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5 ZUSAMMENFASSUNG

Zusammenfassung

Moderne, digitale Elektronik ist so komplex, dass die Sicherstellung ihrer korrek-
ten Funktion zur Zeit der zeitaufwändigste Teil der Entwicklung ist. Formale Veri-
fikation ermöglicht es, funktionale Eigenschaften solcher Systeme automatisch und
vollständig zu überprüfen, ohne dass der Entwickler zeitraubende und fehleranfällige
Tests für jeden Einzelfall schreiben muss. Die Eigenschaften werden in Instanzen des
Erfüllbarkeitsproblems der Aussagenlogik (SAT, von engl. satisfiability) übersetzt,
die dann mit Erfüllbarkeitsprüfer-Software (auch SAT-Solver genannt) gelöst wer-
den können. Die derzeit besten SAT-Solver für industrielle Anwendungen basieren
auf verbesserten Versionen des DPLL-Algorithmus. DPLL ist ein Suchalgorithmus,
der von einer Vielzahl von Heuristiken gesteuert wird. Die zur Lösung eines SAT-
Problems benötigte Zeit ist stark abhängig von der Wahl der Parameter dieser Heuris-
tiken, und die optimale Einstellung der Parameter ist selbst ein schwieriges Prob-
lem. In der vorliegenden Arbeit wird ein neues, vollautomatisches Optimierungsver-
fahren für die Heuristikparameter von SAT-Solvern präsentiert und getestet. Das Ver-
fahren basiert auf der Benutzung von Optimierungsalgorithmen, mit denen versucht
wird, optimale Parameterkonfigurationen für Trainingsmengen von SAT-Problemen
anzunähern. Ein Endergebnis wird dann aus allen gesammelten Daten berechnet. Als
Optimierungsalgorithmen wurden zwei Unterarten von Evolutionären Algorithmen
getestet: Genetische Algorithmen und Evolutionsstrategien. Der zu optimierende
SAT-Solver war das bekannte Open Source Programm MINISAT. Es konnte gezeigt
werden, dass die Parameterkonfigurationen, die mit dem Verfahren erzeugt wurden,
ähnlich gut sind wie die von Experten ermittelten Standardparameter.
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7 ABSTRACT

Abstract

Digital electronic systems are now so large and complex that ensuring their correct
functionality has become the most time-consuming part of their design. Formal veri-
fication allows the exhaustive, automatic testing of functional properties of such sys-
tems without requiring the designer to create individual test cases manually, which
is time-consuming as well as prone to errors and oversights. The properties are first
transformed into instances of the Boolean satifiability problem (SAT), which are then
solved with SAT solvers. The most efficient SAT solvers for industrial SAT problems
are based on enhanced versions of the DPLL algorithm which employs a number of
heuristics to guide the search for a solution. Solving times are highly dependent on
the choice of the solver’s heuristic parameters, and adjusting the heuristics optimally
is a complex task in itself. This work presents and tests a new, fully automatic op-
timization procedure for a SAT solver’s heuristic parameters that is based on using
local search algorithms which attempt to find optimal parameters for training sets
of SAT problems; a result configuration is synthesized from the gathered data. For
the optimization two subtypes of Evolutionary Algorithms (local search algorithms
that mimic Darwinian evolution), Genetic Algorithms and Evolution Strategies, were
tested. The target of optimization was the well known open-source SAT solver MIN-
ISAT. It could be shown that the parameter configurations generated by the automatic
procedure are competitive with the default parameters set by human experts.
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Chapter 1

Introduction

1.1 Integrated circuits
The first integrated circuit (IC or “chip”) was invented in 1958 by the American
electrical engineer Jack Kilby while working at Texas Instruments. It was a simple
oscillator circuit which consisted of a single transistor, some resistors and a capacitor
on a small piece of germanium. This electronic circuit was “integrated” because
instead of being made of many discrete components like resistors etc. wired together,
every component was made in place from the same piece of semiconductor. Kilby
wrote in a 1976 article [Kilby76]:

“In my discouraged mood, I began to feel that the only thing a semi-
conductor house could make in a cost-effective way was a semiconduc-
tor. Further thought led me to the conclusion that semiconductors were
all that were really required—that resistors and capacitors, in particu-
lar, could be made from the same material as the active devices. I also
realized that, since all of the components could be made of a single ma-
terial, they could also be made in situ, interconnected to form a complete
circuit.”

Up to this point, large electronic circuits had to be soldered together out of thousands
of components, which was a time-consuming and error-prone process. On top of that,
the resulting circuits were often unreliable as well as large and heavy, precluding their
use in many applications. Integrated circuits on the contrary are easy to mass-produce
(and therefore cheaper), small, light, and comparatively reliable. Jack Kilby was one
of the laureates for the Nobel Prize in physics in 2000 for his work on integrated
circuits.

Since their inception the number of components that can be put on one integrated
circuit has been steadily rising. The size of the structures on the chips became smaller
and smaller, and have now reached deep-submicron (DSM) sizes (smaller than one
millionth of a meter). Intel corporation’s co-founder Gordon Moore made a pre-
diction in a 1965 magazine article [Moore65] that has become known as Moore’s
law: the transistor density on integrated circuits doubles about every two years. This
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Figure 1.1: Moore’s Law Transistor Count Chart, Copyright c©2005 Intel
Corporation.

“law” has been accurate for a long time as can be seen in the transistor counts of
Intel’s own microprocessors (Fig. 1.1), and only now seems to be slowing down. The
latest benchmark was passed in 2010 when Intel began production of a processor
codenamed “Tukwila” which was the first to contain over 2 billion transistors.

Making use of this vast number of transistors requires increasingly more efficient
design strategies and tools. Manually placing the millions of transistors on an IC
(and managing their interconnections) is unfeasible, hence today’s chips are designed
using Hardware Description Languages (HDLs) like VHDL and Verilog, which de-
scribe the behavior of the circuit in text form. Synthesis tools then translate the HDL
source code into a form from which eventually chips can be manufactured. Simula-
tor software can be used to test designs without needing to build prototypes of the
circuits, which would be prohibitively expensive and time-consuming. Electronic
Design Automation (EDA) is the umbrella term for software tools that deal with de-
signing ICs.
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1.2 Verification
While the increase in transistor density has led to extremely large and powerful de-
signs being possible in smaller and smaller spaces, it has also become much harder to
detect design errors. Apart from the unavoidable possibility of human error, synthe-
sis tools can not be guaranteed to always generate correct circuits from HDL sources.
Making sure that a design works as intended is called verification [Bergeron00, pg. 1]:

“Verification is a process used to demonstrate that the intent of a design
is preserved in its implementation.”

Verification happens before the design is manufactured, determining the correctness
of a finished chip is called testing [Bergeron00, pg. 16]:

“Testing is often confused with verification. The purpose of the former
is to verify that the design was manufactured correctly. The purpose of
the latter is to ensure that a design meets its functional intent.”

IC designs are so complex now that the major portion of the entire design effort is in
fact verification [Bergeron00, pg. 2]:

“Today, in the era of multi-million gate ASICs, reusable intellectual
property (IP), and system-on-a-chip (SoC) designs, verification con-
sumes about 70% of the design effort. Design teams, properly staffed
to address the verification challenge, include engineers dedicated to ver-
ification. The number of verification engineers can be up to twice the
number of RTL designers.”

One approach to verification is the use of simulation on testbenches. A testbench
models the environment of the chip and provides inputs to it. When simulating the
testbench together with the Design Under Verification (DUV), the outputs can be ob-
served and compared to expected values. Writing testbenches is a complex problem
in itself: the verification engineer has to ensure that every possible combination of
inputs and every possible state of the DUV is reached and the correct outputs are gen-
erated. This is practically impossible even with smaller designs, since the number of
input and state combinations reaches astronomical numbers very quickly.

An alternative to simulation is formal verification, which generally takes the form
of equivalence checking or model checking. Equivalence checking deals with com-
paring circuits (for example “do the synthesized circuit and its HDL description im-
plement the same Boolean function?”) and model checking with properties of state
machines (for example “will this counter count up correctly?”). In both cases a math-
ematical model of the DUV’s property to be checked is generated, which can then be
automatically proven to be correct or incorrect using theorem prover software (a pro-
gram that can automatically prove mathematical theorems). If the property does not



1.3. THE BOOLEAN SATISFIABILITY PROBLEM 26

hold, the verification software can even provide a counterexample that shows a situa-
tion where the property fails. The advantage of formal verification over simulation is
that formal verification is inherently exhaustive: it checks every possible situation at
once without the verification engineer having to create the test input sequences (and
a testbench) first. Unfortunately formal verification can not be used for designs of
arbitrarily large size, therefore it does not replace simulation but rather complements
it to increase the chance of finding errors.

Both equivalence checking and model checking first generate an “intermediary
problem” out of the actual design property to be verified (details on how this works
will be presented in later chapters). The form of the intermediary problem for both
types of formal verification is the Boolean satisfiability problem.

1.3 The Boolean satisfiability problem

The Boolean satisfiability problem (SAT) is a fundamental problem of computer sci-
ence with many important practical applications. The problem is finding truth values
(true or false) for the variables of a Boolean formula so that the formula evaluates to
true. This work uses the notation “+” for Boolean OR, juxtaposition of expressions
to signify AND, and a bar over expressions for negation. The following Boolean for-
mula is satisfiable because assigning {v1 = 1, v2 = 1, v3 = 0, v4 = 1, v5 = 1} makes
it evaluate to 1 (true):

(v1 + v2)(v2 + v̄3 + v4)(v5) (1.1)

In contrast, the next Boolean formula is unsatisfiable because there exists no combi-
nation of values can be assigned to the variables v1 and v2 so that the result is 1:

(v1 + v2)(v1)(v̄1) (1.2)

While SAT is easy to solve for a small number of variables simply by trying out all
possible combinations, this quickly becomes unfeasible when the number of variables
rises. For a SAT problem with 1000 variables (which is commonplace in industrial
applications), the number of value combinations is 21000 ≈ 10301 which exceeds the
total number of atoms in the observable universe (ca. 1080) by far. Even the fastest
computers today would take millenia to try out all possible combinations, until one
is found that satisfies the formula or all combinations have been tried unsuccessfully
and the formula is found to be unsatisfiable. There is currently no known way to
solve SAT that does not require an exponentially rising amount of resources (time and
computer memory) depending on the number of variables, so that the more complex
instances of the problem are essentially unsolvable. SAT shares this property with a
whole class of other, hard to solve problems: the complexity class NP.

The complexity class NP is a set of problems for which it is easy to check if a
given solution is correct, but that are (as far as we know) computationally hard to
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solve. “Easy to check” means that for any given solution of a problem from the
set NP it takes an amount of time that is computed only by a polynomial of the
number of its variables to confirm if that solution is indeed correct. On the other
hand, so far it appears that solving a problem from NP always requires a time that
in the worst case rises exponentially depending on the number of variables. This
means, in essence, that no algorithm can exist that solves every possible problem in
NP in practically feasible time, unless it is true that the “easier” complexity class P is
equal to NP. The complexity class P is the set of problems which can both be solved
and its solutions confirmed in a time that rises as a polynomial of the number of
variables of the problem. The question if P=NP, known as the P versus NP Problem,
is one of the most important open questions of computer science. P versus NP is one
of the “Millenium Prize problems”: the Clay Mathematics Institute of Cambridge,
Massachusetts (CMI) has posted a reward of 1 million US$ for solving any of 7
(of which 6 now remain) “important classic questions that have resisted solution for
many years”. Their website1 states about P versus NP:

“In fact, one of the outstanding problems in computer science is deter-
mining whether questions exist whose answer can be quickly checked,
but which require an impossibly long time to solve by any direct pro-
cedure. Problems like the one listed above certainly seem to be of this
kind, but so far no one has managed to prove that any of them really are
so hard as they appear, i.e., that there really is no feasible way to gen-
erate an answer with the help of a computer. Stephen Cook and Leonid
Levin formulated the P (i.e., easy to find) versus NP (i.e., easy to check)
problem independently in 1971.”

SAT was the first problem that was proven to be NP-complete [Cook71]: an NP-
complete problem is in the set NP, and every other problem in NP can be translated
into it efficiently (meaning in a time that rises as a polynomial of the number of vari-
ables). This means that any other problem in NP can be translated into an equivalent
SAT problem.

There is great interest in building efficient SAT solvers (programs that solve SAT)
because a large number of problems of industrial or scientific interest are in NP, or
are not in NP but can still be translated into SAT (for a list of applications of SAT
itself see for example [Marques-Silva08]). One of the most well-known NP-complete
problems other than SAT is the Travelling Salesman Problem (TSP). Given a list of
cities and the traveling cost between every pair of cities, TSP asks what the cheapest
possible tour is that visits all cities exactly once and returns to the starting point. This
basic problem has many different applications in a wide variety of fields, including
the obvious use in transportation but also, for example, for controlling machines for
drilling holes (where the holes and the distances between them take the place of the

1http://www.claymath.org/millennium/P vs NP/, accessed September 2010
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cities), and modified versions have even more. Various EDA problems like equiva-
lence checking of Boolean circuits (determining if two combinational logic circuits
have the same behavior) and Bounded Model Checking (BMC) (a method for check-
ing temporal properties of a sequential logic circuit) are also NP-complete. Instead
of building a specific solver for each of these problems it would be more convenient,
given a powerful SAT solver, to translate them into SAT first and then use the SAT
solver on the translated problem. The result returned by the SAT solver is then trans-
lated back into a solution of the problem. A SAT solver therefore can be seen as a
generic “problem-solving engine” (Fig. 1.2).

Figure 1.2: SAT solvers can be used as generic problem solvers

1.4 The DPLL algorithm

The most successful SAT solvers in use today are almost all based on the DPLL algo-
rithm framework, which is named after the researchers Martin Davis, Hilary Putnam,
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George Logemann and Donald W. Loveland who worked on DPLL [Davis62] and/or
its predecessor, the DP algorithm [Davis60]. The DPLL algorithm solves SAT by
performing a search of all possible combinations of the Boolean formula’s variable
values until either a satisying combination is found or the formula is found to be
unsatisfiable after all combinations are exhausted. The algorithm avoids many obvi-
ously unsatisfying combinations by determining “implications” (logical inferences)
of previously assigned values on other variables during the search. It is therefore
more efficient than the naive solution of computing the result of every possible com-
bination.

Although the original DPLL algorithm was already described in 1962, the perfor-
mance of DPLL SAT solvers in industrial applications improved particularly after
the invention of the CHAFF solver [Moskewicz01] in 2001, which combined various
optimized implementations of the basic operations of the algorithm with improved
heuristics. A heuristic is an inexact method for solving, or aiding in solving a prob-
lem [Pearl84, pg. 3]:

“Heuristics are criteria, methods, or principles for deciding which among
several alternative courses of action promises to be the most effective in
order to achieve some goal. They represent compromises between two
requirements: the need to make such criteria simple and, at the same
time, the desire to see them discriminate correctly between good and bad
choices.

A heuristic may be a rule of thumb that is used to guide one’s actions.
It is the nature of good heuristics both that they provide a simple means
of indicating which among several courses of action is to be preferred,
and that they are not necessarily guaranteed to identify the most effective
course of action, but do so sufficiently often.”

Due to the NP-completeness of SAT there can be no exact algorithm that computes
ideal results for the various decisions that must be made inside DPLL in feasible
time (unless P=NP), therefore all DPLL solvers must use heuristics. Usually a solver
implementation has a number of settings and parameters for the heuristics that influ-
ence the performance to a large degree. The heuristic parameters are usually numbers
(real-valued or integers) for which sensible values have to be found. Unfortunately
the connection between the parameter values and the time the solver requires to solve
a problem is usually not obvious (in the literature sometimes these values are actually
referred to as “magic numbers”). The preset values that are used in publicly available
solvers are based on experimentation and the implementor’s experience.

When a new solver is implemented, it can be tested and optimized using a large
number of SAT problems from a variety of fields that has been made available on
the Internet for scientific purposes. For example, the benchmark problems for the
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annual SAT competitions2 that are held concurrently with the yearly international
SAT conference are also available for download. In the SAT competitions many SAT
solvers run against each other by solving a portfolio of SAT problems in different
categories. There is also a time-out period which is the maximum allowed time a
solver can use to solve a problem before it is stopped and the solving attempt is
marked as failed. The solvers are ranked higher the more problems they solve before
timeout, and the quicker they solve them.

Similar in procedure to the SAT competition, optimizing a SAT solver can be per-
formed manually by systematically testing a number of configurations for its heuris-
tic parameters on a training set of SAT problems. Configurations which result in a
shorter, total solving time would be seen as “better”, and the settings can be refined
by varying the parameters slightly and re-testing until the end result is satisfactory.
This is obviously a time-consuming process, since solving even a single SAT prob-
lem may take hours, depending on the difficulty of the problem, and solving the entire
training set takes accordingly longer. There is also the question which parameter val-
ues should be tried out, and how to vary them after each testing iteration. The brute
force approach consists of testing every single one of all possible configurations. If
there is only a single parameter to optimize and it is decided to test 10 different values
for that parameter, then the entire set of training problems has to be solved 10 times
over to rank the 10 configurations by their quality. When two parameters have to be
optimized, with 10 possible values each, there are already 10 × 10 = 102 = 100
different configurations to test. Using the brute force approach, the number of possi-
ble configurations, and with it the number of necessary SAT solver evaluations, rises
exponentially with the number of parameters and very quickly becomes unfeasible to
compute. This general problem which always occurs when exhaustively searching in
higher-dimensional spaces is also known as the curse of dimensionality. In the brute
force approach a lot of time is also wasted on testing configurations which are very
likely not optimal. For example, if the configuration (0.5; 0.3; 1.9) for 3 heuristic pa-
rameters was found to have very low performance, a human optimizer would likely
not waste time testing the very similar configuration (0.4; 0.3; 1.9) which differs only
very slightly in the first parameter. Instead, he would wish to avoid wasting time on
unpromising configurations and try a variation of a more promising configuration. In
any case, optimizing the SAT solver manually is a tedious, time-consuming process.
An automated or at least semi-automatic approach would be much preferable that
chooses the heuristic parameters itself and steers the search in promising directions
depending on previously gained knowledge. Such applications are the domain of
optimization algorithms.

2Website at http://www.satcompetition.org
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1.5 Optimization

The problem of finding good settings for the parameters of a SAT solver algorithm is
a type of optimization problem. An optimization problem consists of finding the best
possible solution out of a set of all possible solutions [Gill81, pg. 1]:

“An optimization problem begins with a set of independent variables or
parameters, and often includes conditions or restrictions that define ac-
ceptable values of the variables. Such restrictions are termed constraints
of the problem. The other essential component of an optimization prob-
lem is a single measure of “goodness”, termed the objective function,
which depends in some way on the variables. The solution of an opti-
mization problem is a set of allowed values of the variables for which the
objective function assumes an “optimal” value. In mathematical terms,
optimization usually involves maximizing or minimizing; for example,
we may wish to maximize profit or minimize weight.”

The term fitness or fitness function is sometimes used to mean “objective function”,
especially in the context of Evolutionary Algorithms. The search space (the set of
all possible solutions) of optimization problems can be visualized as a fitness land-
scape. The fitness landscape (the term originates from genetics [Wright32]) is like
a map of the search space, where each X-Y-coordinate represents one possible so-
lution and its respective objective function value is represented by the height (Z-
coordinate) of a point at those coordinates. The sum of all the points forms a “land-
scape” of valleys, planes and peaks. Fitness landscapes can contain a large number
of valleys and peaks, where the highest peak or lowest valley (depending on if the
problem is one of minimization or maximization) is the global optimum, and all
smaller peaks or valleys are local optima. For experimental purposes, researchers
often use test functions whose fitness landscapes have known properties, for example
Fig. 1.3 shows a part of the fitness landscape of the six-hump camel back function
f(x, y) = (4− 2.1x2 + x4/3)x2 + xy + (−4 + 4y2)y2 [Dixon78].

An optimization algorithm then can be imagined as an explorer with a limited range
of vision wandering in the fitness landscape, seeking the highest peak or the deepest
valley. In practice the objective of the problem might not be identifying the global
optimum but rather finding any peak above a certain level, or finding a set of peaks
of equivalent fitness, or simply finding any highest point in the allotted time. Bäck
writes on the complexity of optimization [Bäck96, pg. 56] (referencing [Murty87]):

“The result implies that any global optimization problem that goes be-
yond a very low complexity is an NP-complete problem.”

Optimization problems can be classified by the properties of the objective function
and the constraint functions. Which optimization algorithm is most efficient (or even
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Figure 1.3: Fitness landscape of the six-hump camel back function
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applicable at all) depends on the properties of the problem. For example, the objective
function may have a single variable (univariate function) or many variables (multi-
variate function). Another classification scheme considers how much information
can be extracted from the objective function during the course of an optimization
algorithm: if the objective function is differentiable, first-order derivatives can be
used to guide the process (this is generally only possible if the objective function is
given in some algebraic form). Some optimization algorithms can also make use of
second-order derivatives, if they are available. In the metaphor of the optimization
algorithm as a wandering explorer this would mean that the explorer can measure the
steepness of the ground at his current position and choose to walk in the direction
that slopes upwards most strongly (where presumably some peak/optimum lies). If
the objective function provides no such information, the optimization algorithm can
only use comparisons of the objective function values visited so far to guide itself.

