Skip to main content

Genetic Programming with Synthetic Data for Interpretable Regression Modelling and Limited Data

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2023)

Abstract

A trained regression model can be used to create new synthetic training data by drawing from a distribution over independent variables and calling the model to produce a prediction for the dependent variable. We investigate how this idea can be used together with genetic programming (GP) to address two important issues in regression modelling, interpretability and limited data. In particular, we have two hypotheses. (1) Given a trained and non-interpretable regression model (e.g., a neural network (NN) or random forest (RF)), GP can be used to create an interpretable model while maintaining accuracy by training on synthetic data formed from the existing model’s predictions. (2) In the context of limited data, an initial regression model (e.g., NN, RF, or GP) can be trained and then used to create abundant synthetic data for training a second regression model (again, NN, RF, or GP), and this second model can perform better than it would if trained on the original data alone. We carry out experiments on four well-known regression datasets comparing results between an initial model and a model trained on the initial model’s outputs; we find some results which are positive for each hypothesis and some which are negative. We also investigate the effect of the limited data size on the final results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/141000671

    Article  MathSciNet  Google Scholar 

  2. Cao, V.L., Nicolau, M., McDermott, J.: One-class classification for anomaly detection with kernel density estimation and genetic programming. In: Heywood, M.I., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds.) EuroGP 2016. LNCS, vol. 9594, pp. 3–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30668-1_1

    Chapter  Google Scholar 

  3. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine preferences by data mining from physicochemical properties. Decis. Support Syst. 47(4), 547–553 (2009)

    Article  Google Scholar 

  4. Cranmer, M.: Interpretable machine learning for science with PySR and SymbolicRegression.jl. arXiv preprint arXiv:2305.01582 (2023)

  5. Ferreira, L.A., Guimarães, F.G., Silva, R.: Applying genetic programming to improve interpretability in machine learning models. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

    Google Scholar 

  6. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining explanations: an overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), pp. 80–89. IEEE (2018)

    Google Scholar 

  7. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. Int. J. Comput. Vision 129, 1789–1819 (2021)

    Article  Google Scholar 

  8. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2

    Article  Google Scholar 

  9. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  10. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  11. Miranda Filho, R., Lacerda, A., Pappa, G.L.: Explaining symbolic regression predictions. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

    Google Scholar 

  12. Olson, R.S., La Cava, W., Orzechowski, P., Urbanowicz, R.J., Moore, J.H.: PMLB: a large benchmark suite for machine learning evaluation and comparison. Bio-Data Min. 10(36), 1–13 (2017). https://doi.org/10.1186/s13040-017-0154-4

    Article  Google Scholar 

  13. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  14. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming (2008). Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk (With contributions by J. R. Koza)

  15. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you? Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  16. The pandas development team: pandas-dev/pandas: Pandas (2020). https://doi.org/10.5281/zenodo.3509134

  17. Watson, D.S.: Conceptual challenges for interpretable machine learning. Synthese 200(2), 65 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This publication has emanated from research conducted with the financial support of Science Foundation Ireland under Grant number 18/CRT/6223.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fitria Wulandari Ramlan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramlan, F.W., McDermott, J. (2024). Genetic Programming with Synthetic Data for Interpretable Regression Modelling and Limited Data. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, vol 14505. Springer, Cham. https://doi.org/10.1007/978-3-031-53969-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53969-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53968-8

  • Online ISBN: 978-3-031-53969-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics