and generations. Tests are performed over a

spectrum of lattice sizes, and initial configuration distribution probabilities which

are used in the creation of each cell being alive or dead in the initial configuration.

Ten different seed values for the random number generator are used in these

experiments. The timing tests are repeated for 15 trials, but this is not necessary

for the counts, as they are deterministic. Tests were conducted on a 512x512

lattice size for 1,000 generations on both machines with a workgroup of 16x16

are used.

3.5.3.2 Experimental results

Neighbourhood Activity

Machine B CPU single core processing times

Figure 3.12, Average (mean) neighbourhood live cell counts per cell over the
entire simulation for a range of initial configuration distribution

probability/chances of live cell creation in the initial configuration (left), and the
processing time on a single CPU core for the same ranges (right), processed at

a lattice size of 512x512 for 1,000 generations.

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

M
e

an
 n

e
ig

h
b

o
u

ri
n

g
liv

e
 c

e
ll

co
u

n
t

Initial configuration distribution probability

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

0 20 40 60 80 100

P
ro

ce
ss

in
g

Ti
m

e
(S

e
co

n
d

s)

Initial configuration distribution probability

 110

Figure 3.12 shows firstly that as the neighbourhood counts are averaged

over the entire simulation, this restricts the variation due to the difference in the

underlying patterns formed through the differently seeded simulations, therefore

these averages are a measure of Activity over the entire simulation. Secondly

Figure 3.12 shows that there is little to no activity below the initial configuration

distribution probability levels of approximately 5% and above 80%, and between

these, the level rises to a plateau. This plateau level is surprisingly low with an

average live neighbourhood cell count of approximately 0.5 live neighbours out

of a possible 8. The right pane of Figure 3.8 shows that processing time is highly

correlated with the activity levels seen in the left pane. It can also be seen in

Figure 3.12 (right) that with no activity levels, the processing time is dominated

by other work within each cell; i.e. a baseline non-varying amount of arithmetic

computational work and the memory look up of the neighbourhood within each

cell.

Neighbourhood Activity

Machine A CPU single core processing times

Figure 3.13, Average neighbourhood live cell counts per cell over the entire
simulation, when using an initial configuration distribution probability of 50% for

a range of lattice sizes of 128x128 to 2048x2048, at increments of 32. (left)
Note the difference in the scale of the y-axis, and the processing time on a

single CPU core for the same ranges (right), for 1,000 generations.

Figure 3.13 shows activity variation when using the same 50% initial

configuration distribution probability for different lattice sizes. This variation is

present due to the difference in the underlying patterns formed, but is small and

decreases as the lattice size increases. The processing times accordingly show

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

1.6E+4 8.5E+5 1.7E+6 2.5E+6 3.4E+6 4.2E+6

M
e

an
 n

e
ig

h
b

o
u

ri
n

g
liv

e
 c

e
ll

co
u

n
t

Number of grid cells

0

10

20

30

40

50

60

70

80

1.6E+4 8.5E+5 1.7E+6 2.5E+6 3.4E+6 4.2E+6

P
ro

ce
ss

in
g

Ti
m

e
(S

e
co

n
d

s)

Number of grid cells

 111

very little variation and are thus dominated by the symmetrical work within each

cell of the lattice.

Figure 3.14, Speed-ups relative to the serial implementation for OpenMP, and
OpenCL on the GPGPU (workgroup size of 16x16) on a 512x512 lattice size at
1,000 generations, over a range of initial configuration distribution probability

values from 1% to 99% at intervals of 1%; results shown for Machine B.

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

Sp
e

e
d

 u
p

 f
ac

to
r

o
ve

r
se

ri
al

Initial configuration distribution probability

OpenCL OpenMP

 112

Figure 3.15, Cell update rates (per second) for serial implementation, OpenMP,
and OpenCL on the GPGPU (workgroup size of 16x16) on a 512x512 lattice

size at 1,000 generations, over a range of initial configuration distribution
probability values from 1% to 99% at intervals of 1%; results shown for Machine

B.

Figure 3.14 shows that it is this increase in arithmetic from the counting of

‘alive’ cells, due to the correlation with the activity levels shown in Figure 3.12

which, when parallelised, leads to proportional increases in relative performance

between the parallel approaches and the sequential approach. This effect is more

greatly noticed in the GPGPU due to the greater level of hardware ALU

(Arithmetic Logic Unit) parallelism. Here, results from only Machine B and are

only shown for a single seed; however, these are representative of results

recorded from all initial configurations and clearly show that the GPU, and to a

lesser extent, the parallel CPU are able to increase speed-up when activity levels

are high.

3.5.4 Number of states tests

The intention with these experiments is to extend the inferences made on

these simple CA to more complex CA with more states, and even to continuous

states. The experimentation in this section uses the novel multi-state variants of

the game of life, to test how the number of states might affect the processing

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

C
e

ll
u

p
d

at
e

s
p

e
r

se
co

n
d

B
ill

io
n

s

Initial configuration distribution probability

OpenCL GPU OpenMP CPU Serial

 113

times and speed-ups of the GPU. As more complex real world rule sets with

inevitably use much large number of states and possible even continuous scales,

there is the need to understand how the number of states will affect the relative

speed-ups of the GPU.

3.5.4.1 Method

Since the game of life rule set specifically has only two states, it has been

adapted here to a multi-state interpretation in order to test the effects of a variable

number of states. Many such interpretations have been created and two

interesting rule sets are presented which are called MSGOL (Multi-State Game

Of Life, section 3.3.) and MSGOL4 (version 4, section 3.4.). MSGOL at 3 or 4

states produces large areas of what appears as chaotic behaviour, where small

snake like collections of cells are born, move around and die in between the

chaos. At larger numbers of states, this forms maze-like patterns over the whole

grid, with fluctuations which move over the grid as if searching for a stable global

pattern. MSGOL4 at 3 and 4 states look more like the game of life, so much so

that new and distinct gliders are detected at both of these numbers of states.

However, as the number of states is increased in MSGOL4, larger areas of what

appears to be chaotic behaviour consume the simulation.

Videos of the MSGOL and MSGOL4 rule sets are various numbers of states

can be viewed online @ :

http://www.sciencedirect.com/science/article/pii/S0743731514002044#appd003

In the timing tests, the lattices are populated with the same initial

configuration as before. The number of states is modified by using a parameter

within the decision tree rule sets. The decision tree is able to represent an

increasing number of state transitions with the same decision tree because of the

way it programmatically maps the relation between each state, as opposed to

using an increasingly large look-up table.

3.5.4.2 Experimental set up

Experimental results are shown for MSGOL runs from 2 to 10 states. In

these experiments a lattice size of 512x512, with a workgroup size of 16x16 are

http://www.sciencedirect.com/science/article/pii/S0743731514002044#appd003

 114

again used (which notably is a badly load balanced size on Machine A), and run

for 1,000 generations on Machine A, and 10,000 on Machine B.

3.5.4.3 Experimental Results

Machine A

Machine B

Figure 3.16, Speed-ups over the serial implementation for OpenMP, and
OpenCL at a lattice size of 16x16, for 1,000 generations on Machine A, and

10,000 on Machine B. Showing resulting for the MSGOL and MSGOL4 rule sets
with 2 to 10 states.

0

0.5

1

1.5

2

2.5

2 4 6 8 10

Sp
e

e
d

 u
p

 f
ac

to
r

o
ve

r
se

ri
al

Number of states

OpenMP MSGOL OpenCL MSGOL

OpenMP MSGOL4 OpenCL MSGOL4

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10

Sp
e

e
d

 u
p

 f
ac

to
r

o
ve

r
se

ri
al

Number of states

OpenMP MSGOL OpenCL MSGOL

OpenMP MSGOL4 OpenCL MSGOL4

 115

Figure 3.17, Cell update rates (per second) for serial implementation, OpenMP,
and OpenCL at a lattice size of 16x16, for 1,000 generations on Machine A.
Showing results for the MSGOL and MSGOL4 rule sets with 2 to 10 states.

Figure 3.18, Cell update rates (per second) for serial implementation, OpenMP,
and OpenCL at a lattice size of 16x16, 10,000 on Machine B. Showing results

for the MSGOL and MSGOL4 rule sets with 2 to 10 states.

0

10

20

30

40

50

60

2 3 4 5 6 7 8 9 10

C
e

ll
u

p
d

at
e

s
p

e
r

se
co

n
d

M
ill

io
n

s

Number of states

Serial MSGOL OpenMP MSGOL OpenCL MSGOL

Serial MSGOL4 OpenMP MSGOL4 OpenCL MSGOL4

0

1

2

3

4

5

6

2 3 4 5 6 7 8 9 10

C
e

ll
u

p
d

at
e

 p
e

r
se

co
n

d

B
ill

io
n

s

Number of states

Serial MSGOL OpenMP MSGOL OpenCL MSGOL

Serial MSGOL4 OpenMP MSGOL4 OpenCL MSGOL4

 116

Figure 3.16 shows the relationship between the number of states (from 2-

10) and the speed-up on the GPU. The graphs for the GPU and MSGOL show a

peak around 3 states which then drops down to a converged rate of speed-up

later for higher numbers of states. For MSGOL4, this situation is reversed with a

dip in speed-up at 3 states. It is therefore clear that for the modified game of life

rule sets, at least, the number of states does have an effect on the speed-up

possible from GPUs but that the hardware has a very much larger effect (note the

difference in axes ranges for Machine A and Machine B). However, the

discrepancy between 3 states and the others was not expected and required

further experimentation (shown in section 3.5.4.4).

3.5.4.4 Further experimentation with multi-state game of life variants

In the majority of cases the simulations take approximately the same

amount of processing time irrelevant of the number of states, however in the area

of the most variation in activity a large spike in performance for both rules can be

observed in Figure 3.16, Figure 3.20, Figure 3.21, and Figure 3.22, as they

change from one type of behaviour to another. As shown in Section 3.5.3, it is

the variable amount of arithmetic carried out in each cell which directly relates to

the processing time and consequent increases in performance. Therefore, it is

necessary to account for the variable amount of arithmetic from the decision tree.

The MSGOL and MSGOL4 rule sets both have leaf nodes which carry out a

simple plus/minus-one calculation for the next state, therefore counting

implementations have been created which, as well as counting the live cells and

live neighbours per cell, also count the number of cells taking each leaf node of

the decision tree rule sets. Figure 3.19 shows the binary decision tree

represented by the MSGOL rule set (section 3.3.1.2), with leaf nodes labelled A-

E, where it is node B that carries out an increment to the current state, and node

E carries out a decrement to the current state in order to find the next state, and

all other leaf nodes represent leaving the current state of main cell as it was in

the previous generation. A similar decomposition of the MSGOL4 rule set is

performed, with leaf nodes A-G, where nodes C and F are responsible for

arithmetic operations. With both rules sets, as with the game of life rule, the

operation time also depends on the number of live neighbours for each cell. The

average live neighbourhood counts, and proportion of cells over the entire

simulation for each leaf node of the decision tree for MSGOL and MSGOL4 rule

 117

sets are shown in Figure 3.20 and Figure 3.21 respectively. In Figure 3.22, first

the timing results from the MSGOL and MSGOL4 rule sets for the parallel CPU

approach on Machine A are shown; this is compared to the combination of the

variable amount of arithmetic (i.e. the average live neighbour counts, plus the leaf

nodes, which carry out arithmetic), in order to demonstrate how it is again the

variable amount of activity which causes the difference in processing time on the

CPU. The GPGPU is found to have much smaller variations in processing time

over the same area, which leads to huge computational speed up in the area of

high activity, shown in Figure 3.22 and consequently explains the difference in

performance seen in Figure 3.16.

Figure 3.19, Binary decision tree version of the MSGOL rule set, with leaf nodes
labelled A-E. With the variables ‘NH_Count’ which represents the number of live

neighbouring cells, and ‘mainCell’ to represent the central main cell's value, and
finally ‘states’ to represent the number of states variable.

NH_Count

mainCell NH_Count

NH_Count = 3 NH_Count != 3

++mainCell

mainCell = states-1

mainCell != states-1

NH_Count = 2
NH_Count != 2

mainCell

--mainCell

mainCell =

DEAD
 mainCell != DEAD A B C

D E

 118

3.5.4.5 Experimental Results

Figure 3.20, Average neighbouring cell counts for each cell and the proportion
of cells over the entire simulation taking each possible leaf node through the

rule sets MSGOL (which has leaf nodes A-E as shown in Figure 3.19.

Figure 3.21, Average neighbourhood live cell counts, and proportion of cells
over the simulation taking each leaf node for MSGOL4 rule set, on Machine A.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 4 5 6 7 8 9 10

p
ro

p
o

rt
io

n
s/

co
u

n
ts

Number of states

A B C D E average_nh_cellCount

D

C

average_nh_count

A
B, E

-0.2

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10

p
ro

p
o

rt
io

n
s/

co
u

n
ts

Number of states

A B C D E F G average_nh_cellCount

E

D
G
C

average_nh_count
F

A, B

 119

Processing times Machine A

Count results

Figure 3.22, Processing times of the OpenMP implementations of MSGOL and
MSGOL4 in comparison to each other for 2-10 states (left), shown (right) the
theory of the arithmetic complexity by showing the average neighbourhood
count (shows the number of increments of a counter, on average), plus the
proportions of cells on average over the whole simulation which perform an

arithmetic operation. In the case of MSGOL this is leaf nodes B and E, and for
MSGOL4 leaf node C and F.

Figure 3.20 and Figure 3.21 demonstrate that the rule sets generate most

of the extra arithmetic complexity compared to the neighbourhood counting.

Figure 3.22 shows how it is indeed this arithmetic complexity caused by the

resulting behaviour which causes the relative slowdown in the CPU processing,

and Figure 3.16 shows how this also causes a relative speed performance

increase from the GPGPU over the CPU in the same area.

3.5.4.6 Conclusions

This work showed that again, it is the level of arithmetic that is conducted

by the rule set that is the main driver of speed-up. The specifics of the rule set

and the decision tree implementation mean that the (relatively fast on GPU)

addition and subtraction operations only occur at specific leaves of the tree.

Simply put, the more often these leaves are used, the greater the speed-up on

the GPU. Of course, this depends on the specifics of the rule set and the decision

tree implementation, but this does mean that the optimisation of the rule set to

maximise arithmetic and minimise memory operations is an important element of

parallelising CA with GPUs.

2.5

3.5

4.5

5.5

6.5

7.5

8.5

9.5

10.5

2 4 6 8 10

P
ro

ce
ss

in
g

Ti
m

e
(S

e
co

n
d

s)

Number of states

MSGOL MSGOL4

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10

va
ri

ab
le

 a
m

o
u

n
t

o
f

ar
it

h
m

e
ti

c

Number of states

MSGOL MSGOL4

 120

3.5.5 Data types

As the state of the CA is stored in a specific data types varies e.g. integer,

or floating point, and the level of precision given by the number of bytes used,

this varies the performance of hardware. It is useful to know how previous

experimental results will relate to a continuous CA which is used for flood models

that will be investigated in Chapter 5: and Chapter 6:.

3.5.5.1 Experimental set-up

Experiments are conducted on two types of integer and two types of floating

point data types, at a range of grid sizes. The char data type is a single byte

integer, whereas the int type is a 4 byte integer. The float type is a 4 byte floating

point, and the double is an 8 byte floating point type.

3.5.5.2 Experimental Results

Figure 3.23, Processing times from the game of life with a 50 percent active
distribution and run for 1,000 generation, at various grid sizes, and with the 4

different data types, on the GPU.

The results of Figure 3.23 demonstrate there is very little difference in

processing times for the two data types which are the same size (int and float,

both being four bytes), the char type with only a single bytes takes the least time,

0

0.5

1

1.5

2

2.5

16384 516384 1016384 1516384 2016384 2516384 3016384 3516384 4016384

P
ro

ce
ss

in
g
 t

im
e

(s
ec

o
n

d
s)

Number of grid cells

char int float double

 121

where the double floating point types takes the most times. It would appear that

the size of the data types has large effects on the processing time of the GPU.

Figure 3.24, Processing times for the OpenMP implementation, with 1,000
generations of the game of life with a 50 percent initial distribution configuration.

Figure 3.24 shows the processing times for the CPU, where the char type

does take the least amount of time as with the GPU, however the int type which

is 4 times as large, only takes a marginally longer amount of time to process on

the CPU. It is thought this is because it is primarily hardware constrained and that

the hardware being 64/32bit is tailored for these larger data types. Both floating

point data types take a sizeable amount of extra time to process compared to the

integer types, however there is even less difference between the processing time

of the two different floating point types (float and double). In fact, since the CPU

has for some years been tailored to operate with the higher precision double

floating point types, it can be seen in Figure 3.24 that it is actually slightly faster

at processing this types, even though it is twice the size of the float type.

0

2

4

6

8

10

12

14

16384 516384 1016384 1516384 2016384 2516384 3016384 3516384 4016384

P
ro

ce
ss

in
g

ti
m

e
 (

Se
co

n
d

s)

Number of grid cells

char int float double

 122

Figure 3.25, Speed-ups of the GPGPU over the CPU of several different grid
sizes, for 1,000 generations, using different base data types of char, int, float

and double floating point numbers.

Figure 3.26, Cell update rates (per second) on the GPGPU at a range of
different grid sizes, for 1,000 generations, using different base data types of

char, int, float and double floating point numbers, on machine B.

0

5

10

15

20

25

30

35

40

45

50

16384 516384 1016384 1516384 2016384 2516384 3016384 3516384 4016384

S
p

ee
d

 u
p

 f
a
ct

o
r

o
v
er

 s
er

ia
l

Number of grid cells

char int float double

0

1

2

3

4

5

6

0 1 2 3 4

C
e

ll
u

p
d

at
e

s
p

e
r

se
co

n
d

B
ill

io
n

s

Number of grid cells

Millions

OpenCL Char OpenCL int OpenCL float OpenCL double

 123

Figure 3.27, Cell update rates (per second) on the serial CPU implementation
at a range of different grid sizes, for 1,000 generations, using different base

data types of char, int, float and double floating point numbers, on machine B.

Due to the different natures of the processing times shown in Figure 3.23

and Figure 3.24, the speed-ups factors shown in Figure 3.25 are notably different.

The starkest difference is between the float and double types, as the CPU is

tuned to perform well for the 64bit double floating point type, whereas the GPU

performs roughly half as fast as it does with the float types. Notably the floating

point type has the largest speed-up factor, even greater than the smaller data

types of the char (which is also a simple type being an integer).

3.5.6 Neighbourhood size tests

A further parameter that varies among applications in cellular automata is

the neighbourhood size. An in-depth investigation is conducted here into the

effect of modifying neighbourhood size, in conjunction with activity levels to

determine possible speed-up on a GPU.

3.5.6.1 Method

The Moore neighbourhood is extended and defined by the size of the radius

(r), where the standard Moore neighbourhood has a radius of 1 as each (central,

70

75

80

85

90

95

100

105

110

115

120

0 1 2 3 4

C
e

ll
u

p
d

at
e

s
p

e
r

se
co

n
d

M
ill

io
n

s

Number of grid cells

Millions

Serial char Serial int Serial float Serial double

 124

main) cell is surrounded by 1 cell in either direction, forming a square

neighbourhood where the number of cells is defined as (2r+1)2. The ‘game of life’

decision tree rule set is used (it should be noted that the GOL rule set only uses

assignment for its state changes, and therefore the only variable arithmetic is

within the counting of live neighbouring cells); and the collection of neighbouring

live cell counts is altered to a set of two loops which takes the radius parameter,

and finally each neighbouring cell is counted as it is visited, as opposed to storing

the entire neighbourhood which is more difficult for the GPGPU. Since the ‘game

of life’ rule set looks for specifically 2 or 3 live cells in order to trigger activity, as

the neighbourhood size is increased, the range of possible live neighbouring cells

also increases; thus the chance of finding 2 or 3 live neighbours decreases when

the initial configuration is seeded with the same 50% initial configuration

distribution probability in the creation of live cells. However, it is found to be

possible to generate long lasting patterns in all radius sizes tested from 1 to 5 for

the decision tree game of life. It was consequently found that the initial

configuration needed to be seeded with fewer live cells as the neighbourhood

size was increased. So, similar activity tests as in section 5.2 were repeated for

each neighbourhood size by using a separate implementation to ascertain the

cell and neighbourhood counts over a range of initial configuration distribution

probability for initial live cell creation.

It is determined that there are ranges of values within the initial configuration

distribution probabilities which favour activity (shown in Figure 3.12 and Figure

3.28). Within these ranges the initial population levels are neither too few nor too

many to generate widespread amounts of live cells both spatially and temporally,

and as such are termed as ‘habitable spectrum’ of initial configuration distribution

probabilities. Unfortunately it can be seen in Figure 3.28, that the ‘habitable

spectrum’ for each radius of the extended Moore neighbourhood shifts

dramatically towards the lower end of the initial configuration distribution

probabilities, so much so that using a 50% initial configuration distribution

probability with a radius greater than 2 would not likely yield high activity levels.

Therefore a simple estimation of the centre of these ‘habitable spectra’ is utilised,

which also coincides with using a 50% initial configuration distribution probability

as before with the tests using a neighbourhood radius of 1 (as in sections 3.5.1-

3.5.3). Equation 3.1 shows the initial configuration distribution probabilities

 125

relative to the neighbourhood radius used in the preceding time experiments to

ensure that high activity levels are generated for all neighbourhood radius sizes.

Interestingly, the centres of these habitable spectra can be approximately

calculated using the golden ratio of 1.618, a ubiquitous constant in natural

systems. This leads to the initial configuration distribution probabilities as shown

in Table 3.2.

Equation 3.1

 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

𝑟𝑎𝑑𝑖𝑢𝑠1.618+1

Table 3.2, Estimations of biases for the first 5 neighbourhood radius sizes used
in experiments in this section, which correspond roughly to the centre of the

discovered habitable zones.

Radius 1/(radius1.618+1)

1 50%

2 24.57%

3 14.46%

4 9.59%

5 6.89%

3.5.6.2 Experimental set up

Both the initial configuration distribution probability estimates produced by

Equation 1 that yield high activity levels and a zero initial configuration distribution

probability, which gives all dead cells in the initial configuration and thus the rest

of the simulation, are tested. Again a workgroup size of 16x16, on a 512x512 grid

is used, at 1,000 generations on Machine A, and 10,000 on Machine B.

 126

3.5.6.3 Experimental Results

Mean live neighbourhood counts

Mean live cell counts

Figure 3.28, Average live neighbours and live cell counts for initial configuration
distribution probability of 0% to 67.5% at intervals of 2.5%, for a 512 lattice size

and 1,000 generations, for the neighbour radius sizes 1 to 5.

Figure 3.28 shows the average amount of activity and the described

plateaux or habitable spectra. Figure 3.28 also shows that there is a reasonably

large jump in neighbourhood count activity between neighbourhood radius sizes

1 and 2, but after that appears to follow a fairly linear increase in activity as the

radius of the neighbourhood is increased. Interestingly the live cell counts follow

a very different pattern.

0

1

2

3

4

5

6

7

8

9

0 20 40 60

M
e

an
 li

ve
 n

e
ig

h
b

o
u

ri
n

g
ce

ll
co

u
n

t

Initial configuration distribution probability

1 2 3 4 5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 20 40 60

M
e

an
 li

ve
 c

e
ll

co
u

n
t

Initial configuration distribution probability

1 2 3 4 5

 127

Machine A

Machine B

Figure 3.29, Relative speed improvements of the GPGPU and the OpenMP
implementation, over the serial implementation with a variable neighbourhood

size. Results shown for a 512x512 sized lattice, for 1,000 generations on
Machine A, and 10,000 generations on machine B. Seeding with a zero initial

configuration distribution probability and therefore no activity.

Figure 3.30, Cell update rates (per second) for the serial CPU implementation,
GPGPU and OpenMP, with a variable neighbourhood size. Results shown for a

512x512 sized lattice, 1,000 generations on machine A. Seeding with a zero
initial configuration distribution probability and therefore no activity.

1.75

1.8

1.85

1.9

1.95

2

2.05

1 2 3 4 5

Sp
e

e
d

 u
p

 f
ac

to
r

o
ve

r
se

ri
al

Neighbourhood Radius size

OpenMP OpenCL GPU

0

10

20

30

40

50

60

1 2 3 4 5

Sp
e

e
d

 u
p

 f
ac

to
r

o
ve

r
se

ri
al

Neighbourhood Radius size

OpenMP OpenCL GPU

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5

C
e

ll
u

p
d

at
e

s
p

e
r

se
co

n
d

M
ill

io
n

s

Neighbourhood Radius size

Serial

OpenMP

OpenCL GPU

 128

Figure 3.31, Cell update rates (per second) for the serial CPU implementation,
GPGPU and OpenMP, with a variable neighbourhood size. Results shown for a
512x512 sized lattice, 10,000 generations on machine B. Seeding with a zero

initial configuration distribution probability and therefore no activity.

Figure 3.29 shows that where there is no activity, only a slight increase in

performance for larger neighbourhood sizes is observed, with the exception of

the GPGPU on Machine B which shows larger increases. This is attributed to a

more efficient use of the cache of the GPGPU in Machine B allowing for a greater

use of the extra hardware parallelism with the additional memory work in each

cell.

0

0.5

1

1.5

2

2.5

1 2 3 4 5

C
e

ll
u

p
d

at
e

s
p

e
r

se
co

n
d

B
ill

io
n

s

Neighbourhood Radius size

Serial

OpenMP

OpenCL GPU

 129

Machine A

Machine B

Figure 3.32, Relative speed improvements of the GPGPU and the OpenMP
implementation, over the serial implementation with a variable neighbourhood

size. Results shown for a 512x512 sized lattice, for 1,000 generations on
machine A, and 10,000 generations on machine B. Seeding with the ‘initial

configuration distribution probability relative to the radius’ as shown in Equation
1, to produce activity in all simulations.

Figure 3.33, Cell update rates (per second) for Serial CPU implementation,

GPGPU (OpenCL), and parallel CPU (OpenMP) with a variable neighbourhood
size. Results shown for a 512x512 sized lattice, for 1,000 generations on

machine A. Seeding with the ‘initial configuration distribution probability relative
to the radius’ as shown in Equation 1, to produce activity in all simulations.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5

Sp
e

e
d

 u
p

 f
ac

to
r

o
ve

r
se

ri
al

Neighbourhood radius size

openMP OpenCL GPU

0

10

20

30

40

50

60

70

80

1 2 3 4 5

Sp
e

e
d

 u
p

 f
ac

to
r

o
ve

r
se

ri
al

Neighbourhood radius size

OpenMP OpenCL GPU

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5

C
e

ll
u

p
d

at
e

s
p

e
r

se
co

n
d

M
ill

io
n

s

Neighbourhood radius size

Serial

openMP

OpenCL GPU

 130

Figure 3.34, Cell update rates (per second) for Serial CPU implementation,
GPGPU (OpenCL), and parallel CPU (OpenMP) with a variable neighbourhood

size. Results shown for a 512x512 sized lattice, for 10,000 generations on
machine B. Seeding with the ‘initial configuration distribution probability relative

to the radius’ as shown in Equation 1, to produce activity in all simulations.

Figure 3.32 shows that where there is activity, a very different pattern in the

speed ups of the GPGPU compared to the CPU (parallel) approach can be

observed, whereby there is a spike in the performance at a radius of 2. It is

proposed that not only is there a link between the amount of arithmetic and speed

up, but there is there is also a relation between the proportions of arithmetic to

memory accesses, shown in Equation 3.2. I.e. as the number of memory

accesses is increased, caused by the larger neighbourhoods, this proportion is

reduced along with the speed ups.

Equation 3.2

 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝐹𝑎𝑐𝑡𝑜𝑟 ∝
𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑝𝑒𝑟 𝑐𝑒𝑙𝑙

𝑀𝑒𝑚𝑜𝑟𝑦 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑝𝑒𝑟 𝑐𝑒𝑙𝑙

0

0.5

1

1.5

2

2.5

1 2 3 4 5

C
e

ll
u

p
d

at
e

s
p

e
r

se
co

n
d

B
ill

io
n

s

Neighbourhood radius size

Serial

OpenMP

OpenCL GPU

 131

Figure 3.35, Ratio of the average live neighbouring cell count (activity) for each
radius, against the neighbourhood size in cells, for a 512 sized lattice and 1,000

generations (I.e. the predicted speed-up level from Equation 2).

This relation (Equation 3.2) is shown in Figure 3.35, where the average live

neighbouring cell counts from each radius divided by the number of cells in each

neighbourhood are plotted. This measure of the level of activity within the

neighbourhood relative to the neighbourhood size, for each neighbourhood

radius clearly mimics the shape of the GPGPU speedup curves for both machines

in Figure 3.32. For machine B, there is a slight trend to increase in performance

with larger radius sizes, which is attributed to the increase in speedup seen in

Figure 3.29 where the performance increases with neighbourhood size

irrespective of activity level.

