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Abstract 

Many complex systems in nature are governed by simple local interactions, 

although a number are also described by global interactions. For example, within 

the field of hydraulics the Navier-Stokes equations describe free-surface water 

flow, through means of the global preservation of water volume, momentum and 

energy. However, solving such partial differential equations (PDEs) is 

computationally expensive when applied to large 2D flow problems. An 

alternative which reduces the computational complexity, is to use a local 

derivative to approximate the PDEs, such as finite difference methods, or Cellular 

Automata (CA). The high speed processing of such simulations is important to 

modern scientific investigation especially within urban flood modelling, as urban 

expansion continues to increase the number of impervious areas that need to be 

modelled. Large numbers of model runs or large spatial or temporal resolution 

simulations are required in order to investigate, for example, climate change, 

early warning systems, and sewer design optimisation. The recent introduction of 

the Graphics Processor Unit (GPU) as a general purpose computing device 

(General Purpose Graphical Processor Unit, GPGPU) allows this hardware to be 

used for the accelerated processing of such locally driven simulations. A novel 

CA transformation for use with GPUs is proposed here to make maximum use of 

the GPU hardware. CA models are defined by the local state transition rules, 

which are used in every cell in parallel, and provide an excellent platform for a 

comparative study of possible alternative state transition rules. Writing local state 

transition rules for CA systems is a difficult task for humans due to the number 

and complexity of possible interactions, and is known as the ‘inverse problem’ for 

CA. Therefore, the use of Genetic Programming (GP) algorithms for the 

automatic development of state transition rules from example data is also 

investigated in this thesis. GP is investigated as it is capable of searching the 

intractably large areas of possible state transition rules, and producing near 

optimal solutions. However, such population-based optimisation algorithms are 

limited by the cost of many repeated evaluations of the fitness function, which in 

this case requires the comparison of a CA simulation to given target data. 

Therefore, the use of GPGPU hardware for the accelerated learning of local rules 

is also developed. Speed-up factors of up to 50 times over serial Central 

Processing Unit (CPU) processing are achieved on simple CA, up to 5-10 times 

speedup over the fully parallel CPU for the learning of urban flood modelling rules. 



  3 

Furthermore, it is shown GP can generate rules which perform competitively 

when compared with human formulated rules. This is achieved with 

generalisation to unseen terrains using similar input conditions and different 

spatial/temporal resolutions in this important application domain. 
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Chapter 1: Introduction 

With the urbanisation of the modern world, there is an ever increasing 

replacement of permeable with impermeable surfaces, which leads to greater 

amounts of run-off for sewer systems to handle. Furthermore, climate change 

leads to a greater uncertainty and variability in rainfall. Therefore, the need for 

computationally efficient flood modelling methods is steadily increasing; both in 

the need for early warning system and for modern city’s resilient design. Such 

models come in three forms, with each suiting a particular type of modelling: 1D 

models, which are often used to model flow within pipes and sewer systems, 2D 

systems used to model overland and pluvial flow, and finally 3D modelling 

commonly used for free-surface water flow or atmospheric weather modelling. 

Where lower dimensionality models can be used they are far less accurate for 

each scenario and with the increased dimensionality there is an increase in 

computational costs. Similarly, the spatial and temporal resolution of these 

models maybe increased to obtain greater accuracy, but this comes again at an 

increased computational cost. For very large resolution models, over large spatial 

areas and simulation times, or where large ensembles of simulation are required 

for design validation, the processing time becomes intractable or at least 

infeasible. 

The work in this thesis is concentrated on 2D models for pluvial and 

overland flooding models; of which there are a wide variety of existing software 

packages, as shown by the UK Environment Agency Report from 2013 

“Benchmarking the latest generation of 2D hydraulic modelling packages” [1], 

with as many as 13 different tools being used. This is due to there being no 

agreement on the best way to accurately model flooding at various scales, without 

using full Navier-Stokes based simulations, which are computationally expensive. 

The majority of these models are based on a regular grid, and on the Shallow 

Water Equations (SWE) which themselves are computationally complex to solve 

for large areas. A more recent approach makes use of finite difference models 

which approximate the derivative of the SWE. These are then solved locally to 

each cell or inter-cell edge. This approach bears similarities with the computer 

science technique for modelling complex system, in particular Cellular Automata 

(CA). These approaches present the opportunity to increase processing speeds 
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through the use of modern multi-core and many-core technologies, due to the 

parallelism of the algorithm. Cellular Automata require a state transition rule 

which governs the change in state of the grid from one iteration to the next, in a 

similar way to the approximate derivative in the finite difference model. The same 

rule is processed for many cells and their neighbourhoods, which gives the CA 

algorithms its inherent parallelism. 

In this thesis two main approaches are taken to tackle the computational 

complexity of the problem within urban flood modelling systems. Firstly, Cellular 

Automata based models are developed to utilise modern multi-core CPU and 

many-core GPGPU, and a series of experiments are carried out to understand 

the efficiency of this parallelisation in relation to the algorithmic parameters. 

Secondly, as the temporal and spatial resolutions of the CA model directly 

influence the processing time, then coarser models are required to maintain 

accuracy to a reasonable level in order to gain further increases in processing 

speed efficiency. The model accuracy at different resolutions is limited by the 

local approximation represented by the state transition rule of the CA that drives 

the various flow rates. The state transition rule must take account of different 

spatial and temporal resolutions, as well as the various terrain and water levels 

to produce a reasonably accurate approximation of the globally driven rules. 

There exists a body of literature where researchers and engineers have derived 

state transition rules for flood modelling to maximise the temporal resolution of 

their CA models, while maintaining accuracy at different spatial resolutions. 

Therefore, experimentation is carried out to understand the feasibility of learning 

such a specific state transition rule, via the use of an artificial intelligence 

algorithm. Genetic Programming (GP) is chosen as it is capable of learning from 

data, and creating innovative results, as well as searching an intractable search 

space while producing ‘good’ solutions (‘good’ in terms of being reasonably close 

to the global optimum). However, unlike other Evolutionary or Genetic Algorithms, 

GP does not have a fixed sized chromosome and so is capable of evolving entire 

computer programs, or formulae. This allows for the possibility of entirely 

automatic derivation of the local state transition rule from given data, where many 

other algorithms can only tune a set number of parameters of a model. Having 

developed a system that is capable of encoding a number of the human 

formulated state transition rules for flood modelling, these are tested against the 
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generated rules to make a comparison. The hypothesis tested in this thesis is 

that the derived local rules should be capable of operating in similar conditions 

but with different input terrain and water level distributions due to way that they 

are only programmed with local knowledge. Therefore, the Genetic Programming 

Cellular Automata system (GPCA) may be trained once, and then allow for the 

operation of the rules on unseen data sets, and experimentation is carried out 

within this thesis to validate this theory. 

All evolutionary algorithms, of which GP is member, require a method for 

the evaluation of the fitness of potential solutions. In this case it requires the 

processing a CA simulation and comparison to example input. The evaluation of 

the fitness function is known to be the overwhelmingly large computational 

element of Evolutionary Algorithm’s (EA), especially due to the need for the 

evaluation to be carried out for multiple candidate solutions. The GPCA system 

proposed in this thesis, requires the simulation of a CA model using the given GP 

rules as the state transition rule, and therefore makes additional use of the earlier 

work with many and multi-core processors. This then achieves parallelisation and 

acceleration of the learning of state transition rules, through the use of a novel 

combination of the parallelism drawn from both the GP and the CA algorithms 

together. 

Later work in this thesis will tackle the questions of whether the GP can 

evolve real world CA state transitions rules at a single set of spatial and temporal 

resolutions and how well these may generalise to other simulation inputs like 

terrain layouts, and different rates of rain input. The experimentation is then 

extended to include first various temporal resolutions at a single spatial 

resolution, and finally a scale of both spatial and temporal resolutions. This 

method allows for a comparison of the effectiveness of training on a single 

temporal resolution compared to a spread of temporal resolutions. Finally, this 

investigation begins to tackle the trade-off between the resolution of the 

simulations and the accuracy of the simulations produced by each rule. As 

demonstrated in Chapter 3: (Sections 3.5.1, 3.5.2, 3.5.7), the spatial and temporal 

resolutions of the simulation heavily influence the real world processing times. 

Therefore, this trade-off actually weighs the computational time against the 

accuracy of simulations. This leads to the exciting opportunity to use both 
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computer science methods and modern hardware to accelerate the processing 

of real-world urban flood modelling. 

1.1 Background 

1.1.1 Urban flood Modelling 

The underlying physics of hydraulic movement of liquids is reasonably well 

understood in the Navier-stokes equations [2] [3], which are partial differential 

equations. Such equations describe the preservation of mass, momentum and 

energy on a global scale. Therefore, performing full Computational Fluid 

Dynamics (CFD) is very computationally expensive, as it must simulate many 

particles in a 3D environment calculating each particle’s velocity while balancing 

the mass, momentum and energy between all particles within the system. For the 

purposes of modelling very large systems, these kinds of simulations are 

completely impractical. Therefore, modelling communities have used simplified 

models, in order to perform simulation in a tractable amount of time.  

1.1.2 Cellular Automata 

Recently, urban flood models have been based on CA systems, which are 

locally driven deterministic simulations. CA are based on a grid, where each grid 

location is referred to as a ‘cell’. Each cell is updated using the same state 

transition rule, and all cells are updated in parallel. The state transition rule of 

each cell only uses local neighbourhood state information to that cell. Cellular 

Automata present an abstract model of complexity based on the emergent 

behaviour of many simple identical interacting parts. In this way they create an 

abstract model of the universe, where the laws of physics are encoded as the 

local state transition rules. Having a single rule which precisely and 

deterministically describes the movements of fluid over a surface greatly reduces 

the computational complexity of the hydraulic simulation, over the full 3D Navier-

Stokes models. These methods represent water volumes within each cell, and 

thus represent the 3D structure of the fluids in a 2D format with the addition of 

water depths within each cell.  

In computer science, simple CA models have been well studied [4] [5], such 

as the game of life (described in section 2.1.1), which only has two states - dead 
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or alive (zero or one respectively). Even with very few states and a very simple 

state transition rule, there still are many complex interactions which can occur. 

However, creating the state transition rules with specifically desired global 

complex interactions is difficult for human developers. This is because any single 

change to a state transition rule will affect the entire simulation. Therefore, a way 

must be found to only affect the desired sections through the complex 

interactions, known as the inverse problem. 

1.1.3 Genetic Programming 

Evolutionary and Genetic algorithms (EA/GA) [6] [7] are powerful search 

methods, although they are limited by the fact that they can only search a fixed 

number of decision variables. They must use an implicit model based on these 

decision variables in order to establish the given fitness for each individual. By 

contrast, GP operates on a variable number of decision variables, and even 

selects for the important variables as well as optimising the solution. GP can 

develop entire computer programs, and thus can develop an entire model. 

Genetic Programming, offers a powerful search algorithm, capable of exploring 

variable degrees of complexity within its solutions. Parsimony can be included as 

part of the selection criteria for GP, allowing the evolutionary power to be 

harnessed to search and optimise the solution’s accuracy and parsimony. 

1.2 Hypothesis 

1.  Using Genetic Programming to train the state transition rules for CA, and 

presenting entire simulations as training data will create rule sets which 

have good generalisation properties to other unseen initial conditions. I.e. 

the training set of a simulation may not contain all the state transitions of 

the target or the underlying CA rule, but by having a distributed rule 

programmed by GP, the rule generated should interpolate well to other 

input conditions. Such a method should be applicable to almost any type 

of CA system, so long as an interface between the local CA rule and GP 

system can be established. This interface should declare how the GP rule 

is instantiated within the local CA neighbourhood, in order to guarantee 

uniformity, and mass preservation if required. Also the interface should 
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declare how the neighbouring states in the local CA neighbourhood lead 

to the GP variables and the next cell state output. 

In Chapter 4:, the GPCA system uses a Game of Life simulation and 

attempts to find the Game Of Life rule set. The results show that the 

majority of rules generated match the Game of Life rules even though the 

simulation presented does not represent all state transitions of the Game 

of Life. In Chapter 5: the GPCA system is trained upon the output of a real-

world hydraulic modeller (UIM), and is tested on unseen water level inputs, 

and different terrain inputs to determine the generated rules ability to 

generalise to unseen data. The limits of this generalisation are seen in 

Chapter 6:, where the training and testing are extended to include multiple 

spatiotemporal resolutions, and testing also includes radically different 

inflow conditions. 

 

2. For real world CA systems, the spatial and temporal resolution variables 

(Cell size and time step) are static for all cells and iterations of a single 

simulation, and alter the entire dynamics of the resulting simulation. 

Training on a number of different simulations, each with different values 

for one of the simulation static variables of cell size and/or time step, will 

allow the GPCA system to learn the higher level dynamics. This should 

create rules which can not only generalise to different initial conditions, but 

also to different temporal and spatial resolutions. In this way it may be 

possible to create rules which can operate at higher time step factors than 

previous rules with acceptable accuracy, thereby producing faster 

computational rule sets. 

In Chapter 6: training and testing of the GPCA system is conducted at 

different spatiotemporal resolutions, and testing is also conducted on 

different water level and terrain inputs. In section 6.2 rules are trained and 

tested for their generalisation to the timestep property, and by creating 

rules which can operate at higher time steps, this creates faster rules. 

Finally in section 6.4, rules generated with both cell size (spatial) and time 

step (temporal) variation, are used to tackle the more complex trade-off 

between speed and accuracy, and demonstrate that the system can learn 

the rules behind this complex dynamic competitively with the most modern 

human formulated rules. 
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1.3 Aims of research 

The primary aim of this research is to automatically produce fast and 

accurate flood modelling systems, through the application of computer science 

methodologies including algorithmic parallelisation and Artificial Intelligence. A 

further aim is to compare the automatically generated rules against existing 

(human derived) rules, and be able to compare their effectiveness in a 

quantitative manner. 

1.3.1 Objectives 

The following is a list of objectives tackled within this thesis: 

1. The investigation of the parallelisation of CA systems upon modern many-

core GPGPU technologies, and the effect of varying the standard CA 

parameter such number of cells, initial configuration and activity, number of 

states, neighbourhood size, and number of generations on the speed-ups 

obtained. Also to investigate the effects on the relative speed-ups obtained, 

of varying GPGPU parameters such as the workgroup size, GPU memory 

type, and the base data type used to store states. This investigation is 

intended to ensure that the relationship between the CA parameters and the 

relative speed-ups of the GPGPU over the CPU are well understood, such 

that when later work in this thesis can maximise speed-ups from the GPGPU 

when combining GP and CA systems. 

 

2. The development of a CA system for flood modelling, based on existing 

models from literature, which is capable of expressing a spectrum/range of 

variable state transition rules. It is intended that these state transition rules 

should always ensure uniformity to direction of flooding flow and should 

preserve the water volume across the grid. This will allow for the derivation of 

state transition rules which can concentrate on finding the correct flow rates 

given the water, terrain levels and spatial and temporal resolutions across the 

grid. Leading to the development of a GP system for the optimisation of CA 

state transition rules. Such a system should take advantage of previous 

research conducted after Objective 1, in order to obtain the best speed-ups 
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possible by accelerating the evaluation of CA fitness functions upon the 

GPGPU. 

 

3. An investigation of the effectiveness of the combined GPCA system from 

Objectives 1 and 2, to learn a known CA rule set such as the Game of Life. 

This will allow for the calibration and confirmation that the system can find the 

correct underlying state transition rule from an example CA simulation. 

 

4. An investigation of the effectiveness of the combined GPCA to learn flooding 

modelling state transition rules based on example simulation data.  

 

4.1.  Quantify the simulation time needed during training on a fixed set of 

spatial and temporal resolutions, and prove that the combined GPCA 

system can learn state transition rules which are competitive amongst 

human CA flood modelling rules. 

 

4.2.  The proof of hypothesis 1, through the testing of derived state transitions 

rules from objective 4.1 on unseen data, including unseen sections of the 

training test case and completely different terrain. 

 

4.3.  An investigation of the effectiveness of the combined GPCA system to 

learn flood modelling CA state transition rules which are capable of 

operating competitively at a range of temporal resolutions. By creating 

rules which can produce competitive accuracies at higher time step 

factors (temporal resolutions) than human formulated CA state transition 

rules, this will begin to tackle the trade-off problem of creating faster rules. 

Thereby tackling the ultimate aim of creating faster rule sets through the 

use of machine learning techniques to derive the CA state transition rules 

for flood modelling systems (hypothesis 2). 

 

 

4.4.  An investigation of the limits of hypotheses 1, by testing of those rules 

generated during training conducted in Objective 4.3, upon different 

inputs including: unseen parts of the training test case, a completely 
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different terrain, and finally on different ‘boundary conditions’ (the type of 

inflow used in the test cases, e.g. uniform rain, or a lateral inflow). 

 

4.5.  Finally, an investigation of the ability of the GPCA system to learn CA 

state transition rules that can operate successfully at a range of both 

spatial and temporal resolutions. Demonstrating how the proposed 

system can adapt to the complex set of inputs including spatial and 

temporal resolutions, and the local terrain and water levels in order to 

further tackle the complex trade-off created by the resolution of the 

simulation (both spatial and temporal) and the accuracy of the resulting 

water movements over the entire simulation area and duration. A 

comparison can then be made between the performance in terms of this 

trade-off with the very latest human formulated CA flooding modelling 

rules and those generated by the proposed GPCA system (hypothesis 2). 

1.4 Thesis structure 

Chapter 1: introduces the problem and the scope of this thesis, its 

background, aims, hypothesis and novelties. 

Chapter 2: performs an in-depth literature review, starting off with the origin 

and purpose of Cellular Automata systems within computer science, leading to 

their use for real world urban flood modelling. Then the literature pertaining to 

Genetic Programming, and alternative methods used to learn cellular automata 

state transition rules is reviewed. Finally, the literature that involves the 

application of many-core hardware (GPGPU’s) to speed up both CA and genetic 

programming systems is investigated. 

Chapter 3: performs an in-depth investigation of the effects of utilising 

modern many-core GPGPU hardware to speed up the processing of CA. 

Specifically, this chapter investigates the effects of varying the CA parameters 

such as lattice size, initial configuration, number of states and amounts of activity, 

data types, neighbourhood size, and number of generations/iterations. 

Furthermore, the effects of varying the GPGPU specific parameters such as work 

group size and GPU memory types used are also investigated. This allows for a 
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better understanding of how speed-up on modern hardware is affected, and thus 

leads onto the methodology in the next chapter. 

Chapter 4: carries out experimentation using GP to learn CA state transition 

rules for the simple binary Game of Life rule set. Chapter 4:, section 4.2 

introduces the methodology of using genetic programming to find specific cellular 

automata state transition rules. This chapter details how the GP is interfaced with 

the CA neighbourhood for the Game of Life. Details of the fitness function and 

evolutionary algorithm used to drive the GP system are also given here. Lastly, 

details are given of a novel method of using parallelism for both the GP algorithm 

population and the CA’s cell population. This allows for smaller training cases to 

be used while still saturating the many-core GPGPU hardware with enough 

parallel elements, and therefore reducing overall processing time for the 

optimisation process. Chapter 4:, section 4.3 then describes experiments used to 

demonstrate this system’s ability to find representations of the Game of Life rule 

set given a target CA simulation. As the game of life rule set is known (i.e., the 

global optimum for the GP search), the system can be verified before tackling the 

real-world problem where the best rule sets are not so clear. 

 The GPCA methodology is then extended in Chapter 5: to tackle the real-

world problem of finding rule sets which can perform urban flood modelling. The 

methodology for the updated interface between the GP and the CA 

neighbourhood for real-world flood models is described in section 5.2. Section 

5.3 details the experimental set-up used for the real-world experiments, including 

the flooding test cases and the human competitor rules sets from literature. The 

first set of real world experiments, in section 5.4 are carried out on a fixed set of 

spatial and temporal resolutions (cell size and time step), and vary the amount of 

simulation time used for training. Experiments are then carried out in section 5.5 

to see how well rules trained on different lengths of simulation generalise to 

different input conditions. For example, different terrain configurations, initial 

water levels, and different rain input conditions are used to test this ability. These 

experiments are intended to prove hypothesis 1, by demonstrating the ability of 

the GPCA system to learn rules which can then generalise to other initial 

conditions and inputs (at a single spatial and temporal resolution). 
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Chapter 6: then extends the experimentation on real-world flood models to 

include an investigation into the development of rules that can operate at different 

spatial and temporal resolutions. It is anticipated that this will then tackle the 

trade-off between the real-world processing time and the accuracy of simulations 

produced from the trained rule sets, and thereby provide a weight of evidence for 

hypothesis 2. The trade-off is tackled by training rule sets which can produce 

reasonable accuracy at competitively high time steps against the latest human 

rule sets from literature. First in section 6.2, rule sets are trained on a single 

spatial resolution and a sparse number of temporal resolutions, then the 

generalisation of Genetic Programs trained on a single time step are compared 

to those trained on many. Lastly in section 6.4, experiments are carried out to 

train GPCA state transition rules that are capable of operating over many spatial 

and temporal resolutions. There is a further relation between the cell size (spatial 

resolution) and the trade-off of accuracy and computational speed determined by 

the temporal resolution, which is tackled by training rules for multiple spatial and 

temporal resolutions and accuracy. Finally, Chapter 7: draws conclusions and 

final discussions from the thesis.  

1.5 Novelty of the work  

 Genetic Programming has been used previously to create the state 

transition rules for Cellular Automata systems, given the expected large 

scale outcomes. These have only been implemented on small scale 1D 

CA cases, and where the final solution of the CA was the expected 

outcome of the combination of many instances of the state transition rule 

in a spatial configuration. In contrast, this thesis explores a new approach 

of using GP for the creation of very specific and complex 2D CA 

simulations, i.e., where the entire course of the CA simulation in space and 

time is the desired global reaction. 

 

 A novel method for utilising the combined parallelisation of the GPCA 

system, such that it can be completed in a reasonable amount of time, is 

developed in this thesis. The method harnesses the parallelism drawn 

from the both the multiple individuals within the GP population and the 

multiple cells of CA. This method allows for the use of a smaller target 

simulation for the fitness function, while still saturating the GPGPU with 
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sufficient work. Therefore, the method allows the entire process to be 

completed within a tractable amount of time. Finally, the methodology is 

extended to include the parallelism from multiple populations of GP 

individuals, during trials. 

 

 A novel method for the acceleration of processing CA on modern highly 

parallel GPU hardware is developed and validated. The specific texture 

memory of the GPU hardware, which has four layers (Red, Green, Blue, 

and Alpha) is exploited to process 4 cells per thread and to allow for the 

use of the GPUs wider memory lanes. While the utilisation of these four 

layers by itself is not unique, the method of folding the lattice such that 

neighbouring values for cells on different layers can be collected efficiently 

using hardware ‘swizzling’ operations is novel. 

 

 The multi-state interpretations of the Game of life (Sections 3.3.1). These 

are novel integer state CA state transitions rules, which produce 

interesting patterns for study. These rules are extensions on the Game of 

life rules, and reproduce it when the number of states is two (i.e. binary), 

but produce different behaviour when using greater number of states. 

 

 The interpretation of the Game of Life rule set has an element of novelty, 

as there are many ways to represent the same state transition rule, using 

decision trees. Not only are the human formulations of the Game of life 

decision tree novel, but so are the trained representations. 

 

 The extensive testing of the effects of the CA parameters on the speed-

ups obtained from many-core GPU is novel and contains novel 

discoveries, in that it confirms for the main causes of computational 

complexity are the number of cells and CA generations including for the 

GPU. It is found that the speed-ups increase up to a plateau, as the over 

heads of parallelisation are overcome. Finally, the investigation yields 

novel discoveries of how the neighbourhood size (amount of memory look-

up per cell) and the amount of ‘activity’ (number of cells carrying out 

calculations) affect the relative performance of many-core CPU over multi-

core CPU. 
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 Using an example CA simulation of the Game of Life rule set as target 

(which only contains a sub-set of all the state transitions) in order to learn 

the specific under lying CA rule set, has not been attempted before. The 

use of Genetic Programming on a continuous scale CA system, to learn 

the binary state Game of Life rules sets, is novel. 

 

 Application of GP for learning the state transition rule of a continuous CA, 

i.e., real world applications flooding applications. 

o GP has not been applied to learning a real world continuous-CA 

state transition rule, until now. 

o No one has before considered the effects of the spatial and 

temporal resolution of a real world model will have on a GP system 

learning the state transition rules of a CA (sections 6.2, 6.4). 

 The comparison on the current best competing urban flood modelling state 

transition rules from the literature with those created by the automated 

GPCA system. 

 

1.6 Glossary of terms 

1.6.1 Definitions 

Chromosome 
In an analogy with natural genetics, where a 
group of individual ‘genes’ are often referred to as 
a chromosome 

Cross-over 
Recombining two or more candidate solutions to 
create a new candidate solution. 

Elitism 

When applied to evolutionary algorithms, this 
refers to the number of best individuals within the 
population which are directly passed to the next 
generation so as the ensure that the best do not 
get any worse 

Fitness 

This is an inverse measure of the error of an 
individual; this allows for a minimisation problem 
to become a maximisation one and that fitness 
proportionate selection can be performed. 
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Gene 
An individual variable within the genetic 
information of an individual candidate solution 

Genotype/Genotypical 
behaviour 

The literal encoding of the genetic information of a 
candidate solution 

Locus/Loci 
The point or points within the genetic information 
of candidate solution where the genetic 
information is divided. 

Phenotype/Phenotypical 
behaviour 

The resulting solution created by the interaction of 
the genetic information of candidate solution 

 

1.6.2 List of terms 

ADF Automatically Defined Functions 

ALU Arithmetic logic unit 

ANN Artificial  Neural Network 

CA Cellular Automata 

CFL condition Courant-Friedrichs-Lewy condition 

CGP Cartesian Genetic Programming 

CPU Central Processing Unit 

CUDA Compute Uniform Device Architecture 

EA Evolutionary Algorithm 

EAT Environment Agency Test 

FHP 
Frisch Hasslacher Pomeau - Lattice gas 
Boltzmann method 

FPGA Field Programmable Gate Array 

GA Genetic Algorithm 

GEP Gene Expression Programming 

Gflops Giga Floating Point Operation per Second 

GOL Game Of Life 

GP Genetic Programming 

GPCA Genetic Programming Cellular Automata 

GPGPU General-Purpose Graphics Processing Unit 

GPU Graphics Processing Unit 

HPP 
Hardy Pomeau Pazzis - Lattice gas 
Boltzmann method 

LGP Linear Genetic Programming 

MEP Multi-Expression Programming 
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MLP Multi-Layer Perceptron 

MSGOL Multi-State Game Of Life 

NaN Not A Number 

PDE Partial Differential Equations 

RAM Random Access Memory 

RGB Red Green Blue 

RMSE Root Mean Squared Error 

SIMD Single Instruction Multiple Data 

SIMT Single Instruction Multiple Thread 

SWE Shallow Water Equations 

TSP Travelling Salesman Problem 

UIM Universal Inundation Model 

vant Virtual Ant 

VSM Virtual State Machine 
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Chapter 2: Literature review 

In the following sections, the current literature pertaining to Cellular 

Automata (CA) is reviewed in section 2.1. This section covers a brief history of 

CA, and then examines a number of CA models, working towards the more 

complex continuous CA for hydraulic modelling which are used for flood 

modelling. In section 2.2, Genetic Programming (GP) literature is reviewed, and 

section 2.2.3 focuses on the few examples of GP applied to learning CA state 

transition rules. Finally, both CA and GP algorithms are highly parallelisable, 

where the fitness function of the GP is known to take the majority of processing 

time. Therefore the literature pertaining to GPU processing of both CA and GP is 

investigated in section 2.3. 

2.1 Cellular automata 

2.1.1 Introduction 

The umbrella term Cellular Automata (CA), represents a spatially discrete 

grouping of Automata (or simple abstract machines), and thus the collection 

forms a cellular grouping of many small component parts. The most common and 

basic instantiations of CA use a regular grid, where all the cells follow the same 

automaton (state transition rule), and commonly a binary state is use. A key 

element of the CA model is that interactions between the cells are local and 

parallel. The local cells form what is known as the neighbourhood, which defines 

which cells are adjacent to which other cells, commonly forming a regular pattern. 

Cellular Automata are of great interest to the computer science, physics, 

mathematical fields, due to their theoretical importance and capability to simulate 

physical systems. 

John Von Neumann [8] was one of the founding fathers of field of study 

currently labelled as Computer Science who, through the study of Logic and 

Automata, and early digital computers, put forward ideas of a new field between 

Logic and ‘Neurology’, and noted similarities with the field of thermodynamics [9]. 

His initial work in philosophy, mathematics, psychology, and neurophysiology 

guided his attempt to construct a general theory of automata. He used both man-

made mechanical and electrical devices, and natural complex mechanisms to 

forward his argument for the study of how complex systems originate from the 
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combination of simple mathematical logical operators. Von Neumann was keenly 

interested in “self-reproducing automata”, whereby the word automata simply 

means a machine or mechanism of some form.  

Von Neumann is attributed with the general architecture of today’s electrical 

digital computer systems (Henceforth referred to simply as a computer device), 

known as the ‘Von Neumann Architecture’. Such a computer device requires an 

ALU (Arithmetic Logic Unit), a memory, and a controller, as well as information 

buses between the above that connect the controller to the input/output system. 

The beauty of this architecture lies in its simple generic nature, in that the ALU is 

capable of processing a number of simple mathematical and logic operations 

upon some given data. The controller is responsible for collecting the instruction 

for the relevant mathematical or logic operation, and the data upon which is 

operates from the memory, delivering these to the ALU, collecting the result and 

storing it in memory again. The controller is also responsible for interpreting 

inputs (storing results to memory if required to affect processing), as well as which 

bit of memory to interpret as instruction and which are data; finally, it is 

responsible for interpreting the instruction from the ALU or memory to give the 

necessary outputs. Thus the true beauty in this architecture is that the idea of a 

‘program’ has been developed, in a sense a virtual machine, which operates upon 

a generic simple machine, and exists in the same space as the data upon which 

it operates.  In a sense, a CA is an extension of this design, in that each 

automaton in each cell represents an ALU. Instructions in CA cells are received 

from the neighbouring cells data and in a similar way the program and data may 

exist in the same memory space. So a CA can be viewed as an abstractly 

distributed computing device, containing many ALU, and where the spatial 

distribution of data has implications for its purpose.  

Von Neumann was critically aware of the other founding father of computer 

science, Alan Turing; noting that  

“For the question which concerns me here, that of ‘self-reproduction’ of 

automata, Turing's procedure is too narrow in one respect only. His automata are 

purely computing machines. Their output is a piece of tape with zeroes and ones 

on it. What is needed for the construction to which I referred is an automaton 

whose output is other automata.” [9].  
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So Von Neumann’s true intention in the creation of his first Cellular 

Automata is likely to have been the search for truly undirected evolution, and the 

study of its properties. However, Von Neumann was also keen that these 

automata not only be self-reproductive but also perform some useful 

computation, thereby being a truly undirected evolution of computation, which 

may answer many questions about our own existence. Unfortunately Von 

Neumann never finished his work in this area due to his tragic early death in 1957 

and this work remained under-reported until Arthur W. Burk collected his works 

on the ‘general theory of [complex] automata’ together in 1966 [10].  

 Von Neumann’s CA has 29-states and was explicitly designed to 

demonstrate the idea of a possibly useful CA (or rather a certain level of 

complexity) capable of self-reproduction. McMullin [11]  examines the importance 

of Von Neumann’s contribution to the area of self-reproductive automata, and 

indeed the enigmatical question of exactly why this interested him so. In 

McMullin’s 2000’s paper, he puts forth the idea that the self-reproductive 

elements Von Neumann’s designs are “trivial, though highly serendipitous” [11], 

in that Von Neumann was searching for what he calls “the evolutionary growth of 

complexity”. I.e. the question is how do machines construct other machines that 

are more ‘complex’, as we are aware occurs in biological machines (i.e. biological 

life seems to tend to evolve towards greater complexity). Whereas Von Neumann 

himself pointed out how it is obvious that most man made machines can only 

generally construct simpler machines, and are far less resistant to error. His idea 

was to investigate both the mechanical and computational power that biological 

evolution has endowed upon us humans.  

Von Neumann’s original construction can be viewed from a slightly different 

perspective; i.e. in the light of the Von Neumann architecture, the cellular space 

and state transition rule represent an abstract view of a complex emergent 

system based on local state transition rules and from another perspective an 

abstract model of the universe. Even global rules like gravity (which is the obvious 

example Burk uses as a rule based on the distance of two objects, i.e. is not 

locally driven) could plausibly be driven by local approximate rules, given some 

medium through which to communicate the information, in the case of gravity this 

is space itself. We must acknowledge that any model we create of the universe 

will have some element of approximation due to it being a model which is not at 
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the same resolution as the universe itself. By acknowledging this we know that 

our model will inevitably have some element of approximation. The base 

mathematical concept of Finite Volume Methods takes such a global rule as the 

conservation of mass and energy, and creates an approximate mathematical 

derivative of the partial differential equations, and in a similar way any rule we 

generate locally based on such global rules will have some element of 

approximation, which is covered later in this thesis. 

In Von Neumann’s original description he made great effort to ensure that 

the formulation of his state transition rule was not the source of the Turing 

complete computation capability, but that the state transition rule represents the 

laws of the abstract universe the cellular space creates [12]. However, in the time 

since his death other great minds have taken up the idea of the using the cellular 

space, and different state transition rules to investigate a number of different 

scientific fields. There are even countless variations including: irregular meshed 

CA [13] [14] [15], and heterogeneous CA [16] [17] where the state transition rule 

is different in different cells. However, this thesis focuses on just the ‘standard 

CA’ as it is already a large umbrella term. Lastly on the subject of the origin and 

purpose of CA, one of the classical neighbourhood patterns commonly used is 

attributed to Von Neumann due to the it’s use within the original 29-state CA he 

developed. 

 

 

 

 

Figure 2.1, Von Neumann Neighbourhood, attributed to the original 29-state 
Von Neumann Cellular Automaton. 

 
The next advance in the field of Cellular Automata was developed by John 

Conway with the publication of his initial study of the CA he called ‘The Game Of 

Life’ (GOL), in the 1970’s [4]. The GOL has only two states (dead – 0, and alive 

– 1), in a 2 dimensional infinite regular field of cells. The Moore neighbourhood is 

used which, similarly to the Von Neumann neighbourhood (Figure 2.1) only 

- Main Cell 

- Neighbouring Cell 
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includes cells within a radius of 1, however within the Moore neighbourhood 

interpretation the diagonal cells are included as shown in Figure 2.2. 

 

 

 

 

 

Figure 2.2, Moore Neighbourhood. 
 

The rule set for the game of life is originally described as follows: 

1. Survivals. Every cell with two or three neighbouring cells alive, survives until 

the next generation. 

2. Deaths. Every cell with four or more live neighbours dies from 

overpopulation. Every cell with one live neighbour or none dies from 

isolation. 

3. Births. Each dead cell with exactly three live neighbours (no more, no less), 

becomes alive in the next generation. 

Thus it can be determined what should happen when a cell is currently alive 

and how it transitions to dead, similarly it can be determined when a dead cell 

becomes alive, forming a complete state transition rule, for all configurations. 

Importantly due to the way that the state transition rule is based on the number 

of live cells within the neighbourhood, it is spatially uniform. These rules were 

carefully chosen by Conway via experimentation in order to produce interesting 

pattern development; and at this early point several observations of the global 

behaviour of the game of life were made, including the nature for apparently 

random patterns to emerge with a great level of complexity. However, many 

populations will converge to collections of “still lifes”, which either don’t change at 

all or oscillate back and forth between two states. The apparent emergence of 

very complex patterns from simple local rules pushed the study of CA forward 

greatly; with Conway offering a $50 reward for those persons who could prove 

the existence of an initial starting configuration which could go on expanding 

indefinitely. I.e. a “gun” which would produce “gliders”, which would then self-

- Neighbouring Cell 

- Main Cell 
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propagate themselves outwards; or a “puffer train” a configuration which would 

move and leave a trail of “smoke” behind” [4]. This prize was indeed won with the 

discovery of a continuous glider gun. Later the game of life was shown to be 

Turing complete in 1982 [18]. 

Although as described by McMullin [11] and others like Langton and 

Herman [19] who have tackled the specific problem Von Neumann faced of 

producing self-reproductive and Turing complete automata, the Game of Life 

allowed computer scientists to look at problems from a different angle. If such 

very simple state transition rules as the game of life can lead to such complex 

patterns and interactions (to the level of Turing completeness), then how can 

such simple rules lead to such complex behaviours, i.e. do all rules lead to such 

behaviour. This problem was tackled by Stephen Wolfram who developed a 

classification for cellular automata. 

In 1984 Stephen Wolfram, made an extensive study of 1D cellular automata 

in order to investigate the properties of the emergent patterns in space time [20] 

[5]; whereby he classify the behaviours into four distinct classes: 

1. Spatially homogenous, most patterns evolve quickly to a stable state with no 

change thereon. 

2. Sequence of simple stable or periodic structures. 

3. Chaotic aperiodic behaviour, nearly all patterns evolve in a pseudo-random 

way, and any stable structures are quickly destroyed by noise. 

4. Complicated localized structure, some propagating; this is the most 

interesting class which is capable of all the behaviours of the above classes 

and is thought to be capable of universal computation (Turing 

completeness). 

 

In fact, Wolfram likened these to the four forms of form language: 

1. Regular languages: no memory required. 

2. Context-free languages: memory arranged as a last-in, first-out stack. 

3. Context-sensitive languages: memory as large as input word required. 

4. Unrestricted languages: arbitrarily large memory required (general Turing 

machines) 

Logically also he deduces that if other rules sets can be Turing complete, 

then the famous ‘halting-problem’ should apply, such that for a given starting 

configuration it is impossible to determine if it will reach a stable conclusion in a 



  46 

finite time; of which the game of life is an example in 2D. At the same time as 

Wolfram studied the more mathematical and computer science (complex 

systems) elements of CA, Christopher Langton was studying their use further for 

the study of artificial life. 

As well as tackling the self-replication problems from different angles, 

Langton [19] looks at the deeper question, asked by Lehninger in a previous 

Biochemistry text: 

 “If living organisms are composed of molecules that are intrinsically 

inanimate, why is it that living matter differs so radically from non-living matter, 

which also consists of inanimate molecules? Why does the living organism 

appear to be more than sum of its inanimate parts? Philosophers once answered 

that living organisms are endowed with mysterious and divine life-force. But this 

doctrine, called vitalism, has been rejected by modern science, which seeks 

rational and, above all, testable explanations of natural phenomena. The basic 

goal of the science of biochemistry is to determine how the collections of 

inanimate molecules that constitute living organisms interact with each other to 

maintain and perpetuate the living state…” [19].  

This further brings the study of Cellular automata back toward that of the real 

world, and not just that of mathematics and computer science, but of underlying 

physics and chemistry of the real world. Indeed, Langton uses the idea that he is 

modelling ‘artificial molecules’ which are free to roam around in an “abstract 

computer space” and interact, by means of ‘virtual automata’. Langton performs 

an in-depth study of several different models of artificial life interactions, and 

concludes that  

“Cellular automata provide us with good artificial universes within which we can 

embed artificial molecules in the form of virtual automata. Since virtual automata 

have the computational capacity to fill many of the functional roles played by the 

primary biomolecules …” [19].  

