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Abstract

With a schema-theoretic approach and experi-
ments we study the search biases produced by
GP/GA homologous crossovers when applied
to linear, variable-length representations. By
specialising the schema theory for homologous
crossovers we show that these operators are unbi-
ased with respect to string length. Then, we pro-
vide a fixed point for the schema evolution equa-
tions where the population presents a statistically
independent distribution of primitives. This is an
important step towards generalising Geiringer’s
theorem and the notion of linkage equilibrium.

1 INTRODUCTION

Search algorithms typically include three main steps which
are iterated in succession: choosing one or multiple points
of the search space the neighbourhood of which to explore
further, applying expansion operators to obtain a new set
of points, deciding what to do with the points previously
visited and with the newly generated ones. For example, in
the case of genetic algorithms and genetic programming,
selection corresponds to the first task, crossover and muta-
tion are the expansion operators, and the replacement strat-
egy corresponds to the third task. Note that many more
steps may be included if one looks at search algorithms at
a finer level of abstraction (Poli & Logan, 1996), but this
is not particularly important for the purposes of this dis-
cussion. What is important is that different algorithms will
use different strategies to realise the different steps. This
leads to the sampling of the search space according to dif-
ferent schedules. With the exception of random search, this
means that some areas of the search space will be explored
sooner, will be allocated more samples, or will be ignored
altogether. This is what we mean by search bias.

Clearly the bias of an algorithm is the result of the interac-
tion of the biases of all its components. In the case of fixed
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length genetic algorithms, a lot of attention has been de-
voted to the biases of all such components: selection, muta-
tion and crossover, and replacement. Some of the resulting
studies apply also to the case of variable-length-structure
evolution. For example, the focusing effects of selection
will be exactly the same, since selection is representation-
independent. However, very little is known about the biases
of the genetic operators used to evolve variable length rep-
resentations, such as those used in linear GP (Nordin, 1994;
O’Neill & Ryan, 2001) or in variable-length GAs.

Knowing the biases introduced by the operators is very
important, since it leads to a deeper understanding of the
search algorithm under investigation. This, in turn, allows
an informed choice of operators, parameter settings and
even initialisation strategies for particular problems. How
can one investigate these biases? One possibility is to use
carefully designed empirical studies. In the past these have
shed some light on the internal dynamics of GP (e.g. on
bloat (McPhee & Miller, 1995; Soule et al., 1996; Lang-
don et al., 1999)), but rarely has the evidence been general
and conclusive. This is because these studies can only con-
sider a limited number of benchmark problems, and so it
is impossible to know whether, and to which extent, the
observed behaviour is applicable to other problems. An al-
ternative is to perform theoretical studies. Often these may
lead to more general and precise conclusions, but they are
definitely much harder and slower to carry out. Also, some-
times the complexity of the mathematics involved in these
studies forces the researcher to make simplifying hypothe-
ses which may limit the explanatory power of the results.

A class of recent theoretical results which require very
few, if any, simplifications goes under the name of exact
schema theorems.' These provide probabilistic models (the
schema evolution equations) of the expected behaviour of
a GA or a GP system over one, or, under certain assump-
tions, multiple generations (Poli, 20015; Langdon & Poli,

"The word “exact” refers to the fact that, unlike earlier results,
these theorems provide an exact value, rather than a lower bound,
for the expected number of individuals in a schema in the next
generation.



2002). The main advantage of these exact models is that
they provide a natural way of coarse graining the huge
number of degrees of freedom present in a genetic algo-
rithm (Stephens & Waelbroeck, 1997). Exact schema theo-
rems have recently become available for fixed-length GAs
with one-point crossover and mutation (Stephens & Wael-
broeck, 1997; Stephens & Waelbroeck, 1999), and general
homologous crossover and mutation (Vose & Wright, 2001;
Stephens, 2001). Even more recent is the development
of exact schema theorems for variable-length GAs, linear
GP and tree-based GP. These cover a variety of crossover
and mutation operators including one-point crossover (Poli,
2000; Poli, 2001b), subtree-swapping crossovers (Poli,
2001a; Poli & McPhee, 2001b; McPhee & Poli, 2001),
different types of subtree mutation and headless chicken
crossover (Poli & McPhee, 2001a; McPhee et al., 2001),
and homologous crossovers (Poli & McPhee, 2001c¢).

These exact models can be used to understand an evolution-
ary system and study its behaviour in two different ways.
This can be done either through simulation (i.e., by numeri-
cally iterating the equations) or through mathematical anal-
ysis. Although exact GP schema equations have become
available only very recently, early studies indicate their use-
fulness, for example, in providing a deeper understanding
of emergent phenomena such as bloat (Poli & McPhee,
2001b; McPhee & Poli, 2001). Also, in general, as indi-
cated above the availability of exact models for different
operators allows a formal study of the biases of those op-
erators. Steps forward in this direction have recently been
made in (Poli & McPhee, 2001b; McPhee & Poli, 2001;
McPhee et al., 2001), where a class of Gamma program-
length distributions has been shown to represent a natural
attractor for variable-length linear systems under GP sub-
tree crossover and in (Poli et al., 2002) where we have ex-
tended the study to other biases of subtree crossover.

In this paper we study the biases of the whole class of ho-
mologous GP crossover operators for the case of linear GP
and variable-length GAs. These are a set of operators, in-
cluding GP one-point crossover (Poli & Langdon, 1997)
and GP uniform crossover (Poli & Langdon, 1998a), where
the offspring are created preserving the position of the ge-
netic material taken from the parents. These operators are
important because they are the natural generalisation of the
corresponding GA operators. So, the theory presented here
is a generalisation of corresponding GA theory.

The paper is organised as follows. We start by provid-
ing some background information on the exact GP schema
theory for homologous crossover and Geiringer’s theorem
in Sections 2 and 3. Then, we simplify the theory for
the case of linear, but variable-length, structures in Sec-
tion 4, and show that homologous crossover is totally unbi-
ased with respect to string length (Section 5). In Section 6
we provide a fixed point for the schema evolution equa-
tions which is a first step towards generalising Geiringer’s

theorem (Geiringer, 1944) and the notion of linkage equi-
librium, which, until now, were applicable only to fixed-
length representations. The fixed point and some experi-
mental evidence (reported in Section 7) indicate the pres-
ence of a bias which pushes the population towards a statis-
tically independent distributions of primitives, as discussed
in Section 8, where we also draw some conclusions.

2 SCHEMA THEORY BACKGROUND

Schemata are sets of points in a search space sharing some
syntactic feature. For example, for GAs operating on bi-
nary strings the syntactic representation of a schema is usu-
ally a string of symbols from the alphabet {0,1,%}, where
the character * is interpreted as a “don’t care” symbol. Typ-
ically schema theorems are descriptions of how the number
of members of the population belonging to a schema vary
over time. If a(H, t) denotes the probability that at time ¢ a
newly created individual samples (or matches) the schema
H, which we term the total transmission probability of H,
then an exact schema theorem for a generational system is
simply
Elm(H, t +1)] = Ma(H,1),

where M is the population size, m(H,t + 1) is the num-
ber of individuals sampling H at generation ¢ + 1 and
EJ-] is the expectation operator. Holland’s (Holland, 1975)
and other (e.g. (Poli & Langdon, 1998b)) worst-case-
scenario schema theories normally provide a lower bound
for «(H,t) or, equivalently, for E[m(H,t + 1)]. How-
ever, recently exact schema theorems (Stephens & Wael-
broeck, 1997; Stephens & Waelbroeck, 1999; Poli, 2000;
Poli, 20015; Poli, 2001a; Poli & McPhee, 2001b; McPhee
& Poli, 2001; Poli & McPhee, 2001a; McPhee et al., 2001;
Stephens, 2001; Poli & McPhee, 2001¢) which provide the
exact value for a(H, t) have become available for GAs and
GP with a variety of operators. In the remainder of this
section we will introduce the various elements which are
necessary to understand the exact schema equations for GP
homologous crossover, since these will be the starting point
for the new results in this paper.