3.5.7 Generational size tests

Clearly, longer CA runs will benefit more greatly from any speedup that the

GPU can provide. However, there are overheads associated with the

implementation of a CA on the GPU and so these experiments attempt to

characterise the length of run under which speedup on the GPU will be

maximised. This is especially important for more complex CA to understand how

different numbers of CA iterations will affect the GPU speed ups.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

M
e

an
 n

e
ig

h
b

o
u

ri
n

g
liv

e
 c

e
ll

co
u

n
t

d
iv

id
e

d
 b

y
n

e
ig

h
b

o
u

r
si

ze
 in

 c
e

lls

Neighbourhood Radius size

 132

3.5.7.1 Method

In order to avoid excessive transfer to and from the GPGPU when testing

over a range of CA generations, for each number of generations tested, a full

simulation is repeated up to the required number of generations, as opposed to

running a single long simulation and timing it at sample intervals. Earlier sections

(3.5.3-3.5.4) have shown how activity affects the entire simulation; experiments

are now conducted to see how this effect correlates with the number of CA

generations by again counting the live average cell and neighbourhood activity

as well as a separate implementation purely for timing results.

3.5.7.2 Experimental set up

In a similar fashion to the lattice size tests in section 3.5.1, and 3.5.2, tests

were run on a spectrum of generation sizes and fully independent runs (repeated

15 times for an average) were conducted for each total count of generations.

Tests were run at a single generation, and then at increments of 100 on Machine

A up to 1,000, and at increments of 1,000 on Machine B up to 10,000. These

tests are performed at lattice sizes of 512x512, 1024x1024, and 2048x2048,

which are noted to be the particular lattice sizes where Machine A suffers from

load balancing issues on the GPGPU, with a workgroup size of 16x16. Tests are

also repeated on Machine B, at smaller lattice sizes of 480 and 448, in order to

confirm the theory for the difference in the Machine B’s response at a 512 lattice

size. Machine B’s GPGPU has more cores and therefore processes each

generation quicker than Machine A. However, the overheads of parallelisation do

not change as greatly for Machine B and this therefore means it takes more

generations to overcome them at these smaller sized lattices.

 133

3.5.7.3 Experimental Results

512 lattice – Machine A

512 lattice – Machine B

1024 lattice – Machine A

1024 lattice – Machine B

2048 lattice – Machine A

2048 lattice – Machine B

Figure 3.36, Speed ups over the serial implementation, for OpenMP and
OpenCL on the CPU and GPU, for a spread of generations, at lattice sizes of

512x512, 1024x1024, and 2048x2048.

0

0.5

1

1.5

2

0 200 400 600 800 1000Sp
e

e
d

 u
p

 f
ac

to
r

o
ve

r
se

ri
al

Number of generations

OpenMP OpenCL CPU OpenCL GPU

0

10

20

30

40

50

0 2000 4000 6000 8000 10000Sp
e

e
d

 u
p

 f
ac

to
r

o
ve

r
se

ri
al

Number of generations

OpenMP OpenCL CPU OpenCL GPU

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

0 200 400 600 800 1000Sp
e

e
d

 u
p

 f
ac

to
r

o
ve

r
se

ri
al

Number of generations

OpenMP OpenCL CPU OpenCL GPU

0

10

20

30

40

50

0 2000 4000 6000 8000 10000Sp
e

e
d

 u
p

 f
ac

to
r

o
ve

r
se

ri
al

Number of generations

OpenMP OpenCL CPU OpenCL GPU

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000Sp
e

e
d

 u
p

 f
ac

to
r

o
ve

r
se

ri
al

Number of generations

OpenMP OpenCL CPU OpenCL GPU

0

10

20

30

40

50

0 2000 4000 6000 8000 10000Sp
e

e
d

 u
p

 f
ac

to
r

o
ve

r
se

ri
al

Number of generations

OpenMP OpenCL CPU OpenCL GPU

 134

Figure 3.37, Cell update rates (per second) for serial implementation, OpenMP,
and OpenCL on the CPU and GPU, for a spread of generations, at lattice sizes

of 512x512, on Machine A.

Figure 3.38, Cell update rates (per second) for serial implementation, OpenMP,
and OpenCL on the CPU and GPU, for a spread of generations, at lattice sizes

of 512x512, on Machine B.

0

10

20

30

40

50

60

0 200 400 600 800 1000

C
e

ll
u

p
d

at
e

s
p

e
r

se
co

n
d

M
ill

io
n

s

Number of generations

Serial

OpenMP

OpenCL CPU

OpenCL GPU

0

1

2

3

4

5

6

0 2000 4000 6000 8000 10000

C
e

ll
u

p
d

at
e

s
p

e
r

se
co

n
d

B
ill

io
n

s

Number of generations

Serial

OpenMP

OpenCL CPU

OpenCL GPU

 135

Figure 3.39, Average neighbourhood counts (Mean number of live neighbouring
cells), for a spread of generations, at lattice sizes of 512x512, 1024x1024, and

2048x2048.

It was found that once again, the timing results indicate a fairly linear relation

between the number of generations and the processing time. However overheads

of parallelisation which, on the GPGPU, include the transfer time to and from the

device and small amount of compilation time for the kernel, mean that a curvature

up to a plateau can be observed in the relative performance shown in Figure 3.36.

In many of the relative performances of the parallel approaches, as the number

of generations increases the parallelisation overheads are overcome as a larger

proportion of the whole algorithm is parallelised. However, it appears that, if the

number of generations is increased further, a slower drop in relative performance

of the parallel approaches can be observed. Sections 3.5.3-3.5.4 have shown

that over the course of the entire simulation the activity is directly proportional to

the relative performance of the parallel approaches and can be partially attributed

to the slower drop in activity, in the later stages of the simulations (Shown in

Figure 3.39). However experimental results appear to show a greater drop at the

higher end of the tested spectrum of generations, especially on the older/slower

machine A, which may be due to the continued bottleneck of load balancing,

which occurs at that grid size. After a single generation the highest amount of

activity are observed in Figure 3.36, and in Figure 3.39 the lowest relative

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2000 4000 6000 8000 10000

A
ve

ra
ge

 n
e

ig
h

b
o

u
rh

o
o

d
 a

ct
iv

it
y

(n
u

m
b

e
r

o
f

al
iv

e

n
e

ig
h

b
o

u
rs

)

Generations

2048

1024

512

 136

performance (even a marginal decrease in some cases) is observed. This

demonstrates the extent to which simulations with very few generations are

dominated by these parallelisation overheads, specifically for the GPGPU the

transfer time bottleneck. Figure 3.36, for Machine B at a 512 lattice size shows

that it takes more generations to overcome the initial bottleneck. This pattern is

due to the use of relatively small lattice in relation to the level of hardware

parallelism and the transfer bottleneck; i.e. as Machine B has a greater level of

hardware parallelism compared to Machine A, it can process each generation of

the smaller lattice relatively faster compared to the transfer bottleneck, and

therefore takes more generations to overcome this effect.

3.6 Discussion

The experimentation here has shown that in order to gain the greatest

performance from the GPGPU the lattice size, or rather the number of threads

used, must exceed the number of hardware cores by more than an order of

magnitude in order to best utilise all layers of hardware parallelism. Particularly

difficult lattice sizes are shown to be caused by the lack of fit between the

numbers of workgroup threads and the number of hardware’s independent sub-

groups of processors. Therefore, caution is suggested when using particular

lattice sizes, and claiming acceleration rates for the GPGPU. It is also shown that

these load balancing effects are caused by the number of workgroups, and one

solution to this problem might be to pad the number of threads and therefore

workgroups. An advantage to this approach is that these extra threads need only

check if they are within the actual lattice or if the padded threads area, and thus

need not transfer additional data.

It is noted that part of these findings are due to many of the intricacies of

way the implementation has been formulated, even though only a brute force

approach is investigated. For example, a programmatic function/decision tree is

used, which doesn’t require a look-up. Also, apart from the final tests with

neighbourhood sizes, unrolled loops have been used for the collection of

neighbouring cell values. Also, in the ‘game of life‘ with two states, it would be

possible to implement this by means of summing the values of all neighbouring

cells in order to gain a count of living cells, although this would be sub optimal for

serial implementations, it would yield a very high speed up factor. The

 137

experimentation shows how important variable amounts of arithmetic are to the

speed improvement shown by the GPGPU, and how this causes variations in

GPGPU accelerations over the CPU. It is demonstrated through the

implementation of state transition rules with variable amounts of arithmetic, that

where the conditions of the CA simulation result in large variations in the

arithmetic levels across the grid then the GPGPU’s performance varies

proportionately. This may go some way to explain the wide variation of reported

speed increases from the literature. All CA will need to follow a similar memory

pattern, as all CA need each cell to access the neighbouring cells states;

therefore, any variation in speed-up between different CA will come from both the

different neighbourhood size, in addition to the amount of certain arithmetic and

variable arithmetic within the given state-transition rule of the CA. It is shown for

the investigated rule sets that the majority of processing time can be attributed to

the number of memory look-ups for each cell however the variation in the

arithmetic work of rule set can still cause relatively large difference in speed-up.

Therefore, for a given size of neighbourhood used (the amount of memory

requests per cell), one should if possible increase the amount of arithmetic within

the rule set on a per cell basis, in order to gain greatest speed-ups. Conversely if

the rule set uses minimal arithmetic compared to memory access, it is expected

that speed-ups will be smaller.

Multi-state interpretations of the game of life have been created and

experimental results are shown. The variation in the number of live cells over the

course of the simulation, and the average specific course through the decision

tree are shown to affect the processing speed of the CPU implementation due

mainly to the varied amount of arithmetic necessary. Whereas the GPGPU may

hide this variation in arithmetic complexity behind the memory latency and within

the hardware parallelism, and as a result produce much more predictable

processing times in the presence of such variation. The variation is a

consequence of the behaviour produced, and therefore very hard, if not

impossible, to predict without prior knowledge of the given rule set. Activity levels

effect the processing time by different amounts at each generation and, with the

game of life rule set, the activity was found the be greatest in the early stages;

after an initially large drop tends to a slow decrease. In these early

generations/short simulations the bottleneck of transferring to and back from the

 138

GPGPU for processing is found to by far outweigh the acceleration in processing.

This suggests that this bottleneck is especially critical to short lived simulation,

which would certainly have consequences for distributed/cluster systems; i.e. it

is even more important to run long CA simulations (large number of generations)

than it is to use larger lattices, in order to overcome the overheads of

parallelisation upon co-processors such as the GPGPU.

The cache in the newer Fermi generation of GPGPUs facilitates better use

of larger neighbourhoods. This is because the additional hardware parallelism

makes good automatic uses of this fast memory. A relation between the

proportions of arithmetic activity to the amount of memory re-use is proposed

(shown in Equation 3.2), again suggesting the need for a fine balancing act

between the amount of arithmetic and memory complexity within a CA system for

best performance increases. The decision tree interpretation of the game of life

rule set when applied to larger neighbourhoods is found to produce very

interesting patterns: - ‘habitable spectra’ within the initial configuration distribution

probabilities exist for the incitement of such patterns. A relation between the

radius of the neighbourhood and these habitable spectra are proposed which

appears to follow an interesting mathematical pattern found from nature, i.e. the

golden ratio.

3.7 Conclusions

As a lattice-based, parallel method of computation, cellular automata lend

themselves to parallelisation on GPUs very well. This work has thoroughly

investigated the performance increases that can be expected from this

parallelisation for a wide range of expected cellular automata parameters. The

results have provided some expected results; that CA run for longer generations

provide increasing speed-up and that the machine type (and in particular relative

speeds of GPU and CPU) have a large bearing on the level of speed-up possible

on these machines. The results have also provided some less obvious insights

into GPU parallelisation. Firstly, that the maximum speed-ups are found when

maximising the arithmetic use of the GPU, while minimising the amount of

memory look-ups per cell of the CA also increases the speed-up factor. Secondly,

that the amount of activity in the CA has a large effect on performance. With a

high dependency on the specific implementation, CAs with more cells that carry

 139

out lengthy processing during their evolution are more amenable to parallelisation

than those which have low cellular computational complexity and are therefore

able to exploit the parallel GPU more effectively. Thirdly, that the choice of lattice

size is important in the speed-ups possible on the GPU and care should be taken

to ensure that the lattice size fits with the underlying hardware where possible.

Fourthly, that there exists a complex relationship between the number of states,

neighbourhood size, state-transition rules and the level of activity (and therefore

effective parallelism) within a CA. This relationship will ultimately determine the

specific level of speed-up available to a CA implementation and is, for obvious

reasons, problem specific. However, using the results from this study the likely

speedup for a CA implementation on a GPU can be estimated based on the lattice

size, activity levels observed within the CA and the number of generations

required. This estimation can aid decision making when considering whether the

degree of speedup is sufficient to warrant a GPGPU implementation on an

application by application basis.

Finally, the work above has shown that for a simple CA such as the Game

of Life, speed-ups of between 50 and 100 times are possible on modern hardware.

It should be noted that this is likely to be a conservative estimate as this figure is

a comparison with one of the fastest modern CPUs available and the Game of

Life is comparatively simple. More complex rule sets will make better use of the

GPUs native capability for performing fast parallel calculations. The best speed-

ups will occur when the CA is sufficiently complex and run for a large number of

generations, which is beneficial to the field in that the most complex CA will

benefit the most from parallelisation.

This all leads to the idea that CA when given enough lattice size and enough

iterations, relative the given GPU hardware can be accelerated in processing.

This brings into real terms the possibility of using CA simulations as fitness

functions for a Genetic Programming system. This is where the parallelism of the

CA and GP system can combine well together, as it appears from the research

contained within this chapter, that to gain the best speed-up the CA needs to be

at least an order of magnitude larger than the number of core within the GPU

device. Since GP will require the evaluation of a fitness function for a number of

individuals, this can be used to enlarge the total number of cell processed without

enlarging the individual test cases, which would still scale with the total number

 140

of cells. Such a method is described in greater detail in later chapters of this thesis,

as this is implemented in order to train a CAGP system for a real-world problem

in urban flood modelling.

 141

Chapter 4: GP learning of Cellular Automata state

transition rules

4.1 Introduction

4.1.1 Background

GP was introduced previously in section 2.2 as a method of optimisation,

symbolic regression and rule learning, and section 2.2.3 shows how GP has been

used previously to derive the state transition rules for relatively simple binary

state, and 1 dimensional CA. The fitness of the GP state transition rules, are in

these types of problems normally determined by the final state of number of CA

simulations.

The work in this chapter introduces the combined GPCA methodology for

learning the state transition rules of 2D CA using GP, and investigates the

feasibility of training CA state transition rules where the desired output is that of

an entire CA simulation. In such a process, not only would the final state of the

given fitness simulation be tested, but also all the intermediary states. Instead of

evolving a distributed computer program, a distributed simulator is evolved, as

the method the CA uses to get the final results is as important as the final resulting

state.

The GPCA method may be applied to any CA simulation application so long

as an interface between the local neighbourhood of the CA and the GP can be

produced. This interface must declare the basic type of CA (binary, integer,

continuous)/number of states, and how the states of the CA neighbourhood relate

to GP variables. The work in this chapter demonstrates how the GPCA system

may work on such a simple binary rule set as the Game of Life.

4.1.2 Chapter Structure

Section 4.2 introduces the general methodology of the GPCA system for

learning CA state transition rules, and introduces the interface system used to

learn the Game of Life rule set. This section also describes the GP fitness function

and evolutionary algorithm applied in the rest of this thesis.

 142

Finally section 4.2.4 introduces the method of combining the modern many-

core parallelism of the GPGPU, to not just increase the processing time of CA

simulations, but also to increase the speed of GPCA training. This novel

extension of simply processing each CA fitness case on GPGPU hardware,

allows for all the fitness cases of the single GP generation to be processed

simultaneously on the GPGPU. By processing all the fitness cases in a single

batch, the bottleneck between the CPU and GPGPU can be minimised, and make

full use of the combined work of all the fitness cases to satisfy the GPGPU’s

needs for sufficient workloads in order to gain speed-ups through parallelism. In

fact the experiments in Chapter 5:, on fixed spatial and temporal resolution real-

world flooding experiments with the GPCA system would take 3.75 weeks when

run in parallel on the CPU, and only take 125 hours on the GPGPU. If these

experiments were to be carried out in serial on the same CPU, it would take

approximately 18.75 weeks to carry out just the experimentation for Chapter 5:.

Therefore, it is only the use of this novel method of combining the parallelism of

the GP and CA algorithms which allows for the feasibility of the range of

experiments carried out in this thesis.

This system is first applied to the simple rule set of the Game of Life in

section 4.3, which shows that Genetic Programming is capable of discovering this

simple rule set. This experimentation is intended to demonstrate the ability of GP

to search the space of possible rulesets and to locate the global optimum ‘correct’

solution. The advantage of using a system such as the GOL is that it has an

identifiable global optimum which is well known, whereas the real-world flooding

applications do not. It can therefore be used to modify the GP system to be as

optimal as possible before tackling the much larger real-world problem. Having

shown that the GPCA a system can learn such a simple rule set as the Game of

Life (section 4.3), this methodology is then extended to the development of a real

world urban flood modelling rule set in Chapter 5:. Finally chapter 4.4, draws

conclusions upon the feasibility of using the GPCA system to learn such a simple

CA rule set as the Game of Life.

 143

4.2 Methodology

In this section a methodology is developed that uses GP to evolve specific

CA state transition rules, using example CA simulations to learn from. The

standard Koza [6] type of GP is employed, in that a GP tree system and sub-tree

cross-over are employed. The GP tree is applied as a decision tree within each

cell of the cell of the cellular automaton to determine the new state for each cell.

4.2.1 GP CA interface/representation

 The method employed to interface the GP within each CA neighbourhood

differs for each type of CA, and the type of rule which is being learnt. There are

two main methods employed, the first for the Game of Life type of binary state

rule sets (described in section 4.2.1.1), and the second for use modelling real

world hydraulic movements of water (described later in section 5.2.1). The

interface, dictates on which state variables the GP will operate and therefore the

variable terminal values for the GP tree. Since the prospective formulae expected

for each system are so different a different set of operates are used in each

experiment, detail in the experimental setups for each.

4.2.1.1 Game Of Life binary state GP interface

The Game of Life style GP implementation uses the Moore neighbourhood

(shown in Figure 2.2), and the rule set that was previously described in section

2.1.1, in which the states of cells are either ‘alive’ (state 1) or ‘dead’ (state 0). The

number of alive neighbouring cells is counted for each cell in the CA grid, and

this is provided to the single GP tree within each cell as one of the variables inputs

(This variable is called: NH_count). The only other variable input to the system is

the state of the central cell of each neighbourhood (This variable is called

mainCell). Finally, two static variables are introduced for each of the binary

states ALIVE, and DEAD to represent states 1 and 0 respectively.

This system guarantees the uniformity to the direction of input for all

possible rule sets, by only presenting a single cumulative input from all the

neighbouring cells to a single GP tree within each cell. In the experiments in this

chapter on learning the Game of Life rule set, both the GP tree (at each node)

and the states of the cells are allowed the full variable expression of floating point

 144

values (double precision). Therefore, it is up to the GP trees to develop rules

which only output binary states. However, this means that the counting system

which determines the number of alive neighbours (NH_count), must deal with

floating point values. In this case, the neighbourhood count variables (NH_count),

counts any cell states with a state equal to or greater than one as alive.

4.2.2 GP CA Fitness function

Each resulting CA simulation for each GP rule is tested for similarity to the

given target CA simulation, which then returns an error score for the given GP

individual. The error is calculated between each cell at each iteration and the

target simulation and thus produces a similarity for the entire simulation. The

inverse of the error score is used as the fitness score (where fitness must be

maximised), as this is used for fitness proportionate roulette wheel section.

Effectively the system is asked to solve the inverse problem for CA, whereby

given a global reaction, the system must deduce the local state transition rule

which creates this global reaction. Evolutionary algorithms, of which GP is a

member, are characterised by large numbers of fitness evaluations which can be

very computationally expensive. However, they are known to be capable of

searching otherwise intractably large search spaces and finding near optimal

solutions. Therefore, the evolutionary system should be able to create local rules

which are reasonably close approximations to the global maximum. Since such

a rule will have to cope with many hundreds or thousands of different sets of

parameter/variable inputs, and the complex interactions required to closely match

the global space-time pattern, these local rules produced should generalise well

to other conditions and initial inputs. As the same local rule in different

configurations which is responsible for the different global reaction observed. For

example in the Game of Life experiments in Section 4.3, using a 100x100 grid,

and 10 generations of CA simulation as the fitness function, presents each GP

with 100,000 different input and output sets. Since a CA will need to be evaluated

with each GP individual, and a comparison made against the target CA, then the

target CA details are loaded once at the start of the optimisation process, to avoid

the loading bottleneck during the process.

In the real-world rule set experiments in Chapter 5: and Chapter 6:, it is

important to consider the real-scaled nature of the underlying model (i.e. real

 145

world). This must be represented in a computer system as discrete points in time,

known as the sampling rate, regardless of whether this data comes from another

‘trusted model’ or from the real world. The target simulation is represented in

memory by holding a grid of values for every second of the simulation (sampling

rate used throughout this thesis), even though the model used to produce it run

at a much finer grain (smaller time step). This single data set is used to represent

the continuous movements fluid masses around the grid, so when a CA iteration

falls directly on a given second it will use this grid for comparison. When a CA

iteration falls between two given grids (seconds), then linear interpolation is

utilised between these two grids, on a cell by cell basis. This allows for the same

space time pattern to be targeted at different temporal resolutions.

4.2.3 GP CA Evolutionary Algorithm

A generational evolutionary algorithm is used to drive the GP system, shown

in Figure 4.1, where all the individuals within the current population are evaluated

and then order/sorted according to their fitness scores. Then a top percentage of

individuals are copied without alteration to the new population (known as the

elitism rate), and so long as at least one elitist individual is copied to the new

population at each generation the algorithm’s current best solution will not get

any worse. The rest of the new population is made from individuals which are

selected from the entire current population, using the given selection strategy

(e.g. fitness proportionate roulette wheel, or tournament selection). Selected

individuals are given a certain chance of being directly passed into the new

population without cross-over (cross over rate), although there is still a certain

chance of mutation (mutation rate). If an individual is assigned for cross-over,

then another individual is selected (again using the given strategy) and used as

the second parent. A cross-over of two parent GP trees, will produce two child

GP trees, but only a single arbitrary child is created, and given a chance of

mutation before being place in the new population.

 146

Figure 4.1, Illustration of how a new population is derived from the current
population within the generational GP system.

The entire system is represented by the flow chart (shown in Figure 4.2).

Targets are provided by UIM (the Urban Inundation Model) [62] for the real world

experiments, which uses an adaptive time step, where the minimum time step is

much lower than those utilized within training of the GP system, in order to

provide a finer grain of detail.

Figure 4.2, Flow chart of the GPCA optimisation systems process.

Elitist

members

Copied

Select

Cross-over

Mutation

Generate Random
GP Population

Evaluation

UIM

Targets

Cellular Automaton

GPs Targets

Genetic Operators

GP→fitness

Termination Criteria

A CA is run for each GP, using it to compare the terrain levels,
water depths between each pair of cells, given the cell size, time
step, and roughness; Each GP’s CA simulation is compared to
the given target to derive a mean fitness over each grid.

Survival/Elitism, cross-over, mutation

Given number of generations/iterations

No

Yes

Output: Trained Cellular Automata Rule

Training Case Data

 147

4.2.4 GP CA GPU computing method

4.2.4.1 Novel GP CA method for combined parallelism for more efficient GPU

computing

In order to expand the number of parallel elements (cells) being processed,

without expanding the size of each individual test cases, a novel system was

developed which harnesses the parallel nature of both the GP and the CA

algorithms. Parallelism may be drawn from both the CA with its many cells

performing the state transition rules for each cell in parallel, but also this process

is repeated for each GP individual, which may also be performed in parallel.

Previous experiments have shown that there is a minimum threshold of the

number of cells required in order gaining sufficient parallelism, and the size of the

CA evaluated for the single GP individual maybe much smaller than this,

otherwise the whole processing time is multiplied. Therefore, the evaluation of

the CA for each GP individual is carried in out in a closely parallel fashion. In that

one large CA grid is created, which includes a CA grid for each GP individual,

where particular attention is made in the kernel code to avoid any interaction

between these grids. Therefore a much larger number of cells per CA generation

can be carried out while evaluating all the GP individuals in parallel (Shown in

Figure 4.3). Since multiple populations may also be required to be run, it is

possible to use a third layer of parallelism by performing the evaluation of every

GP individual in each population in parallel. This method allows for the usage of

a smaller terrain in terms of the number of cells, to be used as the target CA for

each GP individual, while still overall maintaining a high enough parallel elements

(cells) in a single process in order to satisfy the conditional number of parallel

elements found in Chapter 3:, to be required to take full advantage of the parallel

power of the GPGPU.

 148

Figure 4.3, Demonstrates how the system is parallelised, on the left, the CA grid
is extended as many times as there are GP decision trees which are applied as

the state transition rule for all the cells in each section (where no interaction
between section/repetition of the terrain is allowed).The subscript after the GP
denotes which GP tree of the population is currently being utilised, and n is a

variable from 1 to the number of GP in the population. On the right, within each
section of the CA that particular GP decision tree is applied within every cell.

For example the terrain used in [65] has only 600 cells, and experiments in

Chapter 3:, have shown this is not enough parallel elements. Where the number

of hardware cores in current GPU’s is in the order of hundreds or thousands, it is

shown in Chapter 3: that the number of threads/cells needs to be between one to

two orders of magnitude larger than the number of cores in order to make the

best use of the available hardware. However, when this number is multiplied by

the number of GP individuals requiring evaluation at each generation of the GP,

the number of parallel elements can be dramatically increased. For example, if

all 100 individuals require evaluation, and then a sizeable 60,000 cells are

evaluated in parallel on the GPU. Furthermore, the majority of the experiments

run a number of differently seeded GP populations, and if 10 populations are

evaluated in parallel then 600,000 cells can be evaluated in parallel on a single

GPU. Clearly the use of the CA’s parallelism at this scale, would be insufficient

to take full advantage of the GPU hardware, however this method of utilising both

the GP and CA parallelism simultaneously allows for far greater parallelism to be

harnessed, without the need to expand the original test case. It is noted that this

A CA grid for each
GP tree in the
population, using
the same terrain

GP1

GP2

GPn

GP1 GP1 GP1 GP1

GP1 GP1 GP1 GP1

GP2 GP2 GP2 GP2

GP2 GP2 GP2 GP2

Each grid utilises
the given GP tree
within each cell of
the CA in parallel

 149

method only works if each of the CA to be evaluated in parallel are the same size,

i.e. the same test case is applied to each GP.

4.2.4.2 GP decision tree evaluation

Evaluating a standard GP tree on the GPU is made more difficult by the lack

of recursion or variable sized arrays. Where recursion is the most obvious way to

evaluate a variable sized tree structure with a standard CPU based programming

paradigm. Due to the need for the additional hardware to hold the return address

and recursion details, the GPU cannot physically perform recursion in the same

way. Therefore, a looping system is created, which keeps track of the current and

the previous nodes visited, using an indexing system, where the details of the

tree are stored in an array of indices, parent and children indices. By knowing

which node of the tree the process is currently on and which node was last visited

(either a parent of child), the system can know which node is next to visit and if

the current node should be evaluated, or if the system is traversing back up or

down the tree.

The tree is then evaluated in a depth first fashion, where upon reaching a

terminal node, the value is pushed on to the stack. The key element that is a

stack is again made difficult by the lack variable sized arrays on the GPU.

Therefore, a hardcoded limited sized array is created within each GP tree

instantiation, and a variable is used to keep track of the current top of the stack.

It is upon traversing back up the tree that the operations are carried out, for

example for a standard binary operation such as addition, then two values are

popped from the stack and the result of the operation is then push on to the stack.

Therefore, two switch cases are required, one for the possible operations and

another for the possible terminal variable values, where the static values are

stored literally. Due to the way that values are stored and then retrieved during

the return traversal, the maximum size of the stack is equal to the maximum depth

of the given GP tree.