Since these seminal works Cellular Automata have been used to model an 

enormous variety of different modelling purposes. 
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2.1.2 Applications 

There are a wide variety of scientific papers using CA models, for a large 

number of modelling uses and disciplines. These applications include but are not 

limited to: 

 Physics (Fluid/turbulent fluid flow [21] – lattice Boltzmann methods [2] [3] 

[22] [23] [24], reaction-diffusion [25] [26] [27], laser dynamics [28], 

magnetization [29], collision detection, fracture modelling [30]) 

 Chemistry/Biophysics (reaction-diffusion [31], artificial life) 

 Biology (system biology [32], cell simulation internal-chemical/reaction 

diffusing within an e-coli cell [31], groups of cells-Keratinocyte skin cells 

[33], cardiac tissue [34], artificial life/systems [35] [36], tumour cell 

growth, bacteria swarming, epidemiology [37], viral infection/epidemic 

spreading [38]) 

 Computer Science(image processing/visualisation [20] [35] [36] [37] [39] 

[40] [41], algorithmic study/benchmarking [24] [21] [38] [33] [37] [42] [43] 

[44] [45] [46] [47] [48], cellular programming/GA/GP-classification [43] 

[49] [50], cognitive science [51], cryptography [38], computer graphics 

and animation, distributed computing [27]) 

 Geography/Environmental sciences (population movements/dynamics 

[38] [52], land uses/deforestation [53] [46] [54], forest-fires [38], wildfires 

[55]) 

 Engineering (wet chemical etching [40], designing hardware (FPGA) to 

run CA, communications [38]) 

 Mathematics [5] 

 Hydroinformatics (fluid dynamics [24] [21] [49], sewer optimisation [56], 

pluvial flood modelling [57]) 

 Economics (stock markets [58] [59] [38]) 

This variety of applications demonstrates the wide applicability of CA 

models and in many cases illustrates that the discretisation of time and space for 

use with a CA model is able to provide results of acceptable accuracy with greater 

efficiency than traditional models. A number of these models will now be 

discussed, paying attention to how the state transition rules lead to the overall 

modelling behaviour, starting with a simpler rule set of the game of life [18], and 

leading on to more complex rules and behaviours. 

The game of life (GOL) state transition rule is remarkably simple, as has 

been demonstrated above (section 2.1.1). However this gives rise to an even 

greater variety of emergent behaviours in the form of small collections of live cells 

[25] [50]. Such behaviours as ‘static lifes’ or ‘still lifes’ which either tend to remain 
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completely static or oscillate back and forth between two states while remaining 

still in the cellular space; examples include the ‘blinker’ (oscillates with a period 

of 2 iterations) and ‘block’(a still life) (shown in Figure 2.3). 

 

 

 

 

Figure 2.3, A ‘still life’ (Block shown left), and an oscillating life (Blinker shown 
middle and right). 

 
The ‘Glider’ is another important form of emergent life, which has the 

property of moving through the cellular space; or from another point of view it 

doesn’t move but rather through its period it recreates a new version of itself in a 

new position, having destroyed the original version. Shown below is the most 

famous of these discovered in the game of life, known as ‘The glider’ (Shown in 

Figure 2.4). 

 

 

 

 

Figure 2.4, A South-East aligned Glider, Showing the 5 steps required to move 
the entire glider one step [50]. 

 
These emergent behaviours can be observed at various levels; indeed 

using the knowledge of some of the more basic life-forms, it is possible to 

construct basic logic gate circuits within the cellular space [50]. All this richness 

in global behaviour is created from the interaction in space and time of a very 

simple finite state automaton (Shown in Figure 2.5) 

Block   Blinker ( 1 )           Blinker ( 2 ) 

 

      1   2     3        4   5 
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Figure 2.5, The finite state automaton representation of the game of life state 
transition rule [50]. 

 
Figure 2.5 demonstrates that the state transition rules may be represented 

in a number of forms; so long as the rule is able to create a new state for the main 

cell based on the states of the neighbouring cells. The GOL rule set requires that 

the number of live neighbour cells is counted, in order that the finite state 

automaton is able to produce the new state of the main cell. It is this element of 

counting the neighbouring cell which maintains the uniformity of both the local 

rule and global behaviours (for example the same glider behaviour seen in Figure 

2.4 can be created in all four diagonal directions). 

Stephen Wolfram uses another interesting rule set variation [60], whereby 

every possible combination/configuration of the main and neighbouring cells is 

given either a value for the new state (which is either 0 or 1); thus a binary string 

is created (and more easily read by humans as an integer number). Known as a 

full look-up table, as the state transition rule no longer needs to count the total 

live neighbouring cells, it simply determines which configuration within the table 

matches the current configuration and looks-up the resulting main cell’s new 

state. Such a method does not necessarily preserve the uniformity of the given 

rule sets if they are varied. However, either method preserves the fact that the 

state transition rule is completely deterministic, in that for every configuration of 

the main and neighbouring cells, there is a corresponding new state for the main 

cell and it is always the same resulting new state. 

In 1986 Christopher Langton developed an interesting rule set; which can 

be viewed as either a Cellular Automaton, or as 2-dimensional Turing Machine 
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[19] [61]; whereby we imagine that at least one virtual-ant (vant) is placed within 

the cellular space, and this vant has current direction (North, South, East or 

West), and all cells have one of two states (known as to-left and to-right). 

Obviously if we are to view this system as a cellular automaton then we need one 

single local rule which takes into account the interactions of the vant with the 

other cells; thus we can create what Langton calls a Virtual State Machine (VSM). 

It is the VSM that represents the global behaviours of the vant in the local 

neighbourhood, and represents the concept of the vant moving through the 

system. Langton’s Ant rule provides a variation to the Game of life. In the Game 

of Life, the movement of collections of cells is not directly encoded within the local 

state transition rule, while in Langton’s Ant rule set the vant’s movement is clearly 

written into the local rule. However, if we view the movement/change in the global 

pattern (i.e. movement of the trail left by vant’s) these elements of movement are 

an emergent behaviour. It is possible to use knowledge of how the vant moves 

through the system, and move/alter the trails in order to construct circuits and 

logic gates within the cellular space. Using this we are able to construct a system 

which can simulate the functions of a Turing machine and is therefore capable of 

universal computation. If we assume there is only ever one vant within the 

simulation then we would only require a 10 state system, 2 non vant states, and 

8 states of the vant (two different states of the underlying system multiplied by 

the four possible vant directions). In this way Langton has created a local state 

transition rule which at each turn destroys the vant in its current position and 

knows which cell should receive the new vant. This would generate a uniform 

local state transition rule, which would be able to receive the vant from any 

direction dependent on its current state. 

An important CA rule set used for hydrodynamics is the lattice-gas or Lattice 

Boltzmann model. These models have been well studied, and are based on 

modelling the convection movements within incompressible gases or liquids. 

Frisch et. al. [2] discuss how a Lattice-gas system is modelled by placing particles 

of unit mass and unit speed upon the grid, and having these particles moving 

between cells in the directions of the lattice. No more than one particle is to be 

found at a given time and node (as shown in Figure 2.6 taken from Frisch [2]). 

Such systems, model the universe at the level of particles, and use simple 

deterministic collision rules which will conserve mass and momentum. These are 
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performed in two stages; firstly, the collision stage using simple bitwise states to 

indicate the direction, and the second step is one of propagation. 

 

Figure 2.6, The Hardy-Pomeau-Pazzis (HPP) model. The black arrows are for 
cell-occupation. In (a) and (b) the lattice is shown at two successive times 

(taken from Frisch et. al. [2]). 
 

 

 

 

 

 

 

More commonly, it has been found more effective to use a hexagonal grid, 

due to the fact that energy would be conserved within each column and row of a 

square grid, causing a less realistic spread of particles (Shown in Figure 2.7). 

Shown in Figure 2.9 and Figure 2.10, are the simple deterministic collision rules 

for the system. 
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Figure 2.7, The Frisch-Hasslacher-Pomeau (FHP) model with binary head-on 
and triple collisions at two successive times. (Frisch et. al. [2]). 

 

In actual fact as it is the vertices of the hexagonal grid upon which the 

particles sit and move, it is actually a triangular mesh used; as shown by Szkoda 

et. al. [21] in Figure 2.8. 

 

Figure 2.8, Szkoda et. al.’s method for creating a triangular (a) lattice our of 
regular lattice by shifting every second row by half the lattice constant (b) [21]. 
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Figure 2.9, Collisions rules for the FHP Cellular Automata system [21]. 
 

 

Figure 2.10, The state of each node is represented by an 8-bit word. Bits 0-5 
mapped into particles with given non-zero velocities, bit 6 corresponds to a 
particle at rest and but 7 controls whether the node is a boundary node [21]. 

 

Considering a simple incompressible fluid within a regular square lattice, 

and using the von Neumann neighbourhood, assume gravity drives the water 

level down to a median level, and friction stops the majority of the effects of 

momentum on a flat terrain. In this case, the rule set is very simple, in that water 

levels within the neighbourhood can be averaged out (mean) to produce the new 

water level. 

While this can produce some very elegant global reactions, it has two major 

drawbacks in that it can only operate within a flat terrain, and operates at a fix 

rate with little to no reference to real world simulation time. 

2.1.3 Urban flood modelling 

The physics of fluid dynamics are well understood, where the Navier-Stokes 

Equations [3] describe the movements of incompressible liquids such as water, 

known as the Shallow Water Equations (SWE). These equations are partial 

differential equations which preserve the volume, momentum/energy of the 

system. However, solving such equations requires large amounts of 

computational power as the Navier-stokes equations do not describe the 
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movements at any particular point, but rather the preservations of volume and 

energy across the system. 

With the increase of urban creep, whereby cities tend to grow and the 

amount of impervious ground is enlarged, city planners, their residents and 

planners face increasing challenges with flooding. Also with more volatile and 

uncertain weather conditions, further increases the problems for engineers in the 

design of cities and their sewer networks. In order to design better cities, sewer 

systems and other Sustainable Urban Drainage System (SUDS), and in order to 

test such system under many conditions before the expensive process of 

construction, many simplified modelling systems have been created. Due to the 

need to produce high detail models, and varying conditions such as different 

weather inputs, and different engineering solutions to high risk flooding areas, or 

early warning systems, simplified 2D models are generally used [62] [1]. 

The UK Environment Agency, along with the water companies are 

responsible for maintaining public water ways and sewer systems in the UK. In 

this capacity they have benchmark tested a number of state of the art modelling 

packages including ANUGA, Flowroute-i, InfoWorks ICM, ISIS 2D, ISIS2D GPU, 

JFLOW+, MIKE FLOOD, SOBEL, TUFLOW, TUFLOW GPU, TUFLOW FV and 

UIM [1]. These packages which use simplified equations, which have been 

grouped in to three categories: 

1. LISFLOOD-FP and RLSM EDA, which solve a version of the SWE 

neglecting the advective acceleration term (referred to as ‘3-term’ 

models) 

2. ISIS Fast Dynamic, which utilizes Manning’s uniform flow law and 

UIM which solves the SWE without the acceleration terms (referred 

to as ‘2-term’ models) 

3. ISIS Fast and RFSM direct, which are based mainly on continuity and 

topographic connective, and therefore predict only a ‘final’ state of 

inundation, that is, there are no variations in time ( referred to as ‘0-

term’ models) [1] 

The majority of these models use a 2D storage cell system based on a 

regular raster grid. Due to the simplification of the full SWE equations used by 
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many modern models, they form a good approximation of the models using the 

full equation, with much less computational complexity. Processing times are 

increasingly important for large spatial scale problems (large extent, fine grain 

resolutions, or even large numbers of simulations), while maintaining reasonable 

accuracy. In recent years a shift towards localised and even CA models has been 

proposed to reduce the computational complexity further still. 

The models studied in this thesis, are 2D non-inertia models, where UIM 

[62] and the Hunter [63]/Bates [64] models are based on the Saint Venant 

equations in which the inertial terms are neglected by the assumption that the 

acceleration terms of the water flow on the land surface are relatively small 

compared with gravity and friction terms [65]. 

2.1.4 CA for Urban flood modelling 

Open Channel systems, are examples of continuous CA, which represent 

the state as a floating point/real value. Open Channel system represent water 

depths within each cell, also a terrain height is often stored, where the water 

volume sits on top of the simulated terrain (Shown in Figure 2.11). The terrain 

levels are fixed and do not change during a simulation, but the water depths and 

levels change over time.  

 

 

Figure 2.11, Side view a cell represented by the continuous values terrain level, 
and water depth, which summed together equal the water level, stored within 

each cell of an open channel CA system. 
 

The global physics of water are well understood, using the Navier-Stokes 

equations, which preserve the mass, momentum and energy within a system. 

Open Channel CA simplify this approach by preserving mass locally and 

therefore globally, and assuming that gravity drives most of the movement, while 

friction negates most of the effects of conservations of energy/momentum. These 

are the CA systems which are investigated in more detail, and later in this thesis 

used for experimentation. 

Water Depth 

Terrain Level 
Water Level 
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 CA systems use a similar two stage system to the Lattice-gas models and 

must first establish the outflows from a cell in the four orthogonal directions; i.e. 

using the Von Neumann Neighbourhood, as shown in Figure 2.12 and Figure 

2.13. 

 

Figure 2.12, Demonstrates how the outflows are calculated within the Cellular 
Automata system, between the main cell and each neighbour of the Von 

Neumann neighbourhood. Centrally showing a side view of the terrain and 
water levels of the selected two cells, and a plan view of the neighbour on the 

right. 
 

As is common to most known Open Channel CA, they make the basic 

assumption that the water can only flow from the cell with the higher surface Level 

to cell with the lower water surface level, which establishes the direction of flow 

(also assuming momentum is largely negated by frictional forces). In order to 

balance the water volume, the model only calculates outflows from each main 

cell to its neighbours, as those neighbours where the water level is higher, will 

themselves create an outflow to this main cell. The total amount of water leaving 

a cell in up to all four directions cannot be allowed to exceed the volume of water 

within the main cell otherwise volumes will be created and/or destroyed across 

the grid. Therefore a two stage system is utilised where in the first stage all the 

cells established outflows to all the necessary neighbours, as shown in Figure 

2.13. A second stage then removes outflows from the current water level, while 

adding inflows from other cells and in doing so balances the water mass across 

the grid while allowing for lateral and horizontal movement of water. 

 



  57 

 

Figure 2.13, The two stages of the CA flood system. Stage 1 for every pair of 
cells an outflow is calculated, stage 2 every cell updates water depths by means 

subtracting outflows and adding inflows. 
 

This kind of two stage CA system is rather different from most previous 

models but maintains the key elements of local state transition rules, which are 

uniform in each direction. They are also complete in that they provide an output 

for every possible input. However, this is in the form an equation commonly 

representing the flow rate from one upstream cell to another. In the following 

sections a number of key open-channel systems are investigated. 

2.1.4.1 Dottori and Todini technique 

A key example of this kind of Open Channel CA is that of Dottori and Todini 

[66], as they use a very direct method of calculating the outflows from each cell 

to its neighbouring cells. As has become a common approach with open channel 

techniques, the Manning’s formula is utilised (Equation 2.1), which can calculate 

the flow in an open channel such as a river for example. The Manning’s formula 

only calculates the flow rates, and needs to be coupled with the discharge formula, 

shown in Equation 2.2, in order to calculate the volume of water transferred in the 

given time step. 

Equation 2.1    V =  
1

n
R

2

3S
1

2 

Equation 2.2    Q = VAT 

The Manning’s formula is shown in Equation 2.1; Where V represents the 

volume metric flow rate, n is the Manning’s frictional coefficient, R is the hydraulic 
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radius, and S is the hydraulic gradient. The discharge formula is then used to 

calculate the volume of water transferred, shown in Equation 2.2. Where Q is the 

transfer volume, A is the cross-sectional area of flow, and T is the amount of time 

at this flow rate. The hydraulic radius (R) interpretation differs from the Ghimire 

[65], Dottori and Todini [66], and Bates [64] methods; and the hydraulic gradient 

(S) is the difference between the water levels divided by the distance between 

the centroids of the cells (which in a regular grid is the cell size). The Dottori and 

Todini method uses the arithmetic mean between the main cell and the 

neighbouring cells depth, to calculate the hydraulic radius (R) in the Manning’s 

formula. They are unclear as to exactly how they control the flows when the total 

from one cell exceeds the volume present, saying: 

 “Every discharge calculation step includes a control on volumes; which 

avoids that the volume of water flowing out of a cell is greater than the sum of the 

volume stored in the cell itself and the incoming volumes from adjacent cells.” 

[66]. 

The system then proceeds to use two simple test cases to test the stability 

of the schema. Firstly, an open 1D channel of length 50km, and width 250m, and 

a slope of 10-4, and a Manning’s roughness factor of 0.05 m-1/3s. Using 3 different 

cell sizes, of 125mx250m, 250mx250m, and 500mx250m, Dottori and Todini test 

different spatial resolutions (notably by varying the longitudinal grid resolution). 

Their results are validated against the Hydraulic Engineering Centre (HEC), 

Hydraulic Reference Manual (HEC RAS). I.e. this is a well-known hydraulic test 

case. Table 2.1, shows their results, where they test at various time steps on 

each of the cell sizes. 

Table 2.1, Dottori and Todini results on the open 1D channel tests at various 
cell sizes, and time steps. Where an “N” indicates that the simulation produces 
significant oscillations on the solution, while “Y” indicates a stable solution. NC 

ts indicates the minimum time step computed by the Neumann condition 
(discussed later) [66]. 

 

Here in Table 2.2, Dottori and Todini note that “As expected, the reduction 

of cell size decreases the model stability, and vice versa; however, the accuracy 
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of the solution is not compromised by spatial discretisation until water level 

oscillation becomes significant ” (Shown in Table 2.2). This demonstrates how 

there is a relation between the cell size and the maximum time step, at which 

their schema is capable of operating. They use a common approach of calculating 

the RMSE (Root Mean Squared Error) of their model against their control model 

(HEC-RAS), and find the maximum to be well below 4cm. It is also noted that the 

control mode (HEC-RAS) uses the full De Saint Venant Equations. Processing of 

their simulation is performed in less than 4 seconds, showing the computational 

efficiency of the local schema. 

The second test case is that of horizontal plane, as they note “routing on a 

flat slope is a case in which hydraulic models may be more subjected to instability, 

particularly when flow velocity and water surface slope are reduced. Considering 

explicitly diffusive models like CA models, the two instability factors are the use 

of high resolution grids (cell sizes below 10m) and the presence of deep water 

stages.” [66]. They use a horizontal plane, at two grid resolutions of 10x10 cells 

of 20x20m size, and 20x20 with a 10x10m size. The water depths are set to 3m 

across the whole plane, with no subsequent incoming water. The water is drained 

via a weir located in one corner. They also noted that “such initial conditions are 

chosen because tests with incoming discharge have shown that the magnitude 

of oscillations seem to be only a function of the water stage and cells size” [66]. 

The results are shown in Table 2.2, and Figure 2.14. 

Table 2.2, Results for Dottori and Todini case 2, where a “N” indicates that the 
simulation produces significant oscillations on the solution, while “Y” indicates a 

stable solution. NC ts, indicates the minimum time step computed by the 
Neumann condition. 
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Figure 2.14, Dottori and Todini, case 2, water stages/depths computed by CA 
model after 30 minutes (left) and 1 hour (right) from simulation start. The outlet 

is located in the lower right corner. 
 

From Table 2.2, and Figure 2.14, it can be seen that the instability increases 

when increasing the time step or decreasing the cell size, and vice versa. They 

conclude that stability is primarily dependent on the spatial and temporal 

resolution, like other explicit models, and therefore a stability condition is required. 

They first consider the Von Neumann stability condition, shown in Equation 0.3 

[66]. Where ∆t is the minimum time step, and ∆𝑥 is the cell size, n is the manning 

roughness coeffiecnt, R is hydraulic radius and S is the hydraulic gradient. 

Equation 2.3   ∆𝑡 =
∆𝑥2

4
𝑚𝑖𝑛 ( 

2𝑛

𝑅5 3⁄ 𝑆
1

2)  

Importantly they note that the FLO2D model, based on the full shallow water 

equations, uses the Courant-levy-Friedrich (CLF) condition, shown in Equation 

2.3. 

Equation 2.4    ∆𝑡 = 𝐶∆𝑥/(𝑣) 

Where ∆t is the time step, C is a coefficient which depends on the adopted 

explicit algorithm, ∆x is the cell size, and v is the velocity (generally the largest 

within the grid); although Dottori and Todini note that the CFL condition is not 

suitable for CA models since the diffusive approximation needs more stringent 

conditions. However, it was found that the models maintained stability with 

greater time steps than those computed by the Neumann stability condition 

(Equation 2.4). 
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2.1.4.2 Ghimire et. al.’s technique 

The work by Ghimire et. al. [65] distributes the water from the main cell to 

the lowest downstream neighbour, before working its way up to the next most 

downstream neighbour until the water levels are matched, or all the water of the 

main cell flows out to the downstream neighbours (as shown in Figure 2.15, taken 

from [65]). They then use the Manning’s formula to establish how much time has 

passed given the largest flows (both within each neighbourhood and then globally 

across the grid), thus allowing it to adapt the time step to the flow conditions. The 

method uses the water depth within the main cell as the hydraulic radius (R) 

within the Manning’s formula. The authors found it necessary to use a relaxation 

parameter in order to stop excessive oscillations from occurring as it over-shot in 

some areas, by trying to go at the maximum limits of the CFL condition. 

 

Figure 2.15, Ghimire CA flooding state transition rule: (a) Cells ordered in NH 
according to their ranks;L1-L4 are layers of free spaces between the water 

levels of the two cells that area available within NH for water distribution, the 
numbers shown are cell ranks. In this diagram the ground level for each cell is 
shown in dark grey and the water level light grey, (b) an example of the outflow 
fluxes (shown by arrows) from the central cell having rank 3 to its neighbouring 

cells [65]. 
 

They then employ a hypothetical terrain for testing, consisting of 30 x 20 

cells, at a 50m resolution; “The terrain consists of both forward and reverse 

slopes of 0.2%. It also has a lateral slope of 0.1 toward the outlet”, where the 

outlet was removed for consistency (Shown in Figure 2.16). A roughness factor 



  62 

0.01n is applied across the terrain, and a rain fall of 20mm/h for the first hour of 

the simulation is used as input for the water depths. 

 

Figure 2.16, Hypothetical ‘Hill and Pond’ terrain, and given test points; taken 
from Ghimire et. al. [65].  

 

The Ghimire rule set represents a truer CA approach in that the rule set for 

establishing outflows is based on the neighbouring values, as opposed to a 

formula between a pair of cells replicated for each neighbour. However, it then 

only uses the downhill neighbours, and calculates the outflows for each edge in 

a similar 2 stage system to the Dottori and Todini technique. Ghimire et. al. do 

use a novel ranking (or ordering) system to establish outflows within their rule set. 

Shown in Figure 2.17 are the results of the of the Ghimire et. al. [65] model 

compared to the UIM model [62] on the Hill and Pond test case. This test case is 

later used for training and validation in Chapter 4:.  
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Figure 2.17, Resulting water depths using UIM and the Ghimire et. al. rule [65] 
at the (a) pond,(b) left of crest, (c) right of crest, and (d) crest points of the 

hypothetical ‘Hill and Pond’ terrain, and given test point. 
 

It is noted that the results shown in Figure 2.17 are using a 0.7 relaxation 

parameter setting. It should also be noted that they [65] use a capped version of 

the Manning’s formula in their time step calculations. Ghimire et. al., also use a 

real world test case, with a 2m resolution, Keighley from the UK, to test the rule 

set (shown in Figure 2.18), Consisting of 377 x 269 cells. 

 

Figure 2.18. Stockbridge Keighley terrain, with sample points 1-6 drawn [65]. 
 

The abstract shape of the terrain is represented by using an encompassing 

regular terrain and ‘no data’ cells where the terrain extent is not covered. The 
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resulting comparisons of the water depths for the rule set on the Keighley test 

case are shown in Figure 2.19, for the 6 test points. 

 

Figure 2.19, Resulting water depths from UIM and the Ghimire rule set, for the 6 
test points of the Keighley test case [65]. 

 

The results from Figure 2.17 and Figure 2.19, show there is certainly a 

degree of variation between the models, however the general trends are also 

certainly followed. In order to calculate the time step that generates a stable 

simulation the authors use the CFL condition, in a slightly different form to that of 

Equation 2.3, shown in Equation 2.4. Although the use of a relaxation parameter 

within the main rule set, means that the entire process can be scaled back for a 

particular amount for a particular simulation, and they conclude that a method is 

require for the automatic calibration of this relaxation parameter (α).  

Equation 2.5    ∆𝑡 = 𝛼∆𝑥/𝑣 

2.1.4.3 Hunter and Bates et. al.’s technique 

First established by Hunter et. al. in 2005 [63], then advanced by Bates et. 

al. 2010 [64] this method functions by firstly simplifying the Manning’s formula 
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and discharge formula together and separating out the time step element (shown 

in Equation 2.6). I.e. the volume transfer rate is calculated. 

Equation 2.6    𝑄 =  
1

𝑛
𝑅

5

3𝑆
1

2∆𝑦 

They also use the difference between the water level (free surface height) 

in the main cell, and the highest of the two terrain levels between the main and 

neighbouring cell, to calculate the hydraulic radius (R). This key element ensures 

that where the water level of the main cell is higher, but the terrain level of the 

main cell is lower than the neighbouring cell (as shown in Figure 2.20), then water 

is only allowed to flow through the smaller area. The hydraulic radius (R) has 

been calculated as the entire water depth of the main cell (Ghimire), or the mean 

of the two cell water depths (Dottori and Todini). 

 

 

 

 

Figure 2.20, A pair of cells, where the left cell is the main outflowing cell, as it 
has the higher water level. However, terrain level of the main (left) cell is lower 
than that of the cell it is outflowing to. It makes sense that water between the 

dotted line and terrain level of left cell, shouldn’t be included in outflow 
calculations, as it is the higher water level that drives the outflow. 

 

The area of outflow (A), which is the cell size, multiplied by the outflowing 

depth, is factored into the Manning’s formula leaving just the time step outside 

(shown in Equation 2.6). Notably the hydraulic radius in this formula is raised to 

the power of 5/3, as opposed to 2/3 in previous techniques, which would then 

multiply by the outflowing depth (which is equivalent to the hydraulic radius). 

Having then multiplied by the cell size, the outflow area (A) from the discharge 

formula is completely factored into this single formula, leaving the time step as 

an independent variable. Apart from the change to the hydraulic radius (R) 

interpretation in the above techniques, these changes only constitute 

mathematical simplification and manipulation. 

Outflow Depth 
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However, Hunter and Bates et. al., develop a key technique for limiting the 

flow rates, by considering the physical limitations of applying the Manning’s 

formula to such a CA system. That is, the Manning’s formula calculates a flow 

rate (or velocity per unit area) in the given lateral direction across the grid, 

however when this is combined with an especially large time step, the flow 

according to the Manning’s formula will cover a range greater than that of next 

cell (neighbourhood radius), as shown in Figure 2.21. As it is not possible for 

water to move further than a radius of single neighbourhood within a single 

iteration, then these excessive flows cause an incorrectly large water level in the 

next cell in the next iterations, as opposed to correctly flowing further laterally. 

This in turn cause the false diffusion effect shown in Figure 2.22, whereby even 

one incorrectly large flow causes feedback that spread across the simulation 

destroying its overall quality. 

 

 

 

Figure 2.21, Demonstrates what the physics of the flow rate means, i.e. that 
water will perturb through the given area, by multiplying the time at that flow 
rate, finds the distance of flow. Effectively the entire block of water is seen to 

have the given velocity. 
 

 

 

 

 

 

 

 

Outflow Direction 
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This also occurs when the water levels are very similar, as is shown by 

Hunter & Bates [63] work in Figure 2.22.  

 

Figure 2.22, Illustration of the chequerboard oscillations between two adjacent 
cells [63]. (a) At end of time step t, the level in the cell i, j has for the first time 

risen above that of cell i-1,j. (b) At the end of the time step t + ∆t, the discharge 
from i,j to i-1,j, should be equal to zero as the levels in each cell are equal. (c) 
However, an oscillation begins to develop as a result of the low free surface 
gradient between the two cells. (d) The erroneously high flow causes a back 

flow at t + 2∆t. 
 

Therefore Hunter and Bates, develop a flow limiter to ensure that the flow 

does not ‘over’ or ‘undershoot’, and is a function of flow depth, grid cell size and 

time step (Shown in Figure 2.23). 

 

Figure 2.23, Flow limiter formula, used by Hunter and Bates et. al. where the 
flow rates are first calculated by the Manning’s formula (Shown in Equation 0.6), 

then the minimum between the above and that outflow is calculated [63].. 
 

Hunter and Bates note that “This limiter replaces fluxes calculated using 

Manning’s equation with values dependant on model parameters, and hence 

when the flow limiter is in use floodplain flows are sensitive to grid cell size and 

time step, and insensitive to Manning’s n.” [63]. While they note there is still a 

stability issue with small cell sizes, and/or high time steps; stability is increased 

over that of previous works by a factor of 2, and the Hunter-Bates rule set with 

the flow limitation uses the Von Neumann stability condition shown in Figure 2.24. 

This operates at much higher time steps than previous formulations. 
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Figure 2.24, Hunter and Bates et. al. formulation of the Von Neumann stability 
condition, which the minimum flow in the neighbourhood, and the square of the 

cell size to calculate the time step for stability. 
 

2.1.5 Conclusion 

This section has studied the applications and science behind Cellular 

Automata. There are many different applications of CA, for a wide variety of fields 

of study and modelling environments. There is an even greater variety of methods 

for the definition of the state transition rules, however the majority of rule sets and 

methods for defining variable rule sets are explicitly designed to ensure that 

provide the same result given the same input from different directions (referred 

to as uniformity to direction). The design of the state transition rule is highly 

dependent on each application. 

While limitations and approximations of the systems exist, overall CA are 

seen as a good modelling system. The models investigated in this thesis are 

limited to non-inertia models, being based on the Saint Venant equations in which 

the inertial terms are neglected by the assumption that the acceleration terms of 

water flow on land surfaces are relatively small compared with gravity and 

frictional terms [65]. CA are included amongst these 2D non-inertia models and 

are shown to be capable of making a reasonably good approximation of actual 

flow patterns. Due to the local nature of the CA, there is a limiting factor for the 

maximum flow rate, as flows can only propagate across a single cell within a 

single iteration (known as light speed within CA). Excessive flows have been 

shown to cause large oscillations, which destroy the quality of the overall 

simulation. A number of flow limiters have been created however there remains 

a relation between the maximum time step, the cell size, and the flow rates. Within 

these limitations CAs can offer a good approximation of the global mechanics of 

fluid dynamics while using a local state transition rule to drive the system. By 

using a locally driven rule, simulation can be performed in a much less 

computationally complex framework. Furthermore, CA and such locally driven 
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systems are inherently parallel, which may make good use of modern hardware 

to further speed up the production of reasonably good simulations. 

2.2 Genetic Programming 

2.2.1 Introduction 

Genetic Programming (GP) first used by J Koza [6] [7] is an evolutionary 

algorithm which uniquely operates on a variable sized chromosome, commonly 

in a tree structure. The algorithm maintains a population of candidate solutions, 

with each tested to establish a fitness score, where fitness is calculated by testing 

each candidate solution and finding its error compared to some given model. 

Fitter candidate rules are selected stochastically, taking into account the fitness 

of the solution, for example by using fitness proportionate roulette selection or 

tournament selection. The selected candidates then have genetic operators 

applied upon them, such as crossover and mutation. A given set of operators and 

terminal values are used in the tree structure, with some operators such as 

division needing protection from spurious inputs (e.g. divide by zero).  

The umbrella term of Genetic Programming covers most techniques that 

evolve computer programs and there are many different varieties of GP including: 

Cartesian GP [67] [68], Linear GP [69] [70] [71] where linear GP also Includes 

Multi-Expression Programming (MEP), Gene Expression Programming (GEP) 

and Grammatical Evolution (GE) [72]. However, with the ‘standard’ Koza style 

GP the key element is that they operate upon a tree structure (or program, as 

they too can be represented as an abstract syntax tree). A program that is a list 

of instructions may be viewed as a tree structure, or a basic mathematical formula 

(as shown in Figure 2.25, [73] which shows the GP parse tree for Equation 2.7). 

Equation 2.7     (𝑥 ∗ 𝑥) + 2 
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Figure 2.25, A very basic GP parse tree for Equation 2.7. 
 

The key underlying idea, and variation between Genetic Algorithm (GA) and 

Genetic Programming, is they will operate upon/represent a variable size of 

chromosome. The tree structure is ideal for representing logical groupings (or 

nested groups) of functions and operators (sub-formulae), which in the case of 

Equation 2.7, might be the (𝑥 ∗ 𝑥)  element/sub-tree. The reason for this 

representation is primarily to allow for cross-over of two different sized 

chromosomes. While GA and EA produce a static sized chromosome which tends 

to require further interpretation, GP produces a variable program or formula. 

Where machine learning techniques such as an Artificial Neural Network use a 

fixed number of hidden units and can only match a certain degree of polynomial, 

GP can express both a very simple formula and a very complex one, which allows 

for a lot more freedom of movement within the search space. 

Crossover in GA and EA is easily performed because the two parent 

chromosomes will be of the same length. They can therefore be aligned easily 

and equal amounts of material can be exchanged. This will either be a multi-point 

crossover or a single point crossover, where genes are taken from one parent 

chromosome up until one of these locus points, and then genes are taken from 

the alternate parent until the next locus point (a 2 point cross-over of linear 

chromosomes of the same size is shown in Figure 2.26). Often GA systems will 

use a probability of selecting a gene from either particular parent. However, GP 

has variable length chromosomes, and so these simple forms of cross-over are 

not so easily executed.  
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Figure 2.26, 2-point cross-over of same sized linear chromosomes, commonly 
used in EA and GA systems. 

 

To tackle this, Koza developed the sub-tree crossover system as shown in 

Figure 2.27, whereby a sub-tree is selected from both parent trees, and both 

entire sub-trees are exchanged between the position where the former sat in the 

opposite parent tree. This is analogous to the 2-point cross-over shown in Figure 

2.27, in that a block of one parent is exchanged with a continuous block from the 

other parent. However, a major difference is that the locations of the blocks of 

code can change, and therefore so can their form and function.  

 

 

 

 

 

 

Figure 2.27, Sub-tree cross-over in GP, two different sub-trees are selected 
from the two parent trees, and exchanged to create the new off-spring tree [74]. 

 

Due to the tree structure, expressions are commonly expressed in reverse 

Polish notation, for example using languages like LISP. An example LISP 

expression is shown in Figure 2.28, demonstrating how more complex formulae 

can be composed, and commonly 2-3 branch nodes are used. 
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Figure 2.28, A parse tree for the list for the LISP S-expression (+ 1 2 (IF (> 

TIME 10) 3 4)) depicted as rooted, point-labelled tree with ordered 

branches [6]. 
 

A key problem with having a variable sized chromosome in GP is what is 

known as ‘program bloat’ [75] [76] [77] [78] [79] [80]. It is commonly thought that, 

expanding volumes of ‘junk’ code which does not affect the individual GP tree’s 

performance (sometimes using the biology analogy “introns”) [81], causes the 

bloat. Experiments by Langdon and Poli [81] on dynamic fitness cases, find that 

large penalties do not affect program bloat. Often an upper cap is placed upon 

the number of nodes (branch and terminal/leaf nodes) or the depth of the tree. 

[82] 

Genetic Programming is a relatively new field, with its first conception in the 

early 1990’s by Koza, however it does extend the relatively well established fields 

of evolutionary algorithms, and machine learning. As shown by a recent 

community survey (2013) [83], there are a wide variety of GP application domains 

(shown in Table 2.3). 
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2.2.2 Applications 

Table 2.3, Problem domains used in EuroGP and GECCO GP track papers 
2009-2012, from the ‘Better GO benchmarks: community survey results and 

proposals’ [83] . 
 

 

 
Technically GP could be applied to many more machine learning 

applications/problems, as at its core is the idea of being able to evolve entire 

computer programs. However, as it is a relatively new field, there is still much 

research to be done to fully understand the field. Therefore, researchers perhaps 

more often opt for ‘better understood’ machine learning algorithms. It is clear from 

Table 2.3, that a large number of applications are concentrated on symbolic 

regression problems. This is due to a number of factors, firstly the fact that unlike 

other machine algorithms (e.g. Artificial Neural Networks (ANN)), GP produces a 

human-readable formula. Secondly by limiting GP to operating without loops or 

recursion (such as mathematical formula, as shown in Figure 2.25 and Figure 

2.28), there is no need to tackle the halting problem. I.e. a GP with forms of 

memory, and/or capable of looping, could either take a very long to time to come 

to its conclusion, or never stop.  

The third reason for symbolic regression GP application volume seen in 

Table 2.3 is possible due to the ease with which data can be produced and tested. 
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Classification and Boolean application figures seen in Table 2.3 are probably 

explained by similar reasons to those of symbolic regression. Whereas path 

finding and planning demonstrates how the tree structure lends itself to these 

kinds of problems.  

Table 2.4, ‘Better GP benchmarks: community survey results and proposals’ 
[83] A proposed blacklist of benchmark problems. 

 

 

 
Table 2.4, ‘Better GP benchmarks: community survey results and proposals’ 

A proposed blacklist of benchmark problems. shows a number of problems the 

GP community has suggested for ‘blacklisting’, due to fact that many of these 

problems are simply “too easy” [83] for GP, or rather GP is known to lend itself to 

solving these problems easily. A number of more complex problems are 

suggested, including multiple output multipliers to replace parity and multiplexers 

and more complex classifiers and planning and control applications including 

Mario gameplay and physical TSP (Traveling Salesman Problem). Also the 

community begins to establish some benchmarks for the symbolic regression 

cases, which are shown in Table 2.5. 
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Table 2.5, ‘Better GP benchmarks: community survey results and proposals’ 
[83] A list of proposed benchmark problems for symbolic regression for GP. In 

the training and testing sets, U[a,b,c] is c uniform random samples drawn from a 
to b, inclusive, E[a,b,c] is a grid of points spaced with an interval of c, from a to 

b inclusive. 

 

 
The problems suggested in Table 2.5, show a minimum amount of 

complexity for which GP should be applied, as well as demonstrating how GP 

tends to be trained and tested on similar ranges. GP searches multiple levels of 

complexity by combining (stringing together or nesting) relatively simple 

mathematical operations and terminal values (static values and variables), and 

therefore should be applied to reasonable level of complexity for the target 

formula. 

In a recent paper titled ‘open issues in genetic programming’ [84], they again 

confirm that “GP has not reached the popularity of other machine learning 

methods. At the current time, GP does not seem to be universally recognized as 

a mainstream and trusted problem solving strategy, despite the fact that in the 

last decade GP has been shown to outperform some of these methods in main 

important applications” [84]. However, there is room for optimism, as GP has 

been accepted in platforms like MatLab, and Mathematica. Also GP has been 

shown to be capable of solving real-world problems, and demonstrating routine 

human competitiveness.  
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The research field of GP has a number of open issues identified, including 

[84]: 

 Identifying appropriate representation for GP 

There are a number of different representations besides the standard pre-

dominant tree-based form popularised by Koza, including binary string machine 

code, finite state automata, and generative grammatical encodings. Other 

representations include graphs, strongly-typed, linear, linear-trees, and linear-

graph [84].  

 Fitness landscapes and problem difficulty in GP 

The choice of genetic operators and fitness functions will have a large sway on 

how the GP is capable of learning the given system. More research is required in 

order to establish the links between types of fitness functions, and different 

operator sets, and performance of GP. 

 Static versus dynamic problems 

Given that natural evolution is only really concerned with the survival and 

reproduction of species, the challenges that are presented for each individual’s 

survival tends to be fairly different. It is currently thought that more dynamic test 

environments for the GP training would result in greater diversity and perhaps 

better generalisation (i.e. increased adaptiveness of individuals) [84]. 

 The influence of biology on GP 

The fields of evolutionary computation and GP have two main goals, firstly to 

reverse engineer or rather come to understand the mechanics of natural evolution 

better. Secondly to harness and understand the mechanics/algorithms of natural 

evolution such that they can be applied to other problem areas [84]. 

 Open-ended evolution in GP 

Stemming from work by Von Neumann and Turing, and others, is the idea of 

evolution with no clear goal. Natural evolution appears to have no clear fitness 

function, yet somehow the complexity of life forms has increased continually. 
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Recent work by Moore and co-workers [85], show the essential ingredients of 

open-ended evolution are (i) a dynamically changing fitness landscape, (ii) 

availability of co-evolutionary processes, (iii) search with continuously injected 

randomness [84]. 