Let us start from our definition of schema for GP. Syntac-
tically a GP schema is a tree composed of functions from
the set 7 U {=} and terminals from the set 7 U {=}, where
F and T are the function and terminal sets used in a GP
run. The primitive = is a “don’t care” symbol which stands
for a single terminal or function. A schema H represents
the set of all programs having the same shape as H and the
same non-= nodes as H. Particularly important for the GP
schema theory are schemata containing “don’t care” sym-
bols only, since they represent all the programs of a par-
ticular shape. Let G, G5, -+ - be an enumeration of such
shape-representing schemata.

In GP homologous crossovers the offspring are created
by exchanging genetic material (nodes and subtrees) taken



from the same position in the parents trees. To account for
the possible structural diversity of the two parents, the se-
lection of the nodes and the roots of the subtrees to swap
are constrained to belong to the common region. This is the
largest rooted region where the two parent trees have the
same topology.

In order to define more precisely how GP homologous
crossovers work, we start by providing a formal defini-
tion of common region. The common region between
two generic trees hy and ho is the set C'(hy,he) =
{(d,©)|C(d,i,h1,h2)}, where (d,i) is a pair of coordi-
nates in a Cartesian node reference system (Poli, 2001a;
Poli & McPhee, 2001c). The predicate C(d, %, hi, h2) is
true if (d,i) = (0,0) (i.e., if (d,i) is the root node). It
also true if A(d—1,i',h1) = A(d—1,i',h2) # 0 and
C(d—1,i', h1, he) is true, where A(d, ¢, h) returns the ar-
ity of the node at coordinates (d,) in h, i' = [i/amax],
Gmax 18 the maximum arity of the functions in the func-
tion set, and |-| is the integer-part function. The predicate
is false otherwise. The notion of common region can be
applied to schemata, too.

To complete our formal description of the class of GP ho-
mologous crossovers, we need to extend to GP the no-
tions of crossover masks and recombination distributions
used in genetics (Geiringer, 1944) and in the GA litera-
ture (Booker, 1992; Altenberg, 1995; Spears, 2000). Let
us first briefly recall the definition of these notions for a
GA operating on fixed-length binary strings. In this case a
crossover mask is simply a binary string. When crossover
is executed, the bits of the offspring corresponding to the
1’s in the mask will be taken from one parent, those corre-
sponding to 0’s from the other parent. If the GA operates
on strings of length N, then 2V different crossover masks
are possible. If, for each mask ¢, one defines a probability,
p;, that the mask is selected for crossover, then it is easy
to see how different crossover operators can simply be in-
terpreted as different ways of choosing the probability dis-
tribution p;. The distribution p; is called a recombination
distribution.

For the more general case of GP and variable-length GAs,
for any given common region ¢ we can define a set of GP
crossover masks, X ., which contains all different trees with
the same size and shape as ¢ which can be built with nodes
labelled 0 and 1 (Poli & McPhee, 2001c¢; Poli ez al., 2001).
Each crossover mask represents one of the ways in which
one could generate an offspring through crossover: nodes
of the offspring corresponding to internal 1’s in the mask
will be taken from the first parent, nodes corresponding
to internal 0’s from the second parent, subtrees of the first
parent whose root corresponds to leaves labelled with a 1
in the mask will be transferred to the same position in the
offspring, and, finally, subtrees of the second parent whose
root corresponds to leaves labelled with a 0 in the mask will
be transferred to the same position in the offspring. The GP

recombination distribution pj gives the probability that, for
a given common region ¢, crossover mask [ will be chosen
from the set X.. Each GP homologous crossover is char-
acterised by a different recombination distribution. Since
the size and shape of the common region can be inferred
from the mask [/, in the following we will often omit the
superscript ¢ from pj.

Finally, before we introduce the exact schema equation for
GP homologous crossover developed in (Poli & McPhee,
2001c¢) we need to define the notion of hyperschema. A GP
hyperschema is a rooted tree composed of internal nodes
from F U {=} and leaves from 7 U {=,#}. Again, = is
a “don’t care” symbols which stands for exactly one node,
while # stands for any valid subtree. In the theory we use
hyperschemata to represent the characteristics the parents
must have to produce instances of a particular schema of
interest.

