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Abstract

We describe a recipe to solve very large parity
problems using GP. The recipe includes: smooth
uniform crossover (a crossover operator inspired
by our theoretical research), sub-machine-code
GP (a technique to speed up fitness evaluation
in Boolean classification problems), and inter-
acting demes (sub-populations) running on sepa-
rate workstations. We tested this recipe on parity
problems with up to 22 input variables, solving
them with a very high success probability.

1 INTRODUCTION

The even-n-parity functions have long been recognised as
difficult for Genetic Programming (GP) to induce if no bias
favourable to their induction is introduced in the function
set, the input representation, or in any other part of the algo-
rithm. For this reason they have been widely used as bench-
mark tests [1, 3, 4, 5, 6, 16, 17, 19]. For an even-parity
function ofn Boolean inputs, the task is to evolve a func-
tion that returns 1 if an even number of the inputs evaluate
to 1, 0 otherwise. The task is difficult for at least two rea-
sons. Firstly, the function is extremely sensitive to changes
in the value of its inputs, since flipping a single bit reverses
the output. Secondly, the function set that is usually used
by GP researchers attempting to induce it,fOR, AND,
NOR, NANDg, has an inbuilt bias against parity problems
since it omits the building block functionsEQ and XOR,
either of which can be used to construct parsimonious so-
lutions [7]. The difficulty of the problem, as measured by
the estimated number of fitness evaluations required to find
a solution with 99% probability (a quantity known asef-
fort), also rises sharply with the number of inputs,n. Koza
estimated that the number of evaluations necessary for the
canonical form of GP to solve even-n-parity problems in-
creased by about an order of magnitude for each increment
of n [6, p. 192].

The increase in difficulty is compounded by the increased
memory and processor demands made by higher-order ver-
sions of the problem. In part these demands are not pe-
culiar to the parity problems – the bloating of candidate
solutions as a GP run progresses has been observed for a
broad variety of applications [8]. However, the number of
fitness cases associated with a Boolean induction problem
increases exponentially with its order and can be very large
(e.g. forn = 12, trees are evaluated212 = 4096 times).

We address these issues in this paper, bringing a number of
diverse techniques to bear on high-order (12 � n � 22)
versions of the even-n-parity problem. Firstly, we im-
prove the search process using the GP uniform crossover
and point mutation operators described in [13] and asub-
symbolic node representation[10] which uses an enlarged
function set and allows GP to make small, directed move-
ments around the program space. We also apply a tech-
nique known as Sub-Machine Code GP [11, 14], which al-
lows the parallel evaluation of 32 or 64 fitness cases per
program execution. Finally, we employ a parallel imple-
mentation in which GP sub-populations, or demes, are dis-
tributed over a number of workstations.

The remainder of the paper is organised as follows. In the
next section, we review other attempts to solve the even-
n-parity problems using GP. We then describe our repre-
sentation and operators. In Section 4 we describe the sub-
machine code technique and, in Section 5, the deme model
used. Finally, in Sections 6 and 7 we present and discuss
the results of experiments on the even-n-parity problem for
n = 12; 13; 15; 17; 20 and22 and draw some conclusions.

2 RELATED WORK

Koza provided a detailed treatment of the even-n-parity
problem in his extensive discussions of the standard GP
paradigm [5] and Automatically Defined Functions (ADFs)
[6]. In both cases he restricted himself to the four dyadic
Boolean functionsAND, OR, NAND, NORand what-



Table 1: Minimum efforts (in thousands of fitness evalu-
ations) required to solve the even-n-parity problem using
various methods.

N

Approach 5 6 7 8 9
Standard GP [6]6,528 70,176a n/a n/a n/a
GP + ADFs [6] 464 1,344 1,440 solvedb

EP [3] 2,100 n/a n/a n/a n/a
EP + ADFs [3] 126 121 169 321 586
GP + ADFs [1] 359 627 n/a n/a n/a

aEstimated - standard GP did not actually solve this problem.
bKoza solved parity problems forn up to 12. However, the

heavy computation load required prevented him from performing
sufficient runs to estimate the effort.

ever input terminals were necessary for the problem. As
we have seen, the omission of theXORandEQprimitives
from the set creates additional problems for standard GP,
since it must independently evolve semantically equivalent
blocks of code at numerous locations throughout the pro-
gram tree. Unsurprisingly, solving the parity problems us-
ing standard GP without ADFs is computationally expen-
sive and Koza was unable to obtain a result for values of
n > 5. Of course, the discovery and reuse of building
blocks is the idea behind ADFs, and Koza reported greater
success when they were used. The solutions he reported
for n = 3; 4; 5; 6; 7; 8; 11 all evolved, and made extensive
use of, code equivalent to either theXORor EQprimitives
on their function-defining branches. The estimated com-
putational effort for these and, where available, the other
studies discussed here are given in Table 1.

Chellapilla [3] essentially replicates these studies, omitting
the crossover operator and using instead a variety of muta-
tion operators. His results compare favourably with those
of Koza and he uses them to argue that the significance of
crossover has been overstated.

Aler [1] presents a modification of Koza’s ADF tech-
nique in which function and result-producing branches are
evolved in separate populations. The main branch-evolving
population uses the ADF of the best individual from the
ADF population of the previous generation and vice versa.
His results on the even-5 and -6-parity functions also com-
pare well with those of Koza.

Gathercole and Ross [4] use GPwithoutADFs and a fitness
function in which evaluation of the individual ceases once
a given number of fitness cases have been misclassified. If
this threshold is reached, the remaining, untested, cases are
also judged as misclassifications. The result is that low-
fitness programs can be identified without being evaluated
on the full training set, with considerable savings in CPU
time. The order of presentation of the fitness cases is mod-
ified at run-time so that the evolving population is exposed

to cases of increasing difficulty. Gathercole and Ross’s re-
sults are very encouraging although they do not estimate
the effort.

The studies discussed so far have all treated the even-n-
parity problem for different values ofn as distinct tasks
and evolved specific solutions for each. Wong and Le-
ung [19] describe an alternative approach in which logic
programs are evolved. Programs operate recursively on a
list of Boolean values (each list representing a single fit-
ness case), rather than a set of distinct input terminals.
Whilst the solutions reported by Wong and Leung are gen-
eral solutions to the even-n-parity problem, their method is
necessarily heavily constrained to avoid infinite recursions
and contains a great deal of problem-specific information.
Less biased is the approach of Yu [20] who evolves recur-
sive general solutions to the even-n-parity problem using
lambda abstractions.

A brief examination of Table 1 shows that, asn increases,
the problem rapidly becomes very difficult for GP sys-
tems which use the traditional function set without any
favourable inbuilt bias. Forn � 6, the effort is at least
of the order of105, and for many methods the problem
becomes intractable. Recently, however, we demonstrated
an approach that could solve the even-6-parity problem
with a population of 50 individuals and with an effort of
17,000 fitness evaluations [10]. Typical solutions were also
comparatively parsimonious, the average complexity being
around 50 nodes. These results gave us grounds to be-
lieve that very high order versions of the problem could be
solved. In the next section, we describe the GP algorithm
we used to achieve this level of efficiency.

3 OPERATORS AND REPRESENTATION

3.1 UNIFORM CROSSOVER

GP Uniform crossover (GPUX)[13], as the name suggests,
is a GP operator inspired by the GA operator of the same
name [18]. GA uniform crossover (GAUX) constructs off-
spring on a bitwise basis, copying each allele from each
parent with a 50% probability. Thus the information at each
gene location is equally likely to have come from either
parent and on average each parent donates 50% of its ge-
netic material. The whole operation, of course, relies on the
fact that all the chromosomes in the population are of the
same structure and the same length. No such assumption
can be made in GP since the parent trees will almost al-
ways contain unequal numbers of nodes and be structurally
dissimilar.

GP uniform crossover begins with the observation that
many parse trees are at least partially structurally similar.
This means that if we start at the root node and work our
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Figure 1: Two parental parse trees prior to GPUX.
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Figure 2: Offspring trees after GPUX.

way down each tree, we can frequently go some way be-
fore finding function nodes of differing arity at the same
locations. Furthermore we can swap every node up to this
point with its counterpart in the other tree without altering
the structure of either. Working down from the root node,
we can define two regions of a pair of trees as follows. Any
node in one tree having a corresponding node at the same
location in the other is said to be located within thecommon
region. Those pairs of nodes within the common region that
have the same arity are referred to asinterior. The interior
nodes and the common region of two trees are illustrated in
Figure 1. Note that the common region necessarily includes
all interior nodes. GPUX is then as follows. Once the in-
terior nodes have been identified, the parent trees are both
copied. Interior nodes are selected for crossover with some
probabilitypc. Crossover involves exchanging the selected
nodes between the trees, with those nodes not selected for
crossover remaining unaffected. Non-interior nodes within
the common region can also be crossed, but in this case the
nodes and their subtrees are swapped. As in GAUX, the
value ofpc is generally set to 0.5, resulting in an exchange
of 50% of the nodes. The result of GPUX applied to the
trees in Figure 1 is shown in Figure 2.

GPUX, like GAUX, is a homologous operator, that is it
preserves the position of genetic material in the genotype.
This is a beneficial property but in some cases it can lead
to the phenomenon of lexical convergence whereby a sub-
optimal gene becomes fixed at a given location. When this
happens, crossover cannot introduce the optimal gene and
for this reason it is generally desirable to include a mutation
operator to maintain diversity in the population. The oper-
ator we use here – GP point mutation (GPPM)[9] – is also

inspired by its GA counterpart (GAPM). GPPM substitutes
a single function node with a randomly selected replace-
ment of the same arity. As in GAPM, the average number
of mutations performed on an individual is a function of
the program size and a user-defined mutation rate. Since
in GP program lengths vary, larger programs undergoing
mutation will, on average, be perturbed to a greater degree
than smaller ones. Since such perturbations are generally
detrimental to the fitness of a highly-evolved program, this
will generate an emergent parsimony pressure [12].

3.2 SUB-SYMBOLIC NODE REPRESENTATION

Whilst a single point mutation is the smallest syntactical
operation that can be applied to a parse tree under the stan-
dard representation, it may nevertheless result in a signif-
icant change in behaviour. For example, consider the fol-
lowing subtree: (ANDT1 T2) whereT1 andT2 are Boolean
input terminals. If theANDnode is replaced withNAND,
the value returned by the subtree will be altered in all the
fitness cases. Controlling this means addressing the mech-
anism used to replace the node. Our solution is simple. We
begin by noting that a Boolean function of arityn can be
represented as a truth table (bit-string) of length2n, spec-
ifying its return value on each of the2n possible inputs.
ThusANDmay be represented as1000 , ORas1110 . We
refer to this representation assub-symbolicbecause the rep-
resentation, and hence the behaviour, of a function node
can be modified slightly during the course of a GP run. For
example, flipping a single bit will alter the behaviour of the
node for just one of its possible input combinations.

One feature of the sub-symbolic representation of Boolean
function nodes is that, in contrast to the reduced function
set normally used in Boolean classification tasks, it is un-
biased since it incorporates all2n nodes of arityn into
its function set. Some of these are obviously superfluous
(e.g.always-ON andalways-OFF ) although what ef-
fect they have on performance is poorly understood. Rosca
[16] notes that increasing the size of the function set from
4 to 8 increases the fitness diversity of randomly gener-
ated trees on the even-5-parity problem, but that this ef-
fect is slightly reduced when the size is further increased
to 16 functions. Koza [5] examined the effects of extra-
neous functions on a number of problems including the 6-
multiplexer and found performance using set sizes of less
than 6 to be superior to that using larger sets, because of
greater competition for space from inferior nodes.

Of course, the choice of function set is problem specific
and often something of an art. In his studies of the parity
problems, Koza restricted himself to the function setAND,
OR, NAND, NOR, presumably because it combined min-
imality with completeness (in the sense that solutions to
any Boolean function can be constructed from the primi-



tives). However, omitting theXORandEQ functions un-
doubtedly makes life harder for GP, as can be seen from the
regularity with which Koza’s ADF system evolved them.

Even with knowledge of useful primitives, we should be
careful not to minimise the size of the function set exces-
sively. Langdon and Poli [7] have shown that programs
constructed exclusively fromEQ(for even values ofn) and
XOR(for oddn) are either solutions to the even-n-parity
problem or score exactly half marks. In other words, the
fitness landscapes of such representations offer no gradient
information for GP to follow.

In this work, our principal reason for including all 16
dyadic Boolean functions in our set is simplicity – to do
otherwise would require constraining the smooth search
operators (described in the next section) in some way. In
doing so, we note that theEQandXORfunctions are neces-
sarily included and that these will probably enhance perfor-
mance. On the other hand, the function set is much larger
than normal and contains several extraneous functions.

3.3 SMOOTH OPERATORS

We can define a point mutation operator which works in
exactly this manner – a single randomly-selected bit is
flipped in a single randomly-selected node. In addition,
since GPUX is homologous, we can extend it to use a GA
crossover operator within the nodes at reproduction (in the
experiments reported here we use GAUX). The crossover
operation is illustrated in Figure 3. When a pair of inte-
rior nodes are selected for crossover, GA uniform crossover
is applied to their binary representations. In other words,
the bits specifying each node’s function are swapped with
probability 0.5. Clearly such an operator interpolates the
behaviour of the parents’ corresponding nodes, rather than
exchanging nodes in their entirety. The sub-symbolic node
representation allows GP to move around the solution space
in a smoother, more controlled manner and hence we refer
to these versions of the operators assmooth point mutation
(GPSPM) andsmooth uniform crossover(GPSUX).

4 SUB-MACHINE-CODE GP

Most computer users consider their machines as sequential
computers. However, CPUs can be seen as parallel Single
Instruction Multiple Data (SIMD) processors made up of
many interacting 1-bit processors. In a modern CPU some
instructions, such as Boolean operations, are performed in
parallel and independently for all the bits in the operands.
For example, the bitwise AND operation (see Figure 4(a))
is performed internally by the CPU by concurrently activat-
ing a group of AND gates within the arithmetic logic unit
as indicated in Figure 4(b). In other instructions the CPU
1-bit processors interact through communication channels.
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Figure 3: Uniform crossover on the sub-symbolic represen-
tation.

If we see the CPU as a SIMD computer, then we could
imagine that each of its 1-bit processors will be able to pro-
duce a result after each instruction. Most CPUs do not al-
low handling single bits directly. Instead all the values to be
loaded into the CPU and the results produced by the CPU
are packed into bit vectors, which are normally interpreted
as integers in most programming languages. For example,
in many programming languages the user will see a bitwise
AND operation as a function which receives two integers
and returns an integer, as indicated in Figure 4(c).

Sub-Machine-Code GP (SMC-GP) exploits this paral-
lelism to do GP by making the CPU execute the same pro-
gram on different data in parallel and independently. This
can be done as follows: (1) The function set includes opera-
tions which exploit the parallelism of the CPU, e.g. bitwise
Boolean operations. (2) The terminal set includes integer
input variables and constants, to be interpreted as bit vec-
tors where each bit represents the input to a different 1-bit
processor. For example, the integer constant 21, whose bi-
nary representation is 00010101 (assuming an 8-bit CPU),
would be seen as 1 by the 1-bit processors processing bits 1,
3 and 5. It would be seen as 0 by all other 1-bit processors.
(3) The result produced by the evaluation of a program is
interpreted as a bit vector, each bit of which represents the
result of a different 1-bit processor. E.g. if the output of a
GP program is the integer 13, this should be converted into
binary (obtaining 00001101) and decomposed to obtain 8
binary results (assuming an 8-bit CPU).



An ideal application for this paradigm is to evaluate mul-
tiple fitness cases in parallel. Boolean induction problems
lend themselves to this use of sub-machine-code GP. The
approach used is as follows: (1) Bitwise Boolean functions
are used. (2) Before each program execution the input vari-
ables are initialised so as to pass a different fitness case to
each of the different 1-bit processors of the CPU. (3) The
output integers produced by a program are unpacked and
each of their bits is interpreted as the output for a different
fitness case.

In the Figure 5 we provide a simple C implementation of
this idea which demonstrates the changes necessary to do
sub-machine-code GP when solving the even-5 parity prob-
lem. The functionrun() is a simple interpreter capa-
ble of handling variables and a small number of Boolean
functions. The interpreter executes the program stored in
prefix notation as a vector of bytes in the global variable
program . The interpreter returns an unsigned long in-
teger which is used for fitness evaluation. The function
e5parity() computes the target output in the even-5
parity problem for a group of 32 fitness cases. The func-
tion even5 fitness function(char *Prog) ex-
ecutes a program and returns the number of entries of the
even-5 parity truth table correctly predicted by the pro-
gram. More implementation details are available in [14].
A more extended C code fragment is available via anony-
mous ftp fromftp.cs.bham.ac.uk in the directory
/pub/authors/R.Poli/code/ .

In practical terms this evaluation strategy means that all
the fitness cases associated with the problem of inducing
a Boolean function ofn arguments can be evaluated with
a single program executionfor n � 5 on 32 bit machines,
andn � 6 on 64 bit machines. So, this technique could
lead to speedups of up to 1.5 or 1.8 orders of magnitude.

Because of the overheads associated to unpacking of the
results produced by GP programs, the speedup factors
achieved in practice are slightly lower than 32 or 64 [14].
In tests on an Sun Ultra-10 300MHz workstation using a
32-bit compiler we obtained speedups of 31 times in the
evaluation of large programs achieving peaks of around
190 million primitives per second with a C implementa-
tion. In tests performed with a DEC Alpha 500 workstation
with a 400MHz 64-bit CPU, SMC-GP was able to evaluate
on average 550 million primitives per second, which corre-
sponds to 1.3 operations per clock tick!

The parallel evaluation of multiple fitness cases is not the
only way SMC-GP can be used. SMC-GP allows the evo-
lution of truly parallel programs for the CPU. In recent re-
search [11, 14] we have shown how this can be done, evolv-
ing, for example, parallel adders and multipliers.

0000000101011111

1001000110011111

000000100011111

Bitwise AND351
37279

287

(b)

Bitwise AND

(a)

0 0

...
1 1

(c)

0 1 0 0 1 1 1 1

Figure 4: (a) bitwise AND between binary numbers, (b)
implementation of (a) within the CPU, and (c) the same
AND as seen by the user as an operation between integers.

enum {X1, X2, X3, X4, X5, NOT, AND, OR, XOR};
unsigned long x1, x2, x3, x4, x5;
char *program;

/* Interpreter */
unsigned long run() {

switch ( *program++ ) {
case X1 : return( x1 );
case X2 : return( x2 );
case X3 : return( x3 );
case X4 : return( x4 );
case X5 : return( x5 );
case NOT : return( ˜run() ); /* Bitwise NOT */
case AND : return( run() & run() ); /* Bitwise AND */
case OR : return( run() | run() ); /* Bitwise OR */
case XOR : return( run() ˆ run() ); /* Bitwise XOR */
}

}

/* Bitwise Even-5 parity function */
unsigned long e5parity() {

return(˜(x1ˆx2ˆx3ˆx4ˆx5));
}

/* Fitness function */
int even5_fitness_function( char *Prog ) {

char i;
int fit = 0;
unsigned long result, target, matches, filter;
x1 = 0x0000ffff; /* 00000000000000001111111111111111 */
x2 = 0x00ff00ff; /* 00000000111111110000000011111111 */
x3 = 0x0f0f0f0f; /* 00001111000011110000111100001111 */
x4 = 0x33333333; /* 00110011001100110011001100110011 */
x5 = 0x55555555; /* 01010101010101010101010101010101 */
program = Prog;
result = run();
target = e5parity();

/* Count bits where TARGET=RESULT */
matches = ˜(result ˆ target);
filter = 1;
for( i = 0; i < 32; i ++ ) {

if( matches & filter ) fit ++;
filter <<= 1;

}
return( fit );

}

Figure 5: C program illustrating the parallel evaluation of
fitness cases with SMC-GP.



5 DISTRIBUTED DEMES

The final ingredients we used to solve large parity prob-
lems were: a) to use a set of small interacting populations
(demes) and b) to distribute the load of the computation
across multiple workstations.

Dividing the population into demes helps maintain diver-
sity in the population and has been reported to be, in itself,
a way of speeding up the rate of convergence in the even-
5 parity problem [2] and other problems [15]. Demes are
often organised into rings or toroidal grids. After each gen-
eration a small percentage of individuals (the best in each
deme) is sent to the neighbouring demes. The migrated in-
dividuals are then selectively introduced in the population
of each deme, e.g. by replacing the worst individuals. In
this approach, if a very good individual is discovered in
one deme, spreading that individual to all demes requires
several generations.

The deme approach lends itself to efficient parallelisation.
Indeed, it is quite easy to run each deme on a separate work-
station or processor and then to perform migration via some
form of communication. Since communication happens
only at the end of each generation, there is no significant
communication cost in this approach.

In our work we used a star (client/server) architecture for
our demes. In the architecture there is a (server) deme
which sends and receives individuals to and from all the
other (client) demes in the architecture. Each deme in-
cludesP individuals. The server deme includes a database
with the best�P (� 2 [0:05; 0:10]) individuals seen so far
in all the demes. When new individuals are sent from one
client deme to the server deme, the database is updated.
When a client deme completes one generation, it sends a
message to the server asking for the database, which the
server sends as soon as possible. When this is received, the
individuals in it are selectively introduced in the deme’s
population. To maintain diversity in the server database,
only individuals with different fitness are stored. If an indi-
vidual of a given fitness is in the database, and another indi-
vidual with the same fitness is sent to the server, a random
decision is made as to which individual to keep. The server
deme also includes a population ofP individuals which is
run exactly like a client deme, so that the server alone can
perform GP runs when no extra machines are available.

The system is asynchronous. The server deme is able to
receive and send the database at any time (even if it is it-
self running a deme). So, client demes running on slow
or heavy loaded machines can still contribute to the suc-
cess of a run. Also, since in some of our runs we used a
large number of workstations in the School and elsewhere,
in order to avoid disturbing the activity of other users the
client GP processes constantly monitored these activities.

As soon as an interactive user was present on a machine,
the corresponding GP process would go into sleep mode.
In this mode, the process does no processing except check-
ing once per minute whether the machine is free and the
GP run should be resumed.

The server is also able to interact with other programs
which allow to control and monitor the whole system. For
example, the server is able to respond to HTTP requests
sending back HTML pages including all the information
necessary to check the progress of a run.

The use of a star configuration with a centralised database
is an elitist approach with a shared elite. This allows the
quick propagation of good individuals across all the demes
and in the end makes all the demes converge towards the
same area of the search space. Of course this quick prop-
agation may be risky since it reduces diversity. However,
since the database included quite diverse solutions thanks
to its mechanism to promote diversity, this strategy was ex-
tremely beneficial in our experiments.