 Generalisation in GP 

How to ensure that the evolved GP have good properties of generalisation (i.e. 

does not over fit the training data)? “A large amount of literature and of well-

established results exists concerning the issue of generalisation for many non-

evolutionary Machine Learning strategies” [84]. A common agreement of many 

researchers is the so called “minimum description length principle”, which states 

that the best model is the one that minimises the amount of information needed 

to encode it. However it has been noted in the aptly named paper “The role of 

Occam’s razor in knowledge discovery” [86] , that the above argument of 

minimum description length, should be taken with care as too much emphasis on 

minimising complexity can prevent the discovery of more complex yet more 

accurate solutions. It has also been suggested that bloat is related to over fitting, 

however recent work by Vanneschi et. al. (2009) [87] clearly shows that GP 

systems can be defined that bloat and do not over fit data, and vice versa. Thus, 

bloat and over fitting seem to be two different phenomena. 

 GP Benchmarks 

As GP is capable of solving such a wide range of problems, and in a wide variety 

of ways, some of the unique facets of GP mean that the community continues in 

very recent years to attempt to establish a better set of benchmark problems 

specifically for the GP field, as shown by [83].  

 GP and modularity 

Many modern high level computer languages have the concept of functions, and 

even nature begins to block groups of DNA together in to chromosomes. How 

can this kind of modularity be incorporated or even derived by the evolutionary 

system? The first attempts came through Koza’s [6] Automatically Defined 

Function (ADFs), although little study was done on the theoretical background. 

The first steps towards a theoretically motivated study of ADFs is probably 
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represented by [88], where an algorithm for the automatic discovery of building 

blocks in GP called ‘adaptive representation through learning’ is proposed. Linear 

GP has other ways to evolve modularity, by reusing contents of registers; memory 

in LGP can be considered a substitute for ADFs in tree-based GP [84]. 

2.2.3 Genetic Programming and Cellular Automata 

There have been a number of cases of the application of GP for the learning of 

CA state transition rules, although most of these studies do not use continuous 

CA, but most commonly the binary state CA or a similar low number of states. 

For example Andre & Koza discover a better than any known rule by means of 

genetic programming for the majority classification problem [89]. In this case a 1 

dimensional binary state CA is used, with a neighbourhood radius of 3, which 

allows for complex interactions of the rule sets. The problem is to create a rule 

set which will after a certain number of generations finds the state the majority of 

cells were in at the initial condition. It does this by means of altering the states of 

the cells, such that at the conclusion all cells have changed to the majority case. 

The resulting state transition rule is encoded as a 7x7 bit string of binary values, 

totalling a 149 bit string. The best evolved system results in an accuracy of 

82.326%, which exceeds that of any human designed rules. The number of test 

cases used for each fitness case is in the order of 106 to 107. 

Other examples of Genetic Programming in CA include [90], again Koza, 

although this time working on using 1D CA to produce pseudo-random 

sequences and using entropy as the fitness function. Koza in this paper states 

“The problem of designing a state-transition rule that, when it operates in each 

cell of the cellular space, produces a desired overall emergent behaviour is called 

the ‘inverse’ problem for Cellular Automata” [90]. 

The only sources of learning of continuous CA state transition rules, comes from 

the use of CA for image processing, often for edge detection [91]. However, such 

methods use Genetic Algorithms or EA, and use very simple state transition rules, 

where the optimisation is only calibrating the human created rule. 
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2.2.4 Alternatives to GP for learning CA state transition rules 

The majority of works that have used machine learning algorithms to 

develop CA state transition rules, use a genetic algorithm and tend to operate on 

binary state CA [92] [93] [94]. The majority of these tackle problems such as the 

majority task, as Andre & Koza [89] did with GP. GA is a good match for this sort 

of problem because of the binary state available to each cell, where there is a 

limited number of combinations at the neighbourhood level, and a binary gene 

may represent the resulting state of the main cell for each neighbourhood 

configuration. I.e. using a numbering system like Wolfram’s code [5], it is possible 

to represent easily every combination in a binary string.  

There are a number of CA which are used to model land uses and people 

movements, and a number of these methods use machine learning algorithms to 

calibrate a number of the model parameters [95]. The underlying mathematical 

framework for the state transition rules are developed by humans, but by allowing 

an element of calibration, such methods can easily learn an effective state 

transition rule. 

A number of other methods propose adaptive or self-programming state 

transition rules [96] [58] [53] , where the state transition rule learning is done 

during the evolution of the CA. The majority of these kinds of systems are 

developed for either stochastic or heterogeneous CA. 

Another interesting CA technique is the use of what is termed a Cellular 

Neural Network [36] [97] [98], whereby the state transition rule of the CA is a form 

of neural network (Shown in Figure 2.29). 

 

Figure 2.29, Neighbourhood for a Cellular Neural Network, where weighted and 
possibly even function based elements connect the main cell to each of the 

Moore neighbourhoods cells [36]. 
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Cellular Neural Networks are commonly used for image processing, due to 

their ability to represent a wide range of different graphics kernels, and the 

analogy with graphical filtering. They tend to use a very direct relation between 

the neighbouring cells and the new state, and may not be uniform, and they are 

not designed to represent complex functions between each cell. 

2.2.5 Conclusion 

Genetic Programming is capable of learning complex formulae, and has 

been shown to be capable of deriving state transition rules for simple CA systems. 

While there is a limited amount of work pertaining to the learning of state transition 

rules, the majority is aimed at either binary state CA or calibration of simple land 

use CA. A number of genetic algorithms have been applied to learning CA state 

transition rules, or their calibration and this has proven successful in a number of 

areas. Therefore, it appears reasonable to conclude that applying genetic 

programming to the learning of more complex continuous CA state transition rule 

should be able to derive rules with some success. Furthermore, GP is capable of 

producing human readable formula as the result of his optimisation, which may 

then be of use to human designers. 

2.3 GPGPU computing 

2.3.1 Introduction 

The Graphics Processing Unit (GPU) has in recent years become not just a 

powerful graphics engine, but also a highly parallel programmable processor, 

featuring peak arithmetic and memory bandwidth that substantially outpaces its 

CPU counterparts [99]. In fact in recent years, due to the heavy parallelism of the 

GPU hardware, their processing power (Giga Floating Point Operations Per 

Second, GFLOP/s), has increased at a greater rate than their CPU counter parts, 

as shown in Figure 2.30. 
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Figure 2.30, Theoretical maximum processing power (measured in Giga 
Floating Point Operations Per Second, GFLOP/s), between modern CPU and 

GPU, in both single and double precision [100]. 
 

Although CPU and GPU have become progressively more parallel in recent 

years, the number of independent cores within a CPU is dwarfed by those 

available in a GPU. This difference is exemplified by the differing terminology 

used for CPUs, multi-core computing, and GPUs many-core computing. This 

different terminology refers not just to the sheer number of cores within the GPU 

compared to the CPU, but also the way in which the CPU cores are more 

independent than GPU cores. 

In recent years, the GPU has been harnessed for more general purpose 

processing than solely graphics, and can be known as a GPGPU (General 

Purpose Graphics Processing Unit). By harnessing appropriately parallel 

algorithms, which fit the GPU’s radically different hardware, large increases in 

processing speed over than of a modern CPU can be gained [46] [48] [101] [23] 

[26]. 

A key attribute of both Cellular Automata and Genetic Programming, is the 

parallelism of the algorithms. Both CA and GP have different properties at an 

algorithm level and therefore different amounts of parallelism. The key 
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parameters of each algorithm, for example with CA the size of the grid (number 

of cells), number of iterations, complexity of the state transition rules, and 

neighbourhood size, will all have an effect of the level of parallelism of the 

algorithm. For GP the size of the tree which has to be parsed and the complexity 

of the operations and perhaps even some of the evolutionary parameter will have 

a play on the parallelism. The following observations were made in our paper ‘An 

investigation of the efficient implementation of cellular automata on multi-core 

CPU and GPU hardware’ [101], referring to existing literature on the properties of 

CA acceleration upon GPU hardware. 

2.3.2 Cellular Automata GPU computing 

There are few attempts in the literature to develop parallel CA algorithms 

and to investigate how exactly they will interact with many-core technologies. 

There are a number of examples of implementations which are discussed below; 

however, few of these investigate the spread of possible speed-ups, or how the 

variation of the CA’s base parameters (e.g. lattice size, number of generations, 

number of states/data types, neighbourhood sizes, or rule complexity) affects 

these speed ups.  

Recent approaches to the use of CPU and GPU computing to speed up CA 

execution include Lopez-Torres et. al. (2012) who used CA to simulate laser 

dynamics, and noted in summary of recent CA-GPGPU works that “Depending 

on application, they are offering a 10 to 100 times speed up at price points 

extremely affordable” [38]. Rybacki et. al. (2009) examine and benchmark CA 

algorithms and investigate different levels of multi-threading with either a “brute 

force” or sparse (“discrete” which only applies the rule set to those cells that might 

change) method of implementation, on both the CPU and GPGPU of several 

machines. They use five different rules sets: the game of life, parity, majority, 

wireworld, and a benchmark case. They find that “there is no perfect algorithm 

for everything” [42], which is largely due to the discrete algorithms being 

outperformed on the GPGPU, but they note that this is due to the small size of 

the grid and/or the small number of living cells after the first few generations. This 

work highlights the issue of sufficient parallelism, if a CA with a low number of 

cells (and therefore low number of parallel elements) is applied to hardware with 

a large number of cores there is a high likelihood that computational resources 
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will be wasted due to the lack of sufficient algorithmic parallelism. The algorithmic 

representation must match the many-core nature of the GPGPU and sparse 

representations either don’t work well or are difficult to code on the GPGPU. Also, 

if a rule set is somehow known to produce little to no activity (the number of cells 

alive and/or changing value over the whole simulation) within a given grid and 

initial configuration then it may still be more efficient to use a sparse 

representation on the CPU, as there is relatively little computational work to be 

done.  

There are circumstances where a sparse implementation has been 

implemented on a GPGPU, for example Ferrando et. al. (2011) [40] have 

employed an Oct-tree representation which subdivides a 3 dimensional cube of 

space into 8 smaller cubes at each branch of the tree. Although this does mean 

that the tree structure must be stored and manipulated using the CPU, a lot of 

processing can still be carried out on the GPGPU. This is done by means of the 

CPU organising the tree structure, which then issues commands to the GPGPU 

to order the respective array of ‘memory clusters’. These memory clusters are 

organised linearly upon the GPGPU, and each contains all the information 

needed to process a single cell (i.e. the cell and its neighbour’s states), these can 

then be processed in bulk by the GPGPU. The optimised use of further GPGPU 

data structures are used to minimise the amount of traffic between the CPU and 

GPGPU, which is known to be a bottleneck. However, Ferrando et. al. [40] are 

more keenly interested in carrying out the high resolution of simulation in feasible 

amounts of time, and so do not directly claim that this approach provides speed 

ups because their system works as a co-operation of the CPU and GPGPU.  

Of particular interest is work by Zaloudek et. al. (2010) [43], in which they 

examine the evolution of 1D CA systems, using Nvidia’s Compute Uniform Device 

Architecture (CUDA). CUDA describes both Nvidia’s architecture and high level 

language for its manipulation. Zaloudek et. al. examine the possibility of 

parallelisation at the level of cells, but also at an evolutionary CA system level 

which requires a population of solutions be evaluated, often with each possible 

solution (state transition rule set) needing to be run under a number of initial 

conditions in order to reach an average fitness. They have examined the 

possibility of parallelising their algorithm in terms of ‘training vectors’ and 

‘individual solutions’, as well as by cells. The results are encouraging in favour of 
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using parallelisation at the ‘training vectors’ and ‘individual solutions’ levels. 

However, this is due to the fact that they confine themselves to the very closest, 

fastest and conversely smallest forms of memory on the GPGPU (known as ‘local 

memory’, analogous with cache memory on the CPU). This severely limits the 

size of CA grids which they can simulate mainly due to the way that 

synchronisation works differently on a GPGPU with current limits at 1024 

threads/cells. They show that this local memory can allow for a huge processing 

speed increases where they show a CA simulation (without any evolution) for 

50,000 generations/fitness evaluation has a speed up of 489.75 times on one 

machine and 621.68 on another [43]. These speed-ups are exceptional and are 

at the high-end of the findings here. One possible source of disparity between 

their results and those shown in Chapter 3:, is the use of local memory, although 

experiments by the authors of this paper, tailored towards these hardware 

specific parameters [48] explains in greater detail how this local memory may 

benefit some machines, and the limitations of using the GPGPUs specific 

memory types. This work showed that local memory is indeed faster in all 

machines than the GPGPUs main (global) memory, but due to limitation on the 

number of threads/cells that speed-up factors of 2.5x-5x are obtained with these 

local memory implementations. However, by using the global memory to allow for 

synchronisation of much larger grids, greater speed-ups of up to nearly 50x are 

obtained. The final significant finding of this study is they show that the workgroup 

(OpenCL) or block size (CUDA), is vitally important to the speed up of GPGPU 

processing, and should be selected from the small spectrum of possible sizes 

though empirical testing. In the work below, this limiting factor is investigated 

along with the effects of these models on the GPGPU. Lastly Brodtkorb et. al. 

[47] perform a good review of current trends in GPGPU computing, and say 

“reporting a speedup of hundreds of times or more holds no scientific value 

without further explanation supported by detailed benchmarks and profiling 

results.” [47].  

Collectively, the literature demonstrates that there is considerable interest 

in the use of multi-core and GPU computing to parallelise cellular automata for 

specific applications. Papers such as [43] have investigated a more general-

purpose approach to the parallelisation of the technique but this experimentation 

is conducted with a hybrid 1D CA/EA algorithm and with variety of vectors but 
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single lattice size. However, the literature is lacking a discussion of how the base 

CA parameters such as lattice size, neighbourhood size, number of states and 

iterations (generations) affects processing speed-ups on the GPGPU.  

2.3.3 Genetic Programming GPU literature 

Work by Harding and Wolfgang [49] investigates the properties of 

parallelising Genetic Programming, stating “it is well known that fitness evaluation 

is the most time consuming part of the genetic programming (GP) system. This 

limits the types of problems that may be addressed by GP, as large number of 

fitness cases make GP runs impractical.” [49]. At this point in time (2007), they 

are limited to the use of OpenGL, which is primarily intended for the generation 

of graphics but was used for more general purpose process until the introduction 

of OpenCL and CUDA. Figure 2.31, shows how the graphics pipeline is used for 

more general purpose programming. 

 

Figure 2.31, Illustration of how arrays, representing the test cases, are 
converted into textures. These textures are then manipulated (in parallel) by 

small programs inside each of the pixel shaders. The result is another texture, 
which can be converted back to a normal array for CPU based processing. [49] 

 
Harding and Wolfgang [49], state that “Typically parsing a GP expression 

involves traversing the expression tree in a bottom-up, breadth first manner. At 

each node visited the interpreter performs the specified function on the inputs to 

the node, and outputs the results as the node output. The tree is re-evaluated for 

every input set. Hence, for 100 test cases, the tree would be executed 100 times” 
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[49]. Using the GPU, they are able to parallelise the process, so the GP tree is 

only parsed once, with each test case applied in parallel. One advantage of such 

a system, it is claimed by the authors, is that this reduces the amount of times 

that the switch case needs to be accessed; although this may not be the case, 

dependant on how hardware accesses the data for each parallel element. The 

GP population and genetic algorithm are applied on the CPU, with the GPU 

performing the evaluation of the GP trees. 

An important factor in the final performance is that the “release build 

configuration” is utilised. I.e. this means that compiler optimisation is enabled, 

which results in much faster processing programs, and makes for a reasonable 

comparison of processing speeds. In their experiments the GP trees are 

randomly generated, with a given number of nodes. Experiments are carried on 

floating point, binary and real world test cases. The function set used on the 

floating point tests, are +, -, *, and /. The resulting speed up factors, are recorded 

in Table 2.6 (where a value greater than 1 indicates the GPU is faster, and less 

than 1 the CPU). 

Table 2.6, Results showing the number times faster evaluating floating point 
based expressions is on the GPU, compared to the CPU implementation. An 

increase of less than 1 shows that the CPU is more efficient [49]. 
 

 

 
The results here are of that of Cartesian GP, although the authors claim 

similar advantages for linear and tree based GP. They also state that “many 

typical GP problems do not have large sets of fitness cases for two reasons: First, 

evaluation has always been considered computationally expensive. Second, we 

currently find it very difficult to evolve solutions to harder problems. With the ability 

to tackle large problems in reasonable time we have to also find innovative 

approaches that let us solve these problems. Traditional GP has difficulty with 
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scaling. For example, the largest evolved multiplier has 1024 fitness cases on a 

GPU” [49]. The authors confirm that small sets of fitness cases, the overheads of 

transferring data and the shader programs to the GPU outweighs the advantages 

of the increased processing speed, resulting in overall the CPU being more 

efficient at these small numbers of test cases. The results in Table 0.6, 

demonstrate that increasing the number of test cases, and/or increasing the 

number of expressions in the GP tree to be evaluated, will both result in large 

performance increases upon the GPU. Although the precise scale of these 

speed-ups seems rather high if we consider the brute processing power of 

modern GPU’s (in terms of FLOPS, floating point operations per second), is on 

average about 5-10 time that of the modern CPU. 

Experimentation is also carried out by Harding and Wolfgang [49] on a 

toy/benchmark test case, where they perform regression upon Equation 2.8. 

Equation 2.8     𝑥6 − 2𝑥4 + 𝑥2 

 A number of test cases are drawn randomly from a uniform distribution 

between -1 and +1. They allow for the length of GP expression (which is again 

implemented using Cartesian GP), to vary between 1 and the maximum size 

indicated in Table 2.7. The GP was run for 200 generations to allow for 

convergence, and again using the same simple function set (notably division by 

zero results in “infinity”). 

Table 2.7, Results for regression experiments, showing the number of times 
faster evaluation evolved GP expressions is on the GPU, compared to CPU 

implementations. The maximum expression length is the number nodes in the 
CGP graph [49]. 

 

 

It is unfortunate that the authors do not also report the actual processing 

times of these experiments, as even with these large speed-up factors, there may 

still be a limiting point. However, with at least 100 test cases, and at least a 



  88 

maximum number of expressions of 100, speed-ups can be gained from use of 

the GPU. The greatest speed ups are once again, with either very large number 

of test cases and/or large numbers of GP node expressions. 

Where we plan to run Genetic Programming within a Cellular Automaton, 

we can expect a similar pattern, whereby sufficiently sized GP trees and test 

cases will be required in order to gain speed-up upon the GPU. 

2.3.4 Conclusion 

There is obviously great interest in the parallelisation of both CA and GP 

algorithms, and a great variety of speed-ups for both algorithms have been 

demonstrated on various different test cases. There is an understanding that the 

number of nodes within the GP tree relates to the speed-ups gained, where larger 

number of nodes means a greater amount of time spent on each and therefore 

more parallelism. Whereas CA demonstrate a more a number of very different 

parameters relating to their spatial and temporal layouts, and there is a much 

larger variety of speed-ups reported. This may be attributed to the different types 

of memory used in the GPU hardware, and the different access patterns. There 

is little understanding in the literature demonstrated of how the key CA parameter 

of grid size, number of generations, number of states/base data type, size and 

shape of neighbourhood, or complexity of state transition rule affect the relative 

speed-ups obtained.  
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Chapter 3: GPU computing 

The introduction has illustrated that the potential for cellular automata as a 

modelling tool in areas such as urban flooding are only just starting to be realised. 

Although CA are computationally efficient in comparison with other models, they 

still represent a significant computational cost if the model run has to be repeated 

a large number of times. As the ultimate goal is to use genetic programming to 

determine new rulesets for a CA, the CA will be executed within the objective 

function calculation of a population based metaheuristic. This will necessitate 

many thousands of runs of the CA and so greater computational savings are 

required. This chapter investigates the potential for cellular automata to be 

parallelised on modern GPU systems. Programming for GPU systems requires a 

detailed understanding of the underlying hardware and novel lattice 

representations to take full use of the additional computational power. This 

chapter investigates these aspects on the well understood Game of Life ruleset 

and some novel extended multi-state rulesets, as the investigation is intended to 

bridge the gap between such well understood rulesets potentially much more 

complex real world rules such as urban flood modelling. The investigations in this 

chapter are carried out on two different graphics cards, in order to determine any 

major difference between the generations of GPU. The literature on the effects of 

the Genetic Programming parameter on the GPU speed-ups shows how the 

number of nodes within the GP trees affects the processing speeds for example. 

The effects of the base parameters of CA on GPU speeds-up factors are less well 

understood. Therefore, the experimentation in this chapter investigates the 

effects of such CA base parameters as the lattice size, neighbourhood size, 

number of generations, the number of states and data types used to store the 

state, and the initial configurations and activity levels within the simulation. 

Experimentation is also carried out on the GPU specific parameters which relate 

to the CA execution such as the workgroup size and GPU memory types. Parts 

of the following are drawn from the papers [101] and [48]. 

3.1 Introduction 

Modern hardware is becoming increasingly parallel in nature with modern 

commercially available single CPUs equipped with up to 8 cores, and Graphical 

Processing Units (GPUs) having many hundreds or even thousands of cores (e.g. 
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the latest Nvidia cards have between 3072 - 5740 cores [102] [103]). This 

increase in parallelism provides the opportunity for such inherently parallel 

algorithms as CA to provide large speed increases in processing. However, there 

is the need to understand the scalability of this effect, especially with regards to 

the CA base parameters and the specification difference between the CPU and 

GPU hardware in question.  

In recent years the development of the GPU into a processor capable of 

General Purpose processing has received particular attention, due to fact that 

GPUs have needed even greater parallelism than their CPU counterparts. The 

literature shows that although methods for parallelisation on the CPU are fairly 

well established and understood that some of the unique architectural differences 

between the General Purpose-GPU (GPGPU) and CPU are not so well known. 

GPGPU computing is still very much an expert field, which means that there are 

few comprehensive studies of the performance and scalability of the performance 

gains possible through GPGPU computing, particularly for cellular automata. 

Cellular automata (CA) are excellent techniques for the efficient simulation of a 

wide variety of systems and natural phenomena, in addition to being interesting 

from a theoretical perspective.  

In this chapter, the new open standard OpenCL is used to perform 

benchmark tests using the well-studied ‘game of life’ cellular automaton [25] 

along with some novel variants. Experimentation is conducted on a variety of 

different parameterisations of cellular automata that impact performance, notably 

the lattice size, the number of states, the neighbourhood size, the complexity of 

the state transition rule sets, and population levels within the random initial 

configuration by assigning the chances of a cell being alive in the initial 

configuration (initial configuration distribution probability). Also experimentation is 

carried out on GPU specific parameters such as the data types used to store the 

states, and the different GPU memory types available. With the availability of 

such unique memory structures as the ‘image/texture’ memory, which is designed 

to store a vector of 4 values Red, Green, Blue, and Alpha levels, a novel method 

for the utilisation of such memory structure for the processing of CA is proposed 

in the Folding method. 
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 It is found that each of these key parameters affects the ability of multi-core 

CPU and GPU architecture to speed-up CA execution.  In addition, these key CA 

parameters cover the majority of variations in CA that might be implemented to 

simulate a variety of natural systems. Through the intensive study of the multi-

core/many-core speed-up available for a wide variety of parameter settings, it is 

possible to infer some general properties of CA efficiency operating on multi-core 

CPU and GPGPU hardware. This is particularly useful as it should also be 

possible to extend these inferences to the more complex urban flood modelling 

rules sets, and possible variant rule sets that GP could create. This kind of 

extensive study would be more difficult with the real world urban flood modelling 

rules sets due to the much larger space of possible variations.  

3.1.1 Multi-core CPU and Many-core GPU computing 

With the wide variety of disciplines and applications for CA suggested in the 

literature review, a growing number of modellers are harnessing the inherent 

parallelism of the CA algorithm in modern hardware, i.e. multi-core CPUs and 

many-core GPUs.  This is motivated by the idea that the multi-core nature of most 

modern CPUs which is allowing Moore’s law to continue to predict processing 

speed increase. [33]. Also several sources suggest that co-processors like 

GPGPUs, with their inherently many-core nature, may be increasing in 

performance at a quicker rate than their CPU counter parts [30], with Fan et. al. 

stating that: “Driven by the game industry, GPU performance has approximately 

doubled every 6 months since the mid-1990s, which is much faster than the 

growth rate of CPU performance that doubles every 18 months on average 

(Moore’s law), and this trend is expected to continue.” [23]. Although this 

publication dates from some eight years ago and it is now an established fact that 

significant increases in computational power in many areas will need to be 

achieved through the use of parallelism rather than the increase in performance 

of a single core. Therefore, the scientific community needs algorithms which will 

scale to take advantage of this emerging parallelism, such as CA, and to 

understand how these algorithms will scale to the emerging hardware available. 
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3.2 Relevant literature 

A vast number of different speed ups have been reported [32] [36] [46] [23] 

[40] [37] [55] [44] [57] [28] [27] [24] [38] [33] [21], Which vary drastically from small 

scale speed ups of 5-10x, up to large scales of the thousands. Where it should 

be noted that the overall computing power of the modern GPU is on average 

approximately 5-10x in terms of GFLOPs, although the different memory access 

patterns on different hardware and different levels of algorithmic parallelism may 

allow for some higher scores. Understanding how the key CA parameter such as 

grid size, number of generations, number of states, neighbourhood size, initial 

configuration set up and the complexity of the state transition rules will affect the 

different levels of algorithm parallelism will be very important in understanding the 

levels of relative speed-ups obtained. 

3.3 Method 

It is suspected that the rule set will play a large role in the computational 

properties of CA on GPU hardware, and in order to investigate the different 

effects of the base CA parameters a simple well known and investigated rule set 

of the Game of life is utilised. As more complex real world rule sets like urban 

flood modelling will use far more states, perhaps even a continuous scale, these 

investigations include experimentation on novel extensions of the Game of life so 

as to use multiple states. Furthermore, experimentation is also carried out on the 

base data type which carries the state of each cell of the CA, be that an integer 

or a floating point (i.e. continuous data type). 

3.3.1 Rule sets 

In the majority of tests, the well-studied ‘game of life’ rule set is used, which 

has 2 states and a Moore neighbourhood. This is often instantiated by means of 

some form of look up from the possible previous states of a cell and its neighbours, 

mapped to the corresponding next state of the main cell (current cell under 

evaluation). However, to allow for more complex systems with variable number 

of states and neighbourhood sizes, a programmatic function is used here (a 

series of C if-statements) which forms the basis of a decision tree. The basic 

definition of the game of life states there are two states known as dead (zero), 

and alive (one), and that if a cell is currently dead and has 3 live neighbours then 
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it becomes alive, and if it is currently alive and has 3 or 2 live neighbours then it 

remains alive otherwise becoming dead. This is interpreted in pseudo-code as 

follows in sections 3.3.1.1, 3.3.1.2, and 3.3.1.3 .  

Since the ‘game of life’, is confined specifically to two states and a Moore 

neighbourhood, a number of new rule sets have been created based on the 

decision tree which demonstrates the compactness and simulation variety 

possible. Also this enables the testing of the effect of variable numbers of states 

and neighbourhood sizes without excessively large look-up tables. Two of the 

most interesting rule sets which demonstrate the relationship between activity 

and speed increases are shown in rule sets MSGOL (Multi-State Game Of Life) 

and MSGOL4 (Multi-State Game Of Life version 4) in section 3.3.1.2, and 3.3.1.3, 

respectively. In order to test the effects of different neighbourhood sizes, the 

adaptive nature of such decision tree based rule sets is demonstrated further, by 

using the same ‘game of life’ rule set (section 3.3.1.1) and an extended Moore 

neighbourhood where the size of the radius of the neighbourhood is defined by a 

user-specified parameter. 

3.3.1.1 Pseudo code for the game of life rule set function 

Below is the code interpretation of the game of life rule set. Where ‘mainCell’ 

variable contains the current value (state) of the central main cell, and should 

finish with the next state of the main cell. The ‘NH_Count’ variable holds the 

number of live cells in the neighbourhood excluding the main cell. 

if(mainCell == ALIVE) 

 if(!(NH_Count == 3 OR NH_Count == 2)) 

  mainCell = DEAD; 

else 

 if(NH_Count == 3) 

  mainCell = ALIVE; 

 

3.3.1.2 Pseudo code for the Multi-State Game Of Life (MSGOL) rule set function 

This rule set implements a simple multistate conversion of the Game of Life 

where the state represents the energy of the organism rather than a simple 

alive/dead delineation.  The rules are constructed so that the rule that would 

usually lead to a cell becoming alive, increases energy and the rule leading to 
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death decreases it.  Death only occurs when the cell reaches the lowest possible 

state.  

if(NH_Count == 3) 

 if(mainCell != states-1) 

  ++mainCell; 

else 

 if(NH_Count != 2) 

  if(mainCell != DEAD) 

   --mainCell; 

 

3.3.1.3 Pseudo code for the Multi-State Game Of Life (MSGOL4) rule set 

function 

MSGOL4 is a modified version of MSGOL and has a more stringent 

requirement for life in addition to a distinction between having too many or too 

few neighbours which results in immediate death or loss of a single energy level 

respectively.  Also once a cell is at its maximum energy level another increase 

will cause immediate death, except when there are only two states, which 

maintains the rule sets ability to mimic the ‘Game of life’. This rule set has been 

developed to gain a better understanding of the effect of activity levels on 

potential GPU speed-up. 

if(NH_Count == 3) 

 if(mainCell != states-1) 

  ++mainCell; 

 else 

  if(mainCell != 1) 

   mainCell = DEAD; 

else 

 if(NH_Count != 2) 

  if(NH_Count < 2) 

   if(mainCell != DEAD) 

    --mainCell; 

  if(NH_Count > 3) 

   mainCell = DEAD; 

 

3.3.2 Novel CA-GPU Representation 

In section 3.5.2, a novel use of the GPU’s image/texture memory is created, 

termed as Lattice folding. As the GPU texture memory is specifically designed to 

carry a vector of four values for the Red, Green, Blue, and Alpha values of a pixel. 

This can be utilised to store the states of four cells, and therefore increase the 

amount of processing within each thread, and utilise the wider memory lanes 
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specifically designed to carry the per pixel data (i.e. a vector of four values). This 

method also makes use of specifically designed hardware operations within the 

GPU called swizzling, which can efficiently reorder the vectors of values within 

hardware.  

The method is called lattice folding, as it mimics the process of folding a 

piece of paper into four quarters, as shown in Figure 3.1, and Figure 3.2. The 

method of utilising the different colours of the texture image is not entirely novel 

(Figure 3.2), however the orientation of folding the grid for the application of the 

neighbourhood based CA system is.  

 

Figure 3.1, How the four quadrants of the single grid are folded into a single grid 
with four layers Red, Green, Blue and Alpha [104]. 

 
 

 

Figure 3.2, How the four quadrants of the single grid are folded into a single grid 
with four layers Red, Green, Blue and Alpha [105]. 

 
By folding the grid, the orientation of the border conditions can be controlled. 

Cells which are not located directly next to a fold in the grid, can collect the 

neighbouring values from the folded grid and thusly collect the states of four 
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neighbourhoods in a single thread. The resulting 4-layered grid has two borders 

which represent folds in the original grid, and two borders which represent the 

original borders. On the folded borders, the neighbouring vectors are reflected 

inwards, and then depending on which way the grid was folded and which border 

determines the correct swizzling operations. The swizzling operation re-orders 

the vector of values, which re-align each colour value which the correct colour 

layer for neighbouring collection at the folded borders. 

3.4 Experimental Set up 

The C/C++ language and MSVC 2010 SDK compiler are used, and an 

application profiler was used to ensure that the program did not make excessive 

memory allocations, which were found to cause large slowdowns in processing 

in the CPU implementation that could therefore skew comparisons.  The ‘/O2’ 

level of compiler optimisation was also used. The state value of each cell was 

stored in a single byte (C style ‘char’ or ‘unsigned char’), and used a single array 

to store the lattice, apart from in section 3.5.5, where experimentation is carried 

out using char, int, floating and double data types. The experiments below are 

limited to square grids, and only use a static border condition (of dead cells). 

Although other border conditions exist, such as wrap-around or reflect inwards, 

these would require slightly more work at each generation. It was determined that 

the best way to deal with border conditions is to pad the grid with a border apron 

of cell values as large as the neighbourhood radius (one in the case of the classic 

Moore neighbourhood). 

A second grid (also padded with this border apron) is created and these two 

memory spaces are used alternately as the current grid and the new grid, for 

each generation. Importantly the implementation increments a counter for each 

live cell in each cell's neighbourhood, as opposed to adding the value of every 

neighbouring cell to a counter. This becomes very important in demonstrating 

how variable arithmetic (computational work) can cause variable speed-ups (I.e. 

conditional branching around the arithmetic work dependant on the automaton’s 

current state and neighbouring states causes far greater variation in processing 

speed with the CPU compared that of the GPGPU). Another method to 

accomplish this would be to use a look up table, however this look-up table would 

be very large, and every cell would need access to it. This design would be sub-
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optimal for the CPU, but may be favourable for the GPU’s relative speed-up. 

However, since more complex rules are likely to be built from more programmatic 

forms, the method of having a count of neighbouring values and a programmatic 

function is utilised to investigate these properties.  

A simple testing framework is developed where the initial grid and the 

parameters (e.g. grid size, number of generations) are passed into a function 

which processes the whole CA simulation, and the system clock is used to record 

how long it takes for the resulting final grid to be returned. Since it is expected to 

be difficult to time the processing on the GPU at intervals within the simulation 

fairly, the simulations are repeated for each generational experiment. Each 

experiment is repeated 15 times in order to gain an average timing result. 

In order to achieve parallelisation on the CPU the common shared memory 

model called OpenMP [106] is used, which generates worker threads at each 

generation for each cell in the lattice. The compiler then generates code which 

composes a single master thread, and at each generation launches worker 

threads for each cell, these are then distributed and time-sliced by the operating 

system between the CPU cores. 

Finally, the new open-standard language/API called OpenCL is used, 

designed specifically for parallel hardware such as the GPGPUs, and multi-core 

CPUs. For detailed information the reader is referred to the OpenCL specification 

[107]. The experiments include a small amount of compilation time for the kernel 

in every test (although this is from an intermediate form), and the transfer time to 

and from the GPGPU. Special hardware in the GPGPU time-slices these threads, 

and load balances between hardware sub-groups of each workgroup which need 

to access memory and those which need processing, and in this way can hide a 

lot of processing time behind memory latency. Work by Zaloudek et. al. [43] 

shows that the workgroup size affects the processing time by affecting how the 

hardware time-slices threads (referred to a SIMT – single instruction multiple 

threads). Therefore, initially 2-3 different workgroup sizes are used, to determine 

the fastest, and the workgroup size is set to this for the remainder of the tests; 

however, it has been shown that each different machine may require auto-tuning 

in order to determine the optimum workgroup size.  
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A key aspect of a study such as this is the hardware used to determine the 

level of speed-up obtained by the algorithms.  The comparison between a single 

core benchmark and the multi-core implementation will depend to a great degree 

on the hardware involved.  Therefore, during testing two very different machine 

set ups have been used, firstly Machine A is a Dell XPS M1530 laptop, and is 

approximately 4-5 years old at the time of testing. Machine B is a recently 

constructed PC tower unit which contains a modern Core-i7 processor and latest-

generation ‘Fermi’ Nvidia graphics card.  The full specification of each machine 

is shown below. 

Table 3.1, Full specifications of machines used for testing [108] [109]. 
 

Machine Machine A Machine B 

Type 
Dell XPS M1530 

laptop 
PC workstation 

Age 4-5 years Recent 

CPU 
Intel Core2 Duo 

T8100 @ 2.1GHz 
Intel Core-I7-2600 

@3.4Ghz 

CPU cores 2 
4 (8 with Hyper-
Threading) 

GPGPU 
Nvidia GeForce 

8600M 
Nvidia GTX 560 Ti 

GPU 
Processing 

elements (CUDA 
cores) 

32 384 

GPU Compute 
cores 

4 8 

GPU speed 
(Core, Shader, 
Memory MHz) 

475, 950, 700 
1645, 822, 

1000/4000 

GPGPU bus 
type 

PCI-E x 16 PCI-E 2.0 x 16 

 

Visualisation of the rule sets was achieved through a basic OpenGL 

interface; also the outputs from the GPGPU algorithms were found to match the 

CPU implementations exactly. OpenCL possesses interoperability with OpenGL 

which opens up the possibility to be able to accelerate visualisation as well as 

processing.  
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A key difference between the CPU and GPGPU is that the GPGPU is firstly 

a co-processor which has its own independent RAM memory, meaning that data 

must be transferred along the bottleneck of the PCI connection. Secondly the 

GPGPU has distinct architectural differences to the CPU, for example whereas 

CPU cores may run independently from each other (i.e. operate on different 

sections of code at the same time, by virtue of each possessing its own program 

counter) the modern GPGPU has a hierarchy of processing cores. OpenCL calls 

each core capable of operating independently a ‘compute unit’ (Nvidia/CUDA call 

this a ‘Streaming-Multi Processor’); each compute unit may possess one to many 

‘processing elements’ (Nvidia/CUDA call this a CUDA core), where each 

processing element may run a thread in an SIMD (Single Instruction Multiple 

Data) fashion within each compute core. A single workgroup is only ever 

processed on a single compute core, which allows the GPGPU hardware further 

parallelism by allowing it to distribute workgroups to compute cores as it sees fit.  

It attempts to best use the hardware (number of compute cores) available, much 

in the same way that the operating system and CPU distribute threads amongst 

its cores. 

However, the modern GPGPU uses yet another level of parallelism within 

each workgroup and compute core, known as SIMT (Single Instruction Multiple 

Thread). Where a workgroup possesses more threads than processing elements 

with the compute core, the hardware may swap between many groups of threads 

with each group at different stages within the code. This allows the GPGPU to 

put its processing elements to best use, i.e. if one group of threads is waiting on 

a memory request, then another group which isn’t may be used for processing. 

This allows the GPGPU hardware to maintain far more simultaneous thread 

processing compared to the CPU. The majority of this is abstracted away from 

the programmer (Shown in Figure 3.3), apart from the workgroup size. OpenCL 

and the underlying GPGPU hardware stipulate both an upper limit on the number 

of threads within a workgroup (size), and that the lattice of cell/threads must be a 

multiple of the workgroup size in each dimension.  
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Figure 3.3, The abstract hierarchy presented by OpenCL [107]. 
 

The abstract hierarchy for the OpenCL standard is shown in Figure 3.3, 

where the workgroup specifies which thread/work items are to be performed on 

the same compute unit. Firstly, there are more threads per work group than there 

are processing elements within each compute unit, therefore the hardware can 

be responsible for the firstly layer of SIMT whereby groups of waiting threads can 

be swapped for groups of threads needing processing within each compute unit. 

The second layer of SIMT again allows the hardware to decide which workgroup 

to process on which compute unit, and in which order, as again there are likely to 

be more workgroups than compute units. Since each workgroup is isolated to a 

single compute unit, the hardware’s distribution of these to the number of 

hardware compute unit can cause what is called ‘load balancing’. This occurs 

when the number of workgroups and the amount of time they take to process 

does not suit the number of hardware compute units. A simplified example might 

be, if the hardware in question has 8 compute cores, and is asked to 9 

workgroups, and then no matter how it distributes the workgroups, it will have 

entire compute cores standing waiting. 
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3.5 Experimentation 

In sections 3.5.1, the lattice size (i.e. the number of cells) and the size of the 

workgroups are varied to understand this relationship. In section 3.5.2 these 

experimentation are extended to include different memory types available upon 

the GPU and the use of the novel lattice folding methods are applied. In sections 

3.5.3, the effects of the initial configurations and activity throughout the 

simulations are investigated. In section 3.5.4 the novel multi-state extensions of 

the Game of Life are utilised to investigate the variation that a larger numbers of 

states might have. This is extended in section 3.5.5, by using different base data 

types such as char, int, float and double to carry the state of each cell. In section 

3.5.6 the effects of changing the neighbourhood size is investigated, and finally 

in section 3.5.7 the effects of various length of CA simulation are investigated.  

3.5.1 Lattice size and workgroup tests 

The wide variety of application domains for cellular automata means that a 

commensurate range of lattice sizes are possible. The lattice size is therefore the 

first variable to be investigated here.  

3.5.1.1 Method 

In order to allow the processing of any size of lattice, any size which is not 

a multiple of the workgroup size is padded up to the nearest with threads/cells 

which do nothing. For these reasons two sets of lattices size tests are conducted 

with the first testing a wider spectrum of lattice sizes, and second testing a smaller 

spectrum but at much finer granularity along with testing 3 different workgroup 

sizes (8x8, 16x16, and 32x32).  

3.5.1.2 Experimental set up 

A random initial lattice configuration of live and dead cells is created, using 

a seed value and a 50% chance (initial configuration distribution probability) of 

each cell being made alive or dead. Tests are run for 1,000 generations on 

Machine A, and 10,000 generations on Machine B because Machine B is much 

faster making such longer runs more feasible. Lattice sizes begin at 128x128 and 

proceed at increments of 32x32 up to 2048x2048, also a spread of lattice sizes 

from 500x500 to 600x600 at increments of 1x1 are presented. Experiments are 
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conducted at workgroups sizes of 8x8 and 16x16 on both machines, but as 

Machine A is limited to a maximum of 512 threads per workgroup and Machine B 

is limited to a maximum of 1024, a workgroup size of 32x32 could only be used 

on Machine B. With these experiments OpenCL is utilised on the both the CPU 

and GPGPU. 

3.5.1.3 Experimental results 

Machine A 

 

Machine B 

 

Figure 3.4, Speed ups over the serial implementation for OpenMP and OpenCL 
on the GPU and CPU, at 1,000 generations on Machine A, and 10,000 

generations on Machine B, for lattice sizes of 128x128 to 2048x2048, at 
increments of 32x32. 
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Figure 3.5, Cell update rates (per second) for the serial implementation, 
OpenMP and OpenCL on the GPU and CPU, at 1,000 generations on Machine 

A, for lattice sizes of 128x128 to 2048x2048, at increments of 32x32. 
 

 

Figure 3.6, Speed ups over the serial implementation for OpenMP and OpenCL 
on the GPU and CPU, at 10,000 generations on Machine B, for lattice sizes of 

128x128 to 2048x2048, at increments of 32x32. 
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Figure 3.4 demonstrates several key factors involved with lattice and 

workgroup sizes; firstly OpenCL running on the CPU is not very competitive, 

whereas OpenMP appears to scale fairly well to the number of CPU cores. 

Although OpenCL on the GPGPU performs up to 40x that of the serial CPU 

implementation on Machine B (the newer of the two machines), this is not in scale 

with the number of processing cores, although later in this chapter the question 

of which factors lead to this level of performance increase are addressed. 

Secondly it is clear to see that small lattice sizes are affected by the overheads 

of parallelisation which on the GPGPU include the transfer and as such gain 

lesser performance increases than larger lattices, with this stabilising at 

approximately 800x800 sized lattices. A workgroup size of 16x16 shows the best 

performance increases across both machines, and is therefore utilised in the 

experiments in the rest of this chapter. Finally it can be seen in Figure 3.4 that for 

particular grid sizes, performance decreases abruptly.  On Machine A this occurs 

at lattice sizes of 512x512, 1024x1024, 1536x1536, and 2048x2048; whereas on 

Machine B this occurs at lattice sizes of 1344x1344 and 2016x2016. This is 

shown in Figure 3.7 to be due to the number of workgroups, and is therefore 

attributed to load balancing of the number of work groups to the number of 

hardware compute cores. 

Machine A 

 

Machine B 

 

Figure 3.7, Processing times for OpenCL on the GPGPU, and for Machine A 
only on the OpenCL CPU, OpenMP and Serial implementations, for 500x500 to 

600x600 lattice sizes in increments of 1x1, with a workgroup size of 16x16. 
 

4

5

6

7

8

9

10

11

12

2.5E+5 2.7E+5 2.9E+5 3.2E+5 3.4E+5 3.6E+5

P
ro

ce
ss

in
g 

Ti
m

e
(S

e
co

n
d

s)

Number of grid cells

Serial OpenMP OpenCL CPU OpenCL GPU

0.5

0.55

0.6

0.65

0.7

0.75

2.5E+5 2.7E+5 2.9E+5 3.2E+5 3.4E+5 3.6E+5

P
ro

ce
ss

in
g 

Ti
m

e
(S

e
co

n
d

s)

Number of grid cells

OpenCL GPU



  105 

Figure 3.7 shows that both the CPU (sequential and parallel), and GPGPU 

approaches all scale linearly with the number of cells being processed, which 

demonstrates that the CA's complexity is based around the work in each cell. 

Where the GPGPU shows abrupt performance decreases (shown in Figure 3.7), 

this is associated with ‘load balancing’ of the workgroups to available compute 

cores of the GPGPU. Figure 3.7 indicates that the load balancing should be 

associated with the number of workgroups within the given lattice sizes. This is 

illustrated by the way that the performance on the GPGPU steps abruptly after 

each 16 successive grid size, where the number of workgroups changes. 

3.5.1.4 Conclusion 

Both CPU and GPGPU show linear increases in processing time with the 

number of cells/threads, however due to transfer and other overheads there is an 

offset, and due to the greater computational power of the GPGPU its processing 

times increase at a lesser gradient; therefore, a sufficiently large grid is required 

in order to gain the most efficient use of GPGPU hardware and thus the greatest 

speed-up factor. Where this result is somewhat expected, it is informative to see 

the scale of this threshold number of cells/threads is relatively large compared to 

the number of hardware cores upon the GPGPU. In addition, there are exceptions 

where particular lattice sizes or rather the number of workgroups within, give 

lesser performance than lattice sizes with similar numbers of workgroups; this is 

attributed to the way GPGPU hardware distributes workgroups to be processed 

between available compute cores. 

3.5.2 Lattice size and GPU Memory types tests 

3.5.2.1 Experimental Set up 

The GPGPU present three memory types including ‘global memory' which 

is essentially the RAM on the GPU card; ‘local memory’ which is on-chip and 

therefore much faster but limited in space and scope to a single compute core; 

and finally ‘image memory’ (sometimes referred to as texture memory) which is 

memory specific to the native task of the GPGPU as a graphics processor and is 

cache-lined even in older models as well as having special hardware for dealing 

with border conditions. Tests are conducted using the novel texture based 
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memory layout described in section 3.3.2, and finally, tests are also performed 

with vectorisation (folding) and global memory. 

3.5.2.2 Experimental Results 

 

Figure 3.8, Machine A, Speed ups over CPU serial implementation for parallel 
CPU (OpenMP), and the OpenCL memory algorithms on the GPGPU. 

 

 

Figure 3.9, Machine B, Speed ups over CPU serial implementation for parallel 
CPU (OpenMP), and OpenCL memory algorithms on the GPGPU. 
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Figure 3.10, Machine A, Cell update rates (per second) for CPU serial 
implementation, parallel CPU (OpenMP), and the OpenCL memory algorithms 

on the GPGPU. 

 

Figure 3.11, Machine B, Cell update rates (per second) for CPU serial 
implementation, parallel (OpenMP) implementations, and OpenCL memory 

algorithms on the GPGPU. 
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3.5.2.3 Discussion 

One of the major advantages of the folded texture method is that it has 

automatic use of caching so as the re-accessing time of the data, when each cell 

is accessed as both a main cell and a neighbour for a number of other cells. 

However, the more modern of the two GPU’s has automatic caching on its global 

memory which leads to a less gain in using this method compared to that of the 

older GPU. Additional gains are still possible by using such a tailored method to 

the graphical hardware in question. 

3.5.2.4 Conclusions 

Figure 3.8 and Figure 3.9 shows a marked difference in performance 

between the two tested machines, due to the introduction of cache-lined global 

memory in the Fermi (Machine B) generation of GPGPU’s. Local and image 

memory gain greater speed-ups than global memory alone on Machine A, 

whereas on Machine B local and image memories are less efficient than global 

memories due to the more efficient caching and the need to explicitly copy data 

to the local and image memories. When vectorisation (folding) is applied both 

global and image memories show an increase in performance. For Machine A, 

the vectorised image/texture memory performance best, but for Machine B, it is 

the vectorised global memory that is the top performer. This is due to the more 

efficient cache-line global memory of the Fermi chip with Machine B. 

3.5.3 Initial configuration distribution probability and Activity tests 

A further variation in cellular automata is the extent to which their 

formulation in terms of starting conditions and rule sets leads to activity (i.e. the 

number of ‘alive’ cells) over the life of the CA.  The standard 2-state game of life 

from random conditions for instance is known to produce a set of short-lived static 

and mobile structures (e.g. gliders) and will eventually converge on a stable state 

that will include some oscillating structures.  Clearly, the number of alive cells in 

the CA will change over time, and in the case of the game of life, will start high 

and converge to a stable minimum. The following work investigates the impact of 

the ratio of ‘alive’ cells in the initial CA and records the level of activity in the CA 

to determine their effect on the potential speed-up of the CA on GPU hardware. 

This allows for an investigation of the effects of the resulting simulations produced 
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by the CA have on the processing speed up provided by the GPU, where such 

understanding can only come from an understanding of the rule set in questions. 

3.5.3.1 Experimental set up 

A separate implementation is used to count the number of live cells (those 

with a state of 1) and the number of live neighbouring cells for each cell to ensure 

that the timing results are not biased. Having counted the number of live cells and 

neighbours for every cell in every generation, an average proportion is calculated 

by dividing by the number of cells and generations. Tests are performed over a 

spectrum of lattice sizes, and initial configuration distribution probabilities which 

are used in the creation of each cell being alive or dead in the initial configuration. 

Ten different seed values for the random number generator are used in these 

experiments. The timing tests are repeated for 15 trials, but this is not necessary 

for the counts, as they are deterministic. Tests were conducted on a 512x512 

lattice size for 1,000 generations on both machines with a workgroup of 16x16 

are used. 

3.5.3.2 Experimental results 

Neighbourhood Activity 

 

Machine B CPU single core processing times 

 

Figure 3.12, Average (mean) neighbourhood live cell counts per cell over the 
entire simulation for a range of initial configuration distribution 

probability/chances of live cell creation in the initial configuration (left), and the 
processing time on a single CPU core for the same ranges (right), processed at 

a lattice size of 512x512 for 1,000 generations. 
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Figure 3.12 shows firstly that as the neighbourhood counts are averaged 

over the entire simulation, this restricts the variation due to the difference in the 

underlying patterns formed through the differently seeded simulations, therefore 

these averages are a measure of Activity over the entire simulation. Secondly 

Figure 3.12 shows that there is little to no activity below the initial configuration 

distribution probability levels of approximately 5% and above 80%, and between 

these, the level rises to a plateau. This plateau level is surprisingly low with an 

average live neighbourhood cell count of approximately 0.5 live neighbours out 

of a possible 8. The right pane of Figure 3.8 shows that processing time is highly 

correlated with the activity levels seen in the left pane. It can also be seen in 

Figure 3.12 (right) that with no activity levels, the processing time is dominated 

by other work within each cell; i.e. a baseline non-varying amount of arithmetic 

computational work and the memory look up of the neighbourhood within each 

cell. 

Neighbourhood Activity 

 

Machine A CPU single core processing times 

 

Figure 3.13, Average neighbourhood live cell counts per cell over the entire 
simulation, when using an initial configuration distribution probability of 50% for 

a range of lattice sizes of 128x128 to 2048x2048, at increments of 32. (left) 
Note the difference in the scale of the y-axis, and the processing time on a 

single CPU core for the same ranges (right), for 1,000 generations. 
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very little variation and are thus dominated by the symmetrical work within each 

cell of the lattice. 

 

Figure 3.14, Speed-ups relative to the serial implementation for OpenMP, and 
OpenCL on the GPGPU (workgroup size of 16x16) on a 512x512 lattice size at 
1,000 generations, over a range of initial configuration distribution probability 

values from 1% to 99% at intervals of 1%; results shown for Machine B. 
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Figure 3.15, Cell update rates (per second) for serial implementation, OpenMP, 
and OpenCL on the GPGPU (workgroup size of 16x16) on a 512x512 lattice 

size at 1,000 generations, over a range of initial configuration distribution 
probability values from 1% to 99% at intervals of 1%; results shown for Machine 

B. 
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times and speed-ups of the GPU. As more complex real world rule sets with 

inevitably use much large number of states and possible even continuous scales, 

there is the need to understand how the number of states will affect the relative 

speed-ups of the GPU. 

3.5.4.1 Method 

Since the game of life rule set specifically has only two states, it has been 

adapted here to a multi-state interpretation in order to test the effects of a variable 

number of states. Many such interpretations have been created and two 

interesting rule sets are presented which are called MSGOL (Multi-State Game 

Of Life, section 3.3.) and MSGOL4 (version 4, section 3.4.). MSGOL at 3 or 4 

states produces large areas of what appears as chaotic behaviour, where small 

snake like collections of cells are born, move around and die in between the 

chaos. At larger numbers of states, this forms maze-like patterns over the whole 

grid, with fluctuations which move over the grid as if searching for a stable global 

pattern. MSGOL4 at 3 and 4 states look more like the game of life, so much so 

that new and distinct gliders are detected at both of these numbers of states. 

However, as the number of states is increased in MSGOL4, larger areas of what 

appears to be chaotic behaviour consume the simulation.  

Videos of the MSGOL and MSGOL4 rule sets are various numbers of states 

can be viewed online @ :   

http://www.sciencedirect.com/science/article/pii/S0743731514002044#appd003 

In the timing tests, the lattices are populated with the same initial 

configuration as before. The number of states is modified by using a parameter 

within the decision tree rule sets. The decision tree is able to represent an 

increasing number of state transitions with the same decision tree because of the 

way it programmatically maps the relation between each state, as opposed to 

using an increasingly large look-up table. 

3.5.4.2 Experimental set up 

Experimental results are shown for MSGOL runs from 2 to 10 states. In 

these experiments a lattice size of 512x512, with a workgroup size of 16x16 are 

http://www.sciencedirect.com/science/article/pii/S0743731514002044#appd003
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again used (which notably is a badly load balanced size on Machine A), and run 

for 1,000 generations on Machine A, and 10,000 on Machine B. 

3.5.4.3 Experimental Results 

Machine A 

 

Machine B 

 

Figure 3.16, Speed-ups over the serial implementation for OpenMP, and 
OpenCL at a lattice size of 16x16, for 1,000 generations on Machine A, and 

10,000 on Machine B. Showing resulting for the MSGOL and MSGOL4 rule sets 
with 2 to 10 states. 
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Figure 3.17, Cell update rates (per second) for serial implementation, OpenMP, 
and OpenCL at a lattice size of 16x16, for 1,000 generations on Machine A. 
Showing results for the MSGOL and MSGOL4 rule sets with 2 to 10 states. 

 

 

Figure 3.18, Cell update rates (per second) for serial implementation, OpenMP, 
and OpenCL at a lattice size of 16x16, 10,000 on Machine B. Showing results 

for the MSGOL and MSGOL4 rule sets with 2 to 10 states. 
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Figure 3.16 shows the relationship between the number of states (from 2-

10) and the speed-up on the GPU. The graphs for the GPU and MSGOL show a 

peak around 3 states which then drops down to a converged rate of speed-up 

later for higher numbers of states. For MSGOL4, this situation is reversed with a 

dip in speed-up at 3 states. It is therefore clear that for the modified game of life 

rule sets, at least, the number of states does have an effect on the speed-up 

possible from GPUs but that the hardware has a very much larger effect (note the 

difference in axes ranges for Machine A and Machine B). However, the 

discrepancy between 3 states and the others was not expected and required 

further experimentation (shown in section 3.5.4.4).    

3.5.4.4 Further experimentation with multi-state game of life variants 

In the majority of cases the simulations take approximately the same 

amount of processing time irrelevant of the number of states, however in the area 

of the most variation in activity a large spike in performance for both rules can be 

observed in Figure 3.16, Figure 3.20, Figure 3.21, and Figure 3.22, as they 

change from one type of behaviour to another. As shown in Section 3.5.3, it is 

the variable amount of arithmetic carried out in each cell which directly relates to 

the processing time and consequent increases in performance. Therefore, it is 

necessary to account for the variable amount of arithmetic from the decision tree. 

The MSGOL and MSGOL4 rule sets both have leaf nodes which carry out a 

simple plus/minus-one calculation for the next state, therefore counting 

implementations have been created which, as well as counting the live cells and 

live neighbours per cell, also count the number of cells taking each leaf node of 

the decision tree rule sets. Figure 3.19 shows the binary decision tree 

represented by the MSGOL rule set (section 3.3.1.2), with leaf nodes labelled A-

E, where it is node B that carries out an increment to the current state, and node 

E carries out a decrement to the current state in order to find the next state, and 

all other leaf nodes represent leaving the current state of main cell as it was in 

the previous generation. A similar decomposition of the MSGOL4 rule set is 

performed, with leaf nodes A-G, where nodes C and F are responsible for 

arithmetic operations. With both rules sets, as with the game of life rule, the 

operation time also depends on the number of live neighbours for each cell. The 

average live neighbourhood counts, and proportion of cells over the entire 

simulation for each leaf node of the decision tree for MSGOL and MSGOL4 rule 
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sets are shown in Figure 3.20 and Figure 3.21 respectively. In Figure 3.22, first 

the timing results from the MSGOL and MSGOL4 rule sets for the parallel CPU 

approach on Machine A are shown; this is compared to the combination of the 

variable amount of arithmetic (i.e. the average live neighbour counts, plus the leaf 

nodes, which carry out arithmetic), in order to demonstrate how it is again the 

variable amount of activity which causes the difference in processing time on the 

CPU. The GPGPU is found to have much smaller variations in processing time 

over the same area, which leads to huge computational speed up in the area of 

high activity, shown in Figure 3.22 and consequently explains the difference in 

performance seen in Figure 3.16.  

 

 

 

 

 

 

 

 

 

 

Figure 3.19, Binary decision tree version of the MSGOL rule set, with leaf nodes 
labelled A-E. With the variables ‘NH_Count’ which represents the number of live 

neighbouring cells, and ‘mainCell’ to represent the central main cell's value, and 
finally ‘states’ to represent the number of states variable.  
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3.5.4.5 Experimental Results 

 

Figure 3.20, Average neighbouring cell counts for each cell and the proportion 
of cells over the entire simulation taking each possible leaf node through the 

rule sets MSGOL (which has leaf nodes A-E as shown in Figure 3.19.  
 

 

Figure 3.21, Average neighbourhood live cell counts, and proportion of cells 
over the simulation taking each leaf node for MSGOL4 rule set, on Machine A. 
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Processing times Machine A 

 

Count results 

 

Figure 3.22, Processing times of the OpenMP implementations of MSGOL and 
MSGOL4 in comparison to each other for 2-10 states (left), shown (right) the 
theory of the arithmetic complexity by showing the average neighbourhood 
count (shows the number of increments of a counter, on average), plus the 
proportions of cells on average over the whole simulation which perform an 

arithmetic operation. In the case of MSGOL this is leaf nodes B and E, and for 
MSGOL4 leaf node C and F. 

 
Figure 3.20 and Figure 3.21 demonstrate that the rule sets generate most 

of the extra arithmetic complexity compared to the neighbourhood counting. 

Figure 3.22 shows how it is indeed this arithmetic complexity caused by the 

resulting behaviour which causes the relative slowdown in the CPU processing, 

and Figure 3.16 shows how this also causes a relative speed performance 

increase from the GPGPU over the CPU in the same area. 

3.5.4.6 Conclusions 

This work showed that again, it is the level of arithmetic that is conducted 

by the rule set that is the main driver of speed-up. The specifics of the rule set 

and the decision tree implementation mean that the (relatively fast on GPU) 

addition and subtraction operations only occur at specific leaves of the tree.  

Simply put, the more often these leaves are used, the greater the speed-up on 

the GPU. Of course, this depends on the specifics of the rule set and the decision 

tree implementation, but this does mean that the optimisation of the rule set to 

maximise arithmetic and minimise memory operations is an important element of 

parallelising CA with GPUs.   
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3.5.5 Data types 

As the state of the CA is stored in a specific data types varies e.g. integer, 

or floating point, and the level of precision given by the number of bytes used, 

this varies the performance of hardware. It is useful to know how previous 

experimental results will relate to a continuous CA which is used for flood models 

that will be investigated in Chapter 5: and Chapter 6:.  

3.5.5.1 Experimental set-up 

Experiments are conducted on two types of integer and two types of floating 

point data types, at a range of grid sizes. The char data type is a single byte 

integer, whereas the int type is a 4 byte integer. The float type is a 4 byte floating 

point, and the double is an 8 byte floating point type. 

3.5.5.2 Experimental Results 

 

Figure 3.23, Processing times from the game of life with a 50 percent active 
distribution and run for 1,000 generation, at various grid sizes, and with the 4 

different data types, on the GPU. 
 

The results of Figure 3.23 demonstrate there is very little difference in 

processing times for the two data types which are the same size (int and float, 

both being four bytes), the char type with only a single bytes takes the least time, 
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where the double floating point types takes the most times. It would appear that 

the size of the data types has large effects on the processing time of the GPU. 

 

Figure 3.24, Processing times for the OpenMP implementation, with 1,000 
generations of the game of life with a 50 percent initial distribution configuration. 

 

Figure 3.24 shows the processing times for the CPU, where the char type 

does take the least amount of time as with the GPU, however the int type which 

is 4 times as large, only takes a marginally longer amount of time to process on 

the CPU. It is thought this is because it is primarily hardware constrained and that 

the hardware being 64/32bit is tailored for these larger data types. Both floating 

point data types take a sizeable amount of extra time to process compared to the 

integer types, however there is even less difference between the processing time 

of the two different floating point types (float and double). In fact, since the CPU 

has for some years been tailored to operate with the higher precision double 

floating point types, it can be seen in Figure 3.24 that it is actually slightly faster 

at processing this types, even though it is twice the size of the float type. 
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Figure 3.25, Speed-ups of the GPGPU over the CPU of several different grid 
sizes, for 1,000 generations, using different base data types of char, int, float 

and double floating point numbers. 
 

 

Figure 3.26, Cell update rates (per second) on the GPGPU at a range of   
different grid sizes, for 1,000 generations, using different base data types of 

char, int, float and double floating point numbers, on machine B. 
 

0

5

10

15

20

25

30

35

40

45

50

16384 516384 1016384 1516384 2016384 2516384 3016384 3516384 4016384

S
p

ee
d

 u
p

 f
a
ct

o
r 

o
v
er

 s
er

ia
l

Number of grid cells

char int float double

0

1

2

3

4

5

6

0 1 2 3 4

C
e

ll 
u

p
d

at
e

s 
p

e
r 

se
co

n
d

B
ill

io
n

s

Number of grid cells

Millions

OpenCL Char OpenCL int OpenCL float OpenCL double



  123 

 

Figure 3.27, Cell update rates (per second) on the serial CPU implementation  
at a range of different grid sizes, for 1,000 generations, using different base 

data types of char, int, float and double floating point numbers, on machine B. 

 

Due to the different natures of the processing times shown in Figure 3.23 

and Figure 3.24, the speed-ups factors shown in Figure 3.25 are notably different. 

The starkest difference is between the float and double types, as the CPU is 

tuned to perform well for the 64bit double floating point type, whereas the GPU 

performs roughly half as fast as it does with the float types. Notably the floating 

point type has the largest speed-up factor, even greater than the smaller data 

types of the char (which is also a simple type being an integer).  
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main) cell is surrounded by 1 cell in either direction, forming a square 

neighbourhood where the number of cells is defined as (2r+1)2. The ‘game of life’ 

decision tree rule set is used (it should be noted that the GOL rule set only uses 

assignment for its state changes, and therefore the only variable arithmetic is 

within the counting of live neighbouring cells); and the collection of neighbouring 

live cell counts is altered to a set of two loops which takes the radius parameter, 

and finally each neighbouring cell is counted as it is visited, as opposed to storing 

the entire neighbourhood which is more difficult for the GPGPU. Since the ‘game 

of life’ rule set looks for specifically 2 or 3 live cells in order to trigger activity, as 

the neighbourhood size is increased, the range of possible live neighbouring cells 

also increases; thus the chance of finding 2 or 3 live neighbours decreases when 

the initial configuration is seeded with the same 50% initial configuration 

distribution probability in the creation of live cells. However, it is found to be 

possible to generate long lasting patterns in all radius sizes tested from 1 to 5 for 

the decision tree game of life. It was consequently found that the initial 

configuration needed to be seeded with fewer live cells as the neighbourhood 

size was increased. So, similar activity tests as in section 5.2 were repeated for 

each neighbourhood size by using a separate implementation to ascertain the 

cell and neighbourhood counts over a range of initial configuration distribution 

probability for initial live cell creation. 

It is determined that there are ranges of values within the initial configuration 

distribution probabilities which favour activity (shown in Figure 3.12 and Figure 

3.28). Within these ranges the initial population levels are neither too few nor too 

many to generate widespread amounts of live cells both spatially and temporally, 

and as such are termed as ‘habitable spectrum’ of initial configuration distribution 

probabilities. Unfortunately it can be seen in Figure 3.28, that the ‘habitable 

spectrum’ for each radius of the extended Moore neighbourhood shifts 

dramatically towards the lower end of the initial configuration distribution 

probabilities, so much so that using a 50% initial configuration distribution 

probability with a radius greater than 2 would not likely yield high activity levels. 

Therefore a simple estimation of the centre of these ‘habitable spectra’ is utilised, 

which also coincides with using a 50% initial configuration distribution probability 

as before with the tests using a neighbourhood radius of 1 (as in sections 3.5.1-

3.5.3). Equation 3.1 shows the initial configuration distribution probabilities 
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relative to the neighbourhood radius used in the preceding time experiments to 

ensure that high activity levels are generated for all neighbourhood radius sizes. 

Interestingly, the centres of these habitable spectra can be approximately 

calculated using the golden ratio of 1.618, a ubiquitous constant in natural 

systems. This leads to the initial configuration distribution probabilities as shown 

in Table 3.2. 

 

Equation 3.1  

 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
1

𝑟𝑎𝑑𝑖𝑢𝑠1.618+1
 

Table 3.2, Estimations of biases for the first 5 neighbourhood radius sizes used 
in experiments in this section, which correspond roughly to the centre of the 

discovered habitable zones. 
 

Radius 1/(radius1.618+1) 

1 50% 

2 24.57% 

3 14.46% 

4 9.59% 

5 6.89% 

 

3.5.6.2 Experimental set up 

Both the initial configuration distribution probability estimates produced by 

Equation 1 that yield high activity levels and a zero initial configuration distribution 

probability, which gives all dead cells in the initial configuration and thus the rest 

of the simulation, are tested. Again a workgroup size of 16x16, on a 512x512 grid 

is used, at 1,000 generations on Machine A, and 10,000 on Machine B. 
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3.5.6.3 Experimental Results 

Mean live neighbourhood counts

 

Mean live cell counts

 

Figure 3.28, Average live neighbours and live cell counts for initial configuration 
distribution probability of 0% to 67.5% at intervals of 2.5%, for a 512 lattice size 

and 1,000 generations, for the neighbour radius sizes 1 to 5. 
 

Figure 3.28 shows the average amount of activity and the described 

plateaux or habitable spectra. Figure 3.28 also shows that there is a reasonably 

large jump in neighbourhood count activity between neighbourhood radius sizes 

1 and 2, but after that appears to follow a fairly linear increase in activity as the 

radius of the neighbourhood is increased. Interestingly the live cell counts follow 

a very different pattern. 
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Machine A

 

Machine B

 

Figure 3.29, Relative speed improvements of the GPGPU and the OpenMP 
implementation, over the serial implementation with a variable neighbourhood 

size. Results shown for a 512x512 sized lattice, for 1,000 generations on 
Machine A, and 10,000 generations on machine B. Seeding with a zero initial 

configuration distribution probability and therefore no activity. 
 

 

Figure 3.30, Cell update rates (per second) for the serial CPU implementation, 
GPGPU and OpenMP, with a variable neighbourhood size. Results shown for a 

512x512 sized lattice, 1,000 generations on machine A. Seeding with a zero 
initial configuration distribution probability and therefore no activity. 
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Figure 3.31, Cell update rates (per second) for the serial CPU implementation, 
GPGPU and OpenMP, with a variable neighbourhood size. Results shown for a 
512x512 sized lattice, 10,000 generations on machine B. Seeding with a zero 

initial configuration distribution probability and therefore no activity. 
 

Figure 3.29 shows that where there is no activity, only a slight increase in 

performance for larger neighbourhood sizes is observed, with the exception of 

the GPGPU on Machine B which shows larger increases. This is attributed to a 

more efficient use of the cache of the GPGPU in Machine B allowing for a greater 

use of the extra hardware parallelism with the additional memory work in each 

cell.  
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Machine A

 

Machine B

 

Figure 3.32, Relative speed improvements of the GPGPU and the OpenMP 
implementation, over the serial implementation with a variable neighbourhood 

size. Results shown for a 512x512 sized lattice, for 1,000 generations on 
machine A, and 10,000 generations on machine B. Seeding with the ‘initial 

configuration distribution probability relative to the radius’ as shown in Equation 
1, to produce activity in all simulations. 

 

 
Figure 3.33, Cell update rates (per second) for Serial CPU implementation,  

GPGPU (OpenCL), and parallel CPU (OpenMP) with a variable neighbourhood 
size. Results shown for a 512x512 sized lattice, for 1,000 generations on 

machine A. Seeding with the ‘initial configuration distribution probability relative 
to the radius’ as shown in Equation 1, to produce activity in all simulations. 
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Figure 3.34, Cell update rates (per second) for Serial CPU implementation,  
GPGPU (OpenCL), and parallel CPU (OpenMP) with a variable neighbourhood 

size. Results shown for a 512x512 sized lattice, for 10,000 generations on 
machine B. Seeding with the ‘initial configuration distribution probability relative 

to the radius’ as shown in Equation 1, to produce activity in all simulations. 

 

Figure 3.32 shows that where there is activity, a very different pattern in the 

speed ups of the GPGPU compared to the CPU (parallel) approach can be 

observed, whereby there is a spike in the performance at a radius of 2. It is 

proposed that not only is there a link between the amount of arithmetic and speed 

up, but there is there is also a relation between the proportions of arithmetic to 

memory accesses, shown in Equation 3.2. I.e. as the number of memory 

accesses is increased, caused by the larger neighbourhoods, this proportion is 

reduced along with the speed ups.  

 

Equation 3.2   

  𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝐹𝑎𝑐𝑡𝑜𝑟 ∝  
𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑝𝑒𝑟 𝑐𝑒𝑙𝑙

𝑀𝑒𝑚𝑜𝑟𝑦 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑝𝑒𝑟 𝑐𝑒𝑙𝑙
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Figure 3.35, Ratio of the average live neighbouring cell count (activity) for each 
radius, against the neighbourhood size in cells, for a 512 sized lattice and 1,000 

generations (I.e. the predicted speed-up level from Equation 2). 
 

This relation (Equation 3.2) is shown in Figure 3.35, where the average live 

neighbouring cell counts from each radius divided by the number of cells in each 

neighbourhood are plotted.  This measure of the level of activity within the 

neighbourhood relative to the neighbourhood size, for each neighbourhood 

radius clearly mimics the shape of the GPGPU speedup curves for both machines 

in Figure 3.32.  For machine B, there is a slight trend to increase in performance 

with larger radius sizes, which is attributed to the increase in speedup seen in 

Figure 3.29 where the performance increases with neighbourhood size 

irrespective of activity level. 

3.5.7 Generational size tests 

Clearly, longer CA runs will benefit more greatly from any speedup that the 

GPU can provide. However, there are overheads associated with the 

implementation of a CA on the GPU and so these experiments attempt to 

characterise the length of run under which speedup on the GPU will be 

maximised. This is especially important for more complex CA to understand how 

different numbers of CA iterations will affect the GPU speed ups. 
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3.5.7.1 Method 

In order to avoid excessive transfer to and from the GPGPU when testing 

over a range of CA generations, for each number of generations tested, a full 

simulation is repeated up to the required number of generations, as opposed to 

running a single long simulation and timing it at sample intervals. Earlier sections 

(3.5.3-3.5.4) have shown how activity affects the entire simulation; experiments 

are now conducted to see how this effect correlates with the number of CA 

generations by again counting the live average cell and neighbourhood activity 

as well as a separate implementation purely for timing results.  

3.5.7.2 Experimental set up 

In a similar fashion to the lattice size tests in section 3.5.1, and 3.5.2, tests 

were run on a spectrum of generation sizes and fully independent runs (repeated 

15 times for an average) were conducted for each total count of generations. 

Tests were run at a single generation, and then at increments of 100 on Machine 

A up to 1,000, and at increments of 1,000 on Machine B up to 10,000. These 

tests are performed at lattice sizes of 512x512, 1024x1024, and 2048x2048, 

which are noted to be the particular lattice sizes where Machine A suffers from 

load balancing issues on the GPGPU, with a workgroup size of 16x16. Tests are 

also repeated on Machine B, at smaller lattice sizes of 480 and 448, in order to 

confirm the theory for the difference in the Machine B’s response at a 512 lattice 

size. Machine B’s GPGPU has more cores and therefore processes each 

generation quicker than Machine A. However, the overheads of parallelisation do 

not change as greatly for Machine B and this therefore means it takes more 

generations to overcome them at these smaller sized lattices. 
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3.5.7.3 Experimental Results 

512 lattice – Machine A

 

512 lattice – Machine B

 

1024 lattice – Machine A

 

1024 lattice – Machine B

 

2048 lattice – Machine A

 

2048 lattice – Machine B

 

Figure 3.36, Speed ups over the serial implementation, for OpenMP and 
OpenCL on the CPU and GPU, for a spread of generations, at lattice sizes of 

512x512, 1024x1024, and 2048x2048. 
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Figure 3.37, Cell update rates (per second) for serial implementation, OpenMP, 
and OpenCL on the CPU and GPU, for a spread of generations, at lattice sizes 

of 512x512, on Machine A. 
 

 

Figure 3.38, Cell update rates (per second) for serial implementation, OpenMP, 
and OpenCL on the CPU and GPU, for a spread of generations, at lattice sizes 

of 512x512, on Machine B. 

0

10

20

30

40

50

60

0 200 400 600 800 1000

C
e

ll 
u

p
d

at
e

s 
p

e
r 

se
co

n
d

M
ill

io
n

s

Number of generations

Serial

OpenMP

OpenCL CPU

OpenCL GPU

0

1

2

3

4

5

6

0 2000 4000 6000 8000 10000

C
e

ll 
u

p
d

at
e

s 
p

e
r 

se
co

n
d

B
ill

io
n

s

Number of generations

Serial

OpenMP

OpenCL CPU

OpenCL GPU



  135 

 

Figure 3.39, Average neighbourhood counts (Mean number of live neighbouring 
cells), for a spread of generations, at lattice sizes of 512x512, 1024x1024, and 

2048x2048. 
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between the number of generations and the processing time. However overheads 
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performance (even a marginal decrease in some cases) is observed. This 

demonstrates the extent to which simulations with very few generations are 

dominated by these parallelisation overheads, specifically for the GPGPU the 

transfer time bottleneck. Figure 3.36, for Machine B at a 512 lattice size shows 

that it takes more generations to overcome the initial bottleneck. This pattern is 

due to the use of relatively small lattice in relation to the level of hardware 

parallelism and the transfer bottleneck; i.e. as Machine B has a greater level of 

hardware parallelism compared to Machine A, it can process each generation of 

the smaller lattice relatively faster compared to the transfer bottleneck, and 

therefore takes more generations to overcome this effect. 

3.6 Discussion 

The experimentation here has shown that in order to gain the greatest 

performance from the GPGPU the lattice size, or rather the number of threads 

used, must exceed the number of hardware cores by more than an order of 

magnitude in order to best utilise all layers of hardware parallelism. Particularly 

difficult lattice sizes are shown to be caused by the lack of fit between the 

numbers of workgroup threads and the number of hardware’s independent sub-

groups of processors. Therefore, caution is suggested when using particular 

lattice sizes, and claiming acceleration rates for the GPGPU. It is also shown that 

these load balancing effects are caused by the number of workgroups, and one 

solution to this problem might be to pad the number of threads and therefore 

workgroups. An advantage to this approach is that these extra threads need only 

check if they are within the actual lattice or if the padded threads area, and thus 

need not transfer additional data. 

It is noted that part of these findings are due to many of the intricacies of 

way the implementation has been formulated, even though only a brute force 

approach is investigated. For example, a programmatic function/decision tree is 

used, which doesn’t require a look-up. Also, apart from the final tests with 

neighbourhood sizes, unrolled loops have been used for the collection of 

neighbouring cell values. Also, in the ‘game of life‘ with two states, it would be 

possible to implement this by means of summing the values of all neighbouring 

cells in order to gain a count of living cells, although this would be sub optimal for 

serial implementations, it would yield a very high speed up factor. The 
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experimentation shows how important variable amounts of arithmetic are to the 

speed improvement shown by the GPGPU, and how this causes variations in 

GPGPU accelerations over the CPU. It is demonstrated through the 

implementation of state transition rules with variable amounts of arithmetic, that 

where the conditions of the CA simulation result in large variations in the 

arithmetic levels across the grid then the GPGPU’s performance varies 

proportionately. This may go some way to explain the wide variation of reported 

speed increases from the literature. All CA will need to follow a similar memory 

pattern, as all CA need each cell to access the neighbouring cells states; 

therefore, any variation in speed-up between different CA will come from both the 

different neighbourhood size, in addition to the amount of certain arithmetic and 

variable arithmetic within the given state-transition rule of the CA. It is shown for 

the investigated rule sets that the majority of processing time can be attributed to 

the number of memory look-ups for each cell however the variation in the 

arithmetic work of rule set can still cause relatively large difference in speed-up. 

Therefore, for a given size of neighbourhood used (the amount of memory 

requests per cell), one should if possible increase the amount of arithmetic within 

the rule set on a per cell basis, in order to gain greatest speed-ups. Conversely if 

the rule set uses minimal arithmetic compared to memory access, it is expected 

that speed-ups will be smaller. 

Multi-state interpretations of the game of life have been created and 

experimental results are shown. The variation in the number of live cells over the 

course of the simulation, and the average specific course through the decision 

tree are shown to affect the processing speed of the CPU implementation due 

mainly to the varied amount of arithmetic necessary. Whereas the GPGPU may 

hide this variation in arithmetic complexity behind the memory latency and within 

the hardware parallelism, and as a result produce much more predictable 

processing times in the presence of such variation. The variation is a 

consequence of the behaviour produced, and therefore very hard, if not 

impossible, to predict without prior knowledge of the given rule set. Activity levels 

effect the processing time by different amounts at each generation and, with the 

game of life rule set, the activity was found the be greatest in the early stages; 

after an initially large drop tends to a slow decrease. In these early 

generations/short simulations the bottleneck of transferring to and back from the 
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GPGPU for processing is found to by far outweigh the acceleration in processing. 

This suggests that this bottleneck is especially critical to short lived simulation, 

which would certainly have consequences for distributed/cluster systems; i.e. it 

is even more important to run long CA simulations (large number of generations) 

than it is to use larger lattices, in order to overcome the overheads of 

parallelisation upon co-processors such as the GPGPU. 

The cache in the newer Fermi generation of GPGPUs facilitates better use 

of larger neighbourhoods.  This is because the additional hardware parallelism 

makes good automatic uses of this fast memory. A relation between the 

proportions of arithmetic activity to the amount of memory re-use is proposed 

(shown in Equation 3.2), again suggesting the need for a fine balancing act 

between the amount of arithmetic and memory complexity within a CA system for 

best performance increases. The decision tree interpretation of the game of life 

rule set when applied to larger neighbourhoods is found to produce very 

interesting patterns: - ‘habitable spectra’ within the initial configuration distribution 

probabilities exist for the incitement of such patterns. A relation between the 

radius of the neighbourhood and these habitable spectra are proposed which 

appears to follow an interesting mathematical pattern found from nature, i.e. the 

golden ratio. 

3.7 Conclusions 

As a lattice-based, parallel method of computation, cellular automata lend 

themselves to parallelisation on GPUs very well.  This work has thoroughly 

investigated the performance increases that can be expected from this 

parallelisation for a wide range of expected cellular automata parameters.  The 

results have provided some expected results; that CA run for longer generations 

provide increasing speed-up and that the machine type (and in particular relative 

speeds of GPU and CPU) have a large bearing on the level of speed-up possible 

on these machines.  The results have also provided some less obvious insights 

into GPU parallelisation. Firstly, that the maximum speed-ups are found when 

maximising the arithmetic use of the GPU, while minimising the amount of 

memory look-ups per cell of the CA also increases the speed-up factor. Secondly, 

that the amount of activity in the CA has a large effect on performance. With a 

high dependency on the specific implementation, CAs with more cells that carry 
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out lengthy processing during their evolution are more amenable to parallelisation 

than those which have low cellular computational complexity and are therefore 

able to exploit the parallel GPU more effectively. Thirdly, that the choice of lattice 

size is important in the speed-ups possible on the GPU and care should be taken 

to ensure that the lattice size fits with the underlying hardware where possible. 

Fourthly, that there exists a complex relationship between the number of states, 

neighbourhood size, state-transition rules and the level of activity (and therefore 

effective parallelism) within a CA.  This relationship will ultimately determine the 

specific level of speed-up available to a CA implementation and is, for obvious 

reasons, problem specific.  However, using the results from this study the likely 

speedup for a CA implementation on a GPU can be estimated based on the lattice 

size, activity levels observed within the CA and the number of generations 

required. This estimation can aid decision making when considering whether the 

degree of speedup is sufficient to warrant a GPGPU implementation on an 

application by application basis. 

Finally, the work above has shown that for a simple CA such as the Game 

of Life, speed-ups of between 50 and 100 times are possible on modern hardware.  

It should be noted that this is likely to be a conservative estimate as this figure is 

a comparison with one of the fastest modern CPUs available and the Game of 

Life is comparatively simple.  More complex rule sets will make better use of the 

GPUs native capability for performing fast parallel calculations.   The best speed-

ups will occur when the CA is sufficiently complex and run for a large number of 

generations, which is beneficial to the field in that the most complex CA will 

benefit the most from parallelisation. 

This all leads to the idea that CA when given enough lattice size and enough 

iterations, relative the given GPU hardware can be accelerated in processing. 

This brings into real terms the possibility of using CA simulations as fitness 

functions for a Genetic Programming system. This is where the parallelism of the 

CA and GP system can combine well together, as it appears from the research 

contained within this chapter, that to gain the best speed-up the CA needs to be 

at least an order of magnitude larger than the number of core within the GPU 

device. Since GP will require the evaluation of a fitness function for a number of 

individuals, this can be used to enlarge the total number of cell processed without 

enlarging the individual test cases, which would still scale with the total number 
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of cells. Such a method is described in greater detail in later chapters of this thesis, 

as this is implemented in order to train a CAGP system for a real-world problem 

in urban flood modelling. 
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Chapter 4: GP learning of Cellular Automata state 

transition rules 

4.1 Introduction 

4.1.1 Background 

GP was introduced previously in section 2.2 as a method of optimisation, 

symbolic regression and rule learning, and section 2.2.3 shows how GP has been 

used previously to derive the state transition rules for relatively simple binary 

state, and 1 dimensional CA. The fitness of the GP state transition rules, are in 

these types of problems normally determined by the final state of number of CA 

simulations.  

The work in this chapter introduces the combined GPCA methodology for 

learning the state transition rules of 2D CA using GP, and investigates the 

feasibility of training CA state transition rules where the desired output is that of 

an entire CA simulation. In such a process, not only would the final state of the 

given fitness simulation be tested, but also all the intermediary states. Instead of 

evolving a distributed computer program, a distributed simulator is evolved, as 

the method the CA uses to get the final results is as important as the final resulting 

state.  

The GPCA method may be applied to any CA simulation application so long 

as an interface between the local neighbourhood of the CA and the GP can be 

produced. This interface must declare the basic type of CA (binary, integer, 

continuous)/number of states, and how the states of the CA neighbourhood relate 

to GP variables. The work in this chapter demonstrates how the GPCA system 

may work on such a simple binary rule set as the Game of Life. 

4.1.2 Chapter Structure 

Section 4.2 introduces the general methodology of the GPCA system for 

learning CA state transition rules, and introduces the interface system used to 

learn the Game of Life rule set. This section also describes the GP fitness function 

and evolutionary algorithm applied in the rest of this thesis.  
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Finally section 4.2.4 introduces the method of combining the modern many-

core parallelism of the GPGPU, to not just increase the processing time of CA 

simulations, but also to increase the speed of GPCA training. This novel 

extension of simply processing each CA fitness case on GPGPU hardware, 

allows for all the fitness cases of the single GP generation to be processed 

simultaneously on the GPGPU. By processing all the fitness cases in a single 

batch, the bottleneck between the CPU and GPGPU can be minimised, and make 

full use of the combined work of all the fitness cases to satisfy the GPGPU’s 

needs for sufficient workloads in order to gain speed-ups through parallelism. In 

fact the experiments in Chapter 5:, on fixed spatial and temporal resolution real-

world flooding experiments with the GPCA system would take 3.75 weeks when 

run in parallel on the CPU, and only take 125 hours on the GPGPU. If these 

experiments were to be carried out in serial on the same CPU, it would take 

approximately 18.75 weeks to carry out just the experimentation for Chapter 5:. 

Therefore, it is only the use of this novel method of combining the parallelism of 

the GP and CA algorithms which allows for the feasibility of the range of 

experiments carried out in this thesis. 

This system is first applied to the simple rule set of the Game of Life in 

section 4.3, which shows that Genetic Programming is capable of discovering this 

simple rule set. This experimentation is intended to demonstrate the ability of GP 

to search the space of possible rulesets and to locate the global optimum ‘correct’ 

solution. The advantage of using a system such as the GOL is that it has an 

identifiable global optimum which is well known, whereas the real-world flooding 

applications do not. It can therefore be used to modify the GP system to be as 

optimal as possible before tackling the much larger real-world problem. Having 

shown that the GPCA a system can learn such a simple rule set as the Game of 

Life (section 4.3), this methodology is then extended to the development of a real 

world urban flood modelling rule set in Chapter 5:. Finally chapter 4.4, draws 

conclusions upon the feasibility of using the GPCA system to learn such a simple 

CA rule set as the Game of Life. 

 



  143 

4.2 Methodology 

In this section a methodology is developed that uses GP to evolve specific 

CA state transition rules, using example CA simulations to learn from. The 

standard Koza [6] type of GP is employed, in that a GP tree system and sub-tree 

cross-over are employed. The GP tree is applied as a decision tree within each 

cell of the cell of the cellular automaton to determine the new state for each cell. 

4.2.1 GP CA interface/representation 

 The method employed to interface the GP within each CA neighbourhood 

differs for each type of CA, and the type of rule which is being learnt. There are 

two main methods employed, the first for the Game of Life type of binary state 

rule sets (described in section 4.2.1.1), and the second for use modelling real 

world hydraulic movements of water (described later in section 5.2.1). The 

interface, dictates on which state variables the GP will operate and therefore the 

variable terminal values for the GP tree. Since the prospective formulae expected 

for each system are so different a different set of operates are used in each 

experiment, detail in the experimental setups for each. 

4.2.1.1 Game Of Life binary state GP interface 

The Game of Life style GP implementation uses the Moore neighbourhood 

(shown in Figure 2.2), and the rule set that was previously described in section 

2.1.1, in which the states of cells are either ‘alive’ (state 1) or ‘dead’ (state 0). The 

number of alive neighbouring cells is counted for each cell in the CA grid, and 

this is provided to the single GP tree within each cell as one of the variables inputs 

(This variable is called: NH_count). The only other variable input to the system is 

the state of the central cell of each neighbourhood (This variable is called 

mainCell). Finally, two static variables are introduced for each of the binary 

states ALIVE, and DEAD to represent states 1 and 0 respectively. 

This system guarantees the uniformity to the direction of input for all 

possible rule sets, by only presenting a single cumulative input from all the 

neighbouring cells to a single GP tree within each cell. In the experiments in this 

chapter on learning the Game of Life rule set, both the GP tree (at each node) 

and the states of the cells are allowed the full variable expression of floating point 
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values (double precision). Therefore, it is up to the GP trees to develop rules 

which only output binary states. However, this means that the counting system 

which determines the number of alive neighbours (NH_count), must deal with 

floating point values. In this case, the neighbourhood count variables (NH_count), 

counts any cell states with a state equal to or greater than one as alive. 

4.2.2 GP CA Fitness function 

Each resulting CA simulation for each GP rule is tested for similarity to the 

given target CA simulation, which then returns an error score for the given GP 

individual. The error is calculated between each cell at each iteration and the 

target simulation and thus produces a similarity for the entire simulation. The 

inverse of the error score is used as the fitness score (where fitness must be 

maximised), as this is used for fitness proportionate roulette wheel section. 

Effectively the system is asked to solve the inverse problem for CA, whereby 

given a global reaction, the system must deduce the local state transition rule 

which creates this global reaction. Evolutionary algorithms, of which GP is a 

member, are characterised by large numbers of fitness evaluations which can be 

very computationally expensive. However, they are known to be capable of 

searching otherwise intractably large search spaces and finding near optimal 

solutions. Therefore, the evolutionary system should be able to create local rules 

which are reasonably close approximations to the global maximum. Since such 

a rule will have to cope with many hundreds or thousands of different sets of 

parameter/variable inputs, and the complex interactions required to closely match 

the global space-time pattern, these local rules produced should generalise well 

to other conditions and initial inputs. As the same local rule in different 

configurations which is responsible for the different global reaction observed. For 

example in the Game of Life experiments in Section 4.3, using a 100x100 grid, 

and 10 generations of CA simulation as the fitness function, presents each GP 

with 100,000 different input and output sets. Since a CA will need to be evaluated 

with each GP individual, and a comparison made against the target CA, then the 

target CA details are loaded once at the start of the optimisation process, to avoid 

the loading bottleneck during the process. 

In the real-world rule set experiments in Chapter 5: and Chapter 6:, it is 

important to consider the real-scaled nature of the underlying model (i.e. real 
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world). This must be represented in a computer system as discrete points in time, 

known as the sampling rate, regardless of whether this data comes from another 

‘trusted model’ or from the real world. The target simulation is represented in 

memory by holding a grid of values for every second of the simulation (sampling 

rate used throughout this thesis), even though the model used to produce it run 

at a much finer grain (smaller time step). This single data set is used to represent 

the continuous movements fluid masses around the grid, so when a CA iteration 

falls directly on a given second it will use this grid for comparison. When a CA 

iteration falls between two given grids (seconds), then linear interpolation is 

utilised between these two grids, on a cell by cell basis. This allows for the same 

space time pattern to be targeted at different temporal resolutions.  

4.2.3 GP CA Evolutionary Algorithm 

A generational evolutionary algorithm is used to drive the GP system, shown 

in Figure 4.1, where all the individuals within the current population are evaluated 

and then order/sorted according to their fitness scores. Then a top percentage of 

individuals are copied without alteration to the new population (known as the 

elitism rate), and so long as at least one elitist individual is copied to the new 

population at each generation the algorithm’s current best solution will not get 

any worse. The rest of the new population is made from individuals which are 

selected from the entire current population, using the given selection strategy 

(e.g. fitness proportionate roulette wheel, or tournament selection). Selected 

individuals are given a certain chance of being directly passed into the new 

population without cross-over (cross over rate), although there is still a certain 

chance of mutation (mutation rate). If an individual is assigned for cross-over, 

then another individual is selected (again using the given strategy) and used as 

the second parent. A cross-over of two parent GP trees, will produce two child 

GP trees, but only a single arbitrary child is created, and given a chance of 

mutation before being place in the new population. 
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Figure 4.1, Illustration of how a new population is derived from the current 
population within the generational GP system.  

 

The entire system is represented by the flow chart (shown in Figure 4.2). 

Targets are provided by UIM (the Urban Inundation Model) [62] for the real world 

experiments, which uses an adaptive time step, where the minimum time step is 

much lower than those utilized within training of the GP system, in order to 

provide a finer grain of detail. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2, Flow chart of the GPCA optimisation systems process. 
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4.2.4 GP CA GPU computing method 

4.2.4.1 Novel GP CA method for combined parallelism for more efficient GPU 

computing 

In order to expand the number of parallel elements (cells) being processed, 

without expanding the size of each individual test cases, a novel system was 

developed which harnesses the parallel nature of both the GP and the CA 

algorithms. Parallelism may be drawn from both the CA with its many cells 

performing the state transition rules for each cell in parallel, but also this process 

is repeated for each GP individual, which may also be performed in parallel. 

Previous experiments have shown that there is a minimum threshold of the 

number of cells required in order gaining sufficient parallelism, and the size of the 

CA evaluated for the single GP individual maybe much smaller than this, 

otherwise the whole processing time is multiplied. Therefore, the evaluation of 

the CA for each GP individual is carried in out in a closely parallel fashion. In that 

one large CA grid is created, which includes a CA grid for each GP individual, 

where particular attention is made in the kernel code to avoid any interaction 

between these grids. Therefore a much larger number of cells per CA generation 

can be carried out while evaluating all the GP individuals in parallel (Shown in 

Figure 4.3). Since multiple populations may also be required to be run, it is 

possible to use a third layer of parallelism by performing the evaluation of every 

GP individual in each population in parallel. This method allows for the usage of 

a smaller terrain in terms of the number of cells, to be used as the target CA for 

each GP individual, while still overall maintaining a high enough parallel elements 

(cells) in a single process in order to satisfy the conditional number of parallel 

elements found in Chapter 3:, to be required to take full advantage of the parallel 

power of the GPGPU. 
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Figure 4.3, Demonstrates how the system is parallelised, on the left, the CA grid 
is extended as many times as there are GP decision trees which are applied as 

the state transition rule for all the cells in each section (where no interaction 
between section/repetition of the terrain is allowed).The subscript after the GP 
denotes which GP tree of the population is currently being utilised, and n is a 

variable from 1 to the number of GP in the population. On the right, within each 
section of the CA that particular GP decision tree is applied within every cell. 

 
For example the terrain used in [65] has only 600 cells, and experiments in 

Chapter 3:, have shown this is not enough parallel elements. Where the number 

of hardware cores in current GPU’s is in the order of hundreds or thousands, it is 

shown in Chapter 3: that the number of threads/cells needs to be between one to 

two orders of magnitude larger than the number of cores in order to make the 

best use of the available hardware. However, when this number is multiplied by 

the number of GP individuals requiring evaluation at each generation of the GP, 

the number of parallel elements can be dramatically increased. For example, if 

all 100 individuals require evaluation, and then a sizeable 60,000 cells are 

evaluated in parallel on the GPU. Furthermore, the majority of the experiments 

run a number of differently seeded GP populations, and if 10 populations are 

evaluated in parallel then 600,000 cells can be evaluated in parallel on a single 

GPU. Clearly the use of the CA’s parallelism at this scale, would be insufficient 

to take full advantage of the GPU hardware, however this method of utilising both 

the GP and CA parallelism simultaneously allows for far greater parallelism to be 

harnessed, without the need to expand the original test case. It is noted that this 
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method only works if each of the CA to be evaluated in parallel are the same size, 

i.e. the same test case is applied to each GP. 

4.2.4.2 GP decision tree evaluation 

Evaluating a standard GP tree on the GPU is made more difficult by the lack 

of recursion or variable sized arrays. Where recursion is the most obvious way to 

evaluate a variable sized tree structure with a standard CPU based programming 

paradigm. Due to the need for the additional hardware to hold the return address 

and recursion details, the GPU cannot physically perform recursion in the same 

way. Therefore, a looping system is created, which keeps track of the current and 

the previous nodes visited, using an indexing system, where the details of the 

tree are stored in an array of indices, parent and children indices. By knowing 

which node of the tree the process is currently on and which node was last visited 

(either a parent of child), the system can know which node is next to visit and if 

the current node should be evaluated, or if the system is traversing back up or 

down the tree.  

The tree is then evaluated in a depth first fashion, where upon reaching a 

terminal node, the value is pushed on to the stack. The key element that is a 

stack is again made difficult by the lack variable sized arrays on the GPU. 

Therefore, a hardcoded limited sized array is created within each GP tree 

instantiation, and a variable is used to keep track of the current top of the stack. 

It is upon traversing back up the tree that the operations are carried out, for 

example for a standard binary operation such as addition, then two values are 

popped from the stack and the result of the operation is then push on to the stack. 

Therefore, two switch cases are required, one for the possible operations and 

another for the possible terminal variable values, where the static values are 

stored literally. Due to the way that values are stored and then retrieved during 

the return traversal, the maximum size of the stack is equal to the maximum depth 

of the given GP tree.  

4.2.4.3 Hardware difference of the power function between CPU and GPU 

Appendix 9.1 explains details of how the outputs of the power function may 

be different on the different CPU and GPU hardware, another difference between 

the CPU and GPU implementations is the protection of the power function. As it 
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is difficult to predicted which inputs will cause outlier output values, such as Not-

A-Number (NaN) values, indeterminate, infinity (plus or minus), post calculation 

checks are utilised to capture these spurious results. While the CPU is capable 

of capturing all of these spurious results directly after its calculation within the GP 

decision tree, the current OpenCL API is unable to capture all of these, 

particularly the indeterminate values. Therefore, both implementations capture 

only the Not-A-Number (NaN) values, infinity (plus or minus) values, after each 

calculation step and return a zero value for that particular node. This however 

leaves the occurrences of indeterminate values to be passed down the GP 

decision tree, and then can occur as states within the simulations. Since results 

are returned from processing the simulation and fitness function on either CPU 

or GPU device, return finally to CPU for the processing of genetic operators, then 

at this stage any remaining spurious results can be captured. This rare 

occurrence means that the entire GP decision tree must have a penalised 

error/fitness score. 

4.2.4.4 Parallel fitness function 

The GPU is responsible for the processing of a CA simulation for each GP 

individual, where the GP individual is used as the state transition rules for every 

cell of that particular CA simulation. The fitness function is also particularly 

tailored, so as to not to cause losses of parallelisation, in that a grid of error values 

for each cell is maintained during the CA simulation. This leaves the reduction 

process of finding a single error value for the entire grid, until the end of the CA 

simulation. Therefore, an RMSE of the entire simulation is obtained, i.e. a RMSE 

of every cell in every iteration of the CA.  

4.3 GP CA - The Game of Life experimentation 

The methodology described in the previous section, allows the GPCA 

system to be applied to any CA system so long as an interface between the CA 

neighbourhood and the GP tree system is created. In this section, experiments 

are conducted to show that such a system can learn a relatively simple rule set 

such as the Game of Life (which was previously described in section 2.1.1). The 

Game of Life rule set is so simple it allows for the calibration and verification of 
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the GPCA system, where the global optimum is known, or rather can be tested 

for.  

The example simulation may not contain examples of every state transition, 

as is the case with the simulation used in these experiments. However, the since 

it is possible to easily check for every state transition required for the game of life, 

the resulting rule sets can be tested to see how well they have learnt the 

underlying Game of Life rule sets.  

4.3.1 Experimental setup 

In these experiments a random distribution of live (state 1) and dead cells 

(state 0) are created by using a 50% chance of either on each cell, using a 100 x 

100 grid. This is then used as the initial configuration for a simulation of the Game 

of Life, for a total of 10 generations and the data from this simulation is then used 

as the target for the GPCA experimentation.  

In order to maintain the uniformity of the rule set, the counting of the 

neighbouring states is explicitly programmed where if the neighbouring state is 

equal to or higher than the alive state (one) then it adds one to the value of the 

counter variable (NH_count), for each of the eight possible neighbours in the 

Moore neighbourhood. The state of the main (central) cell of each neighbourhood 

is contained in the variable (mainCell). Therefore, there are only two variables 

in the rule set, the NH_count variable which can range from 0 to 8 inclusively, and 

the mainCell variable which should be either alive (state 1) or dead (state 0). 

However, since this is a simple problem for the GP, the experiments do not limit 

the output of the GP to just zero or one, but allow any output (continuous floating 

point values), and thus force the GP system to learn the correct outputs. From 

these possible variable inputs, and the expected outputs of the GOL rule set, 

there are only 16 combinations (Shown below in Table 4.1). However, if this 

continuous system is allowed to use the outputs from one generation as the 

inputs for the next, there will be a much larger range of possible value for the 

mainCell variable. 
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Table 4.1, The 16 possible variable inputs (where mainCell column shows the 
current state of the main cell, and Live neighbouring cell count shows the 

number of alive neighbour), and expected outputs of the main cell in the next 
time step. 

 

GOL expected output mainCell Live neighbouring cell count 

(NH_count) 

0 0 0 

0 1 0 

0 0 1 

0 1 1 

0 0 2 

1 1 2 

1 0 3 

1 1 3 

0 0 4 

0 1 4 

0 0 5 

0 1 5 

0 0 6 

0 1 6 

0 0 7 

0 1 7 

0 0 8 

0 1 8 

 

A number of suitable terminals and operators are chosen in order to tackle 

this problem, which is shown in Table 4.2. Also a number of static variables are 

supplied to be available to the GP system, integer values ranging from 0 to 9 

inclusively, and the fraction 0.1 up to 0.9, at increments of 0.1 are all supplied to 

the GP as additional terminals. For the purposes of the game of life rule set, two 

static variables are introduced which represent the alive state of one, and dead 

state of zero. 
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Table 4.2, Terminal and Operator set used for the GP system, for learning the 
Game of Life rule set. 

 

Node Name 
Operator/ 
Terminal 

Description 

add (+) 
Binary 

Operator 
Adds two values 

Subtract (-) 
Binary 

Operator 
Subtracts right value from left 

Protected division 
(%) 

Binary 
Operator 

Divide left by right, unless right is zero, 
in which case returns zero 

Multiply (*) 
Binary 

Operator 
Multiply two values 

Greater Than (>) 
Binary 

Operator 
If left value is larger than right value 

return one, else zero 

Smaller Than (<) 
Binary 

Operator 
If left value is smaller than right value 

return one, else zero 

Equality (==) 
Binary 

Operator 
If both values are equal return one 

If-then-else (if) 
Ternary 
Operator 

If left value is greater than zero, then 
return value of middle branch, else 

right branch 

And(&&) 
Binary 

Operator 
If left value is greater than zero, and 

right value is greater than zero, return 
one, else zero 

Or(||) 
Binary 

Operator 
If left value is greater than zero, or 

right value is greater than zero, return 
one, else zero 

ALIVE (static state 1) Terminal Static value of 1.0 

DEAD (static state 0) Terminal Static value of 0.0 

mainCell Terminal Variable – The value of the main cell 

NH_count 
Terminal Variable – The count of the 

neighbouring value which are one or 
more. 0 to 8, inclusively. 
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Figure 4.4, shows an instantiation of the Game of Life rule set, which will 

gives the correct GOL output for each of the possible variables inputs, although 

there are many possible GP trees that will replicate these state transitions. 

 

Figure 4.4, A human programmed GP tree which will clearly produces the 
required state transition in Table 4.1, and therefore is valid version of the game 

of life rule set (one of many possible instantiations). 
 

10 populations each with a different seed values are run, with the GP 

parameters described in Table 4.3. The termination criterion for the 

experimentation is limited to 500 GP generations. 

Table 4.3, The Genetic Programming parameters applied game of life in tests. 
 

Population size 100 (*10 run in parallel) 

Initial population set-up Depth 3 full growth 

Mutation types Change, Insert, Remove nodes, 
and replace sub-tree (maximum 

depth 3) 

Mutation level 2.5% chance per node 

Selection type Tournament from 10 random 
individuals 

Cross-over chance 80% 

Elitist individuals 1% 

Maximum GP tree depth 10 
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4.3.2 Experimental results 

 

Figure 4.5, Error score (RMSE) of the fittest individual with each of the 10 
populations. 

 

In the results shown in Figure 4.5, there are 7 out of 10 populations which 

successfully match the target simulation data, and out of these 6 out of 7 of those 

populations match all the GOL state transitions (i.e. on one occasion the system 

has discovered an alternative ruleset for generating the required outcomes which 

does not match the Game of Life state transitions). This is because the target 10 

CA iterations of the Game of Life, at this grid size and the initial configuration 

does not contain examples of every state transition. This is a problem with the 

fact that the GOL rule set, has been shown to tend to converge towards a low 

average neighbourhood counts (Figure 3.39) causing a lower overall chance of 

high neighbourhood counts occurring in the target simulation. Also due to the 

initial configuration using a 50% chance of a cell being alive, the chance of a high 

live neighbouring cell count are initially low, as well as the rules tendency to lower 

counts. I.e. it is not likely that a single game of life simulation with an initial random 

distribution of 50% chance of alive or dead cells will have the state transitions 

with high counts of alive neighbours present. It is however encouraging that the 

majority of learnt rules sets have learnt the underlying system, even considering 

that it is possible to find alternative rules. Figure 4.1 shows the state transitions 

of the GP individual which scored zero error on the target simulation, but does 
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not match all the GOL state transitions. It is clearly this lack of state transitions 

with higher neighbourhood cell counts, which are lacking from this target 

example. 

Table 4.4, The 16 possible variable inputs, and expected outputs, and the one 
GP run which matched the target but didn’t perfectly match all the state 

transitions. Incorrect outputs are highlighted in bold. 
 

GOL expected 
output 

GP output MainCell NH_count 

0 0 0 0 

0 0 1 0 

0 0 0 1 

0 0 1 1 

0 0 0 2 

1 1 1 2 

1 1 0 3 

1 1 1 3 

0 0 0 4 

0 0 1 4 

0 1 0 5 

0 1 1 5 

0 1 0 6 

0 1 1 6 

0 1 0 7 

0 1 1 7 

0 1 0 8 

0 1 1 8 

 

An example evolved GP tree which successfully scored both zero error on 

the target simulation and fully replicates all the binary state transitions of the 

Game of Life is shown in Figure 4.6. It is relatively easy to read, although a rather 

different approach to the well-known human formulation. The left side checks to 

see if the neighbourhood count is less than 4, i.e. if it is 3, 2, or 1, resulting in 1 if 

so. Then the right side of the tree, checks if the main cell’s value is dead or alive, 

which results in the entire right hand side of the tree checking if the 

neighbourhood count is less than either 3 or 2, performing the latter if the cell is 

alive. Since the left side is subtracted from the right side, this results in the correct 

output where if the neighbourhood count is 3 it always makes the cell alive, and 

if the main cell is alive and 2 or 3 other neighbours are also alive then the result 

is a live cell in the next iteration. 
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Figure 4.6, An example evolved version of the game of life rule set. 
 

4.4 Conclusions 

The GPCA system has been shown effectively learn the state transition rule 

of relatively simple Game of Life, even considering that the GP system is not 

limited to binary states, it has managed to learn the correct output in the majority 

of cases. The fact that the system is not constrained to purely the use of binary 

outputs and intermediary values at each node means that it has produced 

particularly readable formulae outputs, as they must directly produce the correct 

output. I.e. because the GP system can produce such a large variation of outputs, 

and these outputs are directly used to represent the new cell states (no re-

interpretation is used), then it must produce a formula that directly produces the 

correct outputs. This is guided to the correct outputs by the fitness function.  

The tests show that for this simple rule set, there is a large jump in fitness 

landscape between the perfect score and other fit individuals (Shown in Figure 

4.5). This is because if a fit (i.e. near perfect) individual makes some small errors 

within its state transition rule, then these values are used as the input for the next 

CA iteration, and so on for the full 10 CA iterations. This allows for a small error 

in the state transition rule to cause larger error scores, also because there is no 

relation of the cell states to concepts such as mass or energy, and therefore no 

such concepts of mass/energy conservation, then it is possible to make large 

jumps in the patterns between CA iterations. 

Signs of convergence are difficult to quantify with a generational GP 

population, due to way the populations best may have no change for some time, 
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meanwhile the mean score of population may get worse, and this may lead to 

eventual improvements in the best and the average. The length of 500 

generations of GP optimisation was chosen as it would appear that the majority 

of populations have performed the majority of their optimisation, also to establish 

fair and even termination criteria in the testing. However, it is possible for 

populations to make a sudden and large jump in the fitness landscape which can 

quickly change the majority of the population. It does appear that due to the initial 

growth of GP trees, that optimisation appears to slow down shortly after the 

maximum depth is reached. 

The results in Figure 4.5 could be interpreted as discouraging due to the 

large jump in fitness for those successfully achieving zero error; however this is 

due to the limited size of the search space, the binary nature of the CA and the 

chaotic nature of the Game of Life rule set. It is however encouraging that most 

(7 out of 10) achieved the goal and most of them (6 out of 7) generalised to the 

unseen state transitions for the Game of Life. Also given the binary nature of the 

Game Of life rule set, this search is too simple for GP, and similar results could 

possibly be obtained from a random search. However, it is expected that when 

using the GPCA methodology for real-world continuous CA rule sets, this problem 

will be largely overcome by a larger and generally smoother search space. The 

final conclusion for this chapter is that the GPCA system is indeed capable of 

learning CA rules for the simple Game of Life system, although the search is 

made more difficult by the binary states and complex system produced by the 

Game of Life. 
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Chapter 5: GP CA real-world flood modelling  

5.1 Introduction 

This chapter describes the experimentation using the GPCA system to train 

real world urban flood modelling rule sets, at a single fixed spatial resolution and 

temporal resolution. The work in this chapter meets objectives 4, 4.1, and 4.2 by 

firstly ascertaining how well the GPCA system can learn a CA local state 

transition rule for a real world system at a single resolution, and then testing this 

on unseen terrain, and water input data. Limiting the training and testing in this 

chapter to a single spatial and temporal resolution is designed to test the ability 

of the GPCA system to learn a real world rule set, without also considering what 

are effectively different rules at different resolutions. This work is then extended 

in the next chapter to train and test over different spatial and temporal resolutions. 

5.1.1 Chapter Structure 

Section 5.2 extends the methodology established in section 4.2 for the 

GPCA system with a new interface for the new modelling. I.e. as the CA now has 

continuous states and more states than previously used in the Game of Life, and 

physical limitations must also be imposed over the GP within the local CA 

neighbourhood, a new interface is required. Section 5.3 details the experimental 

set-up for the real-world cases used in this chapter and the next, including 

specifics of the training and testing cases utilised. Also the best known flood 

modelling CA rules from literature are shown in Section 5.3.3, which are used as 

human competition/benchmarks for the experiments.  

After this, the chapter is split into two main sets of experiments, training in 

section 5.4 and testing on unseen data in section 5.5. In the training experiments 

performed in section 5.4 the aim is establish how much training data is required 

in order that the GPCA system can train effective rules. This is then tempered by 

testing the rules generated in section 5.4 on unseen data in section 5.5, in order 

to establish which amount of training data presented creates the most effective 

rules at generalising to unseen data. Finally conclusions are drawn from the 

combination of the training and testing rules in section 5.6. 
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5.2 Methodology 

The GPCA methodology introduced in section 4.2 is utilised with a modified 

GP-CA interface which is detailed below in section 5.2.1.  

5.2.1 Real world hydraulic GP interface 

The system for modelling of hydraulic water/fluid movements within CA has 

been described previously section 2.1.3 and 2.1.4; this section introduces how 

the GP interfaces with this system. The modelling of water and terrain levels 

requires a continuous CA, where the states and values of the cells are 

represented by floating point (double precision) values. The state transitions are 

represented by continuous formulae, which will therefore output a value for every 

input and each input will always output the same value. Each cell has two main 

values, the terrain level and the water depth. The terrain level does not change 

for each cell during a simulation, but changes from cell to cell. The water level is 

the combination of the water depth and terrain level of the cell, as shown in Figure 

5.1. The grid itself has certain static variables which are the same for every cell 

in the grid, for example the cell size, time step and roughness factors (although 

the roughness can in certain circumstances vary across the grid). 

 

 

 

Figure 5.1, Side view of a cell as represented by the continuous values the 
terrain level, and water depth, which summed together equal the water level, 
stored within each cell of an open channel CA system (repeated from Figure 

2.11). 
 

A number of methods for flood modelling in the literature [110] [64] [111] 

[63] [65], use a method whereby the state transition rules are formed from 

repeated use of a single formula between the main (central) cell of the 

neighbourhood and each of the neighbouring cells. This establishes the outflow 

rates in up to four directions, and then the total outflows are capped such that the 

total outflow from all four directions does not exceed the volume of water within 

the main cell (Shown in Figure 5.2). In order that an outflow is written by only a 

Water Depth 

Terrain Level 
Water Level 
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single cell between each pair of cell in the grid, outflows are only calculated to 

neighbouring cells which have a lower water level. This method is designed such 

that water volume can be preserved across the grid, so water volumes within 

each cell can neither be created nor destroyed, and can only move laterally 

across the grid in the x and y axes. 

 

Figure 5.2, Demonstrates how the outflows are calculated within the Cellular 
Automata system, between the main (central) cell and each neighbour of the 

Von Neumann neighbourhood (repeated from Figure 2.12). Centrally showing a 
side view of terrain and water levels in the pair of cells highlighted in the Von 
Neumann neighbourhood, Right, showing a plan view of the neighbourhood. 

 

This requires a two stage system to be employed, where the GP formula is 

used up to four times per cell to establish the outflows in each direction for each 

cell. If the total flows exceed the volume of the central cell, then the flows are 

normalised by the amount of water within the central cell. The flows are 

normalised proportionately to their calculated values but do not cumulatively 

exceed the volume of water with the central cell. However, since the calculated 

outflow dictated that more water should move than is available, it appears logical 

to reduce this to just as much as is available. Only outflows from the central cell 

are calculated in the first stage, as an inflow to the current cell is an outflow from 

another cell. Due to the way that outflows may be normalised by the amount of 

water within the main cell, when the total outflow exceeds this level, then the 

individual outflows are not calculable from neighbouring cells. Instead these 

values must be written to an intermediary grid of edge values (an edge buffer, 

shown in Figure 5.3). A second stage is then utilised where, each cell reads from 

the edge buffer for every one of its four neighbouring cells. In this stage both 

inflows and outflows are read from the edge buffer, where of course an inflow to 

one cell is read as an outflow from another cell. Once all inflows and outflows are 

read from the edge buffer by a cell, then the new water level is calculated by 

subtracting the volumes of outflows and adding the inflows to the current water 
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volume of the central cell. In this way the water is always balanced across the 

grid, regardless of what outflows are calculated between each pair of cells. 

 

Figure 5.3, Two stages of the CA flood system. Stage 1 for every pair of cells an 
outflow is calculated, stage 2 every cell updates water depths by means 

subtracting outflows and adding inflows (repeated from Figure 2.13). 
 

In this system, the GP formula represents the relation between a pair of 

cells, within the constraint of not exceeding the volume preservation rules of the 

Von Neumann neighbourhood. Outflows are only calculated from a main cell to a 

neighbouring cell when the neighbouring cell’s water level is lower than that of 

the main cell, which prevents outflows being calculated in two opposing 

directions. However, this means that the value taken from any GP formula cannot 

be negative, and therefore the absolute of the GP tree’s calculated output value 

is used to represent the pre-normalised outflows. 

5.3 Experimental setup 

Operators and terminals are selected so as to be suitable for the processing 

of such a rule as the Manning’s formula (Shown in Equation 2.1, in section 

2.1.4.1), therefore the following operators are utilised (Shown in Table 5.1). 
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Table 5.1, Terminal and operator set used for the GP system when applied to 
flood modelling, where the new power operator is highlighted in bold. 

 

Node Name 
Operator/ 
Terminal 

Description 

Add (+) 
Binary 

Operator 
Adds two values 

Subtract (-) 
Binary 

Operator 
Subtract right value from left 

Protected division (%) 
Binary 

Operator 
Divide left by right, unless right is zero, 

in which case returns zero 

Multiply (*) 
Binary 

Operator 
Multiply two values 

Greater Than (>) 
Binary 

Operator 
If left value is greater than right value 

return one, else zero 

Smaller Than (<) 
Binary 

Operator 
If left value is smaller than right value 

return one, else zero 

Equality (==) 
Binary 

Operator 
If both values are equal return one 

If-then-else (if) 
Ternary 
Operator 

If left value is greater than zero, then 
return value of middle branch, else 

right branch 

And(&&) 
Binary 

Operator 
If left value is greater than zero, and 

right value is greater than zero, return 
one, else zero 

Or(||) 
Binary 

Operator 
If left value is greater than zero, or 

right value is bigger than zero, return 
one, else zero 

Power (pow) 
Binary 

Operator 
Raise the left value to the power of the 
right value (If is Nan or Infinity, return 

zero) 

Main Cell Water Depth Terminal The water depth of the main cell 

Main Cell Water Level 
Terminal The water level (water depth plus 

terrain level) of the main cell 

Main Cell Terrain Level Terminal The terrain level of the main cell 

Neighbouring Cell 
Water Depth 

Terminal The water depth of the neighbouring 
cell 

Neighbouring Cell 
Water level 

Terminal The water level (water depth plus 
terrain level) of the neighbouring cell 

Neighbouring Cell 
Terrain Level 

Terminal The terrain level of the neighbouring 
cell 

Cell size Terminal The cell size of the grid in meters 

Time step 
Terminal The time step applied between each 

CA iteration 

Roughness factor (1/n) 
Terminal One over the roughness factor of the 

grid 

 

The division function is protected, such that an attempt at division by zero 

results in a zero value. This kind of operator protection is reasonably standard for 
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Genetic Programming. However the use of a power function is rare within GP, 

and it is found to be especially problematic (shown in Appendix 9.1), as the results 

of the power function for the CPU and GPU are not guaranteed to be the exactly 

same value. However, the Manning’s formula uses both a square, square root 

and a cube root in its calculation and therefore it is reasonable to assume that 

the GP system will require some form of similar operator(s). Since it is difficult to 

determine which input values for the power function will result in out of bounds 

return values, a check is performed on the results of the calculation of the power 

function, whereby any out of bounds results (including +/- infinity, Not-A-Number 

(NaN), or indeterminate values), are reduced to a resulting zero value. It is noted 

in Appendix 9.1 that this still does not guarantee identical results from the power 

function between the different hardware platforms, however it guarantees as 

sensible a result as possible, and ensures consistency on repeated runs of the 

same platform. 

It is noted that the water level variables provided are the addition of the 

water depth and terrain level of each cell (as shown in Figure 5.1), and that it 

should of course therefore be possible for the GP system to create the water level 

variable. However, since GP is capable of both creating composite variables and 

selecting important variables, both the water levels and the depths, and terrain 

levels are provided. The cell size and roughness factors also have a role to play 

in the amount of flow, and are also therefore provided to the GP system. Finally, 

the time step at which the grid is set to operate is provided, and should play a 

vital role in how large flows can be. Once again a number of static variables are 

supplied to be available to the GP system, integer values ranging from 0 to 9 

inclusively, and decimals 0.1 up to 0.9, at increments of 0.1 are all supplied to the 

GP as additional terminals. The Root Mean Squared Error (RMSE) of every cell, 

at every iteration of the CA simulations is calculated, by summing all the squared 

errors at every iteration, square rooting, and dividing the number of cell in each 

grid multiplied by the number of iterations. The GP parameters used in the 

experiments are displayed in Table 5.2. 
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Table 5.2, The Genetic Programming parameters applied in real-world urban 
flood modelling tests. 

 

Population size 100 (*10 run in parallel) 

Initial population set-up Depth 3 full growth 

Mutation types Change, Insert, Remove nodes, 
and replace sub-tree (maximum 

depth 3) 

Mutation level 2.5% chance per node 

Selection type Tournament from 10 random 
individuals 

Cross-over chance 80% 

Elitist individuals 1% 

Maximum GP tree depth 10 

Termination Criteria 500 Generations 

 

The GPGPU device used for these experiments differs from that of previous 

experiments in previous sections, and is described in Table 5.3. This more 

modern GPU has an even large number of processing cores, although each 

compute core now contains an increase to 192 processing units each (Nvidia 

Kepler GPUs). 

