GENETIC PROGRAMMING

GENETIC PROGRAMMING

GENETIC PROGRAMMING

Finding Perceived Pattern Structures using Genetic Programming

Mehdi Dastani
Dept. of Mathematics
and Computer Science

Free University Amsterdam

The Netherlands

email: mehdi@cs.vu.nl

Abstract

Structural information theory (SIT) deals
with the perceptual organization, often called
the ‘gestalt’ structure, of visual patterns.
Based on a set of empirically validated struc-
tural regularities, the perceived organization
of a visual pattern is claimed to be the most
regular (simplest) structure of the pattern.
The problem of finding the perceptual orga-
nization of visual patterns has relevant ap-
plications in multi-media systems, robotics
and automatic data visualization. This pa-
per shows that genetic programming (GP) is
a suitable approach for solving this problem.

1 Introduction

In principle, a visual pattern can be described in
many different ways; however, in most cases it will
be perceived as having a certain description. For
example, the visual pattern illustrated in Figure
1-A may have, among others, two descriptions as
they are illustrated in Figure 1-B and 1-C. Hu-
man perceivers prefer usually the description that
is illustrated in Figure 1-B. An empirically sup-
ported theory of visual perception is the Structural
Information Theory (SIT) [Leeuwenberg, 1971,
Van der Helm and Leeuwenberg, 1991,

Van der Helm, 1994]. SIT proposes a set of empiri-
cally validated and perceptually relevant structural
regularities and claims that the preferred description
of a visual pattern is based on the structure that
covers most regularities in that pattern. Using the
formalization of the notions of perceptually relevant
structure and simplicity given by SIT, the problem
of finding the simplest structure of a visual pattern
(SPS problem) can be formulated mathematically as
a constrained optimization problem.

Elena Marchiori
Dept. of Mathematics
and Computer Science

Free University Amsterdam
The Netherlands
email: elena@cs.vu.nl

Robert Voorn
Dept. of Mathematics
and Computer Science

Free University Amsterdam

The Netherlands

email: rbvoorn@cs.vu.nl

Figure 1: Visual pattern A has two potential structures
B and C.

The SPS problem has relevant applications. For ex-
ample, multimedia systems and image databases need
to analyze, classify, and describe images in terms of
constitutive objects that human users perceives in
those images [Zhu, 1999]. Furthermore, autonomous
robots need to analyze their visual inputs and con-
struct hypotheses about possibly present objects in
their environments [Kang and Ikeuchi, 1993]. Also, in
the fields of information visualization the goal is to
generate images that represent information such that
human viewers extract that information by looking
at the images [Bertin, 1981]. In all these applica-
tions, a model of gestalt perception is indispensable
[Mackinlay, 1986, Marks and Reiter, 1990]. We focus
on a simple domain of visual patterns and claim that
an appropriate model of gestalt perception for this do-
main is an essential step towards a model of gestalt
perception for more complex visual patterns that are
used in the above mentioned real-world applications
[Dastani, 1998].

Since the search space of possible structures grows
exponentially with the complexity of the visual pat-
tern, heuristic algorithms have to be used for solv-
ing the SPS problem efficiently. The only algo-
rithm for SPS we are aware of is developed by
[Van der Helm and Leeuwenberg, 1986]. This algo-

rithm ignores the important source of computational
complexity of the problem and covers only a subclass
of perceptually relevant structures. The central part of
this partial algorithm consists of translating the search
for a simplest structure into a shortest route problem.
The algorithm is shown to have O(N*) computational
complexity, where N denotes the length of the input
pattern. To cover all perceptually relevant structures
for not only the domain of visual line patterns, but
also for more complex domains of visual patterns, it
is argued in [Dastani, 1998] that the computational
complexity grows exponentially with the length of the
input patterns.

This paper shows that genetic programming
[Koza, 1992] provides a natural paradigm for solving
the SPS problem using SIT. A novel evolutionary
algorithm is introduced whose main features are the
use of SIT operators for generating the initial popula-
tion of candidate structures, and the use of knowledge
based genetic operators in the evolutionary process.
The use of GP is motivated by the SIT formalization:
structures can be easily described using the standard
GP-tree representation. However, the GP search
is constrained by the fact that structures have to
characterize the same input pattern. In order to
satisfy this constraint, knowledge based operators are
used in the evolutionary process.

The paper is organized as follows. In the next section,
we briefly discuss the problem of visual perception and
explain how SIT predicts the perceived structure of vi-
sual line patterns. In Section 3, SIT is used to give a
formalization of the SPS problem for visual line pat-
terns. Section 4 describes how the formalization can be
used in an automatic procedure for generating struc-
tures. Section 5 introduces the GP algorithm for SPS.
Section 6 describes implementation aspects of the al-
gorithm and reports some results of experiments. The
paper concludes with a summary of the contributions
and future research directions.

2 SIT: A Theory of Visual Perception

According to the structural information theory, the
human perceptual system is sensitive to certain
kinds of structural regularities within sensory pat-
terns. They are called perceptually relevant struc-
tural regularities, which are specified by means of
ISA operators: Iteration, Symmetry and Alternations
[Van der Helm and Leeuwenberg, 1991]. Examples of
string patterns that can be specified by these operators
are abab, abcba, and abgabpz, respectively. A visual
pattern can be described in different ways by applying
different ISA operators. In order to disambiguate the

GENETIC PROGRAMMING

set of descriptions and to decide on the perceived or-
ganization of the pattern, a simplicity measure, called
information load, is introduced. The information load
measures the amount of perceptually relevant regu-
larities covered by pattern descriptions. It is claimed
that the description of a visual pattern with the mini-
mum information load reflects its perceived organiza-
tion [Van der Helm, 1994].

In this paper, we focus on the domain of linear line pat-
terns which are turtle-graphics, like line drawings for
which the turtle starts somewhere and moves in such
a way that the line segments are connected and do not
cross each other. A linear line pattern is encoded as
a letter string for which it can be shown that its sim-
plest description represents the perceived organization
of the encoded linear line pattern [Leeuwenberg, 1971].
The encoding process consists of two steps. In the first
step, the successive line segments and their relative an-
gles in the pattern are traced from the starting point
of the pattern and identical letter symbols are assigned
to identical line segments (equal length) as well as to
identical angles (relative to the trace movement). In
the second step, the letter symbols that are assigned
to line segments and angles are concatenated in the or-
der they have been visited during the trace of the first
step. This results in a letter string that represents the
pattern. An example of such an encoding is illustrated
in Figure 2.

axaybxbybxb

Figure 2: Encoding of a line pattern into a string.

Note that letter strings are themselves perceptual pat-
terns that can be described in many different ways,
one of which is usually the perceived description. The
determination of the perceived description of string
patterns is the essential focus of Hofstadter’s Copycat
project [Hofstadter, 1984].

3 The SPS Problem

In this section, we formally define the class of string de-
scriptions that represent possible perceptually relevant
organizations of linear line patterns. Also, a complex-
ity function is defined that measures the information
load of those descriptions. In this way, we can en-

GENETIC PROGRAMMING

code a linear line pattern into a string, generate the
perceptually relevant descriptions of the string, and
determine the perceived organization of the line pat-
tern by choosing the string description which has the
minimum information load.

The class of descriptions that represent possible per-
ceptual organizations for Linear Line Patterns LLP is
defined over the set E = {a,... ,z} as follows.

1. Forallt € E, t € LLP

2. If t € LLP and n is a natural number, then
iter(t,n) € LLP

3. If t € LLP, then symeven(t) € LLP
4. If t;,to € LLP, then symodd(t,,t2) € LLP

5. If t,tg,..
altleft(t, < t1,..
altright(t, < ti,...

.y tn € LLP, then
.ytn >) € LLP and
Jtn >) € LLP

6. If t1,...,t, € LLP, then con(ty,... ,tn) € LLP

The meaning of LLP expressions can be defined by the
denotational semantics [|, which involves string con-
catenation (e) and string reflection (reflect(abede) =
edcba) operators.

1. Ift € E, then [t] =1t

2. [iter(t,n)] = [t]e...o[t] (n times)
3. [symeven(t)] = [t] o reflect([t])
4. [symodd(ty, t2)] = [t1] @ [t2] @ reflect([t:])

5. [altleft(t, < ti,... t, >)] =
[t] @ [ti]®--.o[t]®[tn]

6. [altright(t,< ti,...,t, >)] =
[tr]e[t]e...o[ta] o [t]
7. [con(ty,... tn)] = [tri]e®...®[tn]

The complezity function C on LLP expressions,
measures the complexity of an expression as the
number of individual letters ¢ occurring in it, i.e.

o) =1

C(f(Tr,... . Tn)) = 3L, C(T)

During the last 20 years, Leeuwenberg and his
co-workers have reported on a number of exper-
iments that tested predictions based on the sim-
plicity principle. These experiments were con-

cerned with the disambiguation of ambiguous pat-
terns. The predictions of the simplicity princi-
ple were, on the whole, confirmed by these experi-
ments [Buffart et al., 1981, Van Leeuwen et al., 1988,
Boselie and Wouterlood, 1989].

The following LLP expressions describe, among oth-
ers, four different perceptual organizations of the pat-
tern axaybrbybxb:

- con(aﬂm:aay: b,ﬂf, b7y7 b,CC, b)7
- con(symodd(a, z),y, symodd(b, x),y, symodd(b, z))

con(symodd(a,), iter(con(y, b, z,b),2))

con(symodd(a, x), iter (altright(b, < y,x >),2))

Note that these descriptions reflect four different per-
ceptual organizations of the line pattern that is illus-
trated in Figure 2. The information load of these four
descriptions are 11, 8,6, and 5, respectively. This im-
plies that the last description reflects the perceived
organization of the line pattern illustrated in Figure 2.

The SPS problem can now be defined as follows. Given
a pattern p, find a LLP expression ¢ such that

e [t] =p and

e C(t) =min{C(s) | s € LLP and [s] = p}.

As mentioned in the introduction, the only (partial)
algorithm for solving SPS problem is proposed by Van
der Helm [Van der Helm and Leeuwenberg, 1986].
This algorithm finds only a subclass of perceptually
relevant structures of string patterns by first con-
structing a directed acyclic graph for the given string
pattern. If we place an index after each element in
the string pattern, starting from the leftmost element,
then each node in the graph would correspond to an
index, and each link in the graph from node i to j
corresponds to a gestalt for the subpattern starting
at position ¢ and ending at position j. Given this
graph, the SPS problem is translated to a shortest
route problem. Note that this algorithm is designed
for one-dimensional string patterns and it is not clear
how this algorithm can be applied to other domains
of perceptual patterns. Instead, our formalization
of the SPS problem can be easily applied to more
complex visual patterns by extending the LLP
with domain dependent operators such as Euclidean
transformations for two-dimensional visual patterns
[Dastani, 1998].

4 Generating LLP Expressions

In order to solve the SPS problem using genetic pro-
gramming, a probabilistic procedure for generating
LLP expressions, called BUILD-STRUCT, is used.
This procedure takes as input a string, and generates
a (tree structure of a) LLP expression for that string.
The procedure is based on a set of probabilistic pro-
duction rules.

The production rules are derived from the SIT
definition of expressions, and are of the form
a t1...t, B — P(t1...tn) B

where o and (3 are (possibly empty) LLP expressions,
ty,...,t, are LLP expressions, and P is an ISA oper-
ator (of arity n). The triple (o, #1...t,, B) is called
splitting of the sequence.

A snapshot of the set of production rules used in
BUILD-STRUCT is given below.

attf — aiter(t,2) g

a titer(t,n) 8 — « iter(t,n + 1)
a iter(t,n) t 8 — « iter(t,n + 1)
aty ty B — acon(t,tz) B

a con(ty,..,ty) t B — a con(ty,..,tn,t)
atcon(ty,..ty) B — acon(t,ty,.., tn)

B
B
B
B

A production rule transforms a sequence of LLP ex-
pressions into a shorter one. In this way, the repeated
application of production rules terminates after a fi-
nite number of steps and produces one LLP expres-
sion. There are two forms of non-determinism in the
algorithm:

1. the choice of which rule to apply when more than
one production rule is applicable,

2. the choice of a splitting of the sequence when more
splittings are possible.

In BUILD-STRUCT both choices are performed ran-
domly. BUILD-STRUCT employs a specific data
structure which results in a more efficient implemen-
tation of the above described non-determinism. The
BUILD-STRUCT procedure is used in the initializa-
tion of the genetic algorithm and in the mutation op-
erator.

We conclude this section with an example illustrating
the application of the production rules system. The
LLP expression iter(con(a,b,a),2) can be obtained
using the above production rules starting from the
pattern abaaba as follows, where an underlined sub-

GENETIC PROGRAMMING

string indicates that an ISA operator will be applied
to that substring:

aba aba — con(a,b, a)aba
con(a,b,a) aba — con(a,b,a)con(a,b,a)
con(a,b, a)con(a,b,a) — iter(con(a,b,a),2)

Note in this example that the iter operator is
applied to two structurally identical LLP expressions
(i.e. con(a,b,a)con(a,b,a) — iter(con(a,b,a),?2)).
In general, the IS A operators are not applied on the
basis of structural identity of LLP expressions, but
on the basis of their semantics, i.e. on the basis of the
patterns that are denoted by the LLP expressions (i.e.
symodd(a,b)con(a,b,a) — iter(symodd(a,b), 2)).

5 A GP for the SPS Problem

This section introduces a novel evolutionary algorithm
for the SPS problem, called GPSPS (Genetic Pro-
gramming for the SPS problem), which applies GP
to SIT. A population of LLP expressions is evolved,
using knowledge based mutation and crossover op-
erators to generate new expressions, and using the
SIT complexity measure as fitness function. GPSPS
is an instance of the generational scheme, cf. e.g.
[Michalewicz, 1996], illustrated below, where P(t) de-
notes the population at iteration ¢ and |P(t)| its size.

PROCEDURE GPSPS
t <- 0
initialize P(t)
evaluate P(t)
WHILE (NOT termination condition) DO
BEGIN
t <- t+1
WHILE (IP(t)I<IP(t-1)1) DO
BEGIN
select two elements from P(t-1)
apply crossover
apply mutation
insert in P(t)
END
END
END

We have used the Roulettewheel mechanism to select
the elements for the next generation. Therefore the
chance that an element of the original pool is selected
is proportional to its fitness. Since we apply our sys-
tem to a minimization problem, the fitness function
has to be transformed. This is done with the function
newF (element) = mazF (pool) — F(element). This
ensures that the element with the lowest fitness will

GENETIC PROGRAMMING

have the highest probability of being selected. We
have also made our GP elitist to guarantee that the
best element found so far will be in the actual popu-
lation.

The main features of GPSPS are described in the rest
of this section.

5.1 Representation and Fitness

GPSPS acts on LLP expressions describing the same
string. A LLP expression is represented by means of a
tree in the style used in Genetic Programming, where
leaves are primitive elements while internal nodes are
ISA operators. The fitness function is the complexity
measure C' as it is introduced in Section 3.

Thus, the goal of GPSPS is to find a chromosome
(representing a structure of the a given string) which
minimizes C. Given a string, a specific procedure is
used to ensure that the initial population contains only
chromosomes describing the same pattern. Moreover,
novel genetic operators are designed which preserve
the semantics of chromosomes.

5.2 Initialization

Given a string, chromosomes of the intial population
are generated using the procedure BUILD-STRUCT.
In this way, the initial population contains randomly
selected (representations of) LLP expressions of the
pattern.

5.3 Mutation

When the mutation operator is applied to a chromo-
some 7', an internal node n of T is randomly selected
and the procedure BUILD-STRUCT is applied to the
(string represented by the) subtree of T' starting at n.
Figure 3 illustrates an application of the mutation op-
erator to an internal node. Observe that each node
(except the terminals) has the same chance of being
selected. In this way smaller subtrees have a larger
chance of being modified.

It is interesting to investigate the effectiveness of the
heuristic implemented in BUILD-STRUCT when in-
corporated into an iterated local search algorithm.
Therefore we have implemented an algorithm that mu-
tates one single element for a large number of iterations
and returns the best element that has been found over
all iterations. Although some regularities are discov-
ered by this algorithm, its performance is rather scarce
if compared with GPSPS, even when the number of it-
erations is set to be bigger than the size of the popula-
tion times the number of generations used by GPSPS.

(ababaa) (ababaa)
con . con

con’ - iter Codter o dter
SN VAN
/" (aba) \b a/ \2 (@) 2 a2
~symodd ;({1 g
,,,,,,, a b - - Soa b
mutation

Figure 3: Ezample of the mutation-operator.

5.4 Crossover

The crossover operator cannot simply swap subtrees
between two parents, like in standard GP, due to the
semantic constraint on chromosomes (e.g. chromo-
somes have to denote the same string). Therefore, the
crossover is designed in such a way that it swaps only
subtrees that denote the same string. This is realized
by associating with each internal node of the tree the
string that is denoted by the subtree starting at that
internal node. Then, two nodes of the parents with
equal associated strings are randomly selected and the
corresponding subtrees are swapped. An example of
crossover is illustrated in Figure 4.

(abbacabba) (abbacabba)
symodd con

(abbac)

/(abba), ¢ (abba) con
/- con

, \ symeven , ‘\
// \\ ‘ abbac /’ (abba) \\
/ o (ab) + symodd
/ _abba \ con K \
*********** \ /a (bb)
/ con
ab ! '
// /\ \\
lo____b_b___
crossover \

(abbacabba) (abbacabba)
symodd con
/N e o

(abba) (abba) NS
symodd symeven abbac abba
(ab)
a (bb) con
con
a b
b b

Figure 4: Example of the crossover-operator.

When a crossover-pair can not be found, no crossover
takes place. Fortunately this happens only for a small
portion of the crossovers. Usually there are more than
one pair to choose from. This issue is further discussed
in the next section.

5.5 Optimization

As discussed above, the mutation and crossover oper-
ators transform subtrees. When these operators are
applied, the resulting subtrees may exhibit structures
of a form suitable for optimization. For instance, sup-
pose a subtree of the form con(iter(b,2),a,con(b,b))
is transformed by one of the operators in the sub-
tree con(iter(b,2),a,iter(b,2)). This improves the
complexity of the subtree. Unfortunately, based
on this new subtree the expected LLP expression
symodd(iter(b,2),a) cannot be obtained.

The crossover operator is only helpful for this problem
if there is already a subtree that encodes that specific
substring with an symodd structure. This problem
could in fact be solved by applying the mutation op-
erator to the con structure. However, the probability
that the application of the mutation operator will gen-
erate the symodd structure is small.

In order to solve this problem, a simple optimization
procedure is called after each application of the mu-
tation and crossover operators. This procedure uses
simple heuristics to optimize the con structure. First,
the procedure checks if the (entire) con structure is
symmetrical and changes it into a symodd or symeven
structure if possible. If this is not the case, the pro-
cedure checks if neighboring structures that are sim-
ilar can be combined. For example, a structure of
the form con(c,iter(b,2),iter(b,3)) can be optimized
to con(c,iter(b,5)). This kind of optimization is also
applied to altleft and altright structures.

6 Experiments

In this section we discuss some preliminary experi-
ments. The example strings we consider are short and
are designed to illustrate what type of structures are
interesting for this domain. The choice of the values of
the GP parameters used in the experiments is deter-
mined by the considered type of strings. Because the
strings are short, a small pool size of 50 individuals
is used. Making the size of the pool very large would
make the GP perform better, but when the pool is ini-
tialized, it would probably already contain the most
preferred structure. The number of iterations is also
small to avoid generating all possible structures and is
therefore set to 150. This allows us to draw prelimi-

GENETIC PROGRAMMING

nary conclusions about the performance of the GP.

Two important parameters of the GP are the mutation
and crossover rates. We have done a few test runs to
find a setting that produced good results. We have
set the mutation-rate on 0.6 and the crossover-rate to
0.4. The mutation is deliberately set to a higher rate,
because this operator is the most important for dis-
covering structures. The crossover operator is used to
swap substructures between good chromosomes.

We have chosen six different short strings that con-
tain structures that are of interest to our search prob-
lem. Moreover, two longer strings are considered. For
the two long strings the mutation and crossover rates
above specified are used, but the poolsize and the num-
ber of generations are both set to 300. The eight
strings are the code for the linear line patterns illus-
trated in Figure 5.

Figure 5: Line drawings used in erperiments.

The algorithm is run on each string a number of times
using different random seeds. The resulting structures
are given in Figure 7, where the structure and fitnesses
of the two best elements of the final population are re-
ported. For each string GPSPS is able to find the opti-
mal structure. The results of runs with different seeds
are very similar, indicating the (expected) robustness
of the algorithm on these strings.

Figure 6 illustrates how the best fitness and the mean
fitness of the population vary in a typical run of GP-

GENETIC PROGRAMMING

Linear Line Pattern 7
35

— - Best Fitness
—— Mean Fitnesg

L L L L L
0 50 100 150 200 250 300
Generations

Figure 6: Best and Mean Fitness.

SPS on the line pattern number 7 of Figure 5. On this
pattern, the algorithm is able to find a near optimum
of rather good quality after about 50 generations, and
it spends the other 250 generations to find the slighly
improved structure. In this experiment about 12% of
the crossovers failed. On average there were about
2.59 possible ’crossover-pairs’ possible (with a stan-
dard deviation of 1.38) when the crossover operator
was applicable.

The structures that are found are the most preferred
structures as predicted by the SIT theory. The system
is thus capable of finding the perceived organizations
for these line drawings patterns.

7 Conclusion and Future Research

This paper discussed the problem of human visual per-
ception and introduced a formalization of a theory of
visual perception, called SIT. The claim of SIT is to
predict the perceived organization of visual patterns
on the basis of the simplicity principle. It is argued
that a full computational model for SIT is compu-
tationally intractable and that heuristic methods are
needed to compute the perceived organization of visual
patterns.

We have applied genetic programming techniques to
this formal theory of visual perception in order to com-
pute the perceived organization of visual line patterns.
Based on perceptually relevant operators from SIT, a
pool of alternative organizations of an input pattern is
generated. Motivated by SIT, mutation and crossover
operations are defined that can be applied to these or-
ganizations to generate new organizations for the in-
put pattern. Finally, a fitness function is defined that

determines the appropriateness of generated organiza-
tions. This fitness function is directly derived from
SIT and measures the simplicity of organizations.

In this paper, we have focused on a small domain of
visual linear line patterns. The next step is to extend
our system to compute the perceived organization of
more complex visual patterns like two-dimensional vi-
sual patterns, which are defined in terms of a variety of
visual attributes such as color, size, position, texture,
shape.

Finally, we intend to investigate whether the class of
structural regularities proposed by SIT is also relevant
for finding meaningful organizations within patterns
from biological experiments, like DNA sequences. For
this task, we will need to modify GPSPS in order to
allow a group of letters to be treated as a primitive
element.

References

[Bertin, 1981] Bertin, J. (1981). Graphics and Graphic
Information-Processing. Walter de Gruyter, Berlin
New York.

[Boselie and Wouterlood, 1989] Boselie, F. and
Wouterlood, D. (1989). The minimum principle
and visual pattern completion. Psychological
Research, 51:93-101.

[Buffart et al., 1981] Buffart, H., Leeuwenberg, E.,
and Restle, F. (1981). Coding theory of visual pat-
tern completion. Journal of Experimental Psychol-

ogy: Human Perception and Performance, 7:241—
274.

[Dastani, 1998] Dastani, M. (1998). Ph.D. thesis, Uni-
versity of Amsterdam, The Netherlands.

[Hofstadter, 1984] Hofstadter, D. (1984). The copy-
cat project: An experiment in nondeterministic and
creative analogies. In A.I. Memo 755, Artificial In-
telligence Laboratory, Cambridge, Mass. MIT.

[Kang and Ikeuchi, 1993] Kang, S. and Ikeuchi, K.
(1993). Toward automatic robot instruction from
perception: Recognizing a grasp from observation.
In IEEFE Trans. on Robotics and Automation, vol.
9, no. 4, pages 432-443.

[Koza, 1992] Koza, J. (1992). Genetic Programming.
MIT Press.

[Leeuwenberg, 1971] Leeuwenberg, E. (1971). A per-
ceptual coding language for visual and auditory pat-
terns. American Journal of Psychology, 84:307-349.

10

[Mackinlay, 1986] Mackinlay, J. (1986). Automating
the design of graphical presentations of relational
information. In ACM Transactions on Graphics,
volume 5, pages 110-141.

[Marks and Reiter, 1990] Marks, J. and Reiter, E.
(1990). Avoiding unwanted conversational implica-
tures in text and graphics. In Proceeding AAAI
Menlo Park, CA.

[Michalewicz, 1996] Michalewicz, Z. (1996). Genetic
Algorithms + Data Structures = FEvolution Pro-
grams. Springer-Verlag, Berlin.

[Van der Helm, 1994] Van der Helm, P. (1994). The
dynamics of pragnanz. Psychological Research,
56:224-236.

[Van der Helm and Leeuwenberg, 1986] Van der
Helm, P. and Leeuwenberg, E. (1986). Avoiding
explosive search in automatic selection of simplest
pattern codes. Pattern Recognition, 19:181-191.

[Van der Helm and Leeuwenberg, 1991] Van der
Helm, P. and Leeuwenberg, E. (1991). Accessi-
bility: A criterion for regularity and hierarchy
in visual pattern code. Journal of Mathematical
Psychology, 35:151-213.

[Van Leeuwen et al., 1988] Van Leeuwen, C., Buffart,
H., and Van der Vegt, J. (1988). Sequence influence
on the organization of meaningless serial stimuli:
economy after all. Journal of Experimental Psychol-
ogy: Human Perception and Performance, 14:481—
502.

[Zhu, 1999] Zhu, S. (Nov, 1999). Embedding gestalt
laws in markov random fields - a theory for shape
modeling and perceptual organization. IEEE Trans.

on Pattern Analysis and Machine Intelligence, Vol.
21, No.11.

GENETIC PROGRAMMING

string:

aAaAaAaAaAaAaA

structure:

a) iter(con(a,A),7)

b) con(iter(con(a,A),2),iter(con(a,A),5))
complezity

a) 2

b) 4

string:

aAaBbAbBbAbBaAa

structure:

a) symodd/(altleft(a,<A,con(B,symodd(b,A))>),B)
b) symodd(con(symodd(a,A),altright(b,<B,A>)),B)
complezity

a) 6

b) 6

string:

aAaBaAaBaAaB

structure:

a) iter(altleft(a,<A,B>),3)

b) iter(con(symodd(a,A),B), 3)
complexity

a) 3

b) 3

string:

aXaYaXaZbAcBcBce

structure:

a) altleft(symodd(a,X),<Y,altright(c,<con(Z,b,A),B,B>))

b) altleft(symodd(a,X),<Y,
altright(c,<con(Z,b,A),symodd(B,c)>))

c) altleft(symodd(a,X),<Y,con(Z,b,A,c,iter(con(B,c),2))>)

scomplexity:

a) 9

b) 9

c)9

string:

aXaYbXbYbXb

structure:

a) altleft(a,<X,iter(con(Y,symodd(b,X)),2)>)
b) altleft(a,<X,iter(altright(b,<Y,X>),2)>)
complexity:

a) 5

b) 5

string:

aAaBaCaDaEa

structure:

a) altright(a,<altleft(a,<A,B>),C,D,E>)
b) altleft(a,<A,B,C,D,con(E,a)>)
complezity:

a) 7

b) 7

string:

axaybxbyaxaybxbyczcybxbyaxaybxbyaxa

structure:

a) symodd(con(iter(con(symodd(a,x),
symodd(y,symodd(b,x))),2),),7)

b) symodd(con(iter(con(symodd(a,x),
symodd(con(y;b),x)),2),¢),%)

complezity:

a) 7

b) 7

string:

vecsctesctaxaybxbyzbxbyaxaud

structure:

a) con(v,altright(c,je,s;),con(symodd(con(t,c),s),
symodd(con(symodd(a,x),y,symodd(b,x)),z),u,d))

b) con(v,e,iter(altleft(c,js,t;),2),
symodd(con(symodd(a,x),y,symodd(b,x)),z),u,d)

complexity:

a) 13

b) 13

Figure 7: Results of experiments

GENETIC PROGRAMMING

11

Reducing Bloat and Promoting Diversity using
Multi-Objective Methods

Edwin D. de Jong'?

Richard A. Watson?

Jordan B. Pollack?

{edwin, richardw, pollack}@cs.brandeis.edu
1Vrije Universiteit Brussel, AI Lab, Pleinlaan 2, B-1050 Brussels, Belgium
2Brandeis University, DEMO Lab, Computer Science dept., Waltham, MA 02454, USA

Category: Genetic Programming
Abstract

Two important problems in genetic program-
ming (GP) are its tendency to find unnec-
essarily large trees (bloat), and the general
evolutionary algorithms problem that diver-
sity in the population can be lost prema-
turely. The prevention of these problems
is frequently an implicit goal of basic GP.
We explore the potential of techniques from
multi-objective optimization to aid GP by
adding explicit objectives to avoid bloat and
promote diversity. The even 3, 4, and 5-
parity problems were solved efficiently com-
pared to basic GP results from the litera-
ture. Even though only non-dominated in-
dividuals were selected and populations thus
remained extremely small, appropriate diver-
sity was maintained. The size of individuals
visited during search consistently remained
small, and solutions of what we believe to be
the minimum size were found for the 3, 4,
and 5-parity problems.

Keywords: genetic programming, code growth,
bloat, introns, diversity maintenance, evolutionary
multi-objective optimization, Pareto optimality

1 INTRODUCTION

A well-known problem in genetic programming (GP),
is the tendency to find larger and larger programs over
time (Tackett, 1993; Blickle & Thiele, 1994; Nordin &
Banzhaf, 1995; McPhee & Miller, 1995; Soule & Fos-
ter, 1999), called bloat or code growth. This is harm-
ful since it results in larger solutions than necessary.
Moreover, it increasingly slows down the rate at which
new individuals can be evaluated. Thus, keeping the
size of trees that are visited small is generally an im-
plicit objective of GP.

Another important issue in GP and in other methods
of evolutionary computation is that of how diversity
of the population can be achieved and maintained. A
population that is spread out over promising parts of
the search space has more chance of finding a solution
than one that is concentrated on a single fitness peak.
Since members of a diverse population solve parts of
the problem in different ways, it may also be more
likely to discover partial solutions that can be utilized
through crossover. Diversity is not an objective in the
conventional sense; it applies to the populations visited
during the search, not to final solutions. A less obvious
idea then is to view the contribution of individuals to
population diversity as an objective.

Multi-objective techniques are specifically designed for
problems in which knowledge about multiple objec-
tives is available, see e.g. Fonseca and Fleming (1995)
for an overview. The main idea of this paper is to
use multi-objective techniques to add the objectives of
size and diversity in addition to the usual objective of
a problem-specific fitness measure. A multi-objective
approach to bloat appears promising and has been
used before (Langdon, 1996; Rodriguez-Vazquez, Fon-
seca, & Fleming, 1997), but has not become standard
practice. The reason may be that basic multi-objective
methods, when used with small tree size as an objec-
tive, can result in premature convergence to small in-
dividuals (Langdon & Nordin, 2000; Ekart, 2001). We
therefore investigate the use of a size objective in com-
bination with explicit diversity maintenance.

The remaining sections discuss the n-parity problem
(2), bloat (3), multi-objective methods (4), diversity
maintenance(5), ideas behind the approach, called FO-
CUS, (6), algorithmic details (7), results (8), and con-
clusions (9).

2 THE N-PARITY PROBLEM

The test problems that will be used in this paper are
even n-parity problems, with n ranging from 3 to 5.
A correct solution to this problem takes a binary se-
quence of length n as input and returns true (one) if

12

Figure 1: A correct solution to the 2-parity problem

the number of ones in the sequence is even, and false
(zero) if it is odd. It is named even to avoid confusion
with the related odd parity problem, which gives the
inverse answer. Trees may use the following boolean
operators as internal nodes: AND, OR, NAND, and
NOR. Each leaf specifies an element of the sequence.
The fitness is the fraction of all possible length n bi-
nary sequences for which the program returns the cor-
rect answer. Figure 1 shows an example.

The n-parity problem has been selected because it is a
difficult problem that has been used by a number of re-
searchers. With increasing order, the problem quickly
becomes more difficult. One way to understand its
hardness is that for any setting of the bits, flipping
any bit inverts the outcome of the parity function.
Equivalently, its Karnaugh map (Zissos, 1972) equals
a checkerboard function, and thus has no adjacencies.

2.1 SIZE OF THE SMALLEST
SOLUTIONS TO N-PARITY

We believe that the correct solutions to n-parity con-
structed as follows are of minimal size, but are not able
to prove this. The principle is to recursively divide the
bit sequence in half and, take the parity of each halve,
and feed these two into a parity function. For subse-
quences of size one, i.e. single bits, the bit itself is used
instead of its parity. When this occurs for one of the
two arguments, the outcome would be inverted, and
thus the odd 2-parity function is used to obtain the
even 2-parity of the bits.

Let S be a binary sequence of length |S| = n > 2.
S is divided in half yielding two subsequences L and
R with, for even n, length % or, for odd n, lengths
”T_l and ”T“ Then the following recursively defined
function P(S) gives a correct expression for the even-
parity of S for |S| > 2 in terms of the above operators:

S if Sl=1
P(S) = { ODD(P(L),P(R)) if ISI >1Ag(L,R)
EVEN(P(L),P(R)) otherwise

where
ODD(A, B) = NOR(AND(A, B), NOR(A, B)),
EVEN(A, B) = OR(AND(A, B), NOR(A, B)), and

TRUE if

Al =1) XOR (|B| =1
g(A’B):{FALSE else (4= 1#1=1

GENETIC PROGRAMMING

Table 1: Length of the shortest solution to n-parity
using the operators AND, OR, NAND, and NOR.

n 11213 |4 |5 |6 |7
Length | 3 | 7| 19| 31| 55| 79 | 103

The length |P(S)| of the expression P(S) satisfies:

_ 1 for |S|=1
|P(S)|—{3+2|P(L)|+2|P(R)| for [S]>1

For n = 2, > 0, this expression can be shown to
equal 2n%? — 1. Table 1 gives the lengths of the ex-
pressions for the first seven even-n-parity problems.
For |S| = 1, the shortest expression is NOR(S, S); for
|S| > 1, the length is given by the above expression.
The rapid growth with increasing order stems from the
repeated doubling of the required inputs.

3 THE PROBLEM OF BLOAT

A well-known problem, known as bloat or code growth,
is that the trees considered during a GP run grow
in size and become larger than is necessary to rep-
resent good solutions. This is undesirable because it
slows down the search by increasing evaluation and
manipulation time and, if the growth consists largely
of non-functional code, by decreasing the probability
that crossover or mutation will change the operational
part of the tree. Also, compact trees have been linked
to improved generalization (Rosca, 1996).

Several causes of bloat have been suggested. First,
under certain restrictions (Soule, 1998), crossover fa-
vors smaller than average subtrees in removal but
not in replacement. Second, larger trees are more
likely to produce fit (and large) offspring because
non-functional code can play a protective role against
crossover (Nordin & Banzhaf, 1995) and, if the prob-
ability of mutating a node decreases with increasing
tree size, against mutation. Third, the search space
contains more large than small individuals (Langdon
& Poli, 1998).

Nordin and Banzhaf (1995) observed that the length
of the effective part of programs decreases over time.
However, the total length of the programs in the ex-
periments also increased rapidly, and hence it may be
concluded that in those experiments bloat was mainly
due to growth of ineffective code (introns).

Finally, it is conceivable that in some circumstances
non-functional code may be useful. It has been sug-
gested that introns may be useful for retaining code
that is not used in the current individual but is a
helpful building block that may be used later (Nordin,
Francone, & Banzhaf, 1996).

GENETIC PROGRAMMING

Table 2: Properties of the basic GP method used.

Problem 3-Parity
Fitness Fraction of correct answers
Operators AND, OR, NAND, and NOR

Stop criterion 500,000 evaluations or solution
Initial tree size Uniform [1..20] internal nodes
Cycle generational

Population Size 1000

Parent selection Boltzmann with T = 0.1

Replacement Complete

Uniqueness check | Individuals occur at most once
P(crossover) 0.9

P(mutation) 0.1

Mutate node with P = &

n

Mutation method

700 T T T AU
verage treesize
600 Fraction of ryns that yielded solution -----
Size of spmallest correct tree ——-—
- - 075
(]
N
Iz
[
L
s - 05
(=]
o
2
- 025
oy] g
0 20000 40000 60000 80000 100000

Number of fitness evaluations

Figure 2: Average tree sizes of ten different runs (solid
lines) using basic GP on the 3-parity program.

3.1 OBSERVATION OF BLOAT USING
BASIC GP

To confirm that bloat does indeed occur in the test
problem of n-parity using basic GP, thirty runs where
performed for the 3-parity problem. The parameters
of the run are shown in Table 2. A run ends when
a correct solution has been found. Figure 2 shows
that average tree sizes increase rapidly in each run. If
a solution is not found at an early point in the run,
bloating rapidly increases the sizes of the trees in the
population, thus increasingly slowing down the search.
A single run of 111,054 evaluations already took more
than 15 hours on a current PC running Linux due to
the increasing amount of processing required per tree
as a result of bloat. The population of size-unlimited
trees that occurred in the single 4-parity run that
was tried (with trees containing up to 6,000 nodes)
filled virtually the entire swap space and caused per-
formance to degrade to impractical levels. Clearly, the
problem of bloat must be addressed in order to solve
these and higher order versions of the problem in an
efficient manner.

13

700 T T T —T
Average treesize ———— -

600 |- Fraction of runs that yielded solution -----
» Minimum size of correct tree ——-—
@ =
2 500 |- ; 078
= /
2 /
2 400 - i
3 ! - 05
5 300/
o I
2 200 |
8 ! - 0.25
[)

100]f"

oy]
0 20000 40000 60000 80000 100000

Number of fitness evaluations

Figure 3: Average tree sizes and fraction of successful
runs in the 3-parity problem using basic GP with a tree
size limit of 200. Tree sizes are successfully limited, of
course, but the approach is not ideal (see text).

3.2 USING A FIXED TREE SIZE LIMIT

Probably the most common way to avoid bloat is to
simply limit the allowed tree size or depth (Langdon &
Poli, 1998; Koza, 1992), although the latter has been
found to lead to loss of diversity near the root node
when used with crossover (Gathercole & Ross, 1996).
Figure 3 shows the effect of using a limit of 200 on 3-
parity. This limit is well above the minimum size of a
correct solution, but not too high either since several
larger solutions were found in the unrestricted run.
The average tree size is around 140 nodes.

On the 4-parity problem (with a tree size limit of 200),
the average tree size varied around 150. However,
whereas on 3-parity 90% of the runs found a solution
within 100,000 evaluations, on 4-parity only 33% of
the runs found a solution within 500,000 evaluations,
testifying to the increased difficulty of this order of
the parity problem. For 5-parity, basic GP found no
solutions within 1,000,000 evaluations for any of the
30 runs. Thus, our version of GP with fixed tree size
limit does not scale up well. Furthermore, a funda-
mental problem with this method of preventing bloat
is that the maximum tree size has to be selected before
the search, when it is often unknown.

3.3 WEIGHTED SUM OF FITNESS AND
SIZE

Instead of choosing a fixed tree size limit in advance
one would rather like to have the algorithm search for
trees that can be as large as they need to be, but not
much larger. A popular approach that goes some way
towards this goal is to include a component in the fit-
ness that rewards small trees or programs. This is
mostly done by adding a component to the fitness,
thus making fitness a linear combination of a perfor-
mance measure and a parsimony measure (Koza, 1992;
Soule, Foster, & Dickinson, 1996). However, this ap-
proach is not without its own problems (Soule & Fos-

14

[. Non-dominated

individuals
8 / ,,,,, Highest isocline of weighted
Q| e — sum that crosses an individual
5 | ___ Direction in which weighted
- ° sum increases
o o 4

Objective 2

Figure 4: Schematic rendition of a concave tradeoff
surface. This occurs when better performance in one
objective means worse performance in the other, vice
versa. The lines mark the maximum fitness individu-
als for three example weightings (see vectors) using a
linear weighting of the objectives. No linear weight-
ing exists that finds the in-between individuals, with
reasonable performance in both objectives.

ter, 1999). First, the weight of the parsimony measure
must be determined beforehand, and so a choice con-
cerning the tradeoff between size and performance is
already made before the search. Furthermore, if the
tradeoff surface between the two fitness components
is concave! (see Fig. 4), a linear weighting of the two
components favors individuals that do well in one of
the objectives, but excludes individuals that perform
reasonably in both respects (Fleming & Pashkevich,
1985).

Soule and Foster (1999) have investigated why a linear
weighting of fitness and size has yielded mixed results.
It was found that a weight value that adequately bal-
ances fitness and size is difficult to find. However, if
the required balance is different for different regions
in objective space, then adequate parsimony pressure
cannot be specified using a single weight. If this is
the case, then methods should be used that do not at-
tempt to find such a single balance. This idea forms
the basis of multi-objective optimization.

4 MULTI-OBJECTIVE METHODS

After several early papers describing the idea of opti-
mizing for multiple objectives in evolutionary compu-
tation (Schaffer, 1985; Goldberg, 1989), the approach
has recently received increasing attention (Fonseca &
Fleming, 1995; Van Veldhuizen, 1999). The basic idea
is to search for multiple solutions, each of which satisfy
the different objectives to different degrees. Thus, the
selection of the final solution with a particular com-
bination of objective values is postponed until a time
when it is known what combinations exist.

A key concept in multi-objective optimization is that
of dominance. Let individual x4 have values A; for the
n objectives, and individual xp have objective values

Since fitness is to be mazimized, the tradeoff curve
shown is concave.

GENETIC PROGRAMMING

B;. Then A dominates B if

VZE[].TL]AZZBZ/\EZAZ>B1

Multi-objective optimization methods typically strive
for Pareto optimal solutions, i.e. individuals that are
not dominated by any other individuals.

5 DIVERSITY MAINTENANCE

A key difference between classic search methods and
evolutionary approaches is that in the latter a popu-
lation of individuals is maintained. The idea behind
this is that by maintaining individuals in several re-
gions of the search space that look promising (diver-
sity maintenance), there is a higher chance of finding
useful material from which to construct solutions.

In order to maintain the existing diversity of a pop-
ulation, evolutionary methods typically keep some or
many of the individuals that happen to have been gen-
erated and have relatively high fitness, but lower than
that found so far. In the same way, evolutionary multi-
objective methods usually keep some dominated indi-
viduals in addition to the non-dominated individuals
(Fonseca & Fleming, 1993). However, this appears to
be a somewhat arbitrary way of maintaining diversity.
In the following section, we present a more directed
method. The relation to other diversity maintenance
methods is discussed.

6 THE FOCUS METHOD

We propose to do diversity maintenance by using a
basic multi-objective algorithm and including an ob-
jective that actively promotes diversity. To the best
of our knowledge, this idea has not been used in other
work, including multi-objective research. If it works
well, the need for keeping arbitrary dominated indi-
viduals may be avoided. To test this, we use the di-
versity objective in combination with a multi-objective
method that only keeps non-dominated individuals, as
reported in section 8.

The approach strongly directs the attention of the
search towards the explicitly specified objectives. We
therefore name this method FOCUS, which stands for
Find Only and Complete Undominated Sets, reflecting
the fact that populations only contain non-dominated
individuals, and contain all such individuals encoun-
tered so far. Focusing on non-dominated individuals
combines naturally with the idea that the objectives
are responsible for exploration, and this combination
defines the FOCUS method.

The concept of diversity applies to populations, mean-
ing that they are dispersed. To translate this aim into
an objective for individuals, a metric has to be defined
that, when optimized by individuals, leads to diverse
populations. The metric used here is that of average

GENETIC PROGRAMMING

squared distance to the other members of the popu-
lation. When this measure is maximized, individuals
are driven away from each other.

Interestingly, the average distance metric strongly de-
pends on the current population. If the population
were centered around a single central peak in the fit-
ness landscape, then individuals that moved away from
that peak could survive by satisfying the diversity ob-
jective better than the individuals around the fitness
peak. It might be expected that this would cause
large parts of the population to occupy regions that
are merely far away from other individuals but are not
relevant to the problem. However, if there are any
differences in fitness in the newly explored region of
the search space, then the fitter individuals will come
to replace individuals that merely performed well on
diversity. When more individuals are created in the
same region, the potential for scoring highly on diver-
sity for those individuals diminishes, and other areas
will be explored. The dynamics thus created are a new
way to maintain diversity.

Other techniques that aim to promote diversity in a di-
rected way exist, and include fitness sharing (Goldberg
& Richardson, 1987; Deb & Goldberg, 1989), deter-
ministic crowding (Mahfoud, 1995), and fitness derat-
ing (Beasley, Bull, & Martin, 1993). A distinguishing
feature of the method proposed here is that in choos-
ing the diversity objective, problem-based criteria can
be used to determine which individuals should be kept
for exploration purposes.

7 ALGORITHM DETAILS

The algorithm selects individuals if and only if they are
not dominated by other individuals in the population.
The population is initialized with 300 randomly cre-
ated individuals of 1 to 20 internal nodes. A cycle
proceeds as follows. A chosen number n of new indi-
viduals (300) is generated based on the current popu-
lation using crossover (90%) and mutation (10%). If
the individual already exists in the population, it is
mutated. If the result also exists, it is discarded. Oth-
erwise it is added to the population. All individuals
are then evaluated if necessary. After evaluation, all
population members are checked against other popu-
lation members, and removed if dominated by any of
them.

A slightly stricter criterion than Pareto’s is used: A
dominates B if Vi € [1..n] : 4; > B;. Of multiple indi-
viduals occupying the same point on the tradeoff sur-
face, precisely one will remain, since the removal cri-
terion is applied sequentially. This criterion was used
because the Pareto criterion caused a proliferation of
individuals occupying the same point on the trade-off
surface when no diversity objective was used?.

’In later experiments including the diversity objec-

15

700 - | | | a1
__-----"Average treesize

600 — Fraction of runs that yielded solution -----
» /7 Minimum size of correct tree ——-—
c / _
2 50- 078
2 S
2 s
2 400 - /
3 / - 05
5 300 -1
c I
S !
g 200~ - 025
w !

100 =+

O‘V:AAAMJA.A VTN PTV— "'77'77—'0
0 20000 40000 60000 80000 100000

Number of fitness evaluations

Figure 5: Average tree size and fraction of successful
runs for the [fitness, size, diversity] objective vector on
the 3-parity problem. The trees are much smaller than
for basic GP, and solutions are found faster.

The following distance measure is used in the diversity
objective. The distance between two corresponding
nodes is zero if they are identical and one if they are
not. The distance between two trees is the sum of the
distances of the corresponding nodes, i.e. nodes that
overlap when the two trees are overlaid, starting from
the root. The distance between two trees is normalized
by dividing by the size of the smaller tree of the two.

8 EXPERIMENTAL RESULTS

In the following experiments we use fitness, size, and
diversity as objectives. The implementation of the ob-
jectives is as follows. Fitness is the fraction of all 2™
input combinations handled correctly. For size, we use
1 over the number of nodes in the tree as the objective
value. The diversity objective is the average squared
distance to the other population members.

8.1 USING FITNESS, SIZE, AND
DIVERSITY AS OBJECTIVES

Fig. 5 shows the graph of Fig. 3 for the method of
using fitness, size, and diversity as objectives. The av-
erage tree size remains extremely small. In addition,
a glance at the graphs indicates that correct solutions
are found more quickly. To determine whether this
is indeed the case, we compute the computational ef-
fort, i.e. the expected number of evaluations required
to yield a correct solution with a 99% probability, as
described in detail by Koza (1994).

The impression that correct solutions to 3-parity are
found more quickly for the multi-objective approach
(see Figure 6) is confirmed by considering the com-
putational effort E; whereas GP with the tree size
limit requires 72,044 evaluations, the multi-objective
approach requires 42,965 evaluations. For the 4-
parity problem, the difference is larger; basic GP needs

tive, this proliferation was not observed, and the standard
Pareto criterion also worked satisfactorily.

16

600000

500000

400000

300000 0.5

P(correct solution)

200000

=T

Expected Required evaluations

100000 H

i et

MO: E = 42,965 L

0 50000
Evaluations

0

0
100000

Figure 6: Probability of finding a solution and com-
putational effort for 3-parity using basic GP and the
multi-objective method.

1.4e+07 T T T T
E P for MO method

P for G
1.26+07 I for MO method ------

12}
s
= I for GP ---eooee
2 1e+07 =
g S
o]
T 8e+06 2
El 108 3
@ 6e+06 Ve e
2 . £
° GP: E = 5,410,550 S
£ 4e+06 - o
@ —
g -
w 2e+06 S
~_ MO: E = 238,856
0 EEERS Skl 1 1 1 0
0 100000 200000 300000 400000 500000

Evaluations

Figure 7: Probability of finding a solution and compu-
tational effort for 4-parity for basic GP and the multi-
objective method. The performance of the multi-
objective method is considerably superior.

5,410,550 evaluations, whereas the multi-objective ap-
proach requires only 238,856. This is a dramatic im-
provement, and demonstrates that our method can be
very effective.

Finally, experiments have been performed using the
even more difficult 5-parity problem. For this prob-
lem, basic GP did not find any correct solutions within
a million evaluations. The multi-objective method did
find solutions, and did so reasonably efficiently, requir-
ing a computational effort of 1,140,000 evaluations.
Table 3 summarizes the results of the experiments.
Considering the average size of correct solutions on
3-parity, the multi-objective method outperforms all
methods that have been compared, as the first solution
it finds has 30.4 nodes on average. What’s more, the
multi-objective method also requires a smaller num-
ber of evaluations to do so than the other methods.
Finally, perhaps most surprisingly, it finds correct so-
lutions using extremely small populations, typically
containing less than 10 individuals. For example, the
average population size over the whole experiment for
3-parity was 6.4, and 8.5 at the end of the experiment,

GENETIC PROGRAMMING

Table 3: Results of the experiments (GP and Multi-
Objective rows). For comparison, results of Koza’s
(1994) set of experiments (population size 16,000) and
the best results with other configurations (population
size 4,000) found there. E: computational effort, S:
average tree size of first solution, Pop: average popu-
lation size.

3-parity E S Pop
GP 72,044 93.67 | 1000
Multi-objective | 42,965 30.4 6.4
Koza GP 96,000 44.6 16,000
Koza GP-ADF | 64,000 48.2 16,000
4-parity E S Pop
GP 5,410,550 | 154 1000
Multi-objective | 238,856 68.5 15.8
Koza GP 384,000 112.6 | 16,000
Koza GP-ADF | 176,000 60.1 16,000
5-parity E S Pop
GP oo’ n.a. n.a
Multi-objective | 1,140,000 | 218.7 | 49.7
Koza GP 6,528,000 | 299.9 | 16,000
Koza GP 1,632,000 | 299.9 | 4,000
Koza GP-ADF | 464,000 156.8 | 16,000
Koza GP-ADF | 272,000 99.5 4,000

'No solutions were found for 5-parity using basic GP.

and the highest population size encountered in all 30
runs was 18. This suggests that the diversity main-
tenance achieved by using this greedy multi-objective
method in combination with an explicit diversity ob-
jective is effective, since even extremely small popula-
tions did not result in premature convergence.
Considering 4 and 5-parity, the GP extended with the
size and diversity objectives outperforms both basic
GP methods used by Koza (1994) and the basic GP
method tested here, both in terms of computational
effort and tree size. The Automatically Defined Func-
tion (ADF) experiments performed by Koza for these
and larger problem sizes perform better. These prob-
ably benefit from the inductive bias of ADFs, which
favors a modular structure. Therefore, a natural di-
rection for future experiments is to also extend ADF's
with size and diversity objectives.

For comparison, we also implemented an evolutionary
multi-objective technique that does keep some domi-
nated individuals. It used the number of individuals by
which an individual is dominated as a rank, similar to
the method described by Fonseca and Fleming (1993).
The results were similar in terms of evaluations, but
the method keeping strictly non-dominated individuals
worked faster, probably due to the calculation of the
distance measure. Since this is quadratic in the pop-
ulation size, the small populations of multi-objective
save much time (about a factor 7 for 5-parity), which
made it preferable.

GENETIC PROGRAMMING

As a control experiment, we also investigated whether
the diversity objective is really required by using
only fitness and size as objectives using the algorithm
that was described. The individuals found are small
(around 10 nodes), but the fitness of the individuals
found was well below basic GP, and hence the diver-
sity objective was indeed performing a useful function
in the experiments.

8.2 OBTAINING STILL SMALLER
SOLUTIONS

Finally, we investigate whether the algorithm is able
to find smaller solutions, after finding the first. Af-
ter the first correct solution is found, we monitor the
smallest, correct solution. Although the first solution
size of 30 was already low compared to other methods,
the algorithm rapidly finds smaller correct solutions.
The average size drops to 22 within 4,000 additional
evaluations, and converges to around 20. The smallest
tree (found in 12 out of 30 runs) was 19, i.e. equalling
the presumed minimum size. On 4-parity, solutions
dropped in size from the initial 68.5 to 50 in about
10,000 evaluations, and to 41 on average when runs
were continued longer (85,000 evaluations). In 12 of
the 30 runs, minimum size solutions (31 nodes) were
found. Using the same method, a minimum size solu-
tion to 5-parity (55 nodes) was also found.

The quick convergence to smaller tree sizes shows that
at least for the problem at hand, the method is effec-
tive at finding small solutions when it is continued run-
ning after the first correct solutions have been found,
in line with the seeding experiments by Langdon and
Nordin (2000).

9 CONCLUSIONS

The paper has discussed using multi-objective meth-
ods as a general approach to avoiding bloat in GP
and to promoting diversity, which is relevant to evo-
lutionary algorithms in general. Since both of these
issues are often implicit goals, a straightforward idea
is to make them explicit by adding corresponding ob-
jectives. In the experiments that are reported, a size
objective rewards smaller trees, and a diversity objec-
tive rewards trees that are different from other individ-
uals in the population, as calculated using a distance
measure.

Strongly positive results are reported regarding both
size control and diversity maintenance. The method
is successful in keeping the trees that are visited small
without requiring a size limit or a relative weighting of
fitness and size. It impressively outperforms basic GP
on the 3, 4, and 5-parity problem both with respect
to computational effort and tree size. Furthermore,
correct solutions of what we believe to be the minimum
size have been found for all problem sizes examined,

17

i.e. the even 3, 4, and 5-parity problems.

The effectiveness of the new way of promoting diver-
sity proposed here can be assessed from the follow-
ing, which concerns the even 3, 4, and 5-parity prob-
lems. The multi-objective algorithm that was used
only maintains individuals that are not dominated by
other individuals found so far, and maintains all such
individuals (except those with identical objective vec-
tors). Thus, only non-dominated individuals are se-
lected after each generation, and populations (hence)
remained extremely small (6, 16, and 50 on average,
respectively). In defiance of this uncommon degree of
greediness or elitism, sufficient diversity was achieved
to solve these problems efficiently in comparison with
basic GP method results both as obtained here and as
found in the literature. Control experiments in which
the diversity objective was removed (leaving the fit-
ness and size objectives) failed to maintain sufficient
diversity, as would be expected.

The approach that was pursued here is to make de-
sired characteristics of search into explicit objectives
using multi-objective methods. This method is simple
and straightforward and performed well on the prob-
lem sizes reported, in that it improved the performance
of basic GP on 3 and 4-parity. It solved 5-parity rea-
sonably efficiently, even though basic GP found no so-
lutions on 5-parity. For problem sizes of 6 and larger,
basic GP is no longer feasible, and more sophisticated
methods must be invoked that make use of modular-
ity, such as Koza’s Automatically Defined Functions
(1994) or Angeline’s GLiB (1992). We expect that the
multi-objective approach with size and diversity as ob-
jectives that was followed here could also be of value
when used in combination with these or other existing
methods in evolutionary computation.

Acknowledgements

The authors would like to thank Michiel de Jong,
Pablo Funes, Hod Lipson, and Alfonso Renart for use-
ful comments and suggestions concerning this work.
Edwin de Jong gratefully acknowledges a Fulbright
grant.

References

Angeline, P. J., & Pollack, J. B. (1992). The evolutionary
induction of subroutines. In Proceedings of the fourteenth
annual conference of the cognitive science society (p. 236-
241). Bloomington, Indiana, USA: Lawrence Erlbaum.

Beasley, D., Bull, D. R., & Martin, R. R. (1993). A sequen-
tial niche technique for multimodal function optimization.
Evolutionary Computation, 1(2), 101-125.

Blickle, T., & Thiele, L. (1994). Genetic programming and
redundancy. In J. Hopf (Ed.), Genetic algorithms within
the framework of evolutionary computation (workshop at
ki-94, saarbricken) (pp. 33-38). Im Stadtwald, Building

18

44, D-66123 Saarbriicken, Germany: Max-Planck-Institut
fiir Informatik (MPI-1-94-241).

Deb, K., & Goldberg, D. E. (1989). An investigation of
niche and species formation in genetic function optimiza-
tion. In J. D. Schaffer (Ed.), Proceedings of the 3rd in-
ternational conference on genetic algorithms (pp. 42-50).
George Mason University: Morgan Kaufmann.

Ekart, A. (2001). Selection based on the Pareto nondomi-
nation criterion for controlling code growth in genetic pro-
gramming. Genetic Programming and Evolvable Machines,
2, 61-73.

Fleming, P. J., & Pashkevich, A. P. (1985). Computer-
aided control system design using a multiobjective opti-
mization approach. In Proceedings of the iee international
conference — control ’85 (pp. 174-179). Cambridge, UK.

Fonseca, C. M., & Fleming, P. J. (1993). Genetic Algo-
rithms for Multiobjective Optimization: Formulation, Dis-
cussion and Generalization. In S. Forrest (Ed.), Proceedings
of the fifth international conference on genetic algorithms
(ICGA’93) (pp. 416-423). San Mateo, California: Morgan
Kauffman Publishers.

Fonseca, C. M., & Fleming, P. J. (1995). An Overview of
Evolutionary Algorithms in Multiobjective Optimization.
Evolutionary Computation, 3(1), 1-16.

Gathercole, C., & Ross, P. (1996). An adverse interaction
between crossover and restricted tree depth in genetic pro-
gramming. In J. R. Koza, D. E. Goldberg, D. B. Fogel, &
R. L. Riolo (Eds.), Genetic programming 1996: Proceed-
ings of the first annual conference (pp. 291-296). Stanford
University, CA, USA: MIT Press.

Goldberg, D. E. (1989). Genetic algorithms in search,
optimization, and machine learning. Addison-Wesley.

Goldberg, D. E., & Richardson, J. (1987). Genetic algo-
rithms with sharing for multimodal function optimization.
In J. J. Grefenstette (Ed.), Genetic algorithms and their
applications : Proc. of the second Int. Conf. on Genetic
Algorithms (pp. 41-49). Hillsdale, NJ: Lawrence Erlbaum
Assoc.

Koza, J. R. (1992).
MA: MIT Press.

Genetic programming. Cambridge,

Koza, J. R. (1994). Genetic programming II: Automatic
discovery of reusable programs. Cambridge, MA: MIT
Press.

Langdon, W. B. (1996). Advances in genetic programming
2. In P. J. Angeline & K. Kinnear (Eds.), (p. 395-414).
Cambridge, MA: MIT Press. (Chapter 20)

Langdon, W. B., & Nordin, J. P. (2000). Seeding GP pop-
ulations. In R. Poli, W. Banzhaf, W. B. Langdon, J. F.
Miller, P. Nordin, & T. C. Fogarty (Eds.), Genetic pro-
gramming, proceedings of eurogp’2000 (Vol. 1802, pp. 304—
315). Edinburgh: Springer-Verlag.

Langdon, W. B., & Poli, R. (1998). Fitness causes bloat:
Mutation. In W. Banzhaf, R. Poli, M. Schoenauer, & T. C.
Fogarty (Eds.), Proceedings of the first european workshop
on genetic programming (Vol. 1391, pp. 37-48). Paris:
Springer-Verlag.

GENETIC PROGRAMMING

Mahfoud, S. W. (1995). Niching methods for genetic al-
gorithms. Unpublished doctoral dissertation, University of
Ilinois at Urbana-Champaign, Urbana, IL, USA. (IliGAL
Report 95001)

McPhee, N. F., & Miller, J. D. (1995). Accurate repli-
cation in genetic programming. In L. Eshelman (Ed.),
Genetic algorithms: Proceedings of the sixth international
conference (icga95) (pp. 303-309). Pittsburgh, PA, USA:
Morgan Kaufmann.

Nordin, P., & Banzhaf, W. (1995). Complexity compres-
sion and evolution. In L. Eshelman (Ed.), Genetic algo-
rithms: Proceedings of the sizth international conference
(icga95) (pp. 310-317). Pittsburgh, PA, USA: Morgan
Kaufmann.

Nordin, P., Francone, F., & Banzhaf, W. (1996). Explicitly
defined introns and destructive crossover in genetic pro-
gramming. In P. J. Angeline & K. E. Kinnear, Jr. (Eds.),
Advances in genetic programming 2 (pp. 111-134). Cam-
bridge, MA, USA: MIT Press.

Rodriguez-Vazquez, K., Fonseca, C. M., & Fleming, P. J.
(1997). Multiobjective genetic programming: A nonlinear
system identification application. In J. R. Koza (Ed.), Late
breaking papers at the 1997 genetic programming confer-
ence (pp. 207-212). Stanford University, CA, USA: Stan-
ford Bookstore.

Rosca, J. (1996). Generality versus size in genetic pro-
gramming. In J. R. Koza, D. E. Goldberg, D. B. Fogel, &
R. L. Riolo (Eds.), Genetic programming 1996: Proceed-
ings of the first annual conference (pp. 381-387). Stanford
University, CA, USA: MIT Press.

Schaffer, J. D. (1985). Multiple objective optimization
with vector evaluated genetic algorithms. In J. J. Grefen-
stette (Ed.), Proceedings of the 1st international conference
on genetic algorithms and their applications (pp. 93-100).
Pittsburgh, PA: Lawrence Erlbaum Associates.

Soule, T. (1998). Code growth in genetic programming.
Unpublished doctoral dissertation, University of Idaho.

Soule, T., & Foster, J. A. (1999). Effects of code growth
and parsimony presure on populations in genetic program-
ming. Evolutionary Computation, 6(4), 293-309.

Soule, T., Foster, J. A., & Dickinson, J. (1996). Code
growth in genetic programming. In J. R. Koza, D. E. Gold-
berg, D. B. Fogel, & R. L. Riolo (Eds.), Genetic program-
ming 1996: Proceedings of the first annual conference (pp.
215-223). Stanford University, CA, USA: MIT Press.

Tackett, W. A. (1993). Genetic programming for feature
discovery and image discrimination. In S. Forrest (Ed.),
Proceedings of the 5th international conference on genetic
algorithms, icga-93 (pp. 303-309). University of Illinois at
Urbana-Champaign: Morgan Kaufmann.

Van Veldhuizen, D. A. (1999). Multiobjective Evolution-
ary Algorithms: Classifications, Analyses, and New Inno-
vations. Unpublished doctoral dissertation, Department
of Electrical and Computer Engineering. Graduate School
of Engineering. Air Force Institute of Technology, Wright-
Patterson AFB, Ohio.

Zissos, D. (1972). Logic design algorithms. London: Oxford
University Press.

GENETIC PROGRAMMING

19

Adaptive Genetic Programs via Reinforcement Learning

Keith L. Downing
Department of Computer Science
The Norwegian University of Science and Technology (NTNU)
7020 Trondheim, Norway
tele: (+47) 73 59 18 40
email: keithd@idi.ntnu.no

Abstract

Reinforced Genetic Programming (RGP) en-
hances standard tree-based genetic program-
ming (GP) [7] with reinforcement learning
(RL)[11]. Essentially, leaf nodes of GP trees
become monitored action-selection points,
while the internal nodes form a decision tree
for classifying the current state of the prob-
lem solver. Reinforcements returned by the
problem solver govern both fitness evaluation
and intra-generation learning of the proper
actions to take at the selection points. In
theory, the hybrid RGP system hints of mu-
tual benefits to RL and GP in controller-
design applications, by, respectively, provid-
ing proper abstraction spaces for RL search,
and accelerating evolutionary progress via
Baldwinian or Lamarckian mechanisms. In
practice, we demonstrate RGP’s improve-
ments over standard GP search on maze-
search tasks

1 Introduction

The benefits of combining evolution and learning,
while largely theoretical in the biological sciences,
have found solid empirical verification in the field
of evolutionary computation (EC). When evolution-
ary algorithms (EAs) are supplemented with learning
techniques, general adaptivity improves such that the
learning EA finds solutions faster than the standard
EA [3, 16]. These enhancements can stem from bi-
ologically plausible mechanisms such as the Baldwin
Effect [2, 14], or from disproven phenomena such as
Lamarckianism [8, 4].