In the SAT solver optimization problem the variables are the heuristic parameters,
and the objective function is the accumulated solving time for the training set of SAT
problems. The constraints are the ranges for the values of the parameters (for example
[0, 1]). Differential information is not available because the objective function is not
an algebraic formula but rather a program.

When the objective function is not differentiable, function comparison methods
(sometimes also called direct search methods) [Gill81] must be used that rely only
on the objective function values themselves. Such methods, while usually easy to
implement, can never be guaranteed to converge and usually become very slow when
having to deal with higher dimensions. Many direct search methods were developed
for specific problems and are not useful in the general case, and in addition need
optimal settings of their own parameters to be successful. Evolutionary Algorithms
(EAs) are a class of optimization algorithm which are based on simulations of natural
processes like evolution. They are direct search methods which have shown surpris-
ing success in a large variety of fields and applications. EAs are a sub-field of the
larger field of Soft Computing.

1.6 Soft Computing
Soft computing (SC) stands for a set of problem solving techniques which allow and
exploit a degree of imprecision to deal with hard problems efficiently. The term is
relatively new and was coined around the early 1990s. The American mathematician
Lotfi A. Zadeh, inventor of fuzzy logic, states in [Zadeh94]:

“In traditional—hard—computing, the prime desiderata are precision,
certainty, and rigor. By contrast, the point of departure in soft computing
is the thesis that precision and certainty carry a cost and that computation,
reasoning, and decision making should exploit—wherever possible—the
tolerance for imprecision and uncertainty.”
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SC is now an established field with dedicated conferences and scientific journals
from large publishers, for example Soft Computing by Springer Verlag and Applied
Soft Computing—The Official Journal of the World Federation on Soft Computing
(WFSC) by Elsevier, which defines SC as such in its mission statement3:

“Soft computing is a collection of methodologies, which aim to ex-
ploit tolerance for imprecision, uncertainty and partial truth to achieve
tractability, robustness and low solution cost.”

The Berkeley Initiative in Soft Computing (BISC) group at the University of Califor-
nia, Berkeley which is headed by L. Zadeh, states in its current mission description4:

“The principal constituents of soft computing (SC) are fuzzy logic
(FL), neural network theory (NN) and probabilistic reasoning (PR), with
the latter subsuming belief networks, evolutionary computing including
DNA computing, chaos theory and parts of learning theory.”

The various sub-fields of SC complement each other rather than being in competition,
for example FL can be used to control NN parameters [Bonissone97]. This work
deals with the application of algorithms from the Evolutionary Computation (EC)
sub-field of SC.

1.7 Evolutionary Computation

Optimization problems can be tackled with search algorithms [Hoos04, pg. 23]:

“Basically all computational approaches for solving hard combinatorial
problems can be characterized as search algorithms. The fundamental
idea behind the search approach is to iteratively generate and evaluate
candidate solutions; in the case of combinatorial decision problems, eval-
uating a candidate solution means to decide whether it is an actual solu-
tion, while in the case of an optimisation problem, it typically involves
determining the respective value of the objective function.”

Search algorithms can be further classified into systematic search algorithms and
local search algorithms [Hoos04, pg. 24]:

“Systematic search algorithms traverse the search space of a problem in-
stance in a systematic manner which guarantees that eventually either a
solution is found, or, if no solution exists, this fact is determined with

3http://www.elsevier.com/wps/find/journaldescription.cws home/621920/description, accessed
September 2010

4 http://www-bisc.cs.berkeley.edu/BISCProgram/default.htm, accessed September 2010
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certainty. This typical property of algorithms based on systematic search
is called completeness. Local search algorithms, on the other hand, start
at some location of the given search space and subsequently move from
the present location to a neighbouring location in the search space, where
each location has only a relatively small number of neighbours and each
of the moves is determined by a decision based on local knowledge only.
Typically, local search algorithms are incomplete, i.e., there is no guar-
antee that an existing solution is eventually found, and the fact that no
solution exists can never be determined with certainty. Furthermore, lo-
cal search methods can visit the same location within the search space
more than once. In fact, many local search algorithms are prone to get-
ting stuck in some part of the search space which they cannot escape
from without special mechanisms like a complete restart of the search
process or some other sort of diversification steps.”

Local search algorithms that make use of randomness are called stochastic local
search (SLS) algorithms [Hoos04, pg. 30]:

“Many widely known and high performance local search algorithms
make use of randomised choices in generating or selecting candidate so-
lutions for a given combinatorial problem instance. These algorithms are
called stochastic local search (or SLS) algorithms, and they constitute
one of the most successful and widely used approaches for solving hard
combinatorial problems. SLS algorithms have been used for many years
in the context of combinatorial optimisation problems. Among the most
prominent algorithms of this kind we find the Lin-Kernighan algorithm
[Lin and Kernighan, 1973] for the Traveling Salesperson Problem, as
well as general methods like Evolutionary Algorithms [Bäck, 1996], and
Simulated Annealing [Kirkpatrick et al., 1983].”

In any search, there are two basic objectives: exploration and exploitation
[Michalewicz94] [Coley98]. Exploration means sampling many different areas of
the search space, which is important for finding the global optimum, and exploita-
tion means examining a narrow area of the search space, which helps to pinpoint a
local optimum with high precision. Ideally a search algorithm finds a good com-
promise between exploration and exploitation, since concentrating too much on just
one can lead to either missing the global optimum (too much exploitation) or being
unable to locate any optimum precisely (too much exploration). The Evolutionary
Computation (EC) sub-field of SC encompasses a number of SLS algorithms that
share a population-based approach [Bonissone97]. Some authors also refer to EC
as Evolutionary Computing, but the term Evolutionary Computation seems to be the
prevalent one, for example MIT Press publishes a journal of this name. EC algo-
rithms “simultaneously” explore and exploit the search space by searching centered
around a several starting locations (the population) rather than just one.
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Various problem-solving algorithms inspired by evolution were tested in the mid-
1950s already [De Jong97], but the three main forms still in use today had their start
in the mid-1960s: Evolution Strategies (ES) (Ingo Rechenberg, 1965), Evolutionary
Programming (EP) (Lawrence J. Fogel, et al 1966) and Genetic Algorithms (GA)
(John Holland, 1967). These three methods are the main representatives of what is
known as Evolutionary Algorithms (EA) [Bäck96], which developed independently
of each other for a long time until an effort was made in the early 1990s to bring
together the various approaches to the same paradigm of population-based search
under the term Evolutionary Computation. All these methods simulate a form of
evolution (hence the name “evolutionary”), though they differ in the details.

An EA starts with a set of randomly generated candidate solutions (usually called
the population) encoded in some particular format (Fig. 1.4). The first such popula-
tion is the first generation of the EA. The population of each following generation is
generated by choosing and modifying solutions from the population of the previous
generation. The members of the population are often called individuals, genotypes
or chromosomes (much of the EA terminology is borrowed from biology). In biol-
ogy, the genotype of an organism is its entire set of “blueprint” information stored
as DNA, while the phenotype is the resulting organism itself. In EAs the phenotype
means the (translated) actual solution while the genotype refers to its encoding. The
encoding depends on the type of the EA. The solutions are akin to organisms living
in an environment, and the encoding of each solution is analogous to the DNA of that
organism.

Each solution is ranked according to how well it can solve the problem. The rank-
ing position is determined by the value of a fitness measure, which is usually a single,
real-valued number that is higher the better the quality of the solution is. This quality
measure is basically equivalent to the objective function of the optimization problem,
but in EAs a higher fitness is always assumed to be better. Therefore in the case
of a minimization problem there must always be some transformation (fitness scal-
ing) step that translates low (“good”) objective values into corresponding high (also
“good”) fitness values. Even for maximization problems it may be necessary to apply
some form of transformation, since for example not all EAs can deal with negative
fitness values.

Once all individuals are assigned a fitness value, the selection operator chooses
which solutions are allowed to live and which die out. Selection preferentially
chooses individuals with a high fitness to live on, for example it can always choose
the 5 individuals with the highest fitnesses out of a population of 10: the 5 weaker
individuals would always die off then. This is an example of deterministic selection.
The selection operator can alternatively be stochastic, so that there is some random-
ness to which individuals are chosen as parents (this gives individuals with lower
fitness which would always be culled by a deterministic operator a chance to live).
Depending on the EA, there are a variety of selection operator implementations that
can be used. The individuals chosen by the selection operator are called parents.
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Parents are either copied verbatim into the next generation, or several parents can
be recombined into one offspring which is placed in the next generation, or a parent
can be randomly modified (mutated) before being copied. In any case, all non-parent
individuals die out (they do not influence the next generation at all). Recombination
operators combine the genotypes of two or more individuals to form new solutions
(offspring); this is an analogy to chromosomal crossover in biology. A mutation
operator creates some random change in the genes of a selected solution similar to
small random defects caused in DNA by radiation or chemicals in nature. It is also
possible to recombine parents, then mutate the resulting offspring. Recombination,
mutation and other operators which are responsible for creating variation and diver-
sity in the population are called variation operators [Eiben08]. Not all EAs use both
recombination and mutation, but all need some form of selection that drives the evo-
lution. The effects of the selection operator cause natural selection, because helpful
heritable traits (those which result in higher fitness) become more common in the
population with each successive generation. If the parameters of the EA are chosen
appropriately (for example the population is large enough) then over the course of
time the solutions should become better and better (similar to adaptation of natural
organisms).

All EAs share a population-based approach, but differ greatly in the implementa-
tion details, for example the format of the genotype and the operators used (Fig. 1.4).
Today the main sub-fields of EAs are [Bonissone97]:

1. Evolution Strategy (ES): the genotypes are real-valued vectors.

2. Evolution Program (EP): originally used for evolving finite state machines.

3. Genetic Algorithm (GA): the genotypes are binary strings.

4. Genetic Programming (GP) [Koza92]: the genotypes are computer programs
represented as trees.

EAs have been used to find efficient and often non-intuitive solutions to complex
problems in a wide variety of fields, for example building a multiplier circuit with as
few logic gates as possible [Vassilev00], but also in the arts [Todd94] and medicine
[Pena-Reyes00].