Table 5.3, Full specifications of machines used for in real-world urban flood 
modelling tests [112] 

 

Machine Machine B-2 

Type PC workstation 

Age Recent 

CPU Intel Core-I7-2600 @3.4Ghz 

CPU cores 4 (8 with Hyper-Threading) 

GPGPU Nvidia Tesla K20 

GPU Processing 
elements (CUDA cores) 

2496 

GPU Compute cores 13 

GPU speed (Core, 
Memory - MHz) 

706, 2600 
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5.3.1 Hill and Pond - Training case 

The Ghimire et. al. hypothetical test case [65] (previous described in section 

2.1.4.2), is utilised as a training case. Consisting of 30 x 20 cells, at a 50m 

resolution; “The terrain consists of both forward and reverse slopes of 0.2%. It 

also has a lateral slope of 0.1 toward the outlet”, where the outlet is removed for 

consistency (Shown in Figure 5.4). This example specifies a roughness factor 

0.01n is applied across the terrain, and a rain fall of 20mm/h for the first hour of 

the simulation is used as input for the water depths, where a full simulation time 

is considered 12 hours. 

 

Figure 5.4, Hypothetical ‘Hill and Pond’ terrain, and given test points; taken from 
Ghimire et. al. [65] (also shown in Figure 2.16). 

 

This terrain (Shown in Figure 5.4) is selected for providing sufficient 

hydraulic examples while not being an overly large spatial size. This selection is 

made primarily due the size and processing times of this training simulation, in 

that because this simulation will need to be repeated for every new individual at 

every GP generation, the processing times will quickly mount up for the entire 

optimisation process. For example, even with a very short processing time of 1.0 

seconds for each CA simulation, and a population of 100, and 500 generations 

would equate to approximately 14 hours of processing. Therefore, the processing 

time of single fitness evaluation is very important, and the selection of the size of 

the test case used, must be made carefully.  

In order to carry out meaningful investigations of the system, multiple 

separate populations will need to be evaluated. Research in (Sections 3.5.1 and 

3.5.2), shows that in order to achieve a significant speed-up factor from 
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parallelisation that a large enough number of parallel elements are required, i.e. 

the number of cells in the CA. However as described in the previous paragraph 

a single CA simulation needs to limited in size in order to avoid the multiplication 

of many evaluations required for the GP system. This paradoxical problem is 

answered in the next section, by means of the novel method of harnessing the 

parallelism of both the CA and the population of individuals with the GP system 

(described in Section 4.2.4.1). 

5.3.2 Testing and validation simulation cases 

Larger terrains are possible for testing and validation, due to fact that a 

single simulation need only be run on each, as opposed to training which requires 

many. For these larger terrains, using a sampling rate of one second, it is possible 

to exceed the limitations of modern hardware memory limitation, where this may 

total many hundreds of Gigabytes of data. Therefore, the entire simulation target 

is not loaded into memory, but rather only the required point in time for the 

simulation that is being tested. This adds the loading time into the simulation time, 

and brings these test simulations in to the range of minutes to perform each. 

Where these scales of real world simulation processing times are acceptable for 

the testing purposes they are clearly too large for the training purposes. 

It is hoped that the system where a single local rule is trained, will be able 

to generalise very well to other configurations. Therefore other test cases are 

selected, this time from the UK Environment agency Benchmark test suite [1]. 

However, the resulting trained GP trees are firstly tested on the latter 6 hours of 

the ‘hill and pond’ simulation; i.e. from 6 up to 12 hours. Also validation is carried 

out on the same ‘hill and pond’ terrain, for the full 12 hours of simulation, but with 

a different rain profile, thus this is entirely unseen simulation. 

5.3.2.1 EAT-2 Test case 

The primary test cases utilised with a different terrain is the EAT-2 

(Environment Agency Test), which is shown below (Figure 5.5). EAT2 in its 

original formulation is a 2000m square grid, using a cell size of 20m, and is 

therefore 100 by 100 cells, totalling 10,000 cells. In order to test on the same cell 

sizes as those trained upon; this terrain is scaled up to a 50m cells size, and 

therefore occupies an area of 5000m2. The Plan view of the terrain layout of UK 
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Environment Agencies Test case 2 (EAT2) is shown in Figure 5.5. A rain profile 

is applied for the majority of tests as opposed to the prescribed inflow conditions, 

and this represents the primary reason for selecting this terrain, in that it is a 

viable test case with uniform rain applied. A uniform Manning’s roughness factor 

of 0.01n is used throughout validation, so the system has been trained on only a 

single set of static variables and tested on simulation with same static variables. 

 

Figure 5.5, EAT2 test case original terrain (Plan view), at 2,000m square with 
100x100 cells; which is scaled up to a 5,000m square terrain by increasing the 

cell size to 50m 
 

5.3.2.2 EAT-1 Test case 

The next simpler terrain but very different input conditions test case, is EAT1, 

where the terrain is essentially a 1 dimensional channel as there is no change in 

the y-axis. The modelled domain is a 700m X 100m rectangle (Shown in Figure 

5.6), using a 10m cell size in its original description, this gives 700 cells total, 

although due to there being no difference in the y-axis this is simplified down to 

only 70 cells. 
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Figure 5.6, Plan (top) and profile (bottom) views of the EAT1 terrain (DEM - 
Digital elevation Model), also showing the two test points in the plan view. 

 

The major difference for the EAT1 test case, compared to that of previous 

EAT2 cases is that it is designed purely for a different type of inflow. Where 

previous test cases all use a uniform rain pattern, at a certain rate for a certain 

amount of simulation time and this rate is applied equally to all cells in the terrain. 

The EAT1 test cases has what is termed a water level event, whereby at one of 

the borders (shown in Figure 5.6, plan view - Top) the bordering water level is 

varied during the simulation. This is used to test a simulated lateral inflow, or 

outflow, for example a dam break or over flow. Once again this terrain is scaled 

up to a 50m cell size from its original resolution, so as to be a fair test. 

The water level inputs used in the EAT1 test cases are shown in Figure 5.7), 

where the water level starts at 9.7m which is equal to the terrain level at the 

input/output border. It is then raised linearly up to 10.35m which is higher than 

the terrain level, and therefore there is an inflow, which should proceed along the 

terrain in an easterly direction. Since the higher level of 10.35 is also higher than 

the peak in the terrain along the x-axis at 300m, then water should flow over this 

into the pond (located between 300m to 650m, and central at 500m). The water 

level should then settle at the 10.35m point across the terrain, until the point in 

time at 11 to 12 hours of simulation time, when it is again lowered to 9.7m. At this 

point the waters should recede back out of the terrain, but leaving water within 

the ponding area. The waters on the westerly side of the peak at 300m along the 

x-axis should fully recede, whereas the water within the ponding area should 

leave the pond water level at 10.25m, due to the level of the terrain peak at 300m 

along the x-axis. 
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Figure 5.7, Varied bordering water level event which drives the input to EAT1 
test case. 

 

5.3.3 Human competition 

Based on the work of previous models four different GP versions of the 

Manning’s formula are formulated, based on the Equation 2.1, Equation 2.2, 

Equation 2.6  and Section 2.1.4. In order to be able to better encode these human 

formulations and compare the code, a simple recursive descent parser was 

created, and the paired look ahead level one language it encodes. This allows a 

human programmer to program in much more natural format, i.e. avoiding using 

lists of token in reverse polish notation, and thusly avoiding costly mistakes. Code 

shown in Figure 5.9, Figure 5.11, Figure 5.13, and Figure 5.16 utilises the simple 

recursive descent language created by the author and specified in Appendix 9.2. 

This language accepts C-style comments, and is designed to facility easier and 

more error resistance human programming of GP decision trees. 

5.3.3.1 Ghimire formulation 

Ghimire et. al. [65], interpreted the hydraulic radius (R) as the water depth 

of the main cell, as shown in Figure 5.8 and Figure 5.9. Whereas the full original 

Ghimire rule set uses a ranking system to distribute the water from the main cell 

to downhill neighbours, instead their formulation of the Manning’s formula is 

applied within the more standard framework. Thus a fair comparison can be made 

between the different formulations, when working within this standard schema. 
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Figure 5.8, Manning’s formula, combined with the discharge formula, in GP tree 
form; used to calculate the volume of water to transfer between a pair of cells, 

using the Ghimire implementation of the hydraulic radius. 
 

 

 

 

 

 
 
 
 
 
 
 

Figure 5.9, Manning’s formula, combined with the discharge formula, in GP tree 
code form (scaled down version of C code); used to calculate the volume of 

water to transfer between a pair of cells, using the Ghimire implementation of 
the hydraulic radius. 
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5.3.3.2 Dottori and Todini formulation 

 

Figure 5.10, Manning’s formula, combined with the discharge formula, in GP 
tree form; used to calculate the volume of water to transfer between a pair of 

cells, using the Dottori and Todini implementation of the hydraulic radius. 
 

 

Figure 5.11, Manning’s formula, combined with the discharge formula, in GP 
tree code form (scaled down version of C); used to calculate the volume of 

water to transfer between a pair of cells, using the Dottori and Todini 
implementation of the hydraulic radius. 

 
The Dottori and Todini formulations (Shown in Figure 5.10 and Figure 5.11) 

major distinction is the use of the arithmetic mean of the pair of cells water depths, 

in the place of the hydraulic radius (R). Also they perform a mathematical 

simplification of moving the hydraulic radius element of the outflow area (A), and 
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into the power function. I.e. they have raised the hydraulic radius the power of 

5/3rds instead of the 2/3rds and only multiplied by the cell size and not the cell 

size and the water depth of the main cell as in the Ghimire method. 

5.3.3.3 Bates and Hunter formulation 

 

Figure 5.12, Manning’s formula, combined with the discharge formula, in GP 
tree form; used to calculate the volume of water to transfer between a pair of 

cells, using the Bates and Hunter implementation of the hydraulic radius. 
 

 

Figure 5.13, Manning’s formula, combined with the discharge formula, in GP 
tree code form (scaled down version of C code); used to calculate the volume of 

water to transfer between a pair of cells, using the Bates and Hunter 
implementation of the hydraulic radius. 
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The major difference between the Bates and Hunter formulation of the 

Manning’s formula is that they use the difference between the main (outflowing 

and therefore higher) water level and the larger of the two terrain levels, as the 

hydraulic radius. 

5.3.3.4 Bates and Hunter Flow Limited formulation 

Bates and Hunter [64], develop a flow limiter to ensure that the flow does 

not ‘over’ or ‘undershoot’, and is a function of flow depth, grid cell size and time 

step (Shown in Figure 5.14, and previous discussed in section 2.1.4.3). 

 

Figure 5.14, Flow limiter formula, used by Hunter and Bates et. al. where the 
flow rates are first calculated by the Manning’s formula (Shown in Equation 6.1 
then the minimum between the above and that outflow are calculated previous 

shown in Figure 2.23) 
 

This cap is also included as part of the full limited Bates and Hunter 

formulation, is displayed in Figure 5.15 and Figure 5.16 

. 

 

Figure 5.15, Manning’s formula, combined with the discharge formula, and 
Bates & Hunter limiting cap, in GP tree form; used to calculate the volume of 
water to transfer between a pair of cells, using the Bates and Hunter limited 

implementation of the hydraulic radius. 
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Figure 5.16, Manning’s formula, combined with the discharge formula, and 
Bates & Hunter limiting cap, in GP tree code form (scaled down version of C); 
used to calculate the volume of water to transfer between a pair of cells, using 

the Bates and Hunter limited implementation of the hydraulic radius. 
 

The key difference in the Bates and Hunter limited implementation, is the 

cap placed on volume transfers which is relative to the time step and total water 

level volume difference. I.e. the combined Manning’s and discharge formula are 

calculated and then the minimum between this, and the volume difference 

determined by the water levels, divide by four times the time step, and the result 

used as the flow rate. Since the calculated flow rate is then multiplied by the time 

step, this caps the maximum flow in any particular direction to a fourth of the 

difference in volume between the water level differences. 

5.4 Training GP with fixed spatial and temporal resolution 

5.4.1 Introduction 

In the earlier binary CA systems, the size of cells and the amount of time 

between CA iterations are both abstract concepts, however real world CA 
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simulations of urban flood modelling represent a discretisation of movement of 

incompressible fluids through space and time. The ultimate idea is to have a rule 

which would be able to model to same real movements of water within space and 

time. However, this section considers only a single static spatial and temporal 

resolution of the CA simulations in training and testing. By training in this way on 

a single spatial and temporal resolution, and testing on the same resolution, the 

aspects of generalisation that are different terrains and water level inputs can be 

investigated. The experimental question asked in this section, is how much 

training is required to enable the system to optimise effectively? Is there a point 

of diminishing returns, as the volume of training (the amount of simulation time 

presented) will scale the optimisation time linearly? 

5.4.2 Experimental setup 

Experiments have been conducted with the GP optimisation using the 

Ghimire ‘Hill and Pond‘ training case (shown in Section 5.3.1). These spatial and 

temporal settings used throughout this sections, as well as the rain input used for 

this test case are shown in Table 5.4. 

Table 5.4, Details of the training simulation utilised in this section. 
 

Cell Size 50 Meters 

Time Step 1 Second 

Roughness Factor 0.01 

Water inputs 
Initial Dry, uniform rain applied 
to all cells of 20mm/h for first 

hour. 

Full simulation time 12 hours 

 

Experimentation is conducted for varying lengths of the simulation during 

training, in order to establish how much of a single CA simulation is required that 

the system can begin to generalise the space time pattern at this spatial and 

temporal resolution. Experimentation is conducted using the first 1, 2, 4, and 6 

hours of the simulation for training. Notably since a 1 second time step is 

maintained throughout these experiments this does mean a different number of 

CA iterations is also carried out for each experiment of 3,600 seconds, 7,200 

seconds, 14,400 seconds, and 21,600 seconds. 10 separate populations are run 

on the CPU implementation (using OpenMP to take full advantage of its 
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parallelism), and 10 separate populations are processed on the GPGPU (Tesla 

K20, shown in Table 5.3). This experimental set-up is used to get an average 

result of the heuristic algorithm and to demonstrate the speed difference in 

performing of training on the two different architectures.  Training is conducted 

using the GP parameters shown in Table 5.2. 

For all these cases the Manning’s formula in its 3 forms and the Bates-

hunter limited formulation, are run to provide a human competitiveness 

benchmark level. Also a zero flow candidate GP, and an arbitrarily large flow 

(1000 units of volume) in order to see both relatively good solutions and two bad 

solutions fitness scores for each particular test case Table 5.5. 

Table 5.5, Fitness scores on the hill and pond test case, starting t = 0 and 
progressing up to the respective time. The best scores are highlighted in bold. 

 
Simulation 
end time 

ZeroFlow LargeFlow Manning’s
-Ghimire 

Manning’s
-Dottori & 
Todini 

Manning’s
-Bates & 
Hunter 

Manning’s- 
Bates & 
Hunter 
limited 

1 46.5212 31.5022 598.054 195.842 611.029 612.728 

2 22.9313 19.9719 284.828 186.307 519.186 560.568 

3 19.4262 17.5724 186.053 167.323 484.355 565.787 

4 18.0948 16.5968 162.283 156.77 470.673 597.408 

5 17.371 16.0509 155.48 154.691 459.692 629.897 

6 16.9076 15.6954 154.251 158.037 453.322 661.575 

7 16.5888 15.4482 155.494 163.297 449.987 691.427 

8 16.3575 15.2673 157.881 169.129 449.276 720.369 

9 16.1814 15.1285 160.732 174.993 449.861 747.818 

10 16.0421 15.0184 163.761 180.705 451.217 772.992 

11 15.9291 14.9287 166.83 186.189 452.987 795.763 

12 15.8356 14.8541 169.869 191.422 454.962 816.273 

 

With the majority of human formulations (excluding the Bates and Hunter 

limited formulation), as the amount of simulation time upon which the fitness 

scores is tested is increased, the rule set converges towards a given value. Also 

it is clear to see that there is a much larger variation in fitness scores over the 

first hour, and the first two hours. This is due to both the short simulation period 

and the fact that because the rain profile is applied during the first hour, there is 

little water movement during this time and so the training phase is atypical of the 

rest of the simulation.  
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5.4.3 Training Results 

Table 5.6, Fitness scores (1/RMSE) for the training case from t = 0 up to the 
respective time shown, for the CPU and GPU trained populations; also showing 

the maximum and mean fitness for both groups of populations and all GP 
individuals at each training time. Manning’s formulations, limited, zero and large 

flows are shown for reference. Those highlighted in bold have exceeded the 
score of the human formulations on the respective training simulation time. 

    Hours of training/simulation 

    1 2 3 4 5 6 

G
P

U
 G

P
 P

o
p

u
la

ti
o

n
 

0 1161.44 536.226   407.985   381.729 

1 705.405 583.692   417.757   382.537 

2 940.497 856.501   325.641   372.382 

3 1064.82 506.382   473.573   117.383 

4 531.4 626.534   426.831   611.569 

5 963.936 395.724   412.152   341.041 

6 1162.82 626.116   491.456   424.292 

7 576.466 607.179   406.298   424.292 

8 1063.51 881.868   456.979   341.923 

9 729.003 729.631   413.994   427.672 

                

C
P

U
 G

P
 P

o
p

u
la

ti
o

n
 

0 1016.32 442.884   340.636   451.643 

1 1475.1 415.5   371.077   391.982 

2 724.696 697.367   371.077   406.925 

3 462.642 458.237   352.405   401.958 

4 768.077 467.964   445.557   442.205 

5 1289.19 415.621   375.65   395.907 

6 721.977 795.036   453.281   370.583 

7 700.701 314.12   510.021   419.748 

8 1222.82 343.572   475.547   329.604 

9 728.677 666.693   517.33   466.355 

                

GPU GP Maximum 1162.82 881.868   491.456   611.569 

GPU GP Mean 889.9297 634.9853   423.2666   382.482 

                

CPU GP Maximum 1475.1 795.036   517.33   466.355 

CPU GP Mean 911.02 501.6994   421.2581   407.691 

                

 Combined GP Maximum 1475.1 881.868   517.33   611.569 

Combined GP Mean 900.4749 568.3424   422.2624   395.0865 

              

Bates-Limited 612.728 560.568 565.787 597.408 629.897 661.575 

Bates-Manning's 611.029 519.186 484.355 470.673 459.692 453.322 

Ghimire-Manning's 598.054 284.828 186.053 162.283 155.48 154.251 

DT-Manning's 195.842 186.307 167.323 156.77 154.691 158.037 

Zero Flow 46.5212 22.9313 19.4262 18.0948 17.371 16.9076 

large Flow 31.5022 19.9719 17.5724 16.5968 16.0509 15.6954 
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From the results in Table 5.6 it would appear that the first hour or the first 

two hours of the training simulation present little challenge for the GP, however 

there are slightly higher scores for even the zero and large flow formulations 

during this period. This is attributed to the lack of change in water levels during 

this period, and while there are obviously some flows, both these periods of 

training prove much easier for the system to gain higher scores on. The GP 

system has outperformed all the human formulations during these periods, and 

as the amount of simulation time presented is increased the overall performance 

decreases. While for all periods the GP output performs the Ghimire, and Dottori 

& Todini implementations, on the longest periods of simulation time the Bates 

formulation outperform the GP systems. From these training results, GP has 

managed in all cases to perform competitively amongst the best human 

formulations, although performance appears to decrease with the additional 

simulation time presented.  

5.4.4 Processing times and speed-ups from GPU computing 

At this stage it is stressed how much processing time is required for these 

runs, especially considering full use is made of modern multi-core I7 (4/8 cores) 

CPU’s processing times still take in the order or days to complete. Where 

previous experiments with CA and GPU have measured the difference in speed-

up between the serial CPU implementations and OpenMP/parallel CPU 

implementations and then the GPU implementations, due to the sheer scope of 

processing times, the difference between the OpenMP - parallel CPU 

implementations and the GPU implementations are measured here. Shown in 

Table 5.7 and Figure 5.17 are the processing times for the entire optimisation 

processes on each hardware. 
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Table 5.7, Processing times for each complete GP optimisation run, for both the 
CPU and the GPGPU, given the number of hours of the training simulation 

applied. The speed-up factor of the GPGPU over the CPU is shown, along with 
a breakdown of the processing times in minutes, hours, and days. 

 

 Hours Training 1 2 4 6 

      

 Total processing time(Seconds) CPU: 282622.5 426462.9 633659.5 924994.7 

 Total processing time(Seconds) GPU: 50167.78 86652.42 145673.6 167668.6 

      

 speed-up factor (CPU/GPU) 5.633546 4.921535 4.349856 5.516804 

      

CPU Minutes 4710.375 7107.716 10560.99 15416.58 

 Hours  78.50624 118.4619 176.0165 256.943 

 Days 3.271093 4.935914 7.334022 10.70596 

      

GPU Minutes 836.1297 1444.207 2427.894 2794.476 

 Hours  13.93549 24.07012 40.4649 46.5746 

 Days 0.580646 1.002922 1.686038 1.940608 
 

 

Figure 5.17, Processing times for each complete GP optimisation run for both 
the CPU and GPGPU in days of processing time, given the number of hours of 

the training simulation applied.  
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It is clear to see in Table 5.7 that the processing times are directly related 

to the amount of the training simulation applied. Also that there is a  degree of 

variation to the speed-up factors of the GPGPU over the CPU, however they 

remain relatively constant, and at near the predicted levels of approximately a 5x 

speed up (predicted in section 3.7). This is due the fact that extending the amount 

of simulation time of the training simulation applied extends the serial processing 

of the CA simulation (i.e. it may only serve to reduce the amount of overall 

parallelism). Due to the fact that there are minor difference in the GPGPU 

implementation and that the use of different seed values, the actual GP 

individuals in each population are different at each generation, which explains the 

variation in processing times and speed-up factors. Shown in Figure 5.18, is the 

processing of each generation for the CPU, and in Figure 5.19 for the GPGPU, 

and in Figure 5.20 the speed-up factor for each generation is shown. Note that 

because of the parallelism that is used between the multiple separate populations 

(Shown in section 4.2.4.1), that a single processing time is provided for each 

generation of all 10 populations. 

 

 

Figure 5.18, Processing time in seconds for each generation on the CPU, which 
includes all 10 population processed at the in the same batch, for each amount 

of simulation training time used. 
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Figure 5.19, Processing time in seconds for each generation on the GPGPU, 
which includes all 10 population processed at the in the same batch, for each 

amount of simulation training time used. 
 
 

 

Figure 5.20, Speed-ups of the GPGPU over the CPU runs for each generation 
(including all 10 populations in each generation). 
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The processing time of both the CPU (Figure 5.18) and GPGPU (Figure 

5.19) increase during the optimisation process, which is attributed to the tendency 

for the complexity of the GP trees within the population to increase over time. 

This complexity increase is in both terms of the number of nodes with each GP 

tree, and their respective computational cost. I.e. with the progression from 

simple trees to more complex and more accurate in terms of matching the target, 

it is also expected that there will be an increase in terms of the complexity of the 

resulting CA simulation. Finally the GPGPU is shown to be an invaluable tool in 

decreasing the processing time of the training runs, bringing them into a more 

feasible range, including saving up to 8 days of computational time (Table 5.7). 

5.5 Testing of trained GP with fixed spatial and temporal 

resolution 

5.5.1 Introduction 

Having trained GP rule sets in the previous section 5.4 on the Ghimire Hill 

and pond test case for varying amounts of simulation time, it was found that the 

system could create rules which can match the target pattern competitively 

amongst human formulations. However, in to ascertain how well this training has 

captured the underlying general mechanics of fluid movements, this section 

applies each set of rules to different test cases upon which they were not trained 

(i.e. unseen data sets).  

5.5.2 Experimental setup 

Several stages of testing have been utilised, to test if the trained rules are 

capable of generalising to different initial and input conditions (water 

levels/depths and terrains). All experiments use a fixed cell size of 50m and time 

step of 1 second, which on the EAT1 test case is unviable due to poor 

performance of all human formulations. 

5.5.2.1 Remainder of training case 

Firstly, the remaining duration of the simulations are used as validation, as 

this will test how the same rules react with the same terrain but different initial 

conditions. Since the pattern of the water movements in space and time are 
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different, this should show how well the rules are learning the underlying 

mechanics of the fluid flow relative to fluid level/depths and the terrain levels. 

In the first experiment the time from t = 0 up to t = 1 hours is used for training, 

and so then the time from t = 1 hours up to t = 12 hours can be used for testing. 

This is achieved by starting the simulation from the target examples grid state at 

the appropriate time. Similarly, where experimentation is conducted with training 

from t = 0 up to t = 2. Then testing/validation can be performed from t = 2 up to t 

= 12 hours, but also testing/validation can be carried out on the 1 hour trained 

versions of this case too, and similarly for 4 and 6 hour trained simulations 

(demonstrated in Table 5.8). 

Table 5.8, Testing time periods applicable to each training case in this section, 
when using the remainder of the training simulation case for testing. 

 

 t = 1 to t = 12 t = 2 to t = 12 t = 4 to t = 12 t = 6 to t = 12 

1 hour training X X X X 

2 hour training  X X X 

4 hour training   X X 

6 hour training    X 

 

5.5.2.2 Validation on the same terrain with different rain profile 

The second stage of testing which has been utilised uses the same ‘hill and 

pond’ test case terrain, but with an altered rain profile to create a completely 

different test simulation. This will test the generated rules capability to generalise 

to different input conditions (i.e. different water level inputs) through the course 

of the simulation. Also it tests the capability of the rules to operate over a longer 

simulation period than they were previously trained on. The rain profile for this 

second test case is altered to 10mm/h for 2 hours, as opposed to 20mm/h for 

hour. In order to fully and fairly test the variously trained GP batches, all 

experimental batches are tested on the entire 12 hours of validation simulation, 

for each of the trained GP candidates from the 1, 2, 4, and 6 hour training. This 

means that a much fairer comparison of the quality of training from each different 

training volume can be determined. 
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5.5.2.3 Testing on a different terrain (EAT2) 

The third stage of testing is to train one terrain and test on another.  For this 

purpose, the EAT2 terrain (as described in section 5.3.2) has been utilised, and 

a rain profile applied, as opposed to prescribed inflow condition, run for 4 hours 

of simulation time. This finally tests the capability of the rules to generalise to a 

completely different and unseen terrain and water levels/depths inputs. As with 

all of the above test/validation cases, this case has been scaled up to 50m cell 

size, and use a roughness factor of 0.01n, as this was the only training variety 

provided; however, the training model was re-run with the same parameter for 

comparison. 

5.5.3 Results 

5.5.3.1 Remainder of training case 

Having trained on the first hour, validation/testing can be performed on the 

remained of the simulation. This is done by starting the water depths of the grid 

at the state of the target at the given start time and continuing with the simulation. 

Test are performed from t = 1, 2, 4, and 6 hours up to t = 12 hours, as shown in 

Table 5.9. 

Table 5.9, Testing time periods applicable to each training case, when using the 
remainder of the training simulation case for validation, and which table display 

these results. 
 

 t = 1 to t = 12 t = 2 to t = 12 t = 4 to t = 12 t = 6 to t = 12 Results 
Table 

1 hour trained X X X X Table 5.10 

2 hour trained  X X X Table 5.11 

4 hour trained   X X Table 5.12 

6 hour trained    X 

 
 

 

 

 

 



  186 

Table 5.10, Fitness scores (1/RMSE) for the training case from respective time 
shown up to t =12, for the 1 hour CPU and GPU trained populations; also 

showing the maximum and mean fitness for both groups of populations and all 
GP individuals at each training time. Manning’s formulations, Limited, zero and 

large flows are shown for reference. 

  Test simulation start time 

  1 2 3 4 5 6 
G

P
U

 G
P

 P
o

p
u

la
ti
o
n
 

0 242.983 222.117   262.536   319.237 

1 122.791 128.665   136.496   144.012 

2 514.912 282.234   409.822   509.438 

3 499.122 298.614   383.707   478.916 

4 480.172 288.833   361.897   496.174 

5 318.002 215.876   230.741   262.736 

6 31.5126 264.633   327.087   20.8154 

7 256.514 262.871   334.93   378.155 

8 309.404 468.183   380.775   520.5 

9 431.677 377.62   495.966   580.558 

                

C
P

U
 G

P
 P

o
p
u

la
ti
o

n
 

0 306.06 400.387   390.353   486.266 

1 159.476 163.577   180.122   197.202 

2 116.383 117.634   124.233   130.721 

3 62.6691 60.169   58.5109   58.6517 

4 170.914 162.705   172.757   187.189 

5 177.604 188.866   225.467   257.375 

6 295.239 330.591   464.4   550.758 

7 215.386 243.641   332.008   445.303 

8 214.31 230.633   291.456   366.602 

9 157.638 145.097   153.266   164.54 

                

GPU GP Maximum 514.912 468.183   495.966   580.558 

GPU GP Mean 320.709 280.9646   332.3957   371.0541 

                

CPU GP Maximum 306.06 400.387   464.4   550.758 

CPU GP Mean 187.5679 204.33   239.2573   284.4608 

                

 Combined GP Maximum 514.912 468.183   495.966   580.558 

Combined GP Mean 254.1384 242.6473   285.8265   327.7575 

                

Bates-Limited 868.219 1006  1242.04  1298.87 

Bates-Manning's 447.986 461.173  517.147  552.1 

DT-Manning's 197.104 222.466  287.386  357.138 

Ghimire-Manning's 162.991 174.341  215.826  248.954 

Zero Flow 31.1719 52.9909  150.501  341.91 

large Flow 14.581 15.4065  14.9763  15.3828 
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It should be noted for these tests that when the starting time of the 

simulation is increased up to 6 hours, the zero flow GP individual scores 

increasingly well, up until the validation from t = 6 up to t = 12, where it actually 

scores better than a number of the Manning’s formulations. Clearly most of the 

water has moved prior to this point in time and the simulation is settling down. 

However this does represent a good test since it would be hoped that evolved 

GP programs don’t just move water all the time but equally see when water 

should not move, or at least not move as much and potentially be converged. 

CPU population 3 appeared to be trapped in local a maxima within training 

(shown in Table 5.6) which explains its poor validation scores (shown in Table 

5.10). However, it would appear that for GPU population 4 and 7, which also didn’t 

outperform human formulations on training, still generalise well enough outside 

of the training set. Of the rest that did outperform human formulations on the 

training set, the GPU populations 1 and partial 6, CPU populations 1, 2, 4 and 9; 

which would appear to have over trained to the amount of water movement within 

the first hour of the simulation compared to the latter parts of the simulation. The 

over training over these populations is indicated as they scored better than 

Manning’s on the training, however these rules perform poorly on the validation 

(which has low flow). They have scored better on training, but poorly on 

validation, therefore have either not picked up the underlying rules very well, or 

have rather concentrated on a rule which performs well on just the training data 

set. While none of the rules sets on validation perform better than the Bates-

limited formulations, the scores for this method are exceptional even amongst the 

human formulations. 

 Finally, however, a good number of populations score better than some 

Manning’s formulations on both training and then on the validation areas of the 

simulation. While the mean of the populations outperforms a number of the 

Manning’s formulations on all the validation cases, on the very last case from t = 

6 to t = 12, the Ghimire formulation did not outperform the zero flow. While it does 

however score very close, this is perhaps an indication that the training, when 

using t = 0 to t = 1, is heavily weighted in terms of high flows. 
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Table 5.11, Fitness scores (1/RMSE) for the training case from respective time 
shown up to t =12, for the 2 hour CPU and GPU trained populations; also 

showing the maximum and mean fitness for both groups of populations and all 
GP individuals at each training time.  

  Test simulation start time 

  1 2 3 4 5 6 
G

P
U

 G
P

 P
o

p
u

la
ti
o
n
 

0  235.059   272.128   323.151 

1  411.195   423.494   521.056 

2  413.415   419.41   553.95 

3  267.536   320.842   390.146 

4  372.171   396.995   502.418 

5  430.2   526.71   569.206 

6  399.77   398.04   521.101 

7  275.463   312.439   379.203 

8  459.397   441.651   563.695 

9  363.054   376.368   482.266 

                

C
P

U
 G

P
 P

o
p
u

la
ti
o
n
 

0  434.888   479.6   604.632 

1  256.229   285.209   321.7 

2  413.167   456.649   571.564 

3  165.125   252.042   321.127 

4  281.574   299.01   347.34 

5  270.184   291.356   338.498 

6  403.605   435.937   563.012 

7  196.551   203.697   219.06 

8  277.854   290.224   345.012 

9  387.319   391.244   496.961 

                

GPU GP Maximum  459.397   526.71   569.206 

GPU GP Mean  362.726   388.8077   480.6192 

                

CPU GP Maximum  434.888   479.6   604.632 

CPU GP Mean  308.6496   338.4968   412.8906 

                

 Combined GP Maximum  459.397   526.71   604.632 

Combined GP Mean  335.6878   363.6523   446.7549 

                

Bates-Limited  1006  1242.04  1298.87 

Bates-Manning's  461.173  517.147  552.1 

DT-Manning's  222.466  287.386  357.138 

Ghimire-Manning's  174.341  215.826  248.954 

Zero Flow  52.9909  150.501  341.91 

large Flow  15.4065  14.9763  15.3828 
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Table 5.11 shows the validation/testing results for those populations trained 

on the first 2 hours of the training simulation. It can be seen that there appears to 

be far less cases of over training, and of those that didn’t outperform the zero 

flow. It is noted that by having 2 hours of the training simulation and specifically 

the first two hours, the rain has fallen during the first one hour and left the next 

hour for the water flow to be driven by the flow that exist from the previous rain 

fall. It should also be noted that the peak of concentration for the ponding point 

in the training simulation occurs at 1h 45mins. Therefore, there is a small amount 

of training for when the water should be draining away, having been driven 

primarily by the terrain and gravity during this time. 
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Table 5.12, Fitness scores (1/RMSE) for the training case from respective time 
shown up to t =12, for the both the 4 and 6 hour, CPU and GPU trained 

populations; also showing the maximum and mean fitness for both groups of 
populations and all GP individuals at each training time. 

 

  4 hour trained 6 hour trained 

  Test simulation start time 

  4 5 6 ----------- 6 ----------- 

G
P

U
 G

P
 P

o
p
u

la
ti
o
n
 

0 297.237   349.942   358.4   

1 337.003   386.793   359.361   

2 276.24   329.392   449.94   

3 343.558   441.98   270.686   

4 389.321   440.139   630.292   

5 324.718   364.004   383.731   

6 494.904   557.207   472.983   

7 464.388   525.182   383.81   

8 414.911   505.111   548.466   

9 471.051   529.891   370.66   

                

C
P

U
 G

P
 P

o
p
u

la
ti
o
n
 

0 458.938   583.941   643.891   

1 319.26   381.822   580.413   

2 296.005   330.114   481.309   

3 301.921   359.452   548.267   

4 461.701   558.845   550.742   

5 388.226   464.427   522.458   

6 498.279   557.922   550.96   

7 451.326   576.098   550.96   

8 409.949   498.648   458.291   

9 465.151   569.642   624.869   

                

GPU GP Maximum 494.904   557.207   630.292   

GPU GP Mean 381.333   442.964   422.833   

                

CPU GP Maximum 498.279   583.941   643.891   

CPU GP Mean 405.076   488.091   551.216   

                

 Combined GP 
Maximum 

498.279   583.941   643.891   

Combined GP Mean 393.204   465.528   487.025   

                

Bates-Limited 1242.04   1298.87   1298.87   

Bates-Manning's 517.147   552.1   552.1   

DT-Manning's 287.386   357.138   357.138   

Ghimire-Manning's 215.826   248.954   248.954   
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In the cases that were trained on the first 4 hours, and 6 hours of the training 

simulation (Shown in Table 5.12). There can be seen a much better response, 

however it can be argued that these populations where trained at a closer time 

frame to these test cases. This does show that these validation cases, testing the 

remaining end of the simulation may be primarily testing the rules ability to predict 

rather low flow. There are a very few cases that are out performed by the zero 

flow, comparatively far less than on the 1 and 2 hour trained simulations. 

5.5.3.2 Validation on the same terrain with different rain profile 

For the next stage of testing, runs are conducted on the training simulation 

terrain, and evenly for the full period from t = 0 to t = 12 hours, but with different 

rain conditions of 10mm/h for 2 hours, as opposed to the training/validation case 

which utilised 20mm/h for 1 hour. Therefore, the entire hydrograph produced from 

each cell will be different from the training case used. The scores for Manning’s 

formulations and limited, zero flow and the arbitrarily large flow are shown in 

Table 5.13, and the comparable score for all the GP population in Table 5.14. 

Compared to previous validation testing, all batches of trained GP are now tested 

on the same test case, which makes for easier comparison. 

Table 5.13, Fitness scores (1/RMSE) for the Manning’s formulations and 
limited, zero flow, and large flow (1,000) on the entire validation case, using the 

hill and pond terrain but modified rain profile. 
 

GP Program Fitness score 

Bates-Limited 865.414 

Bates-Manning’s 478.223 

Dottori and Todini-Manning’s 199.433 

Ghimire-Manning's 174.179 

Zero Flow 16.3422 

large Flow 15.3644 
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Table 5.14, Fitness scores (1/RMSE) for the validation case from t = 0 up to t = 
12, for the CPU and GPU trained populations trained at the respective length on 

the training simulation; also showing the maximum and mean fitness for both 
groups of populations and all GP individuals at each training time. 

  Hours of training/simulation 

  1 2 3 4 5 6 
G

P
U

 G
P

 P
o

p
u

la
ti

o
n

 

0 255.212 252.483   265.789   305.702 

1 134.659 441.873   318.972   304.702 

2 259.051 459.783   267.496   350.233 

3 275.922 264.809   334.722   141.821 

4 277.938 362.204   340.743   530.114 

5 225.772 324.701   331.3   313.089 

6 265.384 474.943   429.314   401.914 

7 231.443 323.025   416.414   304.483 

8 246.8 499.648   424.842   364.654 

9 337.264 397.023   372.259   334.973 

                

C
P

U
 G

P
 P

o
p

u
la

ti
o

n
 

0 320.472 365.137   368.623   443.5 

1 171.307 279.395   315.586   411.474 

2 124.015 462.718   294.518   350.541 

3 67.9683 183.087   294.403   432.707 

4 177.452 283.497   390.887   454.383 

5 185.511 261.447   325.516   364.497 

6 280.06 406.704   454.23   374.495 

7 226.605 200.812   411.811   452.153 

8 226.483 289.061   388.723   262.063 

9 164.763 442.018   438.915   478.182 

                

GPU GP Maximum 337.264 499.648   429.314   530.114 

GPU GP Mean 250.9445 380.0492   350.1851   335.1685 

                

CPU GP Maximum 320.472 462.718   454.23   478.182 

CPU GP Mean 194.4636 317.3876   368.3212   402.3995 

                

 Combined GP Maximum 337.264 499.648   454.23   530.114 

Combined GP Mean 222.7041 348.7184   359.2532   368.784 
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Figure 5.21, Mean fitness score (1/RMSE) of the GPGPU, CPU, and both 
combined runs for varying amounts of simulation time used for training, for the 

hill and pond test case with the altered rain profile (From Table 5.13). 
 

It can be seen from Figure 5.21 and Table 5.14 that more populations have 

failed to capture the underlying dynamics with a shorter training period of just the 

first hour. However, a large number still manage to exceed the score of the lower 

scoring manning’s formulations on this unseen case or come very close. It can 

be seen from the average maximum scores (shown in Figure 5.21), that out of 

the length of training cases that have been utilised, clearly 1 hour training would 

appear to lack sufficient example for the system to generalise well. After this point 

there is a minor disagreement between the CPU and GPU scores, although both 

are also examined together this would appear to indicate that from 2 hours’ worth 

of simulation time onwards it does not increase the generalisation much if at all. 

