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Abstract. Model validation has become a strong component of successful statistical 
analyses.  Some researchers in the evolutionary computation (EC) community have 
applied various model validation strategies.  However, in general, model validation 
is underused in biological applications of EC.  This essay describes the importance 
of model validation and some techniques that have been performed.  Unfortunately, 
there is not an optimal method for all data types.  Thus, this essay is not meant to 
review all possible methods and describe the best one for EC applications.  Instead, 
the goal is to introduce the concepts in hopes to spark further research and 
discussion of this important topic. 

1  Introduction 

Bioinformatics, or the union of computer science and biology, has forever changed our 
ability to explore the complexities of biological data.   Advancing technology in the 
laboratory has provided an enormous explosion of information.  Without bioinformatics, 
the interpretation of all this data would be impossible.  Identifying statistical and 
computational models that characterize biological processes is one of the main goals of 
bioinformatics.  The approaches used to achieve this range from traditional statistical 
analysis, to novel statistical methods, as well as artificial intelligence and machine 
learning.  In recent years, evolutionary computation (EC) has emerged as an important 
field for bioinformatics.  Since EC has adopted many of its primary features from biology, 
it is time for EC to return the favor by aiding in the daunting task of understanding a 
wealth of biological phenomena. 

EC has been applied to biological data in many capacities including genetic algorithms 
(GA), genetic programming (GP), grammatical evolution (GE), artificial immune systems, 
etc.  In addition, the biological applications have been from numerous areas of biology 
including gene expression analysis, sequence alignment, proteomics, and protein structure 
prediction to name a few.  Despite the biological problem or the EC methodology utilized, 
these previous applications share a common goal: to identify one or more models that 
classify or predict biological data. 



While EC is a powerful approach for exploring large search spaces, there are several 
challenges when using EC methods for biological data analysis.  First, depending on the 
question at hand, the resulting model from an EC search may be very difficult to interpret.  
This challenge is not unique to EC methodologies.  Many statistical and computational 
methods, while powerful in detecting biological models, are un-interpretable to biologists.  
This is an area that will require further research.  Second, many biological problems are 
highly dimensional and have an effectively infinite search space (in terms of exhaustive 
search capabilities).  While EC methods are better equipped for exploring the vast 
territory related to biological problems, they are very computationally intensive and can 
still miss certain features of the search space.  This challenge can be met through the use 
of parallel supercomputing technologies as well as optimal EC parameter settings to avoid 
stalling on local optima and premature convergence.  Finally, due to its stochastic nature, 
each run of an EC method may produce a different best model composed of different 
variables.  This is a problem when the goal of a study is to identify the best plausible 
model of some biological phenomena, such that further “wet” lab research can validate the 
findings.  If each run of a GP or GA yields a different model, which model should be 
reported as best?  In addition, if the goal is to find a more general predictive model, how 
can we prevent the EC algorithm from overfitting the sample data set? 

Model validation is a technique that may be able to rectify the model selection issue as 
well as the overfitting concern.  Statistical modeling using traditional methods such as 
linear discriminant analysis and logistic regression suffer from these same problems.  The 
importance of model validation in these traditional techniques has become a more 
recognized component of sophisticated statistical analyses.  Here in the EC field, some 
researchers are embracing model validation procedures.  However, the importance of such 
validation demonstrates that model validation should become a part of all real data 
applications with the exception of performing classification of a single data set to yield the 
smallest possible error rate. 

A caveat of suggesting/urging the use of model validation procedures is that there is 
not one optimal method to follow.  Several model validation techniques exist, each having 
its own strengths and weaknesses.  In this essay, some of these model validation 
techniques are introduced including the benefits and drawbacks of each approach. 

2 Methods 

Cross validation is a statistical technique where a model is developed on a subset of the 
original data and tested or validated on a portion of the data that was not used in model 
building.  The ultimate validation of a model is to evaluate the predictive ability in a 
second data set, which is completely independent of the first data set.  In reality, this is not 
typically feasible due to the expense of data collection.  Instead cross validation is a good 
surrogate to test the model on unseen data.   