4.2.4.3 Hardware difference of the power function between CPU and GPU

Appendix 9.1 explains details of how the outputs of the power function may

be different on the different CPU and GPU hardware, another difference between

the CPU and GPU implementations is the protection of the power function. As it

 150

is difficult to predicted which inputs will cause outlier output values, such as Not-

A-Number (NaN) values, indeterminate, infinity (plus or minus), post calculation

checks are utilised to capture these spurious results. While the CPU is capable

of capturing all of these spurious results directly after its calculation within the GP

decision tree, the current OpenCL API is unable to capture all of these,

particularly the indeterminate values. Therefore, both implementations capture

only the Not-A-Number (NaN) values, infinity (plus or minus) values, after each

calculation step and return a zero value for that particular node. This however

leaves the occurrences of indeterminate values to be passed down the GP

decision tree, and then can occur as states within the simulations. Since results

are returned from processing the simulation and fitness function on either CPU

or GPU device, return finally to CPU for the processing of genetic operators, then

at this stage any remaining spurious results can be captured. This rare

occurrence means that the entire GP decision tree must have a penalised

error/fitness score.

4.2.4.4 Parallel fitness function

The GPU is responsible for the processing of a CA simulation for each GP

individual, where the GP individual is used as the state transition rules for every

cell of that particular CA simulation. The fitness function is also particularly

tailored, so as to not to cause losses of parallelisation, in that a grid of error values

for each cell is maintained during the CA simulation. This leaves the reduction

process of finding a single error value for the entire grid, until the end of the CA

simulation. Therefore, an RMSE of the entire simulation is obtained, i.e. a RMSE

of every cell in every iteration of the CA.

4.3 GP CA - The Game of Life experimentation

The methodology described in the previous section, allows the GPCA

system to be applied to any CA system so long as an interface between the CA

neighbourhood and the GP tree system is created. In this section, experiments

are conducted to show that such a system can learn a relatively simple rule set

such as the Game of Life (which was previously described in section 2.1.1). The

Game of Life rule set is so simple it allows for the calibration and verification of

 151

the GPCA system, where the global optimum is known, or rather can be tested

for.

The example simulation may not contain examples of every state transition,

as is the case with the simulation used in these experiments. However, the since

it is possible to easily check for every state transition required for the game of life,

the resulting rule sets can be tested to see how well they have learnt the

underlying Game of Life rule sets.

4.3.1 Experimental setup

In these experiments a random distribution of live (state 1) and dead cells

(state 0) are created by using a 50% chance of either on each cell, using a 100 x

100 grid. This is then used as the initial configuration for a simulation of the Game

of Life, for a total of 10 generations and the data from this simulation is then used

as the target for the GPCA experimentation.

In order to maintain the uniformity of the rule set, the counting of the

neighbouring states is explicitly programmed where if the neighbouring state is

equal to or higher than the alive state (one) then it adds one to the value of the

counter variable (NH_count), for each of the eight possible neighbours in the

Moore neighbourhood. The state of the main (central) cell of each neighbourhood

is contained in the variable (mainCell). Therefore, there are only two variables

in the rule set, the NH_count variable which can range from 0 to 8 inclusively, and

the mainCell variable which should be either alive (state 1) or dead (state 0).

However, since this is a simple problem for the GP, the experiments do not limit

the output of the GP to just zero or one, but allow any output (continuous floating

point values), and thus force the GP system to learn the correct outputs. From

these possible variable inputs, and the expected outputs of the GOL rule set,

there are only 16 combinations (Shown below in Table 4.1). However, if this

continuous system is allowed to use the outputs from one generation as the

inputs for the next, there will be a much larger range of possible value for the

mainCell variable.

 152

Table 4.1, The 16 possible variable inputs (where mainCell column shows the
current state of the main cell, and Live neighbouring cell count shows the

number of alive neighbour), and expected outputs of the main cell in the next
time step.

GOL expected output mainCell Live neighbouring cell count

(NH_count)

0 0 0

0 1 0

0 0 1

0 1 1

0 0 2

1 1 2

1 0 3

1 1 3

0 0 4

0 1 4

0 0 5

0 1 5

0 0 6

0 1 6

0 0 7

0 1 7

0 0 8

0 1 8

A number of suitable terminals and operators are chosen in order to tackle

this problem, which is shown in Table 4.2. Also a number of static variables are

supplied to be available to the GP system, integer values ranging from 0 to 9

inclusively, and the fraction 0.1 up to 0.9, at increments of 0.1 are all supplied to

the GP as additional terminals. For the purposes of the game of life rule set, two

static variables are introduced which represent the alive state of one, and dead

state of zero.

 153

Table 4.2, Terminal and Operator set used for the GP system, for learning the
Game of Life rule set.

Node Name
Operator/
Terminal

Description

add (+)
Binary

Operator
Adds two values

Subtract (-)
Binary

Operator
Subtracts right value from left

Protected division
(%)

Binary
Operator

Divide left by right, unless right is zero,
in which case returns zero

Multiply (*)
Binary

Operator
Multiply two values

Greater Than (>)
Binary

Operator
If left value is larger than right value

return one, else zero

Smaller Than (<)
Binary

Operator
If left value is smaller than right value

return one, else zero

Equality (==)
Binary

Operator
If both values are equal return one

If-then-else (if)
Ternary
Operator

If left value is greater than zero, then
return value of middle branch, else

right branch

And(&&)
Binary

Operator
If left value is greater than zero, and

right value is greater than zero, return
one, else zero

Or(||)
Binary

Operator
If left value is greater than zero, or

right value is greater than zero, return
one, else zero

ALIVE (static state 1) Terminal Static value of 1.0

DEAD (static state 0) Terminal Static value of 0.0

mainCell Terminal Variable – The value of the main cell

NH_count
Terminal Variable – The count of the

neighbouring value which are one or
more. 0 to 8, inclusively.

 154

Figure 4.4, shows an instantiation of the Game of Life rule set, which will

gives the correct GOL output for each of the possible variables inputs, although

there are many possible GP trees that will replicate these state transitions.

Figure 4.4, A human programmed GP tree which will clearly produces the
required state transition in Table 4.1, and therefore is valid version of the game

of life rule set (one of many possible instantiations).

10 populations each with a different seed values are run, with the GP

parameters described in Table 4.3. The termination criterion for the

experimentation is limited to 500 GP generations.

Table 4.3, The Genetic Programming parameters applied game of life in tests.

Population size 100 (*10 run in parallel)

Initial population set-up Depth 3 full growth

Mutation types Change, Insert, Remove nodes,
and replace sub-tree (maximum

depth 3)

Mutation level 2.5% chance per node

Selection type Tournament from 10 random
individuals

Cross-over chance 80%

Elitist individuals 1%

Maximum GP tree depth 10

 155

4.3.2 Experimental results

Figure 4.5, Error score (RMSE) of the fittest individual with each of the 10
populations.

In the results shown in Figure 4.5, there are 7 out of 10 populations which

successfully match the target simulation data, and out of these 6 out of 7 of those

populations match all the GOL state transitions (i.e. on one occasion the system

has discovered an alternative ruleset for generating the required outcomes which

does not match the Game of Life state transitions). This is because the target 10

CA iterations of the Game of Life, at this grid size and the initial configuration

does not contain examples of every state transition. This is a problem with the

fact that the GOL rule set, has been shown to tend to converge towards a low

average neighbourhood counts (Figure 3.39) causing a lower overall chance of

high neighbourhood counts occurring in the target simulation. Also due to the

initial configuration using a 50% chance of a cell being alive, the chance of a high

live neighbouring cell count are initially low, as well as the rules tendency to lower

counts. I.e. it is not likely that a single game of life simulation with an initial random

distribution of 50% chance of alive or dead cells will have the state transitions

with high counts of alive neighbours present. It is however encouraging that the

majority of learnt rules sets have learnt the underlying system, even considering

that it is possible to find alternative rules. Figure 4.1 shows the state transitions

of the GP individual which scored zero error on the target simulation, but does

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50 100 150 200 250 300 350 400 450 500

Er
ro

r
sc

o
re

 (
R

M
SE

)

GP Generations

 156

not match all the GOL state transitions. It is clearly this lack of state transitions

with higher neighbourhood cell counts, which are lacking from this target

example.

Table 4.4, The 16 possible variable inputs, and expected outputs, and the one
GP run which matched the target but didn’t perfectly match all the state

transitions. Incorrect outputs are highlighted in bold.

GOL expected
output

GP output MainCell NH_count

0 0 0 0

0 0 1 0

0 0 0 1

0 0 1 1

0 0 0 2

1 1 1 2

1 1 0 3

1 1 1 3

0 0 0 4

0 0 1 4

0 1 0 5

0 1 1 5

0 1 0 6

0 1 1 6

0 1 0 7

0 1 1 7

0 1 0 8

0 1 1 8

An example evolved GP tree which successfully scored both zero error on

the target simulation and fully replicates all the binary state transitions of the

Game of Life is shown in Figure 4.6. It is relatively easy to read, although a rather

different approach to the well-known human formulation. The left side checks to

see if the neighbourhood count is less than 4, i.e. if it is 3, 2, or 1, resulting in 1 if

so. Then the right side of the tree, checks if the main cell’s value is dead or alive,

which results in the entire right hand side of the tree checking if the

neighbourhood count is less than either 3 or 2, performing the latter if the cell is

alive. Since the left side is subtracted from the right side, this results in the correct

output where if the neighbourhood count is 3 it always makes the cell alive, and

if the main cell is alive and 2 or 3 other neighbours are also alive then the result

is a live cell in the next iteration.

 157

Figure 4.6, An example evolved version of the game of life rule set.

4.4 Conclusions

The GPCA system has been shown effectively learn the state transition rule

of relatively simple Game of Life, even considering that the GP system is not

limited to binary states, it has managed to learn the correct output in the majority

of cases. The fact that the system is not constrained to purely the use of binary

outputs and intermediary values at each node means that it has produced

particularly readable formulae outputs, as they must directly produce the correct

output. I.e. because the GP system can produce such a large variation of outputs,

and these outputs are directly used to represent the new cell states (no re-

interpretation is used), then it must produce a formula that directly produces the

correct outputs. This is guided to the correct outputs by the fitness function.

The tests show that for this simple rule set, there is a large jump in fitness

landscape between the perfect score and other fit individuals (Shown in Figure

4.5). This is because if a fit (i.e. near perfect) individual makes some small errors

within its state transition rule, then these values are used as the input for the next

CA iteration, and so on for the full 10 CA iterations. This allows for a small error

in the state transition rule to cause larger error scores, also because there is no

relation of the cell states to concepts such as mass or energy, and therefore no

such concepts of mass/energy conservation, then it is possible to make large

jumps in the patterns between CA iterations.

Signs of convergence are difficult to quantify with a generational GP

population, due to way the populations best may have no change for some time,

 158

meanwhile the mean score of population may get worse, and this may lead to

eventual improvements in the best and the average. The length of 500

generations of GP optimisation was chosen as it would appear that the majority

of populations have performed the majority of their optimisation, also to establish

fair and even termination criteria in the testing. However, it is possible for

populations to make a sudden and large jump in the fitness landscape which can

quickly change the majority of the population. It does appear that due to the initial

growth of GP trees, that optimisation appears to slow down shortly after the

maximum depth is reached.

The results in Figure 4.5 could be interpreted as discouraging due to the

large jump in fitness for those successfully achieving zero error; however this is

due to the limited size of the search space, the binary nature of the CA and the

chaotic nature of the Game of Life rule set. It is however encouraging that most

(7 out of 10) achieved the goal and most of them (6 out of 7) generalised to the

unseen state transitions for the Game of Life. Also given the binary nature of the

Game Of life rule set, this search is too simple for GP, and similar results could

possibly be obtained from a random search. However, it is expected that when

using the GPCA methodology for real-world continuous CA rule sets, this problem

will be largely overcome by a larger and generally smoother search space. The

final conclusion for this chapter is that the GPCA system is indeed capable of

learning CA rules for the simple Game of Life system, although the search is

made more difficult by the binary states and complex system produced by the

Game of Life.

 159

Chapter 5: GP CA real-world flood modelling

5.1 Introduction

This chapter describes the experimentation using the GPCA system to train

real world urban flood modelling rule sets, at a single fixed spatial resolution and

temporal resolution. The work in this chapter meets objectives 4, 4.1, and 4.2 by

firstly ascertaining how well the GPCA system can learn a CA local state

transition rule for a real world system at a single resolution, and then testing this

on unseen terrain, and water input data. Limiting the training and testing in this

chapter to a single spatial and temporal resolution is designed to test the ability

of the GPCA system to learn a real world rule set, without also considering what

are effectively different rules at different resolutions. This work is then extended

in the next chapter to train and test over different spatial and temporal resolutions.

5.1.1 Chapter Structure

Section 5.2 extends the methodology established in section 4.2 for the

GPCA system with a new interface for the new modelling. I.e. as the CA now has

continuous states and more states than previously used in the Game of Life, and

physical limitations must also be imposed over the GP within the local CA

neighbourhood, a new interface is required. Section 5.3 details the experimental

set-up for the real-world cases used in this chapter and the next, including

specifics of the training and testing cases utilised. Also the best known flood

modelling CA rules from literature are shown in Section 5.3.3, which are used as

human competition/benchmarks for the experiments.

After this, the chapter is split into two main sets of experiments, training in

section 5.4 and testing on unseen data in section 5.5. In the training experiments

performed in section 5.4 the aim is establish how much training data is required

in order that the GPCA system can train effective rules. This is then tempered by

testing the rules generated in section 5.4 on unseen data in section 5.5, in order

to establish which amount of training data presented creates the most effective

rules at generalising to unseen data. Finally conclusions are drawn from the

combination of the training and testing rules in section 5.6.

 160

5.2 Methodology

The GPCA methodology introduced in section 4.2 is utilised with a modified

GP-CA interface which is detailed below in section 5.2.1.

5.2.1 Real world hydraulic GP interface

The system for modelling of hydraulic water/fluid movements within CA has

been described previously section 2.1.3 and 2.1.4; this section introduces how

the GP interfaces with this system. The modelling of water and terrain levels

requires a continuous CA, where the states and values of the cells are

represented by floating point (double precision) values. The state transitions are

represented by continuous formulae, which will therefore output a value for every

input and each input will always output the same value. Each cell has two main

values, the terrain level and the water depth. The terrain level does not change

for each cell during a simulation, but changes from cell to cell. The water level is

the combination of the water depth and terrain level of the cell, as shown in Figure

5.1. The grid itself has certain static variables which are the same for every cell

in the grid, for example the cell size, time step and roughness factors (although

the roughness can in certain circumstances vary across the grid).

Figure 5.1, Side view of a cell as represented by the continuous values the
terrain level, and water depth, which summed together equal the water level,
stored within each cell of an open channel CA system (repeated from Figure

2.11).

A number of methods for flood modelling in the literature [110] [64] [111]

[63] [65], use a method whereby the state transition rules are formed from

repeated use of a single formula between the main (central) cell of the

neighbourhood and each of the neighbouring cells. This establishes the outflow

rates in up to four directions, and then the total outflows are capped such that the

total outflow from all four directions does not exceed the volume of water within

the main cell (Shown in Figure 5.2). In order that an outflow is written by only a

Water Depth

Terrain Level
Water Level

 161

single cell between each pair of cell in the grid, outflows are only calculated to

neighbouring cells which have a lower water level. This method is designed such

that water volume can be preserved across the grid, so water volumes within

each cell can neither be created nor destroyed, and can only move laterally

across the grid in the x and y axes.

Figure 5.2, Demonstrates how the outflows are calculated within the Cellular
Automata system, between the main (central) cell and each neighbour of the

Von Neumann neighbourhood (repeated from Figure 2.12). Centrally showing a
side view of terrain and water levels in the pair of cells highlighted in the Von
Neumann neighbourhood, Right, showing a plan view of the neighbourhood.

This requires a two stage system to be employed, where the GP formula is

used up to four times per cell to establish the outflows in each direction for each

cell. If the total flows exceed the volume of the central cell, then the flows are

normalised by the amount of water within the central cell. The flows are

normalised proportionately to their calculated values but do not cumulatively

exceed the volume of water with the central cell. However, since the calculated

outflow dictated that more water should move than is available, it appears logical

to reduce this to just as much as is available. Only outflows from the central cell

are calculated in the first stage, as an inflow to the current cell is an outflow from

another cell. Due to the way that outflows may be normalised by the amount of

water within the main cell, when the total outflow exceeds this level, then the

individual outflows are not calculable from neighbouring cells. Instead these

values must be written to an intermediary grid of edge values (an edge buffer,

shown in Figure 5.3). A second stage is then utilised where, each cell reads from

the edge buffer for every one of its four neighbouring cells. In this stage both

inflows and outflows are read from the edge buffer, where of course an inflow to

one cell is read as an outflow from another cell. Once all inflows and outflows are

read from the edge buffer by a cell, then the new water level is calculated by

subtracting the volumes of outflows and adding the inflows to the current water

 162

volume of the central cell. In this way the water is always balanced across the

grid, regardless of what outflows are calculated between each pair of cells.

Figure 5.3, Two stages of the CA flood system. Stage 1 for every pair of cells an
outflow is calculated, stage 2 every cell updates water depths by means

subtracting outflows and adding inflows (repeated from Figure 2.13).

In this system, the GP formula represents the relation between a pair of

cells, within the constraint of not exceeding the volume preservation rules of the

Von Neumann neighbourhood. Outflows are only calculated from a main cell to a

neighbouring cell when the neighbouring cell’s water level is lower than that of

the main cell, which prevents outflows being calculated in two opposing

directions. However, this means that the value taken from any GP formula cannot

be negative, and therefore the absolute of the GP tree’s calculated output value

is used to represent the pre-normalised outflows.

5.3 Experimental setup

Operators and terminals are selected so as to be suitable for the processing

of such a rule as the Manning’s formula (Shown in Equation 2.1, in section

2.1.4.1), therefore the following operators are utilised (Shown in Table 5.1).

 163

Table 5.1, Terminal and operator set used for the GP system when applied to
flood modelling, where the new power operator is highlighted in bold.

Node Name
Operator/
Terminal

Description

Add (+)
Binary

Operator
Adds two values

Subtract (-)
Binary

Operator
Subtract right value from left

Protected division (%)
Binary

Operator
Divide left by right, unless right is zero,

in which case returns zero

Multiply (*)
Binary

Operator
Multiply two values

Greater Than (>)
Binary

Operator
If left value is greater than right value

return one, else zero

Smaller Than (<)
Binary

Operator
If left value is smaller than right value

return one, else zero

Equality (==)
Binary

Operator
If both values are equal return one

If-then-else (if)
Ternary
Operator

If left value is greater than zero, then
return value of middle branch, else

right branch

And(&&)
Binary

Operator
If left value is greater than zero, and

right value is greater than zero, return
one, else zero

Or(||)
Binary

Operator
If left value is greater than zero, or

right value is bigger than zero, return
one, else zero

Power (pow)
Binary

Operator
Raise the left value to the power of the
right value (If is Nan or Infinity, return

zero)

Main Cell Water Depth Terminal The water depth of the main cell

Main Cell Water Level
Terminal The water level (water depth plus

terrain level) of the main cell

Main Cell Terrain Level Terminal The terrain level of the main cell

Neighbouring Cell
Water Depth

Terminal The water depth of the neighbouring
cell

Neighbouring Cell
Water level

Terminal The water level (water depth plus
terrain level) of the neighbouring cell

Neighbouring Cell
Terrain Level

Terminal The terrain level of the neighbouring
cell

Cell size Terminal The cell size of the grid in meters

Time step
Terminal The time step applied between each

CA iteration

Roughness factor (1/n)
Terminal One over the roughness factor of the

grid

The division function is protected, such that an attempt at division by zero

results in a zero value. This kind of operator protection is reasonably standard for

 164

Genetic Programming. However the use of a power function is rare within GP,

and it is found to be especially problematic (shown in Appendix 9.1), as the results

of the power function for the CPU and GPU are not guaranteed to be the exactly

same value. However, the Manning’s formula uses both a square, square root

and a cube root in its calculation and therefore it is reasonable to assume that

the GP system will require some form of similar operator(s). Since it is difficult to

determine which input values for the power function will result in out of bounds

return values, a check is performed on the results of the calculation of the power

function, whereby any out of bounds results (including +/- infinity, Not-A-Number

(NaN), or indeterminate values), are reduced to a resulting zero value. It is noted

in Appendix 9.1 that this still does not guarantee identical results from the power

function between the different hardware platforms, however it guarantees as

sensible a result as possible, and ensures consistency on repeated runs of the

same platform.

It is noted that the water level variables provided are the addition of the

water depth and terrain level of each cell (as shown in Figure 5.1), and that it

should of course therefore be possible for the GP system to create the water level

variable. However, since GP is capable of both creating composite variables and

selecting important variables, both the water levels and the depths, and terrain

levels are provided. The cell size and roughness factors also have a role to play

in the amount of flow, and are also therefore provided to the GP system. Finally,

the time step at which the grid is set to operate is provided, and should play a

vital role in how large flows can be. Once again a number of static variables are

supplied to be available to the GP system, integer values ranging from 0 to 9

inclusively, and decimals 0.1 up to 0.9, at increments of 0.1 are all supplied to the

GP as additional terminals. The Root Mean Squared Error (RMSE) of every cell,

at every iteration of the CA simulations is calculated, by summing all the squared

errors at every iteration, square rooting, and dividing the number of cell in each

grid multiplied by the number of iterations. The GP parameters used in the

experiments are displayed in Table 5.2.

 165

Table 5.2, The Genetic Programming parameters applied in real-world urban
flood modelling tests.

Population size 100 (*10 run in parallel)

Initial population set-up Depth 3 full growth

Mutation types Change, Insert, Remove nodes,
and replace sub-tree (maximum

depth 3)

Mutation level 2.5% chance per node

Selection type Tournament from 10 random
individuals

Cross-over chance 80%

Elitist individuals 1%

Maximum GP tree depth 10

Termination Criteria 500 Generations

The GPGPU device used for these experiments differs from that of previous

experiments in previous sections, and is described in Table 5.3. This more

modern GPU has an even large number of processing cores, although each

compute core now contains an increase to 192 processing units each (Nvidia

Kepler GPUs).

Table 5.3, Full specifications of machines used for in real-world urban flood
modelling tests [112]

Machine Machine B-2

Type PC workstation

Age Recent

CPU Intel Core-I7-2600 @3.4Ghz

CPU cores 4 (8 with Hyper-Threading)

GPGPU Nvidia Tesla K20

GPU Processing
elements (CUDA cores)

2496

GPU Compute cores 13

GPU speed (Core,
Memory - MHz)

706, 2600

 166

5.3.1 Hill and Pond - Training case

The Ghimire et. al. hypothetical test case [65] (previous described in section

2.1.4.2), is utilised as a training case. Consisting of 30 x 20 cells, at a 50m

resolution; “The terrain consists of both forward and reverse slopes of 0.2%. It

also has a lateral slope of 0.1 toward the outlet”, where the outlet is removed for

consistency (Shown in Figure 5.4). This example specifies a roughness factor

0.01n is applied across the terrain, and a rain fall of 20mm/h for the first hour of

the simulation is used as input for the water depths, where a full simulation time

is considered 12 hours.

Figure 5.4, Hypothetical ‘Hill and Pond’ terrain, and given test points; taken from
Ghimire et. al. [65] (also shown in Figure 2.16).

This terrain (Shown in Figure 5.4) is selected for providing sufficient

hydraulic examples while not being an overly large spatial size. This selection is

made primarily due the size and processing times of this training simulation, in

that because this simulation will need to be repeated for every new individual at

every GP generation, the processing times will quickly mount up for the entire

optimisation process. For example, even with a very short processing time of 1.0

seconds for each CA simulation, and a population of 100, and 500 generations

would equate to approximately 14 hours of processing. Therefore, the processing

time of single fitness evaluation is very important, and the selection of the size of

the test case used, must be made carefully.

In order to carry out meaningful investigations of the system, multiple

separate populations will need to be evaluated. Research in (Sections 3.5.1 and

3.5.2), shows that in order to achieve a significant speed-up factor from

 167

parallelisation that a large enough number of parallel elements are required, i.e.

the number of cells in the CA. However as described in the previous paragraph

a single CA simulation needs to limited in size in order to avoid the multiplication

of many evaluations required for the GP system. This paradoxical problem is

answered in the next section, by means of the novel method of harnessing the

parallelism of both the CA and the population of individuals with the GP system

(described in Section 4.2.4.1).

5.3.2 Testing and validation simulation cases

Larger terrains are possible for testing and validation, due to fact that a

single simulation need only be run on each, as opposed to training which requires

many. For these larger terrains, using a sampling rate of one second, it is possible

to exceed the limitations of modern hardware memory limitation, where this may

total many hundreds of Gigabytes of data. Therefore, the entire simulation target

is not loaded into memory, but rather only the required point in time for the

simulation that is being tested. This adds the loading time into the simulation time,

and brings these test simulations in to the range of minutes to perform each.

Where these scales of real world simulation processing times are acceptable for

the testing purposes they are clearly too large for the training purposes.

It is hoped that the system where a single local rule is trained, will be able

to generalise very well to other configurations. Therefore other test cases are

selected, this time from the UK Environment agency Benchmark test suite [1].

However, the resulting trained GP trees are firstly tested on the latter 6 hours of

the ‘hill and pond’ simulation; i.e. from 6 up to 12 hours. Also validation is carried

out on the same ‘hill and pond’ terrain, for the full 12 hours of simulation, but with

a different rain profile, thus this is entirely unseen simulation.

5.3.2.1 EAT-2 Test case

The primary test cases utilised with a different terrain is the EAT-2

(Environment Agency Test), which is shown below (Figure 5.5). EAT2 in its

original formulation is a 2000m square grid, using a cell size of 20m, and is

therefore 100 by 100 cells, totalling 10,000 cells. In order to test on the same cell

sizes as those trained upon; this terrain is scaled up to a 50m cells size, and

therefore occupies an area of 5000m2. The Plan view of the terrain layout of UK

 168

Environment Agencies Test case 2 (EAT2) is shown in Figure 5.5. A rain profile

is applied for the majority of tests as opposed to the prescribed inflow conditions,

and this represents the primary reason for selecting this terrain, in that it is a

viable test case with uniform rain applied. A uniform Manning’s roughness factor

of 0.01n is used throughout validation, so the system has been trained on only a

single set of static variables and tested on simulation with same static variables.

Figure 5.5, EAT2 test case original terrain (Plan view), at 2,000m square with
100x100 cells; which is scaled up to a 5,000m square terrain by increasing the

cell size to 50m

5.3.2.2 EAT-1 Test case

The next simpler terrain but very different input conditions test case, is EAT1,

where the terrain is essentially a 1 dimensional channel as there is no change in

the y-axis. The modelled domain is a 700m X 100m rectangle (Shown in Figure

5.6), using a 10m cell size in its original description, this gives 700 cells total,

although due to there being no difference in the y-axis this is simplified down to

only 70 cells.

 169

Figure 5.6, Plan (top) and profile (bottom) views of the EAT1 terrain (DEM -
Digital elevation Model), also showing the two test points in the plan view.

The major difference for the EAT1 test case, compared to that of previous

EAT2 cases is that it is designed purely for a different type of inflow. Where

previous test cases all use a uniform rain pattern, at a certain rate for a certain

amount of simulation time and this rate is applied equally to all cells in the terrain.

The EAT1 test cases has what is termed a water level event, whereby at one of

the borders (shown in Figure 5.6, plan view - Top) the bordering water level is

varied during the simulation. This is used to test a simulated lateral inflow, or

outflow, for example a dam break or over flow. Once again this terrain is scaled

up to a 50m cell size from its original resolution, so as to be a fair test.

The water level inputs used in the EAT1 test cases are shown in Figure 5.7),

where the water level starts at 9.7m which is equal to the terrain level at the

input/output border. It is then raised linearly up to 10.35m which is higher than

the terrain level, and therefore there is an inflow, which should proceed along the

terrain in an easterly direction. Since the higher level of 10.35 is also higher than

the peak in the terrain along the x-axis at 300m, then water should flow over this

into the pond (located between 300m to 650m, and central at 500m). The water

level should then settle at the 10.35m point across the terrain, until the point in

time at 11 to 12 hours of simulation time, when it is again lowered to 9.7m. At this

point the waters should recede back out of the terrain, but leaving water within

the ponding area. The waters on the westerly side of the peak at 300m along the

x-axis should fully recede, whereas the water within the ponding area should

leave the pond water level at 10.25m, due to the level of the terrain peak at 300m

along the x-axis.

 170

Figure 5.7, Varied bordering water level event which drives the input to EAT1
test case.

5.3.3 Human competition

Based on the work of previous models four different GP versions of the

Manning’s formula are formulated, based on the Equation 2.1, Equation 2.2,

Equation 2.6 and Section 2.1.4. In order to be able to better encode these human

formulations and compare the code, a simple recursive descent parser was

created, and the paired look ahead level one language it encodes. This allows a

human programmer to program in much more natural format, i.e. avoiding using

lists of token in reverse polish notation, and thusly avoiding costly mistakes. Code

shown in Figure 5.9, Figure 5.11, Figure 5.13, and Figure 5.16 utilises the simple

recursive descent language created by the author and specified in Appendix 9.2.