In most learning EAs, the data structure or program
in which learning occurs is divorced from the structure

that evolves. For example, a common learning EA is a
hybrid genetic-algorithm (GA) - artificial neural net-
work (ANN) system in which the GA encodes a basic
ANN topology (plus possibly some initial arc weights),
and the ANN then uses backpropagation or hebbian
learning to gradually modify those weights [17, 10, 6].
A Baldwin Effect is often evident in the fact that the
GA-encoded weights improve over time, thus reduc-
ing the need for learning [1]. Lamarckianism can be
added by reversing the morphogenic process and back-
encoding the ANN’s learned weights into the GA chro-
mosome prior to reproduction [12].

Our primary objective is to realize Baldwinian and
Lamarckian adaptivity within standard tree-based ge-
netic programs [7], without the need for a complex
morphogenic conversion to a separate learning struc-
ture. Hence, as the GP program runs, the tree nodes
can adapt, thereby altering (and hopefully improving)
subsequent runs of the same program. Thus, the typi-
cal problem domain is one in which each GP tree exe-
cutes many times during fitness evaluation, for exam-
ple, in control tasks.

2 RGP Overview

Reinforced Genetic Programming combines reinforce-
ment learning [11] with conventional tree-based genetic
programming [7]. This produces GP trees with rein-
forced action-choice leaf nodes, such that successive
runs of the same tree exhibit improved performance on
the fitness task. These improvements may or may not
be reverse-encoded into the genomic form of the tree,
thus facilitating tests of both Baldwinian and Lamar-
ckian enhancements to GP.

The basic idea is most easily explained by exam-
ple. Consider a small control program for a maze-
wandering agent:

20

(if (between 0 x 5)
(if (between 0y 5)

(choice (move-west) (move-north)) R1

(choice (move-east) (move-south))) R2
(if (between 6 x 8)

(choice (move-west) (move-east)) R3

(choice (move-north) (move-south)))) R4

Figure 1 illustrates the relationship between this pro-
gram and the 10x10 maze. Variables x and y specify
the agents current maze coordinates, while the choice
nodes are monitored action decisions. The between
predicate simply tests if the middle argument is within
the closed range specified by the first and third argu-
ments, while the move functions are discrete one-cell
jumps. So if the agent’s current location falls within
the southwest region, R1, specified by the (between 0
x 5) and (between 0 y 5) predicates of the decision
tree, then the agent can choose between a westward
and a northward move; whereas the eastern edge gives
a north-south option.

During fitness testing, the agent will execute its tree
code on each timestep and perform the recommended
action in the maze, which then returns a reinforcement
signal. For example, hitting a wall may invoke a small
negative signal, while reaching a goal state would gar-
ner a large positive payback.

Initially, the choice nodes select randomly among their
possible actions, but as the fitness test proceeds, each
node accumulates reinforcement statistics as to the rel-
ative utility of each action (in the context of the par-
ticular location of the choice node in the decision tree,
which reflects the location of the agent in the maze).
After a fixed number of random free trials, which is
a standard parameter in reinforcement-learning sys-
tems (RLSs), the node begins making stochastic action
choices based on the reinforcement statistics. Hence,
the node’s initial exploration gives way to exploitation.

Along with determining the tree’s internal decisions,
the evolving genome sets the range for RL exploration
by specifying the possible actions to the choice nodes;
the RLS then fine-tunes the search. By including al-
ternate forms of choice nodes in GP’s primitive set,
such as choice-4, choice-2, choice-1 (direct action),
where the integer denotes the number of action argu-
ments, the RGP’s learning effort comes under evolu-
tionary control. Over many evolutionary generations,
the genomes provide more appropriate decision trees
and more restricted (yet more relevant) action options
to the RLS.

In the maze domain, learning has an implicit cost due
to the nature of the fitness function, which is based on

GENETIC PROGRAMMING

v If (between 0 x 5)

If (between 0 y 5)
Y N

N

if (between 6 x 8)
Y

(choice west north) (choice east south) (choice west east) (choice north south)

Figure 1: The genetic program determines a partition-
ing of the reinforcement-learning problem space.

the average reinforcement per timestep of the agent.
So an agent that moves directly to a goal location (or
follows a wall without any explorative ”bumps” into it)
will have higher average reinforcement than one that
investigates areas off the optimal path. Initially, ex-
plorative learning helps the agent find the goal, but
then evolution further hones the controllers to follow
shorter paths to the goal, with little or no opportu-
nity for stochastic action choices. Hence, the average
reinforcement (i.e. fitness) steadily increases, first as
a result of learning (phase I of the Baldwin Effect)
and then as a result of genomic hard-wiring (phase II)
encouraged by the implicit learning cost [9].

To exploit Lamarckianism, RGP can replace any
choice node in the genomic tree with a direct action
function for the action that was deemed best for that
node. Hence, if the choice node for R1 in Figure 1
learns that north is the best move from this region
(while choices for R2 and R3 find eastward moves most
profitable, and R4 learns the advantage of southward
moves), then prior to reproduction, the genome can be
specialized to:

(if (between 0 x 5)
(if (between 0 y 5) (move-north) (move-east))
(if (between 6 x 8) (move-east) (move-south)

This represents an optimal control strategy for the ex-
ample, with no time squandered on exploration.

GENETIC PROGRAMMING

3 Reinforcement Learning in RGP

Reinforcement Learning comes in many shapes and
forms, and the basic design of RGP supports many of
these variations. However, the examples in this paper
use Q-learning [15] with eligibility traces.

Q-learning is an off-policy temporal differencing form
of RL. In conventional RL terminology, Q(s,a) denotes
the value of choosing action a while in state s. Tempo-
ral differencing implies that to update Q(s,a) for the
current state, s¢;, and most recent action, a;, utilize
the difference between the current value of Q(s¢, a),
and the sum of a) the reward, r;y1, received after exe-
cuting action a in state s, and b) the discounted value
of the new state that results from performing a in s.
For the new state, s;y1, its value, V(sy41) is based on
the best possible action that can be taken from sy41,
or max,Q(s¢+1,a). Hence, the complete update equa-
tion is:

Q(s¢,a¢) < Q(s¢,a0)+
alreyr + ymaz Q(sev1,a) — Q(se,a)] (1)

Here, 7 is the discount rate and « is the step size
or learning rate. The expression in brackets is the
temporal-difference error, 6;. Thus, if performing a in
s leads to positive (negative) rewards and good (bad)
next states, then (s, a) will increase (decrease), with
the degree of change governed by a and 7.

To implement these Q(s,a) updates (the core activity
of Q-learning) within GP trees, RGP employs gstate
objects, one per choice node. Each gstate houses a list
of state-action pairs (SAPs), where the value slot of
each SAP corresponds to Q(s,a). For each GP tree, a
gtable object is generated. It keeps track of all gstates
in the tree, as well as those most recently visited and
the the latest reinforcement signal.

In conventional RL, all possible states, X, are deter-
mined prior to any learning, with each state typically a
point in a space whose dimensions are the relevant en-
vironmental factors and internal state variables of the
agent. So for a maze-wandering robot, the dimensions
might be discretized x and y coordinates along with
the robot’s energy level. Conversely, in RGP, each in-
dividual GP trees determines its own ¥ in a manner
that generally partitions a standard RL state space
into coarser regions. Whereas a basic Q-learner would
divide an NxM maze into NM cell states and then try
to learn optimal actions to perform in each cell, an
RGP individual divides the same maze into a number
(normally much less than NM) of region states and

21

uses RL to learn a mutual proper action for every cell
in each region. Thus, evolution proposes state-space
partitions and possible actions for each partition, while
learning finds the most appropriate of those actions.

In RGP, the trail through a program tree from the
root to a choice node embodies an RL state. In other
words, the Q-learning state of the agent-environment
duo can only be found by running the tree in the
current context and registering the choice node that
gets activated. The program thus serves as a state-
classification tree with action options at the leaves.
Hence, during Q-learning, the temporal-difference up-
date of Q(s¢, at) must wait until the succeeding run of
the tree, since only then is s;11 known.

This basic scheme will then support a wide array
of reinforcement-learning mechanisms, which typically
differ in their methods of estimating V'(s¢+1) and then
updating V(s¢) or Q(s¢, at) [11]. Furthermore, a few
simple additions to the SAP objects enable eligibility
tracing and full backups, both of which greatly speed
the convergence of Q-learning to an optimal control
strategy.

Figure 3 graphically illustrates this basic process,
wherein the GP tree sends a move command to the
simulator/problem-solver, which makes the move and
returns a reinforcement to the RLS qtable, which
stores it and waits until the next run of the GP tree to
determine the abstract state, s;11 = R3 of the problem
solver. The RLS then computes the temporal differ-
ence error and sends it to the most recently activated
SAP, (R2, North), which relays a decayed (via the el-
igibility trace) version to its predecessor, and so on
back through the sequence of active SAPs.

The pseudocode of Figure 2 gives a rough sketch of
the combination of RL and GP in RGP.

3.1 Maze Search Examples

Maze searching is a popular task in the RL literature,
partly due to the clear mapping from states and ac-
tions to 2d graphic representations of optimal strate-
gies (i.e., grids with arrows). Despite this graphic sim-
plicity, the underlying search problem is quite com-
plex, since the agent lacks any remote sensing capabil-
ities, let alone a birds-eye view of the maze. So trial
and error is the only feasible approach, and learning
from these errors is essential for success.

Figure 4 shows a 10x10 maze with a start point in
the southwest and goal site on the eastern edge. The
maze includes a few subgoals along the optimal path,
so agents have opportunities for gaining partial credit.
Reinforcements are 10 for the main goal, 2 for each

22

For generation = 1 to max-generations
Ya € agent-population
steps = 0
For episode = 1 to max-episodes
SAP,; =0, rewardyg = 0
ps-state(a) = start
Repeat
SAP,c., = run-GP-tree(a)
[rewardyew, ps-state(a)] = do-action(SAP,ey)
do-temp-diff(SAP,q ,rewardyg ,SAPpew)
predecessor (S AP, ew) = SAP,yq; for elig trace
SAP,; = SAP, ., rewardy, g = rewardyeq,
steps = steps + 1
Until ps-state(a) = goal or timeout
Fitness(a) = total-reward(a) / steps

Figure 2: Pseudocode overview of RGP

subgoal, -1 for hitting a wall, and 0 for all other moves.
Agents are also penalized -1 for repeating any cell that
occured within the past 20 moves (i.e., minimum loop
= 21). The optimal path has 20 steps, with a total
payoff of 18 (1 goal plus 4 subgoals). Thus, any agent
who takes the shortest path will have an average re-
inforcement per timestep, R, of 0.9. Agent fitness is
computed as e, so maximum fitness is 2.46 in this
maze.

The RGP functions (with number of arguments in
parentheses) are: 1) Logical functions: and(2), or(2),
not(1), in-region(4); 2) Conditionals: if(3); 3) Moni-
tored Actions: mve(0), mvw(0), mvn(0), mvs(0); and
4) Monitored Choices: pickmove(0)

The in-region predicate, in-region(x1,x2,yl,y2), re-
turns true iff the x coordinate of the agent’s location
is in the closed range [x1, x2] and the y coordinate
is within [y1, y2]. The 4 move actions are for mov-
ing east, west, north and south, respectively. These
actions expand into single-action choice nodes so that
the resulting reinforcement signals can be propagated
through the reinforcement learning system to the other
choice nodes. Pickmove is the only true trial-and-error
learning function. It expands into a choice node with
all 4 action possibilities. The if, and, or and not func-
tions are standard. Terminals for an NxN maze are the
integers 0 through N-1; all maze indexing is 0-based.
Strong typing of the RGP trees insures that action
and choice nodes occur only at the leaves. The GP
uses two-individual-tournament selection with single-
individual elitism.

During fitness testing, each agent gets 3 attempts

GENETIC PROGRAMMING

g LT » 6 t ﬁ / 6 t
. s R Reinforcement Learning
\\‘n,,”‘,,/‘/ System

\ Proceed

R3'

Figure 3: The basic control flow in RGP: The GP tree
sends a movement command to the problem solver,
which carries it out and returns the reinforcement to
the RLS. After waiting to receive the next state from
the GP, the RLS computes the temporal difference, d;
and passes it down the chain of recently-active SAPs.
The SAPs are separated from the GP tree only for
illustrative purposes.

Objective: Find optimal strategy for traversing the maze

from start to goal.

Terminal set: 0...N-1 (for an NxN maze)

Function set: and, or, not, in-region, if,

mve, mvw, mvn, mvs, pickmove

Standard fitness: e

GP Parameters: population = 500, generations = 400,
minimum loop = 21, pmut = 0.5, Peross = 0.7

RL Parameters: a=0.1,v=0.9, A=0.9, episodes = 3,

max-steps = 50, free trials = 16, penalty = -1,

goal reward = 10, subgoal reward = 2

Table 1: Tableau for RGP used for the 10x10 maze-
search problem

at the maze, i.e., 3 reinforcement-learning episodes,
with a maximum of 50 steps per attempt (i.e., maz-
steps=50). Each choice node selects actions randomly
during the first 16 visits (i.e., free trials=16), after
which the SAP with highest value gets priority. The
discount, 7, and decay, A, rates for RL are both 0.9,
while @ = 0.1 is the learning rate (i.e., step-size param-
eter). Many RL systems use a much higher « value,
but a lower value seems more appropriate for the non-
Markovian situations incurred by RGP’s coarse state-
space abstractions: it is dangerous to allow the rein-
forcement of any one move to have excessive influence
on a Q(s,a) value when it is unclear whether action a in
state s will yield anything close to the same result on
another occasion. Table 1 summarizes these details.

GENETIC PROGRAMMING

Figure 4 shows the maze along with the fittest strategy
for the final generation, as depicted by arrows. Figure
7 displays a logically-simplified, intron-free version of
the code for this strategy; the original contained ap-
proximately 150 internal nodes. Figures 5 and 6 show
a fitness graph and a plot of the average learning ef-
fort per generation. The latter is simply the average
number of decisions made at all of the active choice
nodes in the population, where “active” means that
control comes to the node at least once during fitness
evaluation. An average near 4 reveals a majority of
pickmove nodes, while values closer to 1 indicate the
dominance of single-action choice nodes.

Note the very slow progress in the first 100 genera-
tions, followed by a rapid increase from generation
100 to 175. Since the GP uses elitism, the rugged
maximum-fitness plots in these transient periods re-
flect stochastic behavior, which has only one source:
pickmove. Hence, the agents use learning to evolution-
ary advantage, as is characteristic of the first stage of
the Baldwin Effect. But then, near generation 175, an
optimally hard-wired agent emerges and fitness shoots
up to the maximum value. The stability of the maxi-
mum curve after this ascent entails a total absence of
active learning nodes in the highest-fitness individuals.

The learning graph of Figure 6 shows the classic Bald-
winian progression, with an initial increase in learning
rate followed by a gradual decline as learned strat-
egy components become hard-wired. The learning
drop correlates with the fitness increase, with the fi-
nal plunge occuring during convergence: the lack of
exploratory moves on the path to the goal facilitates
a maximum average reward.

3.1.1 Performance Comparison

We compare the performance of four Evolutionary Al-
gorithms: 1) a standard GP, 2) a standard GP with
one extra function-set member: randmove(0), 3) an
RGP, and, 4) an RGP with 20% Lamarckianism.

As shown in Table 2, the RGP employs the same func-
tion set as in the previous example, while the standard
GP lacks a pickmove equivalent, plus its four move
functions are not monitored. For the second EA, rand-
move is a function that randomly selects a move in
one of the 4 directions. It does not keep track of rein-
forcements nor send information to previously-called
randmove nodes. Hence, it represents the stochastic
exploration of the early stages of RL, but without the
credit assignment and adaptivity.

In Lamarckian RGP, reverse encoding of learned moves
into the genome is on a per-individual basis, so 20% of

23

b

£

—

b~~~ -
A ERRTECE
._>_>_>_>

f

HEEEN | - - -
* *
—_ — *<—<—<— —

—>—>*<—<—<—<—<—<——>

il | |
Q

—_— - — — — — = = e
*

%
— — — — O—b

}
}
}
}
}

Figure 4: The 10x10 test maze. Asterisks denote sub-
goal cells.

250

Fitness

0 50 100 150 200 250 300 350 400
Generation

Figure 5: Fitness progression in a standard run of RGP
on the 10x10 maze of Figure 4

the maze walkers have all of their active multiple-move
choice nodes converted into single-action nodes (for the
action that gave the best results for that choice node
during the run) immediately prior to reproduction.

The four EAs were tested on three 5x5 mazes, the most
difficult of which appears in Figure 8. The perfor-
mance metric is the average of the best-of-generation
fitnesses for 100 runs of 50 individuals over 50 genera-
tions. On the two easier mazes (not shown), Lamarck-
ian RGP finds optimal solutions much faster on aver-
age than the other 3 EAs, with basic RGP outperform-
ing the two GP variants. However, in the most diffi-
cult test, RGP overtakes Lamarckian RGP, as shown
in Figure 9, while the two GP variants lose ground to
the RGP versions. In general, the three comparisons

24

Avg # Options per Choice Node
- n w
- o N o &) o EN

o
2

0 50 100 150 200 250 300 350 400
Generation

Figure 6: Progression of population-averaged learning
effort in an RGP run on the 10x10 maze of Figure 4

(if (in-region 13 0 4)
(if (in-region 115 5)
(if (not (in-region 1 8 1 2))
(if (in-region 5 9 8 8) (pickmove) (mve))
(mvw))
(if (in-region 2 3 0 1) (mvw) (mvn)))
(if (in-region 6 6 7 8)
(if (in-region 02 9 9) (mve) (mvw))
(if (or (in-region 4 8 2 2) (in-region 1 5 0 6))
(mve)
(if (in-region 1 7 2 8) (mvs) (mvn)))))

Figure 7: Logically-simplified, intron-free Lisp code for
the strategy of the most fit individual of generation 400
of the 10x10 maze search.

Goal

Start

Figure 8: The most difficult of the three 5x5 mazes
used in the EA comparison tests. Asterisks denote
subgoal locations.

reveal a significant advantage to the reinforced GPs
with respect to total evolutionary effort (i.e., fitness
gain per individual tested), whether via Baldwinian or
Lamarckian processes.

GENETIC PROGRAMMING

Objective: Find optimal strategy for traversing

the maze from start to goal.

Terminal set: 0...4

Function set: and, or, not, in-region, if,
mve, mvw, mvn, mvs, pickmove

Evol. Algs.: GP, GP + Random Nodes,

RGP, Lamarckian RGP

Standard fitness: el

Runs: 100 per algorithm per maze

GP Parameters: population = 50, generations = 50,
minimum loop = 11, pyut = 0.5,
Pcross = 0.7 Plamarck = 0.2

RL Parameters: a=0.1,vy=0.9, A =0.9, episodes = 10,
max-steps = 15 or 20, free trials = 8,

goal reward = 10, subgoal reward = 2,

penalty = -1

Table 2: Tableau for Evolutionary Algorithms used in
the comparative runs of the 5x5 maze in Figure 8

— GP
GP+Random-Node:
—o— RGP

—<— Lamarckian-RGP

Avg-Max-Fitness

°
3

o
(2N
&

o
&)

N
b

10 20 30 40 50
Generation

Figure 9: Comparative average fitness progressions of
100 runs each of the 4 EAs on the maze of Figure 8.

However, the addition of RL increases the compu-
tational effort of fitness testing by about 50% for a
single-episode learning test. But for multiple-episode
learning, the effort/episode ratio decreases substan-
tially, since a) the cost of generating the RL data struc-
tures is paid only for the first episode, and b) as learn-
ing progresses, fewer actions are chosen stochastically,
more efficient solutions are discovered, and hence fewer
episode time-outs occur. In other tests, RGP permit-
ted monitored choices at internal nodes of the GP tree.
The results were similar to the best curves of Figure
9, but the computational effort was an order of mag-
nitude worse than RGP. In general, further testing on
a variety of problems is necessary to assess the com-
putational tradeoffs of RGP versus standard GP.

4 Related Work

To date, the only direct combination of tree-based GP
and RL is Iba’s QGP system [5]. It uses GP to generate

GENETIC PROGRAMMING

a structured search space for Q-Learning. Given a set
of possible state variables (e.g. w,x,y,z), QGP evolves
Q-tables with variable combinations as the dimensions.
For example, the genotype (TAB (* xy) (+ z 5)) spec-
ifies a 2-d table with xy as one dimension and z+5 as
the other. The individual states in this table have
the same level of abstraction and scope: each circum-
scribes the same volume in the underlying continuous
state space. In several multi-agent maze-navigation
tasks, QGP generates useful Q-tables to simplify RL,
and in situations with many possible state variables,
QGP outperforms standard RL, which flounders in an
exponential search space.

In contrast to QGP, which applies GP to improve RL,
RGP uses RL to enhance GP. While Iba constrains his
GP trees to a small set of functions and terminals to
generate well-formed Q-tables, RGP sanctions the evo-
lution of amorphous decision trees that embody het-
erogeneous abstractions of the RL search space. One
gstate in RGP may represent a single maze cell, while
another, in the same GP tree, can encompass several
rows and columns or even a concave region or a set, of
disjoint regions. This reflects the philosophy that the
proper abstractions are not necessarily homogeneous
partitions of a select quadrant of the search space.
Unfortunately, our approach incurs a much larger evo-
lutionary search cost than Iba’s, making the present
RGP an unlikely aid to standard RL. But for improv-
ing standard GP, RGP holds some promise, since it
endows GP trees with behavioral flexibility.

Whereas QGP strongly couples GP and RL, RGP
allows evolution to determine the degree of learning
needed for a particular problem, thus facilitating the
standard Baldwininan transition from early plasticity
to later hard-wiring in static problem domains.

In the other previous GP/RL hybrid, Teller’s use of
credit assignment in neural programming [13] more
closely matches the goals of our RGP research: to
supplement genetic programming with internal rein-
forcements in order to increase search efficiency. How-
ever, the differences between RGP trees and neural
programs are quite extreme, as are the associated re-
inforcement mechanisms. While RGP trees are typi-
cally control-flow structures, neural programs involve
data flow between distributed neural processors. Inter-
nal reinforcement of neural programs (IRNP) closely
ressembles supervised learning in conventional artifi-
cial neural networks: discrepancies between desired
and actual system outputs over a training set govern
internal updates. Conversely, RGP is designed for re-
inforcement learning in the standard machine-learning
sense [11]: situations where the environmental feed-

25

back signals constitute rewards or punishments but do
not explicitly indicate the correct problem-solver ac-
tion. The two key characteristics of RL: trial-and-error
search and (potentially) delayed rewards, are intrinsic
to RGP. This makes it amenable to a host of control
tasks, whereas IRNP appears more tailored for classi-
fication problems.

The collective results of QGP, RGP and IRNP indicate
that combinations of GP and credit-assignment harbor
potential benefits for the whole spectra of adaptive
systems, from supervised and reinforced learners to
evolutionary algorithms.

5 Discussion

RGP supplements evolutionary search with reinforce-
ment learning, providing a hybrid approach for situa-
tions in which each GP tree runs several times during
fitness evaluation, e.g., control tasks. Ideally, RGP
should benefit both GP and RL. As shown above, the
added plasticity that RL gives to GP trees can speed
evolutionary convergence to good solutions via Bald-
winian and/or Lamarckian mechanisms. Conversely,
using GP to determine proper state abstractions for
RL may yield a huge savings for RL systems that get
bogged down in immense fine-grained search spaces.

Of course, the hybrid bears added computational
costs. The learning GP trees require more space and
time to execute than standard GP trees, and although
a single RL session in the abstracted state space often
runs much faster than in the detailed state space, the
evolutionary effort to find the proper abstraction can
dominate total run-time complexity. This does not
preclude the possibility of mutual improvements for
both RL and GP, but the potential for such is clearly
problem specific and probably only empirically ascer-
tained.

Essentially, RGP inverts the typical control flow of a
tree-based genetic program. For example, Koza [7] at-
tacks the broom-balancing-on-a-moving-cart problem
with a set of primitives whose composite programs re-
turn an action value from the top of the tree. How-
ever, the corresponding RGP solution involves primi-
tives that attempt to classify the current problem state
(in terms of the cart’s velocity, the broom’s angle, etc.)
and thereby funnel control to a leaf node, which houses
a cart command or a monitored, reinforced choice of
such commands. Thus, RGP enforces a different mod-
elling scheme, one which typically requires strong typ-
ing of the primitive functions. As with standard GP,
designing function sets is more of an art than a sci-
ence in RGP, but the task is no more complicated,

26

and quite possibly more natural, when viewed from
RGP’s classify-and-act perspective.

References

[1]

[2]

3]

[4]

[8]

David H. Ackley and Michael L. Littman. Interac-
tions between learning and evolution. In Christo-
pher G. Langton, Charles Taylor, J. Doyne
Farmer, and Steen Rasmussen, editors, Artificial
Life II, pages 487-509. Addison, 1992.

J. Mark Baldwin. A new factor in evolution. The
American Naturalist, 30:441-451, 1896. reprint
in: Adaptive Individual in Evolving Populations:
Models and Algorithms, R. K. Belew and M.
Mitchell (eds.), 1996, pp. 59-80, Reading, MA:
Addison Wesley.

Geoffrey E. Hinton and Steven J. Nowlan. How
learning can guide evolution. Complex Systems,
1:495-502, 1987. reprint in: Adaptive Individuals
in Evolving Populations: Models and Algorithms,
R. K. Belew and M. Mitchell (eds.), 1996, pp.
447-454, Reading, MA: Addison Wesley.

Christopher R. Houck, Jeffery A. Joines,
Michael G. Kay, and James R. Wilson. Empir-
ical investigation of the benefits of partial Lamar-
ckianism. Evolutionary Computation, 5(1):31-60,
1997.

Hitoshi Iba. Multi-agent reinforcement learning
with genetic programming. In John R. Koza,
Wolfgang Banzhaf, Kumar Chellapilla, Kalyan-
moy Deb, Marco Dorigo, David B. Fogel, Max H.
Garzon, David E. Goldberg, Hitoshi Iba, and Rick
Riolo, editors, Genetic Programming 1998: Pro-
ceedings of the Third Annual Conference, pages
167-172, University of Wisconsin, Madison, Wis-
consin, USA, 22-25 July 1998. Morgan Kaufmann.

Hiroaki Kitano. Designing neural networks using
genetic algorithms with graph generation system.
Complex Systems, 4(4):461-476, 1990.

John R. Koza. Genetic Programming: On the
Programming of Computers by Natural Selection.
MIT Press, Cambridge, MA, 1992.

Jean Baptiste Lamarck. Of the influence of the en-
vironment on the activities and habits of animals,
and the influence of the activities and habits of
these living bodies in modifying their organization
and structure. In Jean Baptiste Lamarck, editor,
Zoological Philosophy, pages 106-127. Macmillan,
London, 1914. Reprint in: Adaptive Individuals

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

GENETIC PROGRAMMING

in Evolving Populations: Models and Algorithms,
ed. R. K. Belew and M. Mitchell.

Giles Mayley. Landscapes, learning costs and
genetic assimilation. FEwvolutionary Computation,
4(3), 1996. Special edition: Evolution, Learning,
and Instinct: 100 Years of the Baldwin Effect.

Geoffrey F. Miller, Peter M. Todd, and
Shailesh U. Hedge. Designing neural networks
using genetic algorithms. In Proc. of the Third
Int. Conf. on Genetic Algorithms, pages 379-384.
Kaufmann, 1989.

Richard S. Sutton and Andrew G. Barto. Rein-
forcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

Stewart Taylor. Using Lamarckian evolution to
increase the effectiveness of neural network train-
ing with a genetic algorithm and backpropaga-
tion. In John R. Koza, editor, Artificial Life
at Stanford 1994, pages 181-186. Stanford Book-
store, Stanford, California, 94305-3079 USA, June
1994.

Astro Teller. The internal reinforcement of evolv-
ing algorithms. In Lee Spector, William B.
Langdon, Una-May O’Reilly, and Peter J. Ange-
line, editors, Advances in Genetic Programming
3, chapter 14, pages 325-354. MIT Press, Cam-
bridge, MA, USA, June 1999.

Peter Turney, L. Darrell Whitley, and Russell W.
Anderson. Introduction to the special issue:
Evolution, learning, and instinct: 100 years of

the Baldwin effect. FEvolutionary Computation,
4(3):iv—viii, 1997.

C.J. Watkins and P. Dayan. Q-learning. Machine
Learning, 8:279-292, 1992.

Darrell L. Whitley, V. Scott Gordon, and Keith E.
Mathias. Lamarckian evolution, the baldwin ef-
fect and function optimization. In Yuval Davi-
dor, Hans-Paul Schwefel, and Reinhard M” anner,
editors, Parallel Problem Solving from Nature —
PPSN III, pages 6-15, Berlin, 1994. Springer.
Lecture Notes in Computer Science 866.

Larry Yaeger. Computational genetics, physiol-
ogy, metabolism, neural systems, learning, vision
and behavior or polyworld: Life in a new context.
In C. G. Langton, editor, Artificial Life III, Pro-
ceedings Volume XVII, pages 263—-298. Santa Fe
Institute Studies in the Sciences of Complexity,
Addison-Wesley, 1994.

GENETIC PROGRAMMING

27

Evolving Strategies for (Global Optimization -
A Finite State Machine Approach

Clemens Frey
Department of Mathematics
Darmstadt University of Technology
frey@mathematik.tu-darmstadt.de

Abstract

In this work Genetic Programming methods
are used to find certain transition rules for
two-step discrete dynamical systems. This
issue is similar to the well-known artificial-
ant problem. Here we seek the dynamic sys-
tem to produce a trajectory leading from
given initial values to a maximum of a given
spatial functional. This problem is recast
into the framework of input-output relations
for controllers, and the optimization is per-
formed on program trees describing input fil-
ters and finite state machines incorporated
by these controllers simultaneously. Reinter-
preting the resulting optimal discrete dynam-
ical system as an algorithm for finding the
maximum of a functional under constraints,
we have derived a paradigm for the auto-
matic generation of adapted optimization al-
gorithms via optimal control. We provide nu-
merical evidence on key properties of result-
ing strategies.

1 INTRODUCTION

It is well-known in constrained optimization that cer-
tain algorithms resulting from augmented Lagrangians
are equivalent to operator splitting schemes for appro-
priate differential equations (Glowinski and LeTallec,
1989). Thus, the optimal point is achieved as the limit
point of a dynamical system’s trajectory. Indeed, any
iterative process designed to achieve a maximum of a
given functional can formally be interpreted as a dis-
crete dynamical system with some memory for its iter-
ation history. A well-known experiment in the Genetic
Programming context, namely the artificial-ant prob-
lem, can be interpreted in this sense, too. There the
functional to be maximized consists of the number of

Gunter Leugering
Department of Mathematics
Darmstadt University of Technology
leugering@mathematik.tu-darmstadt.de

food pieces found by the ant, and the dynamic sys-
tem is given by the initial position of the ant on the
grid and by its strategy. If it is modelled by a finite
state machine (Jefferson et al., 1991) the memory is
established by set of internal states of the machine.

It is tempting to optimize search strategies perform-
ing a maximization (or minimization) task on objective
functions in an analogous way. We are, therefore, look-
ing for an optimal dynamical system such that a tra-
jectory starting at given values terminates at a global
maximum of a function ®. Reaching for this we have
to confine ourselves to a certain class of dynamical sys-
tems which we can parametrize in a suitable way. In
fact, in this paper we concentrate on systems which
are based on deterministic Mealy machines, i.e. on
discrete dynamical systems on finite sets of states and
inputs.

Since observations gathered from evaluating an objec-
tive function are typically non-discrete, the formaliza-
tion of the system must also include some kind of input
filter which maps non-discrete function values to dis-
crete input for the finite state machine. Eventually, by
detecting policies for searching maxima on objective
functions, we relate global optimization with global
optimal control.

It is important to note that the experiments suggest
robusteness of the optimal policies with respect to
changes in the cost functional and in the initial con-
ditions (i.e. the starting points) of the search proce-
dure. This is the main reason not to retreat to the
mere search for optimal solutions directly instead of
searching for dynamic systems leading to such solu-
tions; furthermore, this illustrates one of the main dif-
ferences to the artificial-ant experiments. Addition-
ally, as opposed to the latter, here strategies have to
deal with multimodal environments and non-discrete
gradient information.

These features are typical for constrained global op-

28

timization problems, but also for the problem a bio-
logical plant, e.g., generally faces when searching its
environment for resources. Thus this problem can be
seen as a subproblem of modelling the behaviour of
resource acquisition of single plants, and solving it in
terms of an evolutionary approach plays an important
role in modelling an evolving, herbal ecoystem as a
whole (cf. (Hauhs and Lange, 1996), (Lange, 1999)).

The controller design proposed in this paper is, in-
deed, used as a basis for calculating growth directions
at the shoot level of a model for the simulation of
plant growth. Used in that context, instead of the
model functions that are incorporated here functions
describing a plant’s environment come into action. By
using model functions here, however, we hope to ac-
quire some insight into the controllers’ fundamental
behaviour. The important observation in ecological
respect is that neither excessive resources nor excep-
tionally rich designs are necessary in order to obtain a
whole variety of suitable strategies.

We first pose the problem in section 2. In the following
section we propose the design of controllers as a com-
position of finite state machines and sensors filtering
input information. Section 4 outlines the Genetic Pro-
gramming algorithm involved and defines the evolvable
structures subject to its operators. Sections 5 and 6
show the experimental setup and the results we have
obtained. The final section gives a concluding discus-
sion of this work.

2 PROBLEM SETTING

We consider spatial problems of the following type.
First of all let a non-negative function ® : Q — Ry
on a subdomain Q C R? be given; this function will
be called objective function from now on. The discrete
dynamical system shall be determined by an update
rule

Top1 = 2 + [(®(20), B(24-1)), (1)

where z and x; are given and (z¢);>0 C Q. We look
at this two-step recursion up to a finite horizon T' > 1
while our objective is to maximize

v(®(zr) +1)
max
maxogigT V() + 1 0<t<T

(f,T):=

®(z) (2)

by choosing f in an optimal way.

Laying aside the mathematical notations, we seek a
strategy of motion for a device which uses the infor-
mation from both of the positions having been visited
most recently (1). This strategy shall be optimal in a

GENETIC PROGRAMMING

sense that a maximum of ® should be reached (second
addend in (2)) and retained up to the final step T' (first
addend in (2)). Since there is a tradeoff between gen-
erally retaining the last value x; found and searching
for better values of ® we have introduced a constant
v € R into definition (2) which tunes the respective
weight of the optimization criteria.

The function ¥(f,T) will be used as the fitness func-
tion in the Genetic Programming setting. The design
of the controllers, i.e. the set from which f can be
chosen, will be specified next.

3 DESIGN OF CONTROLLERS

Any controller being evolved which uses a certain up-
date rule f will have the overall design depicted in
figure 1. It consists of a Mealy machine acting as the
control kernel, a sensor device which maps objective
function values to a finite set of input values for the
finite state machine, and an actor device which turns
the finite state machine’s output into action. Essen-
tially these actions are movements of the device on a
two-dimensional grid. The principal task of our con-

actor
dev1ce

ﬁnite state
machine

sensor
dev1ce

Figure 1: Overall Controller Design

trollers consists of building up a trajectoriy in 2. This
is done in the following way.

The actor device always contains values x; and ;1
defining its current and previous positions, respec-
tively, on a grid over the objective function’s domain
Q. Additionally, it holds a current direction vector d;
on this grid, which spans one or more mesh lengths.
Values for zg, £; and d; are given as initial values of
the dynamic system. Depending on the output com-
ing from the Mealy automaton, the actor device may
stay at the current position z; or move in one of the
four orthogonal directions on the grid in order to at-
tain x¢y1. The step size may, in addition to that, be
doubled or bisected down to a minimum, i.e. the grid’s
mesh length. Possible moves are symbolized by

Y ={F,B,L,R,S,2F, 1F}.

They have, in the same order, the following meanings:
move one step d; forward, backward, left or right, stay
at the current position, or move forward with doubled
or bisected step length.

GENETIC PROGRAMMING

The sensor device in turn gets two objective values
®(x¢—1) and ®(z;) and maps them to the finite input
alphabet (denoted by X) of the Mealy machine A.
Together with the the Mealy automaton, this mapping
o : B2 — X will undergo the Genetic Programming
process.

Canonically a Mealy machine A is defined in terms of
its input and output alphabets X and Y, an initial
internal state s; from the set S, and finally its state
transition function é : X xS — S and output function
v : X xS — Y. Each of the sets is finite. As mentioned
above, v actually decides over which action is taken by
the actor device.

At last, f from (1) is knocked down into the action of
the three devices from figure 1. While the mapping of
Y into actions, i.e. the actor device, is defined a-priori,
the sensor mapping o as well as the functions ¢ and
will be subject to the Genetic Programming process.

4 METHODICAL ASPECTS

4.1 CODING OF PROGAM TREES

We try to solve the problem from section 2 by means
of Genetic Programming; we choose to code both the
function o of the sensor device and the transition and
output function of the Mealy machine in a single pro-
gram tree. The nodes in this tree obey the syntac-
tic rules defining a context-free grammar displayed in
Backus-Naur-form in table 1:

cond = >o((arith), {(rule)} {{rule)})

rule = ((state (output)) | & ((state), (state)) |
(cond)

arith := (arith) 4 (arith) | (arith) — (arith) |
(arith) * (arith) | (arith) % (arith) |
ceR|A|B

state = s€S

output = ye€Y

Table 1: Syntactic Rules for the Program Trees

The program trees are parametrized by formal vari-
ables A and B which are, during evaluation, replaced
by actual values from ®(x;) and ®(z;_1), respectively;
c represents real-valued constants. The root node of
every program tree we consider contains a conditional
expression symbolized by >¢; depending on whether
the embodied arithmetic expression is greater or equal
to 0 or not, either the first or the second rule list is
evaluated. Any such rule list may again contain con-
ditional expressions, but it also contains output as
well as state transition specifications wrapped in ~
and & expressions. States from S and outputs from

29

Figure 2: Sample Program Tree

Y are treated as terminal symbols. Arithmetic ex-
pressions are built from standard arithmetic operators
common in Genetic Programming (cf. (Koza, 1992),
(Michalewicz, 1996), (Langdon, 1998)). A simple pro-
gram tree built in concordance with the upper rules is
shown in figure 2. For the ease of presentation it just
has state transitions, i.e. d-specifications.

As soon as a specific program tree has been evaluated,
there is a set of state transitions and output instruc-
tions which are in turn used for the action of the Mealy
machine. Since we are dealing with finite trees, there
are only finite many cases which can be distinguished,
that is, there are only finite many sets of output and
state transition instructions. If we associate a certain
input symbol with each of these sets, we are indeed
dealing with finite state machines whose input alpha-
bet’s size changes during the evolutionary process.

There might be some confusion when more than one
transition or output instruction is present for a single
state of the machine. In the tree shown in figure 2,
e.g., there are two instructions for state 0 in case of
A — B < 0; these are §(0,1) and 6(0,2). This conflict
is resolved simply by letting the leftmost instruction
precede.

4.2 GENETIC OPERATORS

The general procedure of Genetic Programming was
slightly modified here in order to suit our purposes.
It is a version of the breeding procedure from (Koza
et al., 2000). The syntactic rules from table 1 impose
that we have to use strongly typed operators (cf. (Mon-
tana, 1995), (Angeline, 1998)). We are engaging stan-
dard crossover and standard mutation as main oper-
ators; both of them affect randomly chosen subtrees
with (in case of crossover) matching types of the sub-
tree root nodes. Because the order of instructions does
matter (cf. the previous paragraph), we additionally
employ structural mutation operators, namely dupli-

30

cation, deletion and inversion. They affect the instruc-
tion lists by duplicating or deleting subtrees and by
changing the order of subtrees. These secondary oper-
ators were mentioned by (Goldberg, 1989) and (Hol-
land, 1992) in the Genetic Algorithm context and, e.g.,
by (Jacob, 1995) in the Genetic Programming context.

Because of limited computer power we have used a very
small population size of 100 individuals and have made
the Genetic Programming algorithm run over just 300
generations. These values are small compared to those
of Koza (Koza, 1992) who routinely has several thou-
sand individual programs in one population. Mutation
probability was set to 60 %; crossover probability was
ten times the probabilities of the structural mutation
operators and only half the probability set for standard
mutation.

5 EXPERIMENTAL
ENVIRONMENTS

5.1 TEST FUNCTIONS

This section presents some sample experiments we
have undertaken. The Genetic Algorithms settings
have already been introduced in the previous section,
so we will focus on the objective functions. In the next
section we will present results that have been obtained
in conjunction with the following well-known test func-
tions @y, (where k € {1,2,3}) from global optimization
defined by (cf. (Hock and Schittkowski, 1981), (Térn
and Zilinskas, 1989))

n
&) (x) := —50p1 »_ i sin v/50z;

i=1

"~ (1
bo(x) 1= po E (fo — 10cos(mz;) + 10)
i=1

n—1 1 1 9 1 9
=1

for values x € Q := [0,10]*> and n = 2. These func-
tions are scaled versions of functions which have al-
ready been used to evaluate Genetic Algorithms’ and
Evolutionary Programming’s performance, too. ®; is
a modification of Schwefels function, ®, corresponds
to Rastrigins function; they are multimodal functions,
cf. (Salomon, 1996). ®3 is a scaled Rosenbrock func-
tion which in this general form was taken from (Chel-
lapilla and Fogel, 1997); its minimum is located on top
of a narrow, bended ridge. The surfaces of ®; and ®3
are depicted in figure 3.

Further on, we used scaling parameters u; such that
the range of functions ®; equals [0,1]. The fitness

GENETIC PROGRAMMING

Figure 3: Test Functions ®; and &3

measures ¥, incorporated a value of v = 10; strate-
gies were run over T' = 50 steps, starting from 10 ran-
domly chosen points as initial values in 2. The Mealy
machines themselves had a set of 10 internal states
disposable.

5.2 COMPARISON TO OTHER
EXPERIMENTS

It was mentioned earlier that (Jefferson et al., 1991),
(Koza, 1992) and (Jacob, 1995) have undertaken so-
called artificial ant experiments which in some sense
are similar to our experimental work. In these experi-
ments ‘the task of navigating an artificial ant attempt-
ing to find all the food lying along an irregular trail’
is considered.

While (Jefferson et al., 1991) have employed binary
string-encoded finite state automata and neural net-
works to solve this problem, the latter have applied
syntactic expressions. The basic differences to our ex-
perimental setting is that the ant had just one sensor
which could differentiate between food, non-food and
pheromone cells laying ahead, thus a comparison be-
tween sensor values was not available for the ant. In
our experiments, however, controller are able to get an
approximation for directional derivatives on their path
by comparing function values ®;(t) and ®;(t — 1), re-
spectively.

The main difference from the experimental point of
view lies in the fact that each ant was always beginning
to move at the same position on the field relative to
the point where the trail starts. So there was only one
test case in contrast to our varying sets of test cases.
(Koza, 1992) claims, however, that he relies ‘on the
various states of the ant that actually arise along the
ant’s actual trajectory to be sufficiently representative
of the general trail following problem’; this targets on
a peculiarity of the artificial ant’s problem, that is to
say, that an ant in any case has to learn how to bridge
gaps or knight’s moves in order to follow the trail.

GENETIC PROGRAMMING

As a matter of fact, however, the artificial ant problem
can be inserted in the above framework. To this end,
a discrete objective function ® mapping the ant’s grid
of movement to three values has to be defined. The
three values indicate if there is nothing, a food piece
or a pheromone piece at the respective mesh position.
Although the update rule (1) must be altered to

Tiy1 = Tg + f(<I>($t +dy), q’(iﬂt))

because the ant is always looking one step ahead, the
underlying controller design can remain unchanged.
The set Y of motions is broader that the set of motions
originally used in artificial ant experiments.

6 RESULTING STRATEGIES

Now we exemplify strategies which have been evolved
for the objectives ®; using fitness functions ¥y. To
this end we, on the one hand side, display trajectories
that have been produced by these strategies according
to equation (1) as (z¢)i=o,..,7 C Q. Initial positions
are marked by grey dots, whereas final positions are
marked by black ones. We also plot average objective
function values, where the average is taken over the
actual positions within all of the 10 trajectories.

6.1 LOCAL OPTIMIZATION

First of all, we look at two example strategies s and
s5 which were evolved using ¥, as the fitness func-
tion. The trajectories of these strategies are plotted
in figure 4a. and 4b. The first one is a typical local
search strategy which is often evolved by the Genetic
Programming method in this context, cf. figure 5.

"FET T

a. Trajectories of s b. Trajectories of s

Figure 4: Strategies s7, s3 Evolved Against ®,

These strategies find a peak near their starting posi-
tion and retain this position from then on; they loop
around peaks. But as a consequence, the average val-
ues obtained are far below the theoretical maximum
of 1, since the strategies also loop around local max-
ima of low order. These are located near the lower left

31

corner of the figures; generally such maxima are rep-
resented by relatively dark regions in the background
of the trajectory diagrams.

6.2 GLOBAL OPTIMIZATION

The second strategy s5 which was evolved against @5,
too, is a very interesting one since its averages get
much closer to 1 than the ones of si. This is due to
the fact that it takes much bigger steps than s7 does at
the beginning; so by successively doubling the length
of d; as described in section 3, this strategy is able to
scan much larger areas of ®.

As an effect, although it uses the same initial positions,
9 out of 10 final positions are located in the upper
right quarter of 2 (i.e. where the ‘better’ local maxima
are), 6 are located even in the immediate neighborhood
of the global maximum. Any local optimizer could
iterate into the global maximum from these points.
As a result, this strategy has the potential of a global
optimizer on ®,.

a. Trajectories of s3 on ®; b. Trajectories of s3 on @2

Figure 5: Strategy s3 Evolved Against ®;

It is worthwhile to analyze s; in more detail. It is
defined by the following expression:
s3 =>0(3A —2.282,
{6(9,8),6(4,5),~(6,2F),~(5,8),6(6,3),... }
{6(4,0),6(7,0),6(0,1),~(5,L),
>0(2B,{6(3,3),6(1,9),8(9,7),v(0, 2F),
8(5,0),7(9, R), v(6, LF)},
L.

7(7aL)a s })a

where the ellipsis ... stands for redundant rules be-
cause of shadowing. The reader may observe that
state 6 will never be attained by s3. For S is the
default action if nothing is specified, s5 will stay at
its current position if 3®(z;) > 2.282 (A is replaced
by ®(z;) during evaluation). Otherwise the controller
will change from its standard initial value 0 into state
1 with 2F being output (B is replaced by ®(x¢1)

32

and 2®(x;_1) > 0 is true in any case). If 3®(z;) <
2.282 still holds, the consecutive states are 9, 7 and 0
again, with outputs S, R and L. This produces the
zig-zagging behaviour with growing step lengths the
reader may observe in figure 4 b. It stops as soon as
®(x;) exceeds a threshold value of 0.761.

The analysis of s3 shows that this strategy does not
only use its sensors to compare objective function
values. Rather it has learned that the the maxima
of ®, are located on an orthogonal grid which can
be searched effectively by the above-mentioned zig-
zagging strategy.

6.3 ROBUSTNESS

Here we indicate a strategy as a robust one if it shows
reasonable good performance if tested against an ob-
jective function differing from the one the strategy
originally was evolved on. Of course, the functions
have to be similar in some respect: all the ®; are dif-
ferentiable, deterministic and are scaled to the same
range [0,1]. They mainly differ in the number of lo-
cal extrema and their (non-)insularity; the multimodal
ones (P, ®,) differ in the scale of the respective dis-
tances between extrema, but are similar in that their
extrema are located on orthogonal grids. So we expect
that at least local optimizers (which are not specifically
adjusted to the distances between local extrema, of ®
and ®5) should work well on either of these functions.
Is is quite surprising that a strategy evolved against
®; can also do well when operating on ®3, because
the latter function has only one maximum which is (in
contrast to the extrema of ®;) not at all insulated.

0.9 0.9

0.8 0.8

0.6 / 0.6 Wv\/v\/v\/v\/\

U 10 20 30 40 50 \/ 10 20 30 40 50

a. Averages for s b. Averages for s}

Figure 6: Average Performances

We compare the performance of strategies s3 and sj.
s3 was evolved on Schwefel’s function ®;; it can be in-
terpreted as a local optimization strategy finding and
looping on peaks near the initial position (see figure 5).
On Rastrigin’s function its behaviour looks very sim-
ilar, although this function has more local maxima
being closer to each other than the maxima of func-
tion ®; are. But what is most impressing is the fact
that s3 does almost as good on ®3 as the ‘specialist’ s}

GENETIC PROGRAMMING

does which actually has been evolved against ®3; the
reader may observe this by comparing the top lines
in figure 6a. and 6b. The lowermost lines in these
figures represent averages on Rastrigin’s function, and
the lines in the middle are performance averages for
Schwefel’s function.

The trajectories of s5 and s} on ®3 can be compared in
figure 7. Obviously, during its evolution on ®; strategy
s3 has learned to perform big steps initially, which is
a valuable capability on ®3, too.

—
i

=

=

b. Trajectories of s on &3

a. Trajectories of s3 on ®3

Figure 7: Strategies s}, s} Tested Against ®;3

7 CONCLUSIONS

In this work we have formulated an optimization prob-
lem as a problem of optimal control of Mealy machines.
We have given the design and coding of a controller
and a suitable objective in order to be used in conjunc-
tion with methods of Genetic Programming. These
methods have produced some illustrative examples of
strategies which were robust against changes regard-
ing initial positions as well as regarding the overall
objective function to be maximized; a potential global
optimization strategy was found, too.

Deliberately the experiments have been performed
with limited effort regarding the controllers’ capabili-
ties as well as the computational effort (as compared
to other Genetic Programming efforts) since the con-
trollers establish just one part of a more extensive eco-
logical model. After all, we observed a learning effect
of the controllers concerning special features of the in-
volved functionals as well as concerning optimization
strategies. Further testings of the design, and a suc-
cessive refinement of its capabilities and a better un-
derstanding of the theoretical background of Genetic
Programming in the ecological simulation context is
subject to current research.

GENETIC PROGRAMMING

Acknowledgements

The first author thanks the Evangelisches Studienwerk
Villigst e.V. deigning a scholarship for a PhD project
this work is part of. We thank the anonymous review-
ers for their useful hints and suggestions that helped
refining this paper.

References

Angeline, P. J. (1998). A historical perspective on the
evolution of executable structures. Fundamenta
Informaticae, 36(1-4):179 — 195.

Chellapilla, K. and Fogel, D. (1997). Two new muta-
tion operators for enhanced search and optimiza-
tion in evolutionary programming. In B.Bosacchi,
J.C.Bezdek, and D.B.Fogel, editors, Applications
of Soft Computing, volume 3165 of Proc. SPIE,
pages 260—269.

Glowinski, R. and LeTallec, P. (1989). Augmented La-
grangian and operator-splitting methods in non-
linear mechanics. STAM, Philadelphia.

Goldberg, D. E. (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley, Redwood City.

Hauhs, M. and Lange, H. (1996). Ecosystem dynamics
viewed from an endoperspective. The Science of
the Total Environment, 183:125-136.

Hock, W. and Schittkowski, K. (1981). Test Exam-
ples for Nonlinear Programming Codes, volume
187 of Lecture Notes in Economics and Mathe-
matical Systems. Springer-Verlag, Berlin.

Holland, J. H. (1992). Adaptation in Natural and Ar-
tificial Systems - An Introductory Analysis with
Applications to Biology, Control, and Artificial
Intelligence. MIT Press, Cambridge.

Jacob, C. (1995). MathEvolvica, Simulierte Evolution
von Entwicklungsprogrammen der Natur. Arbeits-
berichte des Instituts fiir mathematische Maschi-
nen und Datenverarbeitung (Informatik), Univer-
sitdt Erlangen.

Jefferson, D., Collins, R., Cooper, C., Dyer, M., Flow-
ers, M., Korf, R., Taylor, C., and Wang, A.
(1991). Evolution as a theme in artificial life: The
genesys/tracker system. volume 10 of SFI Studies
in the Sciences of Complerity, pages 549 — 578,
Redwood City. Addison-Wesley.

33

Koza, J. R. (1992). Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA.

Koza, J. R., Keane, M. E., Yu, J., Bennett III, F. H.,
and Mydlowec, W. (2000). Automatic creation of
human-competitive programs and controllers by
means of genetic programming. Genetic Program-
ming and FEvolvable Machines, 1:121 —164.

Langdon, W. (1998). Genetic Programming and Data
Structures: Genetic Programming + Data Struc-
tures = Automatic Programming! Kluwer Aca-
demic Publishers, Amsterdam.

Lange, H. (1999). Are ecosystems dynamical systems ?
International Journal of Computing Anticipatory
Systems, 3:169 — 186.

Michalewicz, Z. (1996). Genetic Algorithms + Data
Structures = FEvolution Programs. Springer-
Verlag, Berlin, 3 edition.

Montana, M. J. (1995). Strongly typed genetic pro-
gramming. Evolutionary Computation, 3(2):199 —
230.

Salomon, R. (1996). Reevaluating genetic algorithm
performance under coordinate rotation of bench-
mark functions. BioSystems, 39(3):263-278.

Térn, A. and Zilinskas, A. (1989). Global Optimiza-
tion. Number 350 in Lecture Notes in Computer
Science. Springer Verlag, Berlin.

34

GENETIC PROGRAMMING

Genetic Programming solution of the convection-diffusion equation

Daniel Howard and Simon C. Roberts
Software Evolution Centre,

Systems and Software Engineering Centre,
Defence Evaluation and Research Agency,
Malvern, WORCS WR14 3PS, UK.
dhoward@dera.gov.uk, Tel:+44 1684 894480

Abstract

A version of Genetic Programming (GP) is
proposed for the solution of the steady-state
convection-diffusion equation which neither
requires sampling points to evaluate fitness
nor application of the chain rule to GP trees
for obtaining the derivatives. The method
is successfully applied to the equation in one
space dimension.

1 Introduction

This paper proposes a way to use Genetic Program-
ming (GP) to model the interaction between convec-
tive and diffusive processes. Modelling this interaction
is vital to the fields of Heat Transfer, Fluid Dynamics,
and Combustion, and remains one of the most chal-
lenging tasks in the numerical approximation of differ-
ential equations.

The new method is applied to the simplest model
problem, the steady-state version of the convection-
diffusion equation in one space dimension. This linear
differential equation has two Dirichlet boundary con-
ditions at the end points of the interval 0 < z < 1,

d’T dr
T(0) =1
T(1)=0

It involves derivatives of the temperature (7') and the
Peclet number (Pe), which is a measure or ratio of con-
vection to diffusion and a parameter which determines
the sharpness of the boundary layer at x = 1.

In 1992, Koza (Koza, 1992) described a GP method to
find the solution of a differential equation. It evolved
a GP tree or solution to the equation, and applied

the chain rule to the GP tree to obtain its derivatives.
The fitness measure used a weight factor to balance the
ability of the function to satisfy the initial condition
with the ability of the derivatives of the function to
satisfy the differential equation at a number of sampled
points. The technique was illustrated with reference to
initial-value problems.

In common with all other numerical methods, a
straightforward application of this method to search
for the numerical approximation to the solution of the
convection-diffusion equation (T), suffers with numer-
ical difficulties. Very early in the run, the division
operator produces steep gradients and approximations
with high fitness of the form:

T=1-—"

T+e

emerge which for arbitrarily small ¢ > 0 result in a
temperature that becomes zero almost everywhere and
which also exactly satisfies the boundary conditions.
Such solutions dominate and it becomes extremely dif-
ficult to adjust the weight factor to accentuate the
large error in the satisfaction of the differential equa-
tion at © = 0 (Howard, 1998).

Although approximations to the true solution, rather
than to this kind of trivial solution, were achieved by
removing the protected division, leaving +, —, and *
in the function set, the method was slow to converge
and chain rule evaluation of derivatives of GP trees
was an expensive step.

2 Proposed approach

The analytical solution of equation (1) is:

exp(xPe) — exp(Pe)
1 — exp(Pe)

T= 2)

The task is to find 7', an approximation to 7. A poly-
nomial p is evolved, and by polynomial division it can

GENETIC PROGRAMMING

be transformed such that the resulting expression for
T always satisfies the boundary conditions exactly, e.g.

T=x(1-z)p+(1—-2) (3)

and by the Remainder Theorem all polynomials are
guaranteed. The derivatives of T" are given by:

dT dp
- —x(l—x)%—i-(l—l’p)p—l
2T d2p dp

and a GP method can take the negative of the square
integral of the left hand side of the differential equation
as its Darwinian fitness F,

(2T ar\?
F=- — —Pe—) d 4
/ (dm2 ¢ d:r;) v)
which is a least squares measure of the error of approx-
imation. The integral expression for the fitness F' can
be obtained analytically because T is polynomial and
this is a point of difference with the method in (Koza,

1992) which used a number of points in the domain to
sample the fitness.

Although from a theoretical standpoint the uniform
norm or infinity norm:

z€]0,1]
= max

oo

7 T
d2 P d

orp .
d*T P dT T . 4
dx

d? " dn

X

is preferable in F' because it can warn of ¢ like spikes,
it requires a separate optimisation procedure to find
the maximum. Numerical experiments, however, were
successful with F' as defined in equation 4.

3 Representation

Considering equation 1, a GP method can combine
ephemeral random constants to evolve the coeflicients

[a07a17a27...] (5)

to obtain the univariate polynomial p

p=ao+ a1+ axx® +aza’.... (6)

that can be substituted into equation 3. Evaluation of
the integral in equation 4 requires expressions for:

T 2T
and/dd d

dT dT / 2T *T
dx dx? *

dr dz ") dx? der
all of which can be obtained by shifting and modifying
the coefficients in equation 5 and by multiplication of

35

Table 1: GP terminals, functions and variables

parameter setting
functions +,-, % / (x/0=1),
ADD, BACK, WRITE,
Wml, ng, Rmh ng
terminals Sc
globals variable length solution vector

pointers L and C
memories my and ms

max tree size 1000 nodes

these small vectors. The limits of integration are at
x = 0 and at x = 1 which means that there is no loss
of accuracy involved in computing the integral even if
p is a polynomial of high order.

Although at first glance the Genetic Algorithm seemed
a good choice, the requirement to generate a variable
length vector of very precise coefficients favoured the
Genetic Programming method.

The GP formulation of table 1 was devised. In this for-
mulation, the GP tree generates the required variable
length vector as it is being evaluated by combining
ephemeral constants to produce very accurate coeffi-
cients; furthermore, the return value of the GP tree has
no meaning. During evaluation, functions in the GP
tree manipulate a vector of coefficients (equation 5) in
global memory. The functions, as described in the next
paragraph, manipulate L and C, two global pointers
to the element or position in the vector of coefficients.
Pointer L stands for “last index” or tail position, and
pointer C' stands for “current” position. Prior to the
evaluation of the GP tree, L and C are both set to
Zero.

Functions ADD, BACK and WRITE are functions of
two arguments. They return one of the arguments, e.g.
ADD returns its second, BACK its first and WRITE
its second argument, the choice is arbitrary. Function
ADD writes its first argument to the vector element
pointed by L. It increments L provided L < Lj;ax
and enforces C' = L. Function BACK decrements
pointer C provided C' > 0. Function WRITE over-
writes the vector element at C' with its first argument.
Also, if C' < Lyjax it increments this pointer and if
C > L it increments pointer L.

The function set is enhanced with two memories m;
and mo manipulated by functions again of two argu-
ments. Functions Wmy return their first argument
and over write their second argument to memory lo-
cation my. Functions Rm; simply return the value of
the memory at m; and ignore both of their arguments.

36

Table 2: GP run parameters

parameter setting

population 8000

kill tournament size 2 for steady-state GP
breed tournament size 4 for steady-state GP
regeneration 80% x-over, 20% clone,
fitness measure - f(% — Pe 4L)2(y

Table 3: Information about highly successful GP runs

Pe pop gens best F avg tree mins
5 8000 42 -0.000175 55 24.23
20 8000 80 -0.003145 348 72.11
50 8000 80 -0.042962 830 139.61
100 2000 300 -0.258476 958 228.86

An ephemeral random constant C's is stored as one
byte and can represent up to 256 values. These are
equally spaced and obtained by dividing the numbers
0 to 255 by 255, to obtain values in the range [0, 1].

4 Moderate Peclet Numbers

Parallel independent runs of steady-state Genetic Pro-
gramming obtain solutions for a Peclet number with
parameters as in Table 2. The search becomes progres-
sively difficult with Peclet number because the desired
polynomial is of higher and higher order. Information
for some of the more successful runs carried out on an
850MHz Pentium III PC is provided in table 3.

There is a steady increase in the average size of tree
with Pe as well as steady increase in time required to
obtain an acceptable solution. There is an increase in
the number of coefficients also. At Pe =5 only seven
coefficients are obtained, see table 4, while for Pe = 20
twenty six coefficients are produced, see table 5.

The nature of the approximation is reflected in Fig-
ure 1, i.e. an approximation driven by a least squares
process. As is typical, the approximation is charac-
terised by minute oscillations (apparent in the mag-
nified graph at the bottom of the figure). However,
that is fine as the scheme is developed for quantitative
accuracy, not for qualitative shape, and aims to locate
the boundary layer at the expense of maintaining a
property such as monotonicity, for example. If a de-
sired shape property were to be required, this might be
accomplished by modification of the fitness measure,
or by evolution of the coefficients to a more complex
type of base function which enjoys and enforces the
desired property.

GENETIC PROGRAMMING

Table 4: Pe =5, table 3, evolved 7 coefficients.

I ar+o

ar41 A142

ar+3

ao
aq

0.964706 0.882353 0.713725
0.170588 0.137255 0.447377

0.717647

Table 5: Pe = 20, table 3, evolved 26 coefficients.

I ar+o ar+1 ar42 ar+3
ap 0.996078 0.972549 1.24314 0.615686
as 0.752941 1.77528 0.980392 0.588235
as 0.745098 0.611765 2.24359 0.931927

a1z 0.586275 0.858824 0.462745 0.92549
aie 0.74902 0.374761 0.374761 0.733333
azo 0.374761 0.410748 0.0313725 0.588235
az4 0.0313725 0.0313725

—&— Analytical

8- P

Figure 1: Approximation at Pe = 20.

GENETIC PROGRAMMING

Different combinations of ephemeral random constants
were tested but no clearly superior choice emerged.
For example, when constants were varied from 0.0 to
0.001 the resulting coefficients were much smaller than
when constants were varied from -1 to 1, but without
appreciable difference in accuracy or effort required to
obtain a solution.

5 Further work

The remainder of this paper presents ideas and moti-
vations for developing this approach further.

5.1 High Peclet Numbers

For high Peclet number, e.g. Pe > 50, an adequate
approximation to the solution or equation 2 is:

T=1-a"

which corresponds to the following polynomial for p,

p=l+a+a?+2°+. . +afe?

For the very large Pe, such as Pe = 1000, the global
fitness maximum resides where the vector in equation 5
has circa 1000 coefficients. At high Pe a local maxi-
mum at p = 0, i.e. at T = 1 — x attracts the search.
Polynomials with far fewer number of coeflicients than
1000 are attracted to this local maxima. Thus, unsuc-
cessful approximations for high Peclet number try to
improve on T' = 1 — x through a relatively small num-
ber of coefficients. They use T = 1 — sz (the slope s is
near one) over a significant portion of the domain and
exhibit a small boundary layer behaviour near x = 1
for example.

For very large Pe, the present scheme is not producing
enough genetic material to generate a sufficient num-
ber of coefficients (equation 5) to enable the evolution-
ary process to see the global minimum. The following
tactics may help overcome this, with the motivation of
solving practical engineering problems:

1. The convection-diffusion problem at a Peclet
number lower than required is solved, and the
resulting population is used as a starting point
to evolve the solution to the desired Peclet num-
ber. This is called continuation and can be imple-
mented in a variety of ways.

2. Build individuals in the initial population with
sufficient genetic material to allow them to gener-
ate vectors (equation 5) with close to the required
number of terms for the required Peclet number.

37

3. Use of evolutionary techniques which maintain ge-
netic diversity and prevent similarity of solutions.
Special mutation operations could copy material
to increase the resulting number of coefficients.

4. Changing the landscape. The fitness measure
could be replaced by the logarithm of equation 4
to diminish the effect of the ridge or hump in the
fitness landscape. However, such a choice would
not have effect with tournament selection for in-
stance because it cannot alter selection which is
based on ranking.

A GP formulation with ADF's was experimented with
but did not significantly improve performance.

5.2 Other polynomials

Simple polynomials are not the only option. Cheby-
shev and Legendre polynomials are popular for high
order regression and could serve as the basis functions
¢ for the scheme where p = a;¢;, and can easily be
analytically differentiated and integrated.