1.8 Thesis Contributions

As has been stated earlier, tuning the heuristics of DPLL SAT solvers is a complex
and time-consuming process. It would greatly reduce the demand on expensive pro-
grammer’s time if a reliable automatic process for optimizing DPLL heuristics ex-
isted. This would speed up the development of new SAT solvers, but another use of
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such an automatic optimizer would be to allow users of the solver to adapt the heuris-
tics to the particular class of SAT problems they work with most often, even if they
have little expertise or even no knowledge at all of the underlying algorithms. For
example, hardware verification engineers could “train” the SAT solver that powers
their verification tools to solve the SAT problems generated from their designs faster.
The optimizations could be performed in the idle time of the workstations while the
designers continue working on less computationally expensive tasks; alternatively,
since computer clusters and distributed services like cloud computing are becoming
more readily available as sources of cheap computing power, the highly parallelizable
EA-based optimization could be shifted to other machines partially or entirely. This
work investigated the use of EAs as fully automatic optimizers for DPLL heuristics.
In the following some prior work on this subject will be reviewed.

1.8.1 Prior work

It was found that different values of heuristic parameters lead to substantially differ-
ent behaviors of the solver, to such an extent that the same solver with different set-
tings can appear like a totally different solver [Audemard08]. Despite the importance
of using “good” values for these parameters, there is very little literature available on
how to determine them. Authors of new solvers seem to rely on manual testing and
optimization, and do not publish the procedures with which they arrive at the default
values used in the solvers. One of the few works in the literature that investigated an
automatic approach to SAT solver heuristic optimization is [Hutter07], which is the
most similar in approach to this work. It is stated there:

“During the typical development process of a heuristic solver, certain
heuristic choices and parameter settings are tested incrementally, typi-
cally using a modest collection of benchmark instances that are of par-
ticular interest to the developer. Many choices and parameter settings
thus made are “locked in” during early stages of the process, and typi-
cally, only few parameters are exposed to the users of the finished solver.
In many cases, these users never change the default settings of the ex-
posed parameters or manually tune them in a manner similar to that used
earlier by the developer. Not surprisingly, this manual conguration and
tuning approach typically fails to realize the full performance potential
of a heuristic solver. . . . There are almost no publications on automated
parameter optimization for decision procedures for formal verication.
. . . The only other work we are aware of is unpublished, ad hoc work
in industry.”

At the time of writing this state of affairs had seemingly not changed. It is further
stated in [Hutter07] about the manual heuristics optimization process:
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“After the first version of SPEAR was written and its correctness thor-
oughly tested, its developer, Domagoj Babic̀, spent one week on manual
performance optimization, which involved: (i) optimization of the imple-
mentation, resulting in a speedup by roughly a constant factor, with no
effects on the search parameters, and (ii) manual optimization of roughly
twenty search parameters, most of which were hard-coded and scattered
around the code at the time. The manual parameter optimization was
a slow and tedious process done in the following manner: the SPEAR

developer collected several medium-sized benchmark instances which it
could solve in at most 1000 seconds and attempted to come up with a pa-
rameter conguration that would result in a minimum total runtime on this
set. The benchmark set was very limited and included several medium-
sized BMC and some small software verication (SWV) instances gener-
ated by the CALYSTO static checker. Such a small set of test instances
facilitates fast development cycles and experimentation, but has many
disadvantages. Quickly it became clear that implementation optimiza-
tion gave more consistent speedups than parameter optimization. Even
on such a small set of benchmarks, the variations due to different param-
eter settings were huge. . . . Given the costly and tedious nature of the
process, no further manual parameter optimization was performed after
finding a configuration that seemed to work well on the chosen test set.
. . . For most decision procedures, the process of finding default (or hard-
coded) parameter settings resembles the manual tuning described above.
Furthermore, most users of these tools do not change these settings, and
when they do, they typically apply the same manual approach.”

In [Hutter07] 26 heuristic parameters of the SAT solver SPEAR were optimized using
a stochastic local search based algorithm named PARAMILS; that algorithm used a
simple hill-climbing process to search for optima, where in each step only a single
parameter of a single configuration was modified and the changes were discarded if
the new configuration did not improve solving times on the training set. This pro-
cess is analogous to a human designer’s manual tuning technique, as they state. To
get out of local optima, PARAMILS cyclically enters a perturbation phase where all
parameters are randomly modified at once, followed by another hill-climbing phase;
afterwards the starting point of the next cycle is the better of the last two local optima
found. The training sets used in that work were hundreds of SAT problems in size,
and their experiments were performed on a cluster of 55 computers. Automatic op-
timization led to major improvements, which were especially large when performed
on homogenous classes of similar problems. In contrast to the approach in [Hutter07]
where the optimization algorithm is partially modeled on a “human” technique, this
work uses EAs which operate on a whole population of configurations and modify all
of the parameters at once in a semblance of natural evolution. Also in contrast, EAs
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do not usually destroy worse configurations outright but rather keep them around in
the population.

While there have been attempts to use EAs in conjunction with SAT solving, these
works usually deal with local-search based SAT solvers, not complete DPLL-based
ones (for example [Fukunaga04]). The author has previously published two works
that deal with optimizing DPLL SAT solver heuristics with EAs. In [Kibria06] it was
attempted to find an optimal “initialization” for the decision heuristic in MINISAT
using Genetic Programming. The GP algorithm generated small programs which
computed initial values for the variable activities in MINISAT, which are normally
all 0 at the beginning. Since the generated configurations were not substantially better
than the standard initialization and also only were tested on a small set of 13 SAT
problems, the results are unfortunately questionable. It could also not be made clear if
the initialization was not simply a random factor, which makes it harder to determine
the success of the approach. In [Kibria07] the author attempted to use a neural net to
control the heuristics of MINISAT. The outputs of the neural net influenced variable
decisions, restarts, and learned clause reduction; the inputs were various statistics
of the search like the current number of learned clauses and so on. The multilayer
feedforward neural network contained a large number of bias values and edge weights
(318 total), which were evolved with an ES. In the experiments some amount of
improvement of solving times for the training problems could be observed, but the
resulting solver was weaker than standard MINISAT. Additionally the neural net
computations took between 5% and 30% of the total run time, so that such a solver is
not useful in a production setting.

1.8.2 Objective of this work

The objective of this work is to design and test a fully automatic optimization proce-
dure for the heuristic parameters of DPLL SAT solvers. The procedure assumes that
one SAT solver with a fixed number of (real-valued) heuristic parameters is being
optimized.

1.8.2.1 The optimization procedure

The underlying principle behind the optimization procedure presented here is to use
optimization algorithms to find heuristic parameters with which small training sets of
SAT problems are solved as well as possible. The features that the “good” parameter
configurations have in common are extracted by some automatic means, yielding a
number of candidates for the final result. A large test set of SAT problems is solved
using these candidates and the best, as determined by some scoring scheme, is then
chosen as the final result. The whole procedure should only require some basic hu-
man intervention at the start to select the problem sets and determine the optimization
algorithm settings, then run automatically until the final result is generated. The core
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of the procedure is an algorithm (or several) that searches for optimal heuristic pa-
rameters for some fixed training set of SAT problems; in this work the focus was on
using population-based EAs for this purpose, namely the GA and ES. Fig. 1.5 shows
an overview of the entire procedure. The steps of the proposed procedure are, in
sequence:

1. PROBLEM POOL SELECTION: Choose a set of SAT problems that will be
used for training (to use during the optimization) and one for testing (for testing
the results after the optimization). The former set is the training pool Ptrain, the
latter the test pool Ptest. The sets can be, but need not necessarily be disjoint.

2. TRAINING SET SELECTION: Choose the training sets Ti =
{pi,1, pi,2, . . .}, i = 1 . . . Ntrain where each pi,j ∈ Ptrain. Different train-
ing sets may contain the same problems.

3. OPTIMIZATION ON TRAINING SETS: Prepare optimization algorithm in-
stances Ai = (Mi, Ei, Ci), i = 1 . . . Ntrain. Each tuple Ai stands for some
algorithm that generates a set of solver configurations Ci = {Ci,1, Ci,2, . . .};
each Cj ∈ Ci is a complete set of heuristic parameters for the SAT solver (in
EA terms, each Cj is a single individual that needs to be evaluated). The setMi

completely defines the machine that Ai is executed on, including the timeout
period Ti used (Ti ∈ Mi). The internal parameters that control the optimiza-
tion algorithm itself (like the maximum number of generations for an EA) are
defined in the set Ei. One algorithm instance Ai is synonymous with a single
“run” of the optimization.

Apply all algorithms Ai = (Mi, Ei, Ci) on the respective training set Ti =
{pi,1, pi,2, . . .}. Each pair of configuration and problem in Ci × Ti =
{(Ci,j, pi,k)|Ci,j ∈ Ci and pi,k ∈ Ti} has to be evaluated. The function
solve(Ci,j, pi,k,Mi) yields a solving result Ri,j,k for solving problem pi,k on
the machine defined byMi using the timeout Ti ∈Mi and the solver heuristic
parameter configuration Ci,j . Ri,j,k is a set of statistical values stemming from
the solving attempt; at the very least it includes the solving time ti,j,k ∈ Ri,j,k

(when a timeout occurred, this is indicated by a special value of ti,j,k, for ex-
ample ti,j,k = 2Ti). Each configuration Ci,j is associated with a real number
called its objective value Vi,j which rates its ability to solve training set Ti

(lower Vi,j are better); Vi,j can be computed using all the statistics in all the
relevant Ri,j,k, but at the simplest it is Vi,j =

∑
r=1

ti,j,r (the sum of the solv-

ing times for all problems in Ti using Ci,j). All computed configuration trials
Li,j = (Mi, Ti, Ci,j, Vi,j) are entered into the trial database D5.

5A variant of the procedure (which has not been tested in this work) would store the results of
every single SAT problem evaluation in the trial database instead of just the objective value of the
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4. RESULT CANDIDATE SELECTION: Once the trial databaseD is completed,
candidates for the final result can be generated from the collection of configu-
rations rated by objective value; what is sought is a configuration that solves as
many of the training problems as possible, as fast as possible. There are many
ways how this can be accomplished: the simplest possibility would be to make
all the best configurations found for each training set a candidate. It is also
possible to try combining several solutions, for example by averaging some
parameter over many configurations (this is why the training and test pools can
contain the same problems: none of the candidate configurations may be the
exact same as those generated during training). Each configuration chosen (or
newly generated from several configurations) from D as a candidate is added
to the candidate set K.

5. RESULT CANDIDATE TESTING: In the final step, each configuration C from
the candidate setK is used to solve all problems in the test poolPtest. A scoring
scheme rates the configurations by assigning them a number that is higher the
more problems they could solve, the faster they could solve them compared to
the rest of the candidates etc. The final result is the configuration that has been
scored the highest (ties need to be broken in some way).

Many parts of the procedure are parallelizable, but the most important part is the eval-
uation of the configurations by running the SAT Solver. The optimization algorithms
that generate the configurations are typically relatively fast and a modern machine
could likely handle all of them at once, if the actual SAT solver runs are distributed
on a computer cluster.

Fig. 1.6 shows the general concept of how the EAs were used to optimize the SAT
solver on a training set of problems. The EA population contains different solver con-
figurations encoded in the appropriate format. The SAT solver is initialized with each
configuration in turn and then used to solve the training set. The solving times are
recorded and an objective value is assigned to the individuals (meaning the configu-
rations) afterwards. The EAs are then iterated for a number of generations, and the
progression of the quality of the solutions is recorded for analysis. Only an allowed
range for every parameter was provided to the EAs, but no known to be reasonable
starting values. Two types of EA were applied and compared: a Genetic Algorithm
(GA) and an Evolution Strategy (ES); GAs use binary strings as the genotype, while
ESs use a vector of floating-point numbers. In general ESs are known to be more effi-
cient than GAs when dealing with numerical optimization problems [Bäck96], it was
investigated if this is also true for the problem of SAT solver heuristic optimization.

The target of optimization in this work was the open-source SAT solver MINISAT

[Eén04]. This solver is very small (about 2000 lines of C code) and easy to modify,

configuration for the full training set. This would provide more detailed information to the later
stages but requires some changes to how those work.
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yet also very efficient, and has won several SAT competitions. MINISAT seemed a
particularly good choice for the target since it has very compact and clear code, but
also relatively simple yet efficient heuristics, which would help to analyze the results
of the optimization. Seven numerical parameters that affect various heuristics of the
solver were the variables of the SAT solver optimization problem. All SAT problems
were taken from the publicly available SAT competition portfolio, in particular the
SAT-Race 2006.

1.9 Thesis Organization
The initial chapters of this work are a recapitulation of the basics and the state of the
art of the subjects relevant for this work. Chapter 2 introduces the Boolean satisfi-
ability problem and some related mathematical concepts, some variants of SAT and
some applications and their transformation into SAT problems. Chapter 3 explains
the details of the DPLL algorithm and the many extensions that make it so effective
for solving real-world SAT problems. Chapter 4 introduces Genetic Algorithms and
the features used in the implementation for this work, and chapter 5 does the same
for Evolution Strategies.

Chapter 6 contains the main part of this work, the experimental results. The chap-
ter starts with an investigation of the imprecision of run time measurements under
Linux; this was examined because the objective value of the SAT solver optimization
problem was the program run time. The following section tests the EAs for correct-
ness by applying them on test functions with known structures. After this the EAs are
tested on noisy test functions, to investigate the effect of random variations (like the
solving times later) on the convergence speed and reliability of GAs and ESs. In the
next section fitness landscapes were generated for the MINISAT heuristic parameters
(to the author’s knowledge the use of fitness landscapes is novel in the context of SAT
solver optimization and is a first in this work). This was to investigate what kind of
effect changing these values has on the solving time, and also to have data to compare
the EA’s results against. In the following section the GA and ES are applied on the
SAT solver and the results compared, with the goal to decide which of the EAs is the
more appropriate to use for SAT solver optimization. Next, a large optimization ex-
periment with many training problem sets was performed using the better of the two
EAs as determined in the previous section. In the last section, result candidates are
chosen from the data gathered in the last experiment, and the candidates are tested on
a large set of benchmark problems and the results compared to those using the default
parameters.
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Chapter 2

The Boolean Satisfiability
Problem

2.1 Boolean algebra
Boolean algebra, named after its inventor, the English mathematician George Boole
[Boole54], deals with the truth values “true” and “false” rather than the set of real
numbers as in the algebra taught in school. A Boolean variable can take either of the
two truth values from the set B = {true, false} or it can be unassigned (free). For
brevity, the truth values are often represented by the digits 1 for true and 0 for false
respectively.

Boolean operations take truth values as operands and result in another truth value;
they can be represented as truth tables which list the result of the operation for all
possible combinations of the operand values. Tab. 2.1 shows the truth tables of the
standard Boolean operations AND, OR and NOT.

In the SAT literature and in electronics the symbol for the Boolean OR operator
is often written as “+” rather than the “∨” used in mathematics and logic. Boolean
AND can be indicated by simple concatenation of literals or expressions without an
operator between them, or the symbol “·” rather than “∧”. Negation can be indicated
by a line over the negated part of the formula rather than a prefixed “¬”. The Boolean
formula a∨ (b∧¬c) can therefore also be written as a + b · c or a + bc. Furthermore
the XOR (exclusive-OR) operator is sometimes represented as⊕, and its complement
XNOR (equivalence) as≡. The Boolean truth value true can be represented by 1 and

p q NOT p p AND q p OR q

0 0 1 0 0
0 1 1 0 1
1 0 0 0 1
1 1 0 1 1

Table 2.1: Truth table of the basic Boolean operations
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false by 0. This work uses the symbols 1, 0, +, · (or concatenation where clear),
overlined variables or sub-expressions, ⊕ and ≡ for true, false, OR, AND, NOT,
XOR and XNOR respectively.

A Boolean function in n Boolean variables maps the n-dimensional space Bn on
the Boolean space B. Any Boolean function can be represented by a truth table.
Truth tables are a canonical representation, meaning that for any Boolean function
there is exactly one and only one representation. A propositional Boolean formula
contains only the Boolean operations AND, OR and NOT together with truth value
constants and/or Boolean variables. Eq. 2.1 shows an example for a propositional
Boolean formula (the computation of the Boolean XOR operation using the basic
AND, OR and NOT operations).

f(v1, v2) = (v1 · v2) + (v1 · v2) = v1 ⊕ v2 (2.1)

2.2 SAT
The objective of the Boolean satisfiability problem (SAT) is to prove that a Boolean
formula f has a set of assignments to its propositional variables so that f = 1 or that
there is no such assignment (in that case, it follows that f = 0). In the former case,
a model (a set of variable assignments that make f = 1) of f was found and f is
satisfiable (SAT), in the latter f is unsatisfiable (UNSAT).

Related to the SAT problem is the tautology problem which asks if a given Boolean
formula evaluates to 1 for all possible assignments to its variables. If it does, the
formula is called a tautology. Tautologies are always satisfiable, and the inverse of a
tautology is always unsatisfiable.

2.2.1 Conjunctive normal form
SAT problems are usually given in conjunctive normal form (CNF), sometimes also
called product of sum (POS) form. A literal is either a Boolean variable (for example
x, a positive literal) or the complement of a variable (for example x, a negative literal).
A clause is a disjunction (Boolean OR) of literals, and a CNF is conjunction (Boolean
AND) of clauses. For example, the following CNF contains three clauses consisting
of two, three and one literals each:

f = (v1 + v2)(v2 + v3 + v4)(v5) (2.2)

CNF is not a canonical representation, meaning that for the same Boolean function
there may be many CNFs that describe it, for example an infinite number of (unsat-
isfiable) CNFs describe the constant function 0. Because x + x = x for any Boolean
formula x, multiple occurrences of the same literal can be removed from clauses
without changing the function the CNF represents. A CNF can contain clauses that
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may be removed entirely without changing the function the CNF represents. Such
clauses are called redundant clauses, and all the clauses that can not be removed
without changing the represented function are called irredundant. If a clause Clarge

has all the same literals as another clause Csmall as well as a some additional literals,
the clause Clarge is said to be subsumed by the clause Csmall. For example, the clause
(v1 + v2) is subsumed by the clause (v1). Subsumed clauses are redundant. If a
clause contains a positive literal and a negative literal of the same variable, the clause
is called a tautology clause. Tautology clauses are equal to 1 because x + x = 1 for
any Boolean formula x. Since c · 1 = c for any Boolean formula c, tautology clauses
are always redundant.

The value of a CNF is 1 if and only if every clause contains at least one literal
that evaluates to 1. The example CNF Eq. 2.2 is satisfiable because it has the model
{v1 = 1, v2 = 1, v3 = 0, v4 = 1, v5 = 1}. There can be many models for a given
SAT problem, for example {v1 = 1, v2 = 1, v3 = 1, v4 = 1, v5 = 1} is also a model
of the CNF. Finding one model is enough to prove satisfiability or respectively show
that the CNF is not unsatisfiable.

2.2.1.1 Boolean constraint propagation

Clauses with only one literal are called unit-literal clauses or unit clauses, for exam-
ple the clause (v5) in Eq. 2.2 is a unit clause. Unit clauses force an assignment to the
literal in them because the CNF could not be satisfied otherwise, and are therefore
also called implications [Silva96]. The following CNF is unsatisfiable because the
unit clauses (v1) and (¬v1) require the mutually exclusive assignments v1 = 1 and
v1 = 0.

f = (v1)(v1)(v2) = 0 (2.3)

It is therefore equivalent to the truth value 0.
Implications can lead to further implications, which have to be assigned iteratively

until no further implications arise. In SAT solvers the iterative assigning of implica-
tions is called Boolean constraint propagation (BCP) [Silva96] and is a major part of
the algorithm.

2.2.1.2 Pure literal rule

If a variable occurs in only one polarity (only as positive literals or only as negative
literals) in the CNF, the literal can be assigned true without changing the satisfiability
of the CNF. This is called the pure literal rule.
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2.2.1.3 Consensus and resolution

The consensus theorem of Boolean algebra exists for disjunctive normal form (DNF,
a sum of products form) (Eq. 2.4) as well as for CNF (Eq. 2.5).

xy + xz + yz = xy + xz (2.4)

(x + y)(x + z)(y + z) = (x + y)(x + z) (2.5)

The consensus term is the redundant one in each form (yz and (y + z)). Obviously
the theorem works in both directions, so from the two clauses (x+y)(x+z) the new,
redundant in respect to the originals clause (y + z) can be generated. The consensus
theorem can be generalized to the consensus law [Hachtel96] which gives a rule how
to create a new, redundant clause from two clauses. Given two sets of literals S1 and
S2 and a literal x, the consensus law is Eq. 2.6.

