
Backward-chaining Genetic Programming

Riccardo Poli
Department of Computer Science

University of Essex, UK

rpoli@essex.ac.uk

William B. Langdon
Department of Computer Science

University of Essex, UK

wlangdon@essex.ac.uk

ABSTRACT
This paper presents a backward-chaining version of GP.

Categories and Subject Descriptors: I.2.2 [Artificial
Intelligence]: Automatic Programming

General Terms: Algorithms, Performance

Keywords: GP, tournament selection, backward chaining.

1. INTRODUCTION
Tournament selection, the most frequently used form of

selection in genetic programming (GP), chooses individuals
uniformly at random from the population. As noted in [1],
even if this process is repeated many times in each gener-
ation, there is always a non-zero probability that some of
the individuals in the population will not be involved in any
tournament. In certain conditions, typical in GP, the num-
ber of individuals in this category can be large. Because
these individuals have no influence on future generations, it
is possible to avoid creating and evaluating them without
altering in any significant way the course of a run. Start-
ing with a theoretical analysis of the sampling behaviour of
tournament selection, in [1] we proposed an algorithm, the
backward chaining EA (BC-EA), to do this, but provided
limited empirical evidence of actual savings and experiments
were restricted to fixed-length genetic algorithms.

We describe a GP implementation of BC-EA and empir-
ically investigated the efficiency in terms of fitness evalua-
tions and memory use and effectiveness in terms of ability to
solve problems of BC-GP. A fuller description of the tech-
niques and results reported here is available in [2], while
further work with BC-GP is in [3].

2. BACKGROUND
Using results on the coupon collection problem, in [1] we

found that the expected fraction of distinct individuals not
sampled by tournament selection in one generation is ap-
proximately e−n(1+pc), where n is the tournament size, pc is
the crossover rate and we assume crossover returns one off-
spring. This suggests that saving computational resources
by avoiding the creation and evaluation of individuals ne-
glected by selection may be possible only for low selection
pressures. However, low selection pressures are quite com-
mon in GP practice. Also, much greater savings in compu-

Copyright is held by the author/owner.
GECCO’05,June 25–29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

tation are possible if we exploit the transient behaviour of
tournament selection over multiple generations.

To understand what happens over multiple generations,
let us imagine we are interested in knowing m(0) individuals
in a particular generation, G. Clearly, in order to create
such individuals, we need to know who their parent(s) are.
This requires running tournaments to select such parents
from generation G− 1. Let m(1) be their number. We can
now perform tournaments to determine which individuals in
generation G− 2 will contribute to generation G− 1, etc.

In [1] we showed that the probability distributions of the
stochastic variables m(t) converge towards a limit which is
independent from the initial conditions. I.e., after a tran-
sient phase, the expected value of m(t) converges to a con-
stant value. In other words, for large G it is almost irrelevant
whether m(0) is as small or large as far as the total number
of individuals not sampled by tournament selection is con-
cerned. For small values of G, however, the transient of the
chain is what one needs to focus on.

The different phases of an EA are: a) the choice of genetic
operator to use to create a new individual, b) the formation
of a random pool of individuals for the application of tour-
nament selection, c) the identification of the winner of the
tournament (parent) based on fitness, d) the execution of
the chosen genetic operator, and e) the evaluation of the
fitness of the resulting offspring. The genetic makeup of the
individuals is not required in phases (a) and (b). So, as pro-
posed in [1], phases (a) and (b) can be done for a whole run
from generation 0 to generation G (followed by the iteration
of phases (c)–(e) as required). Clearly this induces a graph
structure (see Figure 1) where nodes represent all the indi-
viduals to be evolved during the run and edges connect each
individual to the individuals in the tournaments performed
to select the parents of such an individual.

If we are interested in calculating and evaluating m(0) in-
dividuals in the population at generation G, maximum effi-
ciency can be achieved by constructing and evaluating only
the individuals which are directly or indirectly connected
with those m(0) individuals (e.g., see shaded nodes in Fig-
ure 1). In [1] it was proposed to proceed recursively, back-
wards in time from generation G. An EA running in this
mode is a Backward-Chaining EA (BC-EA). Irrespectively
of the problem being solved, statistically a BC-EA is almost
identical to a standard EA. However, a BC-EA is faster than
an ordinary EA because it avoids evaluating individuals ne-
glected by selection. Also, because of its fitness evaluation
order, BC-EA is also a faster converging algorithm. (See [1]
for a detailed discussion.)

1777

Generation

In
di

vi
du

al

0

1 2 3

1

2

3

4

5

6

Figure 1: Example of graph structure induced by
tournament selection. Shaded nodes are the poten-
tial ancestors of the first individual in generation 3.