The exact schema equations for GP with homologous
crossover are

a(H,t) = (1 —po)p(H, t) + poo.(H,t) (1)

where

ao(Ht) = > > > )
J k lEXC(GJv,Gk)
p(C(H, 1) NGy, t)p(L(H, 1) NG, 1),

Do 18 the crossover probability, p(H,t) is the selection
probability of the schema H and [ is the complement of the
GP crossover mask [ (i.e. it is a tree with the same structure
as [ but with the 0’s and 1’s swapped). I'(H, [) is defined to
be the empty set if / contains any node not in H. Otherwise
it is the hyperschema obtained by replacing certain nodes in
H with either = or # nodes: (1) if a node in H corresponds
to (i.e., has the same coordinates as) a non-leaf node in [
that is labelled with a O, then that node in H is replaced
with a =, (2) if a node in H corresponds to a leaf node in [
that is labelled with a 0, then it is replaced with a #, (3) all
other nodes in H are left unchanged.

As discussed in (Poli & McPhee, 2001c¢), it is possible
to show that, in the absence of mutation, Equations 1
and 2 generalise and refine not only approximate GA and
GP schema theorems (Holland, 1975; Poli & Langdon,
1997; Poli & Langdon, 1998b) but also more recent exact
schema theorems (Stephens & Waelbroeck, 1997; Stephens
& Waelbroeck, 1999; Poli, 2000; Stephens, 2001).

In the following we will use a slightly different form for
Equation 2 which exploits the symmetries in the process
of selection of the parent programs. This can be ob-
tained by dividing each set of crossover masks X;C(Gj7Gk)
. . , <

into two non-overlapping sets Xe(a;,60) and Xo(q;,a)
such that for each mask = € XIC(G]-,ka there is a mask
Y € XC(;,Gy) Such that y = 7, and vice versa. Then, by
reordering the terms, it is easy to prove that:



Theorem 1.

wy = Y5 %

) ’
j k lEXC(GJ-,G’k,)

(o1 + pp) 3)

p(C(H, 1) NGy, t)p(D(H, 1) N Gy, t)
3 GEIRINGER’S THEOREM

In this section we briefly introduce Geiringer’s theo-
rem (Geiringer, 1944), an important result with implica-
tions both for natural population genetics and evolutionary
algorithms (Booker, 1992; Spears, 2000). Geiringer’s the-
orem indicates that, in a population of fixed-length chro-
mosomes repeatedly undergoing crossover (in the absence
of mutation and selective pressure), the probability of find-
ing a generic string hihs - - - hy approaches a limit distri-
bution which is only dependent on the distribution of the
alleles Ay, hy, etc. in the initial generation. More precisely,
if ®(hihy - -+ hy,t) is the proportion of individuals of type
hihs - -+ hy at generation ¢ and ®(h;,t) is the proportion
of individuals carrying allele h; then

N
Jim ®(hahy - hy,t) = 1—[1<I>(hi,0). (4)
1=

This result is valid for all homologous crossover operators
which allow any two loci to be separated by recombina-
tion. Strictly speaking the result is valid only for infinite
populations.

If one interprets ®(hyhs --- hy,t) as a probability distri-
bution of the possible strings in the population, we can
interpret Equation 4 as saying that such a distribution is
converging towards independence. When, at a particular
generation ¢, the frequency of any string in a population
®(hihy - hy,t) equals Hfil ®(h;,t), the population is
said to be in linkage equilibrium or Robbins’ proportions.

It is trivial to generalise Geiringer’s theorem to obtain
the expected fixed-point proportion of a generic linear
fixed-length GA schema H for a population undergoing
crossover only:

. _ i-1p  N—i
tl_l)rglo‘:I)(H, t) - H (I)(* hz* 70)7 (5)
iEA(H)
where A(H) is the set of indices of the defining symbols
in H, h; is one such defining symbols and we used the

power notation z¥ to mean x repeated y times. (Note that
®(xLh;xN 1 t) coincides with ®(h;, t).)

4 EXACT SCHEMA THEORY FOR
LINEAR STRUCTURES

As indicated in Section 1 in this paper we will consider the
biases of the homologous crossovers in the case of variable-

size linear representations. We start by specialising Equa-
tion 3 to this case.

When only unary functions are used in tree-based
GP, schemata (and programs) can only take the form
(hl (hz(h3(hN,1hN)))) where N > 0, hz S .7:U{=}
for1 <i < N,and hy € T U {=}. Therefore, they can
be written unambiguously as strings of symbols of the form
hihohs....hy—1hpy. It should be noted that these strings of
symbols do not have to be necessarily interpreted as rep-
resenting programs. If one uses a special terminal set T
including only one terminal, say EOR (for End Of Repre-
sentation), which will be ignored when the representation
is interpreted, then strings of the form hjhohs....hx—1hn
can be interpreted as chromosomes of length NV — 1 (since
hn can only be EOR). So, if F = {0, 1}, where 0 and 1 are
“unary functions”,> our GP system will explore the space
of variable length binary strings. If instead F includes
the “unary functions” {ADD RO R1,MUL RO RI,...},
then our tree-based GP system explores the same search
space as a machine-code GP system with the same primi-
tive set (Nordin & Banzhaf, 1995). So, in general our spe-
cialisation of Equation 3 will be valid for variable-length
GAs and linear GP.

In the specialisation to the linear case we replace the “don’t
care” symbol “=" with the more standard symbol “*”. Also,
as we did previously, we represent repeated symbols in
a string using the power notation. Since in this case all
trees are linear, the space of program shapes can be enu-
merated by {G,,} where G,, is *™ for n > 0. Given this,
the common region between shapes G; and G}, is simply
the shorter of the two schemata, i.e. C(G;,Gy) = G, =
#J+k where the operator | returns the minimum of its two
arguments. Therefore, the set of crossover masks in the
common region, X¢(g;,G,) = X«itr, can be identified with
the set {0, 1}7**. Below we will use N(I) to denote the
length of mask [, and the notation [; to indicate the i-th
element of bitmask /. We will also use the operators

Lapofa ifb=1
1 * otherwise,
_ ayjas - - - ifb=1
aay---ob= { # otherwise,

where a and b are bits, ajas - - - is a bit string and # stands
for any sequence of at least one primitive. With this no-
tation, it is easy to show that, in a linear representation, if
N(l) > N thenI'(H, 1) is the empty set and I'(H, I)NG; =
PNl =P. I N(I) < N,T(H,I)is

(hyoly) - (hna—1®lnw—1) (e - by o lyw)
and

*We are not interested in the output of these functions, but
simply in their topological organisation within the individual.



T(H,)NG; =T(H,l)N+ = (6)

(hyely)--- (hN(l)—l o lN(l)_l)*j*N(lHl

(hl ° ll) v (hN(l)fl ° lN(l)fl)hN(l) - hy
ifj=Nandlyg =1,
0 otherwise.

Thus, p(I'(H,1) N G;,t) = 0 for all j # N for all the
masksz for which [y (;) = 1. So, if we choose X’C,(Gj’Gk) =
{0,1}7+k=1 x {1}, in Equation 3 only the terms for j = N
can be non-zero. Using this simplification and the previous
results, one can transform Equation 3 into:

Theorem2. If X' v . = {0, 1}74F=1 x {1}, then

Qo(hrochn, ) =D Y (pi+pp) (7)
k>0l€X*N¢k
p((hy®ly) - (hnjk—1 ®INk—1)ANyE - BN, T)
p((h1 oly) -+ (hnypr—1 ® Inyp—1)x" VL 1),

S LENGTH EVOLUTION

Equation 7 can be used to study, among other things, the
evolution of size in linear GP/GA systems. This is because
it can be specialised to schemata of the form *” obtaining:

>y (N p(s*, 1)