This language accepts C-style comments, and is designed to facility easier and

more error resistance human programming of GP decision trees.

5.3.3.1 Ghimire formulation

Ghimire et. al. [65], interpreted the hydraulic radius (R) as the water depth

of the main cell, as shown in Figure 5.8 and Figure 5.9. Whereas the full original

Ghimire rule set uses a ranking system to distribute the water from the main cell

to downhill neighbours, instead their formulation of the Manning’s formula is

applied within the more standard framework. Thus a fair comparison can be made

between the different formulations, when working within this standard schema.

 171

Figure 5.8, Manning’s formula, combined with the discharge formula, in GP tree
form; used to calculate the volume of water to transfer between a pair of cells,

using the Ghimire implementation of the hydraulic radius.

Figure 5.9, Manning’s formula, combined with the discharge formula, in GP tree
code form (scaled down version of C code); used to calculate the volume of

water to transfer between a pair of cells, using the Ghimire implementation of
the hydraulic radius.

 172

5.3.3.2 Dottori and Todini formulation

Figure 5.10, Manning’s formula, combined with the discharge formula, in GP
tree form; used to calculate the volume of water to transfer between a pair of

cells, using the Dottori and Todini implementation of the hydraulic radius.

Figure 5.11, Manning’s formula, combined with the discharge formula, in GP
tree code form (scaled down version of C); used to calculate the volume of

water to transfer between a pair of cells, using the Dottori and Todini
implementation of the hydraulic radius.

The Dottori and Todini formulations (Shown in Figure 5.10 and Figure 5.11)

major distinction is the use of the arithmetic mean of the pair of cells water depths,

in the place of the hydraulic radius (R). Also they perform a mathematical

simplification of moving the hydraulic radius element of the outflow area (A), and

 173

into the power function. I.e. they have raised the hydraulic radius the power of

5/3rds instead of the 2/3rds and only multiplied by the cell size and not the cell

size and the water depth of the main cell as in the Ghimire method.

5.3.3.3 Bates and Hunter formulation

Figure 5.12, Manning’s formula, combined with the discharge formula, in GP
tree form; used to calculate the volume of water to transfer between a pair of

cells, using the Bates and Hunter implementation of the hydraulic radius.

Figure 5.13, Manning’s formula, combined with the discharge formula, in GP
tree code form (scaled down version of C code); used to calculate the volume of

water to transfer between a pair of cells, using the Bates and Hunter
implementation of the hydraulic radius.

 174

The major difference between the Bates and Hunter formulation of the

Manning’s formula is that they use the difference between the main (outflowing

and therefore higher) water level and the larger of the two terrain levels, as the

hydraulic radius.

5.3.3.4 Bates and Hunter Flow Limited formulation

Bates and Hunter [64], develop a flow limiter to ensure that the flow does

not ‘over’ or ‘undershoot’, and is a function of flow depth, grid cell size and time

step (Shown in Figure 5.14, and previous discussed in section 2.1.4.3).

Figure 5.14, Flow limiter formula, used by Hunter and Bates et. al. where the
flow rates are first calculated by the Manning’s formula (Shown in Equation 6.1
then the minimum between the above and that outflow are calculated previous

shown in Figure 2.23)

This cap is also included as part of the full limited Bates and Hunter

formulation, is displayed in Figure 5.15 and Figure 5.16

.

Figure 5.15, Manning’s formula, combined with the discharge formula, and
Bates & Hunter limiting cap, in GP tree form; used to calculate the volume of
water to transfer between a pair of cells, using the Bates and Hunter limited

implementation of the hydraulic radius.

 175

Figure 5.16, Manning’s formula, combined with the discharge formula, and
Bates & Hunter limiting cap, in GP tree code form (scaled down version of C);
used to calculate the volume of water to transfer between a pair of cells, using

the Bates and Hunter limited implementation of the hydraulic radius.

The key difference in the Bates and Hunter limited implementation, is the

cap placed on volume transfers which is relative to the time step and total water

level volume difference. I.e. the combined Manning’s and discharge formula are

calculated and then the minimum between this, and the volume difference

determined by the water levels, divide by four times the time step, and the result

used as the flow rate. Since the calculated flow rate is then multiplied by the time

step, this caps the maximum flow in any particular direction to a fourth of the

difference in volume between the water level differences.

5.4 Training GP with fixed spatial and temporal resolution

5.4.1 Introduction

In the earlier binary CA systems, the size of cells and the amount of time

between CA iterations are both abstract concepts, however real world CA

 176

simulations of urban flood modelling represent a discretisation of movement of

incompressible fluids through space and time. The ultimate idea is to have a rule

which would be able to model to same real movements of water within space and

time. However, this section considers only a single static spatial and temporal

resolution of the CA simulations in training and testing. By training in this way on

a single spatial and temporal resolution, and testing on the same resolution, the

aspects of generalisation that are different terrains and water level inputs can be

investigated. The experimental question asked in this section, is how much

training is required to enable the system to optimise effectively? Is there a point

of diminishing returns, as the volume of training (the amount of simulation time

presented) will scale the optimisation time linearly?

5.4.2 Experimental setup

Experiments have been conducted with the GP optimisation using the

Ghimire ‘Hill and Pond‘ training case (shown in Section 5.3.1). These spatial and

temporal settings used throughout this sections, as well as the rain input used for

this test case are shown in Table 5.4.

Table 5.4, Details of the training simulation utilised in this section.

Cell Size 50 Meters

Time Step 1 Second

Roughness Factor 0.01

Water inputs
Initial Dry, uniform rain applied
to all cells of 20mm/h for first

hour.

Full simulation time 12 hours

Experimentation is conducted for varying lengths of the simulation during

training, in order to establish how much of a single CA simulation is required that

the system can begin to generalise the space time pattern at this spatial and

temporal resolution. Experimentation is conducted using the first 1, 2, 4, and 6

hours of the simulation for training. Notably since a 1 second time step is

maintained throughout these experiments this does mean a different number of

CA iterations is also carried out for each experiment of 3,600 seconds, 7,200

seconds, 14,400 seconds, and 21,600 seconds. 10 separate populations are run

on the CPU implementation (using OpenMP to take full advantage of its

 177

parallelism), and 10 separate populations are processed on the GPGPU (Tesla

K20, shown in Table 5.3). This experimental set-up is used to get an average

result of the heuristic algorithm and to demonstrate the speed difference in

performing of training on the two different architectures. Training is conducted

using the GP parameters shown in Table 5.2.

For all these cases the Manning’s formula in its 3 forms and the Bates-

hunter limited formulation, are run to provide a human competitiveness

benchmark level. Also a zero flow candidate GP, and an arbitrarily large flow

(1000 units of volume) in order to see both relatively good solutions and two bad

solutions fitness scores for each particular test case Table 5.5.

Table 5.5, Fitness scores on the hill and pond test case, starting t = 0 and
progressing up to the respective time. The best scores are highlighted in bold.

Simulation
end time

ZeroFlow LargeFlow Manning’s
-Ghimire

Manning’s
-Dottori &
Todini

Manning’s
-Bates &
Hunter

Manning’s-
Bates &
Hunter
limited

1 46.5212 31.5022 598.054 195.842 611.029 612.728

2 22.9313 19.9719 284.828 186.307 519.186 560.568

3 19.4262 17.5724 186.053 167.323 484.355 565.787

4 18.0948 16.5968 162.283 156.77 470.673 597.408

5 17.371 16.0509 155.48 154.691 459.692 629.897

6 16.9076 15.6954 154.251 158.037 453.322 661.575

7 16.5888 15.4482 155.494 163.297 449.987 691.427

8 16.3575 15.2673 157.881 169.129 449.276 720.369

9 16.1814 15.1285 160.732 174.993 449.861 747.818

10 16.0421 15.0184 163.761 180.705 451.217 772.992

11 15.9291 14.9287 166.83 186.189 452.987 795.763

12 15.8356 14.8541 169.869 191.422 454.962 816.273

With the majority of human formulations (excluding the Bates and Hunter

limited formulation), as the amount of simulation time upon which the fitness

scores is tested is increased, the rule set converges towards a given value. Also

it is clear to see that there is a much larger variation in fitness scores over the

first hour, and the first two hours. This is due to both the short simulation period

and the fact that because the rain profile is applied during the first hour, there is

little water movement during this time and so the training phase is atypical of the

rest of the simulation.

 178

5.4.3 Training Results

Table 5.6, Fitness scores (1/RMSE) for the training case from t = 0 up to the
respective time shown, for the CPU and GPU trained populations; also showing

the maximum and mean fitness for both groups of populations and all GP
individuals at each training time. Manning’s formulations, limited, zero and large

flows are shown for reference. Those highlighted in bold have exceeded the
score of the human formulations on the respective training simulation time.

 Hours of training/simulation

 1 2 3 4 5 6

G
P

U
 G

P
 P

o
p

u
la

ti
o

n

0 1161.44 536.226 407.985 381.729

1 705.405 583.692 417.757 382.537

2 940.497 856.501 325.641 372.382

3 1064.82 506.382 473.573 117.383

4 531.4 626.534 426.831 611.569

5 963.936 395.724 412.152 341.041

6 1162.82 626.116 491.456 424.292

7 576.466 607.179 406.298 424.292

8 1063.51 881.868 456.979 341.923

9 729.003 729.631 413.994 427.672

C
P

U
 G

P
 P

o
p

u
la

ti
o

n

0 1016.32 442.884 340.636 451.643

1 1475.1 415.5 371.077 391.982

2 724.696 697.367 371.077 406.925

3 462.642 458.237 352.405 401.958

4 768.077 467.964 445.557 442.205

5 1289.19 415.621 375.65 395.907

6 721.977 795.036 453.281 370.583

7 700.701 314.12 510.021 419.748

8 1222.82 343.572 475.547 329.604

9 728.677 666.693 517.33 466.355

GPU GP Maximum 1162.82 881.868 491.456 611.569

GPU GP Mean 889.9297 634.9853 423.2666 382.482

CPU GP Maximum 1475.1 795.036 517.33 466.355

CPU GP Mean 911.02 501.6994 421.2581 407.691

 Combined GP Maximum 1475.1 881.868 517.33 611.569

Combined GP Mean 900.4749 568.3424 422.2624 395.0865

Bates-Limited 612.728 560.568 565.787 597.408 629.897 661.575

Bates-Manning's 611.029 519.186 484.355 470.673 459.692 453.322

Ghimire-Manning's 598.054 284.828 186.053 162.283 155.48 154.251

DT-Manning's 195.842 186.307 167.323 156.77 154.691 158.037

Zero Flow 46.5212 22.9313 19.4262 18.0948 17.371 16.9076

large Flow 31.5022 19.9719 17.5724 16.5968 16.0509 15.6954

 179

From the results in Table 5.6 it would appear that the first hour or the first

two hours of the training simulation present little challenge for the GP, however

there are slightly higher scores for even the zero and large flow formulations

during this period. This is attributed to the lack of change in water levels during

this period, and while there are obviously some flows, both these periods of

training prove much easier for the system to gain higher scores on. The GP

system has outperformed all the human formulations during these periods, and

as the amount of simulation time presented is increased the overall performance

decreases. While for all periods the GP output performs the Ghimire, and Dottori

& Todini implementations, on the longest periods of simulation time the Bates

formulation outperform the GP systems. From these training results, GP has

managed in all cases to perform competitively amongst the best human

formulations, although performance appears to decrease with the additional

simulation time presented.

5.4.4 Processing times and speed-ups from GPU computing

At this stage it is stressed how much processing time is required for these

runs, especially considering full use is made of modern multi-core I7 (4/8 cores)

CPU’s processing times still take in the order or days to complete. Where

previous experiments with CA and GPU have measured the difference in speed-

up between the serial CPU implementations and OpenMP/parallel CPU

implementations and then the GPU implementations, due to the sheer scope of

processing times, the difference between the OpenMP - parallel CPU

implementations and the GPU implementations are measured here. Shown in

Table 5.7 and Figure 5.17 are the processing times for the entire optimisation

processes on each hardware.

 180

Table 5.7, Processing times for each complete GP optimisation run, for both the
CPU and the GPGPU, given the number of hours of the training simulation

applied. The speed-up factor of the GPGPU over the CPU is shown, along with
a breakdown of the processing times in minutes, hours, and days.

 Hours Training 1 2 4 6

 Total processing time(Seconds) CPU: 282622.5 426462.9 633659.5 924994.7

 Total processing time(Seconds) GPU: 50167.78 86652.42 145673.6 167668.6

 speed-up factor (CPU/GPU) 5.633546 4.921535 4.349856 5.516804

CPU Minutes 4710.375 7107.716 10560.99 15416.58

 Hours 78.50624 118.4619 176.0165 256.943

 Days 3.271093 4.935914 7.334022 10.70596

GPU Minutes 836.1297 1444.207 2427.894 2794.476

 Hours 13.93549 24.07012 40.4649 46.5746

 Days 0.580646 1.002922 1.686038 1.940608

Figure 5.17, Processing times for each complete GP optimisation run for both
the CPU and GPGPU in days of processing time, given the number of hours of

the training simulation applied.

0

2

4

6

8

10

12

1 2 4 6

P
ro

ce
ss

in
g

ti
m

e
 (

D
ay

s)

Training duration (hours of simulation presented to 10 populations)

CPU

GPU

 181

It is clear to see in Table 5.7 that the processing times are directly related

to the amount of the training simulation applied. Also that there is a degree of

variation to the speed-up factors of the GPGPU over the CPU, however they

remain relatively constant, and at near the predicted levels of approximately a 5x

speed up (predicted in section 3.7). This is due the fact that extending the amount

of simulation time of the training simulation applied extends the serial processing

of the CA simulation (i.e. it may only serve to reduce the amount of overall

parallelism). Due to the fact that there are minor difference in the GPGPU

implementation and that the use of different seed values, the actual GP

individuals in each population are different at each generation, which explains the

variation in processing times and speed-up factors. Shown in Figure 5.18, is the

processing of each generation for the CPU, and in Figure 5.19 for the GPGPU,

and in Figure 5.20 the speed-up factor for each generation is shown. Note that

because of the parallelism that is used between the multiple separate populations

(Shown in section 4.2.4.1), that a single processing time is provided for each

generation of all 10 populations.

Figure 5.18, Processing time in seconds for each generation on the CPU, which
includes all 10 population processed at the in the same batch, for each amount

of simulation training time used.

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500

P
ro

ce
ss

in
g

ti
m

e
 (

Se
co

n
d

s)

Generations

1 hour

2 hour

4 hour

6 hour

 182

Figure 5.19, Processing time in seconds for each generation on the GPGPU,
which includes all 10 population processed at the in the same batch, for each

amount of simulation training time used.

Figure 5.20, Speed-ups of the GPGPU over the CPU runs for each generation
(including all 10 populations in each generation).

0

100

200

300

400

500

600

0 100 200 300 400 500

p
ro

ce
ss

in
g

ti
m

e
s

(s
e

co
n

d
s)

Generations

1 hour

2 hour

4 hour

6 hour

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500

Sp
e

e
d

u
p

 f
ac

to
r

o
f

G
P

U
 o

ve
r

C
P

U

GP generation

1 hour

2 hours

4 hours

6 hours

 183

The processing time of both the CPU (Figure 5.18) and GPGPU (Figure

5.19) increase during the optimisation process, which is attributed to the tendency

for the complexity of the GP trees within the population to increase over time.

This complexity increase is in both terms of the number of nodes with each GP

tree, and their respective computational cost. I.e. with the progression from

simple trees to more complex and more accurate in terms of matching the target,

it is also expected that there will be an increase in terms of the complexity of the

resulting CA simulation. Finally the GPGPU is shown to be an invaluable tool in

decreasing the processing time of the training runs, bringing them into a more

feasible range, including saving up to 8 days of computational time (Table 5.7).

5.5 Testing of trained GP with fixed spatial and temporal

resolution

5.5.1 Introduction

Having trained GP rule sets in the previous section 5.4 on the Ghimire Hill

and pond test case for varying amounts of simulation time, it was found that the

system could create rules which can match the target pattern competitively

amongst human formulations. However, in to ascertain how well this training has

captured the underlying general mechanics of fluid movements, this section

applies each set of rules to different test cases upon which they were not trained

(i.e. unseen data sets).

5.5.2 Experimental setup

Several stages of testing have been utilised, to test if the trained rules are

capable of generalising to different initial and input conditions (water

levels/depths and terrains). All experiments use a fixed cell size of 50m and time

step of 1 second, which on the EAT1 test case is unviable due to poor

performance of all human formulations.

5.5.2.1 Remainder of training case

Firstly, the remaining duration of the simulations are used as validation, as

this will test how the same rules react with the same terrain but different initial

conditions. Since the pattern of the water movements in space and time are

 184

different, this should show how well the rules are learning the underlying

mechanics of the fluid flow relative to fluid level/depths and the terrain levels.

In the first experiment the time from t = 0 up to t = 1 hours is used for training,

and so then the time from t = 1 hours up to t = 12 hours can be used for testing.

This is achieved by starting the simulation from the target examples grid state at

the appropriate time. Similarly, where experimentation is conducted with training

from t = 0 up to t = 2. Then testing/validation can be performed from t = 2 up to t

= 12 hours, but also testing/validation can be carried out on the 1 hour trained

versions of this case too, and similarly for 4 and 6 hour trained simulations

(demonstrated in Table 5.8).

Table 5.8, Testing time periods applicable to each training case in this section,
when using the remainder of the training simulation case for testing.

 t = 1 to t = 12 t = 2 to t = 12 t = 4 to t = 12 t = 6 to t = 12

1 hour training X X X X

2 hour training X X X

4 hour training X X

6 hour training X

5.5.2.2 Validation on the same terrain with different rain profile

The second stage of testing which has been utilised uses the same ‘hill and

pond’ test case terrain, but with an altered rain profile to create a completely

different test simulation. This will test the generated rules capability to generalise

to different input conditions (i.e. different water level inputs) through the course

of the simulation. Also it tests the capability of the rules to operate over a longer

simulation period than they were previously trained on. The rain profile for this

second test case is altered to 10mm/h for 2 hours, as opposed to 20mm/h for

hour. In order to fully and fairly test the variously trained GP batches, all

experimental batches are tested on the entire 12 hours of validation simulation,

for each of the trained GP candidates from the 1, 2, 4, and 6 hour training. This

means that a much fairer comparison of the quality of training from each different

training volume can be determined.

 185

5.5.2.3 Testing on a different terrain (EAT2)

The third stage of testing is to train one terrain and test on another. For this

purpose, the EAT2 terrain (as described in section 5.3.2) has been utilised, and

a rain profile applied, as opposed to prescribed inflow condition, run for 4 hours

of simulation time. This finally tests the capability of the rules to generalise to a

completely different and unseen terrain and water levels/depths inputs. As with

all of the above test/validation cases, this case has been scaled up to 50m cell

size, and use a roughness factor of 0.01n, as this was the only training variety

provided; however, the training model was re-run with the same parameter for

comparison.

5.5.3 Results

5.5.3.1 Remainder of training case

Having trained on the first hour, validation/testing can be performed on the

remained of the simulation. This is done by starting the water depths of the grid

at the state of the target at the given start time and continuing with the simulation.

Test are performed from t = 1, 2, 4, and 6 hours up to t = 12 hours, as shown in

Table 5.9.

Table 5.9, Testing time periods applicable to each training case, when using the
remainder of the training simulation case for validation, and which table display

these results.

 t = 1 to t = 12 t = 2 to t = 12 t = 4 to t = 12 t = 6 to t = 12 Results
Table

1 hour trained X X X X Table 5.10

2 hour trained X X X Table 5.11

4 hour trained X X Table 5.12

6 hour trained X

 186

Table 5.10, Fitness scores (1/RMSE) for the training case from respective time
shown up to t =12, for the 1 hour CPU and GPU trained populations; also

showing the maximum and mean fitness for both groups of populations and all
GP individuals at each training time. Manning’s formulations, Limited, zero and

large flows are shown for reference.

 Test simulation start time

 1 2 3 4 5 6
G

P
U

 G
P

 P
o

p
u

la
ti
o
n

0 242.983 222.117 262.536 319.237

1 122.791 128.665 136.496 144.012

2 514.912 282.234 409.822 509.438

3 499.122 298.614 383.707 478.916

4 480.172 288.833 361.897 496.174

5 318.002 215.876 230.741 262.736

6 31.5126 264.633 327.087 20.8154

7 256.514 262.871 334.93 378.155

8 309.404 468.183 380.775 520.5

9 431.677 377.62 495.966 580.558

C
P

U
 G

P
 P

o
p
u

la
ti
o

n

0 306.06 400.387 390.353 486.266

1 159.476 163.577 180.122 197.202

2 116.383 117.634 124.233 130.721

3 62.6691 60.169 58.5109 58.6517

4 170.914 162.705 172.757 187.189

5 177.604 188.866 225.467 257.375

6 295.239 330.591 464.4 550.758

7 215.386 243.641 332.008 445.303

8 214.31 230.633 291.456 366.602

9 157.638 145.097 153.266 164.54

GPU GP Maximum 514.912 468.183 495.966 580.558

GPU GP Mean 320.709 280.9646 332.3957 371.0541

CPU GP Maximum 306.06 400.387 464.4 550.758

CPU GP Mean 187.5679 204.33 239.2573 284.4608

 Combined GP Maximum 514.912 468.183 495.966 580.558

Combined GP Mean 254.1384 242.6473 285.8265 327.7575

Bates-Limited 868.219 1006 1242.04 1298.87

Bates-Manning's 447.986 461.173 517.147 552.1

DT-Manning's 197.104 222.466 287.386 357.138

Ghimire-Manning's 162.991 174.341 215.826 248.954

Zero Flow 31.1719 52.9909 150.501 341.91

large Flow 14.581 15.4065 14.9763 15.3828

 187

It should be noted for these tests that when the starting time of the

simulation is increased up to 6 hours, the zero flow GP individual scores

increasingly well, up until the validation from t = 6 up to t = 12, where it actually

scores better than a number of the Manning’s formulations. Clearly most of the

water has moved prior to this point in time and the simulation is settling down.

However this does represent a good test since it would be hoped that evolved

GP programs don’t just move water all the time but equally see when water

should not move, or at least not move as much and potentially be converged.

CPU population 3 appeared to be trapped in local a maxima within training

(shown in Table 5.6) which explains its poor validation scores (shown in Table

5.10). However, it would appear that for GPU population 4 and 7, which also didn’t

outperform human formulations on training, still generalise well enough outside

of the training set. Of the rest that did outperform human formulations on the

training set, the GPU populations 1 and partial 6, CPU populations 1, 2, 4 and 9;

which would appear to have over trained to the amount of water movement within

the first hour of the simulation compared to the latter parts of the simulation. The

over training over these populations is indicated as they scored better than

Manning’s on the training, however these rules perform poorly on the validation

(which has low flow). They have scored better on training, but poorly on

validation, therefore have either not picked up the underlying rules very well, or

have rather concentrated on a rule which performs well on just the training data

set. While none of the rules sets on validation perform better than the Bates-

limited formulations, the scores for this method are exceptional even amongst the

human formulations.

 Finally, however, a good number of populations score better than some

Manning’s formulations on both training and then on the validation areas of the

simulation. While the mean of the populations outperforms a number of the

Manning’s formulations on all the validation cases, on the very last case from t =

6 to t = 12, the Ghimire formulation did not outperform the zero flow. While it does

however score very close, this is perhaps an indication that the training, when

using t = 0 to t = 1, is heavily weighted in terms of high flows.

 188

Table 5.11, Fitness scores (1/RMSE) for the training case from respective time
shown up to t =12, for the 2 hour CPU and GPU trained populations; also

showing the maximum and mean fitness for both groups of populations and all
GP individuals at each training time.

 Test simulation start time

 1 2 3 4 5 6
G

P
U

 G
P

 P
o

p
u

la
ti
o
n

0 235.059 272.128 323.151

1 411.195 423.494 521.056

2 413.415 419.41 553.95

3 267.536 320.842 390.146

4 372.171 396.995 502.418

5 430.2 526.71 569.206

6 399.77 398.04 521.101

7 275.463 312.439 379.203

8 459.397 441.651 563.695

9 363.054 376.368 482.266

C
P

U
 G

P
 P

o
p
u

la
ti
o
n

0 434.888 479.6 604.632

1 256.229 285.209 321.7

2 413.167 456.649 571.564

3 165.125 252.042 321.127

4 281.574 299.01 347.34

5 270.184 291.356 338.498

6 403.605 435.937 563.012

7 196.551 203.697 219.06

8 277.854 290.224 345.012

9 387.319 391.244 496.961

GPU GP Maximum 459.397 526.71 569.206

GPU GP Mean 362.726 388.8077 480.6192

CPU GP Maximum 434.888 479.6 604.632

CPU GP Mean 308.6496 338.4968 412.8906

 Combined GP Maximum 459.397 526.71 604.632

Combined GP Mean 335.6878 363.6523 446.7549

Bates-Limited 1006 1242.04 1298.87

Bates-Manning's 461.173 517.147 552.1

DT-Manning's 222.466 287.386 357.138

Ghimire-Manning's 174.341 215.826 248.954

Zero Flow 52.9909 150.501 341.91

large Flow 15.4065 14.9763 15.3828

 189

Table 5.11 shows the validation/testing results for those populations trained

on the first 2 hours of the training simulation. It can be seen that there appears to

be far less cases of over training, and of those that didn’t outperform the zero

flow. It is noted that by having 2 hours of the training simulation and specifically

the first two hours, the rain has fallen during the first one hour and left the next

hour for the water flow to be driven by the flow that exist from the previous rain

fall. It should also be noted that the peak of concentration for the ponding point

in the training simulation occurs at 1h 45mins. Therefore, there is a small amount

of training for when the water should be draining away, having been driven

primarily by the terrain and gravity during this time.

 190

Table 5.12, Fitness scores (1/RMSE) for the training case from respective time
shown up to t =12, for the both the 4 and 6 hour, CPU and GPU trained

populations; also showing the maximum and mean fitness for both groups of
populations and all GP individuals at each training time.

 4 hour trained 6 hour trained

 Test simulation start time

 4 5 6 ----------- 6 -----------

G
P

U
 G

P
 P

o
p
u

la
ti
o
n

0 297.237 349.942 358.4

1 337.003 386.793 359.361

2 276.24 329.392 449.94

3 343.558 441.98 270.686

4 389.321 440.139 630.292

5 324.718 364.004 383.731

6 494.904 557.207 472.983

7 464.388 525.182 383.81

8 414.911 505.111 548.466

9 471.051 529.891 370.66

C
P

U
 G

P
 P

o
p
u

la
ti
o
n

0 458.938 583.941 643.891

1 319.26 381.822 580.413

2 296.005 330.114 481.309

3 301.921 359.452 548.267

4 461.701 558.845 550.742

5 388.226 464.427 522.458

6 498.279 557.922 550.96

7 451.326 576.098 550.96

8 409.949 498.648 458.291

9 465.151 569.642 624.869

GPU GP Maximum 494.904 557.207 630.292

GPU GP Mean 381.333 442.964 422.833

CPU GP Maximum 498.279 583.941 643.891

CPU GP Mean 405.076 488.091 551.216

 Combined GP
Maximum

498.279 583.941 643.891

Combined GP Mean 393.204 465.528 487.025

Bates-Limited 1242.04 1298.87 1298.87

Bates-Manning's 517.147 552.1 552.1

DT-Manning's 287.386 357.138 357.138

Ghimire-Manning's 215.826 248.954 248.954

 191

In the cases that were trained on the first 4 hours, and 6 hours of the training

simulation (Shown in Table 5.12). There can be seen a much better response,

however it can be argued that these populations where trained at a closer time

frame to these test cases. This does show that these validation cases, testing the

remaining end of the simulation may be primarily testing the rules ability to predict

rather low flow. There are a very few cases that are out performed by the zero

flow, comparatively far less than on the 1 and 2 hour trained simulations.

5.5.3.2 Validation on the same terrain with different rain profile

For the next stage of testing, runs are conducted on the training simulation

terrain, and evenly for the full period from t = 0 to t = 12 hours, but with different

rain conditions of 10mm/h for 2 hours, as opposed to the training/validation case

which utilised 20mm/h for 1 hour. Therefore, the entire hydrograph produced from

each cell will be different from the training case used. The scores for Manning’s

formulations and limited, zero flow and the arbitrarily large flow are shown in

Table 5.13, and the comparable score for all the GP population in Table 5.14.

Compared to previous validation testing, all batches of trained GP are now tested

on the same test case, which makes for easier comparison.

Table 5.13, Fitness scores (1/RMSE) for the Manning’s formulations and
limited, zero flow, and large flow (1,000) on the entire validation case, using the

hill and pond terrain but modified rain profile.