Table 1: GP v. BC-GP on Poly 4 (M = 100 000).
Forward Backward

Gens Best Fit Evals Best Fit Evals Saving
10 0.030 1 000 000 0.122 89600 91%
20 0 2 000 000 0.001 1 046 000 48%
30 0 3 000 000 0 2 015 000 33%

Table 2: GP v. BC-GP on Poly-10 (M = 10 000).
Forward Backward

Gens Best Fit Evals Best Fit Evals Saving
10 14.5 100 000 15.6 25 000 75%
20 13.6 200 000 14.2 122 000 39%
30 13.0 300 000 13.4 219 000 27%

3. BACKWARD-CHAINING GP
We implemented a Backward-Chaining Genetic Program-

ming (BC-GP) system in Java. Figure 2 provides a pseudo-
code description of the key components of our system. Note
that we use a “lazy-evaluation” approach: we statically cre-
ate the nodes in the graph (and store them using arrays)
but then edges are only dynamically generated and stored
in the stack as we do recursion. This is achieved by choosing
genetic operator and invoking the selection procedure only
when needed in order to construct an individual, rather than
at the beginning of a run for all generations.

We ran BC-GP on three symbolic regression problems:
the quartic polynomial x4 + x2 + x3 + x, the multivariate
polynomial x1x2+x3x4+x1x4 (Poly-4) and the multivariate
polynomial x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10 (Poly-
10). The function set included +,−,× and the protected
division DIV. The terminal set included the independent
variables in each problem. Fitness was the sum of the abso-
lute errors between the output produced by a program and
the desired output. We used binary tournaments (n = 2)
for parent selection. The initial population was created us-
ing the “grow” method. We used 80% standard sub-tree
crossover and 20% point mutation. The population size M ,
depending on target polynomial, was 100, 1 000, 10 000 and
100 000. For each setting we performed 1,000 independent
runs of both GP and BC-GP. (See [2] for more details.)

We computed statistics every M fitness evaluations (we
treat this interval as a generation even if the fitness evalua-
tions may spread over many generations). BC-GP computed
only one individual in the last generation (i.e. m(0) = 1).

On the quartic polynomial, with populations of 1 000 or

define run(G,M)
Create G x M tables Known, Population and Fitness
For each individual I of interest in generation G

evolve_back(I,G)
return all I of interest

enddefine
define evolve_back(indiv,gen)

If Known[indiv][gen] then return
if gen == 0 then

Population[gen][indiv] = random program
else

if random_float() < crossover_rate then
parent1 = tournament(gen-1)
parent2 = tournament(gen-1)
Population[gen][indiv] = crossover(parent1,parent2)

else
parent = tournament(gen-1)
Population[gen][indiv] = mutation(parent)

endif
endif
Fitness[gen][indiv] = fit_func(Population[gen][indiv])
Known[gen][indiv] = true

enddefine
define tournament(gen)

fbest = 0; best = -1;
repeat tournament_size times

candidate = random integer 1...M
evolve_back(gen, candidate)
if Fitness[gen][candidate] > fbest then

fbest = Fitness[gen][candidate]
best = candidate

endif
endrepeat
return(Population[gen][best])

enddefine

Figure 2: Pseudo-code for BC-GP.

more individuals, BC-GP was always better than or equal to
standard GP (see [2]). Poly-4 is much harder and requires
large populations to be solvable in most runs. When run for
20 and 30 generations, BC-GP found more solutions faster
than forward GP for generations 0...3 (see [2]). Table 1
shows that, by the end of the runs, BC-GP evolved solutions
of similar fitness but took fewer fitness evaluations.

Poly-10 is very hard. Neither GP nor BC-GP found a
solution in any of 9 000 runs. Table 2 shows that, by the
end of the runs, BC-GP evolved solutions of similar fitness
but took fewer fitness evaluations.

4. CONCLUSIONS
Thanks to its special way of recursively computing pro-

grams backward, BC-GP offers a combination of simplicity,
fast convergence, increased efficiency in terms of fitness eval-
uations and primitive evaluations, statistical equivalence to
a standard GP, reduced bloat and broad applicability. This
comes only at the cost of an increased memory use.

5. REFERENCES
[1] R. Poli. Tournament selection, iterated coupon-collection

problem, and backward-chaining evolutionary algorithms. In
Proceedings of the Foundations of Genetic Algorithms
Workshop (FOGA 8), 4th January 2005.

[2] R. Poli and W. B. Langdon. Backward-chaining genetic
programming. Technical Report CSM-425, Department of
Computer Science, University of Essex, 2005.

[3] R. Poli and W. B. Langdon. Running genetic programming
backward. In R. L. Riolo, B. Worzel, and T. Yu, editors,
Genetic Programming Theory and Practice. Kluwer, 2005.

1778