(x +
∑

S1)(x +
∑

S2)

= (x +
∑

S1)(x +
∑

S2)(
∑

S1 +
∑

S2)
(2.6)

The generated clause (
∑

S1 +
∑

S2) in Eq. 2.6 is called the resolvent of clauses
(x+

∑
S1) and (x+

∑
S2), and the operation that generates the new clause (

∑
S1 +∑

S2) is called resolution. The two clauses (x +
∑

S1) and (x +
∑

S2) are called
antecedents and x is called the pivot variable. The resolvent is always redundant in
respect to the original clauses. For example, from the clauses (x + a + b) and (x + c)
with x as the pivot the resolvent (a+b+c) can be generated using the consensus law.

The predecessor of the DPLL algorithm, usually called the DP algorithm
[Davis60], was based on iterative resolution of the SAT problem’s clauses until either
the CNF consists of only a single clause (which is obviously satisfiable) or a 0 is
generated (the CNF is unsatisfiable). The DP algorithm suffers from rapid memory
exhaustion due to the potentially huge number of generated clauses and is therefore
usually not used in practice. Resolution is also important for understanding the learn-
ing of new clauses in DPLL SAT solvers.

2.2.1.4 Distance

Given two sets of literals S1 and S2 the distance between them is the number of
literals x so that the literal x is in one clause (x ∈ S1) and the inverse of the literal x̄
is in the other (x̄ ∈ S2). The distance can also be defined for two clauses C1 and C2

by defining the set S1 as the set of literals of C1 and the set S2 as the set of literals of
C2. For example the distance between the clauses (x+a+b) and (x+c) is 1, because
both contain the variable x, as a positive literal in the first clause and as a negative
literal in the second clause. The resolvent of two clauses that have a distance greater
than 1 is a tautology clause, for example (a + b + c) resolved with (a + b + d) results
in (b+b+c+d). Therefore resolution in CNFs only results in non-redundant clauses
when the two clauses resolved have a distance of 1.
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2.2.2 Complexity of SAT

Verifying a possible solution of a SAT problem means checking if the model (the
set of satisfying variable assignments) actually does make the formula evaluate to
1. SAT is very easy to verify, especially if the problem was given as a CNF: given
a prospective model, simply check if every clause in the CNF contains at least one
satisfied literal. If that is the case, the model is valid and the expression is satisfiable.

Solving SAT, on the other hand, is very hard, meaning computationally expensive
in time and used memory for problems with even a moderate number of variables and
clauses. There is so far no known algorithm which does not in the worst case need
an exponentially increasing number of steps in the number of the variables. SAT is
the seminal NP-complete problem (first proved by S. Cook in 1971). SAT was the
first problem that was proved to be NP-complete, and it is still an open question if
efficient algorithms exist for NP-complete problems. In the following an overview of
the notation for describing the complexity of an algorithm and the problem classes P
and NP will be presented.

2.2.3 Big O notation

Computational complexity theory is concerned with the mathematical assessment of
the resources required to solve a problem depending on the size of the problem in-
stance. Resources are for example time steps and memory space. The problems can
then be sorted into complexity classes.

An algorithm is a method that computes the correct answer for a problem for every
possible valid input. A very simple algorithm is for example the manual computation
of the sum of two numbers. If each number has n digits, then the sum is computed in
about 2n steps (including carry-over additions). The effort (in time steps) to compute
the sum of two numbers therefore progresses in a linear fashion depending on the
size of the numbers n.

Different computers that run this algorithm may differ greatly in the execution time
required due to their architecture, but ultimately a computer that is 10 times as fast
as another will also compute a sum about 10 times faster. To abstract away such
implementation differences, the complexity of algorithms is usually given in Big O
notation. Big O notation removes any additive and multiplicative constants and only
gives the dominant term of a complexity measure. For the addition algorithm, the
required 2n operations is noted as O(n) in Big O notation.

Another simple algorithm is the multiplication of two numbers with n digits, which
requires about n2 operations (additions) when using the “long multiplication” method
that is taught in school. Long multiplication is therefore an algorithm with a O(n2)
time complexity. Multiplication is not inherently O(n2) though, just the long multi-
plication algorithm is; in fact, a faster algorithm for muliplication exists that is only
O(nlog2 3) [Karatsuba62] and even faster ones have been invented.
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Algorithms whose time complexity is polynomial (O(nk), k > 0) are called fea-
sible. These are of the greatest interest for actual applications due to their good be-
havior for large problem sizes. Problems that have no feasible algorithms are called
intractable.

As computers become faster, the maximum problem size solvable in the same time
becomes greater to some degree. In the following it is assumed that a “new” computer
is 1000 times as fast as the “old” computer. For a problem whose algorithm runs in
O(n), the new computer will be able to solve a problem that is 1000 times larger
in the same time as the old computer. But for a O(n2) algorithm the problem size
solvable in the same time with the new computer is only about 31.6 (

√
1000) times the

original size, and for a O(n3) algorithm only 10 times. Larger exponents of n mean
even lower solvable problem size gains, although it is at least multiplied with some
constant factor. Very large exponents are uncommon though for natural problems,
which are usually limited to about O(n4).

In contrast, for a problem with a O(2n) algorithm the solvable problem size in-
creases only about by a constant 10, an additive rather than a multiplicative gain.
Clearly very large problems remain de facto unsolvable if the algorithm has expo-
nential time complexity.

2.2.4 Complexity class P
Problems that have a “yes or no” answer are called decision problems or languages.
For example deciding if a graph contains an Euler tour, a path that visits each edge
of the graph exactly once, is a decision problem. This problem is named after Swiss
mathematician Leonhard Euler (1707 - 1783), who was the first to solve it.

The first instance of the problem is known as the Seven Bridges of Königsberg
problem, because Königsberg has two large islands formed by the Pregel River, which
are connected to the mainland and each other by seven bridges (Fig. 2.1). The ques-
tion is if it is possible to walk on a path through the city so that each bridge was
crossed only and exactly once. Euler proved in 1736 that this was not possible.

Fig. 2.1 shows a simplified map of Königsberg with the seven bridges and the two
islands. The four distinct landmasses (the two sides of the river and the two islands)
can be abstracted to the vertices, and the bridges to the edges of a graph (a set of
vertices connected with edges), as shown on the right of Fig. 2.1. The problem is
now simplified to finding a path through the graph that traverses each edge exactly
once. Euler found that a graph contains an Euler tour if and only if every vertex has
an even number of incoming edges. Therefore the algorithm for solving the Euler
tour problem has a time complexity of O(m) where m is the number of vertices. The
Seven Bridges of Königsberg problem was shown to have a negative solution since
every vertex had an uneven number of incoming edges.

The Boolean formula evaluation problem is another decision problem. It asks for
a given Boolean formula and values to assign for all of its variables if the formula
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Figure 2.1: Illustration of the Seven Bridges of Königsberg problem

evaluates to true. When the Boolean formula is given as a CNF of the length n, the
algorithm that solves this problem is O(n).

This leads to the definition of P (for polynomial), which is the class of decision
problems or languages that are solvable in polynomial time on a deterministic Turing
machine. A Turing machine is a very simple model of computer with a memory
tape that is still an accurate representation of the much more sophisticated machines
that are actually used in practice. It was invented in 1936 by English mathematician
Alan Turing (1912 - 1954), who is considered to be the father of modern computer
science and after whom the Turing Award, the computer science equivalent of the
Nobel Prize, is named. Both the Euler tour problem as well as the Boolean formula
evaluation problem belong to P. Problems that are in P are by definition feasible.

2.2.5 Complexity class NP

As opposed to the Euler tour problem, there are also problems from graph theory that
do not belong to P. For example a Hamiltonian cycle is a path in a graph that visits
each vertex exactly once and also returns to the starting vertex. There is no known
algorithm that can decide in polynomial time if a given graph contains a Hamiltonian
cycle. Closely related to this problem is the well-known Traveling Salesman Problem
(TSP), where each edge of the graph has a cost associated with it and the question is
if there is a Hamiltonian cycle so that the sum of costs of the traversed edges is less
than a given budget. There is also no known polynomial time algorithm for TSP. SAT
has a time complexity of O(m2n) for m being the size of the CNF and n variables
and is therefore also not in P.

Although solutions for all these problems can apparently not be computed in poly-
nomial time, it is possible to verify a candidate solution in polynomial time (verify
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here means checking the validity of the solution). For the Hamiltonian cycle and TSP,
a path through the graph can be verified quickly, while for SAT the verification is in
essence the same as the Boolean formula evaluation problem.

These decision problems have polynomial time verification algorithms, and for
every positive (“yes”) answer there is a proof that is polynomial in size in respect to
the problem size, for example a Hamiltonian cycle, a cycle with the smallest cost for
TSP or a satisfying assignment for SAT.

These problems belong to the complexity class NP (which stands for Non-
deterministic Polynomial time), the class of decision problems whose proofs can be
verified in polynomial time by a deterministic Turing machine. As an equivalent
definition NP is the class of decision problems whose solutions can be computed
in polynomial time on a non-deterministic Turing machine. Any language in P is
also automatically in NP, since problems in P are solvable in polynomial time and
therefore obviously also verifiable in polynomial time.

2.2.6 The P=NP problem

One of the most important open problems in Mathematics is the P=NP problem: since
problems in NP are verifiable in polynomial time and with polynomial size proofs,
could they be solvable in polynomial time as well? Or are these classes truly distinct?

P=NP is one of the Millenium Prize Problems: originally 7, now 6 remaining open
questions in Mathematics that are considered to be of particular historic interest or
importance. They were named by the Clay Mathematics Institute of Cambridge,
Massachusetts (CMI), which awards 1 million US$ for solving one of the problems.

2.2.6.1 NP-completeness

An important concept for the P=NP problem is NP-completeness. A language is NP-
complete if it is in NP and every other language in NP can be transformed into it (is
reducible to it) in polynomial time. If a language satisfies only the latter condition
(every language in NP is reducible to it) then it is called NP-hard no matter if it
is itself in NP or not. It was also shown that P=NP if and only if a NP-complete
language is in P.

Stephen Cook proved in his 1971 paper “The Complexity of Theorem Proving
Procedures” [Cook71] that SAT is NP-complete (Cook’s theorem), and received the
Turing Award for this work in 1982. Richard Karp published the paper “Reducibil-
ity Among Combinatorial Problems” [Karp72] in 1972 in which he proved the NP-
completeness of 21 problems (including many industrial problems), for which and
other contributions he would receive a Turing Award in 1985. Then in 1979 Michael
R. Garey and David S. Johnson published their book “Computers and Intractability:
A Guide to the Theory of NP-Completeness” [Garey90] which contains over 300
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NP-complete problems. At present, thousands of NP-complete problems are known,
many of which have important applications.

The large number of applications in which NP-complete problems are to solve
indicates how important P=NP is. But there are also some important problems that
are in NP, but are not NP-complete. These include the problems of determining graph
isomorphism and proving that a number is a prime or a composite. NP is not by far
the most difficult problem class though. For example, there are problems that are
doubly exponential, as well as undecidable problems for which no algorithm can be
designed at all, for example the Halting Problem for Turing machines.

2.2.7 Variants of SAT and related problems

In the following some variants of SAT and some problems that are closely related to
SAT will be presented. Some are only different in the prescribed form of the CNF,
others change the objective of the problem substantially. The changes can lead to the
problem becoming easier or harder than the general SAT problem.

2.2.7.1 k-SAT

The problem of determining the satisfiability of a CNF in which all clauses con-
tain exactly k literals is called k-satisfiability (k-SAT). For k = 3 this is called 3-
satisfiability (3-SAT). Any k-SAT problem of k > 3 can be reduced to a 3-SAT
problem (this introduces new variables into the transformed CNF) [Karp72]. Since
3-SAT was proved to be NP-complete [Karp72], it must follow that k-SAT for k > 3
is NP-complete.

In contrast, the 2-satisfiability problem (2-SAT), where each clause has exactly 2
literals, is easier than 3-SAT and there exists a polynomial-time algorithm that solves
it.

2.2.7.2 Horn-satisfiability (HORNSAT)

A clause that contains at most one positive literal is called a Horn clause (after Amer-
ican mathematician Alfred Horn). The Horn-satisfiability problem (HORNSAT) is
determining the satisfiability of a CNF containing only Horn clauses. HORNSAT is
solvable in polynomial time and is in fact P-complete.

2.2.7.3 Maximum Satisfiability (MAX-SAT)

Given a CNF, the Maximum Satisfiability problem (MAX-SAT) asks for a set of as-
signments to the CNF’s variables that maximizes the number of satisfied clauses (or in
other words minimizes the number of unsatisfied clauses). This makes the SAT prob-
lem a special case of MAX-SAT. MAX-SAT is NP-hard rather than NP-complete,
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even for CNFs where all clauses have exactly 2 literals (MAX-2-SAT). NP-hard prob-
lems are problems that are at least as hard as problems in NP but not necessarily in
NP themselves.

2.2.7.4 Unsatisfiable cores

An unsatisfiable core of an unsatisfiable CNF is a subset of its clauses that form a
still unsatisfiable CNF. A minimal unsatisfiable core contains a subset of the CNF’s
clauses that is unsatisfiable, and which becomes satisfiable if any of the clauses is
removed. A minimum unsatisfiable core is the smallest possible subset of the CNF’s
clauses that is unsatisfiable. Computing unsatisfiable cores is important for various
industrial applications, and DPLL SAT solvers can be adapted to find minimal cores
[Lynce04], though no practical algorithm is known that can find minimum cores.

2.2.7.5 Satisfiability Modulo Theories (SMT)

Some problems of industrial interest are easier to formulate in logics that are more
expressive than propositional logic and therefore allow a higher level of abstraction.
An example is the verification of pipelined processors [Burch94], where the logic
of Equality with Uninterpreted Functions (EUF) can be used to abstractly represent
the data operations in the processor. Due to the great success of SAT solvers, DPLL-
based and otherwise, it has been attempted to translate the progress made there on the
more expressive logics. This is the Satisfiability Modulo Theories (SMT) problem:
given a background theory T and a formula F containing propositional atoms as well
as atoms over the theory T , determine if F is T-satisfiable.

One way to solve SMT is called the eager approach and consists of translating
the SMT instance into a Boolean SAT instance, which can then be solved with any
SAT solver. For example in [Bryant01] methods are described for how to efficiently
translate pipelined processor verification SMT problems as generated in [Burch94]
into Boolean SAT. The eager approach has the obvious advantage of being able to rely
on off-the-shelf SAT solver technology, but a major drawback is that it can not take
advantage of simplifying properties of the background theory T during the solving
process. Therefore different ways of solving SMT were investigated that integrate
DPLL and a solver for theory T directly: this is called the lazy approach (for example
the DPLL(T) procedure [Nieuwenhuis06]). For an overview of SMT, see for example
[Nieuwenhuis05].

2.2.7.6 Quantified Boolean Formulas (QBF, QSAT)

The Quantified Boolean Formula problem (QBF, also known as QSAT (Quantified
SAT)) is closely related to, and is in fact a generalization of SAT. A QBF has the
following form:
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Q1x1 . . . Qnxnφ (2.7)

φ is a Boolean expression in n variables xi (i = 1 . . . n). The Qi are quantors.
Every Qi is either a existential quantifier (symbol ∃) or a universal quantifier (sym-
bol ∀). In words ∃xφ means “there exists (at least) one truth value (1 oder 0) for
x so that the expression φ becomes true”, and ∀xφ means “for all truth values (1
oder 0) of x the expression φ becomes true”. Different quantifiers can be combined
by concatenation, for example ∃x∀yφ means “there exists a truth value for x so that
for all y the expression φ becomes true”. SAT is essentially a QBF with only exis-
tential quantifiers. Every QBF can be transformed into an equivalent, quantifier-free
Boolean expression that can be SAT-checked with any SAT solver.

In contrast to a SAT problem, whose proof takes space that grows linearly in re-
spect to the problem size, the proof of a QBF can take much more space. The com-
plexity class PSPACE, the set of all decision problems which can be solved by a
Turing machine using a polynomial amount of space, is a superset of the complexity
class NP and QBF is the canonical PSPACE-complete problem. QBF solving has
been applied to industrial problems like Bounded Model Checking [Dershowitz05]
where they allow the formulas to be checked to be in a much more compact form.

2.3 Applications of SAT

In this section examples for SAT encodings of various problems will be presented.
See for example [Marques-Silva08] for a list of applications of SAT.

2.3.1 Pigeonhole principle

The pigeonhole principle states that when given n objects and m containers (n > m),
then after placing the objects in the containers at least one container will hold more
than one object.

The pigeonhole principle can be expressed as a SAT problem that asks if n pigeons
can be placed in n− 1 holes so that no hole holds more than one pigeon (the problem
is obviously unsatisfiable since the pigeonhole principle states that this is impossible).
Assuming n pigeons and n− 1 holes, the variable xi,j is true if pigeon i is placed in
hole j, therefore there will be n(n − 1) propositional variables in the SAT problem.
A CNF can then be constructed that evaluates to true if two conditions are met: all
pigeons are placed in at least one hole, and no two pigeons are placed in the same
hole. The first condition can be expressed as a set of n clauses in the following form:

(xi,1 + xi,2 + ... + xi,n−1), i ∈ {1, ..., n} (2.8)
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The second condition requires that there is no occurence of any combination of two
pigeons occupying the same hole, which can be expressed as another set of clauses:

(xi,k · xj,k) = (xi,k + xj,k);

k ∈ {1, ..., n− 1}; i, j ∈ {1, ..., n}; i 6= j
(2.9)

Since both conditions have to be fulfilled, the complete CNF consists of the combi-
nation of both clause sets. The CNF for n pigeons and n − 1 holes has n(n − 1)
propositional variables and n+(n− 1)(n− 1)n

2
clauses. As an example, for the case

of n = 4 pigeons and 3 holes the first clause set is:

(x1,1 + x1,2 + x1,3)

(x2,1 + x2,2 + x2,3)

(x3,1 + x3,2 + x3,3)

(x4,1 + x4,2 + x4,3)

The second clause set for n = 4 is:

(x1,1 + x2,1)(x1,1 + x3,1)(x1,1 + x4,1)

(x2,1 + x3,1)(x2,1 + x4,1)

(x3,1 + x4,1)

(x1,2 + x2,2)(x1,2 + x3,2)(x1,2 + x4,2)

(x2,2 + x3,2)(x2,2 + x4,2)

(x3,2 + x4,2)

(x1,3 + x2,3)(x1,3 + x3,3)(x1,3 + x4,3)

(x2,3 + x3,3)(x2,3 + x4,3)

(x3,3 + x4,3)

Using these clauses as input for a SAT solver will make the solver look for an assign-
ment to the variables so that the entire formula evaluates to true, which will of course
fail. Encoded pigeonhole problems for large n are used as benchmark problems to
test SAT solvers. It was proved that any DPLL algorithm based SAT solver takes
exponentionally rising time to solve pigeonhole problems [Haken84].

2.3.2 Tseitin transformation
Not every SAT encoding of a problem will likely result in a CNF directly. However,
any Boolean formula can be transformed into CNF, but unfortunately this can take
space and time that is exponential in the size of the original formula. For the pur-
poses of SAT checking the Tseitin transformation [Tseitin68] can convert a Boolean
formula into a CNF that has the same satisfiability as the original formula, in space
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Figure 2.2: Example circuit for Tseitin transformation

and time linear to the original’s size. This is achieved by introducing new variables
for the sub-expressions of the original formula, so while the satisfiability is preserved
the CNF is not the same formula as the original.

Tseitin transformation is especially useful when a combinational Boolean circuit
has to be translated into CNF. A combinational Boolean circuit consists of Boolean
logic gates and wires that connect them. The formula a + bc (which is in disjunctive
normal form) can be tranformed into CNF by applying the negation, DeMorgan- and
distribution rules:

a + bc = a + bc = a(bc) = a(b + c)

= ab + ac = (ab)(ac) = (a + b)(a + c)

Fig. 2.2 shows the representation of a + bc as a combinational Boolean circuit with
the new variables x, y and z that are the “outputs” of the sub-expressions. The rela-
tion between the inputs, the operation and the outputs of every gate in the circuit can
be described by the Boolean logic equality function (XNOR), yielding one charac-
teristic function each. For example the characteristic function of the last OR gate in
the circuit is (z ≡ a + y). The characteristic function evaluates to 1 if the assign-
ments to the input and output variables describe a valid configuration for the circuit,
for example a = 0, y = 0, z = 0 is a valid state of the last gate and the characteristic
function will be (0 ≡ 0 + 0) = (0 ≡ 0) = 1, while a = 0, y = 0, z = 1 is impossible
and the characteristic function is (1 ≡ 0 + 0) = (1 ≡ 0) = 0.

The conjunction of the characteristic functions of all sub-expressions of the for-
mula gives the characteristic function of the whole formula, which evaluates to 1 if
the truth value assignments to the variables describe a valid state of the corresponding
circuit and 0 if not. The characteristic function of the corresponding circuit of a + bc
is (x ≡ c)(y ≡ bx)(z ≡ a + y).

Translating the characteristic function into CNF is very easy because it is possible
to pre-compute the CNF of the characteristic functions of the standard gates and then
simply replace the variables of the inputs and outputs accordingly (NOT: Eqn. 2.10,
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OR: Eqn. 2.11, AND: Eqn. 2.12, XOR: Eqn. 2.13).