I<:>0l€X*NUc
Z (o +pp) -

= (N0 Y plek

k>0 leX’*NUC

a)m(*Nyt) - pl +pl

But ElEX’*Nik (pi+pr) =land ), p(x*. 1) =1, s0:

Theorem 3. Oéxo(*N, t) — p(*N7 t). (8)
This result indicates that in linear representations length
evolves under homologous crossovers as if selection only
was acting. So, homologous crossovers are totally unbiased
with respect to program length. The lack of length bias of
homologous crossovers is made particularly clear if one as-
sumes a flat fitness landscape in which p(H,t) = ®(H,t)
for all H. In these conditions all the dynamics in the system
must be caused by crossover or by sampling effects. In the
infinite population limit, the total transmission probability
a(H,t) can also be interpreted as the proportion of individ-
uals in the population in H at generationt+ 1, ®(H,t+1).
So, for an infinite population and a flat landscape Equa-
tion 8 becomes ®(xV, ¢t + 1) = ®(xV, t), whereby

Corollary4. For a flat landscape, an infinite population
andanyt > 0

@(*N,t) = <I>(>|<N,0).

This equation is important because it shows that when a ho-
mologous crossover alone is acting, any initial distribution
of lengths is a fixed point length distribution for the system.

6 EXTENSION OF GEIRINGER’S
THEOREM

A full extension of Geiringer’s theorem to linear, variable-
length structures and homologous GP crossover would re-
quire two steps: (a) proving that, in the absence of mutation
and of selective pressure and for an infinite population, a
distribution ®(hyhs - - - hy, t), where the alleles/primitives
can be considered independent stochastic variables, is a
fixed point, and (b) showing that the system indeed moves
towards that fixed point. In this paper we prove (a) mathe-
matically and provide experimental evidence for (b).

Theorem S. A fixed point distribution for the proportion of
a linear, variable-length schema hyhs - - - hy under homol-
ogous crossover for an infinite population on a flat fitness
landscape in the absence of mutation is

z 1h # 0)
H z# 0 ’
9)

®(hihs - hy,t) = @™ "thy,0)

i=1
where

®(x'thi#,0)

= Z (' Lh;x",0)

n>0

and

1#7 Z(I) itn 0

n>0

Proof. Since the fitness landscape is flat, p(H,t) =
®(H,t) for any schema. Also, because the population is
infinite, «(H,t) = ®(H,t+1). So, combining Equations 1
and 7 yields

(bt + 1) (10)
= ( pxo)é(h hN; + Dxo Z Z Pl + pl
k>0l€X*N¢k
x ®((hyoly)- - (hnyk—1 ® INyk—1)NiE - PN, )
X (I)((hl '[1)"'(hNJ,k—1 .[N¢k_1)*k7N¢k+l,t).

We prove that Equation 9 represents a fixed point for Equa-
tion 10 by substituting the former in the latter and reorder-
ing the terms, obtaining

®(hy...hn,t+1)

‘I)(*i_lhi#, 0)
H 2\ eas E)

=0 L "0 (+i%,0)

+ pL®(NT



X Z (p + pp)
ZGX;NUG
Nlk—1

(‘1>( (i

<l
T B hi,0)
I “seio

)#7 ) ( B (hl.ll)#70)>
((«'#,0))?

i=Nlk

Whatever the value of bit [; in the mask, either h; o [; = h;
and h; ®l; = %, or h;®l; = xand h; el; = h;. In
either case ®(x'~1(h; o I;)#,0)®(x""L(h; o [;)#,0) =
O (x"L1h;#,0)®(x'#,0). So, after reordering the terms,
we obtain:

®(hy...h,t+ 1)
N—-1

®(xLh;#,0)
= (l_p)m) ( N= 1hN7 H 17
ST B(x#,0)
N-1 :
- (" 'hi#,0)
+ pu®(N Thy,0 = Ti )
e O U =567 70)
x Y oe:R 0 > (m+m)
k>0 leX’NUc
- z 1
— N th7 H h # O) 0

(x'#,0)

i=1

It is important to note that, although Equation 9 provides a
family of fixed points, this does not prove rigorously that
any population will always converge to one of them. Prov-
ing this is complex and requires much more space than is
available for this conference. We will provide the proof
in a future more extended publication. Instead, in the fol-
lowing section we will describe experimental results which
strongly suggest that indeed populations move toward an
independent allele/primitive distribution.