GP Program Fitness score

Bates-Limited 865.414

Bates-Manning’s 478.223

Dottori and Todini-Manning’s 199.433

Ghimire-Manning's 174.179

Zero Flow 16.3422

large Flow 15.3644

 192

Table 5.14, Fitness scores (1/RMSE) for the validation case from t = 0 up to t =
12, for the CPU and GPU trained populations trained at the respective length on

the training simulation; also showing the maximum and mean fitness for both
groups of populations and all GP individuals at each training time.

 Hours of training/simulation

 1 2 3 4 5 6
G

P
U

 G
P

 P
o

p
u

la
ti

o
n

0 255.212 252.483 265.789 305.702

1 134.659 441.873 318.972 304.702

2 259.051 459.783 267.496 350.233

3 275.922 264.809 334.722 141.821

4 277.938 362.204 340.743 530.114

5 225.772 324.701 331.3 313.089

6 265.384 474.943 429.314 401.914

7 231.443 323.025 416.414 304.483

8 246.8 499.648 424.842 364.654

9 337.264 397.023 372.259 334.973

C
P

U
 G

P
 P

o
p

u
la

ti
o

n

0 320.472 365.137 368.623 443.5

1 171.307 279.395 315.586 411.474

2 124.015 462.718 294.518 350.541

3 67.9683 183.087 294.403 432.707

4 177.452 283.497 390.887 454.383

5 185.511 261.447 325.516 364.497

6 280.06 406.704 454.23 374.495

7 226.605 200.812 411.811 452.153

8 226.483 289.061 388.723 262.063

9 164.763 442.018 438.915 478.182

GPU GP Maximum 337.264 499.648 429.314 530.114

GPU GP Mean 250.9445 380.0492 350.1851 335.1685

CPU GP Maximum 320.472 462.718 454.23 478.182

CPU GP Mean 194.4636 317.3876 368.3212 402.3995

 Combined GP Maximum 337.264 499.648 454.23 530.114

Combined GP Mean 222.7041 348.7184 359.2532 368.784

 193

Figure 5.21, Mean fitness score (1/RMSE) of the GPGPU, CPU, and both
combined runs for varying amounts of simulation time used for training, for the

hill and pond test case with the altered rain profile (From Table 5.13).

It can be seen from Figure 5.21 and Table 5.14 that more populations have

failed to capture the underlying dynamics with a shorter training period of just the

first hour. However, a large number still manage to exceed the score of the lower

scoring manning’s formulations on this unseen case or come very close. It can

be seen from the average maximum scores (shown in Figure 5.21), that out of

the length of training cases that have been utilised, clearly 1 hour training would

appear to lack sufficient example for the system to generalise well. After this point

there is a minor disagreement between the CPU and GPU scores, although both

are also examined together this would appear to indicate that from 2 hours’ worth

of simulation time onwards it does not increase the generalisation much if at all.

Clearly this gives the water enough time to concentrate and be drawn down,

which gives the GP optimisation enough training example. After this point it would

seem to be a case of diminishing returns, since it takes a directly proportionate

amount of time to run the GP optimisations as the amount of training simulation

used.

5.5.3.3 Testing on a different terrain (EAT2)

For the final stage of validation, the terrain for the UK Environment Agency

Test second case (EAT2) is utilised, which is a much larger and a different terrain

configuration compared to the training case. The terrain has been scaled up to a

50m cell size, and used a roughness factor of 0.01n, a rain profile at 40mm/h for

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6

Fi
tn

e
ss

 s
co

re
 (

1
/R

M
SE

)

Amount of simulation time used in training

GPU

CPU

combined

 194

an hour has been applied, and the simulation run for 4 hours’ worth of simulation

time. The scores for the Manning’s formulations, limited, zero flow and large flow

are showing in Table 5.15, and the GP population for both CPU and GPU are

shown in Table 5.16.

Table 5.15, Fitness scores (1/RMSE) for the Manning’s formulations, limited,
zero flow, and large flow (1,000) on the entire validation case, using the EAT2

terrain scaled up to 50m, with 0.01n roughness factor, and a rain profile of
40mm/r for the first hour; simulation was run up to t = 4 hour.

GP program Fitness score

Bates-Limited 332.333

Dottori and Todini-Manning’s 297.973

Bates-Manning’s 281.595

Ghimire-Manning's 254.318

Zero Flow 14.3493

large Flow 12.6236

 195

Table 5.16, Fitness scores (1/RMSE) for the EAT2 scaled to 50m, and 0.01n
roughness factor (with 40mm/h rain for first hour) validation case from t = 0 up

to t = 4, for the CPU and GPU trained populations trained at the respective
length on the training simulation; also showing the maximum and mean fitness

for both groups of populations and all GP individuals at each training time.
Those highlighted bold have outperform the Manning’s formulations.

 Hours of training/simulation

 1 2 3 4 5 6

G
P

U
 G

P
 P

o
p
u

la
ti
o
n

0 364.532 415.567 209.903 189.762

1 122.791 498.207 292.786 369.183

2 514.912 617.317 298.058 359.934

3 499.122 217.652 420.556 95.2937

4 480.172 510.179 264.763 202.902

5 318.002 178.124 243.873 385.266

6 31.5126 172.421 173.98 162.58

7 256.514 518.85 340.576 337.502

8 309.404 564.988 471.42 134.292

9 431.677 568.708 278.359 150.337

C
P

U
 G

P
 P

o
p
u

la
ti
o
n

0 457.02 289.122 259.168 305.981

1 370.823 275.54 216.192 432.401

2 106.013 708.808 257.238 170.561

3 235.649 186.953 161.221 295.629

4 159.431 349.744 366.243 95.2969

5 396.31 312.775 397.11 426.365

6 374.749 581.848 333.474 215.428

7 195.095 149.006 504.691 406.521

8 389.258 348.501 400.064 229.293

9 148.462 286.786 495.113 126.596

GPU GP Maximum 514.912 617.317 471.42 385.266

GPU GP Mean 332.8639 426.2013 299.4274 238.7052

CPU GP Maximum 457.02 708.808 504.691 432.401

CPU GP Mean 283.281 348.9083 339.0514 270.4072

 Combined GP Maximum 514.912 708.808 504.691 432.401

Combined GP Mean 308.0724 387.5548 319.2394 254.5562

Pass/fail rate 10/10 11/9 9/11 7/13

 196

Figure 5.22, Mean fitness score (1/RMSE) of the GPGPU, CPU, and both
combined runs for varying amounts of simulation time used for training, for the

EAT2-rain test case.

In this case (Shown in Table 5.16 and Figure 5.22) there are a number of

additional populations which don’t perform very well in testing, showing their over

training. The validation scores certainly show a peak with 2 hours of training

simulation provided, and on this validation case even show a marked drop in

performance with longer periods of training simulation time provided. However,

this might be explained by the length of the test cases at only 4 hours long, where

the training cases length of training and the testing simulation length maybe

playing a role. Although this could also be explained by over training of the 6

hours trained GP trees to the longer draining down period of the training

simulation. It is hard to say without further investigation or greater volume of test

cases. Considering the test cases that have been utilised in this thesis, it appears

more likely that these longer runs might be over trained.

5.6 Conclusions

While it appears easier for the GP system to optimise and gain high scores

on very short amounts of simulation time/CA iterations presented (Section 5.4),

in this section testing on unseen test cases shows that those GP trained with the

shorter simulation times of 1 hour do not capture the underlying dynamics as well

others. However, there is not a large increase in testing performance after 2-4

hours of training simulation time presented, and even in the last validation case

a marked drop in performance. When the processing time of these large amounts

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6

Fi
tn

e
ss

 s
co

re
 (

1
/R

M
SE

)

Amount of simulation time used in training

GPU

CPU

Combined

 197

of training data being provided to the system is also considered, then there

appears to be a marked point of diminishing returns at approximately 2-4 hours.

It is thought that this is due to the difference in the flows, as the point of

concentration is at approximately t = 1h and 45mins, and that sufficient example

of both the flows before and after this point are needed in order to generalise well.

Therefore, considering the additional computational times required to provide

more simulation time during training, and the peak in generalisation performance

at 2-4 hours of simulation, this represents and optimal amount of simulation time

for training. In most conditions the majority of (average) rules out perform the

Ghimire, Dottori and Todini rules sets, and on the last test case of EAT2 a number

outperform all rule sets including the Bates formulation.

 198

Chapter 6: GP CA real-world flood modelling

generalisation to spatiotemporal resolution

6.1 Introduction

It is shown in the last chapter (Chapter 5:) that the GPCA system can train

rules at a single spatiotemporal resolution, and that given sufficient amounts of

training data it can generalise to other input conditions on the same single

spatiotemporal resolution. The work in this chapter investigates the effects of

varying the spatiotemporal resolutions during training and testing of the GPCA

system. The same GPCA methodology is used as in Chapter 4: and Chapter 5:.

6.1.1 Chapter Structure

The work in section 6.2 investigates the effects of temporal generalisation

while still maintaining a single static spatial resolution during all experimentation.

Firstly the GP trained and tested in Chapter 5: is tested upon a range of different

temporal resolutions. Then the GPCA system is trained and tested on a set of

different temporal resolutions. Here an investigation of the GP bloat during the

processing is also carried out. Section 6.3 further investigates the generalisation

of these newly trained GP to include other input such as different terrains, water

level inputs and finally different inflow types, in order to find the limits of this

generalisation. By creating rules which can generalise to different terrains, water

level inputs as well as different temporal resolutions, this work tackles the trade-

off between processing time and accuracy, by creating rules which operate at

larger time steps and maintain accuracy levels higher than a number of human

implementations. This work is extended to cover the full breadth of this problem,

whereby some human implemented rules drop their performance in terms of the

largest time step at which they produce acceptable accuracy, as the spatial size

of cells are decreased. Therefore section 6.4 investigates the effectiveness of

training the GPCA system on a set of different spatial and temporal resolutions,

and their competitiveness with the very latest human models in this respect.

Finally section 6.5 draws conclusions from the process of training and testing the

GPCA system with variable spatiotemporal resolutions, about its advantages and

limitations.

 199

6.2 Training GP for temporal generalisation of CA rules

6.2.1 Introduction

The previous chapter’s experimentation (section 5.4) has concentrated on

training, and then testing (section 5.5) upon a single set of the grid static variables

(Cell size, roughness factor, and time step). However, the human formulated

rules are capable operating at different temporal and spatial resolutions (time step

and cell sizes). Also a large body of literature exists on how well each model

operates at different combinations of cell size and time step (Section 2.1.4). Each

rule attempts to model the same physical reaction but at different temporal scales

(I.e. each rule relates each cell to a spatial scale (cell size) and each iteration to

a temporal scale (time step), in the real world). This shows how much learning

and research work has been performed by humans in order to formulate these

rules, and how a lot of this learning/research work has been directed towards

relating each cell to a spatial area and each iteration of the grid states to a

temporal area. This section examines how trade-off of accuracy against

processing time affects the training of CA rules, given variables discretisations of

time (time step) and a static spatial resolution.

The reasoning for such a need for rules to adapt to different spatial and

temporal scales is because the processing time of a simulation is directly related

to the number of iterations and the number of cells of the CA. Where the number

of iterations is inversely proportional to the temporal resolution (time step), and

the number of cells is inversely proportional to the spatial resolution (cell size) in

each dimension. It is possible to consider the same area of real time, and the

same real area of space in the simulation but at very different CA resolutions, and

therefore it is possible to model the same simulation and decrease the processing

time either by increasing the time step, or increasing the cell sizes. Therefore,

there exists a fairly well understood trade-off between the processing time of the

simulation and the possible accuracy. Again considering the real world event, the

CA can only model movements of up to one cell at any given time step (CA

iteration). Therefore, the question is how well the given rule can approximate the

‘real’ water levels given its spatial and temporal resolution.

 200

The target could of course be actual real world data, however volumes of

real world data with a scale of conditions is not feasible to capture. Therefore, a

reasonably trusted model must be utilised to create the target data, and a large

part of the trust element comes from running the target model at a very small time

step in order to produce very accurate underlying data. Within this thesis the

target UIM model was run with an adaptive time step, and a minimum value of

0.0125 seconds, and a sampling rate of 1 second. Once the continuous shape of

movements of water levels (state changes) can be represented through time,

then a comparison can be made using different discretisation schema of time.

The work of Dottori & Todini [66], has showed that the use of the Manning’s

formula and discharge formula have a maximum time step, after which the

viability of the rule begins to degrade. Sometimes this is called an “explosion”

[63], or ‘wild/checkerboard oscillations’, or ‘artificial diffusion’. This is due to the

discharge formula part of the schema, which indicates a direct proportionality of

the flow to the time step. This means that there is a direction relation between the

maximum time step, and an inverse relation to the velocity of the lateral fluid flows

at which these formulations will operate successfully (section 2.1.4.1). After a

critical time step is reached then at least one cell within the simulation will cause

a disproportionate outflow, which in turn causes larger and larger feedback, and

the observed oscillations which destroy the overall quality of the simulation.

It is slightly less than clear exactly how the rules adapt, when the time step

is altered due to the complex nature of the system. I.e. altering the time step

within the rules operable area changes the flow rates in the very initial iterations

of the algorithm. However, under successive iterations of the CA algorithm, the

state transition rule accepts the altered water levels and produces further altered

flow rates, such that overall very similar water levels are produced over the spatial

and temporal area of the simulation. Therefore, the resulting simulation is

effectively the same/similar resulting output up until an excessively large time

step is used. At this limiting point, at least one flow within the simulation in space

and time will be excessively large to the point whereby other cells using the

Manning’s formula on successive iterations, cannot cope with the larger flow, and

only serve to exacerbate the problem. This is especially true, as a very large flow

will empty a cell completely of water volume, and that flow rate being limited by

the main cell’s water volume will be relatively less than prescribed by the

 201

Manning’s formula to maintain the desire global actions. Secondly, since that cell

emptied of water, it would be left completely dry while its neighbours now certainly

have some water; they will certainly flow water back into the original cell in the

next time step; starting the checkerboard style of oscillations.

6.2.2 Human formulations and static temporal resolution trained GP

performance.

The fitness function can clearly detect this point (Figure 6.1), where the

fitness scores of the human formulated rules are tested on 4 hours of the Ghimire

hill and pond test case, each at varying time step factors. Each single simulation

is run with a static time step, but a different simulation is processed at each time

step. The Manning’s formulations (Ghimire, Dottori & Todini, and Bates) drop

dramatically between 1-3 seconds and onwards. The Bates Limited formulation

is designed to extend this limiting time step and operates successfully at far

higher time step factors. Also shown in Figure 6.1, are the average fitness scores

of the GP trained in section 5.4 on only a one second time step. Since previous

training examples only provided a single example for each of the static variables

including the time step at 1 second, it can be expect that the system will have

over trained/generalised to the given training case, which is demonstrated in

Figure 6.1. Where clearly these rules generated have indeed over

train/generalised to the single training example of 1 second, especially as their

performance decrease as the time step is also decreased, where the Manning’s

formula (and discharge formula, combined schema) maintain their performance.

Both the Manning’s formulations and the GP tree trained on a single second all

fall in performance after 1 second up to 4 second time steps. Whereas the Bates

limited formulation holds its fitness up to a much larger time steps. Overall this

demonstrates that as expected, the GP overfits to the time step on which it has

been trained and in this window, it is competitive with the Bates Limited

formulation. However, outside of this window, performance decreases rapidly.

 202

Figure 6.1, Fitness scores the Manning’s formulations (Ghimire, Dottori and
Todini, Bates) and the limited Bates formulation, along with the fitness scores

for the previous trained GP populations (average of all best individuals, all
trained at 1 second time step, for 1, 2, 4 and 6 hours of the training simulation).

Results shown for the Hill and pond test case for the 4hours, at various time
steps from 0.1 seconds up to 10 seconds, at intervals of 0.1 seconds.

6.2.3 Experimental setup

Experimentation has been conducted providing training variation in the time

step variable used. Where each simulation maintains a static time step for the

duration of the simulation, and therefore a number of different simulations are

processed for same time period but each using a different time step, 0.5 seconds,

1 second and 2 seconds. The fitness is established as the reciprocal of the mean

of various simulations RMSE. As the experimentation in section 5.4, established

that a minimum amount of simulation time required was 2-4 hours, and therefore

the hill and pond training case is again utilised for 4 hours with 0.5 seconds, 1

second and 2 seconds time steps.

6.2.4 Training results

The resulting fitness’s on the training cases, along with the fitnesses of the

human competitors are displayed in Table 6.1. Note that there is difference

between the fitness score of each individual with multiple test cases, and the

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10

Fi
tn

e
ss

 S
co

re
 (

1
/R

M
SE

)

Time Step (Seconds)

1h_1s

2h_1s

4h_1s

6h_1s

Ghimire

Dottori & Toddini

Bates

Bates_limited

 203

mean of the fitness, as the fitness is the reciprocal of the mean of the errors, as

opposed to the mean of the reciprocal of each error for each simulation.

Table 6.1, Fitness scores (1/RMSE of all cells in all time steps) of the Manning’s
formula and a the GP populations trained with a 0.5, 1, and 2 second time step;
run on the hill and pond test case for 4 hours of simulation time. Also shown are

the fitness scores of the Manning’s formulations and Limited on the same
simulation time and time steps.

 Time step simulation fitness

GP population Mean fitness Fitness score 0.5 1 2

0 882.779 881.8331786 868.448 923.468 856.421

1 358.4483333 358.2186513 371.321 350.857 353.167

2 452.9616667 450.5610854 483.948 466.533 408.404

3 463.8523333 462.1535741 496.371 466.96 428.226

4 316.0313333 314.0722402 283.157 341.783 323.154

5 400.8396667 382.0149379 520.581 377.078 304.86

6 297.6156667 297.5704827 302.82 294.833 295.194

7 259.6966667 259.351231 270.031 261.797 247.262

8 375.994 373.5759816 382.584 408.66 336.738

9 297.6023333 229.3584866 363.93 193.57 193.57

GP maximum 882.779 881.8331786 868.448 923.468 856.421

GP mean 410.5821 400.8709849 434.3191 408.5539 374.6996

Bates-Limited 603.947 603.748513 594.97 597.408 619.463

Bates 391 303.2317069 532.58 470.673 169.746

DT 145.47 143.707376 155.945 156.77 123.694

Ghimire 143.761 133.9718724 173.442 162.287 95.5546

Interestingly now three examples of time step are provided, in having 3

whole simulations of 4 hours, a large number of the GP individuals have beaten

some of the Manning’s formulations on the training data sets, this excludes the

Bates formulation. It is also interesting to note that in the majority (mean fitness

score) of cases, GP individuals do have slightly lower score at the higher step,

but in a much less respect than the Manning’s formulations. Clearly the fitness

scores are closer in performance in terms of generalisation to the Bates limited

formulation, and one individual even exceeds these scores, on the training data

set. This individual population (GP population 0), has performed exceptionally

well and has exceeded the scores of all human formulations, on all time step

settings tested here. The results in Figure 6.2 (which display the mean and best

individuals trained on multiple time steps), contrasted to those of Figure 6.1 which

 204

show those trained on the single time step, clearly demonstrate how those trained

on a single time step have over generalised, and those trained with even a sparse

a number of time steps, 3 points (different time steps) generalise much better with

less dramatically reduced performance outside of the training time steps.

Figure 6.2, Fitness scores of the Manning’s formulations (Ghimire, Dottori and
Todini, Bates) and the limited Bates formulation, along with the fitness scores

for the trained GP populations (all trained at 0.5, 1, and 2 second time step, for
4 hours of the training simulation), showing the best individual and the mean of
all the 10 best individuals. Results are shown for the Hill and pond test case for

the 4hours, at various time steps from 0.1 seconds up to 10 seconds, at
intervals of 0.1 seconds.

6.2.5 GP bloat Results

Finally the traces of the fittest individual within each of the 10 populations

are shown in Figure 6.3, are contrasted against the depths of the GP trees (shown

in Figure 6.4), and the number of nodes in Figure 6.5.

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8 9 10

Fi
tn

e
ss

 s
co

re
 (

1
/R

M
SE

)

Time Step (Seconds)

Ghimire Dottori & Toddini Bates

GP mean Bates_limited GP best

 205

Figure 6.3, Fitness of the fittest individual within each of the 10 populations,
trained on hill and pond test case at 50m cell size, and 0.5, 1, and 2 second

time steps.

It can be seen in Figure 6.3 that the best fitness individuals take very

different routes through the fitness landscape. While in Figure 6.4, it can be seen

how within very few generations the maximum depth of 10 is reached. While in

Figure 6.5, the number of nodes increases reasonably rapidly during this period,

it is nowhere near a full tree for these depths. The number of nodes increase,

does then slow down after the maximum depth is reached, however both the

fitness and the number of nodes continue to slowly increase after this point. This

shows firstly how the bloating preference in our system is for rapid increases in

GP tree depth growth, secondly however the GP system is able to continue to

optimise within this constraint, and therefore must be able to re-organise the GP

tree to accommodate new nodes. Finally the limiting factor of a maximum GP tree

depth, leads to a majority of very ‘long, thin’ GP trees in comparison to the

maximum size (number of nodes) of the tree at these depths (shown in Equation

6.2).

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500

Fi
tn

e
ss

 S
co

re
 (

1
/R

M
SE

)

GP Generation

0

1

2

3

4

5

6

7

8

9

 206

Figure 6.4, Depths of the fittest individual within each population and the mean
of each of these 10 individuals at each generation of the optimisation process.

Figure 6.5, Number of nodes within each of the fittest GP tree for each of the 10
populations and the mean of these is displayed in black.

Where experimentation was conducted with larger maximum GP tree

depths, it was found that much larger number of nodes GP tree would be formed,

although these where still a fraction of the total available size of GP tree’s.

Equation 6.2 demonstrates the maximum number of nodes for a binary tree at a

0

2

4

6

8

10

0 100 200 300 400 500

G
P

 t
re

e
 D

e
p

th

GP Generation

0

1

2

3

4

5

6

7

8

9

average

0

20

40

60

80

100

120

140

0 100 200 300 400 500

N
u

m
b

e
r

o
f

N
o

d
e

s
in

 t
h

e
 G

P
 t

re
e

GP Generation

0

1

2

3

4

5

6

7

8

9

average

 207

given depth, and Equation 6.2 the maximum for a ternary tree system. The

calculated maximum number of nodes in a binary or ternary tree are shown in

Table 6.2.

Equation 6.1 ∑ 2(𝑖−1)𝑛
𝑖=1 = 2𝑛 − 1

Equation 6.2 ∑ 3(𝑖−1)𝑛
𝑖=1

Table 6.2, Maximum number of nodes possible for full GP trees at each depth,
for both binary and ternary trees.

GP Tree depth Maximum number of
nodes of binary tree

Maximum number of
nodes of ternary tree

1 1 1

2 3 4

3 7 13

4 15 40

5 31 121

6 63 364

7 127 1093

8 255 3280

9 511 9841

10 1023 29524

Our experimentation has only a single ternary operator, and therefore is

heavily biased towards the maximum size of binary trees. Often terminal values

are applied early in tree branch, which reduces the number of available nodes.

I.e. it is unlikely to find trees near the maximum size, as there is no room for the

tree to change shape, and these trees are dominated by operators. In fact, during

experimentation where tree sizes are initiated at much larger depths, the trees

first begin to shrink down before re-joining this type of growth behaviour. This is

thought to be due to two main factors, firstly the mutation operators, especially

the growth operators, which has a 50% chance of depositing terminal values as

opposed to operators during its growth. Secondly the cross-over operators,

where both these operators can be very destructive to trees which are near the

 208

maximum size, they can also be the primary source of growth for small trees. This

is especially where the maximum depth is not limited, the cross-over operator is

capable of adding very large amount of nodes to GP trees.

6.2.6 Conclusions

In this section it has been shown that providing a single static and grid global

variable (e.g. time step) across training will result in over trained rules to that

specific variable. By providing even a small number of separate simulations with

different static and grid global variables, this can then provide the system with the

additional information required to begin to generalise across different time step

values. Considering the range of possible time step values, training in this section

has used a very sparse number of data points (only 3 time step values of 0.5, 1,

and 2 second) in a very small range. Yet the generated rules appear to generalise

well to a wide range of time step settings as shown in Figure 6.2 is very

encouraging. It is thought this is due to interrelation of the time step and the flow

rates within each CA simulation. While testing is limited to 500 GP generations

within these experiments so as to make fair comparison between the different

lengths of training simulation, in Appendix 9.3 much longer training is carried out

on the hill and pond test case at 50m cell size, with 0.5, 1, and 2 second times

steps on 4 hours of training simulation time, up to 2,500 GP generations, in order

to test how effective this limiting termination criteria has been on these

experiments.

6.3 Testing GP trained for temporal generalisation of CA rules

6.3.1 Introduction

For the GP trained in the previously section 6.2, it would appear that a

greater generalisation has been achieved, in terms of the fitness scores at

different time step factors, by providing the extra training cases each with a

different time step variable. However this is primarily in the area of the larger time

steps, and the average of the GP results in Figure 6.2, shows this is not always

as good performance as the Bates-limited formulation.

However, in order to claim fully that we have not reduced the generalisation

of these rules to variation in the rain profile (water depth inputs), and terrain

 209

variation, similar validation experimentations are conducted on the trained GP as

in section 5.5. Therefore, the GP are tested on the Hill and pond simulation for

the remainder of the training case simulation from t = 4 hours up to t = 12hours,

with a different rain profile for a full simulation, and a completely different terrain

(EAT2) for 4 hours of simulation time.

Lastly, the previous testing has only investigated test cases which used a

uniform rain input condition, and therefore excluded EAT1 test case, and the

inflow variation of EAT2. This section also investigates the relative performance

of the human rules and those trained with multiple time step inputs. All of these

test cases have been scaled to use the same spatial resolutions so as the only

variation in grid global static variables is that of the time step.

6.3.2 Experimental setup

Once again (similarly to 5.5) several stages of validation have been utilised,

to test if the trained rules are capable of generalising to different initial and input

conditions (water levels/depths and terrains). However these tests are performed

on those trained on a number of different temporal resolutions of simulation, from

section 6.2). All experiments use a fixed cell size of 50m, however tests are

conducted firstly on the 3 simulation time steps, and these test cases are detailed

in the sections below.

6.3.2.1 Remainder of training case

Firstly, the remaining elements of the training test case (Ghimire, hill and

pond case) are used for testing, as this will test how the same rules react with the

same terrain but different initial conditions. Since the pattern of the water

movements in space and time are different, should show how well the rules are

learning the underlying mechanics of the fluid flow relative to fluid level/depths

and the terrain levels.

As only 4 hours of training simulation was selected for training purposes in

section 6.2, then the remainder of the hill and pond simulation extends from t = 4

hours up to t = 12 hours This is achieved by starting the simulation from the target

examples grid state at t = 4 hours, and proceeding up to t = 12hours.

 210

6.3.2.2 Testing on the same terrain with different rain profile

The second stage of testing which has been utilised uses the same ‘hill and

pond’ test case terrain, but with an altered rain profile to create a completely

different test simulation. This will test the generate rules capability to generalise

to different input conditions (i.e. different water level inputs) through the course

of the simulation. Also it tests the capability of the rules to operate over a longer

simulation period than they were previously trained on. The rain profile for this

second test case is altered to 10mm/h for 2 hours, as opposed to 20mm/h for

hour.

6.3.2.3 Testing on a different terrain (EAT2) with uniform rain input

As the third stage of testing the EAT2 terrain (as described in section 5.3.2)

has been utilised, and a rain profile applied, as opposed to the prescribed inflow

condition, run for 4 hours of simulation time. This tests the capability of the rules

to generalise to a completely different and unseen terrain and water levels/depths

inputs. As with all of the above test/validation cases, this case has been scaled

up to 50m cell size, and use a roughness factor of 0.01n, as this was the only

training variety provided; however, the training model was re-run with the same

parameter for comparison.

6.3.2.4 Testing on a different terrain (EAT1) with inflow conditions

The fourth stage of testing, utilises the EAT1 test case (shown in section

5.3.2.2), which has lateral inflow condition, which is radically different from the

uniform rain input condition used for both training and testing previously. Tests

are conducted on the human formulation over a range of time steps, to show a

range of time step values where it might be feasible to model. Tests are

conducted with the trained GP trees are the 3 time steps upon which they were

trained.

6.3.2.5 Testing on a different terrain (EAT2) with inflow conditions

The fifth and final stage of testing, utilises the EAT2 test case (shown in

section 5.3.2.1), and uses a lateral inflow condition, which is radically different

from the uniform rain input condition used for both training and testing previously.

Tests are conducted on the Human formulation over a range of time steps, to

 211

show a range of time step values where it might be feasible to model. Tests are

conducted with the trained GP trees are the 3 time steps upon which they were

trained.