5.3 Improved functions

The GP functions ADD, BACK and WRITE could
be enhanced with more powerful data manipulation
functions that could introduce or modify more than
one coeflicient at a time or apply an operator, e.g. to
sort, groups of coefficients. The list of pointers L and
C could be enhanced with more complex pointers.

5.4 Evolution of the phenotype

The coefficients (equation 5) can be considered the
phenotype, and the GP trees the genotype. An evolu-
tionary algorithm could be applied directly to improve
upon a group of successful phenotype. This as a final
post-processor because there is no way to incorporate
the improvement back into the genotype, i.e. the evo-
lutionary process is not Lamarckian.

5.5 Partial differential equations (PDEs)

Extension of the method to solve the steady-state
convection-diffusion method in two space variables
would open the road for application to the steady-state
Heat Transport and Navier-Stokes equations. This
section suggests a way to achieve this for problems
which possess a regular geometry.

The steady-state convection-diffusion equation in two
space variables can be handled in a similar way to
the equation in one space variable. For illustration,

38

consider a square heated on one of its sides:

o’T 9*T or oT

W—Fa—yQ— e(%—Fa—y):O
T(x=0)=1.0
T(x=1)=0.0
T(y=0)=0.0
T(y=1)=0.0

A Dirichlet boundary condition on a line or curve de-
fined by the function g(x,y) can be enforced with an
exponential term such as exp(—T'g?), where I is a large
constant. The following expression for 7" would then
seem appropriate,

T =zy(1 —z)(1 - y)p + exp(~Tz?)

where perhaps I' > 10%, such that the term to which
it belongs is effectively zero except for x = 0 when
it becomes unity. Polynomial p is in z’y’ with GP
evolution of a;; its coeflicients. However, evaluation
of F involves cross multiplication of z?y’/ terms with
the exponential term in 7', and requires an analytical
expression for the following integral,

I, = /a:" exp(—Tz?)dx (7)

It can be approximately integrated by exploiting a re-
cursive relationship hence the label I,,. For n = 0 and
n = 1 the integral I, can be computed with the er-
ror function erf(x), and the integral for I is straight
forward,

Iy = /exp(—FmQ)dm = %/Pexp(—FmQ)d:ﬂ

= F/exp(—uz)du =

F\Q/Eerf(l.O)

_exp(—Tz?)

L= /xexp(—l"xQ)d:ﬁ = 5T

the error function, erf (x=1) can be calculated approxi-
mately by carrying the series to an appropriate number
of terms,

2 28 x® x’
erf(x)_TE(x_s-u T5 a7 +>

The recursive relationship to compute I, is
or'l, = —z" Yexp(~-T2?) + (n — 1)I,, _»

Alternatively, an expression for T that is valid only for
x > 0 and which seems appropriate is

T=zy(1—2)(1—1y)p+exp(—Tx)

GENETIC PROGRAMMING

F now requires the analytical solution (Abramowitz
and Stegun, 1964) to the following integral

/ x" exp(—Tx)dr =

exp(—Tx)

T [(Fx)” —n(Tz)" ' +n(n—1)(Tz)" 2

oot (D) n(T2) + (—=1)"n

Such algebraic expressions are tedious to implement
(see Appendix) but once coded result in an effective
algorithm. More work is also required to handle prob-
lems with mixed boundary conditions and complex ge-
ometry.

6 Why GP?

The reader may ask himself: “why investigate GP
solution of differential equations when many popular
commercial packages already exist to solve these equa-
tions?”

Such packages use the weighted residuals method
(WRM). Popular WRMs are the finite differences
method (FDM), the finite volume method (FVM), the
finite element method (FEM), and the Boundary Ele-
ment Method (BEM).

The only motivation for investigating an evolution-
ary method is for approximating the solution to non-
self-adjoint multi-dimensional equations, e.g. Navier-
Stokes equations, because the WRM cannot always
conclusively solve these problems. The remaining sec-
tions outline potential advantages of the evolutionary
method with respect to the WRM.

6.1 Mathematics

Numerical solution of self-adjoint differential equations
(e.g. elliptic equations with even order derivatives)
via WRM, (e.g. Galerkin FEM, cell centered FVM
method, central difference FDM) is “optimal”. This
means that schemes converge to the analytical solu-
tion uniformly as the mesh is refined, and/or as the
order of approximation of the functions in the WRM
is increased. Applications relate to engineering design
of edifices, structures and bridges with the WRM, and
in particular with the Galerkin FEM.

The WRM, however, looses its “optimal” behaviour
when applied to non-self-adjoint boundary value dif-
ferential equations essential to Heat Transfer, Fluid
Dynamics, and Combustion and results in unstable
solutions containing “wiggles” (Gresho, 1981). The

GENETIC PROGRAMMING

numerical difficulty is linear in nature and cannot re-
ally be analysed for non-linear PDEs, e.g. the Navier-
Stokes equations.

Both engineers and mathematicians have postulated
special methods for dealing with these equations in
the WRM framework. Notable examples are Petrov-
Galerkin FEM, cell vertex FVM, and upwind differ-
encing FDM. These methods are only optimal for the
linear equation in one space variable (Morton, 1995).
Application to PDEs, only in the most specialised but
trivial of cases is optimal, e.g. if the scheme coincides
with a clear directional characteristic of the solution.

Using such special methods in more than one space
variable, i.e. on PDEs, finds solution but to a more
diffuse PDE than that intended. Approximations
can look deceptively smooth. Consequently, a phys-
ical experiment is required to calibrate the numerical
method, when the original objective was for the nu-
merical method to predict the outcome of the equiva-
lent physical experiment.

It is very important to realize that the GP approxima-
tion is free from this fundamental mathematical draw-
back of WRM. Accuracy is an important motivation
to investigate new solution approximation methods.

6.2 Memory

Every WRM requires either a mesh composed of a
number of mesh points, or the presence of internal
points (in the case of the Boundary Element Method)
to solve the non-self-adjoint boundary value problem.
The larger the number of points the more accurate will
be the result.

The mesh and points introduce computational com-
plexities and trade-offs: cell aspect ratio distortion,
indirect memory addressing, rapid growth in the num-
ber of operations required to solve the matrix system,
conditioning of the matrix in the case of iterative ma-
trix solution methods, etc. Finally, adaptive methods
for mesh refinement must be devised to track a solu-
tion by correcting the mesh most economically.

The GP scheme presented in this paper does not use
any sampling points and does not require a mesh. Con-
sequently, complicated algorithms to handle memory
addressing are not required.

6.3 Order of approximation

High order WRM (quadratic finite elements and high
order finite differences) increase the bandwidth of the
resulting matrix system to be solved precluding their
practical use in solution of equations in three space

39

variables (3D problems). In addition, Petrov-Galerkin
methods and multi-grid methods are next to impossi-
ble to construct in 3D with higher order FEMs.

The least squares FEM essentially squares the equa-
tions to restore ellipticity, is a credible alternative to a
Petrov-Galerkin method, and handles higher order el-
ements in a straight forward manner (Bochev, 1998).
However, squaring the PDE must cause a very signifi-
cant increase in the matrix bandwidth.

Consequently, and for 3D problems, WRM usually re-
quires millions of mesh points with the low order linear
approximation.

If exponential functions, or equivalent high order poly-
nomials, could be precisely located in boundary lay-
ers then very few mesh points would be required - a
panacea for WRM practitioners.

The GP method proposed in this paper, shares with
the method proposed by Koza (Koza, 1992), an ability
to discover and to construct for itself whatever order
of approximation is required to solve the problem that
is presented to it.

6.4 Parallel computing

Parallelization of the WRM is problematic, and nor-
mally achieved with domain decomposition methods
which must carefully balance processor communica-
tion, process startup time, and work load.

In contrast, Genetic Programming easily lends itself
to efficient parallel implementation (Koza, 1992) and
when combined with the method in (Nordin, 1994) can
achieve significant performance gains.

7 Conclusions

A novel GP method is developed to model convection-
diffusion problems, which evolves a variable length
vector of polynomial coefficients. Its fitness uses the
integral of squared error, which has the advantage
of not requiring sampling points nor derivatives of
GP trees. Experiments solve the steady convection-
diffusion equation in one space variable. This copes
easily from Pe = 5 to Pe = 100 but encounters compu-
tational difficulty for higher Pe. Even so, potentially,
the method has advantages over popular WRMs.

This method cannot be recommended as a serious al-
ternative for solving these problems until schemes are
found to obtain results at higher Pe; to develop tech-
niques for solution on complex geometries in two and
three space variables (Irons, 1966); and to handle both
Neumann and Dirichlet boundary conditions.

40

Acknowledgments

This paper has benefited from the comments and sug-
gestions of Robert Whittaker, Richard Brankin, Bill
Langdon, and Joseph Kolibal.

References

M. Abramowitz and I. A. Stegun (1964): Handbook
of Mathematical Functions, Dover Publications Inc.,
New York.

P. Bochev and M. Gunzburger (1998): Finite Element
methods of least squares type, STAM Review 40, 789-
837.

P. Gresho and R. L. Lee (1981): Don’t Suppress the
Wiggles: They are telling you something, Comput. &
Fluids, 9, 223-253.

D. Howard (1998): Late Breaking Papers of the GP
98 conference, Madison, Wisconsin.

B. M. Irons (1966): Engineering Application of Nu-
merical Integration in Stiffness Method, Journal of the
American Institute of Aeronautics and Astronautics,
14, 2035-2037.

J. R. Koza (1992): Genetic Programming: on the pro-
gramming of computers by means of natural selection.
MIT Press.

K. W. Morton (1995): Numerical Solution of Con-
vection Diffusion Problems, Applied Mathematics and
Computation 12, Chapman and Hall.

P. Nordin (1994): A Compiling Genetic Programming
System that Directly Manipulates the Machine Code,
Advances in Genetic Programming, ed. Kenneth Kin-
near Jr., MIT Press.

Appendix

This appendix pertains to section 5.5 and the possibil-
ity of extending the method to PDEs.

The calculation of F' for the steady-state convection-
diffusion equation in two space variables (square box
heated on one of its sides) requires algebraic manipu-
lation. A change of notation makes for a less cluttered
presentation, i.e. the polynomial coefficients a;; are
represented as a5:

p= a8 + a(l)a: + ...+ aﬁxAyB + ...

Expressing the temperature T' as

T=Tp+e

GENETIC PROGRAMMING

T=gp+e

Tp =gp

e = exp(—Tz?)

g =wzy(l—2)(1-vy)

spatial derivatives for temperature can be obtained by
the chain rule:

o _ 05 o
ox _paaz g@az
oTp _ 99 , Op
dy _pay gay

CTe P ouon, P

0x2 _p8x2 Oz Ox gax2

0T 0 Og O 0?

PTe_ P 4290 P

dy dy dydy ~ Oy

and when applying the chain rule to g, to p and to e
a number of expressions follow:

g=uay -’y —ay’ + 2%y’

9g
P =y —2zy —y* + 2zy°
0
a—z =z — 2zy — 2* + 227y
0%g
agj? = _2y + 2y2
0%g
Z 2 = 9p 49222
Oy?
0
8_6 = —2Tzexp(—T'z?)
x
0%e 2 2 2 2
= —2Texp(—T'z?) + 4Tz exp(—T'z*)

Those terms which are polynomial can be expressed
in terms of coefficients af of the polynomial p which
is evolved by Genetic Programming. After algebraic
manipulation coeflicient expressions are arrived at:

0918 _ _ _ _
o] =2(af7 a5 + (af 7t - a5

)
x
Op1B - B) i
955) 4 = oo (et —afo) +a R - af)
0%g1B B -
poa), =2l -l
0g Op1B B B
[%%]A = (arn (@i —aiii) +
aa(ai 2 —af™)
0*p1B - B
958] = aa (el -k)+

B-1 B-2
A(A+1) (aA+1 - aA-H)

giving expressions in the polynomial coefficients:
3TP} B B—1

—Pe [W

_ B-2 - B-1
A Pe(A+1)<aA—1 —ay g tay T —ay

)

GENETIC PROGRAMMING

B-2

B-1
a’A+1 +ay

—ay)

0°Tp1B B B

Ox2 a4 (A7+3442) (aA+1
A new notation A or difference of a pair of coefficients
a® is introduced, e.g.:

B-1

A BtK
Alg = a4k —

B2 B+K
ay % and AP =ait]

a4
and used to define c§ polynomial coefficients of:

oTp n 0*Tp1B
ox ox?
(A% 4 3A +2 4 PeA + Pe)Ay +

B = |—Pe = (PeA + Pe)A4, +
(A% +3A+2)A,

Similar expressions can be obtained for the derivatives
in the second space variable:

9918 _
por], = 20087 - af) + (aFy - af)
dp
02)" = o= i) (0l — o)
0%g1B
{pa—gﬂ} L= 2(af_y —af_y)
dg Op1B
{@a—y} = (+n(ai) —ai5) +
2B <a§—2 - aﬁ—l)
0’p1B
{ga—yzh = pp-nl(ad y—al)+
B+ (0471 — afh)
yielding expressions in the polynomial coefficients:
0Tp1B _ _
—Pe [dy] = Pe(psn) (@41 — a4y +af o —af)
0*Tp
[D2 }A = (Bz+3B+2)(B+i - aﬁH—% +al - afq)
and by using A the polynomial coefficients as before:
oTp 0*TpB B
{—Pea—y+a—y2] = (PeB—l—Pe)A,l-i-

(B® + 3B +2+PeB +Pe)A + (B® + 3B+ 2)AY,

The GP fitness measure F' is given by:

82TP 826 82TP 8Tp Oe 6Tp 2
/{E)xz +$ Oy? _P(ax +£+8—y>] d<
The following integrals

82T P 8Tp 0*Tp oTp
/ / 012 8:5“8:22 — e 8x]dxdy

82Tp pe TP [9°Tp dTp
/ / a 8y}{8y2 e 8y}dmdy

[

oz Oy

32Tp 8Tp] [82Tp

012 8x } drdy

41

can be obtained simply by multiplication of the coef-
ficients already derived and shifting of the coefficients
in the resulting vector to obtain an integrated expres-
sion which can then be evaluated by substitution of
the limits of integration: 0 and 1, and integration of
the cross term, and of the purely exponential terms:

0*Tp oTp

// aa:2_ Hay —Pe,]dmd
0%e Oe

/ / 927 Hw*e%}dﬂcdy
are both similarly accomplished. However,
0*Tp oTp

// E)xQ_ Ha?‘P a}dxdy

is not straightforward, and can be expressed as two
integrals Lo + L1:

ST 2
36 an 8TP
Lo=2 _Ppe & _peLl
0 Jo /0 eax[aﬁ Ox]da:d
e 10*Tp oTp
L1_2/0 /o 8x2{8x2 — e ox]dmd

Relations already obtained can be substituted for:

L0—4PeF/ /
0

= —4I‘/ / B 24yP exp(—T2?)dx dy +
O aB

B 1y B exp(—Tz?)dx dy

8F2/ / B x472yP exp(—Tx?)dx dy
0 4B

each term in the sum contributes an integral which
can be approximated with the erf(x) function and the
recursive relationship identified in section 5.5.

42

GENETIC PROGRAMMING

Adaptive Logic Programming

M. Keijzer & V. Babovic

DHI — Water & Environment
Hgrsholm, Denmark
{mak|vmb}@dhi.dk

Abstract

A new hybrid of Evolutionary Automatic
Programming which employs logic programs
is presented. In contrast with tree-based
methods, it employs a simple GA on vari-
able length strings containing integers. The
strings represent sequences of choices used in
the derivation of non-deterministic logic pro-
grams. A family of Adaptive Logic Program-
ming systems (ALPs) are proposed and from
those, two promising members are examined.
A proof of principle of this approach is given
by running the system on three problems of
increasing grammatical difficulty. Although
the initialization routine might need improve-
ment, the system as presented here provides
a feasible approach to the induction of so-
lutions in grammatically and logically con-
strained languages.

1 Introduction

Logic Programming [3] makes a rigorous distinction
between the declarative aspect of a computer program
and the procedural part. The declarative part defines
everything that is ’true’ in the specific domain, while
the procedural part derives instances of these 'truths’.

The programming language Prolog [16] fills in the pro-
cedural aspect by employing a strict depth-first search-
strategy through the rules (clauses) defined by a logic
program. In this paper an alternative search strategy
is examined. This employs a variable length genetic
algorithm that specifies the choice to make at each
choice-point in the derivation of a query. The search
strategy operates on logic programs that define sim-
ple to more constrained languages. This hybrid of a
variable length genetic algorithm operating on logic

C. Ryan & M. O’Neill

University of Limerick
Limerick, Ireland
{conor.ryan|michael.oneill} @ul.ie

M. Cattolico

Tiger Mountain Scientific Inc.
Kirkland, WA U.S.A
mike@TigerScience.com

programs is given the name Adaptive Logic Program-
ming.

The paper is organized by first giving a short introduc-
tion of logic programming and Prolog, followed by a
description of the non-deterministic modifications we
propose. A section with related work of applying ge-
netic programming to logic programs follows in sec-
tion 4. The system thus described is tested on three
problems with increasingly more involved grammati-
cal constraints. A discussion and conclusion finish the

paper.

2 Logic Programming

A logic program consists of clauses consisting of a head
and a body. In Prolog notation, identifiers starting
with an uppercase character are considered to be logic
variables, while lowercase characters are atoms or func-
tion symbols. The logic program

sym(x) .
sym(y) .
sym(X + Y) :- sym(X), sym(Y).
sym(X * Y) :- sym(X), sym(Y).

defines a single predicate sym. The derivation symbol
:-/2 should be read as an inverse implication sign. In
predicate logic the third clause can then be interpreted
as

VX,Y : sym(X) A sym(Y) — sym(X +Y)

The query

7- sym(X).

GENETIC PROGRAMMING

can be interpreted as the inquiry 3X : sym(X)! and

produces in Prolog the following sequence of solutions:

X = x;

X=1y;

X =x + x;

X=x+1y;
X=x+ (x + x);
X=x+ (x+y);
X=x+ (x+ (x+x));

Extrapolating this sequence it is easy to see that with-
out bounds on the depth or size of the derivation, the
depth-first clause selection with backtracking strategy
employed in Prolog will never generate an expression
that contains the multiplication character. Therefore,
while the depth-first selection of clauses may be sound,

it is not complete w.r.t. an arbitrary logic program?.

Logic programming is a convenient paradigm for spec-
ifying languages and constraints. A predicate can have
several attributes and these attributes can be used to
constrain the search space. For example, the logic pro-
gram and query

sym(x,1).
sym(y,1).
sym(X+Y,S) :-
sym(X,S1), sym(Y,S2), S is S1+S2+1.
sym(X*Y,S) :-
sym(X,S1), sym(Y,S2), S is S1+S2+1.

7-sym(X, S), S<10.

specifies all expressions of size smaller than 10. With
such terse yet powerful descriptiveness, it is therefore
no surprise that attribute logic and constraint logic
programming are more often than not implemented in
Prolog. It is this convenient representation of data or
program structures together with constraints that we
are trying to exploit in this paper.

Formally, a Logic Programming system is defined by
Selected Literal Definite clause resolution (or SLD-
resolution for short), and an oracle function that se-
lects the next clause or the next literal®>. This oracle
function is in Prolog implemented as:

e Select first clause

!Formally the negation of this formula is disproven, thus
proving this formula.

2A depth-first strategy is however far more efficient than
the breadth-first alternative

3 A literal is a single predicate call in the body of a clause
or query. In the query above, sym(X,S) and S < 10 are
literals.

43

e Select first literal

e Backtrack on failure

3 Grammatical Evolution and Logic
Programming

Grammatical Evolution [13] aims at inducing arbitrary
computer programs based on a context-free specifica-
tion of the language. It employs a variable length inte-
ger representation that specifies a sequence of choices
made in the context-free grammar to generate an ex-
pression. Due to the specific representation of a se-
quence of choices, no type information needs to be
maintained in the evolving strings, and no custom mu-
tation and crossover operators need to be designed.
The variable length one-point crossover employed in
GE was shown to have an elegant interpretation in
closed grammars in [7].

In this paper we similarly use a sequence of choices as
the base representation, but rather than choosing be-
tween the production rules of a context-free grammar,
they are used to make a choice between clauses in a
logic program. The sequence of choices thus represents
one part of the selection function operating together
with SLD-resolution on the logic program. Further-
more, backtracking is implemented in the system to-
gether with an alternative strategy on failure: restart-
ing the original query.

As an example of the mapping process, consider the
grammar defined above in Section 2, and an evolu-
tionary induced sequence of choices [2,1,3,0,1]. The
derivation of an instance then proceeds as follows:

7- sym(X).

7- sym(X1), sym(X2). [(X1 + X2)/X] 2
7- sym(y), sym(X2). [y/X1] 1
7- sym(X3), sym(X4). [(X3 * X4)/X2] 3
?7- sym(x), sym(X4). [x/X3] 0
7- sym(y). [y/X4] 1

Applying all bindings made, this produces the sym-
bolic expression: y + z * y. The values from the se-
quence of choices are in this example conveniently cho-
sen to lie between 0 and 3 inclusive; in practice a num-
ber encountered in the genotype can be higher than
the number of choices present. The choice will then
be taken modulo the number of available choices.

In this example, the depth-first clause selection of Pro-
log is replaced by a guided selection where choices are
drawn from the genotype. The first unresolved literal
is still chosen to be the first to derive. It is possible to
replace this with guided selection as well, be it in the

44

Genetic Algorithm Derivation

fitness. genotype eval(E) i~ sym(X), c_eval(X, E).

L
mCr—
sym(x).
O
sym(X +Y) == sym(X), sym(Y).
O L

Fitness Evaluation

Xyt yxy =<7

E =sum (- (x+xy))2

Figure 1: Overview of the ALP system: the sequence
of choices is used in the derivation process to derive
a specific instance for sym(X), this instance is passed
to the evaluation function. The calculated fitness is
returned to the genetic algorithm.

same string or in a seperate string. Together with a
choice whether to do backtracking or not, this leads to
Table 1 which gives an overview of the parts of the Pro-
log engine that can be replaced. Table 1 thus defines
a family of adaptive logic programming systems. Enu-
merating them, ALP-0 will correspond with a Prolog
system, while ALP-1 (modified clause selection) and
ALP-4 (modified clause selection without backtrack-
ing) correspond with the systems examined here.

Selection Prolog Modification
Clause First Found From Genotype
Literal First Found From Genotype
On Failure | Backtrack Restart

Table 1: The possible modifications to the selection
function.

We’ve chosen to focus on ALP-1 and ALP-4 as there
are some practical problems associated with replacing
literal selection. In many applications, a logic pro-
gram consists of a mix of non-deterministic predicates
(such as the sym/1 and sym/2 predicates above) and
deterministic predicates (such as the assignment func-
tion is/2). The deterministic predicates often assume
some variables to be bound to ground terms, evaluat-
ing them out of order would then lead to runtime ex-
ceptions. Section 6 will show that for languages with a
nontrivial set of constraints, backtracking is necessary
to obtain solutions reliably.

GENETIC PROGRAMMING

A logic program is thus used as a formal specification
of the language, the sequence of choices is used to steer
the resolution process and a small external program is
used to evaluate the expressions generated. See Fig-
ure 1 for the typical flow of information. The scope
of the system are then logic programs where there is
an abundance of solutions that satisfy the constraints,
which are subsequently evaluated for performance on
a problem domain.

3.1 Backtracking

In ALP-1, at every step in the derivation process, a list
is maintained of clauses that are not tried yet. When
a query fails at a certain point, the selection function
will be asked to pick a new choice out of the remain-
ing clauses. This choice is removed and when all are
exhausted, the branch reports failure to the previous
level where this procedure starts again.

ALP-4 does not use backtracking; on failure it will
restart the original, top-level, query, while the reading
continues from where it left of.

If the sequence runs out of choices, i.e., the end of the
genotype is reached, the derivation is cut off and the
individual gets the worst performance value available.
This will be labelled a failure.

3.2 Initialization

Initialization is performed by doing a random walk
through the grammar, maintaining the choices made,
backtracking on failure (ALP-1) or restarting (ALP-
4). After a successful derivation is found, the short-
est, non-backtracking path to the complete derivation
is calculated. An occurence check is performed and
if the path is not present in the current population,
a new individual is initialized with this shortest non-
backtracking path. Individuals in the initial popula-
tion will thus consist solely of non-backtracking deriva-
tions to sentences.

Typically a depth limit is employed.

3.3 Performance Evaluation

Performance is typically evaluated in a special mod-
ule, written in a compiled language such as C. This
program walks through the tree structure and eval-
uates each node. This is however not necessary if
the fitness can be readily evaluated in the logic pro-
gram itself. The query investigated typically has the
form: find that derivation for sentence(X), such that
fitness_eval(X, F) returns the maximal or minimal F'.

GENETIC PROGRAMMING

+ +
PN PN //ji></
3A 4B 6C 7D A -

Figure 2: An individual in the form of a derivation
tree. Vacant sites are filled by sub-trees from the other
parent.

3.4 Variational Operators

Crossover is implemented as a simple variable length
string crossover. Two independent random points are
chosen in the strings and strings starting at those
points are swapped. The two points are chosen within
the expressed code of a string — code that is used in
the derivation.

The effects of the crossover in this case is quite dif-
ferent from that of subtree crossover. This is because
the derivation tree is created in a pre-order fashion,
i.e., the left-most literal of a goal is always mapped to
completion before the rest of the goal is processed.

Crossover operates on the linear structure, and single
point crossover thus divides an individual into a par-
tially mapped tree, and a stack of choices. In general,
all subtrees to the right of the crossover site are re-
moved, as in Figure 2, leaving multiple vacant sites on
the derivation tree. These sites are said to ripple up
from the crossover site.

An integer in the genome is said to be intrinsically
polymorphic, meaning that it can be interpreted (or re-
interpreted) by any node in a derivation tree in what-
ever context. By adding codons from the other parent
to the incomplete derivation tree in Figure 2, the sites
vacated by the crossover event are again filled with
new subtrees of the appropriate type.

In contrast with subtree crossover, the percentage of
genetic material exchanged is on average 50% and it
has been shown that this crossover is quite effective in
exploring the search space of possible programs as it
is less susceptible to premature convergence [7].

Although many mutations can be defined on a string of
integers, the one used here simply replaces a randomly
selected integer from the string with a randomly drawn
integer lower than 216,

45

3.5 Special Predicates

All Prolog built-in clauses such as assignment (is/2)
are evaluated in Prolog directly. This is done as often
such clauses are deterministic and depend on the Pro-
log depth-first search strategy. Also calls to libraries
etc., are evaluated directly.

A special predicate ext_int/2 is employed that, when
encountered in the derivation, binds the first argu-
ment with an integer drawn from the genotype mod-
ulo the second argument (which therefore needs to be
grounded). Using this technique, floating point con-
stants can be specified as part of the logic program.
The floating point grammar used in this paper is:

fp_unsigned(X) :-
ext_int (Num,256),
ext_int (Denom,256),
X is Num / (Denom + 1).

fp_unsigned(X) :-
fp_unsigned(First),
fp_unsigned(Second),
X is First * Second.

fp(X) :-
ext_int(S,2),
Sign is (S-0.5) * 2,
fp_unsigned(Y),
X is Sign * Y.

There is nothing particularly innovative or clever
about this program. Although it specifies up to ma-
chine precision floating points, it can only model ra-
tional numbers for which the numerator and denomi-
nator are factors of primes smaller than 256. It does
show however, how intricate calculations can be made
a part of the language. A call to fp/1 will bind the
argument to a floating point value instead of an ex-
pression. Future versions of ALPs will undoubtedly
support floating point numbers that evolve together
with the list of choices, so that specialized mutation
operators can be used.

4 Related Work

Wong and Leung [17] hybridized inductive logic pro-
gramming and genetic programming in their system
LOGENPRQO. The representation that is being manip-
ulated by the genetic operators consist of derivation
trees. LOGENPRO first applies a preprocessing step
that transforms a logic grammar (a Definite Clause
Grammar) into a logic program. Apart from expres-
sions in the specified language, this logic program also

46

produces a symbolic representation of the derivation
tree. This derivation tree is subsequently manipu-
lated by the genetic operators. Some fairly intricate
crossover and mutation operators are used which, to-
gether with semantic validation, ensure that the re-
sulting derivation tree specifies a valid instantiation of
the logic grammar. Because the logic program is able
to parse derivation trees, semantic verification reduces
to checking whether Prolog accepts the derivation tree.

Ross [15] describes a similar system that uses Definite
Clause Translation Grammars. This representation is
also translated into a logic program that is able to
parse and generate derivation trees in the language
defined by the grammar. The crossover described in
[15] seems to only use type information contained in
the predicate names and arity at the heads of the
clauses and swaps derivation subtrees that contain the
same head. A semantic verification (running the Pro-
log program on the derivation tree), is subsequently
performed.

Even for typed crossovers, semantic validation is neces-
sary as the body of a clause can introduces additional
constraints, not related to the type but to the actual
values found in the derivation. An additional problem
for strongly typed crossover occurs when the number of
distinct types grows. As the operator will only swap
subtrees that have the same type, every type needs
to be present multiple times with different derivations
in the population to make the operator swap some-
thing other than identical trees. If a specific type dis-
appears from a population, or only has a single dis-
tinct instance, the system has to rely on mutation to
re-introduce instances. Every additional type or con-
straint thus partitions the search space further and
thereby restricts the crossover.

Yet another problem with subtree crossover is that it
will process an increasingly smaller percentage of ge-
netic material as the size of the individuals grows [1],
while the crossover employed here will always swap on
average half of the genetic material [7].

In contrast with the systems described above, the
ALP systems do not use an explicit representation of
the derivation tree, thus being time and memory ef-
ficient. In the systems described above, every step
in the derivation process is recorded in a node to-
gether with the bindings that are made, effectively
doubling the size of an expression tree. In ALPs, no
pre-processing step is necessary, it works on logic pro-
grams directly. Also no bookkeeping is necessary when
trying crossovers and mutations. The downside of this
is that the ALPs can generate invalid individuals, i.e.,
strings of choices that have no valid derivation. How-

GENETIC PROGRAMMING

ever, such a failed derivation is equivalent with a failed
semantic validation in the systems described above.
The rate at which this happens is ultimately bound to
the language and constraints used.

5 Proof of Principle

The system outlined above was implemented using
SWI-Prolog*, mainly because of the two-way C API
that it implements. A steady-state genetic algorithm
using a tournament size of 5 was implemented using
the evolutionary objects library®. Crossover and mu-
tation were applied with rates 0.9 and 0.1 respectively.
What follows are three experiments with grammars of
increasing degrees of complexity. The purpose of these
experiments is to present a proof of the principle that a
variable length GA can indeed be used to successfully
induce sentences in both easy and difficult languages.

The experiments were run for 100 generations using
both ALP-1 and ALP-4. For the symbolic regression
and Santa Fe trail problem, 100 runs were performed,
the results on the sediment transportation experiments
are reported on the basis of 500 runs. As a baseline
test, for each problem, 10 million random individuals
were generated using the initialization procedure from
ALP-1 (denoted by ALP-1R). Also 10 million individ-
uals were generated by Prolog (ALP-0). As Prolog was
not able to produce a single correct individual for any
of the problems, these results are further omitted. For
all methods, the same depth limit was set.

5.1 Symbolic Regression: 0.3zsin(27z)

From this function 100 equally spaced points in the
interval [-1,1] were generated. This problem has been
studied in [6] with data in the range [0,1]. For the
experiments a population size of 1000 was used. A
success was determined to be a root mean squared er-
ror less than 0.01.

5.2 An Artificial Ant on the Santa Fe Trail

The artificial ant problem has been studied intensively
in [10] for a closed grammar. Here a context free gram-
mar is employed like in [7].

A population of size 500 was used. The best perfor-
mance achievable was 89 food pellets eaten.

*http://www.swi.psy.uva.nl/projects/SWI-Prolog
Shttp://www.sourceforge.net/projects/eodev

GENETIC PROGRAMMING

5.3 Units of Measurement: Sediment
Transport

The units of measurement problem used here has been
studied previously in [2]. In contrast with [2] the
system is constrained to generate only dimensionally
correct equations. Another approach for this class of
problems is studied in [14] where a context free gram-
mar is generated that models a subset of the language
of units of measurement.

The desired output for this problem is a dimensionless
quantity, a concentration. Two experiments were per-
formed, one where the desired output is given and one
experiment where no desired output is given. These
are denoted in Table 2 as Sed! and Sed?2 respectively.
The second experiment thus seeks for a dimensionally
consistent formulation stated in any units. It is quite
common for empirical equations to multiply the result-
ing equation with a constant stated in some units to
obtain an equation stated in the desired units of mea-
surement®, this is usually a residual coefficient that
tries to describe some unmodelled phenomena.

The parameters were set at the same values as the
symbolic regression problem above. A successful run
was determined by comparing the error produced to
that of a benchmark model, which was an equation
induced by a scientist [5]. Because success rates were
low, 500 runs were performed for this problem.

6 Results

For all problems, solutions were found, Table 2 sum-
marizes the results. Although the differences between
ALP-1 and ALP-4 are not significant (o = 0.05) on the
symbolic regression problem” and the Sante-Fe prob-
lem, the failure of ALP-4 to find any solutions on any
of the sediment transport problems clearly shows the
need for backtracking. The sediment transport prob-
lem involves non-trivial constraints, and inspection of
the expressions produced by ALP-4 showed that it got
very quickly trapped into derivations of shallow depth,
often converging on a single constant. It is hypothe-
sized that the use of backtracking allows the genotype
to specify a particular start of the derivation process,
relying on backtracking as a local search operator to
find feasible solutions.

Confidence intervals were calculated around the 99%

6A famous example is Chezy’s roughness coefficient,
stated in the unit m'/?/s.

"A control run using a strongly typed subtree crossover
on the symbolic regression problem resulted in a success
rate of 4%, lower than either ALP-1 or ALP-4.

47

ALP-1 ALP-4 ALP-1R
S R.| 4253(9%) | 5508(6%) Tt (0%)
[2351,11642] | [2924, 16868]
S F. | 185(37%) | 284(28%) | 1279(3.6e — 4%)
[124,305] | [172,584] 852, 2302]
Sedl | 10997(1.6%) | _ inf(0%) mt(0%)
3629, inf]
Sed2 | 1610(26%) inf(0%) inf(0%)
1300, 2054]

Table 2: Computational Effort divided by 1000 for
solving the three problems. Overall success rate in
round brackets. Numbers in square brackets denote
95% confidence intervals around the effort statistic
calculated above. Confidence intervals are calculated
with resampling statistics, using a bootstrap sample
of 10000. The success rates are calculated on the final
(100th) generation.

computational effort statistic proposed by Koza ([8] p.
194). The first fifty percent of the runs were used to
find the generation that maximized the effort statis-
tic, the results reported were subsequently calculated
on the latter (independent) half of the runs. As the
confidence interval calculated for the sediment trans-
portation problem included a 0% success rate, the up-
per bound of the confidence interval is infinite. This
is to be expected, as the success predicate demanded
that the system should improve upon an equation pro-
posed by an expert in the field of sediment transport.
Interestingly enough, for the second sediment trans-
portation problem (that allows dimensionally consis-
tent equations that do not produce the desired di-
mensionless output), the success rate is significantly
higher. This illustrates the dangers of providing too
much bias to a weak search algorithm such as ALPs.

The confidence intervals were calculated in response
to a question posed by Miller [11] on the value of this
statistic on experiments with a low success rate. Ta-
ble 2 shows that indeed, for a low success rate such as
1.6%, the statistic can only give a lower (highly opti-
mistic) bound on the number of individuals to process.
It also shows that the statistic is highly volatile even
for moderate success rates. For the Santa-Fe prob-
lem that has an overall success rate of 37%, the width
of the confidence interval (i.e., the uncertainty around
the statistic) is nearly as large as the value of the com-
putational effort itself. The confidence intervals clearly
show that a straightforward comparison of computa-
tional effort, even differing in an order of magnitude,
is not possible.

Figure 3 shows the average fail ratio for ALP-1. As

48

0.7 T T

= = symbolic regression
= sediment transport1
+= santafe trail

06 e sediment transport2 ||

Failed Derivations
I
IS
T

o
©
T

s -
I T U Py g P P R

0))) e i

I | h |
0 10 20 30 40 50 60 70 80 90 100
Generation

Figure 3: Failed derivations over the total number of
derivations per generation for ALP-1, averaged over
the number of runs.

the initial generation includes only valid individuals,
the ratio is zero. It is clear from the figure that this
initial population is not well adapted to produce valid
individuals. For the less constraint problems, the per-
centage of failed derivations quickly drops to low val-
ues. For the problems involving units of measure-
ment, the level of failed derivations does not drop that
quickly: even after 100 generations, more than one in
five crossover and/or mutation events results in a failed
derivation.

Although it might seem that the crossover and mu-
tation employed here are very destructive, and might
even lead to the hasty conclusion that a strongly typed
crossover is necessary, this is in our opinion not war-
ranted. The high fail rates are a symptom of the
highly constrained nature of this search space. A
strongly typed crossover would have this same prob-
lem, it would either obscure it by only swapping iden-
tical subtrees, or by a high failure rate in the semantic
validation. Figure 4 shows that despite this high fail-
ure rate, the system is still able to perform significant
optimization. It would however be instructive to see
how well a strongly typed system would fair on this
problem.

7 Discussion

The system presented here is the first prototype for
evolving sentences in languages with constraints. It
has proven to be able to optimize all the problems
described here, including a difficult language such as
the units of measurement grammar.

GENETIC PROGRAMMING

0.115

011 q

0.105

0.1

0.095

0.09

0.085

0.08

0.075

0.07 I I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Figure 4: Average performance of ALP-1 on the sed-
iment transport problem Sedl. Although the failure
rate is high (see Figure 3), improvements keep on be-
ing found. Notice that the performance has not leveled
off yet at 100 generations.

The initialization procedure as is described here does
not provide an optimal starting point for the ALP sys-
tems. The initialization procedure consists of non-
backtracking points to derivations, with no unex-
pressed code. It is an avenue of future research to
find a better initialization procedure. However, the
highly explorative nature of the crossover used here,
enables the system to overcome this and even with a
non-optimal starting point, it is able to find competi-
tive solutions to the problems presented to it.

The main benefit of the ALPs system in contrast
with strongly typed genetic programming systems is
that the variational operators do not depend as heav-
ily on the grammar that is used. A strongly typed
crossover is constrained to search in the space of avail-
able types in the population, thus having a strong
macro-mutation flavor [1]. The ALP systems, borrow-
ing the mapping process from Grammatical Evolution,
is in principle not thus constrained. New instances of
types can be created during the run.

Although this paper has focussed on expression in-
duction, due to the general nature of logic programs,
we also expect to be able to perform optimization on
transformational problems [12], as well as on construc-
tional (embryonic) problems [4, 9].

8 Conclusion

An implementation and proof of principle is given for
an adaptive logic programming system called ALPs.

GENETIC PROGRAMMING

It modifies the standard Prolog clause selection to a
selection strategy that is guided by a variable length
genotype. The system was tested on three different
problems of increasing difficulty and was able to pro-
duce solutions to these problems.

Although backtracking did not seem necessary for the
simpler grammars, it made a significant difference in
the difficult grammar of units of measurement.

Acknowledgements

The first two authors would like to acknowledge the
Danish Technical Research Council (STVF) for partly
funding Talent Project 9800463 entitled ”Data to
Knowledge — D2K” http://www.d2k.dk

References

[1] P. J. Angeline. Subtree crossover: Building block
engine or macromutation? In J. R. Koza, K. Deb,
M. Dorigo, D. B. Fogel, M. Garzon, H. Iba,
and R. L. Riolo, editors, Genetic Programming
1997: Proceedings of the Second Annual Confer-
ence, pages 9-17, Stanford University, CA, USA,
13-16 July 1997. Morgan Kaufmann.

[2] V. Babovic and M. Keijzer. Genetic programming
as a model induction engine. Journal of Hydro
Informatics, 2(1):35-61, 2000.

[3] E. Burke and E. Foxley. Logic and Its Applica-
tions. Prentice Hall, 1996.

[4] F. Gruau. Genetic micro programming of neural
networks. In K. E. Kinnear, Jr., editor, Advances
in Genetic Programming, chapter 24, pages 495—
518. MIT Press, 1994.

[5] J.A.Zyserman and J. Fredsce. Data analysis of
bed concentration of suspended sediment. Journal
of Hydraulic Engineering, (9):1021-1042, 1994.

[6] M. Keijzer and V. Babovic. Genetic program-
ming, ensemble methods and the bias/variance
tradeoff - introductory investigations. In R. Poli,
W. Banzhaf, W. B. Langdon, J. F. Miller,
P. Nordin, and T. C. Fogarty, editors, Genetic
Programming, Proceedings of EuroGP’2000, vol-
ume 1802 of LNCS, pages 76-90, Edinburgh, 15-
16 Apr. 2000. Springer-Verlag.

[7] M. Keijzer, C. Ryan, M. O’Neill, M. Catollico,
and V. Babovic. Ripple crossover in genetic pro-
graming. In J. Miller, editor, Proceedings of Fu-
roGP 2001, 2001.

49

[8] J. R. Koza. Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Se-
lection. MIT Press, Cambridge, MA, USA, 1992.

[9] J. R. Koza, David Andre, F. H. Bennett III, and
M. Keane. Genetic Programming 3: Darwinian
Invention and Problem Solving. Morgan Kauf-
man, Apr. 1999.

[10] W. B. Langdon and R. Poli. Why ants are hard.
Technical Report CSRP-98-4, University of Birm-
ingham, School of Computer Science, Jan. 1998.
Presented at GP-98.

[11] J. F. Miller and P. Thomson. Cartesian genetic
programming. In R. Poli, W. Banzhaf, W. B.
Langdon, J. F. Miller, P. Nordin, and T. C. Fog-
arty, editors, Genetic Programming, Proceedings
of EuroGP’2000, volume 1802 of LNCS, pages
121-132, Edinburgh, 15-16 Apr. 2000. Springer-
Verlag.

[12] P. Nordin and W. Banzhaf. Genetic reasoning
evolving proofs with genetic search. In J. R.
Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon,
H. Iba, and R. L. Riolo, editors, Genetic Program-
ming 1997: Proceedings of the Second Annual
Conference, pages 255-260, Stanford University,
CA, USA, 13-16 July 1997. Morgan Kaufmann.

[13] M. O’Neill and C. Ryan. Grammatical evolution.
IEEE Trans. Evolutionary Computation, 2001.

[14] A. Ratle and M. Sebag. Genetic programming
and domain knowledge: Beyond the limitations of
grammar-guided machine discovery. In M. Schoe-
nauer, K. Deb, G. Rudolph, X. Yao, E. Lutton,
J. J. Merelo, and H.-P. Schwefel, editors, Parallel
Problem Solving from Nature - PPSN VI 6th In-
ternational Conference, Paris, France, Sept. 16-20
2000. Springer Verlag. LNCS 1917.

[15] B. Ross. Logic based genetic programming with
definite clause translation grammars. Technical
report, Department of Computer Science, Brock
University, Ontario Canada, 1999.

[16] L. Sterling and E. Shapiro.
MIT press, 1994.

The Art of Prolog.

[17] M. L. Wong and K. S. Leung. Evolutionary
program induction directed by logic grammars.
Evolutionary Computation, 5(2):143-180, sum-
mer 1997.

50

GENETIC PROGRAMMING

Evolution of Genetic Code on a Hard Problem

Robert E. Keller

Leiden Institute of Advanced Computer Science

Leiden University
The Netherlands
Robert.E.Keller@WEB.DE

Abstract

In most Genetic Programming (GP) ap-
proaches, the space of genotypes, that is the
search space, is identical to the space of phe-
notypes, that is the solution space. Develop-
mental approaches, like Developmental Ge-
netic Programming (DGP), distinguish be-
tween genotypes and phenotypes and use a
genotype-phenotype mapping prior to fitness
evaluation of a phenotype. To perform this
mapping, DGP uses a genetic code, that
is, a mapping from genotype components
to phenotype components. The genotype-
phenotype mapping is critical for the perfor-
mance of the underlying search process which
is why adapting the mapping to a given prob-
lem is of interest. Previous work shows, on
an easy synthetic problem, the feasibility of
code evolution to the effect of a problem-
specific self-adaptation of the mapping.The
present empirical work delivers a demonstra-
tion of this effect on a hard synthetic prob-
lem, showing the real-world potential of code
evolution which increases the occurrence of
relevant phenotypic components and reduces
the occurrence of components that represent
noise.

1 INTRODUCTION AND
OBJECTIVE

Genetic programming (Koza 1992, Banzhaf et al. 1998)
is an evolutionary algorithm that, for the purpose of
fitness evaluation, represents an evolved individual as
algorithm. Most GP approaches do not distinguish
between a genotype, that is, a point in search space,
and its phenotype, that is, a point in solution space.

Wolfgang Banzhaf
Computer Science Department,
Dortmund University

Germany
banzhaf@icd.de

Developmental approaches, however, like (Keller and
Banzhaf 1996, O’Neill and Ryan 2000, Spector and
Stoffel 1996), make a distinction between the search
space and the solution space. Thus, they employ a
genotype-to-phenotype mapping (GPM) since the be-
havior of the phenotype defines its fitness which is used
for selection of the corresponding genotype. This map-
ping is critical to the performance of the search pro-
cess: the larger the fraction of the search space that
a GPM maps onto good phenotypes, the better the
performance. In this sense, a mapping is said to be
“good” if it maps a “large” fraction of search space
onto good phenotypes. This is captured in the formal
measure of “code fitness” which is defined in (Keller
and Banzhaf 1999). That work shows, on an easy syn-
thetic problem, the effect of code evolution: genetic
codes, i.e., information that controls the genotype-
phenotype mapping and that is carried by individu-
als, get adapted such that problem-relevant symbols
are increasingly being used for the assembly of phe-
notypes, while irrelevant symbols are less often used.
This implies that the approach can adapt the map-
ping to the problem, which eliminates the necessity
of having a user define a problem-specific mapping.
This in itself would often be impossible when facing a
new problem, since the user does not yet understand
the problem well enough. From an abstract point of
view, code evolution adapts fitness landscapes, since a
certain mapping defines that landscape. (Keller and
Banzhaf 1999) also shows that, during evolution, it is
mostly better individuals who carry better codes, and
it is mostly better codes that are carried by better in-
dividuals. However, the computation of code fitness is
only feasible for small search spaces, that is, easy prob-
lems, why it is of interest to test whether the effect
of code evolution also takes place on a hard problem,
which is the objective of this work.

First, developmental genetic programming (DGP)
(Keller and Banzhaf 1996, Keller and Banzhaf 1999)

GENETIC PROGRAMMING

is introduced as far as needed in the context of this ar-
ticle, and the concept of a genetic code as an essential
part of a mapping is defined. Second, the principle
of the evolution of mappings as an extension to de-
velopmental approaches is presented in the context of
DGP. Here, the genetic code is subjected to evolution
which implies the evolution of the mapping. Third, the
objective mentioned above is being followed by investi-
gating the progression of phenotypic-symbol frequen-
cies in codes during evolution. Finally, conclusions and
objectives of further work are discussed.

2 DEVELOPMENTAL GENETIC
PROGRAMMING

All subsequently described random selections of an ob-
ject from a set of objects occur under equal probability
unless mentioned otherwise.

2.1 ALGORITHM

A DGP variant uses a common generational evolu-
tionary algorithm, extended by a genotype-phenotype
mapping prior to the fitness evaluation of the individ-
uals of a generation.

2.2 GENOTYPE, PHENOTYPE, GENETIC
CODE

The output of a GP system is an algorithm in a certain
representation. This representation often is a com-
puter program, that is, a word from a formal lan-
guage. The representation complies with structural
constraints which, in the context of a programming
language, are the syntax of that language. DGP pro-
duces output compliant with the syntax defined by
an arbitrary context-free LALR(1) (look-ahead-left-
recursive, look ahead one symbol) grammar. Such
grammars define the syntax of real-world program-
ming languages like ISO-C. A phenotype is repre-
sented by a syntactically legal symbol sequence with
every symbol being an element of either a function set
F or a terminal set T that both underlie a genetic-
programming approach. Thus, the solution space is
the set of all legal symbol sequences.

A codon is a contiguous bit sequence of b > 0 bits
length which encodes a symbol. In order to provide
for the encoding of all symbols, b must be chosen
such that for each symbol there is at least one codon
which encodes this and only this symbol. For instance,
with b = 3, the codon 010 may encode the symbol a,
and 23 symbols at most can be encoded. A genotype
is a fixed-size codon sequence of n > 0 codons, like

51

011 010 000 111 with size n = 4. By definition, the
leftmost codon is codon 0, followed by codon 1 up to
codon n — 1.

A genetic code is a codon-symbol mapping, that is,
it defines the encoding of a symbol by one or more
codons. An example is given below with codon size 3.

000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

a b c d + * - /

The “symbol frequency” of a symbol in a code is the
number m of occurrences of the symbol in the code,
which means that m different codons are mapped onto
this symbol.

2.3 GENOTYPE-PHENOTYPE MAPPING

In order to map a genotype onto a phenotype, the ge-
notype gets transcribed into a raw sequence of symbols,
using a genetic code. Transcription scans a genotype,
starting at codon 0, ending at codon n — 1. The ge-
notype 101 101 000 111, for instance, is mapped onto
“xxa/” by use of the above sample code.

For the following examples, consider the syntax of
arithmetic expressions. A symbol that represents a
syntax error at a given position in a given symbol
sequence is called illegal, else legal. A genotype is
mapped either onto a legal or, in the case of “x xa/”,
illegal raw symbol sequence. An illegal raw sequence
gets repaired according to the syntax, thus yielding
a legal symbol sequence. To that end, several repair
algorithms are conceivable. A comparatively simple
mechanism is introduced here, called “deleting repair”.
Intron splicing (Watson et al. 1992), that is the re-
moval of genetic information which is not used for the
production of proteins, is the biological metaphor be-
hind this repair mechanism. Deleting repair scans a
raw sequence and deletes each illegal symbol, which is
a symbol that cannot be used for the production of
a phenotype, until it reaches the sequence end. If a
syntactic unit is left incomplete, like “a—", it deletes
backwards until the unit is complete. For instance, the
above sample raw sequence gets repaired as follows:
“«xa/ — xa/ — a/”,then a is scanned as a legal
first symbol, followed by / which is also legal. Next,
the end of the sequence is scanned, so that “a/” is
recognized as an incomplete syntactic unit. Backward
deleting sets in and deletes /, yielding the sequence
a, which is legal, and the repair algorithm terminates.
Note that deleting repair works for arbitrarily long and
complex words from any LALR(1) language.

If the entire sequence has been deleted by the repair
mechanism, like it would happen with the phenotype
“+ + ++47, the worst possible fitness value is assigned

52

to the genotype. This is appropriate from both a bio-
logical and a technical point of view. In nature, a
phenotype not interacting with its environment does
not have reproductive success, the latter being crudely
modeled by the concept of “fitness” in evolutionary al-
gorithms. In a fixed-generation-size EA, like the DGP
variant used for the empirical investigation described
here, an individual with no meaning is worthless but
may not be discarded due to the fixed generation size.
It could be replaced, for instance, by a meaningful ran-
dom phenotype. This step, however, can be saved by
assigning worst possible fitness so it is likely to be re-
placed by another individual during subsequent selec-
tion and reproduction.

The produced legal symbol sequence represents the
phenotype of the genotype which has been the in-
put to the repair algorithm. Therefore, theoretically,
the GPM ends with the termination of the repair
phase. Practically, however, the legal sequence must
be mapped onto a phenotype representation that can
be executed on the hardware underlying a GP system
in order to evaluate the fitness of the represented phe-
notype. This representation change is performed by
the following phases.

Following repair, editing turns the legal symbol se-
quence into an edited symbol sequence by adding stan-
dard information, e.g., a main program frame enclos-
ing the legal sequence. Finally, the last phase of the
mapping, which can be compilation of the edited sym-
bol sequence, transforms this sequence into a machine-
language program processable by the underlying hard-
ware. This program is executed in order to evaluate
the fitness of the corresponding phenotype. Alterna-
tively, interpretation of the edited symbol sequence can
be used for fitness evaluation.

2.4 CREATION, VARIATION,
REPRODUCTION, FITNESS AND
SELECTION

Creation builds a fixed-size genotype as a sequence of
n codons random-selected from the codon set. Varia-
tion is implemented by point genotype mutation where
a randomly selected bit of a genotype is inverted. The
resulting mutant is copied to the next generation. Re-
production is performed by copying a genotype to the
next generation. An ezecution probability p of a re-
production or variation operator designates that the
operator is randomly selected from the set of variation
and reproduction operators with probability p. An ex-
ecution probability is also called a rate. Fitness-based
tournament selection with tournament size two is used
in order to select an individual for subsequent repro-

GENETIC PROGRAMMING

duction or variation. Adjusted fitness (Koza 1992) is
used as fitness measure. Thus, all possible fitness val-
ues exist in [0, 1], and a perfect individual has fitness
value 1.

3 CODE EVOLUTION

3.1 BIOLOGICAL MOTIVATION

The mapping employed by DGP is a crude metaphor of
protein synthesis that produces proteins (phenotype)
from DNA (genotype). In molecular biology, a codon
is a triplet of nucleic acids which uniquely encodes one
amino acid, at most. An amino acid is a part of a
protein and thus corresponds to a symbol. Like natural
genotypes have evolved, the genetic code has evolved,
too, and it has been argued that selection pressure
works on code properties necessary for the evolution of
organisms (Maeshiro 1997). Since artificial evolution
gleaned from nature works for genotypes, the central
hypothesis investigated here is that artificial evolution
works for genetic codes, too, producing such codes that
support the evolution of good genotypes.

3.2 TECHNICAL MOTIVATION

In DGP, the semantics of a phenotype is defined by
its genotype, the specific code, repair mechanism and
semantics of the employed programming language. Es-
pecially, different codes mean different genotypic rep-
resentations of a phenotype and therefore different fit-
ness landscapes for a given problem. Finally, certain
landscapes differ extremely in how far they foster an
evolutionary search. Thus, it is of interest to evolve ge-
netic codes during a run such that the individuals car-
rying these codes find themselves in a beneficial land-
scape. This situation would improve the convergence
properties of the search process. A related aspect is the
identification of problem-relevant symbols in the F and
T sets. In order to investigate and analyze the effects
of code evolution, an extension to DGP has been de-
fined and implemented, which will be described next.

3.3 INDIVIDUAL GENETIC CODE

DGP may employ a global code, that is, all genotypes
are mapped onto phenotypes by use of the same code.
This corresponds to the current situation in organic
evolution, where one code, the standard genetic code,
is the basis for the protein synthesis of practically all
organisms with very few exceptions like mitochondrial
protein synthesis.

(Keller and Banzhaf 1999) introduces the algorithm of
genetic-code evolution. If evolution is expected to oc-

GENETIC PROGRAMMING

cur on the code level, the necessary conditions for the
evolution of any structure must be met. Thus, there
must exist a structure population, reproduction and
variation of the individuals, a fitness measure, and a
fitness-based selection of individuals. A code popula-
tion can be defined by replacing the global genetic code
by an individual code, that is, each individual carries
its own genetic code along with its genotype. During
creation, each individual receives a random code. An
instance random code is shown:

000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
* / * a a d + a

Note that a code, since it is defined as an arbitrary
codon-symbol mapping, is allowed to be redundant
with respect to certain symbols., i.e., it may map more
than one codon onto the same symbol. This is not
in contradiction to the role of a code, since also a
redundant code can be used for the production of a
phenotype. Actually, redundancy is important, as the
empirical results will show.

3.4 VARIATION, REPRODUCTION,
CODE FITNESS AND SELECTION

A point code mutation of a code is defined as ran-
domly selecting a symbol of the code and replacing it
by a different symbol random-selected from the sym-
bol set. Point code mutation has a certain execution
probability. Reproduction of a code happens by repro-
ducing the individual that carries the code. The same
goes for selection.

4 EMPIRICAL ANALYSIS

The announced major objective of the present work is
to empirically test whether the effect of code evolution
takes place on a hard problem, i.e., whether the codes
are adapted in a problem-specific way that is benefi-
cial to the search process. To this end, a run series
is performed on a hard synthetic problem. Evolution
means a directed change of the structures of interest,
which are, in the present case, the genetic codes of the
individuals. In the context of the present work, the
phenomenon of interest is the change of the symbol
frequencies of the target symbols. If the effect of code
evolution takes place on a hard problem, this must
show as a shift of symbol frequencies such that the re-
sulting codes map codons on relevant symbols rather
than on other symbols.

According with the objective of the present work, a
hard problem has to be designed, and problem-relevant
as well as irrelevant symbols, which represent noise,

53

have to be contained in the symbol set. Note that the
objective is not to solve the problem but to observe
code evolution during the DGP runs on the problem.
There are several conditions for a problem that is hard
for an evolutionary algorithm, and one of the most
prominent ones is that the search space is by many
orders of magnitude larger than the set of individuals
generated by the algorithm during its entire run time.

The problem to be considered is a symbolic function
regression of an arithmetic random-generated function
on a real-valued parameter space.

All function parameters come from [0, 1], and the real-
valued problem function is given by

f(A,B,a,b,..,y,z) =j+x+d+j*o+exr—t—a+h—
kxu+a—k—sxoxi—hxv—i—i—s+l—uxn+l+r—7jx
jroxv—j+i+ frc+r—v+n—nxv—a—qgxixh+d—i—
t+s+lxa—jxgxv—i—prgxu—x+e+m—kxr+k—1Ix
uxrxdsr—a+t—exr—v—p—c—o—oxuxcxh+r+e—
axutcxlxr—xxt—nxd+pxrxwxv—jxn—a—exb+a.

Accordingly, the terminal set used by the system for
all of its runs is given as {4, B,a,b,..,y,z}, and the
four parameters A, B,y, z do not occur in the expres-
sion that defines the problem function, that is, they
represent noise in the problem context. In order to
provide for noise in the context of the function set,
too, this set shall be given as {+, —, %, /}. As the divi-
sion function / does not occur in the expression that
defines the problem function, it represents noise. As
only 5 symbols, — i.e., about 15% —, of all 32 symbols
represent noise, identifying those by chance is unlikely.

Due to the resulting real-valued 28-dimensional pa-
rameter space, a fitness case consists of 28 real-valued
input values and one real output value. Let the train-
ing set consist of 100 random-generated fitness cases.
A population size of 1,000 individuals is chosen for all
runs, and 30 runs shall be performed, each lasting for
exactly 200 generations. That is, there is no run ter-
mination when a perfect individual is found so that
phenomena of interest can be measured further until
a time-out occurs after the evolution of the 200th gen-
eration.

As there are 32 target symbols, the size of the codons
must be set to five, at least, in order to have codes
that can accomodate all symbols, and for the run se-
ries, the size is fixed at five. As 2° = 32, the space
of all possible genetic codes contains 3232 elements, or
approximately 1.5 % 10*® codes, including 32! or about
2.6 x 10%® codes with no redundancy. Genotype size
400 is chosen, i.e., 400 codons make up an individ-
ual genotype, while the length of the problem func-

54

tion, measured in target symbols, is about 200. This
over-sizing of the genotype size strongly enlarges the
search space, making the problem at hand very hard.
As the codon size equals five and the genotype size
equals 400, the search space contains 2499*5 individu-
als, or 10902, and as the single-bit-flip operator is the
only genotypic variation operator, this corresponds to
a 2000-dimensional search space. According to the ex-
perimental parameters, 6 * 10% individuals are evalu-
ated during the run series, so that the problem search
space as well as the space of all codes are significantly
larger than the set of search trials, that is, individuals,
generated by the approach.

The execution probabilities are 0.85 for genotype re-
production, 0.12 for point genotype mutation, and 0.03
for point code mutation. Note that the point code mu-
tation rate is only 25 percent of the genotype point
mutation rate. This has been set to allow the ap-
proach to evolve the slower changing codes by use of
several different individuals that carry the same code,
like genotypes are evolved by use of several different,
usually static, fitness cases. We hypothesize that these
differing time scales are needed by the approach to dis-
tinguish between genotypes and codes.

The codes of the individuals of an initial generation
are randomly created, so that each of the 32 symbol
frequencies is about one in generation 0.

5 RESULTS AND DISCUSSION

Subsequently, “mean” refers to a value averaged over
Y

all runs, while “average” designates a value averaged

over all individuals of a given generation.

Top down, figure 1 shows the progression of the mean
best fitness and the mean average fitness.

Both curves rise, indicating convergence of the search
process, which is relevant to the hypothesized principle
of code evolution that is given below.

The following four figures together illustrate the pro-
gression of the mean symbol frequencies for all 32 sym-
bols, while each figure, for reasons of legibility, displays
information for eight symbols only.

Asg for the interpretation of figures 2 to 5, the fre-
quency value F for a symbol S in generation G says
that, over all runs, S occurs, on average, F' times in
a genetic code of an individual from G. As there are
32 positions in each code, F' theoretically comes from
[0, .., 32], while practically the extreme values of the
range will not be reached due to point code mutation.
A value below one indicates the rareness of S in most
codes of the generation, while a value above one sig-

GENETIC PROGRAMMING

fitness progression

0.018
0.016
0.014
0.012
0.01
0.008
0.006
0.004
0.002 1

mean best-fitness
mean avg-fitness =

fitness

0 20 40 60 80 100 120 140 160 180 200

generations

Figure 1: Top down, the curves show the progression
of the mean best fitness and mean average fitness.

symbol frequency progression, part 1

frequency

0 20 40 60 80 100 120 140 160 180 200

generations

Figure 2: Progression of the mean symbol frequency
in the code population.

nals redundancy of S, that is, on average, more than
one codon of a genotype gets mapped onto S, or, put
differently, S gets more often used for the build-up of
a phenotype. Note that, due to the random creation
of the codes for generation 0, all curves in all figures
approximately begin in (0, 1), since there are 32 codes
and 32 positions in each code.

A general impression to be gained from all figures is
that, after an initial phase of strong oscillation of the
frequencies, the frequency distribution stabilizes. This
phenomenon is typical for learning processes in the
field of evolutionary algorithms, where after an initial
exploratory phase a phase of exploitation sets in. It
can be observed for fitness progressions, where well-
performing individuals are of interest, and it can also
be oberved for the presented symbol-frequency distri-

GENETIC PROGRAMMING

symbol frequency progression, part 2

frequency

0 20 40 60 80 100 120 140 160 180 200

generations

Figure 3: Progression of the mean symbol frequency
in the code population.

symbol frequency progression, part 3

frequency

0 20 40 60 80 100 120 140 160 180 200

generations

Figure 4: Progression of the mean symbol frequency
in the code population.

butions, where a beneficial genotype-phenotype map-
ping is of interest.

Specifically, the figures show a classification of the
symbols with respect to their relevance for the solving
of the problem, as will be argued next. Due to ini-
tial oscillation, more reliable results are to be gained
from late generations, which is why the frequencies of
the final 200th generation shall be considered. In or-
der to accomodate for variance of the mean average
frequency values, symbols with a frequency of 0.8 or
lower shall be designated as clearly under-represented
in number in the genetic codes. As levels of statistical
significance mostly come from [0.9,..,0.99], 0.8 repre-
sents a safe upper threshold for insignificance.

These symbols are A,B,b,c,f,g,h,j,n,q,s,w,y,/,
which implies that four of five, that is, 80%, of

55

symbol frequency progression, part 4

frequency

0 20 40 60 80 100 120 140 160 180 200

generations

Figure 5: Progression of the mean symbol frequency
in the code population. Note that the arithmetic-
operator frequencies stabilize very fast and stay very
stable. This is not an artefact.

the noise-representing symbols A, B,y, z,/ are under-
represented, while 63% of the problem-relevant sym-
bols, that is, 17 of 27 symbols, are represented with a
frequency of one and higher.

The frequency of a symbol in a code heavily influences
the frequency of the occurrence of the symbol in the
phenotype onto which a genotype carrying the code
is mapped. Thus, if non-noise symbols do and noise
symbols do not become elements of the phenotype, this
situation increases the likelihood that the phenotype
has an above-average fitness. Therefore, the presented
result represents the objective of the present work, as
it verifies that the effect of code evolution also takes
place on a hard problem in a way beneficial to the
search process.

As for the principle of code evolution, we hypothesize
that, for a certain problem, some individual code W,
through a point code mutation, becomes better than
another individual code L. Thus, W has a higher prob-
ability than L that its carrying individual has a geno-
type together with which W yields a good phenotype.
Therefore, since selection on individuals is selection
on codes, W has a higher probability than L of being
propagated over time by reproduction and being sub-
jected to code mutation. If such a mutation results
in even higher code fitness, then the argument that
worked for W works for W’s mutant, and so forth.

56

6 CONCLUSIONS

It has been shown empirically that the effect of code
evolution works on a hard problem, that is, genetic
codes carried by individuals get adapted such that,
during run time, problem-relevant phenotypic symbols
are increasingly being used while irrelevant symbols
are less often used.

7 FUTURE RESEARCH

Several hypotheses must be investigated, among them
the claim that DGP with code evolution outperforms
non-developmental approaches on hard problems. We
argue especially that there is a high potential in code
evolution for the application to data-mining problems,
since, in this domain, a “good” composition of a sym-
bol set is typically unknown since the functional re-
lations between the variables are unknown due to the
very nature of data-mining problems. We hypothesize
that code evolution, through generation of redundant
codes, enhances the learning of significant functional
relations by biasing for problem-specific key data and
filtering out of noise. Last not least, the hypothesized
principle of code evolution, that is, the co-operative
co-evolution of individuals and codes, shall be investi-
gated.

References

Banzhaf, Wolfgang, Peter Nordin, Robert E. Keller
and Frank D. Francone (1998). Genetic Program-
ming — An Introduction; On the Automatic Evolu-
tion of Computer Programs and its Applications.
Morgan Kaufmann, dpunkt.verlag.

Keller, Robert E. and Wolfgang Banzhaf (1996). Gene-
tic programming using genotype-phenotype map-
ping from linear genomes into linear phenoty-
pes. In: Genetic Programming 1996: Proceedings
of the First Annual Conference (John R. Koza,
David E. Goldberg, David B. Fogel and Rick L.
Riolo, Eds.). MIT Press, Cambridge, MA. Stan-
ford University, CA. pp. 116-122.

Keller, Robert E. and Wolfgang Banzhaf (1999). The
evolution of genetic code in genetic programming.
In: GECCO-99: Proceedings of the Genetic and
Evolutionary Computation Conference, July 13-
17, 1999, Orlando, Florida USA (W. Banzhaf,
J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar,
M. Jakiela and R.E. Smith, Eds.). Morgan Kauf-
mann. San Francisco, CA.

GENETIC PROGRAMMING

Koza, John R. (1992). Genetic Programming: On the
Programming of Computers by Natural Selection.
MIT Press, Cambridge, MA.

Maeshiro, Tetsuya (1997). Structure of Genetic Code
and its Evolution. PhD thesis. School of Infor-
mation Science, Japan Adv. Inst. of Science and
Technology. Japan.

O’Neill, M. and C. Ryan (2000). Crossover in gram-
matical evolution: A smooth operator?. In: Ge-
netic Programming (Riccardo Poli et al., Ed.).
Number 1802 In: LNCS. Springer.

Spector, Lee and Kilian Stoffel (1996). Ontoge-
netic programming. In: Genetic Programming
1996: Proceedings of the First Annual Conference
(John R. Koza, David E. Goldberg, David B. Fo-
gel and Rick L. Riolo, Eds.). MIT Press, Cam-
bridge, MA.. Stanford University, CA. pp. 394—
399.

Watson, James D., Nancy H. Hopkins, Jeffrey W.
Roberts, Joan A. Steitz and Alan M. Weiner
(1992). Molecular Biology of the Gene. Benjamin
Cummings. Menlo Park, CA.

GENETIC PROGRAMMING

57

58

GENETIC PROGRAMMING

GENETIC PROGRAMMING

59

60

GENETIC PROGRAMMING

GENETIC PROGRAMMING

61

62

GENETIC PROGRAMMING

GENETIC PROGRAMMING

63

64

GENETIC PROGRAMMING

GENETIC PROGRAMMING

65

66

GENETIC PROGRAMMING

Genetic Programming for Combining Classifiers

W. B. Langdon and B. F. Buxton
Computer Science, University College, London, Gower Street, London, WC1E 6BT, UK
{W.Langdon,B.Buxton}@cs.ucl.ac.uk
http://www.cs.ucl.ac.uk/staff/ W.Langdon, /staff/B.Buxton
Tel: +44 (0) 20 7679 4436, Fax: +44 (0) 20 7387 1397

Abstract

Genetic programming (GP) can automat-
ically fuse given classifiers to produce a
combined classifier whose Receiver Operat-
ing Characteristics (ROC) are better than
[Scott et al., 1998b]’s “Maximum Realisable
Receiver Operating Characteristics” (MR-
ROC). Le. better than their convex hull.
This is demonstrated on artificial, medical
and satellite image processing bench marks.

1 INTRODUCTION

[Scott et al, 1998b] has previously suggested the
“Maximum Realisable Receiver Operating Character-
istics” for a combination of classifiers is the convex
hull of their individual ROCs. However the convex
hull is not always optimal [Yusoff et al., 1998]. We
show, on the problems used by [Scott et al., 1998b],
that genetic programming can evolve a combination
of classifiers whose ROC are better than the convex
hull of the supplied classifier’s ROCs.

The next section gives the back ground to data fusion,
Section 3 summarises Scott’s work, his three bench
marks are described in Section 4. The genetic pro-
gramming system and its results are given in Sections 5
and 6. Finally we finish in Sections 7 and 8 with a dis-
cussion and conclusions.

2 BACKGROUND

There is considerable interest in automatic means of
making large volumes of data intelligible to people.
Arguably traditional sciences such as Astronomy, Bi-
ology and Chemistry and branches of Industry and
Commerce can now generate data so cheaply that it
far outstrips human resources to make sense of it. In-
creasingly scientists and Industry are turning to their

computers not only to generate data but to try and
make sense of it. Indeed the new science of Bioin-
formatics has arisen from the need for computer sci-
entists and biologists to work together on tough data
rich problems such as rendering protein sequence data
useful. Of particular interest are the Pharmaceutical
(drug discovery) and food preparation industries.

The terms Data Mining and Knowledge Discovery are
commonly used for the problem of getting informa-
tion out of data. There are two common aims: 1) to
produce a summary of all or an interesting part of
the available data 2) to find interesting subsets of the
data buried within it. Of course these may overlap.
In addition to traditional techniques, a large range of
“intelligent” or “soft computing” techniques, such as
artificial neural networks, decision tables, fuzzy logic,
radial basis functions, inductive logic programming,
support vector machines, are being increasingly used.
Many of these techniques have been used in connec-
tion with evolutionary computation techniques such
as genetic algorithms and genetic programming.

We investigate ways of combining these and other clas-
sifiers with a view to producing one classifier which is
better than each. Firstly we need to decide how we
will measure the performance of a classifier. In prac-
tise when using any classifier a balance has to be cho-
sen between missing positive examples and generating
too many spurious alarms. Such a balancing act is not
easy. Especially in the medical field where failing to
detect a disease, such as cancer, has obvious conse-
quences but raising false alarms (false positives) also
has implications for patient well being. Receiver Op-
erating Characteristics (ROC) curves allow us to show
graphically the trade off each classifier makes between
its “false positive rate” (false alarms) and its “true
positive rate” [Swets et al., 2000]. (The true positive
rate is the fraction of all positive cases correctly clas-
sified. While the false positive rate is the fraction of
negative cases incorrectly classified as positive). Ex-

GENETIC PROGRAMMING

ample ROC curves are shown in Figures 1 and 3. We
treat each classifier as though it has a sensitivity pa-
rameter (e.g a threshold) which allows the classifier
to be tuned. At the lowest sensitivity level the clas-
sifier produces no false alarms but detects no positive
cases, i.e. the origin of the ROC. As the sensitivity
is increased, the classifier detects more positive exam-
ples but may also start generating false alarms (false
positives). Eventually the sensitivity may become so
high that the classifier always claims each case is pos-
itive. This corresponds to both true positive and false
positive rates being unity, i.e. the top right hand cor-
ner of the ROC. On average a classifier which simply
makes random guesses will have an operating point
somewhere on the line between the origin and 1,1 (see
dotted line in Figure 3).

Naturally we want our classifiers to have ROC curves
that come as close to a true positive rate of one and
simultaneously a false positive rate of zero. In Sec-
tion 5 we score each classifier by the area under its
ROC curve. An ideal classifier has an area of one. We
also require the given classifiers, not only to indicate
which class they think a data point belongs to, but
also how confident they are of this. Values near zero
indicate the classifier is not sure, possible because the
data point lies near the classifier’s decision boundary.

Arguably “Boosting” techniques combine classifiers
[Freund and Schapire, 1996]. However Boosting is nor-
mally applied to only one classifier and produces im-
provements by iteratively retraining it. Here we will
assume the classifiers we have are fixed, i.e. we do
not wish to retrain them. Similarly Boosting is nor-
mally applied by assuming the classifier is operated at
a single sensitivity (e.g a single threshold value). This
means on each retraining it produces a single pair of
false positive and true positive rates. Which is a single
point on the ROC rather than the curve we require.

3 “MAXIMUM REALISABLE” ROC

[Scott et al., 1998b] describes a procedure which will
create from two existing classifiers a new one whose
performance (in terms of its ROC) lies on a line con-
necting the performance of its two components. This
is done by choosing one or other of the classifiers at
random and using its result. E.g. if we need a classifier
whose false positive rate vs. its true positive rate lies
on a line half way between the ROC points of classi-
fiers A and B, then the Scott’s composite classifier will
randomly give the answer given by A half the time and
that given by B the other half, see Figure 1. (Of course
persuading patients to accept such a random diagnose
may not be straightforward).

67

! MRRO
B
72}
z C
Z
~
Q
=
H
0
0 False Positives 1

Figure 1: Classifier C is created by choosing equally
between the output of classifier A and classifier B. Any
point in the shaded area can be created. The “Maxi-
mum Realisable ROC” is its convex hull (solid line).

The performance of the composite can be readily set
to any point along the line simply by varying the ratio
between the number of times one classifier is used rel-
ative to the other. Indeed this can be readily extended
to any number of classifiers to fill the space between
them. The better classifiers are those closer to the zero
false positive axis or with a higher true positive rate.
In other words the classifiers lying on the convex hull.

Often classifiers have some variable threshold or tuning
parameter whereby their trade off between false posi-
tives and true positives can be adjusted. This means
their Receiver Operating Characteristics (ROC) are
now a curve rather than a single point. Scott applied
his random combination method to each set of points
along the curve. So the “maximum realisable” ROC is
the convex hull of the classifier’s ROC. Indeed, if the
ROC curve is not convex, an improved classifier can
easily be created from it [Scott et al., 1998b] (see Fig-
ure 4). The nice thing about the MRROC, is that it
is always possible. But as we show it may be possible
to do better automatically.

4 DEMONSTRATION PROBLEMS

[Scott et al., 1998b] contains three benchmarks. Three
of the following sections (4.2, 4.3 and 4.5) describe
the preparation of the datasets. Sections 4.1 and 4.4
describe the two classifiers Scott used.

4.1 LINEAR CLASSIFIERS

In the first two examples (Sections 4.2 and 4.3) we use
a tunable linear classifier for each data attribute (di-
mension). This classifier has a single decision value
(a threshold). If examples of the class lie mostly at
high values then, if a data point is above the thresh-
old, the classifier says the data point is in the class.
Otherwise it says it isn’t. To produce a ROC curve

68

the threshold is varied from the lowest possible value
of the associated attribute to the highest.

To use a classifier in GP we adopt the convention that
non-negative values indicate the data is in the class.
We also require the classifier to indicate its “confi-
dence” in its answer. In our GP, it does this by the
magnitude of the value it returns.

(The use of the complex plane would allow extension
of this signalling to more than two classes. Absolute
magnitude would continue to indicate the classifiers
confidence. While the complex plane could be divided
into (possibly unequal) angular segments, one for each
class. An alternative would be to allocate each class
a point in the complex plane. The designated class
would be the one closest in the complex plane. But if
two class origins were a similar distance from the value
returned by GP this would indicate the classifier was
not sure which of the two classes to choose).

The linear classifier splits the training set at the
threshold. When predicting, it uses only those exam-
ples which are the same side of the threshold as the
point to be classified and chooses the class to which
most of them belong. Its “confidence” is the differ-
ence between the number of training examples below
the threshold in each class divided by their sum. Note
the value returned to GP lies in the range —1...+ 1.

4.2 OVERLAPPING GAUSSIAN

Following [Scott et al., 1998b, Section 3.1 and Figure 3]
we created a training and a verification dataset, each
containing 5000 randomly chosen data points. The
points are either in class 1 or class 2. 1250 values were
created using Gaussian distributions each with a stan-
dard deviation of 0.5. Those of class 1 had means of
3 and 7. While those used to generate class 2 data
had means of 5 and 9. Note this gives rise to inter-
locking regions with some degree of overlap at their
boundaries, see Figure 2.

Clearly a linear classifier (LC) with only a single deci-
sion point can not do well on this problem. Figure 3
shows its performance in terms of the trade off between
false positives and true positives.

4.3 THYROID

The data preparation for the Thyroid problem follows
Scott’s. The data was down loaded from the UCI ma-
chine learning repository'. ann.train was used for the
training set and ann.train2 for the verification set.

Yftp://ftp.ics.uci.edu/pub/machine-learning-
databases/thyroid-disease

GENETIC PROGRAMMING

120

100

80 |

60

Count (histogram)

20 |

- 1
5 6 7 8 9 10 11
Feature value

Figure 2: Example of a two class multi-modal data de-
signed to be difficult for a linear classifier (Section 4.1).

1 T T T T T T 1
0.9
08
0.7
06
05
0.4 ,
0.3 4

True Positives

02 F N
01 f i

0 L 1 1 1 1 1 1 1 1 1
0 0.10203040506070809 1
False Positives

Figure 3: The Receiver Operating Characteristics
curve produced by moving the decision boundary along
the x-axis of Figure 2. The ROC are stepped as the
classifier (Sect. 4.1) cannot capture the nature of the
data.

1

0.9
0.8
0.7
0.6
0.5
04 E

True Positives

03 _

0-2 - ROC linear classifier, area 0.7498 ——|
01k Convex Hull, area 0.8634 ------ .

0 1 1 1 1 1 1 1 1 1
0 0.10203040506070809 1
False Positives

Figure 4: The convex hull of the ROC curve of Fig-
ure 3. Note a tunable classifier is improved by com-
bining with itself, if its ROC are not convex.

GENETIC PROGRAMMING

(Both contain 3800 records). Originally it is a three
class problem, the two classes for abnormal thyroids
(79 and 199 records each in ann. train) were combined
into one class. The GP is limited to using the two
attributes (out of a total of 21) that Scott used. (Us-
ing all the attributes makes the problem much easier).
Following strange floating point behaviour, both at-
tributes were rescaled by multiplying by 1000. Rescal-
ing means most numbers are integers between 1 and
200 (cf. Figure 10). Scott does not report rescaling.
Two linear classifiers (LC18 and LC19) were trained,
one on each attribute (D18 and D19) using the training
set.

4.4 NAIVE BAYES CLASSIFIERS

The Bayes [Ripley, 1996; Mitchell, 1997] approach at-
tempts to estimate, from the training data, the prob-
ability of data being in each class. Its prediction is
the class with the highest estimated probability. We
extend it 1) to include a tuning parameter to bias its
choice of class and 2) to make it return a confidence
based upon the difference between the two probabili-
ties.

Naive Bayes classifiers are based on the assumption
that the data attributes are independent. I.e. the prob-
abilities associated with a data point are calculated by
multiplying the estimates of the probabilities associ-
ated with each of its attributes.

The probabilities estimates of each class are based
upon counting the number of instances in the train-
ing set for each attribute (dimension) that match both
the point to be classified and the class, and dividing by
the total number of instances which match regardless
of the class. The estimates for each attribute are then
multiplied together to give the probability of the data
point being in a particular class.

The functions Py , and P; , use to estimate the prob-
abilities for classes from training set attributes a

P .. (E) =

)

Pr(class = ¢) H Pr(X; = vj|class = ¢)
Jj€a

As an example, consider the data point E =
(6,7,8,9,10,11,12,13) and a classifier using the set
of attributes a = {2,3,5}. Then the probability E is
in class 0, Py o(E), is estimated to be, the probabil-
ity of class 0 times, the probability that attribute 2
is 7 given the data is in class zero times, the proba-
bility attribute 3 is 8 (given the class is zero) times,
the probability attribute 5 is 10 (given the class is
zero). The calculation is repeated for the other classes

69

(i.e. for class 1). The classifier predicts that E be-
longs to the class with the highest probability estimate.
Le. if Py o(E) < P1,4(F) then the Naive Bayes classi-
fier (working on the set a of attributes) will predict
the example data point E is in class 1, otherwise 0.

If there is no training data for a given class/attribute
value combination, we follow [Kohavi and Sommer-
field, 1996, page 11] and estimate the probability
based on assuming there was actually a count of 0.5.
([Mitchell, 1997] suggests a slightly different way of
calculating the estimates).

Since the denominators in P, are the same for all
classes we can remove them and instead work with B

B..(E) =

Number(class = ¢) H Number(X; = v; Nclass = ¢)
j€a

A threshold T (0 < T < 1), allows us to introduce
a bias. Le. if (1 = T) x Byo(E) < T x By ,4(E) then
our Bayes classifier will predicts E is in class 1, oth-

erwise 0. Finally we define the classifiers “confidence”
to be 1B0.a(E)=B1.q(B)|
(Bo,a(E)+B1,q(E))"

4.5 GREY LANDSAT

Despite some care we have not been able to repro-
duce exactly the graphical results pictured in [Scott et
al., 1998a) and [Scott et al., 1998b]. The Naive Bayes
classifiers on the data we have appear to perform some
what better. This makes the problem more challeng-
ing since there is less scope for improvement. [Scott et
al., 1998a] and [Scott et al., 1998b] show considerable
crossings in the ROC curves of the five classifiers they
use. The absence of this in our data may also make it
harder (see Figure 11).

The Landsat data comes from the Stalog project via
the UCI machine learning repository?. The data is
spilt into training (sat.trn 4425 records) and test
(sat.tst 2000). Each record has 36 continuous at-
tributes (8 bit integer values nominally in the range
0-255) and 6 way classification. (Classes 1, 2, 3, 4, 5
and 7). Following Scott; classes 3, 4 and 7 were com-
bined into one (positive, grey) while 1, 2 and 5 became
the negative examples (not-grey). sat.tst was kept
for the holdout set.

The 36 data values represent intensity values for nine
neighbouring pixels and four spectral bands (see Fig-
ure 5). While the classification refers to just the cen-
tral pixel. Since each pixel has eight neighbours and

2ftp://ftp.ics.uci.edu/pub/machine-learning-
databases/statlog/satimage

70

80m

D8

D16
80m
D23

D24

Figure 5: Each record contains data from nine ad-
jacent Landsat pixels. Scott’s five classifiers (nubl6,
nb16,23 nb16,23,24 nb23,24 and nb8,23,24) together
use four attributes, Three (8, 16, 24) use spectral
band 0 and the other (23) uses band 3. Notice how
they straddle the central pixel in a diagonal configura-
tion. However nb23,24 (which straddles both the area
and the spectrum) has the best performance of Scott’s
Naive Bayes classifiers.

each may be in the dataset, data values appear multi-
ple times in the data set. But when they do, they are
presented as being different attributes each time. The
data come from a rectangular area approximately five
miles wide.

After reducing to two classes, the continuous values
in sat.trn were partitioned into bins before it was
used by the Naive Bayes classifier. Following [Scott et
al., 1998a, page 8], we used entropy based discretisa-
tion [Kohavi and Sommerfield, 1996, implemented in
MLC++ discretize.exe?, with default parameters.
(Giving between 4 and 7 bins per attribute). To avoid
introducing bias, the holdout data (sat.tst) was par-
titioned using the same bin boundaries.

sat.trn was randomly split into training (2956
records) and verification (1479) sets. The Bayes clas-
sifiers use the discrete data. In some experiments, the
GP system was able to read data attributes values di-
rectly. In which case it used the continuous (floating
point) value, rather than the attribute bin number.

5 GP CONFIGURATION

The GP is set up to signal its prediction of the class
of each data value in the same was as the classifiers it
can use. Le. by return a floating point value, whose
sign indicates the class and whose magnitude indicates
the “confidence”. (Note confidence is not constrained
to lie in a particular range).

Following earlier work [Jacobs et al., 1991; Soule, 1999;
Langdon, 1998] each GP individual is composed of five

3h1:1;p ://www.sgi.com/Technology/mlc

GENETIC PROGRAMMING

trees. Each of which is capable of acting as a classifier.
The use of signed numbers makes it natural to combine
classifiers by adding them. L.e. the classification of the
“ensemble” is the sum of the answers given by the five
trees. Should a single classifier be very confident about
its answer this allows it to “out vote” the all others.

We have not systematically experimented with the
number of trees or alternative methods of combining
them. The simplest problem can be solved with only
one. Also in many individuals one or more of the trees
appear to have little or a very basic function, such as
always returning the same value or biasing the result
by the threshold parameter.

5.1 FUNCTION AND TERMINAL SETS

The function set includes the four binary floating
arithmetic operators (+, x, — and protected division),
maximum and minimum and absolute maximum and
minimum. The latter two return the (signed) value
of the largest, (or smallest) in absolute terms, of their
inputs. IFLTE takes four arguments. If the first is less
than or equal to the second, IFLTE returns the value
of its third argument. Otherwise it returns the value
of its fourth argument. INT returns the integer part
of its argument, while FRAC(e) returns e - INT(e).

The classifiers are represented as floating point func-
tions. Their threshold is supplied as their single argu-
ment. As described in Sections 4.1 and 4.4.

The terminal T yields the current value of the thresh-
old being applied to the classifier being evolved by
GP. In some experiments the terminals Dn were used.
These contain the value of attribute n. Finally the
GP population was initially constructed from a num-
ber of floating point values. These constants do not
change as the population evolves. However crossover
and mutation do change which constants are used and
in which parts of the program. GPQUICK limits the
number of constants to about 200.

5.2 FITNESS FUNCTION

Each new individual is tested on each training exam-
ple with the threshold parameter (T) taking values
from 0 to 1 every 0.1 (i.e. 11 values). So, depend-
ing upon the problem, it is run 55000, 41800 or 32516
times. For each threshold value the true positive rate
is calculated. (The number of correct positive cases
divided by the total number of positive cases). If a
floating point exception occurs its answer is assumed
to be wrong. Similarly its false positive rate is given by
the no. of negative cases it gets wrong divided by the
total no. of negative cases. It is possible to do worse

GENETIC PROGRAMMING

than random guessing. When this happens, i.e. the
true positive rate is less than the false positive rate,
the sign of the output is reversed. This is common
practise in classifiers.

Since a classifier can always achieve both a zero success
rate and 100% false positive rate, the points (0,0) and
(1,1) are always included. These plus the eleven true
positive and false positive rates are plotted and the
area under the convex hull is calculated. The area
is the fitness of the individual GP program. Note the
GP individual is not only rewarded for getting answers
right but also for using the threshold parameter to get
a range of high scores. Cf. Table 1.

6 RESULTS

6.1 OVERLAPPING GAUSSIAN

In the first run the best fitness score (on the train-
ing data) was 0.981556. The first individual with this
score was found in generation 21 and was treated as
the output of the GP. Its total size (remember it has
five trees) is 92. On another 5000 random data points
its fitness was 0.981607. Its ROC are shown in Fig-
ure 6. (The linear classifier’s convex hull area is 0.85).

Since we know the under lying distribution in this (ar-
tificial) example, we can calculate the optimal ROC
curve, see Figure 6. The optimal classifier requires
three decision boundaries, which correspond to the
overlap between the four interlocking Gaussians. Fig-
ure 6 shows this GP individual has near optimal be-
haviour. Its output for one threshold setting (0.3) is
given in Figure 7. Figure 7 shows GP has been able
to use the output of the linear classifier to create three
decision points (remember the linear classifier has just
one) and these lie at the correct points.

Figure 8 shows, in each of the problems, little change
in program size occurs after the first five generations
or so. This is despite little or no improvement in the
best fitness. This may be due to “size fair crossover”
[Langdon, 2000].

6.2 THYROID

In one run the best fitness rose steadily to a peak of
0.838019 at generation 50. The program with this fit-
ness has a total size of 60. On the verification set it has
a fitness of 0.860040. Its ROC are shown in Figure 9.

Its bulk behaviour is to combine the two given (sin-
gle attribute, single threshold) classifiers to yield a
rectangular area near the origin. As the threshold is
increased, the rectangle grows to include more data

71

1 e v) s s K

09 1 Threshold 0.3

(2]
(]
= 1
@
[e] -
o =
S o4t -
'_
03 Linear Classifier E
GP training ———+--
0.2 | GP verification ~ x
01 Optimal -

0 1 1 1 1 1 1 1 1 1
0 0.1 0203040506070809 1
False Positives

Figure 6: The ROC of GP (generation 21) classifier
on interlocking Gaussians. Note it has near optimal
performance.

points. Thus increasing the number of true positives,
albeit at the expense of also increasing the number of
false positive. Eventually with a threshold of 1, the
rectangle covers all thyroid disease cases. Figure 10
shows the decision boundary for a threshold of 0.5.
The superior performance of the GP classifier arises,
at least in part, because it has learnt to recognise reg-
ularities in the training data. In particular it has spot-
ted columns of data which are predominantly either all
negative or positive and adjusted its decision boundary
to cover these.

6.3 GREY LANDSAT

In the first GP run fitness rose quickly in the first
six generations but much slower after that. The best
training fitness was 0.981855 which was first discov-
ered in generation 49. The ROC of this individual are
shown in Figure 11. The area of its convex hull is big-
ger than all of those of its constituent classifiers. On
the holdout set, its ROC are better than all of them,
except for one threshold value where it has 3 false neg-
atives v. 1 for the best of the Naive Bayes classifiers.

7 DISCUSSION

So far we have used simple classifiers with few param-
eters that are learnt. This appears to make them ro-
bust to over fitting. In contrast one often needs to
be careful when using GP to avoid over fitting. In
these experiments we have seen little evidence of over
fitting. This may be related to the problems them-
selves or the choice of multiple tree programs or the
absence of “bloat”. The absence of bloat may be due

72

GENETIC PROGRAMMING

Table 1: GP Parameters (Variations between problems given in brackets or on separate lines)

Objective: Evolve a function with Maximum Convex Hull Area
Function set: INT FRAC Max Min MaxA MinA MUL ADD DIV SUB IFLTE
common plus Gaussians LC
Thyroid LC17 LC18
Grey Landsat nbl6 nb16,23 nb16,23,24 nb23,24 nb8,23,24
Terminal set: Gaussians T, 0, 1, 200 unique constants randomly chosen in —1...+41
Thyroid

Grey Landsat

T, D17, D18, 0, 0.1, 1, 212 unique constants randomly chosen from the test set.
T00.10.20.30.40.50.60.70.8091
Area under convex hull of 11 ROC points. (5000, 3800, 2956) randomly chosen test points

Fitness:

Selection: generational (non elitist), tournament size 7
Wrapper: > 0 = positive, negative otherwise

Pop Size: 500

No size or depth limits
Initial pop:

ramped half-and-half (2:6) (half terminals are constants)

1 2 3 4 5 6 7 8 9 10 M

0 5 10 15 20 25 30 35 40 45 50

Parameters: 50% size fair crossover [Langdon, 2000], 50% mutation (point 22.5%, constants 22.5%, shrink 2.5%
subtree 2.5%)
Termination: generation 50
(0]
N
[}
1 T T T T T T T T T g 160 T T : . . . : ;
2] Overlapping Gaussians ---x--+
a 140 Thyroid =% |
0.5 |- Class 1 _ 5 R Grey Landsat ---8---
§ 120 | 17 A
B g RN . IRREERRES
g 0 B 3 100 H W oK 7*777}7‘1777777‘}\1::‘:
S o (a4 daaa TR j‘ujjjjjj‘“}‘uj
g 3
2 -05[Class?2 i =
s 175
©
]
9+ | e
[
Q
=
c
15 1 1 1 1 1 1 1 1 1 o
©
=}
Q.
o
o

Feature value

Figure 7: Value returned by evolved classifier (thresh-
0ld=0.3) evolved on the interlocking Gaussians prob-
lem. High fitness comes from GP being able to use
given classifier to distinguish each of the Gaussians.
Note zero crossings align with Gaussians, Figure 2.

to our choice of size fair crossover and a high mutation
rate. Our intention is to evaluate this GP approach on
more sophisticated classifiers and on harder problems.
Here we expect it will be essential to ensure the clas-
sifiers GP uses do not over fit, however this may not
be enough to ensure the GP does not.

8 CONCLUSIONS

[Scott et al., 1998b] has proved one can always com-
bine classifiers with variable thresholds to yield a com-
posite with the “Maximum Realisable Receiver Op-

Generations

Figure 8: Evolution of total program size in one GP
run of each the three problems.

erating Characteristics” (MRROC). Scott’s MRROC
is the convex hull of the Receiver Operating Charac-
teristics of the individual classifiers. Previously we
showed [Langdon and Buxton, 2001] genetic program-
ming can in principle do better automatically. Here we
have shown, using Scott’s own bench marks, that GP
offers a systematic approach to combining classifiers
which may exceed Scott’s MRROC. (Using [Scott et
al., 1998b]’s proof, we can ensure GP does no worse
than the MRROC).

Mutation and size fair crossover [Langdon, 2000] mean
there is little bloat.

GENETIC PROGRAMMING

1 L T T :N”r”_,,r—"
0.9 |-Threshold 0.5 = .~ =" .
0.8 | -
o7k oyl i
8 // “",‘
z 06 /1 i
3
g 05 —X/ E
S o4/ | -
= i
03 . .-~ GP training, 0.838019 —+—
/-~ GP verification, 0.860040 ---x---
0.2 | /" Linear Attribute 17 (training) -------- b
o1 X Linear Attribute 18 (training) -
/ 1 1 1 1 1 1 1 1 1

0
0 0.1 0203040506070809 1
False Positives

Figure 9: The ROC produced by GP (gen 50) using
threshold values 0,0.1,...,1.0 on the Thyroid data.

450 T T T

Deéision botlmdary I
400 Abnormal Thyroid, found + 4
Abnormal Thyroid, missed X
350 Healthy .
300 |- 1
250 |- R

200 fr] R

Attribute 18

150 |

100
50

60 80 100 120 140
Attribute 17

Figure 10: Decision boundary (threshold 0.5) for the
Thyroid data produced by GP. The origin side of the
boundary are abnormal (179 found, missed 99). 2982
correctly cleared, 540 false alarms.

References

[Freund and Schapire, 1996] Y. Freund and R. E.
Schapire. Experiments with a new boosting algo-
rithm. In Machine Learning: Proc. 13" Interna-
tional Conference, pp 148-156. Morgan Kaufmann.

[Jacobs et al., 1991] R. A. Jacobs, M. I. Jordon, S. J.
Nowlan, and G. E. Hinton. Adaptive mixtures of
local experts. Neural Computation, 3:79-87, 1991.

[Kohavi and Sommerfield, 1996] R. Kohavi and D.
Sommerfield. MLC++: Machine learning library
in C++. Technical report, http://www.sgi.com/
Technology/mlc/util/util.ps.

[Langdon and Buxton, 2001] Evolving receiver oper-
ating characteristics for data fusion. In J. F. Miller

73

(2]
(]
= u
i)
[e]
o
[}
= - 1
= .
L GP training, 0.981855 —+—
i GP verification, 0.982932 ---x---
0.6 i GP holdout, 0.978397 ------ -
‘prive Bayes classifiers, holdout -
f' 1 1 1 1
05 &

0 0.1 0.2 0.3 0.4 0.5
False Positives

Figure 11: The ROC produced by GP (generation 49)
using threshold values 0,0.1,...,1.0 on the Grey Land-
sat data. The ROC of the five given Naive Bayes clas-
sifiers are given on the holdout set.

et al., eds., EuroGP’2001, LNCS 2038, pp 87-96,
Springer-Verlag.

[Langdon, 1998] W. B. Langdon. Data Structures and
Genetic Programming. Kluwer.

[Langdon, 2000] W. B. Langdon. Size fair and homol-
ogous tree genetic programming crossovers. Genetic
Programming & Evolvable Machines, 1(1/2):95-119.

[Mitchell, 1997] T. M. Mitchell. Machine Learning.
McGraw-Hill, 1997.

[Ripley, 1996] B. D. Ripley. Pattern Recognition and
Neural Networks. Cambridge University Press.

[Scott et al., 1998a] M. J. J. Scott, M. Niranjan, and
R. W. Prager. Parcel: feature subset selection in
variable cost domains. Technical Report CUED /F-
INFENG/TR.323, Cambridge University, UK.

[Scott et al., 1998b] Realisable classifiers: Improving
operating performance on variable cost problems.
In P. H. Lewis and M. S. Nixon, eds., Ninth British
Machine Vision Conference, pages 304-315,

[Soule, 1999] T. Soule. Voting teams: A cooperative
approach to non-typical problems using genetic pro-
gramming. In W. Banzhaf et al., eds., GECCO,
pages 916-922. Morgan Kaufmann.

[Swets et al., 2000] J. A. Swets, R. M. Dawes, and J.
Monahan. Better decisions through science. Scien-
tific American, pages 70-75, October.

[Yusoff et al., 1998] Combining multiple experts for
classifying shot changes in video sequences. In IEEFE
Int. Conf. on Multimedia Computing and Systems.

74

GENETIC PROGRAMMING

When Short Runs Beat Long Runs

1

mine how best to allocate precious resources to find th
best possible solution. This issue has not gone away wit
increases in computer power: rather, the difficulty of our
optimization problems has more than kept up with our ne
computational muscle. And the rise of massive parallelis
has added an additional constraint to how we may divvy

Sean Luke
George Mason University
http://www.cs.gmu.edud/sean/

Abstract

What will yield the best results: doing one run

n generations long or doing runsn/m genera-
tions long each? This paper presents a technique-
independent analysis which answers this ques-
tion, and has direct applicability to scheduling
and restart theory in evolutionary computation
and other stochastic methods. The paper then ap-
plies this technique to three problem domains in
genetic programming. It discovers that in two of
these domains there is a maximal number of gen-
erations beyond which it is irrational to plan a
run; instead it makes more sense to do multiple
shorter runs.

INTRODUCTION

our total evaluations.

Studies in resource allocation have attacked different as
pects of the problem. One popular area of study in geneti
algorithms isonline restart determinatianThis area asks:

while in the midst of a stochastic run and with aqori-

ori knowledge, should | restart now and try again? This
used to be a critical issue for GAs because of the spectre q
premature convergence. Detecting the approach of prema-
ture convergence during a run saved valuable cycles othe
wise wasted. There has been much work in this area; for
few examples, see [Goldberg, 1989, Collins and Jefferso
1991, Eshelman and Schaffer, 1991]. This work usuall

W,

or may not be appropriate. Commonly the work relies on
variance within a population or analysis of change in per-
formance overtime. These techniques are ad-hoc, but more
problematic, they are often domain-specific. For example,
they would not work in general on genetic programming.

In some sense, detecting premature convergence is an anal-
ysis of time-to-failure. A more cheerful focus in evolution-
ary computationconvergence velocityis not directly in-
volved in resource allocation but has many important ties.
Evolutionary strategies analysis can demonstrate the rates
at which specific techniques are expected to move towards
the optimum, either in solution space or in fitness space
[Back, 1996]. Since different population sizes can be con-
sidered different techniques, this analysis can shed light on
resource allocation issues.

One area which directly tackles resource allocation is
schedulingFukunaga, 1997]. A schedule is a plan to per-
form n runs eacH generations long. The idea is to come
up with a schedule which best utilizes available resources,

ased on past knowledge about the algorithm built up in

8 database. Typically this knowledge is derived from pre-

ious applications of the algorithm to various problem do-
mains different from the present application. [Fukunaga,
1997] argues that previous problem domains are a valid

Eredictor of performance curves in new domains, for ge-

etic algorithms at least.

Outside of evolutionary computation, there is considerable
interest inrestart methodsor global optimization. For dif-

ficult problems where one expects to perform many runs

before obtaining a satisfactory solution, one popular restart
method is to perform random restarts [Hu et al., 1997,
hannadian and Alford, 1996]. If the probability density
nction of probability of convergence at tintds known

en it is also possible to derive tlogtimum restart time
Luch that, as the number of evaluations approaches infinity,
the algorithm converges with the most rapid possible rate
Magdon-Ismail and Atiya, 2000].

assumes certain heuristics about convergence which madyastly, much genetic programming work has assumed that

GENETIC PROGRAMMING 75

the optimum can be discovered. A common metric ofLemma 1 Givenn selections with replacement from the
time-to-optimal-discovery is callecumulative probability — set of number§1, ..., m}, the probability that- is the max-

of succes§Koza, 1992]. However, this metric does not di- imum number selected is given by the form{;’g%_
rectly say anything about the rate of success nor whether arhe sum of probabilities for all suchis 1. ’

not shorter runs might yield better results.

Proof Consider the sef, of all possible events for which,
among then numbers selected with replacements the
maxiumum number. These events share the two following
criteria. First, for each selectianamong then selections,

The analysis presented in this paper takes a slightly differ
ent tack. It attempts to answer the question: is it rationa
to try a single rum generations long? Would it be smarter
to instead trym runs each: generations long? As it turns . .
out, this question can be answered with a relatively simpl < " Second, there exists a selec'qgramong th.e”.
procedure derived from a manipulation of order statistics " whichy > r. The cpmplement to this secqnd criterion
The procedure is entirely problem-independent; in fact it'S that for each selection among then selections,r <

can be easily applied to any stochastic search method. (.T N 1.)' _Since this pompleme_nt is a strict subset of'the
y app y first criterion, thenS,. is the set difference between the first

Unlike some of the previous methods, this analysis doegriterion and the complement, thus the probabilityFf
not attempt to determine how long it takes to discover theof an event inS, occuring is the difference between the
optimum, nor the probability of discovering it, nor how fast probability of the first criterion and the probability of the
the system converges either globally or prematurely. It icomplement, thatis, = P(Va : 2<r) — P(Vao : 2<(r —
simply interested in knowing whether one schedule is likely1)).

to produce better net results than another schedule. : . .
For a single selection with replacement from the set of

This paper will first present this analysis and prove it.numbers{1,...,m}, the probability that the selection is
It will then apply the analysis to three problems in ge-less than or equal to some valgeis simply . Thus
netic programming, an evolutionary computation approachor n, independent such selections, the probability that all
which is notorious for requiring large populations and shortare < ¢ is Q. Substituting into the solution above, we

m

runlengths. It then discusses the results. get P, = = — (D0 U DT 0 Fyrther, the
sum of such probabilities for afl is >, % =
2 PREL'MINARIES 1m—Q" + 2" 1" 4ot m"—(m—1)" _ m"—0" — 11

We begin with some theorems based on order statistiCSgheqrem 2 Consider a discrete distribution of: trials,
which are used to prove the claims in Section 3. These thegith each trialr having a qualityQ (), sorted by so that
orems tell us what the expected value is of the highest quakjg| | has the lowest quality and triah has the highest
ity (fitness) found among of some samples picked with o ,5jity. If we pickn trials with replacement from this distri-

replacement from a population. The first theorem gives th%ution, the expected value of the maximum quality among
continuous case (where the population is infinite in size)neasen trials will be

The second theorem gives the discrete case.

m n n

Theorem 1 Let X1, ..., X,, ben independent random vari- Z Q(r)#

ables representing. selections from a population whose r=1 m

density function isf(z) and whose cumulative density

function isF'(x). Let X,,,, be the random variable repre- Proof The rank of a trial is its positionl, ..., m in the

senting the maximum of th¢;. Then the expected value of sorted order of the: trials. The expected value of the max-

Xmaz is given by the formuld ™ anf(z)(F(z))"da. imum quality among the selected trials is simply the sum,
) . over each rank, of the probability that will be the highest

Proof Note that for any givem:, X,u.; < xifandonly rank among the selected trials, times the quality.oThis

if for all 4, X; < z. Then the cumulative density func- nropability is given by Lemma 1. Hence the summation is
tion F'x, . (x) of the random variabl&,,, ., is as follows: S0 -0

Fx,.(x) = PXpew < 2) = P(X; < 2)P(Xe < r=1 mro

x)..P(X, < z) = F()F(z)...F(z) = (F(x))". The

density functionfx, () for X, is the derivative of 3 SCHEDULES

this, sofx,,,. (r) = nf(z)(F(x))"~!. The expected value

of any density functiortz(z) is defined ag/™__zG(z)dz, ~ These order statistics results make possible the creation of
so the expected maximum value of theandom variables tools that determine which of two techniqudsand B is

is equal toff"Oo rfx, dr = ffooo anf(z)(F(z))" dr. expected to yield the best results. This paper discusses a

maz

] specific subset of this, namely, determining whether evo-

76

lutionary techniqued run m; generations; times (com-
monly 1 time) is superior the same technigderun mo

generationsi, times, wherenym; = nams. We begin
with some definitions.

Definition 1 AscheduleS is atuple(ng,is), representing
the intent to dous independent runs of length each.

Definition 2 Let S, T be two schedules. Thefireaches

T if ng runs of lengthis are expected to yield as good

as or higher quality tham runs of lengthi. Define the
predicate operatof = T to be true if and only i reaches
T.

GENETIC PROGRAMMING

ms

ZQS

mT

>ZQT

—(r—1)""

mSnS TTLT

Proof Both sides of this inequality are direct results of
Theorem 21

These theorems give tools for determining whether one
schedule reaches another. We can use this to estimate what
schedule is best for a given technique. If we wanted to ex-
amine a technique and determine its best schedule, we have
two obvious options:

The following two theorems assume that higher quality is

represented by higher values. In fact, for the genetic pro-
gramming examples discussed later, the graphs shown have
lower fithess as higher quality; this is rectified simply by

inverting the fitness values.

Theorem 3 Let p;(z) be the probability density function

and P;(z) the cumulative probability density function of
the population of all possible runs, reflecting their quality
at timet (assume higher values mean higher quality). Then

S =T if and only if:

L.

anspis (€)(Ps (2))"5 d

o0
=/
— 00

wnrpy (2) (P ()"~ da

Proof Both sides of this inequality are direct results o

Theorem 11

1. Perform runs out to our maximum runlength, and use
run-data throughout the runs as estimates of perfor-
mance at any given time The weakness in this ap-
proach is that these estimates are not statistically in-
dependent.

2. Performruns out to a variety of runlengths. The weak-
ness in this approach is that it requi@é?) evalua-
tions.

A simple compromise adopted in this paper is to do runs
out to 1 generation, a separate set of runs ou? igener-
ations, another set of runs out4gyenerations, etc., up to
some maximal number of generations. Thigi&), yet
still permits runlength comparisons between statisticatlly
independent data sets.

Two statistical problems remain. First, these comparisons
¢ do not come with a difference-of-means test (like a t-test or

ANOVA). The author is not aware of the existence of any

such test which operates over order statistics appropriate to

The continuous case above is not that useful in reality, sincehis kind of analysis, but hopes to develop (or discover!)

we rarely will have an infinite number of runs to draw from! one as future work. This is alleviated somewhat by the fact
However, if we perform many runs of a given runlength, that the result of interest in this paper is often not the hy-
we can estimate the expected return from doingins at pothesis but the null hypothesis. Second, the same run data
that runlength, and use this to determine if some schedfor a schedule is repeatedly compared against a variety of
ule outperforms another schedule. The estimate makes thgher schedules; this increases the alpha error. To elimi-

assumption that the runs we performed (our samplexdis
actly representativef the full population of runs of that
runlength.

Theorem 4 Given a schedulé = (ng,ls), consider a
random sample, with replacement, ofs runs from all

possible runs of runlengthy. Let these runs be sorted by

quality and assigned ranks, ..., mg, where a run’s rank
represents its order in the sort, and rankis the lowest
quality. Further, letQs(r) be the quality of the run from
the sample whose rank is Qs(r) should return higher
values for higher quality. For another schedulge simi-

larly definem and Q7 (r). Then an estimate of reaching

is as follows.S = T'if and only if:

nate this problem would necessitadén?) evaluations (')
which is outside the bounds of the computational power
available at this time.

4 ANALYSIS OF THREE GENETIC
PROGRAMMING DOMAINS

Genetic Programming is an evolutionary computation field
with traditionally short runlengths and large population
sizes. Some of this may be due to research following in
the footsteps of [Koza, 1992, 1994] which used large pop-
ulations (500 to 1000 individuals) and short runlengths (51
generations). Are such short runlengths appropriate? To

GENETIC PROGRAMMING 77
1 2 4 8 16 32 64 128256512 1K 2K 4K 8K
1 2 4 8 16 32 64 128256512 1K 2K 4K 8K
M
4
8K 8K
4K 4K
3
. o X 2K 2K
17 38
@ To IK 1K
T2 =Ne)
¢ 0 g 512 512
==}
x S 256 256
1 =)
H 32 128 128
S
L 202 64 64
R B S S D D R § 8
1 2 4 8 16 32 64 128256512 1K 2K 4K 8K c§5 32 32
Generation 2z 16 16
1 2 4 8 16 32 64 128256512 1K 2K 4K 8K g
0.2 5 <8 s 8
0.175 ?f_g 4 4
>
0.15 2 2
H
0.125 1 1
N
0.1 H M 1 2 4 8 16 32 64 128256512 1K 2K 4K 8K

Fitness

X: Run Length with One Run

0.075

0.05
Figure 2: Runlength Analysis of Symbolic Regression Do-
main. Areas are black where X is a superior strategy to Y
and white where Y is as good or better than X. Gray regions
are out of bounds.

0.025

8 16 32 64 128256 512 1K 2K 4K 8K
Generation

1 2 4

Figure 1: Runlength vs. Fitness, Symbolic Regression Do-
main (Including Detail) in [Koza, 1992], with a population size of 500 and tourna-
ment selection with a tournament of size 7. The function to

_ _ _ be fitted wase* + 23 + 22 + z.
consider this, | analyzed three GP problem domains: Sym-

bolic Regression, Artificial Ant, and Even 10-Parity. TheseUnlike the other two problems, Symbolic Regression oper-
three domains have very different dynamics. ates over a continuous fitness space; if cannot find the opti-

mal solution, it will continue to find incrementally smaller
In all three domains, | performed 50 independent runs fo'improvements. Although Symbolic Regression very occa-
runlengths o’ generations ranging froaf to some2™**. gjonajly will discover the optimum, usually it tends towards
Because these domains differ in evaluation time,: var- jncrementalism. As such, Symbolic Regression fitness val-
ied from domain to domain. For Symbolic Regression,yes can closely approach 0 without reaching it, so Figure
2mer = 8192. For Artificial Ant, 2% = 2048. For Even 1 shows both zoomed-out and zoomed-in versions of the
10-Parity,2™* = 1024. For all three domains, lower fit- same data. Grey dots represent individual best-of-run re-

ness scores represent better results. The GP system usslts for each run; black dots represent means of 50 runs of
was ECJ [Luke, 2000]. that runlength.

The analysis graphs presented in this paper compargs can be seen, the mean continues to improve all the way
single-run schedules with multiple-run schedules of shortefg rynlengths of 8192. But is it rational to plan to do a run

length. However additional analysis comparingun oyt to 8192 generations? Figure 2 suggests otherwise.
schedules withnm-run schedules of shorter length has

yielded very similar results. The runlength analysis graphs can be confusing. On the

graph, the poin{X,Y), X > Y indicates the result of
_ . comparing a schedul¢ = (1, X') with the schedule3 =
4.1 Symbolic Regression (£,Y), which has the same total number of evaluations.
The graph is white ifB > A, black otherwise. This is a

The 90?' of the S_ymbol_lc Regression problem is to find alower—right matrix: gray areas are out-of-domain regions.
symbolic expression which best matches a set of randomly-

chosen target points from a predefined function. ldeallyfFigure 2 shows that the expected quality of a single run
Symbolic Regression discovers the function itself. | usedf length >32 is reached by doing some runs of length
the traditional settings for Symbolic Regression as defined 6 which total the same number of evaluations. Another

78 GENETIC PROGRAMMING

1 2 4 8 16 32 64 128 256 512 1K 2K
70

1 2 4 8 16 32 64 128 256 512 1K 2K

60 M

50

40]

Fitness

30 .

20

10

1 2 4 8 16 32 64 128 256 512 1K 2K
Generation

Figure 3: Runlength vs. Fitness, Artificial Ant Domain

Y: Run Length with Enough Runs to Have
The Same Number of the Evaluations as X

interesting feature is that there is a minimum acceptable
runlength: under no circumstances could multiple runs less

. . . 1 2 4 8 16 32 64 128 256 512 1K 2K
than 8 generations reach a single run of larger size. X: Run Length with One Run

What about comparing a schedule= (¢, X) with sched-

ulesB = (§,Y)? Even with values of = 2,4,8, the Figure 4: Runlength Analysis of Artificial Ant Domain.
resultant runlength analysis graphs were almost identical. oreas are black where X is a superior strategy to Y and

white where Y is as good or better than X. Gray regions are
4.2 Artificial Ant out of bounds.

Artificial Ant moves an ant across a toroidal world, at-
tempting to follow a trail of food pellets and eat as muchfollowed the specifications for the Parity problem family as
food as possible in 400 moves. | used the traditional Artifi-outlined in [Koza, 1992].

cial Ant settings with the Santa Fe trail as defined in [Koza’Figure 5 shows just how difficult it is for Genetic Program-

1.992]’ .W'th a population siz€ of 500 and tournamentselec—ming to solve the Even-10 Parity problem. Even after 1024
tion using a tournament of size 7.

generations, no run has reached the optimum; the mean
As shown in Figure 3, the mean Atrtificial Ant best-of-run best-of-run fitness has improved by only 25% over random

fitness improved monotonically and steadily with longersolutions. The curve does not resemble the logistic curve
runlengths clear out to 2048 generations. But this did notf the other two GP domains.

mean that it was rational to plan to do a run out that far. . . .
. . One might suppose that in a domain where 1024 genera-
Figure 4 suggests that single runs of runlengths begdnd) . . :
tions improves little over 1 generation, runlength analysis

i i i un- .
?;:;:g“g&st\r:v:;Zﬁ:%huemdsgﬂ? tlgf;fé\tjgﬁj \;v;;tgnsshorterr would argue for the futility of long runs. Yet the results

were surprising: a single run of any length was always
This is very similar to the Symbolic Regression results.consistently superior to multiple runs of shorter lengths.
Also similar was the existence of a minimum acceptableEven though Even-10 Parity is very difficult for Genetic

runlength: runs less than 4 could not reach a single run oProgramming to solve, it continues to plug away at it. It is
larger size. Lastly, runlength analysis graphs with values otonceivable that, were we to run out far enough, we might

¢ = 2,4, 0r 8 were very similar. see a maximal rational runlength in the Even-10 Parity do-
main. Nonetheless, it is surprising that even at 1024 gener-
4.3 Even-10 Parity ations, Even-10 Parity is still going strong.

The last problem analyzed was Even-10 Parity, a very dif-

ficult problem for Genetic Programming. Even-10 par-2 DISCUSSION

ity evolves a symbolic boolean expression which correctly

identifies whether or not, in a vector of 10 bits, an evenAs the Symbolic Regression and Artificial Ant domains
number of them are 1. This is a large and complex funchave shown, there can be a runlength beyond which it
tion and necessitates a large GP tree. To make the probleseems irrational to plan to do runs, because more runs of
even harder, | used a small population (200), but otherwisshorter length will do just as well if not better. | call this

GENETIC PROGRAMMING 79

1 2 4 8 16 32 64 128 256 512 1K
550

1 2 4 8 16 32 64 128 256 512 1K

500 |] .

450 .

400

Fitness

350

300

250

1 2 4 8 16 32 64 128 256 512 1K
Generation

Run Length with Enough Runs to Have
The Same Number of the Evaluations as X

Figure 5: Runlength vs. Fitness, Even-10 Parity Domain

Y

runlength ecritical point. The location of the critical point
sgggests interesting things about the ability o_f_the te_ch— 12 4 X:iunigngtﬁ%vitheénelé’-fn 256 512 1K
nique to solve the problem at hand. As the critical point

approaches 1, the technique becomes less and less of an

improvement over blind random search. Figure 6: Runlength Analysis of Even-10 Parity Domain.

Symbolic Regression only occasionally finds the optimum/Aréas are black where X is a superior strategy to Y and

but if it is lost, around generation 64 it seems to begin toWhite where Y is as good or better than X. Gray regions are

search for incrementally smaller values. One is tempted t@Ut of bounds.

suggest that this is why it is irrational to continue beyond

about generation 32 or so. However, while the curve flat- e . .
) . . runs within this window of rationality.

tens out, as the detail shows, it still makes improvements

in fithess. The critical feature is that tarianceamong One last item that should be consideredvsluation time

the runs stays high even though the mean improves onlwhich for genetic programming is strongly influenced by

slowly. This is what makes it better to do 2 runs of lengththe phenomenon afode bloat As a genetic programming

32 (or 8 of 8) than 1 run of length 64, for example. run continues, the size of its individuals grows dramati-

Artificial Ant demonstrates a similar effect. Even though cally anq S0 does the amount of time necessary to breed

and particularly to evaluate them. So far we have compared

the mean improves steadily, the variance after generation . o ;
: chedules in terms of total number of evaluations; but in the
32 stays approximately the same. As a result, 4 runs o

32 will handily beat out 1 run of 128 despite a significant Case of genetic programming it might make more sense to

improvement in the mean between 32 and 128 generationgo P o © them in terms @tal runtime The likely effect of
P 9 fhis would be to make the maximally rational runtime even

The interesting domain is Even 10-Parity. In this domainshorter. In the future the author hopes to further explore

the mean improves and the variance also continues to irthis interesting issue.

crease. As it turns out, the mean improves just enough to

counteract the widening variance. Thus even though this ig

a very difficult problem for genetic programming to solve, 6 CONCLUSION

it never makes sense to do multiple short runs rather than

one long run! Genetic programming has traditionally not done runs

Symbolic Regression and Atrtificial Ant also suggest thatIonger t_han 50 generations or 50, at least for the common
cannonical problems. Instead it prefers larger population

there can exist aninimumrunlength such that any num- . : .
; . e . sizes. The results of this analysis suggest one reason why
ber of runs with fewer generations are inferior to a single,, . . i
) I L this might be: beyond a very small runlength (16 for Sym-
run of this runlength. In some sense it is also irrational

to do multiple runs with fewer generations than this mini—bOIIC Regression, about 32 or 64 for Artificial Ant) the

. . diminishing returns are such that it makes more sense to
mum runlength instead of (at least) one run at the minimum;. . . .

. . . divvy up the total evaluations into multiple smaller runs.
runlength. Thus there is a window between the minimum

and maximum rational runlengths. If one has enough evalBut “rapidly diminishing returns” is not the same thing as
uations, it appears to makes most sense to spend them &difficult problem”. In a hard problem like Even-10 Parity,

80 GENETIC PROGRAMMING

it still makes sense on average to press forward rather than
do many shorter runs.

This paper presented a formal, heuristic-free, domain-
independent analysis technique for determining the ex-
pected quality of a given schedule, and applied it to three
domains in genetic programming, with interesting results.

But this analysis is applicable to a wide range of stochastic
technigues beyond just GP, and the author hopes to apply it
to other techniques in the future.

Acknowledgements

The author wishes to thank Ken DeJong, Paul Wiegand,
Liviu Panait, and Jeff Bassett for their considerable help
and insight.

References

T. Back. Evolutionary Algorithms in Theory and Practice
Oxford University Press, New York, 1996.

R. J. Collins and D. R. Jefferson. Selection in mas-
sively parallel genetic algorithms. FProceedings of the
Fourth International Conference on Genetic Algorithms
(ICGA), pages 249-256, 1991.

L. J. Eshelman and J. D. Schaffer. Preventing premature
convergence in genetic algorithms by preventing incest.
In Proceedings of the Fourth International Conference
on Genetic Algorithms (ICGApages 115-122, 1991.

A. Fukunaga. Restart scheduling for genetic algorithms. In
Thomas Back, editoiGenetic Algorithms: Proceedings
of the Seventh International Conferend@97.

F. Ghannadian and C. Alford. Application of random
restart to genetic algorithmintelligent System$5:81—
102, 1996.

D. Goldberg. Genetic Algorithms in Search, Optimiza-
tion, and Machine LearningAddison-Wesley, Reading,
1989.

X. Hu, R. Shonkwiler, and M. Spruill. Random restart
in global optimization. Technical Report 110592-015,
Georgia Tech School of Mathematics, 1997.

John R. Koza. Genetic Programming: On the Program-
ming of Computers by Means of Natural SelectibhT
Press, Cambridge, MA, USA, 1992.

John R. Koza. Genetic Programming Il: Automatic Dis-
covery of Reusable ProgramdMIT Press, Cambridge
Massachusetts, May 1994.

Sean Luke. ECJ: A Java-based evolutionary compu-
tation and genetic programming system. Available at
http://www.cs.umd.edu/projects/plus/ecj/, 2000.

M. Magdon-Ismail and A. Atiya. The early restart algo-
rithm. Neural Computation12(6):1303—1312, 2000.

GENETIC PROGRAMMING

81

A Survey and Comparison of Tree Generation Algorithms

1

Sean Luke
George Mason University
http://www.cs.gmu.edud/sean/

Abstract

This paper discusses and compares five major
tree-generation algorithms for genetic program-
ming, and their effects on fithessRAMPED
HALF-AND-HALF, PTC1, PTC2 RANDOM-
BRANCHand UNIFORM The paper compares
the performance of these algorithms on three ge-
netic programming problems (11-Boolean Multi-
plexer, Artificial Ant, and Symbolic Regression),
and discovers that the algorithms do not have a
significant impact on fitness. Additional experi-
mentation shows that tree size does have an im-
portant impact on fitness, and further that the
ideal initial tree size is very different from that
used in traditional GP.

INTRODUCTION

Liviu Panait
George Mason University
http://www.cs.gmu.edud/lpanait/

Recent tree generation algorithms have focused on speed.
[Chellapilla, 1997] deviseRANDOMBRANCHsimple al-
gorithm which generated trees approximating a requested
tree size. After demonstrating problems with (BROVE-
gorithm, [Luke, 2000b] modifedGROWb producePTC1
which guaranteed that generated trees would appear around
an expected tree size. [Luke, 2000b] also preseREQ2
which randomly expanded the tree horizon to produce trees
of approximately the requested size. All three of these al-
gorithms are linear in tree size.

Both [Iba, 1996] and [Bohm and Geyer-Schulz, 1996] ar-
gued for the superiority of their algorithms over the Koza
standard algorithms. [Whigham, 1995b] showed that bias-
ing a grammar-based tree-generation algorithm could dra-
matically improve (or hurt) the success rate of genetic pro-
gramming at solving a given domain, though such bias
must be hand-tuned for the domain in question.

In contrast, this paper examines several algorithms to see if
any of the existing algorithms appears to make much of a

The issue of population initialization has received surpris-difference, or if tree size and other factors might be more
ingly little attention in the genetic programming literature. significant.

[Koza, 1992] established th e ROWFULL, andRAMPED
HALF-AND-HALF algorithms, only a few papers have ap-
peared on the subject, and the community by and large sti

uses the original Koza algorithms.

Some early work was concerned with algorithms simi-the literature.

E THE ALGORITHMS

This paper compares five tree generation algorithms from
These algorithms were chosen for their

lar to GROWut which operated on derivation grammars. widely differing approaches to tree creation. The chief al-
[Whigham, 1995a,b, 1996] analyzed biases due to populagorithm notin this comparison RAND-TREH]Iba, 1996].

tion initialization, among other factors, in grammatically- This algorithm has been to some degree subsumed by a
based genetic programming. [Geyer-Schulz, 1995] also denore recent algorithm [Bohm and Geyer-Schulz, 1996],
vised similar techniques for dealing with tree grammars. which generates trees from a truly uniform distribution (the

The first approximately uniform tree generation algorithm

original unachieved goal RAND-TREE.

was RAND-TREE[lba, 1996], which used Dyck words The algorithms discussed in this paper are:

to choose uniformly from all possible tree structures of a

given arity set and tree size. Afterwards the tree structur@ 1 Ramped Half-And-Half and Related Algorithms
would be populated with nodes. [Bohm and Geyer-Schulz,

1996] then presented an exact uniform algorithm for choosRAMPED HALF-AND-HALFS the traditional tree gener-
ing among all possible trees of a given function set.

ation algorithm for genetic programming, popularized by

82 GENETIC PROGRAMMING

[Koza, 1992]. RAMPED HALF-AND-HALFakes a tree PTCI(precomputed probability, depthd, max depth)
depth range (commonly 2 to 6 — for this and future refer- Returns:atree of depted —d

ences, we define “depth” in terms of number of nodes, not If d = , return a random terminal
number of edges). In other respects, the user has no control Else if a coin-toss of probability is true,
over the size or shape of the trees generated. Choose a random nonterminal

For each argumentof n,
Fill @ with PTC1(p,d + 1,)
Returnn with filled arguments
Else return a random terminal

RAMPED HALF-AND-HALFirst picks a random value
within the depth range. Then with 1/2 probability it uses
the GROWValgorithm to generate the tree, passing it the cho-
sen depth; otherwise it uses tR&JLL algorithm with the
chosen depth. PTClLlis started by passing im O for d, and the maximum
GROW very simple: depth f(_)r . ETCl’s computatio_nal complexity is linear or
nearly linear in expected tree size.
GROVdepthd, max depth)
Returns:a tree of deptid — d
If d = ,returnarandom terminal
Else
Choose a random function or termiryal
If fisaterminal, returrf
Else
For each argumentof f,
Fill @ with GROWM + 1,
Returnf with filled arguments

23 PTC2

PTC2 [Luke, 2000b] receives a requested tree size, and
guarantees that it will return a tree no larger than that tree
size, and no smaller than the size minus the maximum arity
of any function in the function set. This algorithm works
) by increasing the tree horizon at randomly chosen points
until it is sufficiently large PTC2in pseudocode is big, but
a simple version of the algorithm can be easily described.
GROVi5s started by passing in O faf, and the requested
depth for . FULL differs from GROWnly in the line
marked with a . On this line, FULL chooses a nonter-
minal function only, never a terminal. ThusJLL only
creates full trees, and always of the requested depth.

PTC2takes a requested tree sige If S = 1, it returns a
random terminal. Otherwise it picks a random nonterminal
as the root of the tree and decreaseby 1. PTC2then
puts each unfilled child slot of the nonterminal into a set
representing the “horizon” of unfilled slots. It then enters
Unlike other algorithms, because it does not have a size pahe following loop:

rameterRAMPED HALF-AND-HALHoes not have well-

defined computational complexity in terms of siz6JLL

always generates trees up to the depth bound provided. Asl- If <, break from the loop.

[Luke, 2000b] has shownGROWithout a depth bound

may, depending on the function set, have an expected tree2, Else remove a random slot from. Fill the slot with

size of infinity. a randomly chosen nonterminal. Decredsdy 1.
Add to every unfilled child slot of that nontermi-
22 PTC1 nal. Goto #1.

PTC1 [Luke, 2000b] is a modification of th&ROVEIgo- _ . . .

rithm which is guaranteed to produce trees around a finit@t this point, the total number of nonterminals in the tree,
expected tree size. A simple version of PTC1 is describetﬁ;(uS the number of SIOtS. n ., equgls or barely excgeds
here. PTC1 takes a requested expected tree size and a maxe user-requested tree siél.’C?ﬁmshes up py removing
imum legal depth. PTC1 begins by computinghe prob- slots from one by one and filling them with randomly
ability of choosing a nonterminal over a terminal in orderChosen terminals, until is exhaustedPTC2then returns
to maintain the expected tree sizeas: the tree.

PTC2s computational complexity is linear or nearly linear
1-1 in the requested tree size.

ZL
n

" 2.4 RandomBranch

p:

where is the set of all nonterminals ang is the arity of RANDOMBRANQCEhellapilla, 1997] is another interesting
nonterminak. This computation can be done once offline. tree-generation algorithm, which takes a requested tree size
Then the algorithm proceeds to create the tree: and guarantees a tree of that size or “somewhat smaller”.

GENETIC PROGRAMMING 83

Problem Domain Algorithm Parameter Avg. Tree Size
11-Boolean Multiplexer RAMPED HALF-AND-HALF (No Parameter) 21.2
11-Boolean Multiplexer RANDOMBRANCH Max Size: 45 20.0
11-Boolean Multiplexer PTC1 Expected Size: 9 20.9
11-Boolean Multiplexer PTC2 Max Size: 40 21.4
11-Boolean Multiplexer UNIFORM-even Max Size: 42 21.8
11-Boolean Multiplexer UNIFORM-true Max Size: 21 20.9
Artificial Ant RAMPED HALF-AND-HALF (No Parameter) 36.9
Artificial Ant RANDOMBRANCH Max Size: 90 33.7
Artificial Ant PTC1 Expected Size: 12 38.5
Artificial Ant PTC2 Max Size: 67 35.3
Artificial Ant UNIFORM-even Max Size: 65 33.9
Artificial Ant UNIFORM-true Max Size: 37 36.8
Symbolic Regression RAMPED HALF-AND-HALF (No Parameter) 11.6
Symbolic Regression RANDOMBRANCH Max Size: 21 11.4
Symbolic Regression PTC1 Expected Size: 4 10.9
Symbolic Regression PTC2 Max Size: 18 11.1
Symbolic Regression UNIFORM-even Max Size: 19 11.2
Symbolic Regression UNIFORM-true Max Size: 11 10.8

Table 1: Tree Generation Parameters and Resultant Sizes

RANDOMBRANGCehuested size) During tree-generation timelJJNIFORNs computational
Returns:a tree of size< complexity is nearly linear in tree size. HowevemNI-
If a nonterminal with arity< does not exist FORMnNust first compute various tables offline, including a
Return a random terminal table of numbers of trees for all sizes up to some maximum
Else feasibly requested tree sizes. Fortunately this daunting task
Choose a random nonterminabf arity < can be done reasonably quickly with the help of dynamic
Let ,, be the arity ofn programming.

For each argumentof n,
Fill a with RANDOMBRANCH-)
Returnn with filled arguments

During tree-generation timeé)NIFORMpicks a node se-
lected from a distribution derived from its tables. If the
node is a nonterminal)NIFORMhen assigns tree sizes to
each child of the nonterminal. These sizes are also picked
Because(RANDOMBRANGE@WKEeNly divides up among the from distributions derived from its table&/INIFORMhen
subtrees of a parent nonterminal, there are many trees thadlls itself recursively for each child.
RANDOMBRANGIHNply cannot produce by its very na-
ture. This makeRANDOMBRANG@¢ most restrictive of
the algorithms described hercRANDOMBRAN&Hom-
putational complexity is linear or nearly linear in the re-
guested tree size.

UNIFORMSs a very large but otherwise elegant algorithm;
but it comes at the cost of offline table-generation. Even
with the help of dynamic programmingNIFORNs com-
putational complexity is superlinear but polynomial.

3 FIRST EXPERIMENT
2.5 Uniform

[Bohm and Geyer-Schulz, 1996] claimed th3NIFORM
UNIFORMis the name we give to the exact uniform tree dramatically outperforme@®@AMPED HALF-AND-HALF
generation algorithm given in [Bohm and Geyer-Schulz,and argued that the reason for this VR"BMPED HALF-
1996], who did not name it themselvesNIFORMtakes AND-HALFs highly non-uniform sampling of the initial
a single requested tree size, and guarantees that it will crggrogram space. Does uniform sampling actually make
ate a tree chosamiformlyfrom the full set of all possible a significant difference in the final outcome? To test
trees of that size, given the function s&NIFORMs too this, the first experiment compares the fithesKROMPED
complex an algorithm to describe here except in generaHALF-AND-HALF, PTC1, PTC2 RANDOMBRANC&hd
terms. two different versions o NIFORMUNIFORM-true and

84 GENETIC PROGRAMMING

UNIFORM-even, described later). It is our opinion that ~ Fisher LSD Algorithm Tukey
the “uniformity” of sampling among the five algorithms PTC2
presented is approximately in the following order (from PTC1
most uniform to least): UNIFORM(of course), PTC2, RAMPED HALF-AND-HALF
RAMPED HALF-AND-HALRPTC1, RANDOMBRANCH UNIFORM-true

) .) UNIFORM-even
The comparisons were done over three canonical genetic RANDOMBRANCH

programming problem domains, 11-Boolean Multiplexer,
Artificial Ant, and Symbolic Regression. Except for the] . .
tree generation algorithm used, these domains followed thzab.Ie 2 ANQVA Result; for Symbolic Regression. Al-
parameters defined in [Koza, 1992], using tournament Segorlthms are in decreasing order by average over 50 runs
lection of size 7. The goal o'f 11-B(')olean Multiplexer is of best fitness per run. Vertical lines indicate classes with
to evolve a boolean function on eleven inputs which per—St""t'S“C"’lIIy insignificant differences.
forms multiplexing on eight of those inputs with regard to
the other t_hree. The goal of thg Art|f|C|§1I Ant problem IS0 mains. ECJ [Luke, 2000a] was the genetic programming
evolve a simple robot ant algorithm which follows a trail of system used.

pellets, eating as many pellets as possible before time runs _

out. Symbolic Regression tries to evolve a symbolic mathFigures 1 through 6 show the results for the various al-

ematical expression which best fits a training set of dat&orithms applied to 11-Boolean Multiplexer. Figures 8
points. through 13 show the results for the algorithms applied to

) .)) Artificial Ant. As can be seen, the algorithms produce sur-
To perform this experiment, we did 50 independentruns foryisingly similar results. ANOVAs at 0.05 performed on
each domain using ttRAMPED HALF-AND-HALBIgO- ihe algorithms for both the 11-Boolean Multiplexer prob-
rithm to generate initial trees. From there we measured thgyy, and the Artificial Ant problem indicate that there is
mean initial tree size and calibrated the other algorithms,, gtatistically significant difference among any of them.
to generate trees of approximately that size. This calibrapg, symbolic Regression, an ANOVA indicated statisti-
tion is not as simple as it would seem at first. For examplec,)ly significant differences. The post-hoc Fisher LSD and
PTC1can be simply set to the mean value, and it shouldrykey tests, shown in Figure 2, reveal thitIFORMares

produce trees around that mean. However, an additiongyrse than all algorithms exceRANDOMBRANCH
complicating factor is involved: duplicate rejection. Usu-

ally genetic programming rejects duplicate copies of the

same individual, in order to guarantee that every initial in-4 SECOND EXPERIMENT

dividual is unique. Since there are fewer small trees than

large ones, the likelihood of a small tree being a duplicatdf uniformity provides no statistically significant advan-
is correspondingly much larger. As a result, these algotage, what then accounts for the authors’ claims of im-
rithms will tend to produce significantly larger trees thanprovements in fitness? One critical issue might be average
would appear at first glance if, as was the case in this expetree size. If reports in the literature were not careful to nor-
iment, duplicate rejection is part of the mix. Hence somemalize for size differences (very easy given tR&&MPED
trial and error was necessary to establish the parameters rALF-AND-HALF has no size parameters, and duplicate
quired to produce individuals of approximately the samerejection causes unforseen effects) it is entirely possible
mean size aRAMPED HALF-AND-HALFThose param- that significant differences can arise.

eters are shown in Table 1. The goal of the second experiment was to determine how

In the PTC1 algorithm, the parameter of consequence ismuch size matters. UsingNIFORM-even, we performed

the expected mean tree size. For the other algorithms, th80 independent runs each for the following maximum-size
parameter is the “maximum tree size”. ABTC2 RAN- values: 3, 4,5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30,
DOMBRANGIHNdUNIFORM-even, a tree is created by 40, 50, 60, 80, 100. The test problem domains were again
first selecting an integer from the range 1 to the maximumL1-Boolean Multiplexer, Artificial Ant, and Symbolic Re-
tree size inclusive. This integer is selected uniformly fromgression with two features modified. First, the population
this range. IUNIFORM-true however, the integer is se- Size was reduced from 500 (the standard in [Koza, 1992]) to
lected according to a probability distribution defined by the200, to speed up runtime. Second, the runs were only done
number of trees of each size in the range. Since there af@r eight generations, rather than 50 (standard for [Koza,
far more trees of size 10 than of 1 for example, 10 is choseA992]). The reasoning behind this is that after eight gen-
much more often than 1. For each remaining algorithm, 5@rations or so the evolutionary system has generally settled

independent runs were performed with both problem dodown after initial “bootstrapping” effects due to the tree-
generation algorithm chosen.

GENETIC PROGRAMMING 85

Figures 7, 14, and 21 show the results of this experimentReferences
The light gray dots represent each run. The dark gray do .
represent the means of the 30 runs for each maximum—si?ék.ilt.(:ir IBOT.m afnd Andrias Geyer—Sc.huIz.I E)I;e}c; ur:;foKrm
value. Because of duplicate rejection, runs typically have initialization for genetic programming. - In Richard K.

mean initial tree sizes somewhat different from the values Betl.ewA;':md'tI:]/llchaI\el Vose, ;?étozﬁgurcjda}tlongt of Sse
predicted by the provided maximum-size. Also note the ap- netic Algorithms 1V pages —a-/f, UNIVETSIty of San

parent horizontal lines in the 11-Boolean Multiplexer data: Diego, CA, USA, 3-5 August 1396. Margan Kaufmann.

this problem domain has the feature that certain discrete fitumar Chellapilla. Evolving computer programs without
ness values (multiples of 32) are much more common than subtree crossoverEEE Transactions on Evolutionary
others. Computation1(3):209-216, September 1997.

These graphs suggest that the optimal initial tree size fof\ndreas Geyer-SchulZuzzy Rule-Based Expert Systems

UNIFORM-even for both domains is somewhere around ~and Genetic Machine Learningolume 3 ofStudies in

10. Compare this to the standard tree sizes which occur FuzzinessPhysica-Verlag, Heidelberg, 1995.

due toRAMPED HALF-AND-HALR21.2 for 11-Boolean Hitoshi Iba. Random tree generation for genetic program-

Multiplexer and 36.9 for Artificial Ant! ming. In Hans-Michael Voigt, Werner Ebeling, Ingo
Rechenberg, and Hans-Paul Schwefel, editBesallel
Problem Solving from Nature 1V, Proceedings of the In-

5 CONCLUSION ternational Conference on Evolutionary Computation
volume 1141 of NCS pages 144-153, Berlin, Germany,

22-26 September 1996. Springer Verlag.
The tree generation algorithms presented provide a variet P pring g

of advantages for GP researchers. But the evidence in thi#ohn R. Koza. Genetic Programming: On the Program-
paper suggests that improved fitness results is probably not Ming of Computers by Means of Natural SelectibT

one of those advantages. Why then pick an algorithm over Press, Cambridge, MA, USA, 1992.

RAMPED HALF-AND-HALEhen? There are several rea- Sean Luke. ECJ: A Java-based evolutionary compu-
sons. First, most new algorithms permit the usesgecify tation and genetic programming system. Available at
the size desired. For certain applications, this may be a cru- http://www.cs.umd.edu/projects/plus/ecj/, 2000a.

cial feature, not the least because it allows the user to Cre5ean Luke. Two fast tree-creation algorithms for genetic

f"‘tg. gdsiz? dis.triEL'JtiorE)Imor_e Iiketl)y to generate g|°°d initkial programminglEEE Transactions in Evolutionary Com-
individuals. Fighting bloat in subtree mutation also makes putation 4(3), 2000b.

size-specification a desirable trait. _) _
P. A. Whigham. Grammatically-based genetic program-

Second, some algorithms have special features which may ming. In Justinian P. Rosca, edit®oceedings of the
be useful in different circumstances. For eXamﬂ@Cl Workshop on Genetic Programming: From Theory to
and PTC2 have additional probabilistic features not de- Real-world Applicationspages 3341, Tahoe City, Cal-
scribed in the simplified forms in this paper. Both algo- jfornia, USA, 9 July 1995a.

rithms permit users to hand-tune exactly the likelihood ofP A Whigham. Inductive bias and genetic programmin
appearance of a given function in the population, for exam- .In.A I\% S Zalzala editor First ?nternati%ns?l Con- 9-

ple. ference on Genetic Algorithms in Engineering Systems:
The results in this paper were surprising. Uniformity ap- Innovations and Applications, GALESI&olume 414,
pears to have little consequence in improving fitness. Cer- pages 461-466, Sheffield, UK, 12-14 September 1995b.
tainly this area deserves more attention to see what addi- IEE.

tional features, besides mean tree side give evolution
that extra push during the initialization phase. Lastly, while
this paper discussed effects tmess it did not delve into David B. Fogel, and Rick L. Riolo, editor§enetic Pro-
the effects of these algorithms tmee growth another crit- gramming 1996: Proceedings of the First Annual Con-

ical element in the GP puzzle, and a worthwhile study in its ference pages 230237, Stanford University, CA, USA
own right. 28-31 July 1996. MIT Press.

P. A. Whigham. Search bias, language bias, and genetic
programming. In John R. Koza, David E. Goldberg,

Acknowledgements

The authors wish to thank Ken DeJong, Paul Wiegand, and
Jeff Bassett for their considerable help and insight.

86 GENETIC PROGRAMMING

1000

800 1000

600 800

Fitness

Fitness

400 600

200 400

0 10 20 30 40 50 200
Generation

0 10 20 30 40 50
Generation

Figure 1: Generation vs. Fitnel8SAMPED HALF-AND-

HALF, 11-Boolean Multiplexer Domain
Figure 5: Generation vs. FitneddNIFORM-even, 11-

Boolean Multiplexer Domain

1000

800

600

Fitness

400

1000

200
800

40 50 600

w
o

0 10 20
Generation

Fitness

400
Figure 2: Generation vs. Fitned3TC1, 11-Boolean Mul-

tiplexer Domain 200

1000
0 10 20 30 40 50

Generation
800

Figure 6: Generation vs. FitneddNIFORM-true , 11-
Boolean Multiplexer Domain

600

Fitness

200

0 10 20 30 40 50
Generation
800
Figure 3: Generation vs. Fithne43TC2 11-Boolean Mul- *
tiplexer Domain S 700 S
24 ° o
o) []
1000 ; - .) . e °
600 F LR e
800 T
k7]
& 500
» 600
¢
=
400 400
200 0 10 20 30 40 50
Mean Initial Tree Size
0 10 20 30 40 50
Generation . as . . .
Figure 7: Mean Initial Tree Size vs. Fitness at Generation

8, 11-Boolean Multiplexer Domain
Figure 4: Generation vs. FitnesRANDOMBRANCHL-
Boolean Multiplexer Domain

GENETIC PROGRAMMING 87

80
70
60 80
50 70
@
g a0 60
z
30 50
@
20 £ 40
z
10 80
20
0 10 20 30 40 50
Generation 10
0 10 20 30 40 50
Generation

Figure 8: Generation vs. Fitnel8SAMPED HALF-AND-
HALF, Artificial Ant Domain

80

Figure 12: Generation vs. Fithes$NIFORM-even, Arti-
ficial Ant Domain

70

Fitness
w B (52 (=2}
o o o o

80
20 70
10
60
0 10 20 30 40 50 50
Generation a
2 40
£
30
Figure 9: Generation vs. Fitne$3TC1, Artificial Ant Do- 2
main I
80 . . . L
0 10 20 30 40 50
70 Generation
60

Figure 13: Generation vs. Fithnes$NIFORM-true , Arti-
ficial Ant Domain

Fitness
w B (52
o o o

20
10
0 10 éO éO 4‘0 5‘04
Generation 80
®
70 .
Figure 10: Generation vs. Fitne®BTC2, Artificial Ant 60
Domain S o
& 50 s
80 g () [[]
70 é 40 ~00... ® e & %
T
60 E,”: 30
50 o
" 20
£ K
i 10
30
2 0 10 20 30 40 50
10 Mean Initial Tree Size
0 iO éO . éO 4‘0 5‘04
Generation Figure 14: Mean Initial Tree Size vs. Fitness at Generation

8, Artificial Ant Domain
Figure 11: Generation vs. Fithes8ANDOMBRANCAdti-
ficial Ant Domain

88

15

0.5

Fitness
N w
= N (5 w (5 S

0 10 20 30 40 50
Generation

Figure 15: Generation vs. Fitne$$AMPED HALF-AND-
HALF, Symbolic Regression Domain
4
3.5
3
2 25
15
1
0.5
T 16 20 40 504

30
Generation

Figure 16: Generation vs. Fitned8TC1, Symbolic Re-
gression Domain

4

35

3
25
2
15
1
0.5

0 10 20 30 40 50
Generation

Fitness

Figure 17: Generation vs. Fitned8TC2 Symbolic Re-
gression Domain

0 10 20 30 40 50
Generation

Figure 18: Generation vs.
Symbolic Regression Domain

FitnesRANDOMBRANCH

GENETIC PROGRAMMING

35

w

Fitness
N

15

0.5

0 10 20 30 40 50
Generation

Figure 19: Generation vs. FitnessNIFORM-even,

Symbolic Regression Domain

35

w

Fitness

N

15

0.5

30
Generation

Figure 20: Generation vs. FitnessNIFORM-true ,

Symbolic Regression Domain

3

25 ¢
S
€2
o
@ .
2 15+t o
E .. c. o ° °
c ° °
8 1 oo"... S
=

0.5+

0 10 20 30 40 50

Mean Initial Tree Size

Figure 21: Mean Initial Tree Size vs. Fitness at Generation

8, Symbolic Regression Domain

GENETIC PROGRAMMING

89

Genetic Programming using Chebishev Polynomials

Nikolay Nikolaev
Dept. of Math. and Computing Sciences
Goldsmiths College, University of London
London SE14 6NW
UnitedKingdom
nikolaev@mecs.gold.ac.uk

Abstract

This paper proposes a tree-structured rep-
resentation for genetic programming (GP)
using Chebishev polynomials as building
blocks. They are incorporated in the leaves
of tree-structured polynomial models. These
trees are used in a version of the GP system
STROGANOFF to avoid overfitting with the
data when searching for polynomials. Search
control is organized with a statistical fit-
ness function that favours accurate, predic-
tive, and parsimonious polynomials. The im-
provement of the evolutionary search per-
formance is studied by principal component
analysis of the error variations of the elite
individuals in the population. Empirical re-
sults show that the novel version outperforms
STROGANOFF, and the traditional Koza-
style GP on processing benchmark and real-
world time series.

1 INTRODUCTION

Polynomials are often preferred for function modeling
due to their reliable approximation properties. Suc-
cessful results with evolutionary computation systems
that search for polynomials have been reported. They
consider polynomials made as fixed-length structures
(Kargupta and Smith, 1991), (Nissen and Koivisto,
1996), (Gomez-Ramirez et al., 1999), (Sheta and Abel-
Wahab, 1999), and variable-length tree-like structures
(Iba et al., 1996), (Rodriguez-Vazquez et al., 1997), or
sigma-pi neural networks (Zhang et al., 1997). Impor-
tant design issues for such systems are: 1) elaboration
of search control mechanisms that may help to achieve
convergence to optimal models; and, 2) elaboration of
flexible functional model representations that may en-
able finding of predictive solutions.

Hitoshi Iba
Dept. of Inf. and Comm. Engineering

School of Engineering, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo
113-8656 Japan
iba@miv.t.u-tokyo.ac.jp

These issues are addressed here with enhancement of
the representation of the GP system STROGANOFF
(Tba et al., 1996), (Nikolaev and Iba, 2001) that learns
polynomials. STROGANOFF manipulates tree-like
models of basis polynomials in their leaves. It uses the
GP paradigm to learn the model structure from the
data, that is to discover which basis polynomials are
components of the unknown function. One problem of
these tree-like polynomials is that they tend to overfit
the data as their parent GMDH networks (Ivakhnenko,
1971). Overfitting occurs mainly because the models
contain very high order terms that exhibit low residual
errors. One approach to combat evolving models with
very low fitting errors is to use statistical fitness func-
tions that estimate not only the residual error, but also
the coefficients amplitudes and the model complexity.

Another improvement of GP for overfitting avoidance
is proposed here using Chebishev polynomials as build-
ing blocks for tree-structured polynomials. The de-
velopment of a Chebishev polynomial GP (epGP) sys-
tem has four objectives: 1) to encapsulate structural
information in the polynomials so that they become
more sparse, compared to the same polynomials with-
out building blocks, for increasing of the generaliza-
tion; 2) to decrease the search space size due to the
decrease of the tree size; 3) to describe better oscillat-
ing properties of the data and to make the polynomials
especially suitable for time-series modeling; and, 4) to
accelerate the search convergence to good solutions.
Since the basic idea is to capture common information
in the data, this idea is similar to the automatically
defined functions (ADF) of (Koza, 1994), the modules
(MA) of (Angeline, 1994), and the adaptive represen-
tations (AR) of (Rosca and Balard, 1995).

The evolutionary search performance is studied by
principal component analysis (PCA) of the error vari-
ance of the elite polynomials in the population. More
precisely, applying PCA allows to observe the error
trajectory during the generations by plotting it in

90

three dimensions. Using such error trajectory plots
we demonstrate that the Chebishev building blocks
contribute to improve the search and to discover
polynomials with better generalization, compared to
STROGANOFF using the same fitness function. In
this sense, the fitness function alone is not sufficient to
guarantee finding good polynomials that avoid overfit-
ting the data. This claim is confirmed after experi-
ments on time series prediction using two benchmark
and one financial exchange rates series. The results
indicate that ¢pGP outperforms STROGANOFF and
the traditional GP (Koza, 1992) on these tasks.

This paper outlines the tree-structured representation
using Chebishev polynomials for function approxima-
tion in section two. Section three offers the regular-
ized fitness function and the ¢pGP mechanisms. The
performance studies using PCA are in section four.
Section five provides experimental results. Finally a
discussion is made and conclusions are derived.

2 POLYNOMIAL
APPROXIMATION

The function approximation problem is: given a series
D = {(x4,1;) }¥, of points z; € R, and corresponding
values y; € R, find the best function y = f(x), f € Lo.
Our preferred functions are the high-order multivariate
polynomials; called Kolmogorov-Gabor polynomials:

M s
P(x) = ag+ Z a; H ©;(x)"7 (1)

where a; are term coeflicients, i iterates over the terms
M: i < M, x is the independent variable vector of di-
mension s, ¢;(x) are simple functions of first, second,
third, etc. order (degree), and r; = 0,1,... are the
powers of the j-th function ¢;(x) in the i-th term.

The Kolmogorov-Gabor polynomials are universal
modelling functions with which any continuous map-
ping may be approximated up to an arbitrary preci-
sion, if there are sufficiently large number of terms.

2.1 TREE-STRUCTURED POLYNOMIALS

The GP system STROGANOFF (Iba et al., 1996) pi-
oneered the employment of binary tree structures for
representing polynomials. The terminal leaves in the
tree provide the independent variables. In each in-
ternal functional tree node there are allocated basis
polynomials whose outputs are fed in the basis poly-
nomials at next layer higher in the tree as variables.
Thus, high-order models are composed hierarchically
leading to power series (1) at the tree root.

GENETIC PROGRAMMING

F(x,t)

_ 2 2
P, (X)=a+a,x,+a,%,+a;X X, +a,X “+agx,

- 2
Py(x)=aytax+a,x,+a;x, P(X)=a,+a,x+a5,+a,x X,

T, (x,) T, (x,) T, (x))

T,(x,)=8.x*%-8.x%+1 T, (x)=x, T,(x)=2.x7%-1

Figure 1. A tree-structured polynomial used in ¢pGP

This tree-like polynomial construction, however, adds
very high-order terms to the model since the hierarchy
rapidly increases the model order. The terms of very
high-order are not necessarily well structurally related
to the information in the data.

One remedy for such difficulties are the ready to use
model components that capture common information
in the data known as building blocks. The assumption
is that the unknown function is resolvable in building
block components, and we may learn such components
by evolutionary search. A reasonable choice of such
components for approximation tasks are the Chebishev
polynomials which give minimax fit of the data.

2.2 CHEBISHEV TERMINALS

Chebishev polynomials may be considered as building
blocks for genetic programming with GMDH-like poly-
nomials. The idea is to take Chebishev polynomials in
order to capture the essential partial information in
the data. Thus, ready partial building blocks of the
unknown true function may be identified and propa-
gated during the search process.

We propose to pass Chebishev polynomials as termi-
nals to enter the tree-structured models (Figure 1):

pj(x) = Ti() (2)

where x = (w1,29,...,25) is the input variable vec-
tor, and Ty (x) are Chebishev polynomials applied with
some z € x. An important requirement for practical
application of the Chebishev polynomials T} () is to
transform in advance the values of the input vectors:
—1<x; <1, for each x;, 1 <i < s, that is to scale all
the input values in the interval [—1,1].

GENETIC PROGRAMMING

The Chebishev polynomials are derived with the re-
current formula [Lanczos, 1957]:

Tk(ﬂi) = 2$T}€_1($) - T}C_Q(x) (3)

where k is the polynomial order, and the starting poly-
nomial is: Ty (x) = a.

Using Chebishev polynomials implies that c¢pGP will
feature the following characteristics: 1) the polyno-
mials become more sparse due to the use of building
blocks, compared to the same models without them.
The sparseness implies that the polynomials may be
expected to overfit less the data; 2) the tree-structures
become smaller and, thus, the search space size de-
creases. The effect of this is a possible acceleration of
the convergence to good solutions; 3) oscillating terms
are injected into the model which helps to describe
better the frequency relationships between the data.
Empirical evidence for achieving these characteristics
is provided in subsections 5.1, 5.2 and 5.3 below.

3 MECHANISMS OF cpGP

The developed cpGP system uses fitness proportional
selection with stochastic universal sampling, and per-
forms steady-state reproduction of the population. A
statistical fitness function is offered, and two genetic
learning operators: crossover and mutation.

3.1 STATISTICAL FITNESS FUNCTION

The fitness function should control the evolutionary
search so as to identify polynomials that are accurate,
predictive, and of short size. We design a statistical
fitness function with three ingredients that together
counteract the overfitting with the data: 1) a mean-
squared-error measurement that favors highly fit mod-
els; 2) a regularization factor that tolerates smoother
mappings with higher generalization; and, 3) a com-
plexity penalty that prefers short size polynomials.

3.1.1 Regularized Average Error

The fitting of the data is evaluated with a regularized
average error (RAE) (Nikolaev and Iba, 2001):

1 N 2 < 2
RAF = N Z(yt - P(Xt)) +k z:; aj (4)

t=1

where k is a regularization parameter, A is the number
of all coefficients a; in the whole model P(x) (1), and
N is the number of the data. The first term shows
the improvement in mean square error sense. The sec-
ond term is a regularizer that tolerates models with
coeflicients having small magnitudes.

91

Transfer Polynomials
Pi(x) = ao + a1z1 + azx2

Py(x) = ap + a1x1 + asws + azwizo
P3(x) = a0 + a1z1 + sz

Pi(x) = ao + a151 + azx2 + asz3

P5(x) = ao + a1} + asxs

Ps(x) = ao + a1a1 + agws + Azl + aaTs
Pr(x) = ao + a121 + asx122 + asx]
Ps(x) = ao + a141 + azx2 + aszy

Py(x) = ap + arx1 + azxs

Plo(X) = aop + 412122
2 2
Pii(x) = ao + a1@1 + agxs + azx122 + a4x] + asz3

Table 1. The set of transfer polynomials

3.1.2 Coefficients Estimation

The cpGP system uses a small set {p;}il, of com-
plete and incomplete bivariate polynomials (Table 1).
Their terms are derived with the functions: hg(x) = 1,
hi(x) = x1, ha(x) = @2, h3(x) = w122, ha(x) = 27,
and hs(x) = 23. The coefficients a; are estimated by
reqularized ordinary least squares (ROLS) fitting:

a=HH+r)'Hy (5)

where a is (s + 1) x 1 vector of coefficients, H is
N X (s + 1) design matrix of row vectors h(x;) =
(ho(Xi),h1(Xi),...,hS(Xi)), T =]...N, y is the NV x 1
output vector, and k is a regularization parameter.

3.1.3 Complexity Penalty

A statistical fitness function that measures the final
prediction error (FPE) is synthesized to favor short
size polynomials (Akaike, 1969):

(N + A)

FPEZM

RAE 6)

where RAF is the regularized error (4), A are coeffi-
cients, and N are the examples.

3.2 GENETIC OPERATORS

The crossover operator chooses randomly a cut point
node in each tree, and swaps the subtrees rooted in
the cut-point nodes. The mutation operator selects
randomly a tree node, and performs one of the follow-
ing tree transformations: 1) insertion of a randomly
chosen node before the selected one, so that the se-
lected becomes an immediate child of the new one,
and the other child is a random terminal; 2) deletion
of the selected node, and replacing it by one of its chil-
dren nodes; and 3) replacement of the selected node
by another randomly chosen node.

92

4 PERFORMANCE STUDIES BY
PCA

We carry out a principal component analysis (Jol-
liffe, 1986) to examine the error variations of the elite
polynomials in the population. This allows to plot
the error trajectory which provides an illustration of
the search problems encountered during evolutionary
learning.

The PCA application may be explained as follows.
The mean square errors e, of the elite models are
recorded at each generation g, and error vectors are
formed: e, = (e}],eg, ..,€y), where e} is the error of
the n-th model and n is the size of the population elite.
Usually elite are the best 25%. The PCA is taken to
project the error changes in three dimensions, that is
to enable plotting of the error changes in three dimen-
sions in order to investigate the evolutionary search
difficulties. Because these errors reflect the degree of
accurate learning of the model coeflicients.

Let each elite error e be a point in the n-dimensional
error space. Therefore, we may write: e = Z?Zl e;u;,
where u; are unit orthonormal basis vectors such that:
uZTuj = 0j4, and 0;; is the Kroneker delta. The indi-
vidual model errors are: e; = ule. The PCA helps
to change the coordinate system and to project these
points on the dimensions in which they exhibit largest
variance. The basis vectors u; are changed with new
basis vectors v; so that in the new coordinate system:
e= Z?Zl z;v;. This can be made by extracting v; as
eigenvectors of the covariance matrix 3 of the error
trajectory recorded during a number of generations G:

EVi =)\ivi (7)

where); is the i-th eigenvalue of the covariance matrix

> defined as follows:

soo 1 G
and the mean error is e= & 2921 ey

The theoretical studies suggest that the first two prin-
cipal components (PCs) capture the most essential
variations in the errors. The extent to which the i-th
principal component captures the error variance can
be measured as follows: Ep. = A2/ 3" A2

We relate the first and the second PCs of the errors
pc = E?Zl z;vi, pc¢ = (pc1, pee), to the average mean
square error (M SE) of the population elite in order to
visualize the GP performance. These M SE trajectory
plots against the first two principal components pcy
and pcy may be considered pictures of the coefficients
learning process during evolutionary search.

GENETIC PROGRAMMING

Figure 2. Error trajectory of the 40 elite polynomials
(from a population of size 100) evolved with the GP sys-
tem STROGANOFF applied to the Sunspots data with the
FPE (6) statistical fitness function using k& = 0.0015.

MSE

o
0.000125 <

Figure 3. Error trajectory of the 40 elite polynomials
(from a population of size 100) evolved with ¢pGP applied
to the Sunspots data with the F'PE (6) statistical fitness
function using k£ = 0.0015.

Figures 2 and 3 depict the error trajectories com-
puted after runs of STROGANOFF and ¢pGP on the
Sunspot data series (Weigend et al., 1992). These
are the representative runs that achieved the best re-
sults (given in Table 2). One can see in Figure 2
that the error trajectory of STROGANOFF does not
go down smoothly. The variation of the elite pop-
ulation error slopes down with a zig-zag movement
which can be seen from the slightly changing error di-
rections after MSE = 0.0033 (pc; = 0.000271, and
pee = —0.0000462), MSE = 0.00325 (pc; = 0.000138,
and pcy = —0.0000235), and MSE = 0.0032 (pc; =
0.00011, and pcy; = —0.0000164). This means that
the population elite faces search difficulties and can
not orient precisely on the search landscape toward
the optimal solution. We are inclined to think that

GENETIC PROGRAMMING

the landscape of STROGANOFF is more rugged, and
more difficult to search. That is why, the population
evolved by STROGANOFF moves in curved directions
on the search landscape and in some sense jumps from
one basin to another basin of attraction without care-
ful exploration of the landscape neighborhood.

The ¢pGP error trajectory in Figure 3 shows that the
evolutionary search progresses directly, following al-
most a straight line direction of error decrease, toward
its best result. In this sense, its population exploits
meticulously the local search neighborhood and ori-
ents well on the search landscape. Since the two GP
are controlled by the same FPFE fitness function, it
seems that the search improvement can be due mainly
to the use of Chebishev polynomials as building blocks.

The plots in Figures 2 and 3 are meaningful because
these PCs capture respectively: pc; 99.315% and pceo
0.685% of the variance of all elite errors, and therefore
they make us certain about the search behaviour.

5 TIME SERIES MODELING

Three GP systems were implemented and tested
on time series prediction problems: the original
STROGANOFF (Iba et al., 1996), (Nikolaev and Iba,
2001), the epGP system, and a traditional Koza-style
GP (Koza, 1992). All the systems use the F PE fitness
function (6), and parameters: PopulationSize = 100,
and MaxzNumberO fGenerations = 250. The reg-
ularization parameter is determined in advance for
each task by a statistical technique (Myers, 1990).
The cpGP system uses five Chebishev polynomi-
als: 1&(x%]&(xt,lhjg(xt,lhih(xt,l) and 1%($t,1)
Thus, ten variables are passed as terminals: x =
(T4—1, Tt—2y ooy Tt—py Tt—g, 12y ..y T5). The Koza-style
GP is made using sin and cos in order to produce func-
tions with similar representation power. The question
that we rise is whether or not the ¢pGP system can
outperform STROGANOFF and traditional GP?

5.1 PROCESSING THE SUNSPOTS DATA

The Sunspots series (Weigend et al, 1992) contains
280 data points divided into one training and two test-
ing subsets.

Table 2 demonstrates that using Chebishev polynomi-
als helps to achieve improved results compared to the
case without such building blocks. One can see in Ta-
ble 2 that the models learned by STROGANOFF and
the novel version ¢pGP exhibit higher accuracy on the
training series as well as higher generalization on the
testing series than traditional GP.

93

0.9 - = Sun.series

Approx

o
o
T

o
w

Sun activity

1 n 1 n 1
100 150 200

Year
Figure 4. Approximated segment from the Sunspots curve

by the best polynomial harmonic network evolved with
¢pGP in 50 runs using k& = 0.0015.

Table 2. Results on the Sunspots series obtained in
50 runs with each GP using: MazTreeDepth = 4 in
STROGANOFF and ¢pGP, MaxTreeDepth = 10 in tra-
ditional Koza-style GP, and parameter k& = 0.0015.

Accuracy (ARV) | Generalization (ARV)

1700-1920 1700-1955 | 1700-1979

GP 0.128476 0.129685 | 0.132557
STROGA 0.114726 0.118257 | 0.129731
cpGP 0.103754 0.099159 | 0.104265

The cpGP system outperforms all the other systems
showing a better accuracy ARVi7go_1920 = 0.103754,
better short forecasting: ARVi700—1955 = 0.099159 in
the future period 1700 — 1955, and better long term
forecasting ARV1700—1979 = 0.104265 in 1700 — 1979.
The important observation in Table 2 is that the ¢cpGP
polynomial features a considerably improved general-
ization especially in the two future periods. There-
fore, the use of oscillating building blocks really can
increase the predictability of the acquired results. It
should be noted that the MaxTreeDepth parameter
is used in order to constrain the maximal model de-
gree for fair comparisons. The complexities of the best
results found by the systems are: 28 coefficients in
STROGANOFF, 25 coefficients in c¢pGP.

An approximated segment of the Sunspots series by
the best learned network from c¢pGP is plotted in Fig-
ure 4. The acquired numerical results in Table 2 con-
firm the theoretical expectation that using oscillating
building block components in the representation can
help to model well spikes in the series as these in Fig-
ure 4. It is likely that when the time series contains
spikes, a superior GP performance may be expected
using the novel representation.

94

0.6 \ A

****** MackeyGlass

Approx.
I
100 150 200

Series Points

Figure 5. Approximated segment from the Mackey-Glass
curve by the best polynomial harmonic network evolved
with ¢pGP in 50 runs using k£ = 0.0001.

Table 3. Results on the Mackey-Glass series generated
with: ¢ = 0.2,b = 0.1, A = 17, obtained in 50 runs us-
ing: MaxzTreeDepth = 3 in STROGANOFF and c¢pGP,
MaxzTreeDepth = 8 in traditional GP, and k& = 0.0001.

Accuracy (ARV) | Generalization (ARV)

0-100 0-200 0-400
GP 0.005429 0.003691 | 0.002794
STROGA 0.004751 0.003503 | 0.002591
cpGP 0.003390 0.002952 | 0.002483

5.2 PROCESSING THE MACKEY-GLASS
SERIES

A trajectory of 400 points from the benchmark
Mackey-Glass series (Mackey and Glass, 1977) is
derived. The first 100 points are used for train-
ing, and the remaining for testing. Again the first
five Chebishev polynomials are considered:
(v4—1,@4—2, ..., Tt—5, T4—g, 10, ..., T5). The systems are
tuned to evolve models of up to a predefined maximal
degree to make fair comparisons. The complexities of
the best results are: 25 coefficients in STROGANOFF,
and 22 coefficients in ¢pGP. The ¢pGP system locates
slightly more parsimonious models not only because
the fitness function favours simpler models, since this
fitness is also used by the other GP, but also because
the Chebishev building blocks contribute directly non-
linearities to the representation.

X =

Several observations can be made from the results
in Table 3: 1) the STROGANOFF and c¢pGP sys-
tems outperform the traditional GP on this task;
2) the novel ¢pGP is best on accuracy (0 — 100)
with ARVy_100 = 0.003390, excellent on short term
(0 — 200) prediction with ARVy_ 290 = 0.002952; and

GENETIC PROGRAMMING

also best on long term (0 — 400) prediction with
ARVy 400 = 0.002483. The slight differences in the
results given in Table 3 are due to the fact that the
smooth curvature of the Mackey-Glass series is approx-
imated by models of relatively high degree.

5.3 PROCESSING FINANCIAL DATA

Experiments with GP are performed attempting to
identify non-linear trends in currency exchange rates
taken from the financial market. We report results
derived with a real financial series of 14,000 data re-
lating the changes between the dollar (USD) and the
Japanese yen (JPY) obtained on demand by a financial
company during a certain period of time.

The given financial data series is pre-processed by a
differential technique in order to eliminate obscuring
information in the data, and to emphasize the rates
of directional changes in the series as follows (Iba and
Nikolaev, 2000):

Tqg = Ty — Ty_1 (9)

where z; is the data point at time ¢. Thus, de-
lay vectors are formed: x = (2g4—1, ..., Z4—g, 12, ..., I5)
and passed for the GP systems to learn the regular-
ities among them. The tree limit parameters of the
studied GP systems are: MaxzTreeDepth = 25 in
STROGANOFF and ¢pGP, and MaxTreeDepth = 50
in traditional GP. An approximated segment by the
best result from cpGP is plotted in Figure 6.

The characteristics of the best evolved results are mea-
sured with the mean square error (M SE) and with the
hit percentage estimate (Table 4). The hit percentage
(HIT) shows how accurately the trend directions have
been tracked by the model [Iba and Nikolaev, 2000]:

Nup_up + Ndown_down

HIT =
N

(10)

where Ny,,_,, means number of times when the model
outcome and the given outcome exhibit both upward
raising tendency, and Ngown_down Mmeans number of
times when the model outcome and the given outcome
exhibit both falling tendency.

One can see in Table 4 that STROGANOFF is not
better than traditional Koza-style GP in the sense of
economic HITs achievements. The good result from
traditional GP can be explained with its high MSFE
which means that it does not overfit the data. It has
been already studied that STROGANOFF tends to
evolve overfitting polynomials which have always to
be controlled by applying the regularization technique
(Nikolaev and Iba, 2001).

GENETIC PROGRAMMING

****** Original

Approx.

USD / JPY rate

2980 3000 3020

t (sampled on demand)

Figure 6. Approximated segment from the financial ez-
change rates series curve by the best polynomial harmonic
network from ¢pGP in 50 runs using k£ = 0.001.

Table 4.
from the financial series in 50 runs with each GP us-
ing: MazTreeDepth= 25 in STROGANOFF and c¢pGP,
MaxTreeDepth= 50 in traditional GP, k = 0.0001.

Estimates of the best polynomials learned

Accuracy (MSE) | Prediction (HIT's)
(training) (testing)
GP 0.0011329 50.43%
STROGA 0.0007521 49.02%
cpGP 0.0000234 78.26%

The ¢pGP system shows lowest mean square error
MSE = 0.0000234 on the training series, and demon-
strates superior predictability HIT's = 78.26% on this
task. Despite exhibiting lowest error ¢pGP does not
seem to overfit the training data. The derived best
polynomial describes well the directional changes in
the series up or down (Figure 6), which is a promising
feature for the practical application of cpGP.

6 DISCUSSION

Oscillating Building Blocks. The employment of
Chebishev polynomials for introducing ready nonlin-
ear building blocks in function representations, used
in GP systems breeding polynomials, showed success-
ful results on several time series prediction tasks. The
benefit from such building blocks is likely to be the
discovery of polynomial models with improved gener-
alization on future unseen data. Our findings concern
explicitly the case when the search control of GP is
made with fitness functions that contain both a size
dependent component and a coeflicients amplitude de-
pendent component. If some of these two components
are missing in the fitness function the effect from the
novel representation may not be the same.

95

Other alternatives for including nonlinear oscillating
components in the polynomial representation are also
possible. For example, currently under investigation
is a technique with harmonic components with non-
multiple frequencies derived analytically using the dis-
crete Fourier transform.

The Error Trajectory. The presented plots of
the elite error trajectory suggest that although keep-
ing of the binary tree structures, the employment
of Chebishev polynomials as building blocks causes
the ¢pGP to flow on different search landscapes than
STROGANOFF. The oscillatory building blocks im-
pact the landscape characteristics, i.e. make it more
or less difficult to search, through the fitness function.
The novel polynomials feature different fitnesses be-
cause the incorporated Chebishev terminals contribute
different nonlinearities in the model, and, thus, the
Chebishev terminals imply different errors of fit. The
developed ¢pGP representation seems to make the fit-
ness landscape easier to search despite the use of the
same fitness function in both GPs. This can be seen
from the trajectory plots in Figures 2 and 3.

A close methodology using PCA to examine the coef-
ficients/weight changes has been proposed for neural
network learning (Gallagher and Downs, 1997). The
presented here PCA of the elite population error is
more general as by explaining the error variance it
explains the coefficients and term learning processes.
This is because the polynomial error measurements
actually reflect the accuracy of identification of the
model coefficients and the identification of proper
model terms. Moreover, in GP the coefficients can
not be considered directly for PCA since the evolved
polynomials have different number of coeflicients.

It is not very clear yet whether ¢pGP is considerably
better on periodic series, on aperiodic series or on
both, for example on the Sunspots series cpGP shows
close performance to this of the Koza-style GP but on
the financial data series ¢pGP is considerably better.

7 CONCLUSION

This paper contributes to the research into increasing
the expressive power of the tree-structured GP repre-
sentations especially for function approximation tasks.
Initial results from the development of a GP system us-
ing polynomials in the functional nodes and Chebishev
polynomials passed as terminals have been reported.
The Chebishev polynomials serve as oscillatory build-
ing blocks which capture well the nonlinear properties
of the given training data, and there is a need to search
for these building blocks that should enter the model as

96

their descriptive significance is not known in advance.
It was shown that this tree-structured polynomial rep-
resentation has enabled to discover superior results on
several benchmark and real-world time-series predic-
tion problems.

We suppose that the novel polynomial representa-
tion scheme could be of practical importance and it
can be used successfully for addressing nonparametric
approximation tasks because of the following advan-
tages: 1) it generates explicit analytical models in the
form of multivariate high-order polynomial functions
amenable to human understanding; and 2) it makes
the polynomials well-conditioned, thus computation-
ally stable and suitable for practical purposes.

References

H. Akaike (1969). “Power Spectrum Estimation
through Autoregression Model Fitting”. Annals Inst.
Stat. Math. 21:407-419.

P.J. Angeline (1994). ”Genetic Programming and
Emerging Intelligence”. In E.Kinnear Jr. (Ed.), Ad-
vances in Genetic Programming. Cambridge, MA: The
MIT Press, pp.75-98.

M. Gallagher and T. Downs (1997). ”Weight Space
Learning Trajectory Vizualization”. In M.Dale (Ed.),
Proc. Eighth Australian Conference on Neural Net-
works, ACNN-98, pp.55-59.

E. Gomez-Ramirez, A.Poznyak, A.Gonzalez-Yunes
and M. Avila-Alvarez (1999). ” Adaptive Archictecture
of Polynomial Artificial Neural Network to Forecast
Nonlinear Time Series”. In Proc. of 1999 Congress on
Evolutionary Computation, CEC-1999. IEEE Press,
vol.1, pp.317-324.

H. Iba, H. deGaris, and T. Sato (1996). ”Numerical
Approach to Genetic Programming for System Identi-
fication”. Evolutionary Computation 3(4).

H. Iba and N. Nikolaev (2000). ” Genetic Programming
Polynomial Models of Financial Data Series”. In Proc.
of 2000 Congress on Evolutionary Computation, CEC-
2000. IEEE Press, pp.1459-1466.

A.G. Ivakhnenko (1971). ”Polynomial Theory of Com-
plex Systems”, IEEE Trans. on Systems, Man, and
Cybernetics 1(4):364-378.

LT. Jolliffe (1986). Principal Component Analysis.
New York, NY: Springer-Verlag.

H. Kargupta, and R.E. Smith (1991). ”System Iden-
tification with Evolving Polynomial Networks. In
R.K.Belew and L.B.Booker (Eds.), Proc. 4th Int.

GENETIC PROGRAMMING

Conf. Genetic Algorithms. San Mateo, CA: Morgan
Kaufmann, pp.370-376.

J.R. Koza (1992). Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selec-
tion. Cambridge, MA: The MIT Press.

JR. Koza (1994). Genetic Programming II: Auto-
matic Discovery of Reusable Programs. Cambridge,
MA: The MIT Press.

C. Lanczos (1957). Applied Analysis. London, UK:
Prentice-Hall.

R.H. Myers (1990). Classical and Modern Regres-
ston with Applications. Cambridge, CA: PWS-KENT
Publ., Duxbury Press.

A.S. Nissen and H. Koivisto (1996). "Identification of
Multivariate Volterra Series using Genetic Algorithm”,
In J.Alander (Ed.), Proc. Second Nordic Workshop on
Genetic Algorithms and their Applications. Finland:
University of Vaasa Press, pp.151-161.

M.C. Mackey and L. Glass (1977). ”Oscillation and
Chaos in Physiological Control Systems”. Science
197:287-289.

N. Nikolaev and H. Iba (2001). ”Regularization Ap-
proach to Inductive Genetic Programming”. I[EEE
Trans. on Evolutionary Computation (in press).

K. Rodriguez- Vazquez, C.M. Fonseca and P.J. Flem-
ing (1997). ” An Evolutionary Approach to Non-Linear
Polynomial System Identification”. In Proc. 11th
IFAC Symposium on System Identification, pp.2395-
2400.

J. Rosca and D.H. Ballard (1995). ”Discovery of Sub-
routines in Genetic Programming”, In P.Angeline and
K.Kinnear Jr. (Eds.), Advances in Genetic Program-
ming I1. Cambridge, MA: The MIT Press, pp.177-202.

AF. Sheta and A.H. Abel-Wahab (1999). In Proc. of
1999 Congress on Evolutionary Computation, CEC-
1999. 1EEE Press, vol.1, pp.229-235.

A.S. Weigend and N.A. Gershenfeld (Eds.) (1994).
Time Series Prediction. Reading, MA: Addison-
Wesley.

B.-T. Zhang, P. Ohm, and H. Mihlenbein (1997)
”Evolutionary Induction of Sparse Neural Trees”, Evo-
lutionary Computation 5(2):213-236.

GENETIC PROGRAMMING

97

Grammar Defined Introns: An Investigation Into Grammars, Introns, and Bias in
Grammatical Evolution.

Michael O’Neill

Conor Ryan

Miguel Nicolau

Dept. Of Computer Science & Information Systems
University of Limerick
Ireland.
{Michael.ONeill|Conor.Ryan|Miguel.Nicolau } @ul.ie

Abstract

We describe an investigation into the design of dif-
ferent grammars on Grammatical Evolution. As
part of this investigation we introduce introns us-
ing the grammar as a mechanism by which they
may be incorporated into Grammatical Evolution.
We establish that a bias exists towards certain pro-
duction rules for each non-terminal in the grammar,
and propose alternative mechanisms by which this
bias may be altered either through the use of in-
trons, or by changing the degeneracy of the genetic
code. The benefits of introns for Grammatical Evo-
lution are demonstrated experimentally.

1 Introduction

Grammatical Evolution (GE) is an evolution-
ary algorithm that can evolve code in any lan-
guage, using linear genomes [O’Neill & Ryan 2001]

[Ryan C., Collins J.J. & O’Neill M. 1998]. We have previ-
ously presented results relating to an analysis of some of
GE’s distinctive features, such as its degenerate genetic code,
wrapping operator and crossover [O’Neill & Ryan 1999b]
[O’Neill & Ryan 1999a]. We now present the first results
from an investigation into the role of the grammar in GE.
Specifically, we introduce a mechanism by which introns can
be incorporated into the genotypic representation through
the grammar, and conduct an analysis on the effects of these
grammar defined introns on the performance of GE. We also
establish the existence of a bias towards the use of certain
production rules for each non-terminal, dependent upon their
ordering in the grammar, and propose a mechanism by which
this bias can be altered as desired through the use of grammar
defined introns.

We begin with a brief overview of GE, for a more complete
description we refer the reader to [O’Neill & Ryan 2001].

Grammar defined introns are then introduced, followed by a
description of the experimental approach adopted to test the
effects of introns, before a discussion on bias and introns.

2 Grammatical Evolution

Unlike standard GP [Koza 1992], GE uses a variable length
binary string to represent programs. Each individual con-
tains in its codons (groups of 8 bits) the information to select
production rules from a Backus Naur Form (BNF) grammar.
BNF is a notation that represents a language in the form of
production rules. It is comprised of a set of non-terminals
that can be mapped to either elements of the set of terminals,
or to elements of the set of non-terminals, according to the
production rules. An excerpt from a BNF grammar is given
below. These productions state that S can be replaced with
any one of expr, 1f-stmt, or Loop.

S = expr (0)
| if-stmt (1)
| loop (2)

In order to select a rule in GE, the next codon value on the
genome is generated and placed in the following formula:

Rule = “Codon Integer Value"

MOD
“Number of Rules for this non — terminal”

If the next codon integer value was 4, given that we have
3 rules to select from as in the above example, we get
4 MOD 3 = 1. S will therefore be replaced with the
non-terminal if-stmt.

Beginning from the left hand side of the genome, codon in-
teger values are generated and used to select rules from the
BNF grammar, until one of the following situations arise:

98

1. A complete program is generated. This occurs when all
the non-terminals in the expression being mapped are
transformed into elements from the terminal set of the
BNF grammar.

2. The end of the genome is reached, in which case the
wrapping operator is invoked. This results in the re-
turn of the genome reading frame to the left hand side
of the genome once again. The reading of codons will
then continue, unless an upper threshold representing the
maximum number of wrapping events has occurred dur-
ing this individual’s mapping process.

3. In the event that a threshold on the number of wrap-
ping events has occurred and the individual is still in-
completely mapped, the mapping process is halted, and
the individual is assigned the lowest possible fitness val-
ue.

GE uses a steady state replacement mechanism, such that two
parents produce two children, the best of which replaces the
worst individual in the current population if the child has a
greater fitness. The standard genetic operators of point mu-
tation, and crossover (one point) are adopted. It also em-
ploys a duplication operator that duplicates a random number
of codons and inserts these into the penultimate codon posi-
tion on the genome. A full description of GE can be found
in [O’Neill & Ryan 2001].

3 Grammar Defined Introns

The benefit, or otherwise, of introns in evolutionary computa-
tion have been hotly debated for some time [Levenick 1991]
[Altenberg 1994] [Angeline 1994] [Nordin & Banzhaf 1995]
[Nordin, Francone & Banzhaf 1995] [Wu & Lindsay 1995]
[Andre & Teller 1996] [Wineberg & Oppacher 1996]
[Haynes 1996] [Wu & Lindsay 1996] [Lobo et al. 1998]
[Smith & Harries 1998] [Luke 2000]. In the standard im-
plementation of GE, introns can only occur at the end of a
chromosome due to the nature of the mapping process. The
role of an intron in the preservation of building blocks due
to destructive crossover events is therefore minimised in GE.
We wish to investigate the effects introns might have on the
performance of GE and, as such, have devised a mechanism
by which they may be incorporated into the system. We
call this mechanism Grammar Defined Introns, whereby the
grammar is used to incorporate introns into the genome. This
is achieved by allowing codons to be skipped over during
the mapping process, by using introns as a choice(s) for
non-terminals.

For example, the following non-terminal uses an intron as a
rule:

<if-statement> (n)
| <op> (B)

<line> :: =

GENETIC PROGRAMMING

| intron (C)

When a codon evaluates to the intron rule being selected
we simply skip over this codon, and the code undergoing the
mapping is unchanged. In this case the non-terminal <1ine>
would remain as <1ine> if the intron rule is selected, and
the next codon is read.

4 Bias in Grammatical Evolution

When choosing a production rule to be applied to a non-
terminal during the mapping process, there is a bias towards
certain choices. The amount of bias depends on the number
of choices that are to be made, and on the number of genet-
ic codes that are used to represent each choice. Taking the
example of the non-terminal <op>:

<op> :: = left () (A)
| right() (B)
| move () (C)

there are 3 possible mappings for <op> that can be made in
this case. Given a 2-bit codon, there are 4 possible genetic
codes representing these choices. This results in a strong bias
towards the first choice with a probability of selection of 0.5
as opposed to 0.25 for both of the other rules, see Table 1.

Genetic Code Choice
00 A
01 B
10 C
11 A
Choice Probability

A 2/4

B 1/4

C 1/4

Table 1: Probabilities of selecting a production rule using 2-
bit codons.

However, given an 3-bit codon the bias due to the probability
of using any one rule is reduced, see Table 2.

Taking the case of an 8-bit codon as adopted in the standard
GE implementation this bias is minimised even further, see
Table 3.

In the case of there being two choices as in

<lines> (A)
|<Code><line> (B)

(1) <code> :: =

there is no bias to either choice no matter how many codes
exist.

One approach to alleviate the problem of bias was that used
by [Paterson & Livesley], who duplicated certain rules. Un-
fortunately, that system was difficult to control, and not very

GENETIC PROGRAMMING

Genetic Code Choice
000 A
001 B
010 C
011 A
100 B
101 C
110 A
111 B

Choice Probability
A 3/8 (.375)
B 3/8 (.375)
C 2/8 (.25)

Table 2: Probabilities of selecting a production rule using 3-
bit codons.

Choice Probability
A 86/256 (.336)
B 85/256 (.332)
C 85/256 (.332)

Table 3: Probabilities of selecting a production rule using 8-
bit codons.

successful at removing the bias. Another approach that GE
can employ is to minimise the bias towards any one rule by
increasing the size of the codon.

This paper will consider both the possibility of introducing
and removing bias through the incorporation of introns.

5 Experimental Approach

The aim of this paper is to examine bias in the grammar and
see if using introns and increasing codon size can be used to
alter any bias effects that might be observed. We also wish to
establish if introns may be useful to GE.

We conduct our experimentation on the Santa Fe ant trail
problem. A tableau describing this problem and parameters
can be seen in Table 4. The default grammar used for this
problem is outlined below.

N = {code,line,if — statement,op}
T = {left(), right(), move(), food_ahead(),
else,if,{,},(,)}

S =< code >

And P can be represented as:

<line> (0)
|<Code><line> (1)

(A) <code> :: =

99
(B) <line> :: = <if-statement> (0)
| <op> (1)

(C) <if-statement> :: = if (food ahead()) {

<line>

}

else{ <line> }

(D) <op> :: = left () (0)
| right () (1)
| move () (2)

To determine the effect of introns on the performance of GE,
grammar defined introns were placed at various points in the
grammar, and the cumulative frequency of success measured
on the target problem.

For example, 100 runs were conducted where an intron was
placed at position zero of Rule (A) as follows:

(A) <code> :: = intron (0)
| <line> (1)
| <code><line> (2)

100 runs were then conducted with the intron placed at the
other two remaining positions:

(A) <code> :: = <lines> (0)
| intron (1)
| <code><line> (2)

and,

(A) <code> :: = <lines> (0)
| <code><line> (1)
| intron (2)

The same approach was taken for the other two non-terminals
involving a choice (i.e. Rules B and D).

To take into account the bias that might result from using a
smaller codon size, we repeat the above experiments using a
2-bit codon instead of the 8-bits used normally.

6 Results

Cumulative frequencies of success for each of the experi-
ments outlined in the previous section are given in Figures
1,2,3 and 4.

Figure 1 shows results for the insertion of an intron at the var-
ious positions of rule A. With the intron in position zero, a
success rate superior to standard GE is achieved in the case of
both 8-bit and 2-bit codons, with little difference between the
8-bit and 2-bit results. In the cases of positions one and two,
it can be seen that the presence of the intron has the similar
effect of improving success over standard GE. With the addi-

100

GENETIC PROGRAMMING

Objective :

Find a computer program to control an artificial ant
so that it can find all 89 pieces of food located on
the Santa Fe Trail.

Terminal Operators:

left(), right(), move(), food_ahead()

Fitness cases

One fitness case

Raw Fitness

Number of pieces of food before the
ant times out with 615 operations.

Standardised Fitness | Total number of pieces of
food less the raw fitness.
Hits Same as raw fitness.
Wrapper Standard productions to generate C functions
Parameters Population = 500, Generations = 50

pmut = 0.01, pcross = 0.9

Table 4: Grammatical Evolution Tableau for the Santa Fe Trail

tion of an intron to Rule A, we change the number of choices
from two to three, thus biasing the rule in position zero.

In the case that the intron is in position zero and therefore
biased towards (stronger bias in the case of a 2-bit codon) we
see a superior performance to standard GE, particularly in the
case of a 2-bit codon.

These results would suggest that by inserting bias towards
the choice of an intron we achieve an improved performance,
comparing to what would otherwise be an unbiased rule
choice. When 8-bit codons are adopted (reduction in bias
towards the rule at position zero), the improvement in per-
formance by placing an intron at position zero is less evident
than in the case of 2-bit codons.

In the case of inserting an intron in positions 1 or 2, we
are creating a bias towards the rule in position 0, ie.
< code >::=< line >. This also gave us superior perfor-
mance comparing to standard GE. This seems to suggest by
forcibly inserting a bias towards certain rules, we can guide
the system to make its choices, thus improving the overall
performance.

Similar results are observed for rule B, see Figure 2. The
presence of introns generally enhances the performance over
standard GE, with positive effects due to the insertion of bias
either towards introns, or towards existing rules.

Insertion of an intron into rule D has the opposite effect to in-
sertion into rules A and B, i.e. change from an uneven number
of choices (3) to an even number (4), see Figure 3 and 4. With
the addition of an intron, the bias towards any one of the pro-
duction rules is removed. The results demonstrate that with
the intron placed at all the positions other than position ze-
ro, a reduction in performance over standard GE with 8-bit
codons is observed. The change in success rate when placed
in position zero appears to be less evident in the case of 8-bit
codons, but much larger for 2-bit codons.

6.1 Discussion

These results suggest that it is quite possible for a grammar to
implicitly contain bias. This, in turn, can have severe impli-
cations for the type and quality of individuals explored by the
system.

Previous results [O’Neill & Ryan 1999a] have shown that
when degeneracy was removed from the system, the perfor-
mance dropped dramatically. Indeed, Figures 2 to 4 illustrate
just how poorly the 2 bit representation (minimal degeneracy)
fares.

While it wasn’t clear from earlier work exactly why a degen-
erate encoding was better, these results suggest that degener-
acy acts to remove bias from the search. The performance of
the 2 bit representation with bias removed approaches that of
the 8 bit representation, but on no occasion does it outperform
the 8 bit with bias removed. This suggests that degeneracy is
doing more than counteracting bias.

Finally, it is clear from the results that sometimes the removal
of bias towards a grammar production rule will not improve
performance. This in turn suggests that bias in grammars can
guide the system to better choices, thus improving the search
for a solution.

These findings are, however, limited to the problem domain
examined, and as such, further investigations will be required
to determine their generality.

7 Conclusions & Future Work

A technique called Grammar Defined Introns is introduced
to incorporate introns into GE. Following a discussion on the
bias that exists towards certain production rules of the BNF
grammar, we demonstrate that the creation of bias has posi-
tive effects in the case of the problem domain and grammar
examined here. In particular, bias towards introns has been
shown to have beneficial effects, thus suggesting that introns

GENETIC PROGRAMMING

Cumulative Freq. Of Success

Cumulative Freq. Of Success

have a useful role to play in their own right, i.e. in addition to

90

80

60

50

40

30

20

o

920

80

70

60

50

40

30

20

Grammatical Evolution - Santa Fe Trail

Cumulative Freq. Of Success

90

80

60

50

40

30

20

Grammatical Evolution - Santa Fe Trail

T T T T T T T T T
-
*
r o 4
*
STD 8bit + * .
TD 2bit x [FE——
[Rule 0, Pos. 1 8bit ----x e -+ i
Rule 0, Pos. 1 2bit o » o
é +
% @
s man
L s cona® <t
N) XXX
*T o <
e e >xx
E x
+ =% aae
r - % i
* P
o x
.
oEE X
L R i
*OF e
/
- % x
& =
L . i
e x
i x
-
g
L o i
Rl =
e
L of |
=n
%
o
r oF il
-2
5
|sazit
5 10 15 20 25 30 35 40 45 50

Generation

Cumulative Freq. Of Success

90

60

50

40

30

20

101

Grammatical Evolution - Santa Fe Trail

T T T T T T T T T
o
o
e
X
L oot i
STD 8bit + Paa .
TD 2bit x * bt
|Rule 0, Pos. 2 8bit ----* e + B
Rule 0, Pos. 2 2bit = EE moes’
X+
w5,
*+ man™
L A e P
q 006
oo s
o x
e
L LR i
x
x
+* «
L - a i
W
.
*
L L i
* Pox
.
* o
X @
2 5
)
L 2 ' i
*
LT
- fgpec®
L - i
B3
T
-
.
F N |
.
%X
FX e
LauttBem |
o 5 10 15 20 25 30 35 40 45 50

Generation

Figure 1: The effects of inserting introns for each choice on the first non-terminal code

Generation

Figure 2:

T T T T T T T T T
JormHRH
o @
e
X
L Lo i
STD 8bit + X oEem P
TD 2bit x * po JRES—
[Rule 0, Pos. O 8bit ----x--- == i
Rule 0, Pos. 0 2bit & +*
x -
e -
o
L o ., M
=) %%
o ¥ v e
s ¢
e R
L s > g
% >
& A >
X
= 5 ¥ < B
o= x
i >
R =
L g+ i
#
B =
e o<
L i x i
RN >
>
* o0x
4 >
r
L " i
X
ot
B %
-
L & 4
o ¥
e
L
o B 10 15 20 25 30 35 40 45 50
Generation
Grammatical Evolution - Santa Fe Trail
o
LoRRAHH
L o i
STD 8bit + * s
STD 2bit x I e
[Rule 1, Pos. 0 8bit ---*--- e
Rule 1, Pos. 0 2bit —& e e
=
; -
7 ;
r o oo]
x
Rt o
iy x
L - LR i
® & <
; >
* .7
k X
L * + o< i
: a x
i me >
=
P x
L Ko i
; >
e >
; P
L g « i
o=
B o
m
r % b
P
L ¥ . i
K<
=¥
Bx
=E3
£3
att
o 5 10 15 20 25 30 35 40 45 50

Cumulaive Freq. Of Success

920

80

70

60

50

40

30

20

Grammatical Evolution - Santa Fe Trail

o———
*
[eren R 1
STD8bit + o
STD 2bit x EE—
[Rule 1, Pos. 1 8bit —--x o - i
Rule 1) Pos. 1 2bit o ¥ s
s
¥ L
-
L L .
; i
“ + RRx
4
L * Py il
¥ Sl
; o
o e
L - = i
* R
; o=
e %
L * o 4
oo
i o
B <
: Eh
L - 2 4
i 2
: 2
e
L +§'>< al i
a
=%
Py i
s
5 10 15 20 25 30 35 40 45 50

Generation

their ability to alter bias towards other production rules.

We show that degeneracy can remove the effect of bias, and
that, in many cases, using a degenerate code can outperform a
tweaked insertion of introns. In certain cases, a combination

of Grammar Defined Introns and degenerate code produces
the best performance.

References

The effect of counteracting bias can be dramatic, and this

suggests that much care should be taken in the design of a
grammar. Future work will consider the possibility of ideal
numbers of productions, and also examine the effects of re-

moving/introducing bias on other problems.

1994.

Cumulaive Freq. Of Success

Acknowledgment

920

80

70

60

50

40

30

20

Grammatical Evolution - Santa Fe Trail

Generation

The effects of inserting introns for each choice on the second non-terminal 1ine

. —
.
o
xS
L F |
P
STD 8bit + Jere PP
STD 2bit x » R S
[Rule 1, Pos. 2 8bit ------- | + eEEe=Eh
Rule 1, Pos. 2 2bit = * Lt =)
; - oo
* o
L < oy pEEa® B
o o L
X
: +rp® 53>
[4T x
L Pl N |
* =5 <
k <
.
P o~
L e < |
* x
s
o
A g x
= -] -
~
F <
T <
L Pe |
kL8 <
o
e
L B |
o
L A]
B
I
.@ﬂi;
T,
o 5 10 15 20 25 30 35 40 a5 50

The authors wish to thank Maarten Keijzer and Mike Cattoli-
co for the many conversations that helped to form the founda-
tions of this work.

[Altenberg 1994] Altenberg L. 1994. The evolution of evolv-
ability in genetic programming. In Kenneth E. Kinnear,
Jr., Ed., Advances in Genetic Programming. MIT Press,

[Andre & Teller 1996] Andre D., Teller A. 1996. A Study in
Program Response and the Negative Effects of Intron-
s in Genetic Programming. In Proceedings of Genetic

Programming 1996: Proceedings of the First Annual

Conference, John R. Koza, David E. Goldberg, David
B. Fogel, & Rick L. Riolo, Eds. Stanford, USA 1996,

pp 12-20.

Grammatical Evolution - Santa Fe Trail Grammatical Evolution - Santa Fe Trail Grammatical Evolution - Santa Fe Trail
90 T T T T T T T T T 90 T T T T T T T T T 90 T T T T T T T T T
STD 8bit + R HH AR AR STD 8bit + R STD 8bit + ot
STD 2bit = g CEee: STD 2bit = L STD 2bit x PR
g0 |Rule 4, Pos. 0 8bit - ", - 3 8o |Rule 4, Pos. 1 8bit ----x--- - 8o |Rule 4, Pos. 2 8bit --x o
Rule 4, Pos. 0 2bit & e s Rule 4, Pos. 1 2bit & o o Rule 4, Pos. 2 2bit & o o
- — o
e x oo - e
¥ x; x; x;
70 ? -+ oo S 70 EEEEEgg, 70 | + s e oo
*B = = wex** T e =
o + ¢ ¢ X o xxx”
%7 h x> > + i B ™
60 St Bae g 60 - B 60 R e g
2 * x 2 2 *
2 * = 2 2 ; =
g L o+ . g g P
4 ? x S 4 ; x
L so % &t = g L so g L so i g
<] = X <] <] Bom <
g g g o
2 FoE o+ = £ £ T =
s : ry ry =
£ 40 / - B £ 40 - g £ 40 - - B B
3 *i+ = s s = ol
s / s s o
3 jB = 3 3 N
30 a = g 30 g 30 * = g
8 x B x
; &
* o oot 4
x Yox
B o+ =
20 - e - 20 - q 20 - Exx -
e <
* &
Fas, A
10 - i x g 10 - g 10 - g% g
B> 2 =R
By
B % 2
o mim ° lopu®fi ° o
o 5 10 15 20 25 30 35 40 45 50 o 5 10 15 20 25 30 35 40 45 50 o 5 10 15 20 25 30 35 40 45 50

Generation

Generation

Generation

Figure 3: The effects of inserting introns for the first three choices on the fourth non-terminal op

Grammatical Evolution - Santa Fe Trail

Grammatical Evolution - Santa Fe Trail

920 920
STD 8bit + [
STD 2bit x IR
Rule 4, Pos. 3 8bit ----%--- +
80 N - 80 STD 8bit —+—— -
[Rule 4, Pos. 3 2bit - ot STD 2bit ——-<—
-
«
.
o xx*xxx"‘
70 | E * 70 | B
) et . ot
+ o™ o . P
- o x <
* 0 .
60 " w X =) Bl 60 Pl B
2 * x =t P
& e o oo X
g > o< X
s L <
L s0 | * 2 mma® B s0 - P B
S s, 2 X
g wox g ¥
& - & 7
£ a0 | + @ B 40 B
= + o P
g -l /
3 s #x% <
Bl 30 < B
>
?()(»x)(
- 20 4 -
&
1 10 | [1
. ° 7
25 30 35 40 a5 50 o 5 10 15 20 25 30 35 40 a5 50

Generation

Generation

Figure 4: (Left) The effects of inserting introns for the fourth choice on the fourth non-terminal op (Right) Results for 2-bit

and 8-bit codons using the standard grammar

[Angeline 1994] Angeline P.J. 1994. Genetic Programming
and Emergent Intelligence. In Kenneth E. Kinnear, Jr.,
Ed., Advances in Genetic Programming, MIT Press, pp
75-98.

[Goldberg 1989] Goldberg, David E. 1989. Genetic Algo-
rithms in Search, Optimization and Machine Learning.
Addison Wesley.

[Koza 1992] Koza, J. 1992. Genetic Programming. MIT
Press.

[Haynes 1996] Haynes T. 1996. Duplication of Coding Seg-
ments in Genetic Programming. In Proceedings of the
Thirteenth National Conference on Artificial Intelli-
gence, Portland, OR, pp 344-349.

[Levenick 1991] Levenick J. R. 1991. Inserting Introns Im-
proves Genetic Algorithm Success Rate: Taking a Cue
from Biology. In Proceedings of the 4th Internation-

al Conference on Genetic Algorithms, R.K. Belew and
L.B. Booker Eds. San Diego, CA 1991, pp 123-127.

[Lobo et al. 1998] Lobo E.G., Deb K., Goldberg D.E., Harik
G., Wang L. 1998. Compressed Introns in a Linkage
Learning Genetic Algorithm. In Genetic Programming
1998: Proceedings of the Third Annual Conference,
Madison, Wisconsin, pp 551-558.

[Luke 2000] Luke S. 2000. Code Growth Is Not Caused by
Introns. In GECCO’2000, Las Vegas, pp

[Nordin & Banzhaf 1995] Nordin P. and Banzhaf W. 1995.
Complexity compression and evolution. In Proceedings
of the 6th International Conference on Genetic Algo-
rithms (ICGA-95), Pittsburgh, L. Eshelman (ed.), Mor-
gan Kaufmann, San Francisco, 1995, pp. 310 - 317.

[Nordin, Francone & Banzhaf 1995] Nordin P., Francone F.,
and Banzhaf W. 1995. Explicitly defined introns and de-
structive crossover in genetic programming. In Kenneth

GENETIC PROGRAMMING

E. Kinnear, Jr. and Peter J. Angeline Eds., Advances in
Genetic Programming 2. MIT Press.

[O’Neill & Ryan 2001] O’Neill M., Ryan C. Grammatical
Evolution. [EEE Trans. Evolutionary Computation.

2001.
[O’Neill & Ryan 2000] O’Neill M., Ryan C. 2000.
Crossover in Grammatical Evolution: A Smooth

Operator? Lecture Notes in Computer Science 1802,
Proceedings of the European Conference on Genetic
Programming, pages 149-162. Springer-Verlag.

[O’Neill & Ryan 1999a] O’Neill M., Ryan C. 1999. Genetic
Code Degeneracy: Implications for Grammatical Evo-
lution and Beyond. In Proceedings of the Fifth Euro-
pean Conference on Artificial Life.

[O’Neill & Ryan 1999b] O’Neill M., Ryan C. 1999. Under
the Hood of Grammatical Evolution. In Proceedings of
the Genetic & Evolutionary Computation Conference
1999.

[O’Neill & Ryan 1999¢] O’Neill M., Ryan C. 1999. Evolv-
ing Multi-line Compilable C Programs. Lecture Notes
in Computer Science 1598, Proceedings of the Second
European Workshop on Genetic Programming, pages
83-92. Springer-Verlag.

[Paterson & Livesley] Paterson N., Livesley M. Evolving
Caching Algorithms in C by Genetic Programming. In
GP’97: Proceedings of the Second Annual Conference,
pages 262-267.

[Ryan C., Collins J.J. & O’Neill M. 1998] Ryan C., Collins
J.J., O’Neill M. 1998. Grammatical Evolution: Evolv-
ing Programs for an Arbitrary Language. Lecture Notes
in Computer Science 1391, Proceedings of the First Eu-
ropean Workshop on Genetic Programming, pages 83-
95. Springer-Verlag.

[Smith & Harries 1998] Smith P.W.H., and Harries K. 1998.
Code Growth, Explicitly Defined Introns, and Alterna-
tive Selection Schemes. Evolutionary Computation 6:4,
pp 339-360.

[ICGA Workshop 1997] Workshop on Exploring Non-
coding Segments and Genetics-based Encodings,
International Conference on Genetic Algorithms 1997,
MI, USA.

[Wineberg & Oppacher 1996] Wineberg M. and Oppacher F.
1996. The Benefits of Computing with Introns, In John
R. Koza, David E. Goldberg, David B. Fogel, and Rick
L. Riolo Eds., Genetic Programming 1996: Proceed-
ings of the First Annual Conference, MIT Press, pages
410-415.

103

[Wu & Lindsay 1995] Wu A. S. and Lindsay R. K. 1995.
Empirical studies of the genetic algorithm with noncod-
ing segments. Evolutionary Computation 3, pp 121-48.

[Wu & Lindsay 1996] Wu A. S and Lindsay R. K. 1996. A
survey of intron research in genetics, in Proceedings of
the 4th Conference on Parallel Problem Solving from
Nature, Berlin, Germany, September 1996.

104

GENETIC PROGRAMMING

Exact Schema Theory for GP and Variable-length GAs
with Homologous Crossover

Riccardo Poli
School of Computer Science
The University of Birmingham
Birmingham, B15 2TT, UK
R.Poli@cs.bham.ac.uk

Abstract

In this paper we present a new exact schema the-
ory for genetic programming and variable-length
genetic algorithms which is applicable to the
general class of homologous crossovers. These
are a group of operators, including GP one-point
crossover and GP uniform crossover, where the
offspring are created preserving the position of
the genetic material taken from the parents. The
theory is based on the concepts of GP crossover
masks and GP recombination distributions (both
introduced here for the first time), as well as the
notions of hyperschema and node reference sys-
tems introduced in other recent research. This
theory generalises and refines previous work in
GP and GA theory.

1 Introduction

Genetic programming theory has had a difficult child-
hood. After some excellent early efforts leading to dif-
ferent approximate schema theorems [1, 2, 3, 4, 5, 6, 7],
only very recently have schema theories become available
which give exact formulations (rather than lower bounds)
for the expected number of instances of a schema at the
next generation. These exact theories are applicable to
GP with one-point crossover [8, 9, 10], standard crossover
and other subtree-swapping crossovers [11, 12, 13], and
different types of subtree mutation and headless chicken
crossover [14, 15].

Here we extend this work by presenting a new exact
schema theory for genetic programming which is applica-
ble to a very important and general class of operators which
we call homologous crossovers. This group of opera-
tors generalises most common GA crossovers and includes
GP one-point crossover and GP uniform crossover [16].
These operators differ from the standard subtree swapping

Nicholas Freitag McPhee
Division of Science and Mathematics
University of Minnesota, Morris
Morris, MN, USA
mcphee @mrs.umn.edu

crossover [1] in that they require that the offspring being
created preserve the position of the genetic material taken
from the parents.

The paper is organised as follows. Firstly, we provide a re-
view of earlier relevant work on GP schemata and cover the
key definitions and terms in Section 2. Then, in Section 3
we show how these ideas can be used to define the class
of homologous crossover operators and build probabilis-
tic models for them. In Section 4 we use these to derive
schema theory results and an exact definition of effective
fitness for GP with homologous crossover. In Section 5 we
give an example that shows how the theory can be applied.
Some conclusions are drawn in Section 6.

2 Background

Schemata are sets of points of the search space sharing
some syntactic feature. For example, in the context of GAs
operating on binary strings, the syntactic representation of
a schema is usually a string of symbols from the alphabet
{0,1,*}, where the character * is interpreted as a “don’t
care” symbol. Typically schema theorems are descriptions
of how the number of members of the population belonging
to a schema vary over time. Let «(H, t) denote the proba-
bility at time ¢ that a newly created individual samples (or
matches) the schema H, which we term the fotal transmis-
sion probability of H. Then an exact schema theorem for a
generational system is simply [17]

E[m(H,t+1)] = Ma(H, 1), (1)

where M is the population size, m(H, t + 1) is the number
of individuals sampling H at generation t+ 1 and E[-] is the
expectation operator. Holland’s [18] and other worst-case-
scenario schema theories normally provide a lower bound
for a(H, t) or, equivalently, for E[m(H,t + 1)].

One of the difficulties in obtaining theoretical results on
GP using the idea of schema is that finding a workable def-
inition of a schema is much less straightforward than for
GAs. Several alternative definitions have been proposed in

GENETIC PROGRAMMING

the literature [1, 2, 3, 4, 6, 7, 5]. For brevity here we will
describe only the definition introduced in [6, 7], since this
is what is used in the rest of this paper. We will refer to this
kind of schemata as fixed-size-and-shape schemata.

Syntactically a GP fixed-size-and-shape schema
is a tree composed of functions from the set
F U{=} and terminals from the set 7 U {=}, where F and
T are the function and terminal sets used in a GP run. The
primitive = is a “don’t care” symbol which stands for a sin-
gle terminal or function. A schema H represents the set of
all programs having the same shape as H and the same la-
bels for the non-= nodes. For example, if 7={+, *} and
T={x, y}theschema (+ x (= y =)) represents the
four programs (+ x (+ y x)), (+ x (+ vy y)),
(+ x (* y x))and (+ x (* v y)).

In [6, 7] a worst-case-scenario schema theorem was derived
for GP with point mutation and one-point crossover; as dis-
cussed in [8], this theorem is a generalisation of the ver-
sion of Holland’s schema theorem [18] presented in [19]
to variable size structures. One-point crossover works by
using the same crossover point in both parent programs,
and then swapping the corresponding subtrees like standard
crossover. To account for the possible structural diversity
of the two parents, the selection of the crossover point is
restricted to the common region, the largest rooted region
where the two parent trees have the same topology. The
common region will be defined formally in Section 3.

One-point crossover can be considered to be an instance
of a much broader class of operators that can be defined
through the notion of the common region. For example,
in [16] we defined and studied a GP operator, called uni-
form crossover (based on uniform crossover in GAs), in
which the offspring is created by independently swapping
the nodes in the common region with a uniform proba-
bility. If a node belongs to the boundary of the common
region and is a function then also the nodes below it are
swapped, otherwise only the node label is swapped. Many
other operators of this kind are possible. We will call them
homologous crossovers, noting that our definition is more
restrictive than that in [20]. A formal description of these
operators will be given in Section 3.

The approximate schema theorem in [6, 7] was improved
in [9, 10], where an exact schema theory for GP with one-
point crossover was derived which was based on the no-
tion of hyperschema. A GP hyperschema is a rooted tree
composed of internal nodes from F U {=} and leaves
from 7 U {=,#}. Again, = is a “don’t care” symbols
which stands for exactly one node, while # stands for any
valid subtree. For example, the hyperschema (* # (= x
=)) represents all the programs with the following char-
acteristics: a) the root node is a product, b) the first argu-
ment of the root node is any valid subtree, c) the second
argument of the root node is any function of arity two, d)

105

the first argument of this function is the variable x, e) the
second argument of the function is any valid node in the
terminal set. One of the results obtained in [10] is

Oé(H, t) = (1 - pxo)p(H7 t) + p)maxo(Ha t) (2)

where
1
a,(H,t) = ; m (3)
X p(U(H,Z) mGkat)p(L(H,i)mGl;t)
1€C(Gr,G1)

and: p,, is the crossover probability; p(H, t) is the selection
probability of the schema H;' Gy, G, - - - are an enumer-
ation of all the possible program shapes, i.e. all the possi-
ble fixed-size-and-shape schemata containing = signs only;
NC(Gy,G)) is the number of nodes in the common re-
gion between shape Gy, and shape G;; C(Gy,G)) is the
set of indices of the crossover points in such a common
region; L(H,1) is the hyperschema obtained by replacing
all the nodes on the path between crossover point ¢ and
the root node with = nodes, and all the subtrees connected
to those nodes with # nodes; U(H, i) is the hyperschema
obtained by replacing the subtree below crossover point 4
with a # node; if a crossover point ¢ is in the common re-
gion between two programs but it is outside the schema
H, then L(H,i) and U(H, i) are defined to be the empty
set. The hyperschemata L(H,4) and U(H,4) are impor-
tant because, if one crosses over at point ¢ any individual
in L(H,i) with any individual in U(H,1), the resulting
offspring is always an instance of H. The steps involved
in the construction of L(H,i) and U(H, i) for the schema
H =(* = (+ x =)) areillustrated in Figure 1.

As discussed in [8], it is possible to show that, in the ab-
sence of mutation, Equations 2 and 3 generalise and refine
not only the GP schema theorem in [6, 7] but also the ver-
sion of Holland’s schema theorem [18] presented in [19],
as well as more recent GA schema theory [21, 22].

Very recently, this work has been extended in [11] where a
general, exact schema theory for genetic programming with
subtree swapping crossover was presented. The theory is
based on a generalisation of the notion of hyperschema and
on a Cartesian node reference system which makes it pos-
sible to describe programs as functions over the space N?.

The Cartesian reference system is obtained by considering
the ideal infinite tree consisting entirely of nodes of some
fixed maximum arity a,,,. This maximal tree would in-
clude 1 node of arity a,,, at depth 0, a,,, nodes of arity
ey at depth 1, (a,,.)% nodes of arity a,,, at depth 2, and

"In fitness proportionate selection p(H,t) =
m(H,t)f(H,t)/(Mf(t)), where m(H,t) is the number of
trees in the schema H at time ¢, f(H, t) is their mean fitness, and
f(t) is the mean fitness of the trees in the population.

106

L(H.1) U(H, 1) L(H3)

/"\ A A A/
NOATATATA

A A AN A
/\ A\ %\ A\

4 \ / >
\
Figure 1: Example of a schema and some of its potential hyper-

schema building blocks. The crossover points in H are numbered
as shown in the top left.

U(H3)

Column

3|00

Layer
d

Figure 2: Syntax tree for the program (IF (AND x1 x2)
(OR x1 x3) x1) represented in a tree-independent Cartesian
node reference system for nodes with maximum arity 3. Unused
nodes and links of the maximal tree are drawn with dashed lines.
Only four layers and six columns are shown.

generally (a,,,,)? nodes at depth d. Then one could imag-
ine organising the nodes in the tree into layers of increasing
depth (see Figure 2) and assigning an index to each node in
alayer. The layer number d and the index ¢ can then be used
to define a Cartesian coordinate system. Clearly, one could
also use this reference system to locate the nodes of non-
maximal trees. This is possible because a non-maximal tree
can always be described using a subset of the nodes and
links in the maximal tree. This is illustrated for the pro-
gram (IF (AND x1 x2) (OR x1 x3) x1) in Fig-
ure 2. So, for example, the IF node would have coordi-
nates (0,0), the AND would have coordinates (1,0), and the
x3 node would have coordinates (2,4). In this reference
system it is always possible to find the route to the root
node from any valid coordinate. Also, if one chooses @,
to be the maximum arity of the functions in the function
set, it is possible to use this reference system to represent
the structure of any program that can be constructed with
that function set.

GENETIC PROGRAMMING

The theory in [11] is also applicable to standard GP
crossover [1] with and without uniform selection of the
crossover points, one-point crossover [6, 7], size-fair
crossover [20], strongly-typed GP crossover [23], context-
preserving crossover [24], and many others. The theory has
also been recently extended to subtree mutation and head-
less chicken crossover [14, 15]. It does not, however, cur-
rently cover the class of homologous operators and the goal
of this paper is to fill that theoretical gap.

3 Modelling Homologous Crossovers

Given a node reference system it is possible to define func-
tions over it. An example of such functions is the arity
Sunction A(d,i,h) which returns the arity of the node at
coordinates (d,¢) in h. For example, for the tree in Fig-
ure 2, A(0,0,h) = 3, A(1,0,h) = 2 and A(2,1,h) = 0.
Similarly, it is possible to define the common region mem-
bership function C(d,i,hy,h2) which returns true when
(d,) is part of the common region of hy and h,. Formally,

C(d,i, hy, he) = true when either (d,i) = (0,0) or
A(d_ l,ilahl) :A(d_lai’7h2) 750
and C(d—1,i',hy, hy) = true,

where i’ = |i/a,.] and |-] is the integer-part function.
This allows us to formalise the notion of common region:

C(hl,hz) = {(d,Z) |C(d,i,h1,h2) = true}. (4)

This is the notion of common region used in the schema
theorem for one-point crossover in Equation 2. As
indicated before, one-point crossover selects the same
crossover point in both parents by randomly choosing a
node in the common region. An alternative way to inter-
pret the action of one-point crossover is to imagine that
the subset of nodes in C'(hy, h2) below such a crossover
point are transferred from parent ho into an empty coor-
dinate system, while all the remaining nodes in C'(hy, hz)
are taken from parent h;. Clearly, nodes representing the
leaves of the common region should be transferred together
with their subtrees, if any. Other homologous crossovers
can simply be defined by selecting subsets of nodes in the
common region differently.

A good way to describe and model the class of homologous
crossovers is to extend the notions of crossover masks and
recombination distributions used in genetics [25] and in the
GA literature [26, 27, 28]. In a GA operating on fixed-
length strings a crossover mask is simply a binary string.
When crossover is executed, the bits of the offspring cor-
responding to the 1’s in the mask will be taken from one
parent, those corresponding to 0’s from the other parent.
For example, if the parents are the strings aaaaaa and
bbbbbb and the crossover mask is 110100, one offspring
would be aababb. For operators returning two offspring it

GENETIC PROGRAMMING

is easy to show that the second offspring can be obtained by
simply complementing, bit by bit, the crossover mask. For
example, the complement of the mask 110100, 001011,
gives the offspring bbabaa. If the GA operates on strings
of length N, then 2N different crossover masks are possi-
ble. If, for each mask i, one defines a probability, p;, that
the mask is selected for crossover, then it is easy to see how
different crossover operators can simply be interpreted as
different ways of choosing the probability distribution p;.
For example, for strings of length N = 4 the probability
distribution for one-point crossover would be p; = 1/3 for
the crossover masks ¢ = 1000, 1100,1110 and p; = 0 oth-
erwise, while for uniform crossover p; = 1/16 for all 16
1’s. The probability distribution p; is called a recombina-
tion distribution.

Let us now extend the notion of recombination distributions
to genetic programming with homologous crossover. For
any given shape and size of the common region we can
define a set of GP crossover masks which correspond to
all possible ways in which a recombination event can take
place within the given common region. Because the nodes
in the common region are always arranged so as to form
a tree, it is possible to represent the common region as a
tree or an equivalent S-expression. So, GP crossover masks
can be thought of as trees constructed using 0’s and 1’s
that have the same size and shape as the common region.
So, for example, if the common region is represented by
the set of node coordinates {(0,0),(1,0),(1,1)}, then there
are eight valid GP crossover masks: (0 0 0), (0 0 1),
(010),(011),(L00),(L01),(110)
and (1 1 1). The complement of a GP crossover mask
is an obvious extension, where the complement 7 has the
same structure as mask ¢ but with the 0’s and 1’s swapped.
In the following we will use). to denote the set of the
2NV(e) crossover masks associated with the common region
¢, where N (c¢) is the number of nodes in ¢. Since we are
typically interested in the common region defined by two
trees, we’ll use x(hi, hz2) as a shorthand for Xy, hs)-

Once x. is defined we can define a fixed-size-and-shape
recombination distribution p{ which gives the probability
that crossover mask ¢ € yx. will be chosen for crossover
between individuals having common region c. Then the
set {p§ | Vc}, which we call a GP recombination distribu-
tion, completely defines the behaviour of a GP homologous
crossover operator, different operators being characterised
by different assignments for the p§. For example, the GP
recombination distribution for uniform GP crossover with
50% probability of exchanging nodes is p = (0.5)N(¢).

GP crossover masks and GP recombination distributions
generalise the corresponding GA notions. Indeed, as also
discussed in [8], GAs operating on fixed-length strings are
simply a special case of GP with homologous crossover.
This can be shown by considering the case of function sets

107

including only unary functions and initialising the popula-
tion with programs of the same length. Since in a linear
GP system with fixed length programs every individual has
exactly the same size and (linear) shape, only one common
region c is possible. Therefore, only one fixed-size-and-
shape recombination distribution p§ is required to charac-
terise crossover. In variable length GAs and GP, multiple
fixed-size-and-shape recombination distributions are nec-
essary, one for every possible common region c.

4 Exact GP Schema Theory for Homologous
Crossovers

Using hyperschemata and GP recombination distributions
for homologous crossover, we obtain the following:

Theorem 1. The total transmission probability for a fixed-
size-and-shape GP schema H under homologous crossover
is given by Equation 2 with

o (H,t) =)

S S b tphat) g

h1 h2 i€x(h1,h2)
§(hy € T(H,i))6(hy € T(H, 1))

where: the first two summations are over all the individu-
als in the population; C(hy, hs) is the common region be-
tween program hy and program hs; x(hi, h2) is the set of
crossover masks associated with C'(hy, he); §(x) is a func-
tion which returns 1 if x is true, 0 otherwise; T'(H,1) is
defined below; i is the complement of crossover mask .

['(H, 1) is defined to be the empty set if ¢ contains any node
not in H. Otherwise it is the hyperschema obtained by re-
placing certain nodes in H with either = or # nodes:

e If anode in H corresponds to (i.e., has the same coor-
dinates as) a non-leaf node in ¢ that is labelled with a
0, then that node in H is replaced with a =.

e If a node in H corresponds to a leaf node in i that is
labelled with a O, then it is replaced with a #.

e All other nodes in H are left unchanged.

If, for example, H =(* = (+ x =)), as indicated in
Figure 3(a), then ['(H, (0 1 0)) is obtained by first replac-
ing the root node with a = symbol (because the crossover
mask has a function node 0 at coordinates (0,0)) and then
replacing the subtree rooted at coordinates (1,1) with a #
symbol (because the crossover mask has a terminal node
0 at coordinates (1,1)) obtaining (= = #). The schema
I'(H,(1 0 1)), which forms a complementary pair with
the previous one, is instead obtained by replacing the sub-
tree rooted at coordinates (1,0) with a # symbol obtaining
(* # (+ x =)), asillustrated in Figure 3(b).

108

Schema H

Column 0 1 2
i
[

d
Crossover Mask (0 1 0) Column 0 Cross?vengsk (101)

Schema H

Column
i

Column

0 1 2 3 i ‘ i
o} ‘ ‘ ‘ of,)
‘\ 1 (‘)\1
I 0 : :
5 2
Layer Laﬁ;er
d
F(H'(O 1 0)) Column F(H'(I 0 1)) Column
1 2 3 i 0 1 2 : i
0 0] «

*
S i

3)
Layer Layer
d

(a) (b)

Figure 3: A complementary pair of hyperschemata I'(H, ¢) for
the schema H = (* = (+ x =)).

The hyperschemata'(H, i) and I'(H, i) are generalisations
of the schemata L(H,%) and U(H,) used in Equation 2
(compare Figures 1 and 3). In general if one crosses over
using crossover mask i any individual in T'(H, i) with any
individual in T'(H, 1), the resulting offspring is always an
instance of H.

Once the concept of I'(H, i) is available, the theorem can
easily be proven.

Proof. Let p(hy, he, 1, t) be the probability that, at genera-
tion ¢, the selection-crossover process will choose parents
hi and hsy and crossover mask . Then, let us consider the
function

g(h1,ho,i, H) = 8(hy € T(H,i))8(hy € T(H, 7).

Given two parent programs, h; and ho, and a schema of
interest H, this function returns the value 1 if crossing over
hy and hy with crossover mask ¢ yields an offspring in H.
It returns O otherwise. This function can be considered as
a measurement function (see [27]) that we want to apply to
the probability distribution of parents and crossover masks
at time ¢, p(hy, ho, 1,t). If hy, ho and i are stochastic vari-
ables with joint probability distribution p(hy, he,1,t), the
function g(hq, ha,i, H) can be used to define a stochastic
variable v = g(hy, ho, i, H). The expected value of 7 is:

=> 3" g(ha, hayi, H)p(ha, hayist). (6)
hi1 ha i

Since < is a binary stochastic variable, its expected value
also represents the proportion of times it takes the value 1.

GENETIC PROGRAMMING

This corresponds to the proportion of times the offspring of
hi and hy are in H.

We can write

p(hy, he,i t) = p(ilhy, he)p(hy, £)p(ha, t),

where p(i|h1,he) is the conditional probability that
crossover mask ¢ will be selected when the parents are
hi and ho, while p(hy,t) and p(ho,t) are the selection
probabilities for the parents. In homologous crossover

plilh1, ha) = pf ™) 5(i € x(hy, ha)). s0

p(h17 h27i7t)
= p(h1, Oplha,)y " "8 € x(ha, ha)).

Substituting this into Equation 6 with minor simplifications
leads to the expression of a, in Equation 5. a

Equations 2 and 5 allow one to compute the exact total
transmission probability of a GP schema in terms of mi-
croscopic quantities. It is possible, however, to transform
this model into the following exact macroscopic model of
schema propagation

Theorem 2. The total transmission probability for a fixed-
size-and-shape GP schema H under homologous crossover
is given by Equation 2 with

XX X ATx o

J k iex(G;,Gy)

a,(H,t) =

Proof. Let us start by considering all the possible program
shapes G1, G2, ---. These schemata represent disjoint
sets of programs. Their union represents the whole search

space, So
26(]“ € G]) =
J

We insert the 1.h.s. of this expression and of an analogous
expression for (hy € G}) in Equation 5 and reorder the
terms obtaining:>

axo(H,t)
- S St
h1 ha
Z pg(hl’h)(s(hl € I'(H,1))d(h1 € Gy)
i€x(h1,h2)

8(hs € T(H,7))6(h2 € Gi)

S5 3D SN

J k h1€G; ha€Gy

> p{ " 6(he € T(H, i))d(he € T(H, 7))
i€x(hi,h2)

*Note that h; € Gj ANhy € Gy, = C(h1,h2) =

h27)

C(Gj,Gr).

GENETIC PROGRAMMING

hZ:)

= 222 D plmy

ki k h1€Gj ha€Gy

S U5y € D(H,)0 (he € T(H,D)

i€ex(G;,Gr)
C(G;,G
p (k) § hl,

=22 2 3

J k iex(Gj,Gy)

§(hy €T(H,4)) Y plha,t)d(hs € D(H,7)).

ho€Gy

Since > e, P(h1,t)d(hy € T(H,i)) = p(I'(H,i) N
Gj,t) (and similarly for p(I'(H, i) N Gy, t)), this equation
completes the proof of the theorem. a

This theorem is a generalisation of Equations 2 and 3.
These, as indicated in Section 2, are a generalisation of a re-
cent GA schema theorem for one-point crossover [21, 22]
and a refinement (in the absence of mutation) of both the
GP schema theorem in [6] and Goldberg’s version [19] of
Holland’s schema theory [18]. The schema theorems in
this paper also generalise other GA results (such as those
summarised in [29]), as well as the result in [27, appendix],
since they can be applied to linear schemata and even fixed-
length binary strings. So, in the absence of mutation, the
schema theory in this paper generalises and refines not only
earlier GP schema theorems but also old and modern GA
schema theories for one- and multi-point crossover, uni-
form crossover and all other homologous crossovers.

Once the value of a(H,t) is available, it is trivial to ex-
tend (as we did in [10, 11]) the notion of effective fitness
provided in [21, 22] obtaining the following:

Corollary 3. The effective fitness of a fixed-size-and-shape
GP schema H under homologous crossover is

a(H,t)
p(H,1)

= f(HD[1-p.(1

feff(Hv t) =

f(H, 1)

B S D L
7.k iEX(G]‘,Gk)

8
p(H,1) ®

5 Example

Since the calculations involved in applying exact GP
schema theorems can become quite lengthy, we will limit
ourselves here to one extremely simple example. For ap-
plications of this and related schema theories see [12, 13,
14, 15, 30]. To make clearer the relationship between
this work and our theory for one-point crossover, we will
use the same example as in [10], this time using general
homologous crossover operators instead of just one-point
Crossover.

109

Let us imagine that we have a function set
{As,B;,Cy,Dy,E;} including only unary func-
tions, and the terminal set {A:, By, Ct, Dy, Ex}. Since,
all functions are unary, we can unambiguously represent
expressions without parenthesis. In addition, since the only
terminal in each expression is the rightmost node, we can
remove the subscripts without generating any ambiguity.
Thus, every member of the search space can be seen as a
variable-length string over the alphabet {A, B,C,D, E},
and GP with homologous crossover is really a non-binary
variable-length GA.

Let us now consider the schema AB=. We want to measure
its total transmission probability (with p,, = 1) under fit-
ness proportionate selection and an arbitrary homologous
crossover operator for the following population:

Population | Fitness
AB 2
BCD 2
ABC 4
ABCD 6

In order to apply Equation 7 we first need to number all
the possible program shapes G, G5, etc.. Let G1 be =, G
be ==, G3 be === and G4 be ====. We do not need to
consider other, larger shapes because the population does
not contain any larger programs. We then need to evaluate
the shape of the common regions to determine x(G;, Gy)
for all valid values of 7 and k. In this case the common
regions can be naturally represented using integers which
represent the length of the common region. Since the
length of the common region is the length of the shorter
parent, we know C(G;,Gx) = min(j, k). Then, for each
common region ¢ we need to identify the hyperschemata
['(aB=, i) for all the meaningful crossover masks i € x.
and calculate I'(AB=,i) N G for all meaningful values
of j. These calculations are shown in Table 1. Using this
table we can apply Equation 7, obtaining, after simplifica-
tion and omitting ¢ and the superscript c from pj for brevity,

a(AB=) = ay(AB=)

-y %

pip(L(H,i) N G;)p(L(H, i) N Gi)

Jrk=1je{0,1}min(.k)

= (po+p1)p(AB =)p(=) +
(poo + p11)p(AB =)p(==) +
(por + p10)p(= B =)p(A =) +
(pooo + p111)p(AB =)(p(===) + p(====)) +
(poo1 + p110)p(===)(p(AB =) + p(AB ==)) +
(po1o + p1o1)p(A ==)(p(= B =) + p(= B ==)) +
(po11 + p1oo)p(= B =)(p(A ==) + p(A ===))

This equation is valid for any homologous crossover op-
erator, each of which is defined by the set of p;. It is
easy to specialises it for one-point crossover by using the

110

Mask | I'(AB=,7) I'(aB=,:) NG,

i j=11j= J=31J=
0 # = = === | ====
1 AB= 0 0 AB= 0
00 =# 0 == === | ====
01 =B= 0 0 =B= 0
10 At 0 A= A== | A===
11 AB= 0 0 AB= 0
000 == 0 0 === | ====
001 === 0 0 === 0
010 =B# 0 0 =B= | =B==
011 =B= 0 0 =B= 0
100 A=t 0 0 A== | A===
101 == 0 0 == 0
110 AB# 0 0 AB= | AB==
111 AB= 0 0 AB= 0
0000 | 0 0 0 0 0

Table 1: Crossover masks and schemata necessary to calculate
Qo (AB =).

recombination distribution pyg = 1, poo = p1o = 1/2,
Pooo = Proo = P10 = 1/3 and p; = 0 for all other
crossover masks. This leads to the same result as in [10].

It is also easy to specialise the previous equation to uni-
form crossover by using the recombination distribution
pi = (0.5)N® where N (i) is the length of crossover
mask 4. Doing so in this case yields a(AB=,t) ~ 0.2806.
For the same example, in [10] we obtained o(AB=,t) =
0.2925 for one-point crossover, which indicates that uni-
form crossover is slightly less “friendly” towards the
schema. We can also use Equation 8 to compute the ef-
fective fitness for the schema AB= for both uniform and
one-point crossover, obtaining values of approximately 3.9
and 4.1, respectively. These values are very close to the
actual average fitness of the schema in the current popula-
tion, 4, suggesting that in this case disruption and creation
effects tend to balance out. This is not always the case,
however, as is shown in [10].

6 Conclusions

Unlike GA theory, which has made considerable progress
in the last ten years or so, GP theory has typically been
scarce, approximate and, as a rule, not terribly useful. This
is not surprising given the youth of GP and the complex-
ities of building theories for variable size structures. In
the last year or so, however, significant breakthroughs have
changed this situation radically. Today not only do we have
exact schema theorems for GP with a variety of operators
including subtree mutation, headless chicken crossover,
standard crossover, one-point crossover, and all other sub-
tree swapping crossovers, but this GP theory also gener-
alises and refines a broad spectrum of GA theory, as indi-
cated in Section 2.

GENETIC PROGRAMMING

We believe that this paper extends this series of break-
throughs. Here we have presented a new schema the-
ory applicable to genetic programming and both variable-
and fixed-length genetic algorithms with homologous
crossover. The theory is based on the concepts of GP
crossover masks and GP recombination distributions, both
introduced here for the first time. As discussed in Section 4,
this theory also generalises and refines a broad spectrum of
previous work in GP and GA theory.

Clearly this paper is only a first step. We have not yet
made any attempt to use our new schema evolution equa-
tions to understand the dynamics of GP or variable-length
GAs with homologous crossover or to design competent
GP/GA systems. In other recent work, however, we have
specialised and applied the theory for other operators to un-
derstand phenomena such as operator biases and the evolu-
tion of size in variable length GAs [12, 13, 14, 15]. In the
future we hope to be able to do the same and produce ex-
citing new results with the theory presented here.

Acknowledgements

The authors would like to thank the members of the EE-
BIC (Evolutionary and Emergent Behaviour Intelligence
and Computation) group at Birmingham, for useful discus-
sions and comments. Nic thanks to The University of Birm-
ingham School of Computer Science for graciously hosting
him during his sabbatical, and various offices and individu-
als at the University of Minnesota, Morris, for making that
sabbatical possible.

References

[1] J. R. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Cambridge, MA,
USA: MIT Press, 1992.

[2] L. Altenberg, “Emergent phenomena in genetic program-
ming,” in Evolutionary Programming — Proceedings of the
Third Annual Conference (A. V. Sebald and L. J. Fogel,
eds.), pp. 233-241, World Scientific Publishing, 1994.

[3] U.-M. O’Reilly and F. Oppacher, “The troubling aspects of
a building block hypothesis for genetic programming,” in
Foundations of Genetic Algorithms 3 (L. D. Whitley and
M. D. Vose, eds.), (Estes Park, Colorado, USA), pp. 73-88,
Morgan Kaufmann, 31 July-2 Aug. 1994 1995.

[4] P. A. Whigham, “A schema theorem for context-free gram-
mars,” in 1995 IEEE Conference on Evolutionary Computa-
tion, vol. 1, (Perth, Australia), pp. 178-181, IEEE Press, 29
Nov. - 1 Dec. 1995.

[5] J. P. Rosca, “Analysis of complexity drift in genetic pro-
gramming,” in Genetic Programming 1997: Proceedings
of the Second Annual Conference (J. R. Koza, K. Deb,
M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo,
eds.), (Stanford University, CA, USA), pp. 286294, Mor-
gan Kaufmann, 13-16 July 1997.

GENETIC PROGRAMMING

(6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

[14]

(15]

(16]

R. Poli and W. B. Langdon, “A new schema theory for ge-
netic programming with one-point crossover and point mu-
tation,” in Genetic Programming 1997: Proceedings of the
Second Annual Conference (J. R. Koza, K. Deb, M. Dorigo,
D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, eds.),
(Stanford University, CA, USA), pp. 278-285, Morgan
Kaufmann, 13-16 July 1997.

R. Poli and W. B. Langdon, “Schema theory for genetic
programming with one-point crossover and point mutation,”
Evolutionary Computation, vol. 6, no. 3, pp. 231-252, 1998.

R. Poli, “Exact schema theory for genetic program-
ming and variable-length genetic algorithms with one-point
crossover,” Genetic Programming and Evolvable Machines,
vol. 2, no. 2, 2001. Forthcoming.

R. Poli, “Hyperschema theory for GP with one-point
crossover, building blocks, and some new results in GA
theory,” in Genetic Programming, Proceedings of EuroGP
2000 (R. Poli, W. Banzhaf, and et al., eds.), Springer-Verlag,
15-16 Apr. 2000.

R. Poli, “Exact schema theorem and effective fitness for
GP with one-point crossover,” in Proceedings of the Ge-
netic and Evolutionary Computation Conference (D. Whit-
ley, D. Goldberg, E. Cantu-Paz, L. Spector, 1. Parmee, and
H.-G. Beyer, eds.), (Las Vegas), pp. 469-476, Morgan Kauf-
mann, July 2000.

R. Poli, “General schema theory for genetic programming
with subtree-swapping crossover,” in Genetic Programming,
Proceedings of EuroGP 2001, LNCS, (Milan), Springer-
Verlag, 18-20 Apr. 2001.

R. Poli and N. F. McPhee, “Exact schema theorems for GP
with one-point and standard crossover operating on linear
structures and their application to the study of the evolution
of size,” in Genetic Programming, Proceedings of EuroGP
2001, LNCS, (Milan), Springer-Verlag, 18-20 Apr. 2001.

N. F. McPhee and R. Poli, “A schema theory analysis of
the evolution of size in genetic programming with linear
representations,” in Genetic Programming, Proceedings of
EuroGP 2001, LNCS, (Milan), Springer-Verlag, 18-20 Apr.
2001.

R. Poli and N. F. McPhee, “Exact GP schema theory for
headless chicken crossover and subtree mutation,” in Pro-
ceedings of the 2001 Congress on Evolutionary Computa-
tion CEC 2001, (Seoul, Korea), May 2001.

N. F. McPhee, R. Poli, and J. E. Rowe, “A schema the-
ory analysis of mutation size biases in genetic programming
with linear representations,” in Proceedings of the 2001
Congress on Evolutionary Computation CEC 2001, (Seoul,
Korea), May 2001.

R. Poli and W. B. Langdon, “On the search properties of
different crossover operators in genetic programming,” in
Genetic Programming 1998: Proceedings of the Third An-
nual Conference (J. R. Koza, W. Banzhaf, K. Chellapilla,
K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Gold-
berg, H. Iba, and R. Riolo, eds.), (University of Wisconsin,
Madison, Wisconsin, USA), pp. 293-301, Morgan Kauf-
mann, 22-25 July 1998.

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

111

R. Poli, W. B. Langdon, and U.-M. O’Reilly, “Analysis of
schema variance and short term extinction likelihoods,” in
Genetic Programming 1998: Proceedings of the Third An-
nual Conference (J. R. Koza, W. Banzhaf, K. Chellapilla,
K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Gold-
berg, H. Iba, and R. Riolo, eds.), (University of Wisconsin,
Madison, Wisconsin, USA), pp. 284-292, Morgan Kauf-
mann, 22-25 July 1998.

J. Holland, Adaptation in Natural and Artificial Systems.
Ann Arbor, USA: University of Michigan Press, 1975.

D. E. Goldberg, Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Reading, Massachusetts:
Addison-Wesley, 1989.

W. B. Langdon, “Size fair and homologous tree genetic pro-
gramming crossovers,” Genetic Programming And Evoly-
able Machines, vol. 1, pp. 95-119, Apr. 2000.

C. R. Stephens and H. Waelbroeck, “Effective degrees of
freedom in genetic algorithms and the block hypothesis,” in
Proceedings of the Seventh International Conference on Ge-
netic Algorithms (ICGA97) (T. Back, ed.), (East Lansing),
pp. 3440, Morgan Kaufmann, 1997.

C. R. Stephens and H. Waelbroeck, “Schemata evolution
and building blocks,” Evolutionary Computation, vol. 7,
no. 2, pp. 109-124, 1999.

D. J. Montana, “Strongly typed genetic programming,” Evo-
lutionary Computation, vol. 3, no. 2, pp. 199-230, 1995.

P. D’haeseleer, “Context preserving crossover in genetic
programming,” in Proceedings of the 1994 IEEE World
Congress on Computational Intelligence, vol. 1, (Orlando,
Florida, USA), pp. 256-261, IEEE Press, 27-29 June 1994.

H. Geiringer, “On the probability theory of linkage in
Mendelian heredity,” Annals of Mathematical Statistics,
vol. 15, pp. 25-57, March 1944.

L. B. Booker, “Recombination distributions for genetic
algorithms,” in FOGA-92, Foundations of Genetic Al-
gorithms, (Vail, Colorado), 24-29 July 1992. Email:
booker @mitre.org.

L. Altenberg, “The Schema Theorem and Price’s Theorem,”
in Foundations of Genetic Algorithms 3 (L. D. Whitley and
M. D. Vose, eds.), (Estes Park, Colorado, USA), pp. 23-49,
Morgan Kaufmann, 31 July-2 Aug. 1994 1995.

W. M. Spears, “Limiting distributions for mutation and re-
combination,” in Proceedings of the Foundations of Genetic
Algorithms Workshop (FOGA 6) (W. M. Spears and W. Mar-
tin, eds.), (Charlottesville, VA, USA), July 2000. In press.

D. Whitley, “A genetic algorithm tutorial,” Tech. Rep. CS-
93-103, Department of Computer Science, Colorado State
University, Aug. 1993.

R. Poli, J. E. Rowe, and N. F. McPhee, “Markov chain
models for GP and variable-length GAs with homologous
crossover,” in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), (San Francisco,
California, USA), Morgan Kaufmann, 7-11 July 2001.

112

GENETIC PROGRAMMING

Markov Chain Models for GP and Variable-length GAs
with Homologous Crossover

Riccardo Poli
School of Computer Science
The University of Birmingham
Birmingham, B15 2TT, UK
R.Poli@cs.bham.ac.uk

Abstract

In this paper we present a Markov chain model
for GP and variable-length GAs with homolo-
gous crossover: a set of GP operators where the
offspring are created preserving the position of
the genetic material taken from the parents. We
obtain this result by using the core of Vose’s
model for GAs in conjunction with a specialisa-
tion of recent GP schema theory for such opera-
tors. The model is then specialised for the case
of GP operating on 0/1 trees: a tree-like general-
isation of the concept of binary string. For these
symmetries exist that can be exploited to obtain
further simplifications. In the absence of muta-
tion, the theory presented here generalises Vose’s
GA model to GP and variable-length GAs.

1 Introduction

After a strong initial interest in schemata [1, 2], the inter-
est of GA theorists has shifted in the last decade towards
microscopic Markov chain models, such as Vose’s model,
possibly with aggregated states [3, 4, 5, 6,7, 8,9, 10, 11].

In the last year or so the theory of schemata has made con-
siderable progress, both for GAs and GP. This includes sev-
eral new schema theorems which give exact formulations
(rather than the lower bounds previously presented in the
literature [12, 13, 14, 15, 16, 17, 18]) for the expected num-
ber of instances of a schema at the next generation. These
exact theories model GP with one-point crossover [19, 20,
21], standard and other subtree-swapping crossovers [22,
23, 24], homologous crossover [25], and different types of
subtree mutation and headless chicken crossover [26, 27].
While considerable progress has been made in GP schema
theory, no Markov chain model for GP and variable-length
GAs has ever been proposed.

In this paper we start filling this theoretical gap and present

Jonathan E. Rowe
School of Computer Science
The University of Birmingham
Birmingham, B15 2TT, UK
J.E.Rowe@cs.bham.ac.uk

Nicholas Freitag McPhee
Division of Science and Mathematics
University of Minnesota, Morris
Morris, MN, USA
mcphee @mrs.umn.edu

a Vose-like Markov-chain model for genetic programming
with homologous crossover [25]: a set of operators, in-
cluding GP one-point crossover [16] and GP uniform
crossover [28], where the offspring are created preserving
the position of the genetic material taken from the parents.
‘We obtain this result by using the core of Vose’s theory in
conjunction with a specialisation of the schema theory for
such operators. This formally links GP schema theory and
Markov chain models, two worlds believed by many people
to be quite separate.

The paper is organised as follows. Given the complexity
of the GP mechanics, exact GP schema theories, such as
the exact schema theory for homologous crossover in [25],
tend to be relatively complicated. Similarly, Vose’s model
for GAs [3] presents significant complexities. In the fol-
lowing section, we will summarise these theories providing
as much detail as reasonable, occasionally referring to [3]
and [25] for more details. Then, in Section 3 we present
the extensions to both theories which allow the construc-
tion of a Markov chain model for GP and variable-length
GAs with homologous crossover. In Section 4 we indi-
cate how the theory can be simplified thanks to symmetries
which exist when we restrict ourselves to 0/1 trees: a tree-
like generalisation of the concept of binary string. In Sec-
tion 5 we give an example. Some conclusions are drawn in
Section 6.

2 Background

2.1 Nix and Vose’s Markov Chain Model of GAs

The description provided here is largely based on [3, 29]
and [4]. See [30] for a gentler introduction to this topic.

Let € be the set of all possible strings of length [, i.e.
Q = {0,1}. Letr = || = 2! be the number of ele-
ments of such a space. Let P be a population represented
as a multiset of elements from €2, let n = | P| be the popula-
tion size, and let NV be the number of possible populations;

GENETIC PROGRAMMING

in [3] it was shown that

N:<n+r—1)
r—1

Let Z be an r x N matrix whose columns represent the
possible populations of size n. The ith column ®; =
(20,iy- -+ 2r—1,) L of Z is the incidence vector for the ith
population ;. That is 2z, ; is the number of occurrences
of string y in P; (where y is unambiguously interpreted as
an integer or as its binary representation depending on the
context).

Once this state representation is available, one can model
a GA with a Markov chain in which the N columns of Z
represent the states of the model. The transition matrix for
the model, @, is an NV x IV matrix where the entry);; rep-
resents the conditional probability that the next generation
will be P; assuming that the current generation is P;.

In order to determine the values ();; let us assume that we
know the probability p;(y) of producing individual y in the
next generation given that the current generation is P;. To
produce population P; we need to get exactly z,, ; copies of
string y fory = 0,...,r — 1. The probability of this joint
event is given by a multinomial distribution with success
probabilities p; (y) fory = 0,...,r — 1, s0 [31]

n!

Qij =

. y,J

zoyj!zlyj!...zr,u! 1:[0(271(?/)) ' (1)
y=
The calculations necessary to compute the probabilities
p;(y) depend crucially on the representation and the opera-
tors chosen. In [4] results for various GA crossover opera-
tors were reported. As noted in [3], it is possible to decom-
pose the calculations using ideas firstly introduced in [29]
as follows.

Assuming that the current generation is P;, we can write

r—1
Z Sm,ismirm,n(y) (2)

m,n=0

pi(y) =

where 7., ,(y) is the probability that crossing over strings
m and n yields string y and s, ; is the probability of select-
ing x from P;. Assuming fitness proportionate selection,

Sei = o1 (3)
ijé zjif(J)

where f(z) is the fitness of string .

We can map these results into a more recent formulation
of Vose’s model [4] by making use of matrices and oper-
ators. We start by treating the fitness function as a vector
f of components fr = f(k). Then, if z is the incidence

113

vector representing a particular population, we define an
operator F, called the selection scheme,' which computes
the selection probabilities s, ; for all the members of (2.
For proportional selection

Fla) = diag(f)a/ .

Then we organise the probabilities 7, ,,(y) into r arrays
M, of size r x r, called mixing matrices, the elements of
which are (My)m.n = Tm,n(y). We finally define an oper-
ator M, called the mixing scheme,

M(z) = (T Moz, 2" Mz, ... 2T M,_)

which returns a vector whose components are the expected
proportion of individuals of each type assuming that indi-
viduals are selected from the population x randomly (with
replacement) and crossed over.

Finally we introduce the operator G = M o F, which pro-
vides a compact way of expressing the probabilities p;(y)
since (for fitness proportionate selection)

piy) = {G(2)}, = {M (%) }

where the notation {-}, is used to represent the yth compo-
nent of a vector. So, the entries of the transition matrix for
the Markov chain model of a GA can concisely be written
as
7 UG(@)},) ™
Qij=n']] S 4)
y=0 Y.
In [29, 3, 4] it is shown how, for fixed-length binary GAs,
the operator M can be calculated as a function of the mix-
ing matrix My only. This is done by using a set of per-
mutation operators which permute the components of any
generic vector z € R":
= <.17j@0,...,$j@r_1>T, (5)

0'j<.170, . ,.17,-_1>T

where @ is a bitwise XOR.? Then one can write

M(Z’) = <(0’0£L’)TM()U()£L’, ey (Urfll’)TMgarfll')T.
(6)

2.2 Exact GP Schema Theory for Homologous
Crossover

In [25] the following exact schema theorem for GP with
homologous crossover was reported:

'In this paper we have chosen to use the symbol F to represent
both the selection scheme of a GA and the function set used in
GP, since this is the standard notation for both. This produces
no ambiguity since the selection scheme is not used outside this
section, and the function set is not referred to inside it.

The operators o; can also be interpreted as permutation ma-
trices.

114
a(H, t) = (1 _pzo)p(H, t)_'_ (7)
Pzo ZZ Z pf(Gj7Gk)
J k lEXC(G]-,Gk)
p(F(H, l) N Gj, t)p(F(H, l_) N Gk, t)
where

e H is a GP schema, i.e. a tree composed of functions
from the set 7 U {=} and terminals from the set 7 U
{=}, where F and T are the function and terminals
sets used in our GP system and the primitive = is a
“don’t care” symbol which stands for a single terminal
or function.

e «(H,t) is the probability that a newly created individ-
ual matches the schema H.

® ., is the crossover probability.
e p(H,t) is the selection probability of the schema H.

e (G1, G, --- are all the possible program shapes, i.e.
all the possible schemata containing = signs only.

e C(Gj,Gy) is the common region between programs
of shape G'; and programs of shape Gi,. The common
region between two generic trees 1 and ho is the set

C(hi,ha) = {(d,9)|C(d,i, h1, h2)},

where (d,i) is a pair of coordinates in a Cartesian
node reference system (see [22, 25] for more de-
tails on the reference system used). The predicate
C(d,i, hi,h2) is true if (d,i) = (0,0). It also
true if A(d—1,i',h1) = A(d—1,i',hs) # 0 and
C(d—1,i",hi,h2) is true, where A(d,,h) returns
the arity of the node at coordinates (d,4) in h, i’ =
|i/amax| and |-] is the integer-part function. The
predicate is false otherwise.

e For any given common region ¢ we can define a set
of GP crossover masks, X ., which contains all differ-
ent trees with the same size and shape as the common
region which can be built with nodes labelled 0 and 1.

e The GP recombination distribution p; gives the prob-
ability that, for a given common region ¢, crossover
mask [will be chosen from the set X..

e A GP hyperschema is a rooted tree composed of inter-
nal nodes from F U {=} and leaves from 7 U {=, #}.
Again, = is a “don’t care” symbols which stands for
exactly one node, while # stands for any valid subtree.

GENETIC PROGRAMMING

e ['(H, 1) is defined to be the empty set if [contains any
node not in H. Otherwise it is the hyperschema ob-
tained by replacing certain nodes in H with either =
or # nodes:

— If anode in H corresponds to (i.e., has the same
coordinates as) a non-leaf node in [that is la-
belled with a 0, then that node in H is replaced
with a =.

— Ifanodein H corresponds to a leaf node in / that
is labelled with a O, then it is replaced with a #.

— All other nodes in H are left unchanged.

e [is the complement of the GP crossover mask /. The
complement of a mask is a tree with the same structure
but with the 0’s and 1’s swapped.

3 Markov Chain Model for GP

In order to extend Vose’s model to GP and variable-length
GAs with homologous crossover we define 2 to be an in-
dexed set of all possible trees of maximum depth ¢ that
can be constructed with a given function set F and a given
terminal set 7. Assuming that the initialisation algorithm
selects programs in €2, GP with homologous crossover can-
not produce programs outside 2, and (2 is therefore a finite
search space. Again, r = || is the number of elements in
the search space; this time, however, r is not 2! All other
quantities defined in Section 2.1 can be redefined by sim-
ply replacing the word “string” with the word “program”,
provided that the elements of (2 are indexed appropriately.
With these extensions, all the equations in that section are
also valid for GP, except Equations 5 and 6.

These are all minor changes. A major change is instead
required to compute the probabilities p;(y) of generating
the yth program in) when the population is P;. For-
tunately, these probabilities can be computed by apply-
ing the schema theory developed in [25] and summarised
in Section 2.2. Since schema equations are applicable to
schemata as well as to individual programs, it is clear that:

pi(y) = a(y,t) ®

where « is calculated for population P;. This can be done
by specialising Equation 7. Doing this allows one to instan-
tiate the transition matrix for the model using Equation 1.
However, it is possible to express p;(y) in terms of more
primitive quantities as follows.

Let us specialise Equation 7 for the yth program in 2

pi(y) = (1 - pzo)p(y,t)_'_

pmo;z >

k 1eXewe; 6

plC(Gj’Gk) %

GENETIC PROGRAMMING

= (L=pwo) > 6(ha =y)p(ha,t) x > plha,t)

h1E€Q h2€Q

) DL D

=1
ik 1eX(G5,Gr)

> p(ln,)5(hy € T(y,1)5(Mn € Gj) x

C(G;,G
pl (J k) X

h1€Q
S plha,)5(hs € T(y, D)d(ha € Gy)
h2€Q
= Z p(ha,t)p(he,t) x
hi,h2€Q
|:(]- _on)5(h1 = y) + Pro Z plc(hl,hQ) %

leXC(M h2)

6(ha € T(y,1)8(he € T(5,1))].

where we used the fact that) §(z € G) = 1.

Assuming the current population is FP;, we have that
p(h,t) = sp(t). So, the last equation can be rewritten in
the same form as Equation 2 provided we set

Fman() = [(1 = po)d(m = y)+ ©)
P D B ™ Mo(m € T(y,1)d(n € T(y,D)]-
IGXc(m,n)

Note that this equation could have been obtained by di-
rect calculation, rather than through the specialisation of
a schema theorem. However, this would still have required
the definition and use of the hyperschema-returning func-
tion I' and of the concepts of GP crossover masks and GP
recombination distributions. Also, notice that the set of GP
crossover masks also include masks containing all ones.
These correspond to cloning the first parent. Therefore, by

(m,n)

suitable readjustement of the probabilities plc , we can

rewrite Equation 9 as

Tmn(y) =
lEXc(m_n)
(10)
This formula is analogous to the case of crossover defined
by masks for fixed-length binary strings [4].

4 Mixing Matrices for 0/1 Trees

As has already been stated in Section 2.1, for the case of
fixed-length binary strings, the mixing operator M can be
written in terms of a single mixing matrix M, and a group
of permutation matrices. This works because the permuta-
tion matrices are a representation of a group that acts transi-
tively on the search space. This group action describes the
symmetries that are inherent in the definition of crossover

o p Me(m € T(y,0)o(n € D(y,1)).

115

for fixed-length strings [4]. This idea can be generalised
to other finite search spaces (see [32] for the detailed the-
ory). However, in the case of GP, where the search space is
a set of trees (up to some depth), the amount of symmetry
is more limited and does not seem to give rise to a single
mixing matrix.

In this section we will look at what symmetry does exist
and the simplifications of the mixing operator it produces
when we restrict ourselves to the space of 0/1 trees. These
are trees constructed using primitives from a terminal set
T = {00, 1o} and from a function set 7 = | J,., Fi where
Fi = {0;,1;}, ¢ is a finite subset of N, and the subscripts
0 and 4 represent the arity of a 0/1 primitive.> It should
be noted that the semantics of the primitives in 0/1 trees is
unimportant for the theory, and that 0/1 trees are a general-
isation of the notion of binary strings.*

Let €2 be the set of 0/1 trees of depth at most £ (where a pro-
gram containing only a terminal has depth 1). Let L(2) be
the set of full trees of exactly depth ¢ obtained by using the
primitive set 7 UJF;, where i, is the maximum element in
t. We term node-wise XOR the operation which, given two
trees a and b in L(2), returns the 0/1 tree whose nodes are
labelled with the result of the addition (modulo 2) of the
binary labels of the nodes in a and b having corresponding
coordinates; this operator is denoted a & b.

For example, if we represent 0/1 trees in prefix
notation, (1(101)(001)) & (V@00 (©011) =
(1(001)(010)y). L(£) is a group under node-wise XOR.
Notice that the definition of & extends naturally to pairs of
trees with identical size and shape.

For each tree k € () we define a truncation function
7 L(Q) — Q

as follows. Given any tree ¢ € L() we match up the
nodes in k£ with the nodes in a, recursively:

1. The root nodes are matched.

2. The children of a matched node in & are matched to
children of the corresponding node in a from the left.
Recall that each node in a has the maximum possi-
ble arity, and that a has the maximum possible depth.
Note that the arity of nodes in a will be reduced (if
necessary) to that of the matching nodes in k.

This procedure corresponds to matching by co-ordinates.
The effect of the operator 7; on a tree a € L(f2) is to
throw away all nodes that are not matched against nodes in

3Subscripts will be dropped whenever it is possible to infer the
arity of a primitive from the context.

*The space of 0/1 trees obtained when F =) is isomorphic
to the space of binary strings of arbitrary length.

116

k. The remaining tree 7 (a) will then be of the same size
and shape as k.

For example, suppose the maximum depth is { = 3
and the maximum arity is also 3. Let a € L(f)
be the tree (1(0110)(1011)(1110)) and let & =
(0(110)(01)). Then matching nodes and truncating a
produces 7 (a) = (1 (0 1 1) (10)).

The group L(f2) acts on the elements of (2 as follows. Let
a € L(Q) and k € Q. Then define
a(k) = mp(a) ® k

which means we apply addition modulo 2 on each matched
pair of nodes. We have used the extended definition of &
since 7 (a) and k are guaranteed to have the same size and
shape. In our previous example we would have a(k) =

11011 1)).
We can extend the definition of & further by setting
a®k=a(k)

forany k € Q and a € L(Q2). The effect of this is essen-
tially a relabelling of the nodes of the tree k in accordance
with the pattern of ones found in a.

For each a € L(Q) we define a corresponding r x r per-
mutation matrix o, with

(0a)ij =0((a®i) =)

Lemmal. Let m,n,y € Q and let a € L(QY). Then for
homologous crossover

Tm,n(Y) = Ta@m,aon(a O Y)

Proof: Interpreting Equation 9 for 0/1 trees m, n and y, the
following hold:

abm=aPby<—m=y
Cla®m,a®n)=C(m,n)
(a®m) eT(ady,l) <= meT(y,l)

and the result follows. The third assertion follows from the
fact that we are relabelling the nodes in tree m according to
the pattern of ones in a, and we relabel the nodes in the hy-
perschema I'(y,) according to exactly the same pattern. O

Let us consider the GP schema G consisting only of “="
nodes representing the shape of some of the programs in (2.
We denote with 0“ the element of {2 obtained by replacing
the = nodes in G with 0 nodes.

Theorem 2. On the space of 0/1 trees with depth at most £
homologous crossover gives rise to a mixing operator

M(z) = (T Moz, 2" Mz, ...)

GENETIC PROGRAMMING

(where we are indexing vectors by the elements of (). Then
for each fixed shape G of depth not bigger than { there
exists a mixing matrix

M = Myo
such that if y € Q is of shape G then

M, = UgMUa
for some a € L().

Proof: Let y €) be of shape GG as required. Construct a
maximal full tree a of depth not bigger than ¢ by appending
a sufficient number of 0 nodes to the tree y so that each
internal node in @ has %,, children.’

Now suppose m,n € () are trees which cross together to
form y with probability r,,, »(y). Because crossover is as-
sumed to be homologous, the set of the coordinates on the
nodes in m must be a superset of the set of node coordinates
of G. Likewise for n.

The m, nth component of o1 Mo, is

Z(UEM)m,v(Ua)v,n
= ZZ(Ua)w7me7v(Ua)v,n

Mafl@m,afl@n

(UgMaa)m,n =

Ta—l@m,a—l@n(OG)
= rma(a® OG)

where we have used the lemma to show
ra_1@m7a_1@n(0G) =rma(a® OG)

and a ! is the inverse of the group element a. For 0/1 trees
a~! = asince a ® a = 0%, where G,, is the schema

representing the shape of the trees in L((2). O

5 A Linear Example

In this section we will demonstrate the application of this
theory to an example. To keep the presentation of the cal-
culations manageable in the space available this example
must perforce be quite simple, but should still be sufficient
to illustrate the key concepts.

For this example we will assume that the function set con-
tains only unary functions, with the possible labels for both

For example, if £ = 3, i, = 3, Gis(==(===))and y =
(11(111),thena= (1(1000)(1110)(0000)).

GENETIC PROGRAMMING

functions and terminals beingOand 1 (i.e., F = F; =T =
{0,1}). As a result we can think of our structures as being
variable length binary strings. We will let £ = 2 (i.e., we
restrict ourselves to strings of length 1 or 2), which means
that 7 = 6 and

Q = {0,1,00,01,10, 11}.

We will also limit ourselves here to the mixing matrices
for GP one-point crossover and GP uniform crossover; we
could however readily extend this to any other homologous
crossover operator.