The way that the data are split can vary in many ways from leave-one-out cross 
validation (LOOCV) where only one individual is left out of each analysis, to five-fold or 
ten-fold cross validation where the data are divided into five or ten partitions respectively 
and the model build on 4/5 or 9/10 and tested on 1/5 or 1/10 [1]. The analysis is 
performed on each possible split of the data such that all individuals are used in the test 
set only once.   An additional variation on the “N” fold cross validation includes 
performing the data split multiple times (such as ten) and averaging the results across the 
splits [2].  Each type of cross validation has certain benefits.  LOOCV provides an 
unbiased estimate of the prediction error. However, it has a high variance due to the 
similarity in the training sets [1].  Five-fold or ten-fold cross validation, on the other hand, 
has a smaller variance, but the estimate of the prediction error may be biased [1].  Finally, 
ten-fold cross validation ten times has the smallest variance and bias, but it is the most 
computationally intensive [2].  Simulation studies have been done to evaluate the “best” 
cross validation technique [2].  However, each data split has advantages and 
disadvantages and it is a trade-off based on what is most important for each specific study.  

Depending on the fitness function used for selecting the best model, an additional type 
of cross validation may be even more robust to overfitting. N-fold cross validation 
typically uses the error of the training set as the fitness function.  This value is likely to 
continue decreasing until it over fits. This may result in a model that classifies well, but 
does not generalize for independent data.  A potential solution to this problem involves a 
three-way data split where one creates a training set, testing set, and validation set [3].  
Here, a model is developed on the training set and evaluated on the testing set.  Next, the 
best model is identified as the model where the training error and testing error have the 
absolute minimum difference.  This model can then be validated on the final “validation” 
set.  This technique may prove to be even more robust to overfitting in comparison to N-
fold cross validation.  However, the original data set must be large enough to maintain 
power while splitting into three subsets. 

Finally, bootstrapping is another model validation strategy than can be explored [2].  
Bootstrapping involves performing random sampling with replacement to create “X” new 
data sets that are the same size as the original data.  The analysis is conducted on each 
bootstrapped sample to create a “best” model.  This model is then tested on the original 
data.  Some simulations suggest that bootstrapping may have smaller variance and bias 
than any cross validation approach.  It is, however, substantially more computationally 
expensive.  As mentioned earlier, there is not one optimal model validation procedure that 
generalizes to all classes of problems.  Here a few possible strategies were mentioned, but 
others should be explored as well. 

3 Conclusion 

Model validation is not new to biological applications in evolutionary computation 
(BioGEC).  Moore et al. [4] describe a symbolic discriminant analysis (SDA) technique 



using LOOCV for gene expression analysis.  In addition, Moore et al. developed a statistic 
to select the best model (variables) when multiple models are detected in the cross 
validation splits [5]  This metric, cross validation consistency (CVC), has been used with 
other data analysis methods in addition to EC [6]. This statistic is a measure of how often 
the same variables occur in the models, divided by the total number of best models.  
Rowland described an application of GP to spectroscopy data using the three-way data 
split approach.  Ritchie et al. [7] demonstrated a GP for optimizing neural network 
architecture using ten-fold cross validation and CVC for model validation and variable 
selection.  These are only a few of the recent publications demonstrating model validation 
in BioGEC. 

The goal of this essay was not to review all previous application of model validation 
techniques in BioGEC.  Nor was it to suggest an optimal strategy for model selection and 
model validation.  Instead, the goal was to explain some model validation procedures and 
give a few examples in EC applications to facilitate discussions between computer 
scientists, biologists, and biostatisticians such that researchers from these fields can work 
together to bring model validation to the forefront of all biological applications of 
evolutionary computation.  It is my opinion that this area is underused and more research 
emphasis should be concentrated on selecting and validating EC models.  If the goal is to 
learn something about biology, we need to use EC to find a solution that generalizes to the 
field of biology rather than a single data set.     
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