Clearly this gives the water enough time to concentrate and be drawn down, 

which gives the GP optimisation enough training example. After this point it would 

seem to be a case of diminishing returns, since it takes a directly proportionate 

amount of time to run the GP optimisations as the amount of training simulation 

used.  

5.5.3.3 Testing on a different terrain (EAT2) 

For the final stage of validation, the terrain for the UK Environment Agency 

Test second case (EAT2) is utilised, which is a much larger and a different terrain 

configuration compared to the training case. The terrain has been scaled up to a 

50m cell size, and used a roughness factor of 0.01n, a rain profile at 40mm/h for 
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an hour has been applied, and the simulation run for 4 hours’ worth of simulation 

time. The scores for the Manning’s formulations, limited, zero flow and large flow 

are showing in Table 5.15, and the GP population for both CPU and GPU are 

shown in Table 5.16. 

Table 5.15, Fitness scores (1/RMSE) for the Manning’s formulations, limited, 
zero flow, and large flow (1,000) on the entire validation case, using the EAT2 

terrain scaled up to 50m, with 0.01n roughness factor, and a rain profile of 
40mm/r for the first hour; simulation was run up to t = 4 hour. 

 

GP program Fitness score 

Bates-Limited 332.333 

Dottori and Todini-Manning’s 297.973 

Bates-Manning’s 281.595 

Ghimire-Manning's 254.318 

Zero Flow 14.3493 

large Flow 12.6236 
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Table 5.16, Fitness scores (1/RMSE) for the EAT2 scaled to 50m, and 0.01n 
roughness factor (with 40mm/h rain for first hour) validation case from t = 0 up 

to t = 4, for the CPU and GPU trained populations trained at the respective 
length on the training simulation; also showing the maximum and mean fitness 

for both groups of populations and all GP individuals at each training time. 
Those highlighted bold have outperform the Manning’s formulations. 

    Hours of training/simulation 

    1 2 3 4 5 6 

G
P

U
 G

P
 P

o
p
u

la
ti
o
n
 

0 364.532 415.567   209.903   189.762 

1 122.791 498.207   292.786   369.183 

2 514.912 617.317   298.058   359.934 

3 499.122 217.652   420.556   95.2937 

4 480.172 510.179   264.763   202.902 

5 318.002 178.124   243.873   385.266 

6 31.5126 172.421   173.98   162.58 

7 256.514 518.85   340.576   337.502 

8 309.404 564.988   471.42   134.292 

9 431.677 568.708   278.359   150.337 

                

C
P

U
 G

P
 P

o
p
u

la
ti
o
n
 

0 457.02 289.122   259.168   305.981 

1 370.823 275.54   216.192   432.401 

2 106.013 708.808   257.238   170.561 

3 235.649 186.953   161.221   295.629 

4 159.431 349.744   366.243   95.2969 

5 396.31 312.775   397.11   426.365 

6 374.749 581.848   333.474   215.428 

7 195.095 149.006   504.691   406.521 

8 389.258 348.501   400.064   229.293 

9 148.462 286.786   495.113   126.596 

                

GPU GP Maximum 514.912 617.317   471.42   385.266 

GPU GP Mean 332.8639 426.2013   299.4274   238.7052 

                

CPU GP Maximum 457.02 708.808   504.691   432.401 

CPU GP Mean 283.281 348.9083   339.0514   270.4072 

                

 Combined GP Maximum 514.912 708.808   504.691   432.401 

Combined GP Mean 308.0724 387.5548   319.2394   254.5562 

Pass/fail rate 10/10 11/9  9/11  7/13 
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Figure 5.22, Mean fitness score (1/RMSE) of the GPGPU, CPU, and both 
combined runs for varying amounts of simulation time used for training, for the 

EAT2-rain test case. 
 

In this case (Shown in Table 5.16 and Figure 5.22) there are a number of 

additional populations which don’t perform very well in testing, showing their over 

training. The validation scores certainly show a peak with 2 hours of training 

simulation provided, and on this validation case even show a marked drop in 

performance with longer periods of training simulation time provided. However, 

this might be explained by the length of the test cases at only 4 hours long, where 

the training cases length of training and the testing simulation length maybe 

playing a role. Although this could also be explained by over training of the 6 

hours trained GP trees to the longer draining down period of the training 

simulation. It is hard to say without further investigation or greater volume of test 

cases. Considering the test cases that have been utilised in this thesis, it appears 

more likely that these longer runs might be over trained. 

5.6 Conclusions 

While it appears easier for the GP system to optimise and gain high scores 

on very short amounts of simulation time/CA iterations presented (Section 5.4), 

in this section testing on unseen test cases shows that those GP trained with the 

shorter simulation times of 1 hour do not capture the underlying dynamics as well 

others. However, there is not a large increase in testing performance after 2-4 

hours of training simulation time presented, and even in the last validation case 

a marked drop in performance. When the processing time of these large amounts 
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of training data being provided to the system is also considered, then there 

appears to be a marked point of diminishing returns at approximately 2-4 hours. 

It is thought that this is due to the difference in the flows, as the point of 

concentration is at approximately t = 1h and 45mins, and that sufficient example 

of both the flows before and after this point are needed in order to generalise well. 

Therefore, considering the additional computational times required to provide 

more simulation time during training, and the peak in generalisation performance 

at 2-4 hours of simulation, this represents and optimal amount of simulation time 

for training. In most conditions the majority of (average) rules out perform the 

Ghimire, Dottori and Todini rules sets, and on the last test case of EAT2 a number 

outperform all rule sets including the Bates formulation. 
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Chapter 6: GP CA real-world flood modelling 

generalisation to spatiotemporal resolution 

6.1 Introduction 

It is shown in the last chapter (Chapter 5:) that the GPCA system can train 

rules at a single spatiotemporal resolution, and that given sufficient amounts of 

training data it can generalise to other input conditions on the same single 

spatiotemporal resolution. The work in this chapter investigates the effects of 

varying the spatiotemporal resolutions during training and testing of the GPCA 

system. The same GPCA methodology is used as in Chapter 4: and Chapter 5:. 

6.1.1 Chapter Structure 

The work in section 6.2 investigates the effects of temporal generalisation 

while still maintaining a single static spatial resolution during all experimentation. 

Firstly the GP trained and tested in Chapter 5: is tested upon a range of different 

temporal resolutions. Then the GPCA system is trained and tested on a set of 

different temporal resolutions. Here an investigation of the GP bloat during the 

processing is also carried out. Section 6.3 further investigates the generalisation 

of these newly trained GP to include other input such as different terrains, water 

level inputs and finally different inflow types, in order to find the limits of this 

generalisation. By creating rules which can generalise to different terrains, water 

level inputs as well as different temporal resolutions, this work tackles the trade-

off between processing time and accuracy, by creating rules which operate at 

larger time steps and maintain accuracy levels higher than a number of human 

implementations. This work is extended to cover the full breadth of this problem, 

whereby some human implemented rules drop their performance in terms of the 

largest time step at which they produce acceptable accuracy, as the spatial size 

of cells are decreased. Therefore section 6.4 investigates the effectiveness of 

training the GPCA system on a set of different spatial and temporal resolutions, 

and their competitiveness with the very latest human models in this respect. 

Finally section 6.5 draws conclusions from the process of training and testing the 

GPCA system with variable spatiotemporal resolutions, about its advantages and 

limitations. 
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6.2 Training GP for temporal generalisation of CA rules 

6.2.1 Introduction 

The previous chapter’s experimentation (section 5.4) has concentrated on 

training, and then testing (section 5.5) upon a single set of the grid static variables 

(Cell size, roughness factor, and time step). However, the human formulated 

rules are capable operating at different temporal and spatial resolutions (time step 

and cell sizes). Also a large body of literature exists on how well each model 

operates at different combinations of cell size and time step (Section 2.1.4).  Each 

rule attempts to model the same physical reaction but at different temporal scales 

(I.e. each rule relates each cell to a spatial scale (cell size) and each iteration to 

a temporal scale (time step), in the real world). This shows how much learning 

and research work has been performed by humans in order to formulate these 

rules, and how a lot of this learning/research work has been directed towards 

relating each cell to a spatial area and each iteration of the grid states to a 

temporal area. This section examines how trade-off of accuracy against 

processing time affects the training of CA rules, given variables discretisations of 

time (time step) and a static spatial resolution. 

The reasoning for such a need for rules to adapt to different spatial and 

temporal scales is because the processing time of a simulation is directly related 

to the number of iterations and the number of cells of the CA. Where the number 

of iterations is inversely proportional to the temporal resolution (time step), and 

the number of cells is inversely proportional to the spatial resolution (cell size) in 

each dimension. It is possible to consider the same area of real time, and the 

same real area of space in the simulation but at very different CA resolutions, and 

therefore it is possible to model the same simulation and decrease the processing 

time either by increasing the time step, or increasing the cell sizes. Therefore, 

there exists a fairly well understood trade-off between the processing time of the 

simulation and the possible accuracy. Again considering the real world event, the 

CA can only model movements of up to one cell at any given time step (CA 

iteration). Therefore, the question is how well the given rule can approximate the 

‘real’ water levels given its spatial and temporal resolution. 
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The target could of course be actual real world data, however volumes of 

real world data with a scale of conditions is not feasible to capture. Therefore, a 

reasonably trusted model must be utilised to create the target data, and a large 

part of the trust element comes from running the target model at a very small time 

step in order to produce very accurate underlying data. Within this thesis the 

target UIM model was run with an adaptive time step, and a minimum value of 

0.0125 seconds, and a sampling rate of 1 second. Once the continuous shape of 

movements of water levels (state changes) can be represented through time, 

then a comparison can be made using different discretisation schema of time. 

The work of Dottori & Todini [66], has showed that the use of the Manning’s 

formula and discharge formula have a maximum time step, after which the 

viability of the rule begins to degrade. Sometimes this is called an “explosion” 

[63], or ‘wild/checkerboard oscillations’, or ‘artificial diffusion’. This is due to the 

discharge formula part of the schema, which indicates a direct proportionality of 

the flow to the time step. This means that there is a direction relation between the 

maximum time step, and an inverse relation to the velocity of the lateral fluid flows 

at which these formulations will operate successfully (section 2.1.4.1). After a 

critical time step is reached then at least one cell within the simulation will cause 

a disproportionate outflow, which in turn causes larger and larger feedback, and 

the observed oscillations which destroy the overall quality of the simulation.  

It is slightly less than clear exactly how the rules adapt, when the time step 

is altered due to the complex nature of the system. I.e. altering the time step 

within the rules operable area changes the flow rates in the very initial iterations 

of the algorithm. However, under successive iterations of the CA algorithm, the 

state transition rule accepts the altered water levels and produces further altered 

flow rates, such that overall very similar water levels are produced over the spatial 

and temporal area of the simulation. Therefore, the resulting simulation is 

effectively the same/similar resulting output up until an excessively large time 

step is used. At this limiting point, at least one flow within the simulation in space 

and time will be excessively large to the point whereby other cells using the 

Manning’s formula on successive iterations, cannot cope with the larger flow, and 

only serve to exacerbate the problem. This is especially true, as a very large flow 

will empty a cell completely of water volume, and that flow rate being limited by 

the main cell’s water volume will be relatively less than prescribed by the 
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Manning’s formula to maintain the desire global actions. Secondly, since that cell 

emptied of water, it would be left completely dry while its neighbours now certainly 

have some water; they will certainly flow water back into the original cell in the 

next time step; starting the checkerboard style of oscillations.  

6.2.2 Human formulations and static temporal resolution trained GP 

performance. 

The fitness function can clearly detect this point (Figure 6.1), where the 

fitness scores of the human formulated rules are tested on 4 hours of the Ghimire 

hill and pond test case, each at varying time step factors. Each single simulation 

is run with a static time step, but a different simulation is processed at each time 

step. The Manning’s formulations (Ghimire, Dottori & Todini, and Bates) drop 

dramatically between 1-3 seconds and onwards. The Bates Limited formulation 

is designed to extend this limiting time step and operates successfully at far 

higher time step factors. Also shown in Figure 6.1, are the average fitness scores 

of the GP trained in section 5.4 on only a one second time step. Since previous 

training examples only provided a single example for each of the static variables 

including the time step at 1 second, it can be expect that the system will have 

over trained/generalised to the given training case, which is demonstrated in 

Figure 6.1. Where clearly these rules generated have indeed over 

train/generalised to the single training example of 1 second, especially as their 

performance decrease as the time step is also decreased, where the Manning’s 

formula (and discharge formula, combined schema) maintain their performance. 

Both the Manning’s formulations and the GP tree trained on a single second all 

fall in performance after 1 second up to 4 second time steps. Whereas the Bates 

limited formulation holds its fitness up to a much larger time steps. Overall this 

demonstrates that as expected, the GP overfits to the time step on which it has 

been trained and in this window, it is competitive with the Bates Limited 

formulation. However, outside of this window, performance decreases rapidly. 
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Figure 6.1, Fitness scores the Manning’s formulations (Ghimire, Dottori and 
Todini, Bates) and the limited Bates formulation, along with the fitness scores 

for the previous trained GP populations (average of all best individuals, all 
trained at 1 second time step, for 1, 2, 4 and 6 hours of the training simulation). 

Results shown for the Hill and pond test case for the 4hours, at various time 
steps from 0.1 seconds up to 10 seconds, at intervals of 0.1 seconds. 

 

6.2.3 Experimental setup 

Experimentation has been conducted providing training variation in the time 

step variable used. Where each simulation maintains a static time step for the 

duration of the simulation, and therefore a number of different simulations are 

processed for same time period but each using a different time step, 0.5 seconds, 

1 second and 2 seconds. The fitness is established as the reciprocal of the mean 

of various simulations RMSE. As the experimentation in section 5.4, established 

that a minimum amount of simulation time required was 2-4 hours, and therefore 

the hill and pond training case is again utilised for 4 hours with 0.5 seconds, 1 

second and 2 seconds time steps. 

6.2.4 Training results 

The resulting fitness’s on the training cases, along with the fitnesses of the 

human competitors are displayed in Table 6.1. Note that there is difference 

between the fitness score of each individual with multiple test cases, and the 
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mean of the fitness, as the fitness is the reciprocal of the mean of the errors, as 

opposed to the mean of the reciprocal of each error for each simulation. 

Table 6.1, Fitness scores (1/RMSE of all cells in all time steps) of the Manning’s 
formula and a the GP populations trained with a 0.5, 1, and 2 second time step; 
run on the hill and pond test case for 4 hours of simulation time. Also shown are 

the fitness scores of the Manning’s formulations and Limited on the same 
simulation time and time steps. 

   Time step simulation fitness 

GP population Mean fitness Fitness score 0.5 1 2 

0 882.779 881.8331786 868.448 923.468 856.421 

1 358.4483333 358.2186513 371.321 350.857 353.167 

2 452.9616667 450.5610854 483.948 466.533 408.404 

3 463.8523333 462.1535741 496.371 466.96 428.226 

4 316.0313333 314.0722402 283.157 341.783 323.154 

5 400.8396667 382.0149379 520.581 377.078 304.86 

6 297.6156667 297.5704827 302.82 294.833 295.194 

7 259.6966667 259.351231 270.031 261.797 247.262 

8 375.994 373.5759816 382.584 408.66 336.738 

9 297.6023333 229.3584866 363.93 193.57 193.57 

      

GP maximum 882.779 881.8331786 868.448 923.468 856.421 

GP mean 410.5821 400.8709849 434.3191 408.5539 374.6996 

      

Bates-Limited 603.947 603.748513 594.97 597.408 619.463 

Bates 391 303.2317069 532.58 470.673 169.746 

DT 145.47 143.707376 155.945 156.77 123.694 

Ghimire 143.761 133.9718724 173.442 162.287 95.5546 

 

Interestingly now three examples of time step are provided, in having 3 

whole simulations of 4 hours, a large number of the GP individuals have beaten 

some of the Manning’s formulations on the training data sets, this excludes the 

Bates formulation. It is also interesting to note that in the majority (mean fitness 

score) of cases, GP individuals do have slightly lower score at the higher step, 

but in a much less respect than the Manning’s formulations. Clearly the fitness 

scores are closer in performance in terms of generalisation to the Bates limited 

formulation, and one individual even exceeds these scores, on the training data 

set. This individual population (GP population 0), has performed exceptionally 

well and has exceeded the scores of all human formulations, on all time step 

settings tested here. The results in Figure 6.2 (which display the mean and best 

individuals trained on multiple time steps), contrasted to those of Figure 6.1 which 
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show those trained on the single time step, clearly demonstrate how those trained 

on a single time step have over generalised, and those trained with even a sparse 

a number of time steps, 3 points (different time steps) generalise much better with 

less dramatically reduced performance outside of the training time steps. 

 

Figure 6.2, Fitness scores of the Manning’s formulations (Ghimire, Dottori and 
Todini, Bates) and the limited Bates formulation, along with the fitness scores 

for the trained GP populations (all trained at 0.5, 1, and 2 second time step, for 
4 hours of the training simulation), showing the best individual and the mean of 
all the 10 best individuals. Results are shown for the Hill and pond test case for 

the 4hours, at various time steps from 0.1 seconds up to 10 seconds, at 
intervals of 0.1 seconds. 

 

6.2.5 GP bloat Results 

Finally the traces of the fittest individual within each of the 10 populations 

are shown in Figure 6.3, are contrasted against the depths of the GP trees (shown 

in Figure 6.4), and the number of nodes in Figure 6.5.  
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Figure 6.3, Fitness of the fittest individual within each of the 10 populations, 
trained on hill and pond test case at 50m cell size, and 0.5, 1, and 2 second 

time steps. 
 

It can be seen in Figure 6.3 that the best fitness individuals take very 

different routes through the fitness landscape. While in Figure 6.4, it can be seen 

how within very few generations the maximum depth of 10 is reached. While in 

Figure 6.5, the number of nodes increases reasonably rapidly during this period, 

it is nowhere near a full tree for these depths. The number of nodes increase, 

does then slow down after the maximum depth is reached, however both the 

fitness and the number of nodes continue to slowly increase after this point. This 

shows firstly how the bloating preference in our system is for rapid increases in 

GP tree depth growth, secondly however the GP system is able to continue to 

optimise within this constraint, and therefore must be able to re-organise the GP 

tree to accommodate new nodes. Finally the limiting factor of a maximum GP tree 

depth, leads to a majority of very ‘long, thin’ GP trees in comparison to the 

maximum size (number of nodes) of the tree at these depths (shown in Equation 

6.2). 
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Figure 6.4, Depths of the fittest individual within each population and the mean 
of each of these 10 individuals at each generation of the optimisation process. 

 

 

Figure 6.5, Number of nodes within each of the fittest GP tree for each of the 10 
populations and the mean of these is displayed in black. 

 
Where experimentation was conducted with larger maximum GP tree 

depths, it was found that much larger number of nodes GP tree would be formed, 

although these where still a fraction of the total available size of GP tree’s. 
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given depth, and Equation 6.2 the maximum for a ternary tree system. The 

calculated maximum number of nodes in a binary or ternary tree are shown in 

Table 6.2.  

Equation 6.1    ∑ 2(𝑖−1)𝑛
𝑖=1  =  2𝑛 − 1 

 

Equation 6.2    ∑ 3(𝑖−1)𝑛
𝑖=1  

Table 6.2, Maximum number of nodes possible for full GP trees at each depth, 
for both binary and ternary trees. 

 

GP Tree depth Maximum number of 
nodes of binary tree 

Maximum number of 
nodes of ternary tree 

1 1 1 

2 3 4 

3 7 13 

4 15 40 

5 31 121 

6 63 364 

7 127 1093 

8 255 3280 

9 511 9841 

10 1023 29524 

 

Our experimentation has only a single ternary operator, and therefore is 

heavily biased towards the maximum size of binary trees. Often terminal values 

are applied early in tree branch, which reduces the number of available nodes. 

I.e. it is unlikely to find trees near the maximum size, as there is no room for the 

tree to change shape, and these trees are dominated by operators. In fact, during 

experimentation where tree sizes are initiated at much larger depths, the trees 

first begin to shrink down before re-joining this type of growth behaviour. This is 

thought to be due to two main factors, firstly the mutation operators, especially 

the growth operators, which has a 50% chance of depositing terminal values as 

opposed to operators during its growth. Secondly the cross-over operators, 

where both these operators can be very destructive to trees which are near the 
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maximum size, they can also be the primary source of growth for small trees. This 

is especially where the maximum depth is not limited, the cross-over operator is 

capable of adding very large amount of nodes to GP trees. 

6.2.6 Conclusions 

In this section it has been shown that providing a single static and grid global 

variable (e.g. time step) across training will result in over trained rules to that 

specific variable. By providing even a small number of separate simulations with 

different static and grid global variables, this can then provide the system with the 

additional information required to begin to generalise across different time step 

values. Considering the range of possible time step values, training in this section 

has used a very sparse number of data points (only 3 time step values of 0.5, 1, 

and 2 second) in a very small range. Yet the generated rules appear to generalise 

well to a wide range of time step settings as shown in Figure 6.2 is very 

encouraging. It is thought this is due to interrelation of the time step and the flow 

rates within each CA simulation. While testing is limited to 500 GP generations 

within these experiments so as to make fair comparison between the different 

lengths of training simulation, in Appendix 9.3 much longer training is carried out 

on the hill and pond test case at 50m cell size, with 0.5, 1, and 2 second times 

steps on 4 hours of training simulation time, up to 2,500 GP generations, in order 

to test how effective this limiting termination criteria has been on these 

experiments. 

6.3 Testing GP trained for temporal generalisation of CA rules 

6.3.1 Introduction 

For the GP trained in the previously section 6.2, it would appear that a 

greater generalisation has been achieved, in terms of the fitness scores at 

different time step factors, by providing the extra training cases each with a 

different time step variable. However this is primarily in the area of the larger time 

steps, and the average of the GP results in Figure 6.2, shows this is not always 

as good performance as the Bates-limited formulation. 

However, in order to claim fully that we have not reduced the generalisation 

of these rules to variation in the rain profile (water depth inputs), and terrain 
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variation, similar validation experimentations are conducted on the trained GP as 

in section 5.5. Therefore, the GP are tested on the Hill and pond simulation for 

the remainder of the training case simulation from t = 4 hours up to t = 12hours, 

with a different rain profile for a full simulation, and a completely different terrain 

(EAT2) for 4 hours of simulation time.  

Lastly, the previous testing has only investigated test cases which used a 

uniform rain input condition, and therefore excluded EAT1 test case, and the 

inflow variation of EAT2. This section also investigates the relative performance 

of the human rules and those trained with multiple time step inputs. All of these 

test cases have been scaled to use the same spatial resolutions so as the only 

variation in grid global static variables is that of the time step. 

6.3.2 Experimental setup 

Once again (similarly to 5.5) several stages of validation have been utilised, 

to test if the trained rules are capable of generalising to different initial and input 

conditions (water levels/depths and terrains). However these tests are performed 

on those trained on a number of different temporal resolutions of simulation, from 

section 6.2). All experiments use a fixed cell size of 50m, however tests are 

conducted firstly on the 3 simulation time steps, and these test cases are detailed 

in the sections below. 

6.3.2.1 Remainder of training case 

Firstly, the remaining elements of the training test case (Ghimire, hill and 

pond case) are used for testing, as this will test how the same rules react with the 

same terrain but different initial conditions. Since the pattern of the water 

movements in space and time are different, should show how well the rules are 

learning the underlying mechanics of the fluid flow relative to fluid level/depths 

and the terrain levels. 

As only 4 hours of training simulation was selected for training purposes in 

section 6.2, then the remainder of the hill and pond simulation extends from t = 4 

hours up to t = 12 hours This is achieved by starting the simulation from the target 

examples grid state at t = 4 hours, and proceeding up to t = 12hours.  
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6.3.2.2 Testing on the same terrain with different rain profile 

The second stage of testing which has been utilised uses the same ‘hill and 

pond’ test case terrain, but with an altered rain profile to create a completely 

different test simulation. This will test the generate rules capability to generalise 

to different input conditions (i.e. different water level inputs) through the course 

of the simulation. Also it tests the capability of the rules to operate over a longer 

simulation period than they were previously trained on. The rain profile for this 

second test case is altered to 10mm/h for 2 hours, as opposed to 20mm/h for 

hour.  

6.3.2.3 Testing on a different terrain (EAT2) with uniform rain input 

As the third stage of testing the EAT2 terrain (as described in section 5.3.2) 

has been utilised, and a rain profile applied, as opposed to the prescribed inflow 

condition, run for 4 hours of simulation time. This tests the capability of the rules 

to generalise to a completely different and unseen terrain and water levels/depths 

inputs. As with all of the above test/validation cases, this case has been scaled 

up to 50m cell size, and use a roughness factor of 0.01n, as this was the only 

training variety provided; however, the training model was re-run with the same 

parameter for comparison. 

6.3.2.4 Testing on a different terrain (EAT1) with inflow conditions 

The fourth stage of testing, utilises the EAT1 test case (shown in section 

5.3.2.2), which has lateral inflow condition, which is radically different from the 

uniform rain input condition used for both training and testing previously. Tests 

are conducted on the human formulation over a range of time steps, to show a 

range of time step values where it might be feasible to model. Tests are 

conducted with the trained GP trees are the 3 time steps upon which they were 

trained. 

6.3.2.5 Testing on a different terrain (EAT2) with inflow conditions 

The fifth and final stage of testing, utilises the EAT2 test case (shown in 

section 5.3.2.1), and uses a lateral inflow condition, which is radically different 

from the uniform rain input condition used for both training and testing previously. 

Tests are conducted on the Human formulation over a range of time steps, to 
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show a range of time step values where it might be feasible to model. Tests are 

conducted with the trained GP trees are the 3 time steps upon which they were 

trained. 

6.3.3 Rain condition results 

6.3.3.1 Remainder of the training simulation validation 

The first stage of validation, runs the trained GP on the remainder of the Hill 

and Pond simulation, i.e. The grid of water depth states are started in the state of 

the simulation at the t = 4hour, and proceed up to t = 12hours, testing both the 

Manning’s formulations and the newly trained GP individuals (Shown in Table 

6.3).  

Table 6.3, Fitness scores (1/RMSE of all cells in all time steps) of the Manning’s 
formulation and Bates limited, as well as the GP populations trained with a 

0.5,1, and 2 second time step; run on the hill and pond test case for 8 hours of 
simulation time, from t = 4hours up to t = 12hours. 

   Time step simulation fitness 

GP population fitness score fitness score 0.5 1 2 

0 423.299 412.3180986 483.022 453.729 333.147 

1 386.995 371.7563368 470.677 400.102 290.205 

2 426.434 424.0592547 400.954 405.815 472.533 

3 362.685 353.5214469 426.27 372.234 289.55 

4 294.998 292.1049256 337.503 277.401 270.091 

5 400.966 381.6974553 486.888 427.573 288.435 

6 358.931 350.3397986 285.069 386.337 405.387 

7 331.188 329.0016599 295.523 339.409 358.633 

8 332.03 328.0233323 290.673 325.091 380.324 

9 310.288 302.5494629 272.309 275.016 383.541 

       

GP maximum 426.434 424.0592547 486.888 453.729 472.533 

GP mean 362.7814 354.5371772 374.8888 366.2707 347.1846 

       

Bates-Limited 1233.69 1233.216417 1200.85 1242.04 1258.19 

Bates 620.304 236.3985878 1243.29 517.147 100.478 

Dottori & Todini 262.222 207.3978676 379.527 287.386 119.754 

Ghimire 203.945 139.1267407 323.758 215.826 72.2492 
Once again all GP individuals’ validation scores are better than that of either 

the Ghimire and in many case the Dottori & Todini - Manning’s formulations. Also 

the average scores for each time step show that it appears harder to match the 

higher time step, although there are individuals which are the exception to this 
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rule, for example GP individual 9, which improves its score for the higher time 

step, counter to its training scores.  

6.3.3.2 Testing on the same terrain with different rain profile 

In the next testing case, a full 12 hour simulation is run on the same Hill and 

Pond terrain, with a different rain profile and therefore the water depth inputs and 

results simulation are different; a rain fall of 10mm/h for 2 hours is used, as 

opposed to 20mm/h for an hour for testing (and noting the training simulation was 

only for the first 4 hours), shown in Table 6.4. 

Table 6.4, Fitness scores (1/RMSE of all cells in all time steps) of the Manning’s 
formulations and Bates limited, and the GP populations trained with a 0.5,1, and 

2 second time step; run on the hill and pond test case, with a different rain fall 
profile (10mm/h for 2 hours), for a full 12 hours of simulation time, from t = 0 

hours up to t = 12hours. 
 

   Time step simulation fitness 

GP population Mean fitness fitness score 0.5 1 2 

0 455.975 449.0340739 492.987 495.119 379.818 

1 331.047 326.9474276 368.079 342.553 282.508 

2 371.712 364.551928 324.602 343.382 447.152 

3 311.604 310.8110975 321.321 323.682 289.808 

4 268.094 267.4062226 273.986 249.572 280.725 

5 355.059 338.2086624 453.37 348.059 263.749 

6 281.313 279.1863467 301.123 294.901 247.915 

7 230.289 229.4902646 246.233 231.422 213.213 

8 334.884 328.0554417 320.016 401.087 283.549 

9 275.895 275.7836851 278.915 280.588 268.181 

       

GP maximum 455.975 449.0340739 492.987 495.119 447.152 

GP mean 321.5872 316.947515 338.0632 331.0365 295.6618 

       

Bates Limited 872.658 872.4938989 862.958 865.414 889.602 

Bates 438.251 251.1592381 718.347 478.223 118.183 

DT 178.23 167.0299052 214.577 199.433 120.681 

Ghimire 153.79 128.4979821 209.225 174.178 77.9674 
 

Table 6.4, shows similar results to previous generalisation tests, 

demonstrating that the generalisation maintains, even with a different rain/water 

depth input; i.e. it continues to generalise well over the spatial area of the 

simulation. Considering by now, with a single time step, some obvious cases of 
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over training had occurred, it would appear that the additional training data has 

managed to add to the total volume of training data for generalisation purposes, 

producing better overall rules. 

6.3.3.3 Testing on a different terrain (EAT2) with uniform rain input 

In the next test case, experimentation is conducted using a completely 

different terrain (the EAT2 terrain), and rain fall profile of 40mm/h for an hour. The 

test simulations are run for 4 hours from t = 0 to t = 4 hour (Shown in Table 6.5).  

Table 6.5, Fitness score (1/RMSE of all cells in all time steps) of the Manning’s 
formulations and Bates limited, and a the GP populations trained with a 0.5,1, 
and 2 second time step; run on the EAT2 case for 4 hours of simulation time, 

from t = 0 hours up to t = 4 hours. Those score which have exceeded that of all 
the human competitors are highlighted in bold. 

 

   Time step simulation fitness 

GP population Mean fitness fitness score 0.5 1 2 

0 559.055 555.3597239 604.448 574.199 498.518 

1 317.561 271.982337 428.817 353.486 170.382 

2 464.514 462.2318612 480.761 492.753 420.027 

3 304.887 262.5315703 481.28 241.204 192.177 

4 283.641 274.3068947 359.319 234.589 257.014 

5 208.606 208.3577101 212.272 214.892 198.654 

6 370.648 363.6616796 410.977 398.641 302.327 

7 80.6829 78.32310393 99.4542 77.2422 65.3522 

8 288.209 283.4970442 260.458 342.732 261.438 

9 286.954 252.9755025 411.258 278.133 171.471 

       

GP maximum 559.055 555.3597239 604.448 574.199 498.518 

GP mean 316.4758 301.3227428 374.9044 320.7871 253.736 

       

Bates-Limited 332.181 332.1797629 332.98 332.333 331.231 

Dottori & Todini 261.615 214.4585808 359.502 297.973 127.371 

Bates 231.355 160.9381136 329.515 281.595 82.9549 

Ghimire 222.344 162.0334113 325.865 254.315 86.8522 

 

Table 6.5, demonstrates that some individuals have over trained to the 

specifics of the Hill and Pond trained case, be that either the terrain or the water 

depths provided, as they perform well on the other hill and pond test cases but 

not on these cases. It would appear that the Bates formulations (both limited and 

not) score particularly well on the Hill and pond test case at 50m, however it would 
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appear that many of the trained GP rules generalise better than even these rules. 

Clearly the rules are finding it easier at the lower time steps, which is similar to 

many of the human programmed Manning’s formulations, however these are 

closer to the Bates limited formulation in their generalisation. A number of rules 

now exceed the resulting scores of the human formulations, including GP 

population 0 which score particularly well on the training data. 

6.3.3.4 Results summary 

It can be seen in Figure 6.6, that the Bates-limited formulation scores 

particularly well on all of the hill and pond test cases, but performs less well on 

the EAT2 test case. The GP mean score maintains its score across the test 

cases, where the best GP individual outperforms all human formulations on the 

training case, and is only out performed by the Bates-limited on the hill and pond 

test cases, but still scores well.  

 

Figure 6.6, GP’s Maximum and Mean scores of the 10 populations for each of 
the test cases, as well as that of the 4 different human formulations. 

6.3.4 Discussion 

Examples below show GP 0 population from the above trained GP, tested 

on the hill and pond test case for 12 hours, and shows the water depths at the 

Ponding, Crest (left, centre, right) and old outlet points; run on a 2 second time 

step (shown in Figure 6.7, Figure 6.8, Figure 6.9, Figure 6.10 and Figure 6.11). 
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This is contrasted against the hydrographs for the Ghimire Manning’s formulation 

and the UIM target data. The Ghimire Manning’s formulation is selected for this 

example as with this time steps settings it will begin to breakdown its simulation 

quality, and demonstrate how the GP formulation are capable exceeding the 

capabilities of number of the human formulation by avoiding excessive 

oscillations at higher time steps while reasonably matching the required pattern 

in space and time. 

 

Figure 6.7, Water depths at the ponding point in the hill and pond test case, for 
UIM, and the Manning’s formula, and the GP 0 individual, over the course of the 

12 hours of simulation; with a 2 second time step for the CA models. 
 

Clearly oscillations have started to occur with one the standard form the 

Manning’s formula at this time step, however our trained GP generalises much 

better (Shown in Figure 6.7). However not every cell location within the grid has 

large oscillations as shown in Figure 6.8, Figure 6.9, and Figure 6.10. Although 

in Figure 6.10 there exists very minor oscillations and the Ghimire rule does not 

match the required hydrograph as well as the GP individual. This is thought to be 

due to nearby large oscillations. 
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Figure 6.8, Water depths at the Crest Left point in the hill and pond test case, 
for UIM, and the Manning’s formula, and the GP 0 individual, over the course of 

the 12 hours of simulation; with a 2 second time step for the CA models. 
 

 

Figure 6.9, Water depths at the Crest Centre point in the hill and pond test case, 
for UIM, and the Manning’s formula, and the GP 0 individual, over the course of 

the 12 hours of simulation; with a 2 second time step for the CA models. 

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5000 10000 15000 20000 25000 30000 35000 40000

W
at

e
r 

D
e

p
th

 (
M

e
te

rs
)

Simulation time (Seconds)

UIM Manning's formula GP

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5000 10000 15000 20000 25000 30000 35000 40000

W
at

e
r 

D
e

p
th

 (
M

e
te

rs
)

Simulation time (Seconds)

UIM Manning's formula GP



  217 

 

Figure 6.10, Water depths at the Crest Right point in the hill and pond test case, 
for UIM, and the Manning’s formula, and the GP 0 individual, over the course of 

the 12 hours of simulation; with a 2 second time step for the CA models. 
 

 

Figure 6.11, Water depths at the Old Outlet point in the hill and pond test case, 
for UIM, and the Manning’s formula, and the GP 0 individual, over the course of 

the 12 hours of simulation; with a 2 second time step for the CA models. 
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oscillate at a 2 second time step, whereas the GP formula generalises reasonably 

well. Although the particular candidate may have over trained slightly as it has 

minor oscillates, and ceases to follow the general pattern as well after the first 4 

hours (Shown in Figure 6.8, Figure 6.9, and Figure 6.10). However, the GP 

individual far out performs the human formulation in terms of accuracy, and at a 

large time step factor. Thus this GP rule is capable of operating a quicker 

processing rate than the Ghimire rule, while still maintaining reasonable 

accuracy. This is an improvement in terms of multiple objectives of both speed 

and accuracy, via a method of optimisation for only the single objective of 

accuracy but over multiple time step factors. While this method does not produce 

a Pareto front, the idea of dominance might not work in the same way. I.e. A 

single rule or candidate solution does not produce a single point in the multi-

objective space, but rather each rule may produce a front/trade-off between the 

two objectives. Therefore, the comparison of two different rules in this multi-

objective space and the idea of dominance in the traditional sense are made more 

difficult. However, when considering a single time step factor, each rule will 

produce a single metric in both objectives of speed and accuracy for which 

traditional dominance could be established.  

As the time step is so directly related to the speed objective, at a given time 

step rules are likely to produce very similar processing speeds. Also there is a 

requirement within the original objectives to create faster rules. This could be 

introduced as a preference within the trade-off towards speeds over accuracy. 

For example, if the speed difference between the rules at the same time step is 

consider negligible, and at a lower time rule A is more accurate than rule B. 

However, at a higher time step and therefore faster processing speed rule B 

produces greater accuracy than rule A, than it could be considered that rule B is 

fitter. What is likely required is to establish a threshold of acceptable accuracy, 

where more accurate models are acceptable, and to find the rule which can match 

or surpass this threshold at the largest time step, and therefore fastest speed 

possible. This area of multi-objective optimisation requires further work and 

research. 
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6.3.5 Inflow condition results 

6.3.5.1 Testing on a different terrain (EAT1) with inflow conditions 

Earlier training and testing limited to a single time step of 1 second, limits 

the number and types of viable test cases which can be utilised due to 

requirements for much lower time steps for human formulations to successfully 

operate. This includes EAT1 and EAT2 test cases in their originally prescribed 

inflow conditions, which is demonstrated in Figure 6.12 and Figure 6.14, where 

the most successful scores from the human formulations are at much lower time 

steps. 

The EAT1 case is scaled up to a cell size of 50m and altered to have the 

same roughness factor as the training set (0.01), but maintains use of the water 

level event to drive the inflow. In these tests the human formulations are not 

scoring as well as on the original cell size and roughness factor, but also strangely 

the human formulation scores slightly worse on much lower time steps after a 

peak in their performance (shown in Figure 6.12). 

 

Figure 6.12, Fitness scores (1/RMSE of all cells in all iterations) of the 
Manning’s formulations, on the EAT1 case scaled to 50m cell size and made 1 

Dimensional, and 0.01n roughness factor; on various time step. 
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The GP trees that were trained on the hill and pond test case with rain 

conditions are now tested on the EAT1 scaled case, at 0.5, 1, and 2 second time 

steps, shown in Table 6.6. 

Table 6.6, Fitness scores (1/RMSE of all cells in all time steps) of the Manning’s 
formulations and a the GP populations trained with a 0.5,1, and 2 second time 
step; Tested on the EAT1 case for a full 20 hours of simulation time, from t = 0 

hours up to t = 20 hours. 
 