5.1 GP one-point crossover

The key to applying this theory is to compute 74, ,(y) as
described in Equation 9. In other words, for each y € 2
we need to construct a matrix M, = r,, »(y) that contains
the probabilities that GP one-point crossover with parents
m and n will yield y. Since r = || = 6, this will yield
six 6 x 6 matrices. In the (fixed-length) GA case it would
only be necessary to specify one mixing matrix, since sym-
metries would allow us to derive the others through per-
mutations of the indices. As indicated in the previous sec-
tion, the symmetries in 0/1 trees case are more complex,
and one can not reduce the situation down to just one case.
In particular we find, as mentioned above, that the set of
mixing matrices for our variable-length GA case splits into
two different subsets, one for y of length 1, and one for y
of length 2, and the necessary permutations are generated
by the group L(§) = {00,01,10,11}.

To make this more concrete, let us consider My and M,

each of which has exactly one non-zero column:®

[0 1 00 1
0 1 0 0
1 1 0 0
My=|00]1/2 0 O
01(1/2 0 O
10(1/2 0 0

11(1/2 0 0]

[0 1 00 1
010 1 0
110 1 0
My=]100]0 1/2 0
01|10 1/2 0
100 1/2 0

1170 1/2 0]

®Since these matrices are indexed by variable length binary
strings instead of natural numbers, we have indicated the indices
(0, 1, 00, 01, 10 and 11) along the top and left-hand side of each
matrix. In My, for example, the value in position (1, 0) is 1 and
(01,0)is 1/2.

117

Clearly M; is very similar to M,. Indeed, Theorem 2
shows that M; can be obtained by applying a permutation
matrix to My:

My = ofy Moo,

where
[0 1 00 01 10 11]
0/01 0 0O 0 O
1110 0 0 0 O
olg=100]/0 0 0 0 1 0
01{0 0 0 0 0 1
100 0 1 0 0 0
| 1100 0 1 0 0 |

The situation is more interesting for the mixing matrices
for y of length 2:

0 1 00 01 10 11
0/0 0 1 0 0 0
1100 1 0 0 O
Mep=1]0]|0 0 1 0 1/2 0
0Lfo0 0 1 0 1/2 0
10{0 0 1/2 0 0 0
| 11]0 0 1/2 0 0 0 |
i 0 1 00 01 10 11
0j/0o 0o 0 1 0 O
1100 0 1 0 O
Myy=|0|0 0 0 1 0 1/2
01|00 0 0 1 0 1/2
10(0 0 0 1/2 0 0
| 11]0 0 0 1/2 0 0 |
i 0 1 00 01 10 11
0/0 0 0 0 1 0
1100 0 0 1 0
Myp=|00/0 0 0 0 1/2 0
01|00 0O 0 0 1/2 0
0(0 0 1/2 0 1 0
11{o 0 1/2 0o 1 0
i 0 1 00 01 10 11
0/0 0 0 0 o0 1
1100 0 0 0 1
My=|00/0 0 0 0 0 1/2
01|00 0O 0 0 0 1/2
0(0 0 0 1/2 0 1
| 11]0 0 0 1/2 0 1 |

Here again we can write these mixing matrices as permuta-
tions of My, i.e.,

_ T
MS = 0’S M()()O'S

for s € {00,01,10,11}. My, for example, can be written
as
My = od; Moo

where og; is as above.

118

5.2 GP uniform crossover

Here will just show the mixing matrices My and My, since,
as we have seen, the other four matrices can be readily ob-
tained from these using the permutation matrices o:

0 1 00 01 10 11
0] 1 1/2 1/2 1/2 12 1/2
112 0 0 0 0 0

My=|00[1/2 0 0O O 0 O
o1{1/2 o0 0 0 0 0
0{1/2 0 0 0 0 O
| 1112 0 0 0 0 0 |
[0 1 00 01 10 11
o0 O 1/2 0 0 0
1{o0o o0 1/2 0 0 O
Moo= | 00|1/2 1/2 1 1/2 1/2 1/4
oLy 0 o0 1/2 0 1/4 0
00 0 1/2 1/4 0 0
110 O 1/4 0 0 0 |

Comparing these matrices to those obtained for one-point
crossover one can see that these are symmetric, where those
for one-point crossover were not, pointing out that uni-
form crossover is symmetric with respect to the parents,
where one-point crossover is not. The matrices for uni-
form crossover also have considerably more non-zero en-
tries than those for one-point crossover, highlighting the
fact that uniform crossover provides more ways to con-
struct any given string.

6 Conclusions

In this paper we have presented the first ever Markov chain
model of GP and variable-length GAs. Obtaining this
model has been possible thanks to very recent develop-
ments in the GP schema theory, which have given us exact
formulas for computing the probability that reproduction
and recombination will create any specific program in the
search space. Our GP Markov chain model is then easily
obtained by plugging this ingredient into a minor exten-
sion of Vose’s model of GAs. This theoretical approach
provides an excellent framework for studying the dynamics
of evolutionary algorithms (in terms of transient and long-
term behaviour). It also makes explicit the relationship be-
tween the local action of genetic operators on individuals
and the global behaviour of the population.

The theory is applicable to GP and variable-length GAs
with homologous crossover [25]: a set of operators where
the offspring are created preserving the position of the ge-
netic material taken from the parents. If one uses only
unary functions and the population is initialised with pro-
grams having a fixed common length, a GP system using

GENETIC PROGRAMMING

these operators is entirely equivalent to a GA acting on
fixed-length strings. For this reason, in the absence of mu-
tation, our GP Markov chain model is a proper generalisa-
tion Vose’s model of GAs. This is an indication that per-
haps in the future it will be possible to completely unify the
theoretical models of GAs and GP.

In the paper we analysed in detail the case of 0/1 trees
(which include variable length binary strings), where sym-
metries can be exploited to obtain further simplifications in
the model. The similarity with Vose’s GA model is very
clear in this case.

This paper is only a first step. In future research we in-
tend to analyse in more depth the general case of tree-like
structures to try to identify symmetries in the mixing ma-
trices similar to those found for 0/1 trees. Also, we intend
to study the characteristics of the transition matrices for the
GP model, to gain insights into the dynamics of GP.

Acknowledgements

The authors would like to thank the members of the EE-
BIC (Evolutionary and Emergent Behaviour Intelligence
and Computation) group at Birmingham, for useful dis-
cussions and comments. Nic would like to extend special
thanks to The University of Birmingham School of Com-
puter Science for graciously hosting him during his sabbat-
ical, and various offices and individuals at the University of
Minnesota, Morris, for making that sabbatical possible.

References

[1] J. Holland, Adaptation in Natural and Artificial Systems,
University of Michigan Press, Ann Arbor, USA, 1975.

[2] Nicholas J. Radcliffe, “Schema processing”, in Handbook
of Evolutionary Computation, T. Baeck, D. B. Fogel, and
Z. Michalewicz, Eds., pp. B2.5-1-10. Oxford University
Press, 1997.

[3] Allen E. Nix and Michael D. Vose, “Modeling genetic al-
gorithms with Markov chains”, Annals of Mathematics and
Artificial Intelligence, vol. 5, pp. 79-88, 1992.

[4] Michael D. Vose, The simple genetic algorithm: Founda-
tions and theory, MIT Press, Cambridge, MA, 1999.

[5] Thomas E. Davis and Jose C. Principe, “A Markov chain
framework for the simple genetic algorithm”, Evolutionary
Computation, vol. 1, no. 3, pp. 269-288, 1993.

[6] Giinter Rudolph, “Stochastic processes”, in Handbook
of Evolutionary Computation, T. Baeck, D. B. Fogel, and
Z. Michalewicz, Eds., pp. B2.2-1-8. Oxford University
Press, 1997.

[7] Giinter Rudolph, “Genetic algorithms”, in Handbook
of Evolutionary Computation, T. Baeck, D. B. Fogel, and
Z. Michalewicz, Eds., pp. B2.4-20-27. Oxford University
Press, 1997.

GENETIC PROGRAMMING

(8]

(9]

(10]

(1]

(12]

[13]

[14]

(15]

[16]

(17]

(18]

(19]

Giinter Rudolph, “Convergence analysis of canonical ge-
netic algorithm”, [EEE Transactions on Neural Networks,
vol. 5, no. 1, pp. 96-101, 1994.

Giinter Rudolph, “Models of stochastic convergence”, in
Handbook of Evolutionary Computation, T. Baeck, D. B.
Fogel, and Z. Michalewicz, Eds., pp. B2.3—1-3. Oxford
University Press, 1997.

Jonathan E. Rowe, “Population fixed-points for functions of
unitation”, in Foundations of Genetic Algorithms 5, Wolf-
gang Banzhaf and Colin Reeves, Eds. 1999, pp. 69-84, Mor-
gan Kaufmann.

William M. Spears, “Aggregating models of evolution-
ary algorithms”, in Proceedings of the Congress on
Evolutionary Computation, Peter J. Angeline, Zbyszek
Michalewicz, Marc Schoenauer, Xin Yao, and Ali Zalzala,
Eds., Mayflower Hotel, Washington D.C., USA, 6-9 July
1999, vol. 1, pp. 631-638, IEEE Press.

John R. Koza, Genetic Programming: On the Programming
of Computers by Means of Natural Selection, MIT Press,
Cambridge, MA, USA, 1992.

Lee Altenberg, “Emergent phenomena in genetic program-
ming”, in Evolutionary Programming — Proceedings of the
Third Annual Conference, A. V. Sebald and L. J. Fogel, Eds.
1994, pp. 233-241, World Scientific Publishing.

Una-May O’Reilly and Franz Oppacher, “The troubling as-
pects of a building block hypothesis for genetic program-
ming”, in Foundations of Genetic Algorithms 3, L. Darrell
Whitley and Michael D. Vose, Eds., Estes Park, Colorado,
USA, 31 July-2 Aug. 1994 1995, pp. 73-88, Morgan Kauf-
mann.

P. A. Whigham, “A schema theorem for context-free gram-
mars”, in 1995 IEEE Conference on Evolutionary Compu-
tation, Perth, Australia, 29 Nov. - 1 Dec. 1995, vol. 1, pp.
178-181, IEEE Press.

Riccardo Poli and W. B. Langdon, “A new schema theory
for genetic programming with one-point crossover and point
mutation”, in Genetic Programming 1997: Proceedings of
the Second Annual Conference, John R. Koza, Kalyanmoy
Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi
Iba, and Rick L. Riolo, Eds., Stanford University, CA, USA,
13-16 July 1997, pp. 278-285, Morgan Kaufmann.

Justinian P. Rosca, “Analysis of complexity drift in ge-
netic programming”, in Genetic Programming 1997: Pro-
ceedings of the Second Annual Conference, John R. Koza,
Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Gar-
zon, Hitoshi Iba, and Rick L. Riolo, Eds., Stanford Uni-
versity, CA, USA, 13-16 July 1997, pp. 286-294, Morgan
Kaufmann.

Riccardo Poli and William B. Langdon, “Schema theory
for genetic programming with one-point crossover and point
mutation”, Evolutionary Computation, vol. 6, no. 3, pp.
231-252, 1998.

R. Poli, “Hyperschema theory for GP with one-point
crossover, building blocks, and some new results in GA
theory”, in Genetic Programming, Proceedings of EuroGP
2000, Riccardo Poli, Wolfgang Banzhaf, and ef al., Eds. 15-
16 Apr. 2000, Springer-Verlag.

(20]

(21]

(22]

(23]

(24]

[25]

(26]

[27]

(28]

(29]

(30]

[31]

(32]

119

Riccardo Poli, “Exact schema theorem and effective fitness
for GP with one-point crossover”, in Proceedings of the Ge-
netic and Evolutionary Computation Conference, D. Whit-
ley, D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, and
H.-G. Beyer, Eds., Las Vegas, July 2000, pp. 469—476, Mor-
gan Kaufmann.

Riccardo Poli, “Exact schema theory for genetic program-
ming and variable-length genetic algorithms with one-point
crossover”’, Genetic Programming and Evolvable Machines,
vol. 2, no. 2, 2001, Forthcoming.

Riccardo Poli, “General schema theory for genetic program-
ming with subtree-swapping crossover”, in Genetic Pro-
gramming, Proceedings of EuroGP 2001, Milan, 18-20 Apr.
2001, LNCS, Springer-Verlag.

Riccardo Poli and Nicholas F. McPhee, “Exact schema the-
orems for GP with one-point and standard crossover oper-
ating on linear structures and their application to the study
of the evolution of size”, in Genetic Programming, Pro-
ceedings of EuroGP 2001, Milan, 18-20 Apr. 2001, LNCS,
Springer-Verlag.

Nicholas F. McPhee and Riccardo Poli, “A schema the-
ory analysis of the evolution of size in genetic programming
with linear representations”, in Genetic Programming, Pro-
ceedings of EuroGP 2001, Milan, 18-20 Apr. 2001, LNCS,
Springer-Verlag.

Riccardo Poli and Nicholas F. McPhee, “Exact schema
theory for GP and variable-length GAs with homologous
crossover”, in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), San Francisco,
California, USA, 7-11 July 2001, Morgan Kaufmann.

Riccardo Poli and Nicholas Freitag McPhee, “Exact GP
schema theory for headless chicken crossover and subtree
mutation”, in Proceedings of the 2001 Congress on Evolu-
tionary Computation CEC 2001, Seoul, Korea, May 2001.

Nicholas F. McPhee, Riccardo Poli, and Jon E. Rowe, “A
schema theory analysis of mutation size biases in genetic
programming with linear representations”, in Proceedings
of the 2001 Congress on Evolutionary Computation CEC
2001, Seoul, Korea, May 2001.

Riccardo Poli and William B. Langdon, “On the search
properties of different crossover operators in genetic pro-
gramming”, in Genetic Programming 1998: Proceed-
ings of the Third Annual Conference, John R. Koza, Wolf-
gang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco
Dorigo, David B. Fogel, Max H. Garzon, David E. Gold-
berg, Hitoshi Iba, and Rick Riolo, Eds., University of Wis-
consin, Madison, Wisconsin, USA, 22-25 July 1998, pp.
293-301, Morgan Kaufmann.

Michael D. Vose and Gunar E. Liepins, ‘“Punctuated equi-
libria in genetic search”, Complex Systems, vol. 5, no. 1, pp.
31, 1991.

Melanie Mitchell, An introduction to genetic algorithms,
Cambridge MA: MIT Press, 1996.

Murray R. Spiegel, Probability and Statistics, McGraw-
Hill, New York, 1975.

Jonathan E. Rowe, Michael D. Vose, and Alden H. Wright,
“Group properties of crossover and mutation”, Manuscript
submitted for publication, 2001.

120

GENETIC PROGRAMMING

The Evaluation of a Stochastic Regular Motif Language
for Protein Sequences

Brian J. Ross
Department of Computer Science
Brock University
St. Catharines, Ontario
Canada L.2S 3A1
bross@cosc.brocku.ca

Abstract

A probabilistic regular motif language for
protein sequences is evaluated. SRE-DNA is
a stochastic regular expression language that
combines characteristics of regular expres-
sions and stochastic representations such as
Hidden Markov Models. To evaluate its ex-
pressive merits, genetic programming is used
to evolve SRE-DNA motifs for aligned sets
of protein sequences. Different constrained
grammatical forms of SRE-DNA expressions
are applied to aligned protein sequences
from the PROSITE database. Some se-
quences patterns were precisely determined,
while others resulted in good solutions hav-
ing considerably different features from the
PROSITE equivalents. This research es-
tablishes the viability of SRE-DNA as a
new representation language for protein se-
quence identification. The practicality of
using grammatical genetic programming in
stochastic biosequence expression classifica-
tion is also demonstrated.

1 INTRODUCTION

The rate of biological sequence acquisition is accelerat-
ing considerably, and this data is freely accessible from
biosequence databases such as PROSITE (Hofmann et
al. 1999). Research in bioinformatics is investigating
more effective technology for classifying and analysing
this wealth of new data. One important problem in
this regard is the automated discovery of sequence pat-
terns (Brazma et al. 1998a). A sequence pattern, also
known as a motif or consensus pattern, encodes the
common characteristics of a set of biosequences. From
one point of view, a sequence pattern is a signature
identifying a set of related biosequences, and hence can

be used as a means of database query. Alternatively,
and perhaps more importantly, a motif can also char-
acterizes the salient biological and evolutionary char-
acteristics common to a family of sequences. The use
of computational tools which automatically determine
biologically meaningful patterns from sets of sequences
is of obvious practical importance to the field.

The contributions of this research are two-fold. Firstly,
the viability of SRE-DNA, a new motif language, is
investigated. SRE-DNA shares characteristics of de-
terministic regular expressions and stochastic repre-
sentations such as Hidden Markov Models (Krogh et
al. 1994). Since full SRE-DNA is likely too unwieldy
to be practical, this research investigates what restric-
tions to the language are practical for biosequence clas-
sification. To do this, genetic programming (GP) is
used to evolve SRE-DNA motifs for aligned sequences.
SRE-DNA’s probabilistic basis can be exploited during
fitness evaluation in GP evolution.

A second goal of this research is to test the practi-
cality of logic grammar-based genetic programming
in an application of bioinformatics. The system
used is DCTG-GP, a logic grammar-based GP sys-
tem based on definite clause translation grammars
(DCTG) (Ross 2001a). With DCTG-GP, a variety of
constrained grammatical variations of SRE-DNA are
straight-forwardly defined and applied towards motif
discovery.

Generally speaking, motif discovery for aligned se-
quences is a simpler problem than for unaligned se-
quences. With aligned sequences, the basic problem
of determining the common subsequences amongst a
set of sequences has been already determined. Never-
theless, a number of fundamental issues regarding the
viability of SRE-DNA are more clearly addressable if
aligned data is studied initially. In the course of these
experiments, it was discovered that motif discovery for
some families of aligned data is very challenging. This

GENETIC PROGRAMMING

justifies studying aligned sequences before commenc-
ing on unaligned data.

Section 2 gives an overview of biosequence identifi-
cation, stochastic regular expressions and DCTG-GP.
Section 3 discusses experiment design and preparation.
Results are reported in Section 4. A discussion con-
cludes the paper in section 5.

2 BACKGROUND

2.1 Biosequence Identification

DNA molecules are double-stranded sequences of the
four base nucleic acids adenine (A), thymine (T), cyto-
sine (C) and guanine (G) (Alberts et al. 1994). The A
and T bases bond together, as do the C and G. Other
molecular forces will cause the strand to bend and con-
volute, creating a 3-dimensional double-bonded struc-
ture essentially unique to the molecule, and critical to
various organic functions. In terms of sequence char-
acterization, one of the strands of bases is adequate
for identification purposes, since the other strand of
bonded base pairs is complementary. A complete
molecule, or a portion of it denoting a particular struc-
ture of interest, is denoted by a sequence of A, T, C
and G bases. A higher level of representation is often
used, in which the 20 unique amino acids created from
triples of nucleic acids are represented. This results in
smaller sequences using a larger alphabet.

The representation and automatic identification of
subsequences in organic molecules has attracted much
research effort over the years, and has resulted in
a number of practical applications. New sequences
can be searched for instances of known subsequences
(“aligned”), which can indicate organic properties of
interest, and hence identify their genetic functionality.
Families of sequences can be classified by their distin-
guishing common sequence patterns. Sequence pat-
terns are natural interfaces for biosequence database
access. Sequences are also conducive to mathematical
and computational analyses, which makes them natu-
ral candidates for automated synthesis and search al-
gorithms.

A variety of representation languages have been used
for biosequence identification, including regular lan-
guages (Arikawa et al. 1993, Brazma et al. 1998b),
context—free and other languages (Searls 1993, Searls
1995), and probabilistic representations (Krogh et
al. 1994, Sakakibara et al. 1994, Karplus et al. 1997).
Although languages higher in the Chomsky hierarchy
are more discriminating than lower-level representa-
tions, they may be less efficiently parsed or synthesized

121

than than lower—level languages. In many cases, sim-
ple languages such as regular languages are the most
practical representation for biosequence identification
and database access. The PROSITE database, for ex-
ample, uses a constrained regular expression language.

Much work has been done on machine learning tech-
niques for families of biosequences using regular lan-
guages as a representation language (Brazma et al.
19984, Baldi and Brunak 1998). GP has been used
successfully to evolve regular motifs for unaligned se-
quences (Hu 1998, Koza et al. 1999).

2.2 Stochastic Regular Expressions

Stochastic Regular Expressions (SRE) is a probabilis-
tic regular expression language (Ross 2000). It is es-
sentially a conventional regular expression language
(Hopcroft and Ullman 1979), embellished with prob-
ability fields. It is similar to a stochastic regular lan-
guage proposed by (Garg et al. 1996), where a number
of mathematical properties of the language are proven.

Let E range over SRE, a range over atomic actions, n
range over integers (n > 1), and p range over proba-
bilities (0 < p < 1). SRE syntax is:

E = a| E:E | E* | EtP
| E; (nl) + ...+ Ek(nk)

The terms denote atomic actions, concatenation, iter-
ation (Kleene closure and '+’ iteration), and choice.
Plus iteration, E*P, is equivalent to E : E*?. The
probability fields work as follows. With choice, each
term F;(n;) is chosen with a probability equivalent to
n;/X;(n;). With Kleene closure, each iteration of E
occurs with a probability p, and the termination of E
occurs with a probability 1 — p. Probabilities between
terms propagate in an intuitive way. For example, with
concatenation, the probability of E : F' is the proba-
bility of E multiplied by the probability of F. With
choice, the aforementioned probability of a selected
term is multiplied by the probability of its chosen ex-
pression E;. Each iteration of Kleene iteration also
includes the probability of the iterated expression E.
The overall effect of this probability scheme is the def-
inition of a probability distribution of the regular lan-
guage denoted by an expression. Each string s € L(E)
has an associated probability, while any s ¢ L(E) has
a probability of 0. It can be shown that SRE defines
a well-formed probability function (the sum of all the
probabilities for all s € L(E) is 1).

An example SRE expression is (a : 5*%7)(2) + ¢*%-1(3).

It recognizes string ¢ with Pr = 0.054 (the term with

c can be chosen with Pr = % = 0.6; then that term

122

iterates once with Pr = 0.1; finally the iteration ter-
minates with Pr = 1 — 0.1 = 0.9, giving an overall
probability of 0.6 x 0.1 x 0.9 = 0.054). The string bb
is not recognized; its probability is 0.

An SRE interpreter is implemented and available for
GP fitness functions. To test whether a string s is a
member of an SRE expression F, the interpreter at-
tempts to consume s with E. If successful, a proba-
bility p > 0 is produced. Unsuccessful matches will
result in probabilities of 0. The SRE-DNA interpreter
only succeeds if an entire SRE-DNA expression is suc-
cessfully interpreted. For example, in E; : Es, if E;
consumes part, of a string, but E, does not, then the
interpretation fails and yields a probability of 0.

As with conventional regular expressions (Hopcroft
and Ullman 1979), string recognition for SRE expres-
sions is of polynomial time complexity. Note, however,
that the interpretation of regular expressions can be
exponentially complex with respect to overall expres-
sion size. For example, in ((a +b)*)*, even though the
expression’s language is equivalent to that for (a +b)*,
there is a combinatorial explosion in the number of
ways the nested iterations can be interpreted with re-
spect to one other: a string of size k can be interpreted
2k different ways.

SRE-DNA, a variant of SRE, is used in this paper. A
number of embellishments and constraints are used,
which are practical for biosequence identification. De-
tails are given in Section 3.1.

2.3 DCTG-GP

expr :
<:>
(construct(E:F)

:= guardedexpr”"A, expr”~"B

::— A" "construct(E),
B~ "construct(F)),
(recognize(S, S2, PrSoFar, Pr) ::-
check_prob(PrSoFar),
A~"recognize(S, S3, PrSoFar, Prl),
check_prob(Prl),
B~ "recognize(S3, S2, Prl, Pr)).

Figure 1: DCTG rule for SRE-DNA concatenation

DCTG-GP is a grammatical genetic programming sys-
tem (Ross 2001a). It is inspired by other work in gram-
matical GP (Whigham 1995, Geyer-Shulz 1997, Ryan
et al. 1998), and in particular, the LOGENPRO sys-
tem (Wong and Leung 1997). Like LOGENPRO,
DCTG-GP uses logical grammars for defining the tar-
get language for evolved programs. The logic grammar
formalism used is the definite clause translation gram-

GENETIC PROGRAMMING

mar (DCTG) (Abramson and Dahl 1989). A DCTG
is a logical version of a context-free attribute gram-
mar, and it permits the complete syntax and seman-
tics of a language to be defined in one unified frame-
work. DCTG-GP is implemented in Sicstus Prolog
3.8.5 (SICS 1995).

In a DCTG-GP application, the syntax and seman-
tics of a target language are defined together. Each
DCTG rule contains a syntax field and one or more
semantic fields. The syntax field is the grammatical
definition of a language component, while the seman-
tic fields encode interpretation code, tests, and other
language and problem specific constraints. The gen-
eral form of a rule is:

H = Bl, BQ, ceey BJ
<>

S - Gl, GQ, N Gk.

The rule labeled with nonterminal H is a grammar
rule. Each term B; is a reference to a terminal or non-
terminal of the grammar. Embedded Prolog goals may
also be listed among the B;’s. These grammar rules
are used to denote programs in the population, which
are in turn implemented as derivation trees. Hence
DCTG-GP is a tree-based GP system. The rule la-
beled S is a semantic rule associated with nonterminal
H. Tts goals GG; may refer to semantic rules associated
with the nonterminal references B;, or calls to Prolog
predicates.

Figure 1 shows the DCTG-GP rule for SRE-DNA’s
concatenation operator. The grammatical rule states
that concatenation consists of a guarded expression
followed by an expression. The A and B variables are
used for referencing parts of the grammar tree for these
nonterminals within the semantic rules. The first se-
mantic rule construct builds a text form for the rule,
for printing purposes. The “.” operator denotes con-
catenation. The second semantic rule recognize is
used during SRE-DNA expression interpretation. The
argument S is a string to be consumed, and S2 is the
remainder of the string after consumption. The value
PrSoFar is the overall probability thus far in the in-
terpretation, and Pr is the probability after this ex-
pression’s interpretation is completed. The references
to recognize in the semantic rule are recursive calls
which permit the two terms in the concatenation to
recognize portions of the string. Finally, check_prob
determines if the current running probability is larger
than the minimal required for interpretation to con-
tinue.

GENETIC PROGRAMMING

3 EXPERIMENT DETAILS

3.1 SRE-DNA Variations

1. expr := guard | choice | guard:ezxpr
| expr*® | expr*?
choice = guard(n) + guard(n)
| guard(n) + choice
guard = mask | mask:skip
skip == z*P | TP
2. expr == guard | guard:expr | exprtP
guard = mask | mask:skip
skip == ztP
3. expr == guard | guard:expr | expr:guard
| expr P | exprt?
guard = mask | mask:skip
skip == x*P | oTP
4. expr = guard | choice | expr:expr
| expr*® | expr*?
choice = guard(n) + guard(n)
| guard(n) + choice
guard = mask | mask:skip
skip = z*P | TP

Figure 2: SRE-DNA Variations

A goal of this research is to explore how language
constraints affect the quality of motif solutions. To
this end, four different grammatical variations of SRE-
DNA are defined in Figure 2. SRE-DNA embellishes
SRE as follows. Firstly, masks are introduced. The
mask [a ...] denotes a choice of atoms a; each with a
probability 1/k. This is equivalent to ay (1)+...+a (1)
in SRE. Secondly, skip terms are defined. A skip term
z*P is a Kleene closure over the wild-card element z,
which substitutes for any atom. The skip expression
ztP is equivalent to z:z*P.

A summary of the SRE-DNA variants in Figure 2 is
as follows. Grammar 1 uses constrained concatenation
and choice expressions, in which guards are used. A
guard is a term borrowed from concurrent program-
ming, and specifies a constrained action. Guards pro-
mote efficient interpretation, because expressions are
forced to consume string elements whenever a guard
is encountered. It also reduces the appearance of iter-
ation and choice in concatenation expressions, which
helps reduce the scope of the target expressions. An
intention for doing this is to try to make SRE-DNA
have similar characteristics to conventional motif lan-
guages such as PROSITE’s. In addition, the grammar
prohibits nested iteration. This prevents some of the

123

efficiency problems discussed in Section 2.2. Three
minor variations of grammar 1 are used, each having
different maximum iteration ranges (“i”): la (i=0.5);
1b (i=0.1); and 1c (i=0.2).

Grammar 2 is the closest to the PROSITE language.
Choice is not used, and all skip and iterations use “+”
iteration. It is also the only grammar that permits
nested iteration. Grammar 3 is a minor relaxation of
grammar 1, in which guards can be the first or second
term in a concatenation. Nested iteration is prohib-
ited. Finally, Grammar 4 is the least restrictive gram-
mar, where concatenation uses general SRE-DNA ex-
pressions in both terms. Choice expressions still use
guards, however, and nested iteration is prohibited.

It should be mentioned that a full version of SRE-
DNA without guards or nested iteration constraints
was initially attempted. Expression interpretation was
very inefficient in that language, due to the prepon-
derance of nested “*”—iterations, as well as iterations
within choice and concatenation terms. The above
constrained grammars are more efficient to interpret,
and do not suffer any practical loss of expressiveness,
at least with respect to the problem of motif recogni-
tion tackled here.

3.2 Fitness Evaluation

Fitness evaluation tests an expression’s ability to rec-
ognize positive training examples, and to reject nega-
tive examples. Positive examples comprise a set of N
aligned protein sequences. Negative examples are N
randomly generated sequences, each having approxi-
mately the same length as the positive sequences.

Consider the formula:
Fitness = N + NegF'it — PosF'it

where NegFit and PosFit are the negative and posi-
tive training scores respectively. A fitness of 0 is the
ideal “perfect” score. It is not attainable in practice,
because the probabilities incorporated into PosF'it are
typically small.

Positive example scoring is calculated as:

PosFit = Z mazimum/(F'it(e}))

e;EPos

where Pos is the set of positive training examples, and
e} is a suffix of example e; (ie. e; = sel, |s| > 0). For
each example in Pos, a positive test fitness F'it is found
for all its suffixes, and the maximum of these values is
used for the entire example. Fitness evaluation incor-

porates two distinct measurements: the probability of

124

recognizing an example, and the amount of the exam-
ple recognized in terms of its length:

1
Fit(e) = 3 <Pr(smaz) + |Sr|r;a|z|>

Here, Syq. 1s the longest recognized prefix of e, |$pmaz|
is its length, and Pr(s;q.) is its probability of recog-
nition. The first term accounts for the probability ob-
tained when recognizing substring s,,.., and the sec-
ond term scores the size of the covered substring rel-
ative to the entire example. The fitness pressure ob-
tained with Fit is to recognize an entire example string
with a high probability. In early generations, the se-
quence cover term dominates the score, which forces
fitness to favour expressions that recognize large por-
tions of examples. The probability field comes into
consideration as well, however, and is especially perti-
nent in later generations when expressions recognize a
large proportion of the example set. At that time, the
probability fitness measure favours expressions that
yield high probabilities.

Negative fitness scoring is calculated as:
NegFit = mazimum(Fit(n;)) « N

where n; € Neg (negative examples). The highest
obtained fitness value for any recognized negative ex-
ample suffix is used for the score. A discriminating
expression will not normally recognize negative exam-
ples, however, and so Fit(n;) = 0 for most n;.

3.3 GP Parameters

Table 1 lists parameters used for GP runs. Although
most parameters are self-explanatory, some require ex-
planation. The initial population is oversampled, and
culled at the beginning of a run. Reproduction may
fail, for example, due to tree size limitations, and so a
maximum of 3 reproduction attempts are undertaken
before the reproduction is discarded. The terminals
are a subset of amino acid codons, determined by the
alphabet used in the positive training examples.

Crossover and mutation use the methods commonly
applied by grammatical GP systems that denote pro-
grams with derivation trees. For example, when a sub-
tree node of nonterminal type ¢ is selected in one par-
ent, then a similar node of type t will be selected in
the other parent, and the two selected subtrees are
swapped. Some SRE specific crossover and mutation
operators are used. SRE crossover permits mask el-
ements in two parents to be merged together. SRE
mutation implements a number of numeric and mask
mutations. The SRE mutation range parameter speci-

GENETIC PROGRAMMING

Table 1: GP Parameters

Parameter
GA type
Functions
Terminals

Population size (initial)

Value

generational
SRE-DNA variants
amino acid codons,
integers, probabilities
2000

Population size (culled) 1000
Unique population yes
Maximum generations 150
Maximum runs 10
Tournament size 7
Elite migration size 10

Retries for reproduction 3

Prob. crossover 0.90
Prob. mutation 0.10
Prob. internal crossover 0.90
Prob. terminal mutation 0.75
Prob. SRE crossover 0.25
Prob. SRE mutation 0.30
SRE mutation range 0.1
Max. depth initial popn. 12
Max. depth offspring 24
Min. grammar prob. 1012
Max. mask size)

fies that a numeric field is perturbed £10% of its orig-
inal value. Mask mutations include adding, removing,
or changing a single item from a mask.

The minimum grammar probability value specifies the
minimal probability used by the SRE evaluator before
an expression interpretation is preempted. This im-
proves the efficiency of expression evaluation by prun-
ing interpretation paths with negligibly small proba-
bilities.

4 RESULTS

The initial test case is the amino acid oxidase fam-
ily of sequences. It is completely defined by a rela-
tively small example set (8 unique sequences in the
PROSITE database as of November, 2000). Table 2
shows the training results for the SRE-DNA grammars
in Figure 2. (Having only 8 examples precluded the
ability to perform testing on the results). X Pr is the
sum of recognized probabilities for all the positive ex-
amples. The best fitness and X Pr fields are given for
the top solution in the 10 runs for each case, while the
average L. Pr is an average of all the solutions from the
10 runs. In the 60 solutions obtained in all these runs,
only one expression was unable to recognize the entire

GENETIC PROGRAMMING

125

PROSITE = [ilmv](2):h:[ahn]:y:g9:x:]ags](2):x:9:2(5):g:x:a
Grammar
la liglv) a2 cheat 2oy (g:at® g ot [ghgs] : aT47
(g:xt47(947) + [fghgs] : z714(101) + [chmuvy] : 1-11(842))) 12
1b [ilv] izt ch:attiy:g:attogiatl[gq: 2™ [ghis] : 2!
cg ot ([agst](325) + [afsw] : 2*1(210) + [fhngs](223))*!
1c [ilv] :xtt i h:att iy a*® gt 9
2(g T [gtq] 2Tt i [ghs] i att ig i+t ia)T
2 [ilv] :attch ot oy ottt fafh] o™t i [gs] attigatt?
:[smat] 20 s fwy] 1 gttt ()L
3 [ilv] ;T o heaT oy gia™® [sg] 2T 1 g 2T [agst]
cxtti[ghs] it g2t ia
4 ([ligv] s T h oty g aT1T [gs] 2T 18 g pFIT)F 1L
: lastqi] - 215 ¢ ([hgs] : 2T 2 g 2T 10(567) + ([ihswl] : 215
([hd] st E s ([lige] s 2t ot (y gt 19) T2
:[gs] : aT1T(567) + (h : aT14)T15(4)) 1 g pF1T)H1L
(((y:g:at19)T12 [gs] : 218 1 g T 19T 12 0 [gs] : 2H17(567)
+g:iatHtBU) gt g 2T 1T(4))
Figure 3: Best solutions for various grammars: amino acid oxidase
Table 3: Solution statistics for other families (grammar 2)
Training Testing (best soln)
Family Set size Seq size 100% solns | Set size True pos (%) False neg (%)
a) Aspartic acid 44 12 10 452 100 0.2
b) Zinc finger, C2H2 type 29 23 9 678 93 1
¢) Zinc finger, C3HC4 type 21 10 10 168 100 0
d) Sugar transport 1 18 18 0 190 88 1
e) Sugar transport 2 18 26 2 178 100 12
f) Snake toxin 18 21 10 127 ol 0
g) Kazal inhibitor 20 23 10 125 93 0

Table 2: Solution statistics (training) for SRE-DNA
variations: amino acid oxidase. Grammars 1a, 1b, and
1c use maximum iteration limits of 0.5, 0.1, and 0.2
respectively.

to obtain the training set. Note that PROSITE mo-
tifs are typically made manually by scientists, and are
error-prone. While similarities are often seen between
the GP solutions and PROSITE expression, there are
also differences in the way consensus patterns are han-
dled between them. Note how E™P, S*P, and z*? are

B.est Best Avg nonexistent in the best overall solution (grammar 3).

Grammar Fitness X Pr X Pr It seems to contradict conventional GP wisdom that
la 3.999611 0.00078 ~ 0.000140 this richer grammar containing these superfluous op-
1b 3.999977 0.00005 0.000009 : :

erators performs better than grammar 2, which omits
1lc 3.999044 0.00191 0.000356 . .

these operators in the first place. One hypothesis for
2 3998157 0.00369 0.000588 this is that the iterative terms in grammar 3 help con-
3 3.992940 0.01412 0.002502 serve and transport useful genetic material from early
4 3.999396 0.00121 0.000272

training set. Clearly, version 3 of SRE-DNA (unre-
stricted, but no choice operator) yielded the strongest
solutions.

Figure 3 shows the best solutions obtained for the runs
in Table 2, along with the PROSITE expression used

generations, but disappears later.

The solution motif that least matches the others is the
one from grammar 4 (unrestricted with choice). This
expression suffers from bloat, in which intron mate-
rial is attached to low-probability choice terms. Even
though such intron material may not contribute to lan-
guage membership, it definitely has a negative impact

126

GENETIC PROGRAMMING

a) Aspartic P:c:zx:[dn]:z(4):[fy]l:z:c:z:c
S:ciatfdn] a1 [fyl:atliciatlc
b) Zinc C2H2 P:c:x(2,4) :c: x(3) : [cfilmvwy] : z(8) : h: x(3,5) : h
Sicizt ezt jafkr] a1 [fhgrs] : 2710 [ahlrs] : 19 [hint] : 210
: [hikrv] : 19
c) Zinc C3HC4 P :c:z:h:z:[filmuy]:c:x(2): c: [ailmoy]
S:ciztlih:xt19%ciat19 ¢
d) Sugar 1 P : [agilmstv] : [afgilmsv] : 2(2) : [ailmsv] : [de] : @ : [afilmowy] : g :r
s [kr] = z(4,6) : [agst]
S : [agilm] : x32 2 [dilr] : 2732 g v 232 [gilmo] 232
e) Sugar 2 P:[filmv]:z:g:[afilmv]:x(2):g:x(8): [fily]: z(2):[eq] : x(6) : [kr]
S [filmv]: TP (g at 8 g aT 8 [fgily] : 2T [ailtv] : (o) T48) 2L
f) Snake P:g:c:2(1,3):c:p:x(8,10): c: c: x(2) : [denp]
S:giciatZiciat gkrv] a8 gl i aTB ici et [kt] 2T
g) Kazal P:c:x(T):c:xz(6):y:x(3):c:2(2,3): ¢
S:cixzt3 i ep] i a3 :acdgs] it iyt i nsy] st i at38 oTL

Figure 4: PROSITE (P) and best solutions (S) for other families (grammar 2)

on the overall probability distribution of a motif.

The solutions generated from a single experiment can
often vary considerably. Consider this alternate solu-
tion from the grammar 1c runs (¥Pr = 0.00007):

[ilv] : [iv] s h:x™L iy : ™19 [ghs] s 219 1 g
s 19 [ghst] 2t i g 1O

Comparing it with the solution for lc in Figure 3, it
more precisely discriminates the beginning of the se-
quence.

Experiments using other families of sequences were un-
dertaken using grammar 2. Training and testing re-
sults are shown in Table 3. The maximum iteration
limit was changed for different families, in an attempt
to address the relative range of skipping allowed in the
corresponding PROSITE expressions. “100% solns”
indicate the number of solutions from the 10 runs that
recognize the entire set of training examples, “True
pos” is the proportion of true positives (positive ex-
amples correctly identified from the testing set), and
“False neg” is the proportion of the false negatives
(negative examples falsely identified as being member
sequences). The positive and negative testing sets are
the same size.

The testing results suggest that nearly all of the ex-
periments found acceptable solutions. One exception
is the snake toxin case, whose positive testing results
are poor. This is probably due to over-training on an
inadequately small training set. The sugar transport
examples (d and e) were also challenging. Experiment
(d) yielded no expressions which completely recognized
the entire training set. Considering the results of Ta-
ble 2, better results might have arisen if grammar 3

had been used instead of grammar 2. Also note that
a strong overall probability score does not necessar-
ily directly correlate with a high testing score. This
is because a motif might recognize a lower-proportion
of true positives, but with high probabilities. A good
solution will balance the probability distribution and
positive example recognition.

The motif expressions for the best solutions in Table 3
are given in Figure 4. In the aspartic and zinc C3HC4
experiments (a, c), all the runs generated the identi-
cal expression. In the aspartic case, the solution is
nearly a direct match to the PROSITE expression, ex-
cept that SRE-DNA’s probabilistic skipping is used.
In the solution for experiment (c), evolution chose
skip expressions instead of the PROSITE [filmwvy] and
[ailmoy] terms. The preference of skip terms instead
of masks was not always the case, as is seen in other
solutions in Figure 4.

An interesting characteristic of many of the evolved
motifs using grammar 2 is that the + iteration oper-
ator usually evolved out of final expressions. In the
80 grammar 2 motifs evolved for all the protein fam-
ilies studied, only 28 motifs used the iteration opera-
tor. In three families (aspartic acid, zinc finger 2, and
snake toxin), none of the solution motifs used itera-
tion. When iteration arose, it was often highly nested,
indicating that it was being used as intron code. Even
though iteration is not an important operator for ex-
pressing these motifs, it does seem to be beneficial for
evolution performance, as was seen earlier in Table 2.

Regular expressions are coarse representations of the
3D structure relevant to a protein’s organic functional-
ity. Nevertheless, it is interesting to consider whether

GENETIC PROGRAMMING

any of the evolved motifs have captured the essential
biological feature of the given protein. In some cases,
the important features were indeed found. For exam-
ple, in the snake toxin example, the four c¢’s evident
in both the PROSITE and SRE-DNA motifs are in-
volved in disulfide bonds. In the aspartic acid motif,
the hydroxylation site at the d or n codon is correctly
identified. In the sugar 1 example, part of a strong
sub-motif “g : 7 : [kr]” in the PROSITE source is seen
in the SRE-DNA motif (the “g : r” term was found).

5 CONCLUSION

This research establishes that SRE-DNA is a viable
motif language for protein sequences. SRE-DNA ex-
pressions were successfully evolved using grammatical
GP, as implemented with the DCTG-GP system. A
number of families were tested, and acceptable re-
sults were usually obtained. Like other regular mo-
tif languages, SRE-DNA is most practical for small-
to medium-sized sequences, since larger sequences re-
quire correspondingly large expressions that generate
relatively miniscule probabilities. Variations of SRE-
DNA were tried, and preliminary results show that
the most successful variation is one with unrestricted
non-nested iteration, guards, and no choice operator.
The choice operator is definitely detrimental, as it in-
creases the frequency of intron material. Although the
iteration operator was not important in final solutions,
using it enhances evolution performance. One hypoth-
esis for this is that iteration acts as a transporter of
genetic material in early generations. Further testing
on more families of sequences should confirm these re-
sults.

The style of motifs obtained is highly dependent upon
grammatical constraints. Besides the kinds of gram-
mar restrictions tested in the experiments, such factors
as minimum and maximum iteration limits and max-
imum mask sizes are also critical factors in the char-
acter of realized motifs. Mask usage can be increased
by reducing the maximum skip iteration limit, thereby
increasing the likelihood of more guarded terms, and
hence masks. Increasing the maximum mask size, how-
ever, does not result in better solutions. Larger masks
tend to generate less discriminating motifs (higher
false negative rates), and also are less efficiently in-
terpreted. If the maximum iteration limit is set too
large, evolved expressions tend to take the form:

(unique prefiz) : (x)™° : (unique suffix)
In other words, evolution tends to find an expression
that has two discriminating components for the begin-
nings and ends of sequences, while it skips the majority

127

of the sequence in between. By reducing the iteration
limit, more interesting motifs are obtained.

Multiple runs often find varying solutions that iden-
tify different consensus patterns within sequences. It
is worth considering whether there is some means
by which different solutions might be reconciled or
“merged” together. Of course, the best way to judge a
consensus pattern is to allow a biologist to examine it,
in order to determine whether the identified patterns
are biologically meaningful. It is worth remembering
that grammatical motifs are crude approximations of
the real relevant biological factor - the 3D shape of the
protein molecule.

One automatic optimization that is easily applied to
evolved motifs is to simplify mask terms by removing
extraneous elements. This has two effects. First, it in-
creases the probability performance of expressions, be-
cause smaller masks have proportionally larger proba-
bilities for selected elements. Secondly, smaller masks
make expressions more discriminating. This is easy to
see, since a mask of one element is the most discrim-
inating, while a skip term is the least (it is akin to a
mask of all elements).

Recently, SRE-DNA has been applied successfully
in synthesizing motifs for unaligned sequences (Ross
2001b). The results in this paper have been indispens-
able for this new work, since it is now known which
versions of SRE-DNA are apt to be most successful.
The knowledge that the choice operator is impractical
and should be ignored is very helpful.

This research is similar in spirit to that by Hu, in which
PROSITE-style motifs were for unaligned protein se-
quences (Hu 1998). Hu used demes and local optimiza-
tion during evolution, unlike this work, which used a
single population and no local optimization. Hu also
seeds the initial population with terms generated from
the example proteins. (Koza et al. 1999) have used
GP to evolve regular motifs for proteins. One solution
performed better than the established motif created
by experts. Their use of ADF’s was advantageous for
the proteins analyzed, given the many instances of re-
peated patterns.

Acknowledgments

Thanks to Bob McKay for suggesting a means for im-
proving the performance of DCTG-GP, and to anony-
mous referees for their constructive advice. This work
is supported though NSERC Operating Grant 138467-
1998.

128

References

Abramson, H. and V. Dahl (1989). Logic grammars.
Springer-Verlag.

Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts
and J.D. Watson (1994). Molecular Biology of the
Cell. 3 ed.. Garland Publishing.

Arikawa, S., S. Miyano, A. Shinohara, S. Kuhara,
Y. Mukouchi and T. Shinohara (1993). A Ma-
chine Discovery from Amino Acid Sequences by
Decision Trees over Regular Patterns. New Gen-
eration Computing 11, 361-375.

Baldi, P. and S. Brunak (1998). Bioinformatics: the
Machine Learning Approach. MIT Press.

Brazma, A., I. Jonassen, I. Eidhammer and D. Gilbert
(1998a). Approaches to the Automatic Discovery
of Patterns in Biosequences. Journal of Compu-
tational Biology 5(2), 279-305.

Brazma, A., 1. Jonassen, J. Vilo and E. Ukko-
nen (1998b). Pattern Discovery in Biosequences.
Springer Verlag. pp. 255-270. LNAT 1433.

Garg, V.K., R. Kumar and S.I Marcus (1996). Prob-
abilistic Language Framework for Stochastic Dis-
crete Event Systems. Technical Report 96-18. In-
stitute for Systems Research, University of Mary-
land. http://www.isr.umc.edu/.

Geyer-Shulz, A. (1997). The Next 700 Programming
Languages for Genetic Programming. In: Proc.
Genetic Programming 1997 (John R. Koza et
al, Ed.). Morgan Kaufmann. Stanford University,
CA, USA. pp. 128-136.

Hofmann, K., P. Bucher, L. Falquet and A. Bairoch
(1999). The PROSITE database, its status in
1999. Nucleic Acids Research 27(1), 215-219.

Hopcroft, J.E. and J.D. Ullman (1979). Introduction to
Automata Theory, Languages, and Computation.
Addison Wesley.

Hu, Y.-J. (1998). Biopattern Discovery by Genetic
Programming. In: Proceedings Genetic Program-
ming 1998 (J.R. Koza et al, Ed.). Morgan Kauf-
mann. pp. 152-157.

Karplus, K., K. Sjolander, C. Barrett, M. Cline,
D. Haussler, R. Hughey, L. Holm and C. Sander
(1997). Predicting protein structure using hidden
Markov models. Proteins: Structure, Function,
and Genetics pp. 134-139. supplement 1.

GENETIC PROGRAMMING

Koza, J.R., F.H. Bennett, D. Andre and M.A. Keane
(1999). Genetic Programming III: Darwinian In-
vention and Problem Solving. Morgan Kaufmann.

Krogh, A., M. Brown, L.S. Mian, K. Sjolander and
D. Haussler (1994). Hidden Markov Models in
Computational Biology. Journal of Molecular Bi-
ology 235, 1501-1531.

Ross, B.J. (2000). Probabilistic Pattern Matching
and the Evolution of Stochastic Regular Expres-
sions. International Journal of Applied Intelli-
gence 13(3), 285-300.

Ross, B.J. (2001a). Logic-based Genetic Programming
with Definite Clause Translation Grammars. New
Generation Computing. In press.

Ross, B.J. (2001b). The Evolution of Stochastic Reg-
ular Motifs for Protein Sequences. Submitted for
publication.

Ryan, C., J.J. Collins and M. O’Neill (1998). Gram-
matical Evolution: Evolving Programs for an
Arbitrary Language. In: Proc. First European
Workshop in Genetic Programming (EuroGP-98)
(W. Banzhaf et al., Ed.). Springer-Verlag. pp. 83—
96.

Sakakibara, Y., M. Brown, R. Hughey, 1.S. Mian,
K. Sjolander, R.C. Underwood and D. Haus-
sler (1994). Stochastic Context-Free Grammars
for tRNA Modeling. Nucleic Acids Research
22(23), 5112-5120.

Searls, D.B. (1993). The Computational Linguistics
of Biological Sequences. In: Artificial Intelligence
and Molecular Biology (L. Hunter, Ed.). pp. 47—
120. AAAIT Press.

Searls, D.B. (1995). String Variable Grammar: a Logic
Grammar Formalism for the Biological Language
of DNA. Journal of Logic Programming.

SICS (1995). SICStus Prolog V.3 User’s Manual.
http://www.sics.se/isl/sicstus.html.

Whigham, P.A. (1995). Grammatically-based Genetic
Programming. In: Proceedings Workshop on Ge-
netic Programming: From Theory to Real-World
Applications (J.P. Rosca, Ed.). pp. 31-41.

Wong, M.L. and K.S. Leung (1997). Evolutionary Pro-
gram Induction Directed by Logic Grammars.
Evolutionary Computation 5(2), 143-180.

GENETIC PROGRAMMING

129

Priorities in Multi-Objective Optimization
for Genetic Programming

Frank Schmiedle Nicole Drechsler

Daniel Grofle Rolf Drechsler

Chair of Computer Architecture (Prof. Bernd Becker)
Institute of Computer Science, University of Freiburg i.Br., Germany
e-mail: {schmiedl,ndrechsl,grosse,drechsle}@informatik.uni-freiburg.de

Abstract

A new technique for multi-objective
optimization is presented that al-
lows to include priorities. But in
contrast to previous techniques they
can be included very easily and do
not require much user interaction.
The new approach is studied from
a theoretical and practical point of
view. The main differences to ex-
isting methods, like relation domi-
nate and favor, are discussed. An
experimental study of applying pri-
orities in heuristics learning based
on Genetic Programming (GP) is de-
scribed. The experiments confirm
the advantages presented in compar-
ison to several other techniques.

1 Introduction

When applying optimization techniques, it
should be taken into account that many prob-
lems in real-world applications depend on sev-
eral independent components. This is one of
the reasons why several approaches to multi-
objective optimization have been proposed in
the past (see e.g. [13]). They mainly differ in
the way the elements are compared and in the
granularity of the ranking. One major draw-
back of most of these methods is that a lot of
user interaction is required. (For a more de-
tailed description of the different models and

a discussion of the main advantages and dis-
advantages see Section 3).

With applications becoming more and more
complex, the user often does not have enough
information and insight to guide the tool. In
[5], a new relation has been introduced that
allows to rank elements with a finer granular-
ity than [8], keeping the main advantages of
the model. Experimental studies have shown
that this model is superior to the “classi-
cal” approach of relation dominate [9]. Even
though, originally developed for Fvolutionary
Algorithms (EAs), recently it has also been ap-
plied in the field of Genetic Programming (GP)
[10]. One of the major drawbacks of the model
of [5] is that the handling of priorities is not
covered.

In this paper we present an extension of [5]
that allows to work with priorities and at the
same time keeps all the advantages of the orig-
inal model. Experimental results in the field of
GP-based heuristics learning for minimization
of Binary Decision Diagrams (BDDs) [2] show
that the approach obtains the best result in
comparison to previously published methods.

In the next section we first briefly review the
application of GP-based heuristics learning.
Multi-objective optimization is discussed in
detail in Section 3, where we put special em-
phasis on handling of priorities. In Section 4
the experimental results are described and dis-
cussed. Finally, the paper is summarized.

130

2 Basic Concepts

We assume that the reader is familiar with
GA and GP concepts and refer to [4, 10] for
details. A model for heuristics learning with
(GAs has been proposed in [7]. Known basic
problem solving strategies are used as heuris-
tics, and ordering and frequency of the strate-
gies is optimized by evolution. Recently, a
generalization to the GP domain has been
reported [6]. The multi-objective optimiza-
tion approach that is presented in this paper
has been used during heuristics learning for
BDD minimization and first experiments were
given. Therefore, we give a brief review of
(G/P-based heuristics learning and the result-
ing BDD minimization method to make the
paper self-contained.

2.1 Heuristics Learning

For learning heuristics in order to find good so-
lutions to an optimization problem, it is neces-
sary that several (non-optimal) strategies solv-
ing the problem can be provided. Typically,
for different classes of problem instances there
are also different strategies that perform best.
A strategy that behaves well on one problem
class may return poor results when being ap-
plied to another problem class. Thus, it is
promising to learn how to combine the strate-
gies to heuristics that can be applied success-
fully to most or even all classes of problems.

The learning process by GGP and for a better
understanding, some fundamental terms are
introduced by the following

Definition 1 Given an optimization problem
P and a non-empty set of different non-
optimal strategies B = {by,..., by} to solve
the problem. Then the elements of B are called
BOMs (Basic Optimization Modules).

Moreover, a heuristics for P is an algorithm
that generates a sequence of BOMs.

During evolution, the strategies are combined
to generate heuristics that are the individuals
in the population. The fitness of an individual

GENETIC PROGRAMMING

can be evaluated by application of the heuris-
tics to a training set of problem instances. The
target is to find heuristics that perform well
according to some given optimization criteria.
Additionally, a good generalization is impor-
tant, i.e. a heuristics that returns good results
for the training set examples should also per-
forms well on unknown instances. Note that
for this, the handling of the different crite-
ria, i.e. the special multi-objective optimiza-
tion approach, plays a critical role for the suc-
cess of the evolutionary process.

2.2 BDD Minimization by Genetic
Programming

Binary Decision Diagrams (BDDs) [2] are a
state-of-the-art data structure often used in
VLSI CAD for efficient representation and ma-
nipulation of Boolean functions. BDDs suf-
fer from their size being strongly dependent
on the variable ordering used. In fact, BDD
sizes may vary from linear to exponential for
different orderings. Optimization of variable
orderings for BDDs is difficult, but neverthe-
less, successful strategies for BDD minimiza-
tion that are based on dynamic variable order-
ing have been reported, see e.g. sifting [11].

For heuristics learning, the strategies sifting
(SIFT), group sifting (GROUP), symmetric
sifting (SYMM), window permutation of size
3 and 4, respectively, (WIN3, WIN4) are used
as BOMs. For all these techniques there is an
additional BOM that iterates the method un-
til convergence is reached, and the “empty”
operator NOOP completes the set of BOMs B.

The individuals of the G'P approach for BDD
minimization consist of trees with leaf nodes
labeled with BOMs and inner operator nodes
that belong to different types. During eval-
uation of the heuristics, the tree is traversed
by a depth-first-search-based method in order
to generate a flat sequence. The types of the
inner nodes decide if

e both subtrees are evaluated subsequently
(CONCAT),

GENETIC PROGRAMMING

e according to the truth value of a given
condition either the left or the right son
is considered (IF) or

e cvaluation of the sons is iterated until a
truncation condition is fulfilled (WHILE).

For recombination, two crossover operators are
provided. While CAT concatenates the two
parents, the more sophisticated MERGE does
the same for subtrees of the parents and by
that, bloating can be prevented. In addition to
this, there are four mutation operators that ex-
change BOMs (BMUT), node types (CIMUT,
CwMuUT) and modify conditions of IF-nodes
(IFMUT), respectively. A probability table de-
termines the frequencies for using the different
operators. (For more details see [6].)

3 Multi-Objective Optimization with
Priorities

In this section, the multi-objective aspect
for solving optimization problems is analyzed.
Without loss of generality we consider only
minimization problems.

For n optimization criteria, an objective vector
(c1,...,¢,) € RY of values for these criteria
completely characterizes a solution belonging
to the search space II. Thus, solutions can
be identified with objective vectors and as a
consequence, IT C RY.

In most cases some or all of the ¢;’s are mu-
tually dependent, and often conflicts occur,
i.e. an improvement in one objective ¢; leads to
a deterioration of ¢; for some 7 # 1. This must
be taken into account during the optimization
process. If priorities have to be considered, a
good handling of multi-objective optimization
becomes even more complex.

3.1 Previous Work

In the past, several techniques for ranking so-
lutions according to multiple optimization cri-
teria have been developed. Some approaches
define a fitness function f : R} = Ry that

131

maps solutions ¢ to one scalar value f(¢). The
most commonly used method is linear combi-
nation by WEIGHTED SUM*.

Values for the ¢;’s (1 <@ < n) are weighted by
constant coefficients W;, and f(¢) is given by

fle) = ZI/VZCZ

The fitness value is used for comparison with
the fitness of other solutions. Obviously, crite-
ria with large weights have more influence on
the fitness than those with small coefficients.

There are other methods that compare solu-
tions based on one of the relations which are
introduced by

Definition 2 Let ¢ = (¢1,...,¢,) and d =
(dv,...,d,) € 1l be two solutions. The rela-
tions <4 (dominate) and < (favor) C II x II
are defined by

c<gd & i <d; A
Viie,<di (1<i<n)
{e < di]l <1< n}|>
{e: > di|1 <1< n}

c<fd =

We say that ¢ dominates d if ¢ <4 d and ¢ <y d
means that c is favored to d.

<4 1s a partial ordering on any solution set
S C II and the set P C S that contains all
non-dominated solutions in S is called pareto-
set. In [9], the DOMINATE approach that ap-
proximates pareto-sets has been proposed.

An interactive technique for multi-objective
optimization that divides II into three sub-
sets containing solutions of different satisfia-
bility classes has been reported in [8]. It was
generalized to the use of a variable number of
satisfiability classes in [5]. The classes can be
represented by the strongly connected compo-
nents in the relation graph of <; and hence
they can be computed by known graph algo-
rithms. By this, it becomes possible to classify
*This is also the name of the method.

132

solutions ¢ € II. We refer to this technique
(introduced in [5]) as PREFERRED in the fol-
lowing. If priorities have to be handled, lexi-
cographic sorting is used instead of <. This
method will be called LEXICOGRAPHIC in fur-
ther sections.

3.2 Drawbacks of Existing Approaches

The WEIGHTED SUM method is most popular
for multi-objective optimization since it is easy
to implement and allows to scale objectives.
However, there are two major drawbacks:

1. Priorities cannot be handled directly but
only by huge penalty weights. If there
are many different priorities, the fitness
function becomes very complex by that.

2. For adjusting the weights, problem spe-
cific knowledge is necessary. Usually,
good settings for the weights are not
known in advance and for finding and tun-
ing them in experiments much effort has
to be spent.

The approach proposed in [8] does not use
weights that have to be adjusted, but it is in-
teractive and therefore additional effort by the
user is required, too. Moreover, the granular-
ity of the method is very coarse since the solu-
tions are divided in three different classes only.
PREFERRED is a generalization of that tech-
nique that overcomes this drawback, i.e. an
arbitrary number of satisfiability classes can
be handled. By that, objectives with nearly
the same importance can be optimized in par-
allel conveniently. However, priorities can not
be considered by PREFERRED and in the ap-
proach presented in [5], LEXICOGRAPHIC is
applied instead of PREFERRED if different pri-
orities occur. By that, the following disadvan-
tages are implied:

1. Instead of the relation <, the less pow-
erful lexicographic sorting is applied for
comparison of solutions and hence the re-
sults that can be expected are not as good
as if <y was used.

GENETIC PROGRAMMING

2. Lexicographic sorting does not permit as-
signing the same priority to more than
one optimization criteria. Thus if there
are two objectives with a similar impact
on the overall quality of solutions, one of
them has to be preferred during LEXICO-
GRAPHIC in comparison to the other one.

priorities
b~
T
priorities
A b~
T

1 2 3 45 1
objectives

2 3 4 5
objectives

(a) PREFERRED (b) LEXICOGRAPHIC

priorities
LA b~
T

1 2 3 45
objectives

(c) PrIORITY

Figure 1: Priority schemes for different opti-
mization methods.

Figure 1 (a) and (b) illustrate the priority han-
dling of PREFERRED and LEXICOGRAPHIC,
respectively. None of the existing methods
can deal with priority schemes like described
in Figure 1 (c), where the same priority is as-
signed to some objectives while some other cri-
teria have lower or higher priorities. In the
next section, an approach is presented that ful-
fills this requirement.

3.3 Multi-Objective Optimization
with Priority Handling

The PRIORITY multi-objective optimization
method introduced in this section com-
bines properties of PREFERRED and LEXICO-
GRAPHIC. Thus it is more powerful and ar-
bitrary priority numbers can be assigned to
each objective. Without loss of generality

GENETIC PROGRAMMING

we assume that the priorities 1,2,...,m are
used in non-descending order for the objectives
1,...,nM

Y

Definition 3 Given an optimization problem
with search space I C R and a priority vector
p=(p1,-..,pm) € NJ such that p; determines
for how many objectives the priority 1 occurs.
According to this, the priority of an objective
can be calculated by the function

pr:{l,....n} = {1,....,m},

k-1 k
pr(1) =k where ij <i< ij
7=1 7=1

The projection of ¢ € Il on a priority i is given
by

cl; € R, ,Ch)

i—1 7
wherel:ij—l—l A h:ij
=1 7=1

C|i = (Cl,...

Finally, for c¢,d € 11 the relation <,y C 11 x 11
(priority favor) is defined by

c=<ppd = Jge{l,....m}:cl; <pd|; A
(VEk < el Ardle Ndle A5 clr)

“c is priority-favored to d” also means ¢ <, d.

The priority favor relation is used to compare
solutions, but a complete ranking cannot be
generated by <, as can be seen in the follow-
ing

Example 1 For a problem with n = 4 opti-
mization objectives and m = 2 different prior-
ities, the search space and the priority vector
are given as follows:

Hel’ = {(2787878)7(5767078)7(5777571)7
(2,6,0,8),(5,2,7,5),(2,7,8,9)},
p = (1,3)

TOtherwise the objectives have to be re-ordered.

133

The relation graph for <5 is illustrated in Fig-
ure 2. There are three solutions with value 2
and as well three solutions with value 5 for the
objective with priority 1. Obviously the solu-
tions with the lower value are priority-favoured
to the other ones due to the value of objective 1
and regardless of the values of the other objec-
tives. Among these priority-favored solutions,
(2,6,0,8) is priority-favored to the others:

(6,0,8) < (8,8,8) = (2,6,0,8) <, (2,8,8,8)
(6,0,8) < (7,8,9) = (2,6,0,8) <, (2,7,8,9)

(2,8,8,8) and (2,7,8,9) can not be compared by
<, and for the remaining solulions, ranking
is not possible since the graph for <, contains

a cycle.

/

P

) - G
/

T

G0

Figure 2: Relation graph G' = (Il.,, <,f)

The reason why cycles can occur is —as can
casily be seen— that <,; is not transitive.
This is not surprising since <, is based on
< that is not transitive either [5]. To over-
come this problem, analogously to the PRE-
FERRED approach, solutions that belong to a
cycle in the relation graph G = (Il, <,s) are
considered to be equal and merged to one sin-
gle meta-node. This is done by generation of
a meta-graph G, i1 by a linear time graph al-
gorithm [3] that finds the set of strongly con-
nected components SCC in G. We have

G = (SCC, E) where
E={(q1,q2) €<,5 [SCC(q1) # SCC(g2)}

Since Gy, 1 by construction is free of cycles,
there has to be at least one root node with

134

indegree 0 and by that, it is possible to rank
the set of solutions according to

Definition 4 Given a set of solutions II C
R%, the relation graph G = (11, <), the meta-
graph G, n = (SCC, E) and the set of its root
nodes Gio = {qlindeg(q) = 0}.

Then the satisfiability class or fitness f(¢) of
a solution ¢ € Il can be determined by

foll—= Ny,

fle) = max{r|I(q,...,q) € SCC":
q € Go N ¢ € qr A
VIi<i<r:(g,qg+)€ E}

The solutions ¢ € II can now be ranked accord-
ing to their fitness that by Definition 4 is the
increment of the length of the longest path in
Gy from a root node to ¢ . For computation
of the ranking, well-known graph algorithms
are used.

Figure 3: Meta-graph G, 11,

Example 2 Consider again 1., from Eram-
ple 1. Figure 3 includes the meta-graph G, 1.,
with Gy = {(2,6,0,8)} with nodes represent-
ing SCCs in . The fitness values for the
solutions can easily be derived from G 11, ,

e.g. £((2,8,8,8)) =2 and f(5,6,0,8) = 3.
4 Experimental Results

We implemented the PRIORITY multi-
objective optimization approach described
in Section 3 in the programming language

C++4+ and embedded it in the software for

GENETIC PROGRAMMING

BDD minimization by GP-based heuristics
learning (see Section 2). In our experiments?,
examples of Boolean functions that are taken
from LGSYNTHIL [12] are used. The corre-
sponding BDDs are minimized by WEIGHTED
SuM as well as by relation based methods,
i.e. the techniques PREFERRED, LEXICO-
GRAPHIC and PRIORITY. The objectives
are the reduced BDD sizes for the single
benchmarks. Notice that the discussion of the
experiments in our approach can also be seen
in the context of design of experiments (for
more details see [1]).

For setting the weights in WEIGHTED SUM,
several different approaches have been tried
and we report two of them here. In EQUAL,
weights are adjusted according to the initial
BDD sizes of the benchmarks in a way that
each example has the same impact on the fit-
ness function. The idea behind this method is
to favor the generalization ability of the gener-
ated heuristics to their optimized performance
on the training set. In other words, by us-
ing EQUAL intuitively heuristics can be ex-
pected that perform better on unknown exam-
ples while slightly weaker results on the train-
ing set are tolerated.

For the technique REDR, the reduction rates
that are obtained when applying the strategy
SIFT to the single benchmarks are calculated.
Weights are chosen indirectly proportional to
the reduction rates, i.e. large weights are as-
signed to examples for which a large reduction
is observed. Here, the intuition is that learn-
ing is focussed on benchmarks with a large
potential for reduction in order to generate
heuristics that exploit this potential well on
unknown functions.

It is obvious that for weight setting, much ef-
fort has to be spent on experiments and com-
putation of e.g. the reduction rates for the
training set. In comparison to this, PRE-
FERRED needs no preprocessing at all while
for LEXICOGRAPHIC, only the objectives have

1+ . .
*All experiments have been carried out on

SuN ULTRA 1 workstations.

GENETIC PROGRAMMING

135

Table 1: Results for application on the training set

Name of 1/O WEIGHTED SUM RELATION BASED
circuit || in [out || EQUAL | REDR | PREF | LEXIC | PRIOR
beO || 26 | 11 522 522 522 522 522
ex7 || 16 5 71 71 71 71 71
frgl || 28 3 80 82 80 80 80
ibm || 48 | 17 206 207 206 206 206
in2 || 19] 10 233 233 233 233 233
s1196 || 32 | 32 597 597 597 597 597
ts10 || 22| 16 145 145 145 145 145
x6dn || 39 5 239 237 239 239 239
| average | - [- | 261.6 | 262.0 [261.6 | 261.6 | 261.6 |

to be ordered (in our experiments according
to initial BDD sizes). The same is done for
PRIORITY — the only difference is that the
same priority is assigned to benchmarks with
a similar initial BDD size.

For the GP, the same settings as in [6] are
used. The population consists of 20 individu-
als and in each generation 10 offsprings are
generated. The evolutionary process is ter-
minated after 100 generations. For more de-
tails about the experimental setup like e.g. the
method for generating the initial population,
we refer to [6]. In the final population, one
of the individuals with the best fitness value
is chosen. The results for minimization of the
training set examples are given in Table 1.

In the first three columns, the names and
the input and output sizes, respectively, of
the benchmarks are given. Columns 4 and 5
include the results for the WEIGHTED SUM
methods EQUAL and REDR while in the
last three columns, final BDD sizes of the
heuristics generated by the methods LEXI-
COGRAPHIC, PREFERRED and PRIORITY are
given. It can be seen that nearly all methods
perform identically with respect to the behav-
ior of the best individuals on the training set
examples. Only The REDR approach slightly
differs for three benchmarks.

The situation changes when the heuristics are
applied to unknown benchmarks. The results

are given in Table 2.

Except for c¢hkn where REDR performs
slightly better, PRIORITY achieves the best
results for all benchmarks. It clearly outper-
forms the other relation based methods as well
as EQUAL on average while being still slightly
better than REDR. As a result, it can be seen
that setting weights for a fitness function by
intuition is not always successful. Although
the ideas for both approaches EQUAL and
REDR sound sensible, only the latter achieves
good results. Thus many experiments have to
be conducted for tuning weights if WEIGHTED
SuUM is used while this is not needed when ap-
plying PRIORITY.

5 Conclusions

A new technique for handling priorities in
multi-objective optimization has been pre-
sented. Application in GP-based heuristics
learning has clearly demonstrated that the
new approach outperforms existing methods,
while at the same time the user interaction is
reduced.

It is focus of current work to further study
the relation between GA-based and GP-based
heuristics learning using multi-objective opti-
mization techniques.

136

GENETIC PROGRAMMING

Table 2: Application to new benchmarks

Name of || WEIGHTED SUM RELATION BASED
circuit | EQUAL | REDR | PREF | LEXIC | PRIOR
apex?2 601 349 601 601 320
apex’ 291 288 291 291 288

bed 568 573 568 568 568

chkn 266 261 266 264 264

cps 975 975 975 975 970

in7 76 78 76 76 76

pdc 793 792 793 792 792
s1494 386 386 386 386 386

t1 112 112 112 113 112

vg2 79 79 79 79 79
| average | 414.7[3893 | 414.7 | 4145 385.5 |

References

[1] F. Brglez and R. Drechsler. Design of ex-

[6]

7]

periments in CAD: Context and new data
sets for ISCAS’99. In Int’l Symp. Clire.
and Systems, pages VI:424-VI1:427, 1999.

R.E. Bryant. Graph - based algorithms
for Boolean function manipulation. /EEE

Trans. on Comp., 35(8):677-691, 1986.

T.H. Cormen, C.E. Leierson, and R.C.
Rivest. Introduction to Algorithms.
MIT Press, McGraw-Hill Book Company,
1990.

L. Davis. Handbook of Genetic Algo-
rithms. van Nostrand Reinhold, New

York, 1991.
N. Drechsler, R. Drechsler, and B. Becker.

A new model for multi-objective op-
timization in evolutionary algorithms,
LNCS 1625. In Intl Conference on

Computational Intelligence (Fuzzy Days),
pages 108-117, 1999.

N. Drechsler, F. Schmiedle, D. Grofle, and
R. Drechsler. Heuristic learning based on
genetic programming. In FuroGP, 2001.

R. Drechsler and B. Becker. Learning
heuristics by genetic algorithms. In ASP

[10]

[11]

[12]

[13]

Design Automation Conf., pages 349-352,
1995.

H. Esbensen and E.S. Kuh. EXPLORER:
an interactive floorplaner for design space
exploration. In Furopean Design Automa-

tion Conf., pages 356-361, 1996.

D.E. Goldberg. Genetic Algorithms in
Search, Optimization & Machine Learn-
ing. Addision-Wesley Publisher Com-
pany, Inc.; 1989.

J. Koza. Genetic Programming - On the
Programming of Computers by means of

Natural Selection. MIT Press, 1992.

R. Rudell. Dynamic variable ordering for
ordered binary decision diagrams. In Int’

Conf. on CAD, pages 42-47, 1993.

S. Yang. Logic synthesis and optimiza-
tion benchmarks user guide. Technical
Report 1/95, Microelectronic Center of
North Carolina, 1991.

E. Zitzler and L. Thiele. Multiobjective
evolutionary algorithms: A comparative
case study and the strength pareto ap-

proach. [KEE Trans. on Fvolutionary
Comp., 3(4):257-271, 1999.

GENETIC PROGRAMMING 137

138 GENETIC PROGRAMMING

GENETIC PROGRAMMING 139

140 GENETIC PROGRAMMING

GENETIC PROGRAMMING 141

142 GENETIC PROGRAMMING

GENETIC PROGRAMMING 143

144 GENETIC PROGRAMMING

GENETIC PROGRAMMING 145

146 GENETIC PROGRAMMING

GENETIC PROGRAMMING

147

Automated Discovery of Numerical Approximation Formulae
Via Genetic Programming

Matthew Streeter

Department of Computer Science
Worcester Polytechnic Institute
Worcester, MA 01609

Abstract

This paper describes the wuse of genetic
programming to automate the discovery of
numerical approximation formulae. The authors
present results involving rediscovery of known
approximations for Harmonic numbers and
discovery of rational polynomial approximations
for functions of one or more variables, the latter
of which are compared to Padé approximations
obtained through a symbolic mathematics
package. For functions of a single variable, it is
shown that evolved solutions can be considered

superior to Padé approximations, which
represent a powerful technique from numerical
analysis, given certain tradeoffs between

approximation cost and accuracy, while for
functions of more than one variable, we are able
to evolve rational polynomial approximations
where no Padé approximation can be computed.
Further, it is shown that evolved approximations
can be refined through the evolution of
approximations to their error function. Based on
these results, we consider genetic programming
to be a powerful and effective technique for the
automated discovery of numerical approximation
formulae.

1 INTRODUCTION

1.1 MOTIVATIONS

Numerical approximation formulae are useful in two
primary areas: firstly, approximation formulae are used in
industrial applications in a wide variety of domains to
reduce the amount of time required to compute a function
to a certain degree of accuracy (Burden and Faires 1997),
and secondly, approximations are used to facilitate the
simplification and transformation of expressions in formal
mathematics. The discovery of approximations used for
the latter purpose generally requires human intuition and
insight, while approximations used for the former purpose
tend to be polynomials or rational polynomials obtained

Lee A. Becker

Department of Computer Science
Worcester Polytechnic Institute
Worcester, MA 01609

by a technique from numerical analysis such as Padé
approximants (Baker 1975; Bender and Orszag 1978) or
Taylor series. Genetic programming (Koza 1992)
provides a unified approach to the discovery of
approximation formulae which, in addition to having the
obvious benefit of automation, provides a power and
flexibility that potentially allows for the evolution of
approximations superior to those obtained using existing
techniques from numerical analysis.

1.2 EVALUATING APPROXIMATIONS

In formal mathematics, the utility or value of a particular
approximation formula is difficult to analytically define,
and depends perhaps on its syntactic simplicity, as well as
the commonality or importance of the function it
approximates. In industrial applications, in contrast, the
value of an approximation is uniquely a function of the
computational cost involved in calculating the
approximation and the approximation's associated error.
In the context of a specific domain, one can imagine a
utility function which assigns value to an approximation
based on its error and cost. We define a reasonable utility
function to be one which always assigns lower (better)
scores to an approximation a; which is unequivocally
superior to an approximation a,, where a; is defined to be
unequivocally superior to a, iff. neither its cost nor error
is greater than that of a,, and at least one of these two
quantities is lower than the corresponding quantity of a,.
Given a set of approximations for a given function
(obtained through any number of approximation
techniques), one 1is potentially interested in any
approximation which is not wunequivocally inferior
(defined in the natural way) to any other approximation in
the set. In the terminology of multi-objective
optimization, this subset is referred to as a Pareto front
(Goldberg 1989). Thus, the Pareto front contains the set
of approximations which could be considered to be the
most valuable under some reasonable utility function.

1.3 RELATED WORK

The problem of function approximation is closely related
to the problem of function identification or symbolic
regression, which has been extensively studied by

148

numerous sources including (Koza 1992; Andre and Koza
1996; Chellapilla 1997; Luke and Spector 1997; Nordin
1997; Ryan, Collins, and O'Neill 1998). Approximation
of specific functions has been performed by Keane, Koza,
and Rice (1993), who use genetic programming to find an
approximation to the impulse response function for a
linear time-invariant system, and by Blickle and Thiele
(1995), who derive three analytic approximation formulae
for functions concerning performance of various selection
schemes in genetic programming. Regarding general
techniques for the approximation of arbitrary functions,
Moustafa, De Jong, and Wegman (1999) use a genetic
algorithm to evolve locations of mesh points for Lagrange
interpolating polynomials.

2 EVOLVING NUMERICAL
APPROXIMATION FORMULAE
USING GENETIC PROGRAMMING

All experiments reported in this paper make use of the
standard genetic programming paradigm as described by
Koza (1992). Our task is to take a function in symbolic
form (presented to the system as a set of training points)
and return a (possibly singleton) set of expressions in
symbolic form which approximate the function to various
degrees of accuracy. The authors see two essential
methods of applying genetic programming to this task:
either by limiting the available function set in such a way
that the search space contains only approximations to the
target function, rather than exact solutions, or by in some
way incorporating the computational cost of an
expression into the fitness function, so that the
evolutionary process is guided toward simpler expressions
which presumably will only be able to approximate the
data. Only the former approach is considered here.

The system used for the experiments described in this
paper was designed to be functionally equivalent to that
described by Koza (1992) with a few minor
modifications. Firstly, the evolution of approximation
formulae requires the cost of each approximation to be
computed. We accomplish this by assigning a raw cost to
each function in the function set, and taking the cost of an
approximation to be the sum of the functional costs for
each function node in its expression tree whose set of
descendent nodes contains at least one input variable. For
all experiments reported in this paper, the function costs
were somewhat arbitrarily set to 1 for the functions /, *,
and RCP (the reciprocal function), 0.1 for the functions +
and -, and 10 for any more complex function such as
EXP, COS, or RLOG.

Secondly, this system uses a slightly modified version of
the standard adjusted fitness formula 1/(1+[error]) which
attempts to maintain selection pressure when error values
are small. We note that although an approximation which
attains an error of 0.1 is twice as accurate as one with an
error of (0.2, the standard formula will assign it an
adjusted fitness which is just over 9% greater. We
attempt to avoid this problem by introducing an error

GENETIC PROGRAMMING

multiplier, so that the adjusted fitness formula becomes
1/(1+[error multiplier][error]). For one experiment
described in this paper, the error multiplier was set to
1000. In the given example, this causes the
approximation with an accuracy of 0.1 to have a fitness
which is nearly twice (~1.99 times) that of the
approximation whose accuracy is 0.2, which is more
appropriate.

Finally, rather than simply reporting the best (i.e. most
accurate) approximation evolved in each of a number of
runs, we report the Pareto front for the union of the
population histories of each independent run, computed
iteratively and updated at every generation. Thus, this
system returns the subset of approximations which are
potentially best (under some reasonable utility function)
from the set of all approximations evolved in the course
of all independent runs.

The integrity of the system used in these experiments,
which was written by the authors in C++, was verified by
reproducing the experiment for symbolic regression of
fx) =xM + x"3 + x2 + x as reported by Koza (1992).

3 REDISCOVERY OF HARMONIC
NUMBER APPROXIMATIONS

One commonly used quantity in mathematics is the
Harmonic number, defined as:

n
H,= i

i=1

This series can be approximated using the asymptotic
expansion (Gonnet 1984):

H,=7v +In(n) + 1/(2n) - 1/(12n%) + 1/(1201") - . ..
where 7 is Euler's constant (y = 0.57722).

Using the system described in the previous section, and
the function set {+,*,RCP,RLOG, SQRT,COS}, the
authors attempted to rediscover some of the terms of this
asymptotic expansion. Here RLOG is the protected
logarithm function (which returns O for a non-positive
argument) and RCP is a protected reciprocal function
which returns the reciprocal of its argument if the
argument is non-zero, or 0 otherwise. SQRT and COS are
included as extraneous functions.

All parameter settings used in this experiment are the
same as those presented as the defaults in John Koza's
first genetic programming book (Koza 1992), including a
population size of 500 and generation limit of 51. The
first 50 Harmonic numbers (i.e. H, for 1<=n<=50) were
used as training data. 50 independent runs were executed,
producing a single set of candidate approximations. Error
was calculated as the sum of absolute error for each
training instance. The error multiplier set to 1 for this
experiment (e.g. effectively not used).

The set of evolved approximations returned by the genetic
programming system (which represent the Pareto front for

GENETIC PROGRAMMING

the population histories of all independent runs) is given
in Table 1. For the purpose of analysis, each
approximation was simplified using the Maple symbolic
mathematics package; for the sake of brevity, only the
simplified expressions (rather than the full LISP
expressions) are given in this table.'

Table 1. Evolved Harmonic Number Approximations.
SIMPLIFIED EXPRESSION
ERROR ‘ COST ‘ RUN ‘ GENERATION

1. In(x)+.5766598187+1/(sqrt(In(x)+.5766598187
+1/(1/x42%x+.6426220121)+x"2)+x)

0.0215204 ‘ 39.1 ‘ 22 ‘ 32

2. In(x)+.5766598187+1/(2*x+1/(1.219281831 +
In(1/(In(x)+.5766598187))+x))

0.0229032 ‘ 35.8 ‘ 22 ‘ 35

3. In(x)+.5766598187+1/(2*x+1/(1.285244024 +
In(1.734124639+2%*x)))

0.0264468 ‘ 26.9 ‘ 22 ‘ 37

4. In(x)+.5766598187+1/(2*x+1/(2.584025920 +
In(x)+1/(3.007188263+x)))

0.0278816 ‘ 25.9 ‘ 22 ‘ 49

5. In(x)+.5766598187+1/(2*x+1/(.5766598187 +
1/x+x))

0.0286254 ‘ 15.7 ‘ 22 ‘ 36

6. In(x)+.5766598187+1/(2%x+.3592711879)
0.0293595 ‘ 13.4 ‘ 22 ‘ 37

7. In(x)+.5766598187+1/(2%x+.3497550998)
0.0297425 ‘ 11.4 ‘ 22 ‘ 42

8. In(x+.5022291180)+.5779513609
0.0546846 ‘ 10.3 ‘ 40 ‘ 28

9. In(x+.4890238595)+.5779513609
0.0653603 ‘ 10.2 ‘ 40 ‘ 21

10. 0.5965804779+In(x)

1.44089 ‘ 10.1 ‘ 49 ‘ 49
11. 3.953265289-4.348430001/ x
20.2786 ‘ 22 ‘ 3 ‘ 1
12.3.815981083

31.0297 ‘0 ‘ 10 ‘4

' Note that since the cost and error values given in Table 1 were
calculated by the genetic programming system (using the unsimplified
versions of the approximations), the cost values are not necessarily the
same as those which would be obtained by manually evaluating the
simplified Maple expressions.

149

An analysis of this set of candidate solutions follows. For
comparison, Table 2 presents the error values associated
with the asymptotic expansion when carried to between 1
and 4 terms.

Table 2. Accuracy of Asymptotic Expansion

TERMS EXPRESSION ERROR

1 0.57722 150.559

2 0.57722 + In(n) 2.12094

3 0.57722 + In(n) + 1/(2n) | 0.128663

4 0.57722 + In(n) + 1/(2n) - | 0.00683926
1/(12n2)

Candidate approximation 12, the cheapest approximation
in the set, is simply a constant, while candidate
approximation 11 is a simple rational polynomial.
Candidate approximation 10 represents a variation on the
first two terms of the asymptotic expansion, with a
slightly perturbed version of Euler's constant which gives
greater accuracy on the 50 supplied training instances.
Candidate solutions 8 and 9 represent slightly more costly
variations on the first two terms of the asymptotic
expansion which provide increased accuracy over the
training data. Similarly, candidate solutions 6 and 7 are
slight variations on the first three terms of the asymptotic
expansion, tweaked as it were to give greater accuracy on
the 50 training points. Candidate solutions 2-5 can be
regarded as more complicated variations on the first three
terms of the asymptotic expansion, each giving a slight
increase in accuracy at the cost of a slightly more
complex computation. Candidate solution 1 represents a
unique and unexpected approximation which has the
greatest accuracy of all evolved approximations, though it
is unequivocally inferior to the first four terms of the
asymptotic expansion has presented in Table 2.

Candidate approximations 1-7 all make use of the
constant 0.5766598187 as an approximation to Euler's
constant, which was evolved using the LISP expression:

(RCP (SQRT (* 4.67956 RLOG(1.90146))))

This approximation is accurate to two decimal places.
Candidate approximations 8 and 9 make use of the
slightly less accurate approximation of 0.5779513609,
evolved using the LISP expression:

(COS(LN 2.59758))

Note that in this experiment, pure error-driven evolution
has produced a rich set of candidate approximations
exhibiting various trade-offs between accuracy and cost.
Also note that with the exception of the first candidate
approximation, which uses the SQRT function, the SQRT
and COS functions were used only in the creation of
constants, so that these extraneous functions did not
provide a significant obstacle to the evolution of the
desired approximations. Thus, this experiment represents

150

a partial rediscovery of the first three terms of the
asymptotic expansion for H;.

4 DISCOVERY OF RATIONAL
POLYNOMIAL APPROXIMATIONS
FOR KNOWN FUNCTIONS

4.1 INTRODUCTION

By limiting the set of available functions to the arithmetic
function set {*,+, /, -}, it is possible to evolve rational
polynomial approximations to functions, where a rational
polynomial is defined as the ratio of two polynomial
expressions. Since approximations evolved with the
specified function set use only arithmetic operators, they
can easily be converted to rational polynomial form by
hand, or by using a symbolic mathematics package such
as Maple. Approximations evolved in this manner can be
compared to approximations obtained through other
techniques such as Padé approximations by comparing
their Pareto fronts. In the section, we present the results
of such a comparison for three common mathematical
functions: the natural logarithm In(x), the square root
sqrt(x), and the hyperbolic arcsine arcsinh(x),
approximated over the intervals [1,100], [0,100], and
[0,100], respectively. The functions were selected to be
common, aperiodic functions whose calculation was
sufficiently complex to warrant the use of approximation.
The intervals were chosen to be relatively large due to the
fact that Padé approximations are weaker over larger
intervals, and we wished to construct examples for which
the genetic technique might be most applicable.

4.2 COMPARISON WITH PADE
APPROXIMATIONS

The Padé approximation technique is parameterized by
the value about which the approximation is centered, the
degree of the numerator in the rational polynomial
approximation, and the degree of the denominator. Using
the Maple symbolic mathematics package, we calculated
all Padé approximations whose numerator and
denominator had a degree of 20 or less, determined their
associated error and cost, and calculated their (collective)
Pareto front for each of the three functions being
approximated. The center of approximation was taken as
the leftmost point on the interval for all functions except
the square root, whose center was taken as x=1 since the
necessary derivatives of sqrt(x) are not defined for x=0.
Error was calculated using a Riemann integral with 1000
points. For simplicity, the cost of Padé approximations
was taken only as the minimum number of
multiplications/divisions required to compute the rational
polynomial, as calculated by a separate Maple procedure.

The Maple procedure written to compute the cost of an
approximation operated by first putting the approximation
in continued-fraction form (known to minimize the
number of necessary multiplications/divisions), counting

GENETIC PROGRAMMING

the number of multiplications/divisions required to
compute the approximation in this form, and then
subtracting for redundant multiplications. As an example
of a redundant multiplication, the function f(x)=x*+x’
when computed literally requires 3 multiplications (1 for
2 . . .
x°, 2 for x), but need be computed using only 2, since in
the course of computing x’ one naturally computes x°.

For consistency, the candidate approximations evolved
through the genetic programming technique were also
evaluated (subsequent to evolution) using the Reimann
integral and Maple cost procedure, and the Pareto front
for this set of approximations was recomputed using the
new cost and error values. Finally, it should be noted that
a Padé approximation with denominator of degree zero is
identical to the Taylor series whose degree is that of the
numerator, so that the Pareto fronts reported here
effectively represent the potentially best (under some
reasonable utility function) members of a set of 20 Taylor
series and 380 uniquely Padé approximations.

4.3 RESULTS

All experiments involving rational polynomial
approximations were performed using the same settings
as described in the previous section, but with a generation
limit of 101 (we have found that accurate rational
polynomial approximations take a while to evolve). The /
function listed in the function set was defined to be a
protected division operator which returns the value 10° if
division by zero is attempted. In analyzing evolved
approximations via Maple, any approximation which
performed division by zero was discarded. To reduce the
execution time of these experiments, we employed the
technique suggested as a possible optimization by Koza
(1990) of using only a subset of the available training
instances to evaluate individuals at each generation. In
our experiments, the subset is chosen at random for the
initial generation, and selected as the subset of examples
on which the previous best-of-generation individual
performed the worst for all subsequent generations. The
subset is assigned a fixed size for all generations; for all
experiments reported in this section, the subset size was
25. Training data consisted of 100 points, uniformly
spaced over the interval of approximation. Each of the
three experiments reported was completed in
approximately 4-5 hours on a 600 MHz Pentium III
system.

Figures 1-3 present the Pareto fronts for Padé
approximations and for genetically evolved
approximations of the functions In(x), sqgrt(x), and
arcsinh(x), respectively, evaluated over the intervals
[1,100], [0,100], and [0,100], respectively. In each of
these three figures, the dashed line connects points
corresponding to Padé approximations, while the solid
line connects points corresponding to genetically evolved
approximations. All Padé approximations not accounted
for in computing the Pareto front represented by the
dashed line (i.e. all Padé approximation whose numerator
or denominator has a degree larger than 20) must involve

GENETIC PROGRAMMING

at least 20 multiplications/divisions, if only to compute
the various powers of x: x, xz, % Y 2!, For this reason,
a dashed horizontal line at cost=20 is drawn in each
figure, so that the horizontal line, combined with the
dashed lines representing the Pareto front for Padé
approximations with numerator and denominator of
degree at most 20, represents the best case Pareto front for
all Padé approximations of any degree.

B e e e e e e
157

COst 10

"m..__.____

50 100 150 200 250 2300 250
error

Figure 1: Pareto Fronts for Approximations of In(x).

L —
15
L
18
L
cost 1094
ES
ks
‘%""‘-\
5_ H&%“w-h
0 100 200 300 400
error

Figure 2: Pareto Fronts for Approximations of sqrt(x).

151

For each experiment, we are interested in the genetically
evolved approximations which lie to the interior of the
Pareto fronts for Padé approximations, and thus are
superior to Padé approximations given certain trade-offs
between error and cost. Tables 3-5 list all such
approximations for In(x), sqrt(x), and arcsinh(x),
respectively, along with their associated cost and error as
calculated by the Maple cost procedure and by a Riemann
integral, respectively. For In(x), we are able to obtain 5
approximations which lie to the interior of the Pareto
front for Padé approximations, for sqrt(x) we are also able
to obtain 5 such approximations, and for arcsinh(x) we are
able to obtain 7 approximations, all exhibiting various
trade-offs between error and cost. As can be seen from
Figure 3, arcsinh(x) proved to be a particularly difficult
function for Padé approximations to model over the given
interval.

7 o
151 \

COSt 104 %,

5-£kth “
Al

%

.

100 200 300 400
error

Figure 3: Pareto Fronts for Approximations of arcsinh(x).

Table 3: Evolved Approximations for In(x).

EXPRESSION COST ERROR
(.0682089-2*x-x/(-.1218591501*x-3.842080570))/(-.385143144*x-4.6585) 6 6.798897089
1.426990291%x/(4.132660+.2760372098*x) 3 7.436110884
(4.205966*x-6.601615)/(x+12.85128201)+.694754 2 8.743267301
4.70397-29.12598131/(x+2.82952) 1 26.93968611
3.91812 0 64.55919780

152

GENETIC PROGRAMMING

Table 4: Evolved Approximations for sqrt(x).

EXPRESSION COST ERROR
x/(x/(4.78576+x/(9.17981+x/(15.39292+.04005697704%x)))+1.48335) 5 2.591348148
(x+.06288503787)/((x-9.04049)/(.05822627334*x+8.30072)+4.32524)+.795465 3 3.123452980
x/(5.5426193+.06559635887*x)+1.48335 2 8.935605674
.07262106112%x+3.172308452 1 32.95322345
7.011926 0 195.5193204

Table 5: Evolved Approximations for arcsinh(x).

EXPRESSION COST ERROR

1.86636%(1.277853316*x/((.3868816181%(-2.90216-x)/(-4.88586-x)+1.02145)*(- 17 3.361399200

1.122792357-.3868816181%*x))-.03522759767*(-1.122792357-.3868816181*x)* (x+
4.86602)*(x-.269326)/(.0840785+x)+4.83551*x)/(9.684284+2.08151*x)

4.83551*x)/(9.684284+2.08151%*x)

1.86636*(.07017092454*x"2/((2*x+4.86602)*(3.111694208+4.83551*x))- 15
.03539134480*(.2502505059-.3868816181*x)*(x+4.86602)*(x-.269326)/(.0840785+x)+

3.533969225

4.83551*x)/(9.684284+2.08151%*x)

1.86636*(.0840785-.03522759767*(-1.122792357-.3868816181*x)*(x-.269326)+ 7

3.804858563

2.46147/(.4180284579-4.28068*1/(-2.299172064-.7261005920%*x))

6.596080331

4.466119361*x/(18.01575130+x)+1.32282

7.581253733

3.30409+.02369172723*x

25.83927515

4.600931145

S| =] BN W

68.51916981

S APPROXIMATING FUNCTIONS OF
MORE THAN ONE VARIABLE

For some functions of more than one variable, it is
possible to obtain a polynomial or rational polynomial
approximations using techniques designed to approximate
functions of a single variable; this can be done by nesting
and combining approximations. For example, to obtain a
rational polynomial approximation for the function
Sx,y)=In(x)*sin(y), one could compute a Padé
approximation for In(x) and a Padé approximation for
cos(x) and multiply the two together. To compute a
rational polynomial approximation for a more complex
function such as f(x,y)=cos(In(x)*sin(y)), one could again
compute two Padé approximations and multiply them
together, assign the result to an intermediate variable z,
and compute a Pad€ approximation for cos(z). However,
for any function of more than one variable that involves a
non-arithmetic, non-unary operator whose set of operands
contains at least two variables, there is no way to compute
a polynomial or rational polynomial approximation using
techniques designed to compute approximations for
functions of a single variable. For the function f{x)=x",
for example, there is no way to use Padé approximations
or Taylor series to obtain an approximation, since the
variables x and y are inextricably entwined by the
exponentiation operator. In contrast, the genetic

programming approach can be used on any function for
which data points can be generated. To test the ability of
genetic programming to evolve rational polynomial
approximations for the type of function just described, an
experiment was conducted to evolve approximations of
the function f(x)=x" over the area O<=x<=1, O<=y<=I.
Parameter settings were the same as described in the
section on Harmonic numbers, including the generation
limit of 51. Training data consisted of 100 (three
dimensional) points chosen at random from the given
rectangle. As in the previous section, a subset of 25
examples was used to evaluate the individuals of each
generation.

The approximations returned by the genetic programming
system were further evaluated through Maple. As in the
previous section, a Maple procedure was used to calculate
the minimum number of multiplications/divisions
necessary to compute the approximation, while the error
was evaluated using a double Riemann integral with
10000 points. The Pareto front for this set of
approximations was then recomputed using the new cost
and error values. The results of this evaluation are
presented in Table 6.

GENETIC PROGRAMMING

Table 6: Evolved Approximations for x”.

EXPRESSION COST ERROR
X/ 2+x-x*y"3) 4 .03643611691
X/ 24x-x*y"2) 3 .04650160477
x/(y+x-x*y) 2 .04745973920
x*y-y+.989868 1 .05509570980
x+.13336555 0 .1401316648

The most accurate approximation evolved as a result of
this experiment was x/(y*+x-xy’). Figures 4 and 5 present
graphs for the target surface f(x)=x" and for this
approximation, respectively. Visually, the evolved
surface is quite similar to the target function.

*-":::"'-P"
S
S T
e g

SER AL ALAT ""

Figure 5: X/ +x-xy°).

6 REFINING APPROXIMATIONS

It is possible to refine an approximation a(x) by evolving
an approximation (a'(x)) to its error function, then taking
the refined approximation as a(x)+d'(x). To test the
practicality of this idea, we performed refinement of
several evolved approximations to the function sin(x) over
the interval [0,m/2]. Available space prohibits us from

153

presenting the full results of this experiment. We note,
however, that we are able to obtain 4 approximations in
this manner which improve upon the Pareto front for our
original experiment (prior to refinement), which contains
a total of 7 approximations. The experiment was
conducted using the same settings as in sections 4 and 5,
but with an error multiplier of 1000. Refinement in this
manner could be applied iteratively, to produce
successively more accurate approximations. We have not
investigated this possibility in any detail, but it is clear
from our preliminary findings that the technique of
refining approximations in this manner is indeed capable
of producing significantly more accurate approximations.

In addition to refining evolved approximations using
genetic programming, it is also possible to refine
approximations generated through some other technique
(such as Padé approximations) through genetic
programming, or to refine approximations evolved via
genetic programming through a technique from numerical
analysis. Were the latter approach to prove effective, it
could be incorporated on-the-fly in the evalution of
individual approximations; one can imagine a rather
different approach to the problem in which all evolving
approximations are refined to a certain degree of accuracy
by adding terms based on Padé approximations or Taylor
series, and fitness is taken simply as the cost of the
resulting expression. This provides for an interesting
possible extension of the work reported in this paper.

7 FUTURE WORK

The work presented in this paper suggests a number of
possible extensions. First, by adding if-then functions
and appropriate relational operators such as less-than and
greater-than to the function set, one could evolve
piecewise rather than unconditional approximations to
functions. Second, as suggested in the previous section,
several extensions to this work based on the refinement of
approximations could be attempted. Third, little attempt
was made in this work to optimize parameters for the
problem of finding rational polynomial approximations in
general, and no parameter optimizations were made for
specific functions being approximated, so that alteration
of parameter settings represents a significant potential for
improvement on the results presented in this paper. These
results could also presumably be improved by using
additional computational power and memory, and by
employing a genetic programming system which allows
for automatically defined functions (Koza 1994).

Perhaps the ideal application of this technique would be
to perform the equivalent of conducting the Harmonic
number experiment prior to 1734, the year that Leonhard
Euler established the limiting relation

lim n—oe H,-In(n) =7y

which defines Euler's constant (Eulero 1734). Such a
result would represent "discovery" of an approximation
formula in the truest sense, and would be a striking and
exciting application of genetic programming.

154

8 CONCLUSIONS

This paper has shown that genetic programming is
capable of rediscovering approximation formulae for
Harmonic numbers, and of evolving rational polynomial
approximations to functions which, under some
reasonable utility functions, are superior to Padé
approximations. For common mathematical functions of
a single variable approximated over a relatively large
interval, it has been shown that genetic programming can
provide a set of rational polynomial approximations
whose Pareto front lies in part to the interior of the Pareto
front for Padé approximations to the same function.
Though it has not been demonstrated explicitly in this
paper, one would expect that genetic programming would
also be able to expand upon the Pareto front for
approximations to functions of more than one variable
obtained by combining and nesting Padé approximations.
Furthermore, for at least one function of more than one
variable, genetic programming has been shown to provide
a way to evolve rational polynomial approximations
where the Padé approximation technique cannot be
applied. Finally, we have presented results involving
evolutionary refinement of evolved approximations.
Based upon these results, the authors regard the genetic
programming approach described in this paper as a
powerful, flexible, and effective technique for the
automated discovery of approximations to functions.

Acknowledgments

The authors wish to thank Prof. Micha Hofri of Worcester
Polytechnic Institute for valuable advice and feedback
received during the course of this project.

References

D. Andre and J. R. Koza (1996). Parallel genetic
programming: A scalable implementation using the
transputer network architecture. In P. J. Angeline and K.

E. Kinnear, Jr. (eds.), Advances in Genetic Programming
2, 317-338. Cambridge, MA: MIT Press.

G. A Baker (1975). Essentials of Padé Approximants.
New York: Academic Press.

C. M. Bender and S. A. Orszag (1978). Advanced
Mathematical Methods for Scientists and Engineers. New
York: McGraw-Hill.

T. Blickle and L. Thiele (1995). A comparison of
selection schemes used in genetic algorithms. TIK-Report
11, TIK Institut fur Technische Informatik und
Kommunikationsnetze, Computer Engineering and
Networks Laboratory, ETH, Swiss Federal Institute of
Technology.

R. L. Burden and J. D. Faires (1997). Numerical Analysis.
Pacific Grove, CA: Brooks/Cole Publishing Company.

K. Chellapilla (1997). Evolving computer programs
without subtree crossover. [EEE Transactions on
Evolutionary Computation 1(3):209-216.

GENETIC PROGRAMMING

L. Eulero (1734). De progressionibus harmonicus
observationes. In Comentarii academice scientarum
imperialis Petropolitance 7(1734):150-161.

D. E. Goldberg (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading, MA:
Addison-Wesley.

G. H. Gonnet (1984). Handbook of Algorithms and Data
Structures. London: Addison-Wesley.

M. A. Keane, J. R. Koza, and J. P. Rice (1993). Finding
an impulse response function using genetic programming.
In Proceedings of the 1993 American Control
Conference, 3:2345-2350.

J. R. Koza (1990). Genetic programming: A paradigm for
genetically breeding populations of computer programs to
solve problems. Stanford University Computer Science
Department technical report STAN-CS-90-1314.

J. R. Koza (1992). Genetic Programming: On the

Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

J. R. Koza (1994). Genetic Programming II: Automatic
Discovery of Reusable Programs. Cambridge, MA: MIT
Press.

S. Luke and L. Spector (1997). A comparison of
crossover and mutation in genetic programming. In J. R.
Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H.
Iba, and R. L. Riolo (eds.), Genetic Programming 1997:
Proceedings of the Second Annual Conference, 240-248.
San Mateo, CA: Morgan Kaufmann.

R. E. Moustafa, K. A. De Jong, and E. J. Wegman (1999).
Using genetic algorithms for adaptive function
approximation and mesh generation. In W. Banzhaf, J.
Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M.
Jakiela, and R. E. Smith (eds.), Proceedings of the
Genetic and Evolutionary Computation Conference,
1:798. San Mateo, CA: Morgan Kaufmann.

P. Nordin (1997). Evolutionary Program Induction of
Binary Machine Code and its Applications. PhD thesis,
der Universitat Dortmund am Fachereich Informatik.

C. Ryan, J. J. Collins, and M. O'Neill (1998).
Grammatical evolution: Evolving programs for an
arbitrary language. In W. Banzhaf, R. Poli, M.
Schoenauer, and T. C. Fogarty (eds.), Proceedings of the
First European Workshop on Genetic Programming,
1391:83-95. New York: Springer-Verlag.

GENETIC PROGRAMMING

155

Faster Genetic Programming based on Local Gradient Search of
Numeric Leaf Values

Alexander Topchy

Computer Science Dept.
Michigan State University
East Lansing, M1 48824
topchyal@cse.msu.edu

Abstract

We examine the effectiveness of gradient search
optimization of numeric leaf values for Genetic
Programming. Genetic search for tree-like
programs at the population level is
complemented by the optimization of terminal
values at the individual level. Local adaptation of
individuals is made easier by algorithmic
differentiation. We show how conventional
random constants are tuned by gradient descent
with minimal overhead. Several experiments
with symbolic regression problems are
performed to demonstrate the approach’s
effectiveness. Effects of local learning are clearly
manifest in both improved approximation
accuracy and selection changes when periods of
local and global search are interleaved. Special
attention is paid to the low overhead of the local
gradient descent. Finally, the inductive bias of
local learning is quantified.

1 INTRODUCTION

The quest for more efficient Genetic Programming (GP)
is an important research problem. This is due to the fact
that a high computational complexity of GP is among its
distinctive features (Poli & Page, 2000). Especially now,
when variants of GP are being used on very ambitious
projects (Thompson, 1998; Koza et al., 1997), the speed
and efficiency of evolution are very crucial for such
problems.

Numerous modifications of the basic GP paradigm (Koza,
1992) are currently known, e.g. see (Langdon, 1998) for a
review. Among them, several researchers have considered
GP augmentation by hill climbing, simulated annealing
and other stochastic techniques. In (O'Reilly & Oppacher,
1996) crossover and mutation are used as move operators
of hill climbing, while Esparcia-Alcazar & Sharman
(1997) considered optimization of extra parameters (node
gains) using simulated annealing. Terminal search was
employed in (Watson & Parmee, 1996), but due to the

W. F. Punch

Computer Science Dept.
Michigan State University
East Lansing, M1 48824
punch@cse.msu.edu

associated computational expense it was limited to 2-4%
of individuals. The presence of stochasticity in local
learning makes it relatively slow, even though some
hybrid algorithms yield overall improvement. For
example, Iba and Nikolaev (2000) and Rodriguez-
Vazquez (2000) considered least squares coefficients
fitting limited to linear models. Apparently, the full
potential of local search optimization is yet to be realized.

The focus of this paper is on a local adaptation of
individual programs during the GP process. We rely on
gradient descent for improved generation of GP
individuals. This adaptation can be performed repeatedly
during the lifetime of an individual. The results of local
learning may or may not be coded back into the genotype
(reverse transcription) based on the modified behavior,
which is reported in the literature as Lamarckian and
Baldwinian learning, respectively (Hinton & Nowlan,
1987; Whitley et al., 1994). The resulting new fitness
values affect the selection process in both cases, which in
turn changes the global optimization performance of a
GP. Such an interaction between local learning, evolution
and associated phenomena without reverse transcription
are also generally referred to as the Baldwin effect.

We were motivated by a number of successful
applications of hybridization to neural networks (Belew et
al., 1991; Zhang & Miihlenbein, 1993; Nolfi et al., 1994).
Both neural networks and GP trees perform input-output
mapping with a number of adjustable parameters. In this
respect, terminal values (leaf coefficients) in a GP
perform a similar function as weights in neural network.
A form of gradient descent is usually used to adjust
weights in a neural net architecture. In contrast, various
terminal constants are typically random within GP trees
and are rarely adjusted by gradient methods. The reasons
for this are twofold: the unavailability of
gradients/derivatives in some GP problems and the
computational expense that is assumed to exist in
computing those gradients. However, the complexity of
computing derivatives is largely overestimated. In order
to differentiate programs explicitly, algorithmic differen-
tiation (Griewank, 2000) may be adopted. Algorithmic
(computational) differentiation is a technique that
accurately determines values of derivatives with

156

essentially the same time complexity as found in the
execution of the evaluation function itself. In fact,
gradients may often be computed as part of the function
evaluation. This is especially true for trees and at least
potentially true for arbitrary non-tree programs.
Generalization of the method for any program is possible,
given that the generated program computes numeric
values, even in presence of loops, branches and
intermediate variables. The main requirement is that the
function be piecewise differentiable. While not always
true, this is the case for a great majority of engineering
design applications. Moreover, it is also known, that
directional derivatives can be computed with many non-
smooth functions (Griewank, 2000). Knowledge of only
gradient direction, not its value, is often enough to
optimize the values of parameters.

In this paper we empirically compare conventional GP
with a GP coupled with terminal constant learning. The
effectiveness of the approach is demonstrated on several
symbolic regression problems. Arithmetic operations have
been chosen as the primitives set in our GP
implementation for simplicity sake. While such functions
make differentiation easy, again these techniques can be
adapted to more difficult problems.

Our results indicate that inexpensive differentiation along
with the Baldwin effect leads to a very fast form of GP.
Significant improvement in accuracy was also achieved
beyond that which could be achieved by either local
search or more generations of GP.

The Baldwin effect is known to change the inductive bias
of the algorithm (Turney, 1996). In the case of GP, where
functional complexity is highly variable, it is expected
that such a change of bias can be properly quantified.
Two manifestations of the learning bias were observed in
our experiments. Firstly, the selection process is affected
by local learning since the fitness of many individuals
dramatically improves during their lifetime. Secondly,
changes in the functional complexity of individuals were
observed in the experiments. Both the length (number of
nodes) of the best evolved programs and the number of
leaf coefficients were higher using local learning as
opposed to regular GP.

2 LAMARCKIAN VS BALDWIN
STRATEGY IN GP

Evolution rarely proceeds without phenotypic changes.
As we are interested in digital evolution, two dominating
strategies have been proposed which allow environmental
fitness to affect genetic features. Lamarckian evolution,
an alternative proposition to Darwinian approaches of the
time, claimed that traits acquired from individual
experience could be directly encoded into the genotype
and inherited by offspring. In contrast, Baldwin claimed
that Lamarckian effects could be observed where no
direct transfer of phenotypic characteristic to the genotype
occurred, in keeping with Darwinism. Rather, Baldwin
claimed that “innate” behaviors could be

GENETIC PROGRAMMING

Figure 1: Sample tree with a set of random
constants. In hybrid GP all these leaf coefficients
are subjected to training

selected for (in a Darwinian sense) which the individual
originally had to learn. In Lamarckian evolution learning
affects fitness distribution as well as the underlying
genotypic values, while the Baldwin effect is mediated
via the fitness results only. In our case, the question is
whether locally learned constants are copied back into the
genotype (Lamarckian) or whether the constants are
unmodified while the individual’s fitness value reflects
the fitness resulting from learning (Baldwin).

Real algorithmic implementations of evolution coupled
with local learning are much richer than two original
strategies. The researcher, usually guided by the total
computational expense, may arbitrarily decide both the
amount of and scheduling of learning or local adaptation
of solutions. Moreover, since local learning comes with a
price, it must be wisely traded off with genetic search
costs. Several questions must be answered:

e What aspect of the solution should be learned beyond
genetic search, as only a subset of solution
parameters may be chosen for adaptation?

e Should learning be performed at every generation or
should it be used as a form of fine-tuning when
genetic search is converged?

e How many individuals and which of those
individuals should have local learning applied to
them?

e How many iterations of local learning should be done
(really, how much computational cost are we willing
to incur)?

Accordingly, there are many ways to introduce local
learning into GP. Evolution in GP is both parametric and
structural in nature. Two important features are specific to
GP:

GENETIC PROGRAMMING

1. The fitness of the functional structure depends
critically on the values of local parameters. Even very
fit structures may perform poorly due to
inappropriate numeric coefficients.

2. The fitness of the individual is highly context
sensitive. Slight changes in structure dramatically
influence fitness and may require completely new
parameters.

That is why we focus on learning numeric coefficients, so
called Ephemeral Random Constants or ERC (Koza,
1992), which are traditionally randomly generated as
shown in Figure 1. As explained below, the local learning
algorithm -- gradient descent on the error surface in the
space of the individual’s coefficients, turns out to be a
very inexpensive approach, so much so that every
individual can do local learning in every generation.

Formally we follow the Lamarckian principle of evolution
since we allow the tuned performance of individual to
directly affect the genome by modifying numeric
constants. At the same time, the choice between
Lamarckian and Baldwin strategies in our implementation
is not founded on the issue of computational complexity.
In both cases the amount of the extra work is
approximately the same. The main issue arises when
considering the fitness values of the offspring with
inherited coefficients vs. offspring with unadjusted
terminals. Our experiments indicate that there is little
difference between the two fitnesses when crossover is
the main operator. Two factors contribute to this:

1. Crossover wusually generates individuals with
significantly worse fitness than their parents. The
coefficients found earlier to be good for the parents
are not appropriate for the offspring structures. The
subsequent local learning changes fitness
dramatically by updating the ERCs to more
appropriate values.

2. Newly generated offspring are equally well adjusted
starting from any values: earlier trained, not trained
or even random.

Hence, inheritance of the coefficients does not much help
the performance of the individuals created by crossover.
However, if an individual is transferred to a new
generation as a part of the elitist pool, i.e. unchanged by
crossover or mutation, then its learned coefficients are
also transferred. With respect to this structure, the use of
the Baldwin strategy would be wasteful, since it requires
relearning the same parameters. Thus, even though our
implementation formally follows the Lamarckian strategy,
we effectively observe the very same phenomena peculiar
to the Baldwin effect.

3 HYBRID GP

The organization of the hybrid GP (HGP) is basically the
same as that of the standard GP. The only extra activity
done by the algorithm is to update the values of numeric
coefficients. That is, all individuals in the population are

157

trained using a simple gradient algorithm in every
generation of the standard GP. Below we discuss the
exact formulation of the corresponding optimization
problem.

3.1 PROBLEM STATEMENT

The hybrid GP is intended to solve problems of a numeric
nature, which may include regression, recognition, system
identification or control. We will assume throughout that
there are no non-differentiable nodes, such as Boolean
functions. In general, given a set of N input-output pairs
(dx); it is required to find a mapping f(x,c) minimizing
certain performance criteria, e.g. mean squared error
(MSE):

N
MSE =3 (d, - £(x,.0)) M)
i=1

Here, f'is scalar function (generalization to multi-trees is
trivial), x is vector of input values, ¢ is vector of
coefficients and the sum is over the training samples. Of
course, in GP we are interested in discovering the
mapping f(x,c) in the form of a program tree. That is, we
seek not only coefficients ¢, but also the very structure of
the mapping f, which is not known in advance. In our
approach, finding the coefficients is done by gradient
descent during the same time functional structures are
evolved. Descriptions of the standard GP approach can be
found elsewhere (e.g. Langdon, 1998), instead, we will
focus below on details of the local learning algorithm.

3.2 LEARNING LEAF COEFFICIENTS

Minimization of MSE is done by a few iterations of a
simple gradient descent. At each generation all numeric
coefficients are updated several times using the rule:

o AMSE (€) o
dc,

where o is the learning rate, and k& goes over all the
coefficients at our disposal. Three important points must
be discussed: how to find the derivatives, what the value
of o should be, and how many iterations (steps) of
descent should be used.

Ck—)Ck—

3.2.1
Using both eq. 1 and 2 we obtain:

Differentiation

IMSE() _ 2., U (x;,¢)
P D S A vl ©

Thus, an immediate goal is to differentiate any current
program tree with respect to any of its leaves. The chain
rule significantly simplifies computing gf/cc. Indeed, if
n;() denotes node functions, then:

158

af(nl(nz(nS(...),...)...)):ai%%“ on,(c,,...)

ac, on, dn, on, dc,

Therefore differentiation of the tree simply reduces to the
product of the node derivatives on the path which starts at
the given leaf and ends at the root. It is clear that each
term in the product is a derivative of a node output with
respect to its arguments (children). If paths from the
different leaves share some common part, then
corresponding sub-chains in the derivatives are also
shared. Computation of such a product in practice
depends on the data structure used for the program tree. In
simple cases, differentiation uses single recursive
postorder traversal together with the actual function
evaluation. Derivatives of the program tree with respect to
all its leaves can be obtained simultaneously. As soon as
an entire sum in eq. 3 becomes known, i.e. derivatives in
all training points obtained, one may need an extra sweep
through the tree to update the coefficients. In total, the
incurred overhead depends on the complexity of node
derivatives and the number of leaves. For instance, in our
implementation using only an arithmetic functional set,
the cost of differentiation was equal to the cost of function
evaluation, making the overall cost twice the standard GP
cost for the same problem.

3.2.2

In a simple gradient descent algorithm, the proper choice
of learning rate is very important. Too large a learning
rate may increase error, while too small a rate may require
many training iterations. It is also known that the rule in
eq. 3 works better in the areas far from the vicinity of
local minima (Reklaitis, 1983). Therefore we decided to
make the rate as large as possible without sacrificing
quality of learning. After a few trials on the test problem
of symbolic regression we fixed the learning rate to the
value 0=0.5. The same learning rate was used for all other
test problems. If the algorithm resulted in an increase in
the error of an individual, the training was stopped and no
update to the individual's fitness was recorded. However,
this problem did not have any impact on overall quality of
learning since it happened rarely, approximately 1 out of
10 successful individuals. Moreover, those individuals
that had this problem showed an error rate that was
typically not reduced by any subsequent application of
gradient descent.

Learning rate and number of steps

This simple local learning rule dramatically improved the
fitness of individuals. Figure 2 shows the decrease in
MSE for typical individuals. It is important to note that
the most significant improvements happened after only
the first few iterations of local learning. Note that some
individuals were improved by as much as 60% or more.
We decided that 3 steps of gradient descent was a good
trade off between fitness gain and effort overhead. Again,
the number of iterations was never altered afterwards and
is used in all our experiments.

GENETIC PROGRAMMING

MSE

0.5 " g%

iterations of gradient descent

Figure 2: Local learning strongly affects fitness of
individuals. Typical learning progress is illustrated
using individuals from test problem f;.

4 EXPERIMENTAL DESIGN

The main goal of the empirical study is to compare the
performance of the GP with and without learning. Even
though an overall speed-up is very valuable, we are also
interested in other effects resulting from local learning.
These effects have to be properly quantified to shed light
on the internal mechanisms of the interaction between
learning and evolution. Three major issues are studied:

e Improvement in search speed
e Changes in fitness distribution and selection

e Changes in the functional structure of the programs

4.1 IMPLEMENTATION DETAILS

The driver GP program included the following major
steps:

1. [Initialization of the population using the “grow”
method. Starting from a set of random roots, more
nodes and terminals are aggregated with equal
probability until a specified number of nodes are
generated. The total number of nodes in the initial
population was chosen to be three times greater than
the population size, that is three functional nodes per
individual on average.

2. Fitness evaluation and training (in HGP) of each
individual. Mean squared error over the given
training set, as defined by eq. 1, serves as an inverse
fitness function since we seek to minimize error. This
stage includes parametric training in HGP given that
the individual has leaf coefficients.

3. Termination criteria check. The number of function
evaluations was the measure of computational effort.
For instance, every individual is evaluated only once
in every GP generation, but three times in every HGP
generation if its parameters are trained for three steps.

GENETIC PROGRAMMING

4. Tournament selection (tournament size = 2) of
parents. Pairs are selected at random with
replacement and their number is equal to the
population size. The better of the two individuals
becomes a parent at the next step.

5. Crossover and reproduction. Standard tree crossover
is used. Each pair of parents produces two offspring.
Mutation with small probability p,,=0.01 is applied to
each node. In addition, elitism was always used and
the best 10% of the population survive unchanged.

6. Pruning the trees with the size exceeding predefined
threshold value.

7. Continue to step 2.

4.2 TEST PROBLEMS

Five surface fitting problems were chosen as benchmarks.

£1(x, p)=xp +sin((x = 1)(y +1))

Ly =xt=x*+y*/2-y

f53(x,y) =6sin(x)cos(y)
Si(x, 1) =82 +x"+y7)"

fs(x,y)=x3/5+y3/2—y—x

For each problem 20 random training points (fitness
cases) were generated in the range [-3...3] along each
axis. Figure 3 shows the desired surfaces to be evolved.

5 EXPERIMENTAL RESULTS

To compare the performance we made experiments with
both hybrid and regular GP with the same effort of 30,000
function evaluations in each run. All experiments were
done with a population size of 100 and the arithmetic
operators {+,-,* %-protected} as the function set with no
ADFs. Initial leaf coefficients were randomly generated in
the range [-1...1]. Also, the pruning threshold was set to
24 nodes. If the number of nodes in an individual grew
beyond this threshold, a sub-tree beginning at some
randomly chosen node was cut from the individual. Each
experiment was run 10 times and the MSE value was
monitored.

Our main results are shown in Figure 3 and also
summarized in Table 1. The success of the hybrid GP is
quite remarkable. For all the test problems, the average
error of the best evolved programs was significantly
smaller (1.5 to 25 times) when learning was employed.
The first 20 — 30 generations usually brought most of
these improvements. The gap in error levels is wide
enough to require the regular GP to use hundreds more
generations to achieve similar results. Certain

159

improvements were also observed for the average
population fitness, but with lesser magnitude. The
similarity of each population’s average fitness indicates a
high diversity and that not all offspring reach small error
values after local learning.

Another set of experiments included extra fine-tuning
iterations performed only after the regular GP terminates.
Again, we run gradient optimization on the population
from the last GP generation. Each individual was tuned by
applying 100 gradient descent iterations. The results in
Table 1 show that this approach is not effective and did
not achieve the quality of result found in the HGP. This is
a strong argument for Baldwin effect, namely that another
factor affecting search speed-up is a change in fitness
distribution that directly affects selection outcome.
Learning introduces a bias that favors individuals that are
more able to adapt to local learning modifications. If we
would suppose that the selection bias does not occur, then
the hybrid GP would be only a trivial combination of
genetic search and fine tuning. However, as we see from
the results this is not the case.

We attempted to measure some properties of HGP that
would demonstrate this synergy between local learning
and evolution.

Table 1. Performance Comparison of Hybrid and
Regular GP. All data collected after 30000 f.e. and
averaged over 10 experiments.

Best MSE Ave. MSE Best MSE
Test
bl
POYIM 4GP GP HGP GP GP + fine tuning

fi 0.009 0.26 0.47 0.80 0.233
1 0.075 0.761 1.03 2.18 0.31
f3 2.32 6.22 5.98 6.59 6.21
4 0.64 0.76 4.06 4.41 0.76
fs 0.097 0.36 0.27 0.78 0.30

First of all, a Baldwin effect in selection would mean that
the results of some tournament selections are reversed
after local learning. Indeed, local learning adaptable
individuals win their tournaments due to improved fitness
resulting from gradient descent. These individuals would
lose the same tournament in regular GP.

Figure 4 shows both the typical and average percentage of
reversed tournaments in the problem f;. A summary of
results for all the test problems is given Table 2.

160 GENETIC PROGRAMMING

o
@
a

fiGxy)=xy+sin((x=D(y +1))

03

 Hybrid GP
\ ----- Regular GP

||ww\\

5000 10000 15000

MSE

S o
20000 26000 30000

e e e e e

function evaluations

K
-
!

T

’
i

08 FR

06

MSE

T

04

/

02

/[

o
O [rererr

5000 10000 15000 20000 26000 30000

function evaluations

~

—— HybridGP_|
----- Regular GP

MSE
&

Lt

T ——

4]

5000 10000 15000 20000 26000 30000

function evaluations

286

24

22

[Hybrid 6P
- Regular GP

AN
ARIAE
patRT
T L] e
s e S g
LRI paeiusenies
LISl ettty
%.0.*»’»,“‘.‘:&\&
32

s ey

5000 10000 15000 20000 26000 30000

function evaluations

MSE

5000 10000 15000 20000 26000 30000

function evaluations

Figure 3: Surface fitting test problems and respective learning curves

tournaments reversed, %

30 |

20

GENETIC PROGRAMMING

25 |

Typical run

Ave. over 10 runs

L

0 10 20 30 40 50 60 70 80 90

100

generations

Figure 4: Comparison of Selection Process in
HGP and GP. Local learning changes outcome of
some tournaments used to select a mating pool.

It was found that the average percentage of selection
changes remains the same during the course of search for
all test problems. Such a behavior would be expected if
selection pressure pushes offspring that are very
adaptable, even when older elite members are almost
converged. An empirical measure of this degree of
adaptability is provided by the average gain in fitness
achieved by newly generated offspring. The values are
given in Table 2. We do not include elite members in this
statistic to emphasize magnitude of learning from scratch.
The average observed drop of MSE is between 12% and
19% on all the test problems.

161
20
T -]
Q15 ®
s @)
7)) -] ® 9
2
S P o Hybrid GP
o1 v Regular GP
E
o |
o |
(3]
S|
G5
® vvvvevyvevvvvey w v W
t AR ian i ess) vy
| cossssaan
vy
0HH[HHHHHHHHHHIHHHHHHHH
0 10 20 30 40 50 60 70 80 90 100
generations
Figure 5: Typical dynamic of number of

terminals (numeric coefficients) used by the best
program as a function of GP generations (for the
test function f1).

What exactly makes one program more adaptable than the
other? Clearly, it is the functional structure of the
program. For example, a program with no numeric leaves
cannot learn at all using the gradient local learning
method described above. Furthermore, a tree with no
terminal arguments (inputs) containing only terminal
constants will always produce the same output and will
not benefit from local learning. Instead we have tried to
understand what characteristics of adaptable programs are
unique.

Table 2: Effects of local learning

Test problems

Difference in HGP
selection vs. GP in each
generation on average, %

Ave. MSE gain for
newly generated
offspring, %

Complexity of the best programs,
#coefficients / #nodes after the same effort (30000 f.e.)

HGP GP
i 7.7 16.5 16.0/22.4 122/21.2
/o 7.1 12.7 16.6 /23.0 13.7/21.8
/3 8.4 15.1 17.5/23.5 11.8/20.4
Ja 7.9 18.7 17.3/22.9 12.4/21.6
fs 7.4 15.0 17.0/23.1 12.9/21.8

162

We have focused on the length (number of
nodes) and on the number of coefficients in the
best evolved programs (remember, that length
had an upper limit too). As Table 2 illustrates
both values are noticeably greater for the
programs evolved by HGP. This is one
illustration of the inductive bias of the hybrid
algorithm. More adaptive programs use more
coefficients and consequently have lengthier
representations. Also, the number of the terminal
inputs (x and y) in HGP results is slightly
smaller. Figure 5 shows typical changes in the
number of coefficients for a “best” individual on
a generational scale for both GP and HGP.

6 CONCLUSIONS

This paper has shown a number of important
points. First, that local learning in the form of
gradient descent can be efficiently included into
GP search. Second, that this learning provides a
substantial improvement in both final fitness and
speed in reaching this fitness. Finally, the use of
local learning creates a bias in the structure of
the solutions, namely it prefers structures that are
more readily adaptable by local learning. We feel
that this approach could have significant impact
on practical, engineering problems that are
addressed by GP.

References

RK. Belew, J. Mclnerney, and N.N.
Schraudolph (1991). Evolving networks: Using
the Genetic Algorithm with connectionist
learning. In Proceedings of the Second Artificial
Life Conference, 511-547, Addison-Wesley.

Anna Esparcia-Alcazar and Ken Sharman
(1997). Learning schemes for genetic
programming, In Proceedings Late Breaking
Papers at the 1997 Genetic Programming
Conference, 57-65, Stanford University,
CAAndreas Griewank (2000). Evaluating
derivatives: Principles and techniques of
algorithmic differentiation, SIAM, Philadelphia.

G. E. Hinton and S. J Nowlan (1987). How
learning can guide evolution, Complex Systems,
1, 495-502.

H. Iba and N. Nikolaev (2000). Genetic
Programming Polynomial Models of Financial
Data Series," in Proceedings of the Conference
on Evolutionary Computation, CEC-2000, IEEE
Press, pp. 1459-1466.

John R. Koza, Forrest H Bennett III, David
Andre, Martin A. Keane, and Frank Dunlap
(1997). Automated synthesis of analog electrical

GENETIC PROGRAMMING

circuits by means of genetic programming, /[EEE
Transactions on Evolutionary Computation,
1(2), 109-128, 1997.

John R. Koza (1992). Genetic Programming: On
the Programming of Computers by Means of
Natural Selection, MIT Press, Cambridge, MA.

William B. Langdon (1998). Data Structures and
Genetic Programming: Genetic Programming +
Data Structures = Automatic Programming,
Kluwer, Boston.

S. Nolfi, J. Elman, and D. Parisi (1994).
Learning and evolution in neural networks,
Adaptive Behavior, 3(1), 5-28.

Riccardo Poli and Jonathan Page (2000). Solving
high-order boolean parity problems with smooth
uniform crossover, sub-machine code GP and

demes, Genetic Programming And Evolvable
Machines, 1(1/2), 37-56.

Una-May O'Reilly and Franz Oppacher (1996).
A comparative analysis of GP, In Peter J.
Angeline and K. E. Kinnear, Jr., editors,
Advances in Genetic Programming 2, ch. 2, 23-
44. MIT Press, Cambridge, MA.

G.V. Reklaitis, A. Ravindran and K.M. Ragsdell
(1983). Engineering Optimization: Methods and
Applications, Wiley, New York.

Rodriguez-Vazquez, K. (2000). Identification of
Non-Linear MIMO Systems Using Evolutionary
Computation, Late Breaking Papers of Genetic
and Evolutionary Computation Conf., 411-417.

Adrian Thompson (1998). Hardware Evolution:
Automatic Design of Electronic Circuits in
Reconfigurable Hardware by Artificial
Evolution, Springer-Verlag: London.

P. Turney (1996). How to shift bias: Lessons
from the Baldwin effect, FEvolutionary
Computation, 4(3), 271-295.

B. Zhang and H. Miihlenbein (1993). Evolving
Optimal Neural Networks Using Genetic
Algorithms with Occam's Razor, Complex
Systems, 7(3), 199 -220.

Andrew Watson and Ian Parmee (1996). Systems
Identification using Genetic Programming, In
Proceedings of Int. Conf on Adaptive Computing
in Engineering Design and Manufacture, 248 -
255, ACEDC'96, University of Plymouth, UK.

D. Whitley, S. Gordon and K. Mathias (1994)
Larmarckian Evolution, The Baldwin Effect and
Function Optimization. In Proceedings Parallel
Problem Solving from Nature, PPSN III, 6-15.

GENETIC PROGRAMMING 163

164 GENETIC PROGRAMMING

GENETIC PROGRAMMING 165

166 GENETIC PROGRAMMING

GENETIC PROGRAMMING 167

168 GENETIC PROGRAMMING

GENETIC PROGRAMMING 169

170 GENETIC PROGRAMMING