6 RESULTS

We have taken up where Koza [6] left off, applying vari-
ous combinations of the techniques described to the even-
n-parity problems forn � 12. Specifically, the values stud-
ied were 12, 13, 15, 17, 20 and 22. Koza stopped atn = 11
not because GP with ADFs was failing to find a solution,
but because the combination of the large population sizes
and the increasing number of fitness cases to be evaluated
was becoming computationally too expensive. The GP-
SUX and GP-SPM operators allow us to solve the parity
problems much more quickly and with much smaller pop-
ulations, so we were able to solve the even-12-parity prob-
lem on a single machine, running repeated runs with code
written in Pop11. For the larger problems, however, it was
necessary to utilise parallel populations and sub-machine
code GP for a complete run to be executed in a realistic
time, and generally we did a single run.

In all the experiments, we used the GP-SUX and GP-SPM
operators. Although the mutation rate was varied for dif-
ferent problems, the crossover probabilitypc was set to 0.3
throughout. Runs were terminated if a solution had not
been found within 500 generations.

Performance on each problem appears to be highly sensi-
tive to the initial parameters. In many cases, it was found
necessary to vary one or more of the parameters to optimise
performance for a specific value ofn. Those parameters
that were varied are given for eachn in Table 6. In the table
“ramped” represents the ramped half-and-half initialisation
method, while “uniform” is a method by which the popu-
lation is initialised using random programs whose length is
uniformly distributed between 1 and the size indicated.



Table 2: Parameters varied for different values ofn on the
even-n-parity problem.
n pop initial depth/size init. method pm
12 100 9 ramped 0.01
13 100 8 ramped .005
15 100 8 ramped .005
17 1000 500 uniform .01
20 300 500 uniform .01
22 200 1000 uniform .005

Table 3: Number of generations and evaluations required
to solve the even-n-parity problem for varyingn.

n No. Generations Individuals evaluated
13 285 28,500
15 542 54,200
17 490 98,000
20 1188 356,400
22 2093 418,600

We performed 30 independent runs on the even-12-parity
problem, and on the basis of the results estimated the ef-
fort required to solve it with 99% probability to be 98,800
fitness evaluations. The remaining results, summarised in
Table 3, are based on single solutions to each problem. In
this table, the number of generations is the total number ex-
ecuted by every machine in the network during the course
of the entire run, and the number of individuals processed
is therefore simply this value multiplied by the deme’s pop-
ulation size. Given the estimated effort for even-12-parity,
these values indicate the extremely positive effect of us-
ing demes in this class of problems. These results compare
very well with the data reported in the literature for low-
order versions (see Table 1).

7 CONCLUSIONS

In this paper we have described a recipe to solve very large
parity problems using GP without ADFs. The recipe in-
cludes three main ingredients: a) smooth operators which
are based on a fine grain program representation, b) sub-
machine-code GP, which allows the exploitation of the in-
ternal parallelism of the CPU, and c) a parallel distributed
GP implementation with shared elitism.

With this recipe we have solved problems that include three
to four orders of magnitude more fitness cases than any-
thing tried before. However, this does not describe fully
the difficulty of these large parity problems: it is well
known that asn increases, the number of fitness evaluations
necessary to standard GP to solve even-n-parity problems
grows much faster than linearly. So, it is arguable that the
even-22-parity problem (the largest problem we tried, and

solved) is millions of times harder than the largest parity
problem solved by standard GP without ADFs.

How did we do that? Firstly, we need to consider that SMC-
GP and the use of up to 50 workstations gave us a speed
up factor of slightly more than three orders of magnitude
(many of our workstations used 32 bit code). Secondly,
the use of demes probably gave us considerable extra effi-
ciency. However, we believe that a very important ingre-
dient for the success of our runs was the use of a function
set including all the Boolean functions of arity 2 in con-
junction with smooth uniform crossover and smooth point
mutation. The presence in the function set of the XOR and
EQ functions alone would not provide this performance im-
provements, without the ability of the smooth operators to
move from one point in the search space to any other point
with continuity and without obstacles.

In future research we intend to study whether the recipe for
solving the even-n-parity problems is applicable to other
Boolean classification problems. We also want to develop
a deeper understanding of the mechanisms with which the
smooth operators mentioned above build solutions.
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