6.3.3 Rain condition results

6.3.3.1 Remainder of the training simulation validation

The first stage of validation, runs the trained GP on the remainder of the Hill

and Pond simulation, i.e. The grid of water depth states are started in the state of

the simulation at the t = 4hour, and proceed up to t = 12hours, testing both the

Manning’s formulations and the newly trained GP individuals (Shown in Table

6.3).

Table 6.3, Fitness scores (1/RMSE of all cells in all time steps) of the Manning’s
formulation and Bates limited, as well as the GP populations trained with a

0.5,1, and 2 second time step; run on the hill and pond test case for 8 hours of
simulation time, from t = 4hours up to t = 12hours.

 Time step simulation fitness

GP population fitness score fitness score 0.5 1 2

0 423.299 412.3180986 483.022 453.729 333.147

1 386.995 371.7563368 470.677 400.102 290.205

2 426.434 424.0592547 400.954 405.815 472.533

3 362.685 353.5214469 426.27 372.234 289.55

4 294.998 292.1049256 337.503 277.401 270.091

5 400.966 381.6974553 486.888 427.573 288.435

6 358.931 350.3397986 285.069 386.337 405.387

7 331.188 329.0016599 295.523 339.409 358.633

8 332.03 328.0233323 290.673 325.091 380.324

9 310.288 302.5494629 272.309 275.016 383.541

GP maximum 426.434 424.0592547 486.888 453.729 472.533

GP mean 362.7814 354.5371772 374.8888 366.2707 347.1846

Bates-Limited 1233.69 1233.216417 1200.85 1242.04 1258.19

Bates 620.304 236.3985878 1243.29 517.147 100.478

Dottori & Todini 262.222 207.3978676 379.527 287.386 119.754

Ghimire 203.945 139.1267407 323.758 215.826 72.2492
Once again all GP individuals’ validation scores are better than that of either

the Ghimire and in many case the Dottori & Todini - Manning’s formulations. Also

the average scores for each time step show that it appears harder to match the

higher time step, although there are individuals which are the exception to this

 212

rule, for example GP individual 9, which improves its score for the higher time

step, counter to its training scores.

6.3.3.2 Testing on the same terrain with different rain profile

In the next testing case, a full 12 hour simulation is run on the same Hill and

Pond terrain, with a different rain profile and therefore the water depth inputs and

results simulation are different; a rain fall of 10mm/h for 2 hours is used, as

opposed to 20mm/h for an hour for testing (and noting the training simulation was

only for the first 4 hours), shown in Table 6.4.

Table 6.4, Fitness scores (1/RMSE of all cells in all time steps) of the Manning’s
formulations and Bates limited, and the GP populations trained with a 0.5,1, and

2 second time step; run on the hill and pond test case, with a different rain fall
profile (10mm/h for 2 hours), for a full 12 hours of simulation time, from t = 0

hours up to t = 12hours.

 Time step simulation fitness

GP population Mean fitness fitness score 0.5 1 2

0 455.975 449.0340739 492.987 495.119 379.818

1 331.047 326.9474276 368.079 342.553 282.508

2 371.712 364.551928 324.602 343.382 447.152

3 311.604 310.8110975 321.321 323.682 289.808

4 268.094 267.4062226 273.986 249.572 280.725

5 355.059 338.2086624 453.37 348.059 263.749

6 281.313 279.1863467 301.123 294.901 247.915

7 230.289 229.4902646 246.233 231.422 213.213

8 334.884 328.0554417 320.016 401.087 283.549

9 275.895 275.7836851 278.915 280.588 268.181

GP maximum 455.975 449.0340739 492.987 495.119 447.152

GP mean 321.5872 316.947515 338.0632 331.0365 295.6618

Bates Limited 872.658 872.4938989 862.958 865.414 889.602

Bates 438.251 251.1592381 718.347 478.223 118.183

DT 178.23 167.0299052 214.577 199.433 120.681

Ghimire 153.79 128.4979821 209.225 174.178 77.9674

Table 6.4, shows similar results to previous generalisation tests,

demonstrating that the generalisation maintains, even with a different rain/water

depth input; i.e. it continues to generalise well over the spatial area of the

simulation. Considering by now, with a single time step, some obvious cases of

 213

over training had occurred, it would appear that the additional training data has

managed to add to the total volume of training data for generalisation purposes,

producing better overall rules.

6.3.3.3 Testing on a different terrain (EAT2) with uniform rain input

In the next test case, experimentation is conducted using a completely

different terrain (the EAT2 terrain), and rain fall profile of 40mm/h for an hour. The

test simulations are run for 4 hours from t = 0 to t = 4 hour (Shown in Table 6.5).

Table 6.5, Fitness score (1/RMSE of all cells in all time steps) of the Manning’s
formulations and Bates limited, and a the GP populations trained with a 0.5,1,
and 2 second time step; run on the EAT2 case for 4 hours of simulation time,

from t = 0 hours up to t = 4 hours. Those score which have exceeded that of all
the human competitors are highlighted in bold.

 Time step simulation fitness

GP population Mean fitness fitness score 0.5 1 2

0 559.055 555.3597239 604.448 574.199 498.518

1 317.561 271.982337 428.817 353.486 170.382

2 464.514 462.2318612 480.761 492.753 420.027

3 304.887 262.5315703 481.28 241.204 192.177

4 283.641 274.3068947 359.319 234.589 257.014

5 208.606 208.3577101 212.272 214.892 198.654

6 370.648 363.6616796 410.977 398.641 302.327

7 80.6829 78.32310393 99.4542 77.2422 65.3522

8 288.209 283.4970442 260.458 342.732 261.438

9 286.954 252.9755025 411.258 278.133 171.471

GP maximum 559.055 555.3597239 604.448 574.199 498.518

GP mean 316.4758 301.3227428 374.9044 320.7871 253.736

Bates-Limited 332.181 332.1797629 332.98 332.333 331.231

Dottori & Todini 261.615 214.4585808 359.502 297.973 127.371

Bates 231.355 160.9381136 329.515 281.595 82.9549

Ghimire 222.344 162.0334113 325.865 254.315 86.8522

Table 6.5, demonstrates that some individuals have over trained to the

specifics of the Hill and Pond trained case, be that either the terrain or the water

depths provided, as they perform well on the other hill and pond test cases but

not on these cases. It would appear that the Bates formulations (both limited and

not) score particularly well on the Hill and pond test case at 50m, however it would

 214

appear that many of the trained GP rules generalise better than even these rules.

Clearly the rules are finding it easier at the lower time steps, which is similar to

many of the human programmed Manning’s formulations, however these are

closer to the Bates limited formulation in their generalisation. A number of rules

now exceed the resulting scores of the human formulations, including GP

population 0 which score particularly well on the training data.

6.3.3.4 Results summary

It can be seen in Figure 6.6, that the Bates-limited formulation scores

particularly well on all of the hill and pond test cases, but performs less well on

the EAT2 test case. The GP mean score maintains its score across the test

cases, where the best GP individual outperforms all human formulations on the

training case, and is only out performed by the Bates-limited on the hill and pond

test cases, but still scores well.

Figure 6.6, GP’s Maximum and Mean scores of the 10 populations for each of
the test cases, as well as that of the 4 different human formulations.

6.3.4 Discussion

Examples below show GP 0 population from the above trained GP, tested

on the hill and pond test case for 12 hours, and shows the water depths at the

Ponding, Crest (left, centre, right) and old outlet points; run on a 2 second time

step (shown in Figure 6.7, Figure 6.8, Figure 6.9, Figure 6.10 and Figure 6.11).

0

200

400

600

800

1000

1200

1400

Hill and Pond
4hours

Hill and Pond 4-
12hours

Hill and Pond
12hours 10mm/h

for 2 hours

EAT2 4hours
40mm/h for 1

hour

GP maximum

GP mean

Bates-Limited

Bates

DT

Ghimire

 215

This is contrasted against the hydrographs for the Ghimire Manning’s formulation

and the UIM target data. The Ghimire Manning’s formulation is selected for this

example as with this time steps settings it will begin to breakdown its simulation

quality, and demonstrate how the GP formulation are capable exceeding the

capabilities of number of the human formulation by avoiding excessive

oscillations at higher time steps while reasonably matching the required pattern

in space and time.

Figure 6.7, Water depths at the ponding point in the hill and pond test case, for
UIM, and the Manning’s formula, and the GP 0 individual, over the course of the

12 hours of simulation; with a 2 second time step for the CA models.

Clearly oscillations have started to occur with one the standard form the

Manning’s formula at this time step, however our trained GP generalises much

better (Shown in Figure 6.7). However not every cell location within the grid has

large oscillations as shown in Figure 6.8, Figure 6.9, and Figure 6.10. Although

in Figure 6.10 there exists very minor oscillations and the Ghimire rule does not

match the required hydrograph as well as the GP individual. This is thought to be

due to nearby large oscillations.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5000 10000 15000 20000 25000 30000 35000 40000

W
at

e
r

D
e

p
th

 (
M

e
te

rs
)

Simulation time (Seconds)

UIM Manning's formula GP

 216

Figure 6.8, Water depths at the Crest Left point in the hill and pond test case,
for UIM, and the Manning’s formula, and the GP 0 individual, over the course of

the 12 hours of simulation; with a 2 second time step for the CA models.

Figure 6.9, Water depths at the Crest Centre point in the hill and pond test case,
for UIM, and the Manning’s formula, and the GP 0 individual, over the course of

the 12 hours of simulation; with a 2 second time step for the CA models.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5000 10000 15000 20000 25000 30000 35000 40000

W
at

e
r

D
e

p
th

 (
M

e
te

rs
)

Simulation time (Seconds)

UIM Manning's formula GP

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5000 10000 15000 20000 25000 30000 35000 40000

W
at

e
r

D
e

p
th

 (
M

e
te

rs
)

Simulation time (Seconds)

UIM Manning's formula GP

 217

Figure 6.10, Water depths at the Crest Right point in the hill and pond test case,
for UIM, and the Manning’s formula, and the GP 0 individual, over the course of

the 12 hours of simulation; with a 2 second time step for the CA models.

Figure 6.11, Water depths at the Old Outlet point in the hill and pond test case,
for UIM, and the Manning’s formula, and the GP 0 individual, over the course of

the 12 hours of simulation; with a 2 second time step for the CA models.

Clearly seen in Figure 6.7 and Figure 6.11, which is where the water depths

are larger within the grid, the Manning’s formulation (Ghimire) has begun to

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5000 10000 15000 20000 25000 30000 35000 40000

W
at

e
r

D
e

p
th

 (
M

e
te

rs
)

Simulation time (Seconds)

UIM Manning's formula GP

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5000 10000 15000 20000 25000 30000 35000 40000

W
at

e
r

D
e

p
th

 (
M

e
te

rs
)

Simulation time (Seconds)

UIM Manning's formula GP

 218

oscillate at a 2 second time step, whereas the GP formula generalises reasonably

well. Although the particular candidate may have over trained slightly as it has

minor oscillates, and ceases to follow the general pattern as well after the first 4

hours (Shown in Figure 6.8, Figure 6.9, and Figure 6.10). However, the GP

individual far out performs the human formulation in terms of accuracy, and at a

large time step factor. Thus this GP rule is capable of operating a quicker

processing rate than the Ghimire rule, while still maintaining reasonable

accuracy. This is an improvement in terms of multiple objectives of both speed

and accuracy, via a method of optimisation for only the single objective of

accuracy but over multiple time step factors. While this method does not produce

a Pareto front, the idea of dominance might not work in the same way. I.e. A

single rule or candidate solution does not produce a single point in the multi-

objective space, but rather each rule may produce a front/trade-off between the

two objectives. Therefore, the comparison of two different rules in this multi-

objective space and the idea of dominance in the traditional sense are made more

difficult. However, when considering a single time step factor, each rule will

produce a single metric in both objectives of speed and accuracy for which

traditional dominance could be established.

As the time step is so directly related to the speed objective, at a given time

step rules are likely to produce very similar processing speeds. Also there is a

requirement within the original objectives to create faster rules. This could be

introduced as a preference within the trade-off towards speeds over accuracy.

For example, if the speed difference between the rules at the same time step is

consider negligible, and at a lower time rule A is more accurate than rule B.

However, at a higher time step and therefore faster processing speed rule B

produces greater accuracy than rule A, than it could be considered that rule B is

fitter. What is likely required is to establish a threshold of acceptable accuracy,

where more accurate models are acceptable, and to find the rule which can match

or surpass this threshold at the largest time step, and therefore fastest speed

possible. This area of multi-objective optimisation requires further work and

research.

 219

6.3.5 Inflow condition results

6.3.5.1 Testing on a different terrain (EAT1) with inflow conditions

Earlier training and testing limited to a single time step of 1 second, limits

the number and types of viable test cases which can be utilised due to

requirements for much lower time steps for human formulations to successfully

operate. This includes EAT1 and EAT2 test cases in their originally prescribed

inflow conditions, which is demonstrated in Figure 6.12 and Figure 6.14, where

the most successful scores from the human formulations are at much lower time

steps.

The EAT1 case is scaled up to a cell size of 50m and altered to have the

same roughness factor as the training set (0.01), but maintains use of the water

level event to drive the inflow. In these tests the human formulations are not

scoring as well as on the original cell size and roughness factor, but also strangely

the human formulation scores slightly worse on much lower time steps after a

peak in their performance (shown in Figure 6.12).

Figure 6.12, Fitness scores (1/RMSE of all cells in all iterations) of the
Manning’s formulations, on the EAT1 case scaled to 50m cell size and made 1

Dimensional, and 0.01n roughness factor; on various time step.

0

50

100

150

200

250

300

0 0.5 1 1.5 2

Fi
tn

e
ss

 S
co

re
 (

1
/R

M
SE

 o
f

al
l c

e
lls

 in
 a

ll
it

e
ra

ti
o

n
s)

Time Step (Seconds)

Ghimire

Dottori & Todini

Bates

Bates Limited

 220

The GP trees that were trained on the hill and pond test case with rain

conditions are now tested on the EAT1 scaled case, at 0.5, 1, and 2 second time

steps, shown in Table 6.6.

Table 6.6, Fitness scores (1/RMSE of all cells in all time steps) of the Manning’s
formulations and a the GP populations trained with a 0.5,1, and 2 second time
step; Tested on the EAT1 case for a full 20 hours of simulation time, from t = 0

hours up to t = 20 hours.

 Time step simulation fitness

GP population Mean fitness fitness score 0.5 1 2

0 9.9798 9.609415619 12.7584 9.15182 8.02915

1 7.65107 7.548575143 8.95054 7.08551 6.91717

2 5.14602 5.063622589 6.02223 4.99574 4.4201

3 6.67526 6.474194886 8.22923 6.42996 5.36659

4 32.7277 15.06462784 58.2566 33.347 6.57943

5 9.47597 8.999509593 9.5209 6.8924 12.0146

6 8.01556 7.761859652 8.32962 9.52286 6.1942

7 3.8383 3.837939749 3.88461 3.8363 3.79398

8 8.14917 7.482624147 5.67382 11.5212 7.25246

9 22.4954 13.63357941 41.8607 18.6033 7.02236

GP maximum 32.7277 15.06462784 58.2566 33.347 12.0146

GP mean 11.41543 8.547594863 16.34867 11.13861 6.759004

Bates-Limited 22.5962 15.97452585 41.1879 17.0719 9.52887

Ghimire 46.1699 13.42200931 98.5847 34.5017 5.42341

Bates 28.4659 19.37550566 53.1203 20.949 11.3283

DT 26.4317 18.42106631 49.3245 18.775 11.1956

Seen in Table 6.6, there is a clear indication that some element of the EAT1

case is missing from the training example; since the difference in our experiments

here make use of lateral inflow, and the fact that the EAT1 case is designed to

alter the direction of flow towards the outflow. It is clear that the system has over

trained/under generalised, or perhaps is missing enough training example of

circumstances which occur uniquely within the EAT1 case with the water level

event. Since only two of our GP rules have scored close to the score of the

Manning’s formula, these individual’s performance is investigated (GP individuals

4 and 9), also one of the individuals which scored well on previous test cases but

poorly on this one is investigate (GP individual 0), Shown in Figure 6.13.

 221

Figure 6.13, Water level at the test point 1, on the EAT1 case scaled to 50m cell
size, and 0.01n roughness factor, UIM is shown at its original time step settings,
but the Ghimire version of the Manning’s formula and trained GP individuals 0,
4, and 9 are shown at a time step of 0.5 seconds. Time period shown from t = 0

seconds up to t = 72,000 seconds, which equates to 20 hours of simulation
time.

Figure 6.13 shows that actually our two good candidate GP individuals 4

and 9, are reasonably close to the target UIM simulation, and that of GP 0 is

performing much worse, as our fitness function confirms. It is difficult to determine

exactly how the system has over trained to rain conditions, compared to

inflow/water level events, but appears to an over training/under generalisation to

this condition. Perhaps the more similar water levels form cell to cell, and general

tendency for rain events to tend towards a single convergence in space and time,

is too radically different from this test case. Also since the minimum time step that

the human formulations operate well on this test case are between 0.2 -0.5

seconds, and these rule do not appear to generalise well to lower time step

values.

6.3.5.2 Testing on a different terrain (EAT2) with inflow conditions

Finally since the EAT2 terrain has been utilised for testing successfully with

a uniform rain inputs to each cell (section 5.5.3.3), now tests are conducted on

the EAT2 terrain with the prescribed inflow condition. Figure 6.14 demonstrates

 222

a similar pattern to Figure 6.12, where the human formulations are tested on the

EAT2 terrain with inflow conditions, at various time steps.

Figure 6.14, Fitness scores (1/RMSE of all cells in all iterations) of the
Manning’s formulations and Bates Limited, on the EAT2 case scaled to 50m cell

size, and 0.01n roughness factor, and inflow conditions; at various time step.

We see peak performance in Figure 6.14 at approximately 0.4 seconds, and

reduces on lower time steps, as well as higher time steps. This occurs for all

those human formulations that don’t use a flow limiter. However, the spike in

performance for the Bates limited formulation occurs at a slightly larger time step

of 0.7 seconds. This could be due to the interpolation between each second of

the target, and the variances in exact amounts of in and out flows, it is difficult to

say. These are however much lower scores than compared to on the same terrain

with a rain profile (section 6.3.3.3), demonstrating how inflow conditions test

cases, are harder to approximate. This is probably due to the large variance in

water depths, due to the existence of dry cells receiving large amounts of water

as the water front moves across the grid.

Similar results to those of EAT1 (Table 6.6) are shown in Table 6.7 for EAT2,

in that the validation scores are very low due to the inflow conditions. These

results are vastly different to those of the same terrain with rain conditions shown

in Table 6.5, demonstrating both that the inflow condition test cases are harder

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fi
tn

e
ss

 S
co

re
 (

1
/R

M
SE

 o
f

al
l c

e
lls

 in
 a

ll
it

e
ra

ti
o

n
s)

Time Step (Seconds)

Ghimire Dottori & Todini Bates Bates Limited

 223

to optimise, but also that the GP system appears to be over trained to the type of

condition it was trained upon.

Table 6.7, Fitness scores (1/RMSE of all cells in all time steps) of the Manning’s
formula and a the GP populations trained with a 0.5,1, and 2 second time step;
run on the EAT2 case for 8 hours of simulation time, from t = 0 hours up to t = 8

hours; with inflow conditions.

 Time step simulation fitness

GP population Mean fitness
fitness
score 0.5 1 2

0 5.08953 4.928335 6.29615 4.91383 4.0586

1 6.96491 6.964451 6.89286 6.97153 7.03033

2 0.249989 0.249989 0.250219 0.249919 0.249829

3 3.7366 3.613535 4.64828 3.58994 2.97157

4 8.1764 7.206672 12.2413 7.15544 5.13251

5 6.18522 6.158069 6.72133 6.117 5.71733

6 0.360174 0.356838 0.343788 0.327092 0.409642

7 0.268826 0.268245 0.285758 0.265212 0.255509

8 4.23827 4.233514 4.40682 4.24786 4.06013

9 3.9344 2.802652 6.9029 3.29201 1.60828

GP maximum 8.1764 7.206672 12.2413 7.15544 7.03033

GP mean 3.920432 3.67823 4.898941 3.712983 3.149373

Bates Limited 41.9822 28.88388 62.4699 48.6148 14.8618

Bates 29.9119 15.21516 62.2435 19.8414 7.65075

Dottori and Todini 31.3431 19.21382 61.7231 21.6357 10.6705

Ghimire 28.9008 16.12153 57.1933 21.2871 8.22198

6.3.6 Conclusions

The results in Section 6.3.3 show that the GP tree trained on multiple time

step simulations tests similarly to those trained on a single time step in section

5.5.3. When tested on different input conditions of rain inputs levels, initial water

levels and even terrain, however they demonstrate greater generalisation to time

step factors. Producing these high scores on unseen data where the complex set

of flow rates that lead to high scores varies for each time step, demonstrates the

extra level of complexity introduced into the training of these rules sets.

 224

Testing on lateral inflow conditions, demonstrates that the system has

trained to the specifics of the type of inflow conditions (i.e. rain conditions).

Possible due to the way water is flowing into a dry simulation from a particular

point which produces a greater possibility to lead to spatial variation in the water

levels. The GP rules do not perform as well as on the rain conditions tests,

although the human formulation also find it harder approximating these

simulation, although the relative performance of the GP rules is much worse. This

is thought to indicate a level of over training within the GP rules to the rain

conditions of the training cases.

Where the rules do generalise well to other input conditions, like variance in

the initial water levels, rain levels, and terrain inputs, it has been possible to

create rules which can perform similar simulations to the training set on unseen

data at higher time steps than a number of the human formulations. This would

allow for simulations to be processes at a quicker real world computational rate

while still maintaining a reasonable level of accuracy to the original simulation.

6.4 Training GP for temporal and spatial generalisation of CA

rules

6.4.1 Introduction

As real world simulation uses such static variables as cell size and time step

to represent the different discretisation of time and space, this expands the

breadth and scope of what the human formulation are capable of. While section

6.2 has already investigated the limits of training GP and human formulation

under various time steps/temporal discretisation’s, and found that at the particular

cell size of 50m there is a limiting highest time step before oscillations are created

within the simulation which destroy its quality. However, literature demonstrates

that for the Manning’s formula alone there is a relationship between the cell size

and maximum time step at which the rule set will operate successfully (i.e. without

large destructive oscillations). This is demonstrated in Figure 6.15, where the

Manning’s formula fitness is clearly related to the cell size, whereby the maximum

time step for smaller cell size is much smaller also. However, the Bates-limited

formulation is specifically designed to overcome this problem to a greater degree.

In Figure 6.15, the original hill and pond test case test has been scaled to different

 225

cell sizes, by means of using the same terrain heights but simply labelling the cell

as different sizes. Since this effectively resizes the terrains total simulation size,

this makes the slopes of the terrain models steeper. Since a uniform rain profile

is applied, the same water levels fall into each cell, but given as these are different

volumes with different slopes, then there are different flow rates which should

prove as good training examples for GP. These differently scaled simulations are

re-run through the hydraulic modelling software UIM, to produce different target

sets of data for each scaled test case.

Figure 6.15, Fitness scores of Bates Manning’s formulation and the Bates
Limited formulation, on the Hill and Pond test case, with a 50m, 25m, and 2m
cell sizes. Note a logarithmic base 10 scale is used on the time step (x-axis).

It can be seen in Figure 6.15 that the Bates formulations score particularly

well on the 50m test cases, where the fitness scores plateau between 500~600.

Although there are large oscillations in the fitness score of particularly the 50m

test cases with the Bates Limited formulation, this drops as low as the scores on

the 25m test cases. It is thought that this is mainly caused by two factors, firstly

a particular factor of each time step allows the model to fit the underlying 50m

target model more accurately (i.e. it could be an element of coincidence),

especially as the 25m and 2m test cases plateau out at approximately the same

fitness score of 300. Secondly due to the interpolation of the original target UIM

model, which was run once for each cell size, as the cell size creates a different

0

100

200

300

400

500

600

700

0.01 0.1 1 10

Fi
tn

e
ss

 S
co

re
 (

1
/R

M
SE

)

Time Step (seconds, log 10 scale)

50m BatesLimited 25m bateslimited 2m BatesLimited

50m BateMannings 25m BatesMannnings 2m BatesMannings

 226

model output. Those human formulations which directly use the Manning’s and

discharge formula, show their particular weakness when the space of cell sizes

and time steps are explored together (as in Figure 6.15). Where the Manning’s

formula formulations have a very small maximum time step at which it performs

adequately for the very small cell sizes, this would be an unfeasible time step at

which to run training due to the number of CA iterations required. However, the

Bates Limited formulation is capable of maintaining reasonably high fitness on

lower cell sizes at much higher time steps.

The true challenge of this final section is firstly to train rule sets which can

find the correct fluid flows given the varying water depths/level, and terrain levels,

but also adapt to different spatial and temporal resolutions (cell size and time

step). Secondly to see if the GP system can match, or even exceed the most

advanced human formulation in terms of the upper limits on the time step and

performance. Effectively this tackles the trade-off between overall processing

speed and accuracy, by explicitly controlling the processing speed though the

spatial and temporal resolution of the simulations.

6.4.2 Experimental set-up

In attempts to train a system which is both capable of generalisation to the

variation of multiple static variables, and different inputs, the system is trained

upon a number of different time steps at each of the given cell sizes. Using 50m,

25m, and 2m test cases derived each from a different simulation run on the

hydraulic modelling software, UIM. Each target model is run for four hours of

simulation time, at 0.5, 1, 2, 5, 10, and 25 second time steps, totalling 15 different

test cases. The combined fitness is calculated as the reciprocal of the average

RMSE from each case. Shown in Table 6.8 are the fitness scores and the

average fitness scores across the 15 different test cases (i.e. the reciprocal of

each RMSE), for each of the human formulations.

 227

Table 6.8, Fitness scores (1/ average RMSE of each test case) and the Mean
fitness’s (1/RMSE of each test case) for the human formulated rule sets.

Rule set Fitness score Mean Fitness

Bates Limited 173.2149287 304.78285

Bates 19.88530422 90.76921667

Dottori and Todini 24.86212055 51.42916111

Ghimire 22.35578729 45.49682778

Clearly this particular test set has been designed to highlight the strength of

the Bates Limited formulation, as all other human formulations fall to much lower

fitness scores at the lower cell sizes with these times steps. This does however

make the whole operation feasible, as training at lower time steps would require

more iterations, and extend the processing time to unfeasible ranges. Shown in

Table 6.9 are the fitness scores for the Bates Limited rule set upon each of the

test cases.

Table 6.9, Fitness scores (1/RMSE) for each of the test cases, for the bates
Limited formulation, on the hill and pond test case for 4 hours of simulation time,

at various combinations of cell size and time step.

 50m 25m 2m

0.5seconds 594.97 304.987 248.68

1 s 597.408 311.863 254.602

2 s 619.463 329.614 239.33

5 s 634.199 319.885 141.091

10 s 396.327 198.228 81.5564

25 s 90.9623 76.758 46.1676

 228

6.4.3 Experimental Results

Shown in Figure 6.16 are the fittest individuals from each of the 10

population during the 500 GP generations applied, along with the average of the

10 fitnesses.

Figure 6.16, Fitness scores (1/average RMSE of each test case) of the fittest
individual within each of the 10 populations, and the average of these 10 fitness

scores.

A reasonably wide variation in fitness can be observed in Figure 6.16, as

this is now a much larger search space. Shown below in Table 6.10 are the fitness

scores from each of the specific test cases for the fittest individual in the fittest

population of the 10 differently seeded populations.

Table 6.10, Fitness scores (1/RMSE) for each of the test cases, for the fittest
individual from the fittest of the 10 populations (GP 4).

 50m 25m 2m Average

0.5seconds 453.496 163.277 311.357 309.3767

1 s 441.914 162.799 318.059 307.5907

2 s 424.51 160.85 302.952 296.104

5 s 350.758 161.494 177.848 230.0333

10 s 275.346 151.331 84.2666 170.3145

25 s 89.1788 68.6467 45.4046 67.74337

Average 339.2005 144.733 206.6479

20

40

60

80

100

120

140

160

0 100 200 300 400 500

Fi
tn

e
ss

 S
co

re
 (

1
/R

M
SE

)

GP Generations

0

1

2

3

4

5

6

7

8

9

Average

 229

Clearly this individual is performing better on the two extreme cell sizes of

50m, 2m than at 25m cell size, and performs reasonably well up to the 10 second

time step, where thereafter it begins to degrade. Figure 6.17 below shows the

fitness scores for the best GP program from the best population (GP4, as shown

in Table 6.10), on the hill and pond test case for 4 hours simulation time, at

various time steps.