7 EXPERIMENTAL RESULTS

In order to check the theoretical results in this paper we
set up a population of variable length strings consisting of
1,000,000 individuals. All individuals had the same termi-
nal allele, 0, while two types of non-terminal alleles were
used: alleles of type 0 and alleles of type 1. The majority
of alleles were of type O and represented a “background”
against which alleles of type 1 (the “contrast medium” we
used to study the dynamics of non-terminal alleles) could
be more easily traced. Initially, alleles of type 1 occupied
all the non-terminal loci of strings of a given length only
(which was varied between experiments). The terminal lo-
cus of those strings was occupied by an allele of type O.
All other terminal and non-terminal alleles in the popula-
tion were of type 0.

In our experiments we used two different initial length
distributions: a Gamma distribution with mean 10.5, and
a uniform distribution with lengths between 1 and 20.
Each population was run for 100 generations. The system
was a generational GP/GA system with either one-point
crossover or uniform crossover (applied with 100% proba-
bility) and a flat fitness landscape. One-point crossover is a
homologous crossover operator which, for variable length
strings, is characterised by the recombination distribution

pZ‘WZ{(l)/n

Uniform crossover has the recombination distribution
p =27"

ifl € {0™,
otherwise.

07—t 11072, ..., 1710},

Multiple independent runs were not required since the pop-
ulation size was sufficiently large to remove any signifi-
cant statistical variability and therefore to approximate the
infinite-population behaviour (for each program length we
had tens of thousands of individuals on average).

We start by checking what happens to the length distri-
bution over time. Figure 1 shows that the distribution of
program length is at a fixed point when the population is
initialised using either a uniform length distribution or a
discrete Gamma distribution. This corroborates our finding
that any length distribution is a fixed point (Corollary 4).
Note that the small variations in the plots are due to genetic
drift (i.e. a finite population effect).

Let us now consider the allele dynamics. Figure 2 shows
how the distribution of alleles of type 1 varies over a num-
ber of generations in a population initialised with the uni-
form length distribution. In Figure 2(a) only strings of
length 2 included alleles of type 1 (in locus 1). However,
under one-point crossover within a few generations (see
Figures 2(b) and (c)) the relative proportion of strings with
a 1 in locus 1 reached the equilibrium value predicted by
applying Equation 9 to the schema 1%~ !
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The same asymptotic value is approached when only
strings of length 10 included alleles of type 1 at genera-
tion 0, as shown in Figures 2(d)—(g). Qualitatively the be-
haviour of other loci is the same, but the asymptotic values
reached are slightly different, which is predicted by Theo-
rem 5.

Figure 2 reveals that the speed with which alleles in dif-
ferent loci approach their asymptotic value varies. While
alleles in locus 1 move quickly towards their fixed point,
the convergence speed decreases as the locus position in-
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Figure 2: Plots of the %elative proportion of non-terminal alleles of type 1 vs. locus position and program length for different
generations under different crossover operators. The population was initialised with a uniform length distribution, where
only programs of length ¢ contained non-terminal alleles of type 1. The value of £ was 2 in (a)-(c) and 10 in (d)-(i).
One-point crossover was used in (b), (¢), (e), (f) and (g), uniform crossover in (h) and (i).

creases. This is due to the fact that alleles occupying non-
terminal loci that are present in a large number of individu-
als will be swapped more frequently than alleles occupying
loci present in a small number of individuals.

The behaviour of uniform crossover is almost identical.
Analysis of our results revealed that the only difference is
the speed with which alleles in different loci approach their
asymptotic value. Uniform crossover mixes alleles more
quickly as can easily be seen, for example, by comparing
Figures 2(e) and (f) with Figures 2(h) and (i), respectively.

To further verify that under homologous crossover the pop-
ulation tends towards an independent allele distribution, we
performed an experiment with exactly the same set up as in
Figures 2(h) and (i) but this time we kept track of the co-
occurrence of pairs of non-terminal alleles within the class
of programs of length 10. So, for each generation we ob-
tained a set of four 9 x 9 co-occurrence frequency matrices,

one for each possible choice of a pair of the non-terminal
alleles 0 and 1. An element at position (7, c) of the co-
occurrence matrix for non-terminal alleles a and b, repre-
sented the average number of times allele @ was present in
locus r while at the same time allele b was present in lo-
cus c in strings of length 10. Once normalised by the total
number of strings of length 10, the diagonal elements of the
0/0 and 1/1 matrices represent the proportions of alleles of
type 0 and 1, respectively, present at each locus.

For all allele pairs the co-occurrence matrices tended to
those predicted by the theory. For example, for the allele
pair 0/0 the theoretical values for the off-diagonal elements
can be calculated using the following equation (obtained
from Equation 9)

(%20 x> 0x10-0—b=2 )
®(+19,0)

lim
t—o0
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These values are extremely close to the frequency of 0/0
co-occurrence measured at generation 100 in our runs, the
root mean square error between the above-diagonal ele-
ments being 0.004 (note that the co-occurrence matrix is
symmetric). This is a tiny error considering that all fre-
quencies were bigger than 0.8.

8 DISCUSSION AND CONCLUSIONS

Characterisations of the genetic biases of the operators
(such as the ones offered in this paper and in (Poli et al.,
2002)) are important because they allow the users of
GP/GA systems to evaluate whether their operators provide
the desired search behaviour for the system. If this is not
the case, then the knowledge of the search biases of other
operators allows for an informed choice for an alternative.

Here we have focused our attention on the biases of ho-
mologous crossovers with respect to length and allele dis-
tribution in a population of variable length linear structures
and presented theoretical results describing the asymptotic
behaviour for a GP/GA system evolving in a flat fitness

landscape. In addition, we have provided experimental evi-
dence that firmly corroborates the theory, showing a perfect
match (within experimental errors) between the predictions
of the theory based on generation 0 data and the observed
length and allele frequencies at later generations.

The behaviour we have observed and characterised is sim-
ple: a) homologous crossovers are totally unbiased with
respect to program length, and b) crossover shuffles the al-
leles present in different individuals and pushes the string
distribution towards locus-wise independence.

A mixing behaviour is present in most crossover operators
described in the literature on fixed length GAs. It is well
known that this destroys “linkage”, i.e. correlations, be-
tween different allele positions in the population. In the
fixed length case the asymptotic convergence towards in-
dependence described by Geiringer’s theorem is the result
of the decay of correlations due to the mixing effect of
crossover. Because the representation and operators con-
sidered in this paper are generalisations of the correspond-
ing fixed-length ones, it is not so surprising to see that lin-
ear GP is also moving towards an independent fixed-point
string distribution. In other words, allele mixing is the rea-
son why the right hand side of Equation 9 is a product,
like the right hand side of Equation 4. We have no reason
to believe that the situation would be significantly differ-
ent in tree-based GP. Because our extension of Geiringer’s
theorem 1is the result of specialising and studying the GP
schema theorem’s equations, it is not unlikely that in the
future we will be able to provide a Geiringer-like theorem
for tree-based GP.

Our theoretical results were obtained for the extreme case
of infinite populations and flat fitness landscapes. So, why
should these be of any relevance to finite GP/GA popula-
tions and realistic landscapes? Firstly, because the biases
of homologous crossovers in the absence of selection indi-
cate the precise way in which this type of operators would
naturally tend to explore the search space. When selection
is added, the search bias will be modified by the focusing
bias of selection, but, except in cases of very strong selec-
tion, many of the features of the search bias shown on a flat
landscape will be retained. Secondly, because as shown in
our experiments, the results obtained with real (but large)
populations match very closely the infinite population the-
ory. For smaller populations, the theory can still be used to
give short term indications of the behaviour of the system.
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