     Time step simulation fitness 

GP population Mean fitness fitness score 0.5 1 2 

0 9.9798 9.609415619 12.7584 9.15182 8.02915 

1 7.65107 7.548575143 8.95054 7.08551 6.91717 

2 5.14602 5.063622589 6.02223 4.99574 4.4201 

3 6.67526 6.474194886 8.22923 6.42996 5.36659 

4 32.7277 15.06462784 58.2566 33.347 6.57943 

5 9.47597 8.999509593 9.5209 6.8924 12.0146 

6 8.01556 7.761859652 8.32962 9.52286 6.1942 

7 3.8383 3.837939749 3.88461 3.8363 3.79398 

8 8.14917 7.482624147 5.67382 11.5212 7.25246 

9 22.4954 13.63357941 41.8607 18.6033 7.02236 

            

GP maximum 32.7277 15.06462784 58.2566 33.347 12.0146 

GP mean 11.41543 8.547594863 16.34867 11.13861 6.759004 

            

Bates-Limited 22.5962 15.97452585 41.1879 17.0719 9.52887 

Ghimire 46.1699 13.42200931 98.5847 34.5017 5.42341 

Bates 28.4659 19.37550566 53.1203 20.949 11.3283 

DT 26.4317 18.42106631 49.3245 18.775 11.1956 
 

Seen in Table 6.6, there is a clear indication that some element of the EAT1 

case is missing from the training example; since the difference in our experiments 

here make use of lateral inflow, and the fact that the EAT1 case is designed to 

alter the direction of flow towards the outflow. It is clear that the system has over 

trained/under generalised, or perhaps is missing enough training example of 

circumstances which occur uniquely within the EAT1 case with the water level 

event. Since only two of our GP rules have scored close to the score of the 

Manning’s formula, these individual’s performance is investigated (GP individuals 

4 and 9), also one of the individuals which scored well on previous test cases but 

poorly on this one is investigate (GP individual 0), Shown in Figure 6.13. 
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Figure 6.13, Water level at the test point 1, on the EAT1 case scaled to 50m cell 
size, and 0.01n roughness factor, UIM is shown at its original time step settings, 
but the Ghimire version of the Manning’s formula and trained GP individuals 0, 
4, and 9 are shown at a time step of 0.5 seconds. Time period shown from t = 0 

seconds up to t = 72,000 seconds, which equates to 20 hours of simulation 
time. 

 

Figure 6.13 shows that actually our two good candidate GP individuals 4 

and 9, are reasonably close to the target UIM simulation, and that of GP 0 is 

performing much worse, as our fitness function confirms. It is difficult to determine 

exactly how the system has over trained to rain conditions, compared to 

inflow/water level events, but appears to an over training/under generalisation to 

this condition. Perhaps the more similar water levels form cell to cell, and general 

tendency for rain events to tend towards a single convergence in space and time, 

is too radically different from this test case. Also since the minimum time step that 

the human formulations operate well on this test case are between 0.2 -0.5 

seconds, and these rule do not appear to generalise well to lower time step 

values.  

6.3.5.2 Testing on a different terrain (EAT2) with inflow conditions 

Finally since the EAT2 terrain has been utilised for testing successfully with 

a uniform rain inputs to each cell (section 5.5.3.3), now tests are conducted on 

the EAT2 terrain with the prescribed inflow condition. Figure 6.14 demonstrates 
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a similar pattern to Figure 6.12, where the human formulations are tested on the 

EAT2 terrain with inflow conditions, at various time steps. 

 

Figure 6.14, Fitness scores (1/RMSE of all cells in all iterations) of the 
Manning’s formulations and Bates Limited, on the EAT2 case scaled to 50m cell 

size, and 0.01n roughness factor, and inflow conditions; at various time step. 
 

We see peak performance in Figure 6.14 at approximately 0.4 seconds, and 

reduces on lower time steps, as well as higher time steps. This occurs for all 

those human formulations that don’t use a flow limiter. However, the spike in 

performance for the Bates limited formulation occurs at a slightly larger time step 

of 0.7 seconds. This could be due to the interpolation between each second of 

the target, and the variances in exact amounts of in and out flows, it is difficult to 

say. These are however much lower scores than compared to on the same terrain 

with a rain profile (section 6.3.3.3), demonstrating how inflow conditions test 

cases, are harder to approximate. This is probably due to the large variance in 

water depths, due to the existence of dry cells receiving large amounts of water 

as the water front moves across the grid. 

Similar results to those of EAT1 (Table 6.6) are shown in Table 6.7 for EAT2, 

in that the validation scores are very low due to the inflow conditions. These 

results are vastly different to those of the same terrain with rain conditions shown 

in Table 6.5, demonstrating both that the inflow condition test cases are harder 
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to optimise, but also that the GP system appears to be over trained to the type of 

condition it was trained upon. 

Table 6.7, Fitness scores (1/RMSE of all cells in all time steps) of the Manning’s 
formula and a the GP populations trained with a 0.5,1, and 2 second time step; 
run on the EAT2 case for 8 hours of simulation time, from t = 0 hours up to t = 8 

hours; with inflow conditions. 
 

   Time step simulation fitness 

GP population Mean fitness 
fitness 
score 0.5 1 2 

0 5.08953 4.928335 6.29615 4.91383 4.0586 

1 6.96491 6.964451 6.89286 6.97153 7.03033 

2 0.249989 0.249989 0.250219 0.249919 0.249829 

3 3.7366 3.613535 4.64828 3.58994 2.97157 

4 8.1764 7.206672 12.2413 7.15544 5.13251 

5 6.18522 6.158069 6.72133 6.117 5.71733 

6 0.360174 0.356838 0.343788 0.327092 0.409642 

7 0.268826 0.268245 0.285758 0.265212 0.255509 

8 4.23827 4.233514 4.40682 4.24786 4.06013 

9 3.9344 2.802652 6.9029 3.29201 1.60828 

      

GP maximum 8.1764 7.206672 12.2413 7.15544 7.03033 

GP mean 3.920432 3.67823 4.898941 3.712983 3.149373 

      

Bates Limited 41.9822 28.88388 62.4699 48.6148 14.8618 

Bates 29.9119 15.21516 62.2435 19.8414 7.65075 

Dottori and Todini 31.3431 19.21382 61.7231 21.6357 10.6705 

Ghimire 28.9008 16.12153 57.1933 21.2871 8.22198 

 

6.3.6 Conclusions 

The results in Section 6.3.3 show that the GP tree trained on multiple time 

step simulations tests similarly to those trained on a single time step in section 

5.5.3. When tested on different input conditions of rain inputs levels, initial water 

levels and even terrain, however they demonstrate greater generalisation to time 

step factors. Producing these high scores on unseen data where the complex set 

of flow rates that lead to high scores varies for each time step, demonstrates the 

extra level of complexity introduced into the training of these rules sets.  
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Testing on lateral inflow conditions, demonstrates that the system has 

trained to the specifics of the type of inflow conditions (i.e. rain conditions). 

Possible due to the way water is flowing into a dry simulation from a particular 

point which produces a greater possibility to lead to spatial variation in the water 

levels. The GP rules do not perform as well as on the rain conditions tests, 

although the human formulation also find it harder approximating these 

simulation, although the relative performance of the GP rules is much worse. This 

is thought to indicate a level of over training within the GP rules to the rain 

conditions of the training cases. 

Where the rules do generalise well to other input conditions, like variance in 

the initial water levels, rain levels, and terrain inputs, it has been possible to 

create rules which can perform similar simulations to the training set on unseen 

data at higher time steps than a number of the human formulations. This would 

allow for simulations to be processes at a quicker real world computational rate 

while still maintaining a reasonable level of accuracy to the original simulation. 

6.4 Training GP for temporal and spatial generalisation of CA 

rules 

6.4.1 Introduction 

As real world simulation uses such static variables as cell size and time step 

to represent the different discretisation of time and space, this expands the 

breadth and scope of what the human formulation are capable of. While section 

6.2 has already investigated the limits of training GP and human formulation 

under various time steps/temporal discretisation’s, and found that at the particular 

cell size of 50m there is a limiting highest time step before oscillations are created 

within the simulation which destroy its quality. However, literature demonstrates 

that for the Manning’s formula alone there is a relationship between the cell size 

and maximum time step at which the rule set will operate successfully (i.e. without 

large destructive oscillations). This is demonstrated in Figure 6.15, where the 

Manning’s formula fitness is clearly related to the cell size, whereby the maximum 

time step for smaller cell size is much smaller also. However, the Bates-limited 

formulation is specifically designed to overcome this problem to a greater degree. 

In Figure 6.15, the original hill and pond test case test has been scaled to different 
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cell sizes, by means of using the same terrain heights but simply labelling the cell 

as different sizes. Since this effectively resizes the terrains total simulation size, 

this makes the slopes of the terrain models steeper. Since a uniform rain profile 

is applied, the same water levels fall into each cell, but given as these are different 

volumes with different slopes, then there are different flow rates which should 

prove as good training examples for GP. These differently scaled simulations are 

re-run through the hydraulic modelling software UIM, to produce different target 

sets of data for each scaled test case. 

 

Figure 6.15, Fitness scores of Bates Manning’s formulation and the Bates 
Limited formulation, on the Hill and Pond test case, with a 50m, 25m, and 2m 
cell sizes. Note a logarithmic base 10 scale is used on the time step (x-axis). 

 
It can be seen in Figure 6.15 that the Bates formulations score particularly 

well on the 50m test cases, where the fitness scores plateau between 500~600. 

Although there are large oscillations in the fitness score of particularly the 50m 

test cases with the Bates Limited formulation, this drops as low as the scores on 

the 25m test cases. It is thought that this is mainly caused by two factors, firstly 

a particular factor of each time step allows the model to fit the underlying 50m 

target model more accurately (i.e. it could be an element of coincidence), 

especially as the 25m and 2m test cases plateau out at approximately the same 

fitness score of 300. Secondly due to the interpolation of the original target UIM 

model, which was run once for each cell size, as the cell size creates a different 
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model output. Those human formulations which directly use the Manning’s and 

discharge formula, show their particular weakness when the space of cell sizes 

and time steps are explored together (as in Figure 6.15). Where the Manning’s 

formula formulations have a very small maximum time step at which it performs 

adequately for the very small cell sizes, this would be an unfeasible time step at 

which to run training due to the number of CA iterations required. However, the 

Bates Limited formulation is capable of maintaining reasonably high fitness on 

lower cell sizes at much higher time steps.  

The true challenge of this final section is firstly to train rule sets which can 

find the correct fluid flows given the varying water depths/level, and terrain levels, 

but also adapt to different spatial and temporal resolutions (cell size and time 

step). Secondly to see if the GP system can match, or even exceed the most 

advanced human formulation in terms of the upper limits on the time step and 

performance. Effectively this tackles the trade-off between overall processing 

speed and accuracy, by explicitly controlling the processing speed though the 

spatial and temporal resolution of the simulations. 

6.4.2 Experimental set-up 

In attempts to train a system which is both capable of generalisation to the 

variation of multiple static variables, and different inputs, the system is trained 

upon a number of different time steps at each of the given cell sizes. Using 50m, 

25m, and 2m test cases derived each from a different simulation run on the 

hydraulic modelling software, UIM. Each target model is run for four hours of 

simulation time, at 0.5, 1, 2, 5, 10, and 25 second time steps, totalling 15 different 

test cases. The combined fitness is calculated as the reciprocal of the average 

RMSE from each case. Shown in Table 6.8 are the fitness scores and the 

average fitness scores across the 15 different test cases (i.e. the reciprocal of 

each RMSE), for each of the human formulations. 
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Table 6.8, Fitness scores (1/ average RMSE of each test case) and the Mean 
fitness’s (1/RMSE of each test case) for the human formulated rule sets. 

 

Rule set Fitness score Mean Fitness 

Bates Limited 173.2149287 304.78285 

Bates 19.88530422 90.76921667 

Dottori and Todini 24.86212055 51.42916111 

Ghimire 22.35578729 45.49682778 
 

Clearly this particular test set has been designed to highlight the strength of 

the Bates Limited formulation, as all other human formulations fall to much lower 

fitness scores at the lower cell sizes with these times steps. This does however 

make the whole operation feasible, as training at lower time steps would require 

more iterations, and extend the processing time to unfeasible ranges. Shown in 

Table 6.9 are the fitness scores for the Bates Limited rule set upon each of the 

test cases. 

Table 6.9, Fitness scores (1/RMSE) for each of the test cases, for the bates 
Limited formulation, on the hill and pond test case for 4 hours of simulation time, 

at various combinations of cell size and time step. 
 

 50m 25m 2m 

0.5seconds 594.97 304.987 248.68 

1 s 597.408 311.863 254.602 

2 s 619.463 329.614 239.33 

5 s 634.199 319.885 141.091 

10 s 396.327 198.228 81.5564 

25 s 90.9623 76.758 46.1676 
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6.4.3 Experimental Results 

Shown in Figure 6.16 are the fittest individuals from each of the 10 

population during the 500 GP generations applied, along with the average of the 

10 fitnesses.  

 

Figure 6.16, Fitness scores (1/average RMSE of each test case) of the fittest 
individual within each of the 10 populations, and the average of these 10 fitness 

scores. 
 

A reasonably wide variation in fitness can be observed in Figure 6.16, as 

this is now a much larger search space. Shown below in Table 6.10 are the fitness 

scores from each of the specific test cases for the fittest individual in the fittest 

population of the 10 differently seeded populations. 

Table 6.10, Fitness scores (1/RMSE) for each of the test cases, for the fittest 
individual from the fittest of the 10 populations (GP 4). 

 

 50m 25m 2m Average 

0.5seconds 453.496 163.277 311.357 309.3767 

1 s 441.914 162.799 318.059 307.5907 

2 s 424.51 160.85 302.952 296.104 

5 s 350.758 161.494 177.848 230.0333 

10 s 275.346 151.331 84.2666 170.3145 

25 s 89.1788 68.6467 45.4046 67.74337 

Average 339.2005 144.733 206.6479  
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Clearly this individual is performing better on the two extreme cell sizes of 

50m, 2m than at 25m cell size, and performs reasonably well up to the 10 second 

time step, where thereafter it begins to degrade. Figure 6.17 below shows the 

fitness scores for the best GP program from the best population (GP4, as shown 

in Table 6.10), on the hill and pond test case for 4 hours simulation time, at 

various time steps. 

 

Figure 6.17, Fitness scores of Bates Manning’s formulation and the Bates 
Limited formulation, on the Hill and Pond test case, with a 50m, 25m, and 2m 

cell sizes. Finally, these are contrasted against the best scoring GP individual in 
the best population (GP4).  Note a logarithmic base 10 scale is used on the time 

step (x) axis. 
 

It can be seen in Figure 6.17 that better time step generalisation at 50m has 

been obtained, compared to that seen in Figure 6.1 or Figure 6.2. The 

generalisation extends to both the smaller scaled time steps and shows a very 

similar maximum time step to the Bates limited formulation. While the scores are 

not as high as the Bates limited at 25m, again a good generalisation to the time 

step is observed. The 2m cases shows an over specialisation to the large time 

steps, but again shows a similar maximum time step to that of the Bates limited 

formulation.  
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6.4.4 Conclusions 

There is a wide degree of variation in the routes taken through the 

evolutionary landscape by each different population, where only the random seed 

is varied. This is thought to be due to a number of reasons including the following: 

 The reduction of the many different phenotypical behaviours into a 

single objective function/score means that due to the different initial 

seeding, it may select very similarly scored individuals, but this will 

translate into very different genotypes. This in turn will lead to 

different possible future routes through the evolutionary landscape. 

 Unlikely GA type algorithms, the chromosome has no real sense of 

alignment, in that different parts of the chromosome can be 

responsible for different phenotypical behaviours, where this appears 

to vary more across individuals. Also crossover is capable of shifting 

pieces of code/GP tree radically in position. 

 The growth and mix of introns and active code within early GP tree, 

and the hard cap placed on the depth of the tree forces the system 

to move within this search space. 

 Specific heuristics used, i.e. the parameter settings, and their hard 

coded equivalent (e.g. number of operations, and terminals, even 

mutation and cross-over levels, as well as population levels). 

From Figure 6.16 and the wide variety of resulting scores, we conclude that 

when training such a complex rule set, and all the specific parameter settings 

utilised in these test, has a greater chance of falling into a local minima than those 

shown in Figure 6.3. However, a number of populations do manage to achieve 

reasonable scores, and when these are compared to the Manning’s formulae, the 

GP outperform all but the Bates Limited formulations in all cases. However, this 

is a result of the specific time steps targeted are aligned with such a high time 

step rule set. I.e. in this single objective system, the secondary objective of total 

real world processing time is controlled explicitly through the use of the time steps 

targeted. As the time step is negatively correlated with the number of iterations 

and therefore the processing time, a rule which can maintain accuracy at higher 

time steps, can simulate to a reasonable level of accuracy the given water levels 

at a faster real world processing time. 
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Throughout this thesis a static time step for each simulation has been 

maintained, although it a number of works in the literature propose an adaptive 

time step. This is partial to try to overcome to problem of excessive flows within 

the simulation at a cellular level, by setting the time step to match the greatest 

flow. However, it is also takes advantage of the underlying assumption that 

gravity is the main driver and friction negates most of the effects of momentum, 

and therefore simulation will eventually settle down and cease most movement. 

This in turn should mean that a system which links the timestep during the 

simulation to the maximum flows, should also eventually become larger and 

larger, and move up to the maximum. Indeed, even with adaptive time steps, 

there is the need for maximum and minimum time steps, at which there is a very 

similar problem of which rule best approximates the ‘real’ or target simulation, 

given that it is asked to use a higher time step than if flows are greater than the 

minimum time step. However, it might be expecting too much for a rule to be 

generated which operates across all known spatial and temporal resolutions 

given the training set has only a limit number of examples of such grid static 

variables. 

6.5  Conclusions 

In conclusion the experimental results have shown that it is possible to train 

rules which can learn near optimal local water movements such that the global 

water movements are nearly consistent with simulated targets, where such rules 

can also be trained to operate with reasonably accuracy upon different spatial 

and temporal resolutions, and will generalise to other input conditions. This is a 

facet of having trained a single rule which operates in a distributed fashion across 

a cellular automata system, i.e. in order to enforce any change to the global 

behaviour in any particular area a change must be made to the rule which 

operates in every cell. This in turn encourages some selectivity in the rulesets 

between the given variables.  

In section 5.4, it was determined that a minimum amount of simulation time 

is required such that the rules generated begin to pick up sufficient hydraulic of 

water flows. While the system scored highly during training on simulation with 

less than this minimum amount of simulation time, these rules would not 

generalise well to other input conditions. Rules generated after this minimum 
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point did not perform much better on validation/testing cases, and increasing the 

amount of simulation training time (while maintaining the same time step) 

increases the amount of real world processing time for the optimisation linearly. 

Therefore, the use of extra simulation time in training after this minimum amount 

represents a case of diminishing returns. This is thought to be due to the nature 

of the hydraulic examples presented within the training case, where the point of 

concentration at the ponding point is at approximately 1hour 45minutes, and 

examples of both drawing up to and down from this concentration point are 

required. 

In section 6.2 this methodology is extended to begin to tackle the trade-off 

between real-world processing speed and accuracy, by means of changing the 

time step applied during simulation and optimisation. It is firstly demonstrated that 

previous training upon a single spatial and temporal resolution (cell size and time 

step) results in over training to those specific examples. Training is then extended 

such that each GP individual is presented with a sparse number of different time 

step examples, by re-running the training case simulation at different time steps. 

This forces the training GP rules to adapt to the different settings presented in 

each case, while trying to match the same space-time pattern. Since those rules 

which are capable of operating with reasonable accuracy at larger time steps take 

less real world processing time, this allows the system to tackle the trade-off 

problem and is capable of producing rules which are more efficient than some 

human formulations. The generalisation properties however are still centred upon 

the conditions present within the training case, for example when having trained 

the system upon uniform rain input conditions, the rule sets generated do not 

generalise well to lateral inflow conditions. 

Lastly in section 6.4, this methodology is extended to the final stage of 

training rules which can operate at different spatial and temporal resolutions, by 

presenting each GP rule set with simulations of the training case at different cell 

size and time steps. As literature demonstrates the most difficult challenge for 

human programmers of such real world CA rules, is to be able to create functional 

rules which operate at smaller cell sizes, and higher time steps. This also 

challenges the GP system to understand how many different variables affect the 

system. 
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Since in cellular automata systems, the size of cells and the amount of time 

between iterations are both abstract terms, the linkage of cell size and time step 

within a real world CA system presents a novel problem for training a local state 

transition rule. This has been systematically tackled within this chapter. 
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Chapter 7: Conclusions and discussion 

7.1 Conclusions  

The aim of this thesis has been to accelerate urban flood modelling, through 

the use of CA on modern multi-core and many-core hardware. An additional goal 

was to use GP to learn the CA state transition rules, with further acceleration on 

many-core hardware. This thesis investigates and begins to understand the 

trade-off presented by the simulation resolution and accuracy. This thesis has 

tackled all of these challenges, and draws the following conclusions and 

contributions: 

1. Objective 1 - “The investigation of the parallelisation of CA systems upon 

modern many-core GPGPU technologies, and the effect of varying the 

standard CA parameter such number of cells, initial configuration and activity, 

number of states, neighbourhood size, and number of generations on the 

speed-ups obtained. Also to investigate the effects on the relative speed-ups 

obtained, of varying GPGPU parameters such as the workgroup size, GPU 

memory type, and the base data type used to store states. This investigation 

is intended to ensure that the relationship between the CA parameters and 

the relative speed-ups of the GPGPU over the CPU are well understood, such 

that later work in this thesis can maximise speed-ups from the GPGPU when 

combining GP and CA systems”. Objective 1 is tackled in Chapter 3:, where 

it is concluded that the main driver for CA speed-ups is the number of cells 

relative to the number of cores of the GPGPU. The best speed-ups are 

obtained when the number of cells are between one to two orders of 

magnitude greater than the number of GPU cores. 

 

2. Objective 2 – “The development of a CA system for flood modelling based on 

existing models from literature, which is capable of expressing a 

spectrum/range of variable state transition rules. It is intended that these state 

transition rules should always ensure uniformity to direction of flooding flow 

and should preserve the water volume across the grid. This will allow for the 

derivation of state transition rules which can concentrate on finding the correct 

flow rates given the water, terrain levels and spatial and temporal resolutions 

across the grid. Thereby, a GP system is generated for the optimisation of CA 
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state transition rules. Such a system should take advantage of the research 

conducted to satisfy Objective 1, in order to obtain the best speed-ups 

possible by accelerating the evaluation of CA fitness functions upon the 

GPGPU”. Objective 2 is tackled in section 4.2 and section 5.2 where a 

methodology is developed for using GP to develop CA state transition rules 

from example data. Furthermore this GPCA methodology takes advantage of 

conclusion 1, and combines the parallelism from the GP and CA algorithms in 

order to be able to gain the best speed-ups on the GPU during optimisation. 

This is achieved while only using relatively small test cases, and therefore 

minimal overall processing time for optimisation processing. 

 

3. Objective 3 – “An investigation of the effectiveness of the combined GPCA 

system from Objectives 2 and 3, to learn a known CA rule set such as the 

Game of Life. This will allow for the calibration and confirmation that the 

system can find the correct underlying state transition rules from an example 

CA simulation”. The experimentation in Chapter 4:, section 4.3 demonstrates 

that the GPCA system is capable of learning a state transition rule for a known 

system, i.e. the Game of life, thereby meeting Objective 3. Although the Game 

Of Life is shown to have large jumps in the fitness landscape between those 

close to the global optimum and the actual global optimum (Figure 4.5), it is 

thought that this large jump in the fitness landscape is due to the binary nature 

of the Game Of Life style of rule set, and its capacity to radically change with 

simulation outputs with small changes to the rule set. 

 

4. Objective 4: “An investigation of the effectiveness of the combined GPCA to 

learn flood modelling state transition rules based on example simulation data”. 

Chapter 5: and Chapter 6: undertake the investigation required by Objective 

4, where the effectiveness of the GPCA system is investigated to learn flood 

modelling CA state transition rules. 

 

4.1. Objective 4.1: “Quantify the simulation time needed during training on a 

fixed set of spatial and temporal resolutions, and prove that the combined 

GPCA system can learn state transition rules which are competitive 

amongst human CA flood modelling rules”, and Objective 4.2: “The proof 

of hypothesis 1, through the testing of derived state transitions rules from 
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objective 4.1 on unseen data, including unseen sections of the training 

test case and completely different terrain”.. This is tackled in Chapter 5: 

where the GPCA system is trained with a number of different lengths of 

training simulation, and tested on unseen data. Section 5.4 concludes that 

it is easier for the GPCA system to more closely match the training 

simulation with less simulation time (shown by the higher scores for 

shorter training simulation times in Table 5.6). However section 5.5, which 

tests the generated rules on unseen data concludes that the rules trained 

on the shortest simulation times (test cases of 1 hour), have indeed over 

trained to the limited movement during this period (shown by Table 5.10, 

Table 5.14, Figure 5.21, Table 5.16, and Figure 5.22). Rules generated 

with 2-4 hours of training simulation time, gained the best testing 

performance relative to their training performance. Increases in simulation 

time for training, extends the computation time for optimisation. Further 

increases in the amount of simulation time for training, presents a point of 

diminishing returns in terms of generalisation to unseen data. This 

provides a good weight of evidence for hypotheses 1, in that given a 

suitable amount of training data the system can generate rules which are 

capable of operating on unseen data, thusly tackling Objectives 4.1 and 

4.2. 

 

4.2.  Objective 4.3: “An investigation of the effectiveness of the combined 

GPCA system to learn flood modelling CA state transition rules which are 

capable of operating competitively at a range of temporal resolutions. By 

creating rules which can produce competitive accuracies at higher time 

step factors (temporal resolutions) than human formulated CA state 

transition rules, this will begin to tackle the trade-off problem of creating 

faster rules. Thereby this investigation tackles the ultimate aim of creating 

faster rule sets through the use of machine learning techniques to derive 

the CA state transition rules for flood modelling systems (hypothesis 2)”. 

Section 6.2 concludes that the methodology of using multiple simulations 

with different temporal resolutions is capable of creating rule sets, which 

can operate at competitively low temporal resolutions (large time steps) 

with some of the most advanced human CA formulations from modern 

literature (Shown in Figure 6.2). This begins to tackle the trade-off of 
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overall processing speed versus the accuracy of the resulting simulation, 

by creating rules which can maintain higher accuracies at lower temporal 

resolutions and thus addresses Objective 4.3, and provides and provides 

a weight of evidence for hypothesis 2. 

 

4.3. Objective 4.4: “An investigation of the limits of hypotheses 1, by testing of 

those rules generated during training conducted in Objective 4.3, upon 

different inputs including: unseen parts of the training test case, a 

completely different terrain, and finally on different ‘boundary conditions’ 

(the type of inflow used in the test cases, e.g. uniform rain, or a lateral 

inflow)”. Section 6.3 investigates the limits of the generalisation of the 

GPCA system, by testing the rules generated in section 6.2, on not just 

unseen terrain and water levels with uniform rain conditions, but also with 

lateral inflow types. The results demonstrate that the generalisation to 

unseen data is limited by the training conditions, i.e. since the training test 

cases lack lateral inflow this is the main reason for the lack of 

generalisation to these types of tests. Furthermore, since there is little 

change between each cell in test cases involving a uniform rain condition, 

those with lateral inflow type conditions make it more difficult for rules to 

match target data. These experiments address Objective 4.4, and 

therefore demonstrate the limits of the hypotheses 1 and 2. 

 

4.4.  Objective 4.5: “Finally an investigation of the ability of the GPCA system 

to learn CA state transition rules that can operate successfully at a range 

of both spatial and temporal resolutions. The investigation demonstrates 

how the proposed system can adapt to the complex set of inputs including 

spatial and temporal resolutions, and the local terrain and water levels in 

order to further tackle the complex trade-off created by the resolution of 

the simulation (both spatial and temporal) and the accuracy of the 

resulting water movements over the entire simulation area and duration. 

A comparison can then be made between the performance in terms of 

this trade-off with the very latest human formulated CA flood modelling 

rules and those generated by the proposed GPCA system (hypothesis 

2)”. Lastly section 6.4 demonstrates the ability of the GPCA system to 

effectively learn flood modelling rules which can adapt to different spatial 
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and temporal resolutions, and thusly tackles the final objective 4.5. The 

GPCA system is shown to be able to create rules which can perform 

competitively on the complex trade-off between the resolution (in time and 

space, which leads to processing time), and accuracy of the flooding over 

the area and duration of the test simulations (shown in Figure 6.17). 

The work in this thesis has shown that the GPCA system can effectively 

learn CA state transition rules for both simple, and real-world CA systems. The 

GPCA system should therefore be capable of learning other CA models, with a 

minimal amount of human design for the GP-CA interface/representation for the 

modelling purpose/environment. Considering the large number of CA 

applications (demonstrated in section 2.1.2), and the difficulty for human 

programmer to create distributed CA state transition rules, the GPCA 

methodology is expected to be a valuable tool for future researchers. Given 

sufficient training in terms of quantity and quality the GPCA methodology 

demonstrates an ability to be trained once, and generalise well to other input 

conditions. 

Although real-world CA models are discretisations of time and space, they 

are modelling the analogue real-world and therefore is a range of spatial and 

temporal resolutions that can be modelled. Although the spatial and temporal 

resolutions are static variables across each CA simulation, by training the system 

on a few examples, the GPCA methodology can create rules which can 

generalise well to the complex simulations of local cell variables, over a spectrum 

of different simulation static variable settings (spatial and temporal resolutions). 

The earlier work in this thesis (Chapter 3:) concludes that primary driver for the 

computational complexity of CA models is the number of cells and iterations, 

which directly relates to the temporal and spatial resolution. Therefore, using the 

GPCA methodology to create CA state transition rules which can make a good 

approximation of the global model behaviour at lower temporal resolutions given 

the spatial resolution will create faster models. I.e. by optimising the trade-off 

between temporal resolution at different spatial resolutions and the accuracy, the 

trade-off between speed and accuracy of the simulations is optimised. Coupling 

any acceleration gained through the optimisation and creation of the CA state 

transition rules, modern many-core hardware in the form GPGPUs can further 
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reduce the computational processing time of both training and any potential 

general use of the rules. 

7.2 Discussions and future work 

The work in this thesis has developed a methodology which allows genetic 

programming to create local state transitions rules for flood modelling, which 

guarantee the preservation of mass and uniformity of flow to terrain direction. 

However, portions of the state transition rule are explicitly pre-programmed. In 

order to ensure uniformity of flow to terrain direction, the same GP tree is 

instantiated up to four times, once for each neighbouring cell. While this method 

proves successful in allowing the system to concentrate on the amount of water 

movements, this does mean that the system is only developing part of the state 

transition rule, and still requires an element of human design for the interface 

system. However, this could be due to the limited amount of information present, 

and the extra element of learning required to ensure mass preservation and 

uniformity of flow to terrain direction. Advancement could be made on the system 

by increasing the radius of the neighbourhood and allowing the system to access 

more information about what’s beyond the current horizon of the neighbourhood. 

Such a system would require testing for the levels of uniformity of flow to terrain 

direction and preservation of mass. Such a method would have the advantage of 

avoiding the two stage system required to ensure that the water levels are 

preserved across the grid. However, the method established in this thesis can 

successfully train real world flood state transition rules with limited human design 

of the interface.  

Ultimately it would be desirable to use a system such as the GPCA system, 

and/or use the rules generated from these training runs, on real world data and/or 

on data from the full Navier-Stokes equations (for example using openFoam 

software). There are possible elements of limitations from the target model which 

could be picked up by the GP training, and it could be the case that the current 

experiments comparing the best human formulations to one of the best human 

simplified model might have an element of bias. However, as the target model 

was run at a much smaller time step in order to generate a more accurate base 

target model, there may still exist some bias. One problem with using real world 

data is that there would be an element of uncertainty in the accuracy of the 
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recorded data, and it would be expected that the GP system would deal with the 

additional noise well. There is the possibility of slight bias due to the use of a 

target model, or noise due to uncertainty in the real world data. 

There have been a limited number and spread of test cases utilised within 

this thesis and it would be preferable to have more test cases in order to gain a 

better idea of the generalisation of the rule sets to different input conditions. This 

is highlighted by one of the rules having exceptional performance on one of the 

particular test cases (Bates formula on the Hill and pond test cases at 50m). Also 

it would be beneficial to better cover the possible variation in inflow type 

conditions, since it is thought that the greater amount of spatial variation in water 

levels, coupled with the lack of training examples causes the poorer performance 

of rules trained on rain conditions. 

Finally, it would be interesting to tackle the trade-off problem of the 

maximum time step at which the rules can generate a reasonable score, as a 

multi-objective problem, as opposed to simply a single objective problem. There 

is still room for debate over how to decide which rules are most successful in the 

cases where one rule dominates another at some resolutions, but is dominated 

by the other rule at other spatial resolutions. 

All the tests in this thesis have been constrained to a fixed time step, 

however there are advantages to using an adaptive time step factor, although 

due to the need for a minimum and maximum time step these advantages are 

still limited. It would be interesting to allow a GP rule to learn the temporal rule 

which determines the time step as well as the spatial rules which can move the 

water around the grid. In this way a rule could be optimised to generate the fastest 

and most accurate rules possible.  
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Chapter 9: Appendices 

9.1 Appendix 1: The power function, differences on CPU and 

GPU hardware 

9.1.1 Introduction 

It is known that the power for different CPU and GPU hardware that the 

power function will produce slightly different results for some inputs [113] [114]. 

Due to the limited precision presented by floating point numbers in representing 

real valued numbers, not all real values can be accurately represented by a finite 

number of bits. An example given in Literature is that of the real value of 2/3rd, 

which represented as a binary value 0.10101010… to an infinite number of bits 

after the binary point. Therefore the binary representation of the real value 2/3rd 

must be rounded, where the rounding modes are specified by the IEEE 754 

standard for binary floating point arithmetic [114]. The IEEE 754 standard 

requires support for only a handful of operations, these include the arithmetic 

operations add, subtract, multiply, divide, square root, fused-multiply-add, 

remainder, conversion operations, scaling, sign operations and comparisons. 

The results of these operations are guaranteed to be the same for all 

implementations of the standard, for a given format and rounding mode. However 

more complex functions like the power (x, y) operator, which raises the value x to 

the power of the value y, are not guaranteed to produce the exact same results 

on the differing hardware’s. This has an affect can be multiplied by the heuristic 

optimisation process of the CAGP system, and therefore a specific set of 

experiments are carried out to determine the level of this affect. 

9.1.2 Experimental setup  

The version of the build created to be compatible with the GPU, is used for 

both the CPU and GPU experiments contained in this section. I.e. the GPU 

implementation requires the GP tree to be evaluated by a loop with a fixed sized 

stack, as opposed to be means of recursion. This mean exact same code is used 

for both of these tests, at the point of the evaluation of the GP trees, barring the 

protection of the power function. This protection is once again implementation 

specific, in that attempts are made to encode the power function to capture any 

spurious results including NaN (Not a Number), and +/-infinity at the operator 
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level, and return a value of zero. However, this does not include denormals which 

are very small number which are close to zero, are not captured until after the 

evaluation of the entire CA and error score. This is due to the fact that OpenCL 

does not provide a method in its API to capture these denormal values.  

In these experiments, two identical populations are created by using the 

exact same seed value for the optimisation process. Due to the difference in the 

fitness scores, the heuristic optimisation will likely select some differing 

individuals during it process and therefore only the first generation can be 

guaranteed to be the same GP trees. Since both final populations are appearing 

to result in different optimisations, i.e. different resulting GP trees, and evaluation 

of each population is made by running each population on the alternate hardware. 

These experiments are conducted using the Hill and Pond test case, at 50m, with 

the original rain fall profile of 10mm/hour for 1 hour, where the simulations are 

run for 4 hours of simulation time, at 0.5, 1, and 2 second time steps. 

9.1.3 Experimental Results 

Out of the 100 identical individuals produced in the first generation, 5 of 

these failed to agree on the fitness scores. It is noted that these 5 that disagree 

and within the 6 worst of the population, and that this instantly creates a different 

ordering of the population. 

Table 9.1, Fitness scores (1/average RMSE), of the 6 worst cases of the two 
population of the different CPU and GPU hardware. The one fitness score 

highlighted between the two implementations has scored the same value but is 
placed in a different position. 

 

GP Tree 95 96 97 98 99 100 

CPU Fitness score 16.6039 16.329 14.5613 11.335 11.0148 6.51328 

GPU Fitness score 16.621 16.3288 14.5627 11.682 11.335 5.71232 

absolute difference 0.0171 0.0002 0.0014 0.347 0.3202 0.80096 
 

This small difference in the population to start off with (shown in Table 9.1), 

coupled with the continued small difference in the interpretation of the power 

function, results in populations as shown by the resulting optimisation scores in 

Figure 9.1. Where there is only a small divergence in the beginning of the 

process, these later results in quite a stark difference.  
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Figure 9.1, Fitness scores (1/average RMSE) of the fittest individual in each 
population, run on the CPU and GPU. Where the fitness scores are calculated 

by the respective hardware during each optimisation run. 
 

It can be seen in Figure 9.2 that when comparing the final two populations 

from each optimisation runs on the alternate hardware, that a larger number and 

variety of rankings of GP have interpretation differences, than compared to that 

of the first generation (which is identical for both runs).  
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Figure 9.2, Absolute difference between the fitness scores of the each final 
population evaluated on the alternate hardware, where the x-axis represents the 

ranking of the GP individual within the population. 
 

 

9.2 Appendix 2: The simple GP language 

In order to make the construction of GP formulae easier, and to ensure that there 

are less errors in those formulations, a simple recursive decent compiler is 

created. This is designed to be a scaled version of C, and therefore accepts C 

style comments, both multi-line comments ( /* … comments …*/ ), and in-line 

comments ( lines beginning with // ). This is designed to more easily facilitate the 

human construction of complex GP decision trees, as opposed to attempting to 

program in reverse polish notation. The specification for this language is shown 

in Figure 9.3. 
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program = "GP" "=" condition";" 

 

condition = expression { ( "<", ">", "==", "&&", "||" ) expression } 

 

expression = term { ( "+" | "-" ) term } 

 

term  = factor { ( "*" | "/" | "^" ) factor } 

 

factor  = variable | number |"(" condition ")" | function 

 

function = ( dualFunc, trippleFunc )  

 

dualFunc = ( "min", "max", "sin", "cos" "pow" ) "(" condition ","  

   condition ")" 

 

trippleFunc = "if" "(" condition "," condition "," condition ")" 

 

variable  = any token starting with a letter(alpha), then followed  

    by other letters, numbers, "_" under scores, excluding  

    above key words. 

    Must one of the predefined variables. 

 

num   = any token starting with 0-9 

 
Figure 9.3, Specification of the simple recursive decent language used in this 

thesis to specify GP decision trees. 

 

9.3 Appendix 3: Extended training with GP for temporal 

generalisation of CA rules 

9.3.1 Introduction 

Having trained in section 6.2, on the Hill and pond test case at 50m, with a 

0.5, 1, and 2 second time steps, in order to gain generalisation over the different 

time steps, for a limited 500 GP generations. It is difficult to determine how well 

the system would be able to optimise the rules set given more optimisation time, 

therefore these extended tests use the same experimental settings except the 

termination criteria is set to 2,500 GP generations. 

9.3.2 Experimental set-up 

The hill and pond training case is again utilised for 4 hours of simulation 

time with 0.5 seconds, 1 second and 2 seconds time steps, where the fitness is 

established as the reciprocal of the mean of various simulations RMSE. Once 

again 10 differently seeded populations are utilised, and differently seeded to 

those 10 populations in section 6.2. 
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9.3.3 Training results 

 

Figure 9.4, Fitness of the fittest individual within each of the 10 populations, 
trained on hill and pond test case at 50m cell size, and 0.5, 1, and 2 second 

time steps. 
 

It is clear to see in Figure 9.4, that while the majority of the optimisation is 

carried out within 500 GP generations, that the system will continue to optimise 

after this point. Some generation (for example population 3) can even make large 

jump towards the end of this 2,500 GP generations. However, there are clear 

example, (for example population 6) which appear to get stuck in a local fitness 

maxima very early on and remain stuck in this very poor area for a prolonged 

period, although the majority of populations perform much better, and towards 

the end of this optimisation does begin to improve.  

9.3.4 Conclusions 

While a termination criterion of 500 GP generations has been used in the 

majority of tests within this thesis, this has been done primarily to perform even 

and fair comparisons between the different optimisation settings with the same 

length of optimisations. However it is clear from Figure 9.4 results that 

optimisation will continue at a slower rate after this point, and therefore the 
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generalisation results in previous sections could be further improved. There 

maybe be a point during the length of optimisation which is more likely to have 

the maximum amount of training potency in that it maximises the generalisation 

properties and minimises the possibility of over training; however, it is also 

possible that further training continues to increase the likelihood of good 

generalisation properties as it is a local rule which is trained, further 

experimentation is required in this area. 
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