Figure 6.17, Fitness scores of Bates Manning’s formulation and the Bates
Limited formulation, on the Hill and Pond test case, with a 50m, 25m, and 2m

cell sizes. Finally, these are contrasted against the best scoring GP individual in
the best population (GP4). Note a logarithmic base 10 scale is used on the time

step (x) axis.

It can be seen in Figure 6.17 that better time step generalisation at 50m has

been obtained, compared to that seen in Figure 6.1 or Figure 6.2. The

generalisation extends to both the smaller scaled time steps and shows a very

similar maximum time step to the Bates limited formulation. While the scores are

not as high as the Bates limited at 25m, again a good generalisation to the time

step is observed. The 2m cases shows an over specialisation to the large time

steps, but again shows a similar maximum time step to that of the Bates limited

formulation.

0

100

200

300

400

500

600

700

800

0.01 0.1 1 10

Fi
tn

e
ss

 s
co

re
 (

1
/R

M
SE

)

Time Step (seconds, log 10 scale)

50m BatesLimited 25m bateslimited 2m BatesLimited

GP4_50m GP4_25m GP4_2m

 230

6.4.4 Conclusions

There is a wide degree of variation in the routes taken through the

evolutionary landscape by each different population, where only the random seed

is varied. This is thought to be due to a number of reasons including the following:

 The reduction of the many different phenotypical behaviours into a

single objective function/score means that due to the different initial

seeding, it may select very similarly scored individuals, but this will

translate into very different genotypes. This in turn will lead to

different possible future routes through the evolutionary landscape.

 Unlikely GA type algorithms, the chromosome has no real sense of

alignment, in that different parts of the chromosome can be

responsible for different phenotypical behaviours, where this appears

to vary more across individuals. Also crossover is capable of shifting

pieces of code/GP tree radically in position.

 The growth and mix of introns and active code within early GP tree,

and the hard cap placed on the depth of the tree forces the system

to move within this search space.

 Specific heuristics used, i.e. the parameter settings, and their hard

coded equivalent (e.g. number of operations, and terminals, even

mutation and cross-over levels, as well as population levels).

From Figure 6.16 and the wide variety of resulting scores, we conclude that

when training such a complex rule set, and all the specific parameter settings

utilised in these test, has a greater chance of falling into a local minima than those

shown in Figure 6.3. However, a number of populations do manage to achieve

reasonable scores, and when these are compared to the Manning’s formulae, the

GP outperform all but the Bates Limited formulations in all cases. However, this

is a result of the specific time steps targeted are aligned with such a high time

step rule set. I.e. in this single objective system, the secondary objective of total

real world processing time is controlled explicitly through the use of the time steps

targeted. As the time step is negatively correlated with the number of iterations

and therefore the processing time, a rule which can maintain accuracy at higher

time steps, can simulate to a reasonable level of accuracy the given water levels

at a faster real world processing time.

 231

Throughout this thesis a static time step for each simulation has been

maintained, although it a number of works in the literature propose an adaptive

time step. This is partial to try to overcome to problem of excessive flows within

the simulation at a cellular level, by setting the time step to match the greatest

flow. However, it is also takes advantage of the underlying assumption that

gravity is the main driver and friction negates most of the effects of momentum,

and therefore simulation will eventually settle down and cease most movement.

This in turn should mean that a system which links the timestep during the

simulation to the maximum flows, should also eventually become larger and

larger, and move up to the maximum. Indeed, even with adaptive time steps,

there is the need for maximum and minimum time steps, at which there is a very

similar problem of which rule best approximates the ‘real’ or target simulation,

given that it is asked to use a higher time step than if flows are greater than the

minimum time step. However, it might be expecting too much for a rule to be

generated which operates across all known spatial and temporal resolutions

given the training set has only a limit number of examples of such grid static

variables.

6.5 Conclusions

In conclusion the experimental results have shown that it is possible to train

rules which can learn near optimal local water movements such that the global

water movements are nearly consistent with simulated targets, where such rules

can also be trained to operate with reasonably accuracy upon different spatial

and temporal resolutions, and will generalise to other input conditions. This is a

facet of having trained a single rule which operates in a distributed fashion across

a cellular automata system, i.e. in order to enforce any change to the global

behaviour in any particular area a change must be made to the rule which

operates in every cell. This in turn encourages some selectivity in the rulesets

between the given variables.

In section 5.4, it was determined that a minimum amount of simulation time

is required such that the rules generated begin to pick up sufficient hydraulic of

water flows. While the system scored highly during training on simulation with

less than this minimum amount of simulation time, these rules would not

generalise well to other input conditions. Rules generated after this minimum

 232

point did not perform much better on validation/testing cases, and increasing the

amount of simulation training time (while maintaining the same time step)

increases the amount of real world processing time for the optimisation linearly.

Therefore, the use of extra simulation time in training after this minimum amount

represents a case of diminishing returns. This is thought to be due to the nature

of the hydraulic examples presented within the training case, where the point of

concentration at the ponding point is at approximately 1hour 45minutes, and

examples of both drawing up to and down from this concentration point are

required.

In section 6.2 this methodology is extended to begin to tackle the trade-off

between real-world processing speed and accuracy, by means of changing the

time step applied during simulation and optimisation. It is firstly demonstrated that

previous training upon a single spatial and temporal resolution (cell size and time

step) results in over training to those specific examples. Training is then extended

such that each GP individual is presented with a sparse number of different time

step examples, by re-running the training case simulation at different time steps.

This forces the training GP rules to adapt to the different settings presented in

each case, while trying to match the same space-time pattern. Since those rules

which are capable of operating with reasonable accuracy at larger time steps take

less real world processing time, this allows the system to tackle the trade-off

problem and is capable of producing rules which are more efficient than some

human formulations. The generalisation properties however are still centred upon

the conditions present within the training case, for example when having trained

the system upon uniform rain input conditions, the rule sets generated do not

generalise well to lateral inflow conditions.

Lastly in section 6.4, this methodology is extended to the final stage of

training rules which can operate at different spatial and temporal resolutions, by

presenting each GP rule set with simulations of the training case at different cell

size and time steps. As literature demonstrates the most difficult challenge for

human programmers of such real world CA rules, is to be able to create functional

rules which operate at smaller cell sizes, and higher time steps. This also

challenges the GP system to understand how many different variables affect the

system.

 233

Since in cellular automata systems, the size of cells and the amount of time

between iterations are both abstract terms, the linkage of cell size and time step

within a real world CA system presents a novel problem for training a local state

transition rule. This has been systematically tackled within this chapter.

 234

Chapter 7: Conclusions and discussion

7.1 Conclusions

The aim of this thesis has been to accelerate urban flood modelling, through

the use of CA on modern multi-core and many-core hardware. An additional goal

was to use GP to learn the CA state transition rules, with further acceleration on

many-core hardware. This thesis investigates and begins to understand the

trade-off presented by the simulation resolution and accuracy. This thesis has

tackled all of these challenges, and draws the following conclusions and

contributions:

1. Objective 1 - “The investigation of the parallelisation of CA systems upon

modern many-core GPGPU technologies, and the effect of varying the

standard CA parameter such number of cells, initial configuration and activity,

number of states, neighbourhood size, and number of generations on the

speed-ups obtained. Also to investigate the effects on the relative speed-ups

obtained, of varying GPGPU parameters such as the workgroup size, GPU

memory type, and the base data type used to store states. This investigation

is intended to ensure that the relationship between the CA parameters and

the relative speed-ups of the GPGPU over the CPU are well understood, such

that later work in this thesis can maximise speed-ups from the GPGPU when

combining GP and CA systems”. Objective 1 is tackled in Chapter 3:, where

it is concluded that the main driver for CA speed-ups is the number of cells

relative to the number of cores of the GPGPU. The best speed-ups are

obtained when the number of cells are between one to two orders of

magnitude greater than the number of GPU cores.

2. Objective 2 – “The development of a CA system for flood modelling based on

existing models from literature, which is capable of expressing a

spectrum/range of variable state transition rules. It is intended that these state

transition rules should always ensure uniformity to direction of flooding flow

and should preserve the water volume across the grid. This will allow for the

derivation of state transition rules which can concentrate on finding the correct

flow rates given the water, terrain levels and spatial and temporal resolutions

across the grid. Thereby, a GP system is generated for the optimisation of CA

 235

state transition rules. Such a system should take advantage of the research

conducted to satisfy Objective 1, in order to obtain the best speed-ups

possible by accelerating the evaluation of CA fitness functions upon the

GPGPU”. Objective 2 is tackled in section 4.2 and section 5.2 where a

methodology is developed for using GP to develop CA state transition rules

from example data. Furthermore this GPCA methodology takes advantage of

conclusion 1, and combines the parallelism from the GP and CA algorithms in

order to be able to gain the best speed-ups on the GPU during optimisation.

This is achieved while only using relatively small test cases, and therefore

minimal overall processing time for optimisation processing.

3. Objective 3 – “An investigation of the effectiveness of the combined GPCA

system from Objectives 2 and 3, to learn a known CA rule set such as the

Game of Life. This will allow for the calibration and confirmation that the

system can find the correct underlying state transition rules from an example

CA simulation”. The experimentation in Chapter 4:, section 4.3 demonstrates

that the GPCA system is capable of learning a state transition rule for a known

system, i.e. the Game of life, thereby meeting Objective 3. Although the Game

Of Life is shown to have large jumps in the fitness landscape between those

close to the global optimum and the actual global optimum (Figure 4.5), it is

thought that this large jump in the fitness landscape is due to the binary nature

of the Game Of Life style of rule set, and its capacity to radically change with

simulation outputs with small changes to the rule set.

4. Objective 4: “An investigation of the effectiveness of the combined GPCA to

learn flood modelling state transition rules based on example simulation data”.

Chapter 5: and Chapter 6: undertake the investigation required by Objective

4, where the effectiveness of the GPCA system is investigated to learn flood

modelling CA state transition rules.

4.1. Objective 4.1: “Quantify the simulation time needed during training on a

fixed set of spatial and temporal resolutions, and prove that the combined

GPCA system can learn state transition rules which are competitive

amongst human CA flood modelling rules”, and Objective 4.2: “The proof

of hypothesis 1, through the testing of derived state transitions rules from

 236

objective 4.1 on unseen data, including unseen sections of the training

test case and completely different terrain”.. This is tackled in Chapter 5:

where the GPCA system is trained with a number of different lengths of

training simulation, and tested on unseen data. Section 5.4 concludes that

it is easier for the GPCA system to more closely match the training

simulation with less simulation time (shown by the higher scores for

shorter training simulation times in Table 5.6). However section 5.5, which

tests the generated rules on unseen data concludes that the rules trained

on the shortest simulation times (test cases of 1 hour), have indeed over

trained to the limited movement during this period (shown by Table 5.10,

Table 5.14, Figure 5.21, Table 5.16, and Figure 5.22). Rules generated

with 2-4 hours of training simulation time, gained the best testing

performance relative to their training performance. Increases in simulation

time for training, extends the computation time for optimisation. Further

increases in the amount of simulation time for training, presents a point of

diminishing returns in terms of generalisation to unseen data. This

provides a good weight of evidence for hypotheses 1, in that given a

suitable amount of training data the system can generate rules which are

capable of operating on unseen data, thusly tackling Objectives 4.1 and

4.2.

4.2. Objective 4.3: “An investigation of the effectiveness of the combined

GPCA system to learn flood modelling CA state transition rules which are

capable of operating competitively at a range of temporal resolutions. By

creating rules which can produce competitive accuracies at higher time

step factors (temporal resolutions) than human formulated CA state

transition rules, this will begin to tackle the trade-off problem of creating

faster rules. Thereby this investigation tackles the ultimate aim of creating

faster rule sets through the use of machine learning techniques to derive

the CA state transition rules for flood modelling systems (hypothesis 2)”.

Section 6.2 concludes that the methodology of using multiple simulations

with different temporal resolutions is capable of creating rule sets, which

can operate at competitively low temporal resolutions (large time steps)

with some of the most advanced human CA formulations from modern

literature (Shown in Figure 6.2). This begins to tackle the trade-off of

 237

overall processing speed versus the accuracy of the resulting simulation,

by creating rules which can maintain higher accuracies at lower temporal

resolutions and thus addresses Objective 4.3, and provides and provides

a weight of evidence for hypothesis 2.

4.3. Objective 4.4: “An investigation of the limits of hypotheses 1, by testing of

those rules generated during training conducted in Objective 4.3, upon

different inputs including: unseen parts of the training test case, a

completely different terrain, and finally on different ‘boundary conditions’

(the type of inflow used in the test cases, e.g. uniform rain, or a lateral

inflow)”. Section 6.3 investigates the limits of the generalisation of the

GPCA system, by testing the rules generated in section 6.2, on not just

unseen terrain and water levels with uniform rain conditions, but also with

lateral inflow types. The results demonstrate that the generalisation to

unseen data is limited by the training conditions, i.e. since the training test

cases lack lateral inflow this is the main reason for the lack of

generalisation to these types of tests. Furthermore, since there is little

change between each cell in test cases involving a uniform rain condition,

those with lateral inflow type conditions make it more difficult for rules to

match target data. These experiments address Objective 4.4, and

therefore demonstrate the limits of the hypotheses 1 and 2.

4.4. Objective 4.5: “Finally an investigation of the ability of the GPCA system

to learn CA state transition rules that can operate successfully at a range

of both spatial and temporal resolutions. The investigation demonstrates

how the proposed system can adapt to the complex set of inputs including

spatial and temporal resolutions, and the local terrain and water levels in

order to further tackle the complex trade-off created by the resolution of

the simulation (both spatial and temporal) and the accuracy of the

resulting water movements over the entire simulation area and duration.

A comparison can then be made between the performance in terms of

this trade-off with the very latest human formulated CA flood modelling

rules and those generated by the proposed GPCA system (hypothesis

2)”. Lastly section 6.4 demonstrates the ability of the GPCA system to

effectively learn flood modelling rules which can adapt to different spatial

 238

and temporal resolutions, and thusly tackles the final objective 4.5. The

GPCA system is shown to be able to create rules which can perform

competitively on the complex trade-off between the resolution (in time and

space, which leads to processing time), and accuracy of the flooding over

the area and duration of the test simulations (shown in Figure 6.17).

The work in this thesis has shown that the GPCA system can effectively

learn CA state transition rules for both simple, and real-world CA systems. The

GPCA system should therefore be capable of learning other CA models, with a

minimal amount of human design for the GP-CA interface/representation for the

modelling purpose/environment. Considering the large number of CA

applications (demonstrated in section 2.1.2), and the difficulty for human

programmer to create distributed CA state transition rules, the GPCA

methodology is expected to be a valuable tool for future researchers. Given

sufficient training in terms of quantity and quality the GPCA methodology

demonstrates an ability to be trained once, and generalise well to other input

conditions.

Although real-world CA models are discretisations of time and space, they

are modelling the analogue real-world and therefore is a range of spatial and

temporal resolutions that can be modelled. Although the spatial and temporal

resolutions are static variables across each CA simulation, by training the system

on a few examples, the GPCA methodology can create rules which can

generalise well to the complex simulations of local cell variables, over a spectrum

of different simulation static variable settings (spatial and temporal resolutions).

The earlier work in this thesis (Chapter 3:) concludes that primary driver for the

computational complexity of CA models is the number of cells and iterations,

which directly relates to the temporal and spatial resolution. Therefore, using the

GPCA methodology to create CA state transition rules which can make a good

approximation of the global model behaviour at lower temporal resolutions given

the spatial resolution will create faster models. I.e. by optimising the trade-off

between temporal resolution at different spatial resolutions and the accuracy, the

trade-off between speed and accuracy of the simulations is optimised. Coupling

any acceleration gained through the optimisation and creation of the CA state

transition rules, modern many-core hardware in the form GPGPUs can further

 239

reduce the computational processing time of both training and any potential

general use of the rules.

7.2 Discussions and future work

The work in this thesis has developed a methodology which allows genetic

programming to create local state transitions rules for flood modelling, which

guarantee the preservation of mass and uniformity of flow to terrain direction.

However, portions of the state transition rule are explicitly pre-programmed. In

order to ensure uniformity of flow to terrain direction, the same GP tree is

instantiated up to four times, once for each neighbouring cell. While this method

proves successful in allowing the system to concentrate on the amount of water

movements, this does mean that the system is only developing part of the state

transition rule, and still requires an element of human design for the interface

system. However, this could be due to the limited amount of information present,

and the extra element of learning required to ensure mass preservation and

uniformity of flow to terrain direction. Advancement could be made on the system

by increasing the radius of the neighbourhood and allowing the system to access

more information about what’s beyond the current horizon of the neighbourhood.

Such a system would require testing for the levels of uniformity of flow to terrain

direction and preservation of mass. Such a method would have the advantage of

avoiding the two stage system required to ensure that the water levels are

preserved across the grid. However, the method established in this thesis can

successfully train real world flood state transition rules with limited human design

of the interface.

Ultimately it would be desirable to use a system such as the GPCA system,

and/or use the rules generated from these training runs, on real world data and/or

on data from the full Navier-Stokes equations (for example using openFoam

software). There are possible elements of limitations from the target model which

could be picked up by the GP training, and it could be the case that the current

experiments comparing the best human formulations to one of the best human

simplified model might have an element of bias. However, as the target model

was run at a much smaller time step in order to generate a more accurate base

target model, there may still exist some bias. One problem with using real world

data is that there would be an element of uncertainty in the accuracy of the

 240

recorded data, and it would be expected that the GP system would deal with the

additional noise well. There is the possibility of slight bias due to the use of a

target model, or noise due to uncertainty in the real world data.

There have been a limited number and spread of test cases utilised within

this thesis and it would be preferable to have more test cases in order to gain a

better idea of the generalisation of the rule sets to different input conditions. This

is highlighted by one of the rules having exceptional performance on one of the

particular test cases (Bates formula on the Hill and pond test cases at 50m). Also

it would be beneficial to better cover the possible variation in inflow type

conditions, since it is thought that the greater amount of spatial variation in water

levels, coupled with the lack of training examples causes the poorer performance

of rules trained on rain conditions.

Finally, it would be interesting to tackle the trade-off problem of the

maximum time step at which the rules can generate a reasonable score, as a

multi-objective problem, as opposed to simply a single objective problem. There

is still room for debate over how to decide which rules are most successful in the

cases where one rule dominates another at some resolutions, but is dominated

by the other rule at other spatial resolutions.

All the tests in this thesis have been constrained to a fixed time step,

however there are advantages to using an adaptive time step factor, although

due to the need for a minimum and maximum time step these advantages are

still limited. It would be interesting to allow a GP rule to learn the temporal rule

which determines the time step as well as the spatial rules which can move the

water around the grid. In this way a rule could be optimised to generate the fastest

and most accurate rules possible.

 241

 242

Chapter 8: Bibliography

[1] UK Environment Agency, “Benchmarking the latest generation of 2D
hydraulic modelling packages,” UK Environment Agency, Bristol, 2013.

[2] U. Frisch, D. d'Humieres, B. Hasslacher, P. Lallmand, Y. Pomeau and J.-
P. Rivet, “Lattice Gas Hydrodynamics in Two and Three Dimensions,”
Complex Systems, vol. 1.4, pp. 649-707, 1987.

[3] R. Denzi, S. Succi and M. Vergassola, “The Lattice Boltzmann equation:
Theory and application,” Physics reports, vol. 222, no. 3, pp. 145-197,
1992.

[4] M. Gardner, “Mathematical games: The fantastic combinations of John
Conway’s new solitaire game “life”,” Scientific American, vol. 223.4, pp.
120-123, 1970.

[5] S. Wolfram, “Cellular automata as models of complexity,” Nature, vol. 311,
no. 5985, pp. 419-424, 1984.

[6] J. R. Koza, Genetic Programming: on the programming of computers by
means of natural selection, vol. 1, Cambridge: MIT press, 1992.

[7] W. Banzhaf, Genetic programming : and introduction on the automatic
evolution of computer programs and its applications, San Francisco:
Morgan Kaifmann publishers, 1998.

[8] J. Von Neumann, Theory of Self-Reproducing Automata, University of
Illinois press, Urbana, 1966.

[9] J. Von Neumann, “The general and logical theory of automata,” Cerebral
mechanism in behaviour, pp. 1-41, 1951.

[10] A. W. Burk, “The General Theory of [complex] Automata [by] John Von
Neumann,” University of Illinois Press, Urbana, 1966.

[11] B. McMullin, “John Von Neumann and the Evolutionary Growth of
Complexity: Looking Backwards, Looking Forwards...,” Artificial Life, vol.
6, no. 4, pp. 347-361, 2000.

[12] E. Sapin, O. Bailleux, J.-J. Chabrier and P. Collet, “A new universal
cellular automaton discovered by evolutionary algorithms,” in GECCO,
Berlin Heidelberg, 2004.

[13] D. Stevens and S. Dragicevic, “A GIS-Based irregular cellular automata
model of land-use change,” Environment and planning B -planning and
design, vol. 34, no. 4, p. 708, 2007.

[14] A. Flache and R. Hegselmann, “Do irregular grids make a difference?
Relaxing the spatial regularity assumption in cellular models of social
dynamics,” Journal of Artificial Societies and Social Simulation, vol. 4, no.
4, 2001.

[15] D. O'Sullivan, “Exploring spatial process dynamics using irregular cellular
automaton models,” Geographical Analysis, vol. 33, no. 1, pp. 1-18, 2001.

[16] j. Goldenberg, B. Libai and E. Muller, “Using complex systems analysis to
advance marketing theory development: Modelling heterogeneity effects
on new product growth through stochastic cellular automata,” Academy
of Marketing Science review, vol. 9, no. 3, pp. 1-18, 2001.

 243

[17] S. J. Steacy and J. McCloskey, “What controls an earthquake's size?
Results from a heterogeneous cellular automaton,” Geophysical Journal
International, vol. 133, no. 1, pp. F11-F14, 1998.

[18] E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways for your
Mathematical Plays, New York: Academoic Press, 1982.

[19] C. Langton, “Studying artificial life with cellular automata,” Physica D:
Nonlinear Phenomena, vol. 22, no. 1, pp. 120-149, 1986.

[20] S. Wolfram, “Universality and complexity in cellular automata,” Physica D:
Nonlinear Phenomena, vol. 10, no. 1, pp. 1-35, 1984.

[21] S. Szkoda, Z. Koza and M. Tykierko, “Accelerating cellular automata
simulations using AVX and CUDA,” ARXIV, 2012.

[22] J. A. Somers, “Direct simulation of fluid flow with cellular automata and
the lattice-Boltzmann equation,” Applied Scientific Research, vol. 51, no.
1, pp. 127-133, 1993.

[23] Z. Fan, F. Qiu, A. Kaufman and S. Yoakum-Stover, “GPU Cluster for High
Performance Computing,” in Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, Washington, DC, USA, 2004.

[24] M. G. B. Johnson, D. P. Playne and K. A. Hawick, “Data-Parallelism and
GPUs for Lattice Gas Fluid Simulation,” Massey University, New Zealand,
Auckland, 2010.

[25] B. Chopard and M. Droz, Cellular Automata Modeling of Physical
Systems, Cambrige University Press UK, 1998.

[26] A. Kolnoochenko, P. Gurikov and N. Menshutina, “General-purpose
graphics processing units application for diffusion simulation using cellular
automata,” in 21st European Symposium on Computer Aided Process
Engineering – ESCAPE 21, 2011.

[27] M. J. Harris, G. Coombe, T. Scheuermann and A. Lastra, “Physically-
Based Visual Simulation on Graphics Hardware,” in Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,
Saarbrucken, Germany, 2002.

[28] J. L. Guisado, F. Jiménez-Morales and F. Fernández De Vega, “Cellular
automata and cluster computing: An application to the simulation of laser
dynamics,” Advances in Complex Systems, vol. 10, no. supp01, pp. 167-
190, 2007.

[29] G. Y. Vichniac, “Simulating physics with cellular automata,” Physica D:
Nonlinear Phenomena, vol. 10, no. 1-2, pp. 96-116, 1984.

[30] J. Ning, H. Xu, B. Wu, L. Zeng, S. Li and Y. Xiong, “MCA-based Animation
of Fracturing Heterogeneous Objects,” in Computer-Aided Design and
Computer Graphics (CAD/Graphics), 2011 12th International Conference
on, Jinan, 2012.

[31] E. Roberts, J. E. Stone, L. Sep´ulveda, W.-M. W. Hwu and Z. Luthey-
Schulten, “Long time-scale simulations of in vivo diffusion using GPU
hardware,” in Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on, Rome, 2009.

[32] L. Dematte and D. Prandi, “GPU computing for systems biology,” Briefings
in bioinformatics, vol. 11, no. 3, 2010.

[33] P. Richmond, D. Walker, S. Coakley and D. Romano, “High performance
cellular level agent-based simulation with FLAME for the GPU.,” Briefings
in Bioinformatics, vol. 11, no. 3, pp. 334 - 347, 2010.

 244

[34] J. Tran, D. Jordan and D. Luebke, “New Challenges for Cellular Automata
Simulation on the GPU,” in SIGGRAPH, Los Angeles, 2004.

[35] S. Gobron, F. Devillard and B. Heit, “Retina Simulation using Cellular
Automata and GPU Programming,” Machine Vision and Applications, vol.
18, no. 6, pp. 331-342, 2007.

[36] R. Dolan and D. Guilherme, “GPU-Based Simulation of Cellular Neural
Networks for Image Processing,” in Proceedings of International Joint
Conference on Neural Networks, Atlanta, Georgia, USA, 2009.

[37] S. Gobron and D. Mestre, “Information Visualization of Multi-dimensional
Cellular Automata using GPU Programming,” in Information Visualization,
2007. IV '07. 11th International Conference, Zurich, 2007.

[38] M. R. L´opez-Torres, J. L. Guisado, F. Jim´enez-Morales and F. Diaz-del-
Rio, “GPU-based cellular automata simulations of laser dynamics,”
jornadassarteco.org, Seville, Spain, 2012.

[39] S. Gobron, H. Bonafos and D. Mestre, “GPU accelerated computation and
visualisation of hexagonal cellular automata,” in Cellular Automata -
Lecture Notes in Computer Science, vol. 5191, U. Hiroshi, M. Shin, N.
Katsuhiro, K. Toshihiko and B. Stefania, Eds., Springer Berlin /
Heidelberg, 2008, pp. 512-521.

[40] N. Ferrando, M. A. GosÃ¡lvez, J. CerdÃ¡, R. Gadea and K. Sato, “Octree-
based, GPU implementation of a continuous cellular automaton for the
simulation of complex, evolving surfaces,” Computer Physics
Communications, vol. 182, no. 3, pp. 628 - 640, 2011.

[41] C. Kauffmann and N. Piche, “Cellular automaton for ultra-fast watershed
transform on GPU,” in Pattern Recognition, 2008. ICPR 2008. 19th
International Conference on, Tampa, FL, 2008.

[42] S. Rybacki, J. Himmelspach and A. M. Uhrmacher, “Experiments with
Single Core, Multi-core, and GPU Based Computation of Cellular
Automata,” in Advances in System Simulation, 2009. SIMUL '09. First
International Conference on, Porto, 2009.

[43] L. Žaloudek, L. Sekanina and V. Šimek, “Accelerating cellular automata
evolution on graphics processing units,” International Journal on
Advances in Software,, vol. 3, no. 1-2, p. 294–303, 2010.

[44] C. Grelck and F. Penczek, “Design and Implementation of CAOS: An
Implicitly Parallel Language for the High-Performance Simulation of
Cellular Automata,” in Cellular Automata - Simplicity Behind Complexity,
A. Salcido, Ed., 2011, pp. 545 - 566.

[45] J. Singler, “Implementation of Cellular Automata using a Graphics
Processing Unit,” in Proceedings of ACM Workshop on General Purpose
Computing on Graphics Processors, Los Angeles, 2004.

[46] J. Drieseberg and C. Siemers, “C to Cellular Automata and Execution on
CPU, GPU and FPGA,” in High Performance Computing and Simulation
(HPCS), 2012 International Conference on, Madrid, Spain, 2012.

[47] A. R. Brodtkorb, T. R. Hagen and M. L. Sætra, “Graphics processing unit
(GPU) programming strategies and trends in GPU computing,” Journal of
Parallel and Distributed Computing, vol. 73, no. 1, pp. 4-13, 2013.

[48] M. J. Gibson, E. Keedwell and D. Savić, “Understanding the efficient
parallelisation of Cellular Automata on CPU and GPGPU hardware,” in
Genetic and Evolutionary Conference(GECCO), Amsterdam, 2013.

 245

[49] S. Harding and W. Banzhaf, “Fast Genetic Programming and Artificial
Developmental Systems on GPUs,” in 21st International Symposium on
High Performance Computing Systems and Applications(HPCS'07),
Saskatoon, SK, 2007.

[50] J.-P. Rennard, Implementation of logical functions in the game of life,
Spinger, 2002, pp. 491-512.

[51] L. M. Rocha and W. Hordijk, “Material Representations: From the Genetic
Code to the Evolution of Cellular Automata,” Artificial Life, vol. 11, no. 1-
2, pp. 189 - 214, 2005.

[52] R. Koenig and M. Daniela, “Cellular-Automata-Based Simulation of the
Settlement Development in Vienna,” in Cellular Automata - Simplicity
Behind Complexity, A. Salcido, Ed., 2011, pp. 23-46.

[53] J. G. Hasbani, N. Wijesekara and D. J. Marceau, “An Interactive Method
to Dynamically Create Transition Rules in a Land-use Cellular Automata
Model,” in Cellular Automata - Simplicity Behind Complexity, A. Salcido,
Ed., 2011, pp. 3-22.

[54] A. C. Ximenes, C. M. Almeida, S. Amaral, M. I. S. Escada and A. P. D.
Aguiar, “Spatial dynamic Modelling of deforestation in the Amazon,” in
Cellular Automata - Simplicity Behind Complexity, A. Salcido, Ed., 2011,
pp. 47-66.

[55] S. D. Gregorio, G. Filippone, W. Spataro and G. A. Trunfio, “Accelerating
wildfire susceptaibility mapping through GPGPU,” Journal of Parallel and
Distributed Computing, vol. 73, no. 8, pp. 1183-1194, 2013.

[56] Y. Guo, G. Walters, S.-T. Khu and E. Keedwell, “Optimal Design of Sewer
Networks using hybrid cellular automata and genetic algorithm,” in Proc.,
5th IWA WorldWater congress, Beijing, China, 2006.

[57] M. Guidolin, A. Duncan, B. Ghimire, M. Gibson, E. Keedwell, A. S. Chen,
S. Djordjević and D. Savić, “CADDIES: A New Framework for Rapid
Development of Parallel Cellular Automata Algorithms for Flood
Simulation,” in 10th International Conference on hydroinformatics, HIC,
Hamburg, Germany, 2012.

[58] M. Bartolozzi and A. W. Thomas, “Stochastic Cellular Automata Model for
Stock Market Dynamics,” Physical Review E, vol. 69, no. 4, p. 046112,
2004.

[59] G. Qui, D. Kandhai and P. M. A. Sloot, “Understanding the complex
dynamics of stock markets through cellular automata,” Physical Review
E, vol. 75, no. 4, p. 046116, 2007.

[60] H. V. McIntosh, “Wolfram's class IV automata and a good life,” Physica D:
Nonlinear Phenomena, vol. 45, pp. 105-121, 1990.

[61] A. Gajardo, A. Moreira and E. Goles, “Complexity of Langton's ant,”
Discrete Applied Mathematics, vol. 117, no. 1, pp. 41-50, 2002.

[62] A. S. Chen, S. Djordjević, J. Leandro and D. A. Savić, “The urban
inundation model with bidirectional flow interaction between 2D overland
surface and 1D sewer networks,” NOVATECH, pp. 465-472, 2007.

[63] N. M. Hunter, M. S. Horritt, P. D. Bates, M. D. Wilson and M. G. Wener,
“An adaptive time step solution for raster-based storage cell modelling of
floodplain inundation,” Advances in Water eresources, vol. 28, no. 9, pp.
975-991, 2005.

 246

[64] P. D. Bates, M. S. Horritt and T. J. Fewtrell, “A simple inertial formulation
of the shallow water equations for efficient two-dimensional flood
inundation modelling,” Journal of Hydrology, vol. 387, no. 1-2, pp. 33-45,
2010.

[65] B. Ghimire, A. S. Chen, M. Guidolin, E. C. Keedwell, s. Djordjević and D.
A. Savić, “Formulation of a fast 2D urban pluvial flood model using a
cellular automata approach,” Journal of Hydroinformatics, vol. 15, no. 3,
pp. 676-686, 2012.

[66] F. Dottori and E. Todini, “A 2D flood inundation model based on cellular
automata approach,” in International Conference on Water Resources,
Barcellona, 2010.

[67] J. F. Miller, Cartesian genetic programming, Springer, 2011.

[68] S. L. Harding, J. F. Miller and B. Wolfgang, “Self-modifying cartesian
genetic programming,” in Cartesian genetic Programming, Springer,
2011, pp. 101-124.

[69] M. F. Brameier and W. Banzhaf, Linear genetic programming, Springer
Science and Business Media, 2007.

[70] M. Brameier and W. Banzhaf, “A comparison of linear genetic
programming and neural networks in medical data mining,” Evolutionary
Computation, IEEE Transactions on, vol. 5, no. 1, pp. 17-26, 2001.

[71] A. Abraham and V. Ramos, “Web usage mining using artificial ant colony
clustering and linear genetic programming,” in Evolutionary Computation,
2003. CEC'03. The 2003 Congress on, IEEE, 2003, pp. 1384-1391.

[72] M. Oltean and C. Grosan, “A comparison of several linear genetic
programming techniques,” Complex Systems, vol. 14, no. 4, pp. 285-314,
2003.

[73] S. Luzia Vidal de and P. T. Aurora, Genetic programming and Boosting
Technique to Improve Time Series Forecasting, Intech, 2009.

[74] [Online]. Available:
http://geneticprogramming.us/Genetic_Operations.html. [Accessed 24
feb 2015].

[75] E. De Jong, R. Watson and J. Pollack, “Reducing bloat and promoting
diversity using multi-objective methods,” Citeseer, 2001.

[76] S. Bleuler, M. Brack, L. Thiele and E. Zitzler, “Multi-objective genetics
programming: Reducing bloat using SPEA2,” Evolutionary Computation,
2001. Proceeding of the 2001 Congress on, pp. 536-543, 2001.

[77] R. Poli, “A simple but theoretically-motivated method to control bloat in
genetic programming,” in Genetic Programming, Springer, 2003, pp. 204-
217.

[78] S. Luke, Issues in scaling genetic programming: breeding strategies, tree
generation, and code bloat, research directed by Dept. of Computer
Science.University of Maryland, College Park, 2000.

[79] W. B. Langdon, “Size fair and homologous tree crossovers for tree genetic
programming,” Genetic programming and evolvable machines, vol. 1, no.
1-2, pp. 95-119, 2000.

[80] W. B. Langdon and W. Banzhaf, “Genetic Programming bloat with
semantics,” Parallel Problem Solving from from nature PPSN VI, pp. 201-
210, 2000.

 247

[81] W. B. Langdon and R. Poli, Genetic programming bloat with dynamic
fitness, Springer, 1998.

[82] S. Luke and L. Panait, “A comparison of bloat control methods for genetic
programming,” Evolutionary Computation, vol. 14, no. 3, pp. 309-344,
2006.

[83] D. R. White, J. McDermott, M. Castelli, L. Manzoni, B. W. Goldman, G.
Kronberger, W. Jaśkowski, U.-M. O'Reilly and S. Luke, “Better GP
benchmarks: community survey results and proposals,” Genetic
Programming Evolvable Machines, vol. 14, no. 1, pp. 3-29, 2013.

[84] M. O'Neill, L. Vanneschi, S. Gustafson and W. Banshaf, “Open issues in
genetic programming,” Genetic Programming and Evolvable Machines,
vol. 11, pp. 339-363, 2010.

[85] J. H. Moore, P. C. Andrews, N. Barney and B. C. White, “Development
and evaluation of an open-ended computational evolution system,” in
Evolutionary Computation, Machine Learning and Data Mining in
Bioinfomatics, Springer, 2008, pp. 129-140.

[86] P. Domingos, “The role of Occam's razor in knowledge discovery,” Data
mining and knowledge discovery, vol. 3, no. 4, pp. 409-425, 1999.

[87] S. Silva and L. Vanneschi, “Operator equalisation, bloat and overfitting: a
study on human oral bioavailability prediction,” in Proceeding of the 11th
Annual conference of Genetic and evoltionary computation, 2009, ACM,
2009, pp. 1115-1122.

[88] J. P. Rosca, “Towards automatic discovery of building blocks in genetic
programming,” in Working Notes for the AAAI Symposium on Genetic
Programming, vol. 445, MIT, Cambridge, MA, USA, 1995, pp. 78-85.

[89] D. Andre, F. H. Bennett III and J. R. Koza, “Discovery by genetic
programming of a cellular automata rule that is better than any known rule
for the majority classification problem,” in Proceedings of the First Annual
Conference on Genetic Programming, MIT Press, 1996, pp. 3-11.

[90] J. R. Koza, “Discovery of rewrite rules in Lindenmayer systems and state
transition rules in cellular automata via genetic programming,”
Symposium on pattern formation (SPF-93), Claremont, California, 1993.

[91] D. Safia, D. Oussama and B. M. Chawki, “Image segmentation using
continuous cellular automata,” Programming and Systems (ISPS), 2011
10th International Symposium on, pp. 94-99, 2011.

[92] M. Michell, J. P. Crutchfield and P. T. Hraber, “Evolving cellular automata
to perform computations: Mechanisms and impediments,” Physica D:
Nonlinear phenomena, vol. 75, no. 1, pp. 361-391, 1994.

[93] R. Das, M. Mitchell and J. P. Crutchfield, “A genetic algorithm discovers
particle-based computation in cellular automata,” in Parallel problem
solving from nature-PPSN III, Springer, 1994, pp. 344-353.

[94] M. Sipper, “Co-evolving non-uniform cellular automata to perform
computations,” Physica D: Nonlinear Phenomena, vol. 92, no. 3, pp. 193-
208, 1996.

[95] F. Wu, “Calibration of stochastic cellular automata: the application to rural-
urban land conversions,” International journal of geographical information
science, vol. 16, no. 8, pp. 795-818, 2002.

[96] S.-U. Guan and S. K. Tan, “Pseudorandom number generation with self-
programmable cellular automata,” Computer-Aided Designed of

 248

integrated Circuits and systems, IEEE Transactions on, vol. 23, no. 7, pp.
1095-1101, 2004.

[97] L. O. Chua and L. Yang, “Cellular Neural networks: Applications,” Circuits
and Systems, IEEE Transactions on, vol. 35, no. 10, pp. 1273-1290, 1988.

[98] F. Werblin, T. Roska and L. O. Chua, “The analogic Cellular neural
network as a bionic eye,” International journal of circuit Theory and
Applications, vol. 23, no. 6, pp. 541-569, 1995.

[99] J. D. Owens, M. Houston, D. Leubke, S. Green, J. E. Stone and J. C.
Phillips, “GPU computing,” Proceeding of the IEEE, vol. 96, no. 5, pp. 879-
899, 2008.

[100] “Nvidia CUDA toolkit 6.5,” Nvidia, 11 Feb 2015. [Online]. Available:
http://docs.nvidia.com/cuda/cuda-c-programming-
guide/#axzz3RS9dXtPY. [Accessed 11 Feb 2015].

[101] M. J. Gibson, E. C. Keedwell and D. A. Savić, “An investigation of the
efficient implementation of cellular automata on multi-core CPU and GPU
hardware,” Journal of arallel and Distributed Computing, 2014.

[102] N. Corporation, “K40 specification,” Nvidia Corporation, 2014. [Online].
Available: http://www.nvidia.com/object/tesla-servers.html. [Accessed
May 2014].

[103] Nvidia, “Nvidia Titan Z specifications,” Nvidia. [Online]. [Accessed 28
March 2015].

[104] “The Open University,” [Online]. Available:
http://www.open.edu/openlearnworks/mod/oucontent/view.php?id=608&
section=2.2. [Accessed 28 March 2015].

[105] Nvidia, “GPU GEMS2 Chapter 35,” Nvidia, 28 March 2015. [Online].
Available:
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter35.html.
[Accessed 28 March 2015].

[106] “The OpenMP Architecture Review Board Home Page,” The OpenMP
Architecture Review Board, 2012. [Online]. Available: http://openmp.org/.
[Accessed August 2012].

[107] “OpenCL 1.2 Specification,” Khronos group, 2012. [Online]. Available:
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf. [Accessed
March 2012].

[108] Nvidia, “GeForce 8600M specification,” Nvidia, 2012. [Online]. Available:
http://www.nvidia.com/object/geforce_8600M.html. [Accessed 2012].

[109] Nvidia, “GeForce GTX 560 Ti,” Nvidia, 2012. [Online]. Available:
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-
560ti/specifications. [Accessed 2012].

[110] P. D. Bates and A. P. J. De Roo, “A simple raster-based model for flood
inundation simulation,” Journal of Hydrology, vol. 236, no. 1-2, pp. 54-77,
2000.

[111] N. M. Hunter, P. D. Bates, M. S. Horritt and M. D. Wilson, “Simple
spatially-distributed models for predicting flood inundation: A review,”
Geomorphology, vol. 90, no. 3-4, pp. 208-225, 2007.

[112] Nvidia, “Nvidia Tesla K20 specifications,” Nvidia, 6 May 2015. [Online].
Available: http://www.nvidia.co.uk/content/PDF/kepler/Tesla-K20-
Passive-BD-06455-001-v07.pdf. [Accessed 6 May 2015].

 249

[113] Nvidia, “CUDA Faq,” Nvidia, 18 April 2015. [Online]. Available:
https://developer.nvidia.com/cuda-faq. [Accessed 18 April 2015].

[114] N. Whitehead and A. Fit-Florea, “Precision & Performance: Floating Point
and IEEE 754 Compliance for NVIDIA,” Nvidia, 2011.

 250

Chapter 9: Appendices

9.1 Appendix 1: The power function, differences on CPU and

GPU hardware

9.1.1 Introduction

It is known that the power for different CPU and GPU hardware that the

power function will produce slightly different results for some inputs [113] [114].

Due to the limited precision presented by floating point numbers in representing

real valued numbers, not all real values can be accurately represented by a finite

number of bits. An example given in Literature is that of the real value of 2/3rd,

which represented as a binary value 0.10101010… to an infinite number of bits

after the binary point. Therefore the binary representation of the real value 2/3rd

must be rounded, where the rounding modes are specified by the IEEE 754

standard for binary floating point arithmetic [114]. The IEEE 754 standard

requires support for only a handful of operations, these include the arithmetic

operations add, subtract, multiply, divide, square root, fused-multiply-add,

remainder, conversion operations, scaling, sign operations and comparisons.

The results of these operations are guaranteed to be the same for all

implementations of the standard, for a given format and rounding mode. However

more complex functions like the power (x, y) operator, which raises the value x to

the power of the value y, are not guaranteed to produce the exact same results

on the differing hardware’s. This has an affect can be multiplied by the heuristic

optimisation process of the CAGP system, and therefore a specific set of

experiments are carried out to determine the level of this affect.

9.1.2 Experimental setup

The version of the build created to be compatible with the GPU, is used for

both the CPU and GPU experiments contained in this section. I.e. the GPU

implementation requires the GP tree to be evaluated by a loop with a fixed sized

stack, as opposed to be means of recursion. This mean exact same code is used

for both of these tests, at the point of the evaluation of the GP trees, barring the

protection of the power function. This protection is once again implementation

specific, in that attempts are made to encode the power function to capture any

spurious results including NaN (Not a Number), and +/-infinity at the operator

 251

level, and return a value of zero. However, this does not include denormals which

are very small number which are close to zero, are not captured until after the

evaluation of the entire CA and error score. This is due to the fact that OpenCL

does not provide a method in its API to capture these denormal values.

In these experiments, two identical populations are created by using the

exact same seed value for the optimisation process. Due to the difference in the

fitness scores, the heuristic optimisation will likely select some differing

individuals during it process and therefore only the first generation can be

guaranteed to be the same GP trees. Since both final populations are appearing

to result in different optimisations, i.e. different resulting GP trees, and evaluation

of each population is made by running each population on the alternate hardware.

These experiments are conducted using the Hill and Pond test case, at 50m, with

the original rain fall profile of 10mm/hour for 1 hour, where the simulations are

run for 4 hours of simulation time, at 0.5, 1, and 2 second time steps.

9.1.3 Experimental Results

Out of the 100 identical individuals produced in the first generation, 5 of

these failed to agree on the fitness scores. It is noted that these 5 that disagree

and within the 6 worst of the population, and that this instantly creates a different

ordering of the population.

Table 9.1, Fitness scores (1/average RMSE), of the 6 worst cases of the two
population of the different CPU and GPU hardware. The one fitness score

highlighted between the two implementations has scored the same value but is
placed in a different position.

GP Tree 95 96 97 98 99 100

CPU Fitness score 16.6039 16.329 14.5613 11.335 11.0148 6.51328

GPU Fitness score 16.621 16.3288 14.5627 11.682 11.335 5.71232

absolute difference 0.0171 0.0002 0.0014 0.347 0.3202 0.80096

This small difference in the population to start off with (shown in Table 9.1),

coupled with the continued small difference in the interpretation of the power

function, results in populations as shown by the resulting optimisation scores in

Figure 9.1. Where there is only a small divergence in the beginning of the

process, these later results in quite a stark difference.

 252

Figure 9.1, Fitness scores (1/average RMSE) of the fittest individual in each
population, run on the CPU and GPU. Where the fitness scores are calculated

by the respective hardware during each optimisation run.

It can be seen in Figure 9.2 that when comparing the final two populations

from each optimisation runs on the alternate hardware, that a larger number and

variety of rankings of GP have interpretation differences, than compared to that

of the first generation (which is identical for both runs).

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500

Fi
tn

e
ss

 s
co

re
 (

1
/R

M
SE

)

GP Generations

GPU

CPU

 253

Figure 9.2, Absolute difference between the fitness scores of the each final
population evaluated on the alternate hardware, where the x-axis represents the

ranking of the GP individual within the population.

9.2 Appendix 2: The simple GP language

In order to make the construction of GP formulae easier, and to ensure that there

are less errors in those formulations, a simple recursive decent compiler is

created. This is designed to be a scaled version of C, and therefore accepts C

style comments, both multi-line comments (/* … comments …*/), and in-line

comments (lines beginning with //). This is designed to more easily facilitate the

human construction of complex GP decision trees, as opposed to attempting to

program in reverse polish notation. The specification for this language is shown

in Figure 9.3.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

A
b

so
lu

at
e

 d
if

fe
re

n
ce

 in
 F

it
n

e
ss

 s
co

re
(1

/R
M

SE
)

GP individual Ranking

GPU population

CPU population

 254

program = "GP" "=" condition";"

condition = expression { ("<", ">", "==", "&&", "||") expression }

expression = term { ("+" | "-") term }

term = factor { ("*" | "/" | "^") factor }

factor = variable | number |"(" condition ")" | function

function = (dualFunc, trippleFunc)

dualFunc = ("min", "max", "sin", "cos" "pow") "(" condition ","

 condition ")"

trippleFunc = "if" "(" condition "," condition "," condition ")"

variable = any token starting with a letter(alpha), then followed

 by other letters, numbers, "_" under scores, excluding

 above key words.

 Must one of the predefined variables.

num = any token starting with 0-9

Figure 9.3, Specification of the simple recursive decent language used in this

thesis to specify GP decision trees.

9.3 Appendix 3: Extended training with GP for temporal

generalisation of CA rules

9.3.1 Introduction

Having trained in section 6.2, on the Hill and pond test case at 50m, with a

0.5, 1, and 2 second time steps, in order to gain generalisation over the different

time steps, for a limited 500 GP generations. It is difficult to determine how well

the system would be able to optimise the rules set given more optimisation time,

therefore these extended tests use the same experimental settings except the

termination criteria is set to 2,500 GP generations.

9.3.2 Experimental set-up

The hill and pond training case is again utilised for 4 hours of simulation

time with 0.5 seconds, 1 second and 2 seconds time steps, where the fitness is

established as the reciprocal of the mean of various simulations RMSE. Once

again 10 differently seeded populations are utilised, and differently seeded to

those 10 populations in section 6.2.

 255

9.3.3 Training results

Figure 9.4, Fitness of the fittest individual within each of the 10 populations,
trained on hill and pond test case at 50m cell size, and 0.5, 1, and 2 second

time steps.

It is clear to see in Figure 9.4, that while the majority of the optimisation is

carried out within 500 GP generations, that the system will continue to optimise

after this point. Some generation (for example population 3) can even make large

jump towards the end of this 2,500 GP generations. However, there are clear

example, (for example population 6) which appear to get stuck in a local fitness

maxima very early on and remain stuck in this very poor area for a prolonged

period, although the majority of populations perform much better, and towards

the end of this optimisation does begin to improve.

9.3.4 Conclusions

While a termination criterion of 500 GP generations has been used in the

majority of tests within this thesis, this has been done primarily to perform even

and fair comparisons between the different optimisation settings with the same

length of optimisations. However it is clear from Figure 9.4 results that

optimisation will continue at a slower rate after this point, and therefore the

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500

Fi
tn

e
ss

 S
co

re
 (

1
/R

M
SE

)

GP Generation

0 1 2 3

4 5 6 7

8 9 mean maxs

 256

generalisation results in previous sections could be further improved. There

maybe be a point during the length of optimisation which is more likely to have

the maximum amount of training potency in that it maximises the generalisation

properties and minimises the possibility of over training; however, it is also

possible that further training continues to increase the likelihood of good

generalisation properties as it is a local rule which is trained, further

experimentation is required in this area.

 257

This page is intentionally left blank.

	Abstract
	List of Tables
	List of Figures
	Publications
	Chapter 1: Introduction
	1.1 Background
	1.1.1 Urban flood Modelling
	1.1.2 Cellular Automata
	1.1.3 Genetic Programming

	1.2 Hypothesis
	1.3 Aims of research
	1.3.1 Objectives

	1.4 Thesis structure
	1.5 Novelty of the work
	1.6 Glossary of terms
	1.6.1 Definitions
	1.6.2 List of terms

	Chapter 2: Literature review
	2.1 Cellular automata
	2.1.1 Introduction
	2.1.2 Applications
	2.1.3 Urban flood modelling
	2.1.4 CA for Urban flood modelling
	2.1.4.1 Dottori and Todini technique
	2.1.4.2 Ghimire et. al.’s technique
	2.1.4.3 Hunter and Bates et. al.’s technique

	2.1.5 Conclusion

	2.2 Genetic Programming
	2.2.1 Introduction
	2.2.2 Applications
	2.2.3 Genetic Programming and Cellular Automata
	2.2.4 Alternatives to GP for learning CA state transition rules
	2.2.5 Conclusion

	2.3 GPGPU computing
	2.3.1 Introduction
	2.3.2 Cellular Automata GPU computing
	2.3.3 Genetic Programming GPU literature
	2.3.4 Conclusion

	Chapter 3: GPU computing
	3.1 Introduction
	3.1.1 Multi-core CPU and Many-core GPU computing

	3.2 Relevant literature
	3.3 Method
	3.3.1 Rule sets
	3.3.1.1 Pseudo code for the game of life rule set function
	3.3.1.2 Pseudo code for the Multi-State Game Of Life (MSGOL) rule set function
	3.3.1.3 Pseudo code for the Multi-State Game Of Life (MSGOL4) rule set function

	3.3.2 Novel CA-GPU Representation

	3.4 Experimental Set up
	3.5 Experimentation
	3.5.1 Lattice size and workgroup tests
	3.5.1.1 Method
	3.5.1.2 Experimental set up
	3.5.1.3 Experimental results
	3.5.1.4 Conclusion

	3.5.2 Lattice size and GPU Memory types tests
	3.5.2.1 Experimental Set up
	3.5.2.2 Experimental Results
	3.5.2.3 Discussion
	3.5.2.4 Conclusions

	3.5.3 Initial configuration distribution probability and Activity tests
	3.5.3.1 Experimental set up
	3.5.3.2 Experimental results

	3.5.4 Number of states tests
	3.5.4.1 Method
	3.5.4.2 Experimental set up
	3.5.4.3 Experimental Results
	3.5.4.4 Further experimentation with multi-state game of life variants
	3.5.4.5 Experimental Results
	3.5.4.6 Conclusions

	3.5.5 Data types
	3.5.5.1 Experimental set-up
	3.5.5.2 Experimental Results

	3.5.6 Neighbourhood size tests
	3.5.6.1 Method
	3.5.6.2 Experimental set up
	3.5.6.3 Experimental Results

	3.5.7 Generational size tests
	3.5.7.1 Method
	3.5.7.2 Experimental set up
	3.5.7.3 Experimental Results

	3.6 Discussion
	3.7 Conclusions

	Chapter 4: GP learning of Cellular Automata state transition rules
	4.1 Introduction
	4.1.1 Background
	4.1.2 Chapter Structure

	4.2 Methodology
	4.2.1 GP CA interface/representation
	4.2.1.1 Game Of Life binary state GP interface

	4.2.2 GP CA Fitness function
	4.2.3 GP CA Evolutionary Algorithm
	4.2.4 GP CA GPU computing method
	4.2.4.1 Novel GP CA method for combined parallelism for more efficient GPU computing
	4.2.4.2 GP decision tree evaluation
	4.2.4.3 Hardware difference of the power function between CPU and GPU
	4.2.4.4 Parallel fitness function

	4.3 GP CA - The Game of Life experimentation
	4.3.1 Experimental setup
	4.3.2 Experimental results

	4.4 Conclusions

	Chapter 5: GP CA real-world flood modelling
	5.1 Introduction
	5.1.1 Chapter Structure

	5.2 Methodology
	5.2.1 Real world hydraulic GP interface

	5.3 Experimental setup
	5.3.1 Hill and Pond - Training case
	5.3.2 Testing and validation simulation cases
	5.3.2.1 EAT-2 Test case
	5.3.2.2 EAT-1 Test case

	5.3.3 Human competition
	5.3.3.1 Ghimire formulation
	5.3.3.2 Dottori and Todini formulation
	5.3.3.3 Bates and Hunter formulation
	5.3.3.4 Bates and Hunter Flow Limited formulation

	5.4 Training GP with fixed spatial and temporal resolution
	5.4.1 Introduction
	5.4.2 Experimental setup
	5.4.3 Training Results
	5.4.4 Processing times and speed-ups from GPU computing

	5.5 Testing of trained GP with fixed spatial and temporal resolution
	5.5.1 Introduction
	5.5.2 Experimental setup
	5.5.2.1 Remainder of training case
	5.5.2.2 Validation on the same terrain with different rain profile
	5.5.2.3 Testing on a different terrain (EAT2)

	5.5.3 Results
	5.5.3.1 Remainder of training case
	5.5.3.2 Validation on the same terrain with different rain profile
	5.5.3.3 Testing on a different terrain (EAT2)

	5.6 Conclusions

	Chapter 6: GP CA real-world flood modelling generalisation to spatiotemporal resolution
	6.1 Introduction
	6.1.1 Chapter Structure

	6.2 Training GP for temporal generalisation of CA rules
	6.2.1 Introduction
	6.2.2 Human formulations and static temporal resolution trained GP performance.
	6.2.3 Experimental setup
	6.2.4 Training results
	6.2.5 GP bloat Results
	6.2.6 Conclusions

	6.3 Testing GP trained for temporal generalisation of CA rules
	6.3.1 Introduction
	6.3.2 Experimental setup
	6.3.2.1 Remainder of training case
	6.3.2.2 Testing on the same terrain with different rain profile
	6.3.2.3 Testing on a different terrain (EAT2) with uniform rain input
	6.3.2.4 Testing on a different terrain (EAT1) with inflow conditions
	6.3.2.5 Testing on a different terrain (EAT2) with inflow conditions

	6.3.3 Rain condition results
	6.3.3.1 Remainder of the training simulation validation
	6.3.3.2 Testing on the same terrain with different rain profile
	6.3.3.3 Testing on a different terrain (EAT2) with uniform rain input
	6.3.3.4 Results summary

	6.3.4 Discussion
	6.3.5 Inflow condition results
	6.3.5.1 Testing on a different terrain (EAT1) with inflow conditions
	6.3.5.2 Testing on a different terrain (EAT2) with inflow conditions

	6.3.6 Conclusions

	6.4 Training GP for temporal and spatial generalisation of CA rules
	6.4.1 Introduction
	6.4.2 Experimental set-up
	6.4.3 Experimental Results
	6.4.4 Conclusions

	6.5 Conclusions

	Chapter 7: Conclusions and discussion
	7.1 Conclusions
	7.2 Discussions and future work

	Chapter 8: Bibliography
	Chapter 9: Appendices
	9.1 Appendix 1: The power function, differences on CPU and GPU hardware
	9.1.1 Introduction
	9.1.2 Experimental setup
	9.1.3 Experimental Results

	9.2 Appendix 2: The simple GP language
	9.3 Appendix 3: Extended training with GP for temporal generalisation of CA rules
	9.3.1 Introduction
	9.3.2 Experimental set-up
	9.3.3 Training results
	9.3.4 Conclusions