(x ≡ y) = (x + y)(x + y) (2.10)
(x ≡ y + z) = (x + y)(x + z)(x + y + z) (2.11)

(x ≡ yz) = (x + y)(x + z)(x + y + z) (2.12)
(x ≡ y ⊕ z) =

(x + y + z)(x + y + z)(x + y + z)(x + y + z)
(2.13)

For the example circuit in Fig. 2.2 the Tseitin transformation results in the following
CNF:

(x ≡ c)(y ≡ bx)(z ≡ a + y)

= (x + c)(x + c)

(y + b)(y + x)(y + b + x)

(z + a)(z + y)(z + a + y)

2.3.3 Combinational equivalence checking
A recurring problem in combinational circuit design is the question if two circuits
implement the same Boolean function. This can be formulated into a SAT problem
by building a miter circuit. Both circuits have to have the same number of outputs
obviously. To build the miter circuit, every corresponding output of the two circuits
is connected to a XOR gate, and all outputs of the XOR gates are connected to an
OR gate. The output of the OR gate is only ever 1 if and only if the two circuits
implement different Boolean functions.

To formulate a SAT problem, the miter circuit is translated into a CNF using Tseitin
transformation and the condition “output of the OR gate is 1” is enforced by adding
a unit clause with the positive literal of the OR gate output. This means that the CNF
is unsatisfiable if and only if the two circuits are equivalent.

Fig. 2.3 shows an example miter circuit. The two circuits to compare implement
the formulae ¯(ab) and ā + b, which is the same Boolean function (NAND). The
new variables c, v, w, x, y, z have been introduced for the results of sub-expressions,
where z is the output of the miter circuit’s XOR gate. Since the original circuits
have only one output, no OR gate is necessary for the miter circuit. The Tseitin
transformation of this circuit, including the condition that the output of the XOR gate
is 1 (adding a unit clause (z)), results in the following CNF:

(x ≡ a)(y ≡ b)(c ≡ x + y)(w ≡ ab)(v ≡ w)(z ≡ v ⊕ c)(z)

= (x + a)(x + a) (y + b)(y + b) (c + x)(c + y)(c + x + y)

(w + a)(w + b)(w + a + b) (v + w)(v + w)

(z + v + c)(z + v + c)(z + v + c)(z + v + c)

(z)
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Figure 2.3: Example miter circuit for Combinational Equivalence Checking

The CNF is unsatisfiable because the two circuits under comparison both implement
the same function, hence the XOR gate output can never be 1.

2.3.4 DIMACS CNF file format for SAT problems

The standard file format that is used for interchanging SAT problems in CNF was
proposed by the Center for Discrete Mathematics and Theoretical Computer Science
(DIMACS) [Dim]. It is a simple text file format that contains the clauses of the CNF
as lines of numbers. DIMACS files usually have the .cnf suffix. MiniSAT, Chaff
and most other SAT solvers can read DIMACS files.

DIMACS files consist of a preamble section that contains information about the
problem instance, and the clause section that contains the actual clauses. In the
preamble, comment lines start with the letter c followed by a space. The prob-
lem line is always the last line of the preamble and has the format “p FORMAT
VARIABLES CLAUSES”. FORMAT is always cnf for CNF data and VARIABLES
and CLAUSES respectively give the number of variables and clauses of the problem.

The clause section follows after the problem line. Each variable of the problem
has a non-zero integer value, and literals are written as positive or negative integers.
The positive literal of the variable is written as the positive number, and the negative
literal as the corresponding negative number. For example if the variable x was given
the number 5, the positive literal x would be represented by 5 and the negative literal
x̄ would be represented as −5. The literals are separated by whitespace characters
and the end of each clause is indicated by a zero digit. The CNF of the example miter
circuit in Fig. 2.3 results in the DIMACS file shown in Fig. 2.4.
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1 c Example m i t e r c i r c u i t f o r c o m b i n a t i o n a l e q u i v a l e n c e c h e c k i n g
2 c C o r r e s p o n d i n g numbers o f t h e o r i g i n a l v a r i a b l e s :
3 c a =1 , b =2 , c =3 , v =4 , w=5 , x =6 , y =7 , z=8
4 p c n f 8 17
5 −6 −1 0
6 6 1 0
7 −7 −2 0
8 7 2 0
9 3 −6 0

10 3 −7 0
11 −3 6 7 0
12 −5 1 0
13 −5 2 0
14 5 −1 −2 0
15 −4 −5 0
16 4 5 0
17 8 4 −3 0
18 8 −4 3 0
19 −8 4 3 0
20 −8 −4 −3 0
21 8 0

Figure 2.4: Sample DIMACS SAT problem file

2.3.4.1 Shuffled problems

A shuffled SAT problem is one in which the variable indices and the order of the
clauses has been randomly permutated (additionally the polarity of all literals may be
inverted). It is essentially the same problem as the original, but due to the heuris-
tics used in SAT solvers a shuffled problem can take a very different amount of
time to solve; the time may be shorter than for the original problem too though
[Audemard08]. In various parts of the experiments in this experiments shuffled prob-
lems were used. The SAT problems were shuffled with the REORDER program from
the SAT competition toolbox1. REORDER takes a DIMACS CNF file and a random
seed (an integer number) that determines the changes made to the CNF file as argu-
ments, and outputs the shuffled problem in DIMACS format as well.

2.3.5 Bounded model checking

The model checking problem consists of automatically (exhaustive) testing if a given
(simplified) model of a software or hardware system meets some specification. These
are often temporal properties that describe the state of the model at some point in

1Source code was taken from http://www.satcompetition.org/2003/TOOLBOX/reorder.c
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time or throughout a time period, for example “after a request the system will send
an acknowledgement in at most 2 time steps” or “the valid output signal will be held
for at least 5 time steps”. Temporal properties can be specified with temporal logic,
for example Linear Temporal Logic (LTL) or Computation Tree Logic (CTL). It is
often required to ensure safety conditions, for example that a state machine never
enters a deadlock, and liveness conditions, for example that it always acknowledges
a request.

In the 1980s the first model checking methods that were implemented explicitly
enumerated states of a system to check properties. Such methods are only usable for
very small systems, since the number of states grows exponentially with the number
of state variables (the state explosion problem). Even a small sequential digital circuit
with 20 binary storage elements (latches or Flip-Flops) will have 220 ≈ 106 possible
states, making explicit storage of states and computation of successor and predecessor
states unfeasible very quickly.

Symbolic model checking [Burch92] was invented around 1990 and is much more
efficient than explicit enumeration. It uses Binary Decision Diagrams (BDDs), a
canonical, graph-based representation of Boolean functions, to efficiently represent
sets of states and the system’s transition behavior. With BDDs the successor and
predecessors of an entire set of states can be computed much more efficiently than
with a explicit representation. To check a specification, a breadth first search of the
state space is performed. A major success of BDD based symbolic model checking
was achieved by Clarke and his students 1992 at Carnegie-Mellon University using
the SMV model checker. They found several errors in the cache coherence protocol
of the IEEE Futurebus+ Standard, which had not been detected previously with other
non-formal methods. This was the first time errors were found in an IEEE standard
using formal methods. BDD based symbolic model checking can handle systems
with roughly 50-100 storage elements, but often requires some amount of manual
optimization for larger systems because BDDs suffer from exponential memory re-
quirement.

Bounded model checking (BMC) [Biere99], invented around 1999, is a SAT-based
model checking method that is capable of checking larger systems than symbolic
model checking. The underlying principle of BMC is replicate the transition system
under test several times and connecting these copies in series (this is called unfolding,
Fig. 2.5). Each copy represents the system at a certain time step (for example a clock
cycle in the case of a digital circuit), and the copies that follow after it represent the
system at later time steps, so the first copy in the sequence represents the system’s
state at time t+0, the next at time t+1 and so on. This also means that any properties
are only checked for the bounded number of time steps for which the circuit is un-
folded (although it is possible to check infinite looping paths). The unfolded system,
together with terms for the initial state and the specification to be checked, is then
translated into a propositional formula. If this formula is unsatisfiable the specifica-
tion is correct, or if it is satisfiable the solution encodes a counterexample or witness
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Figure 2.5: Principle of BMC: unfolding a system over several time steps

that describes a situation where the specification does not hold.
The advantages of BMC are that they avoid the memory requirement problem of

BDDs and that checking even of large systems can be fast. The disadvantage of BMC
is that it is generally not complete, meaning that not all specifications can be proved
to hold or not due to limits on the length of unfolding. BMC complements rather than
replaces other model checking methods.

Generating the propositional formula of the unfolded transition system is accom-
plished by using the system’s transition relation. A transition system with n storage
elements s1, . . . , sn and m inputs i1, . . . , im can be described with n transition func-
tions δ1(s1, . . . , sn, i1, . . . , im) - δn(s1, . . . , sn, i1, . . . , im) (the input functions of the
storage elements). By introducing the new variables s′1 . . . , s′n for the next values of
the state variables the system’s transition behavior can also be described by a sin-
gle formula, its transition relation T (Eq. 2.14). For example, Eqn. 2.15 shows the
transition relation of a simple 2-bit counter (a is the low bit and b is the high bit).

T =
n∏

r=1

(s′r ≡ δr(s1, . . . , sn, i1, . . . , im)) (2.14)

T = (a′ ≡ a)(b′ ≡ a⊕ b) (2.15)

When dealing with several time steps, each time step t has a set of corresponding
current state variables st,1 . . . st,n and current input values it,1 . . . it,m. The transition
relation of a system unfolded over k time steps is simply the the conjunction of all
transition relations of each single time step, where the next and current state variables
and inputs are replaced accordingly.

An example specification to check for the 2-bit counter (Eqn. 2.15) is “Can the
counter reach the state where both variables a and b are 1 within two time steps
starting from the state where both variables are 0”. Obviously this is impossible
since the counter will go through the states in the order (0, 0), (0, 1), (1, 0), (1, 1) and
therefore reaches the (1, 1) state in the third time step at the earliest. Let the state
variables of the counter at time step 0, 1 and 2 be be a0, b0, a1, b1 and a2, b2. This
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system has no input variables. The start condition that the counter starts with a0 = 0
and b0 = 0 can be encoded as the Boolean term (a0b0). The specification that the
state variables are both 1 at time step 0, 1 or 2 can be encoded as (a0b0 +a1b1 +a2b2).
The resulting BMC propositional formula is the conjunction of the starting condition,
the transition relation of the counter for two time steps and the specification:

(a0b0)

(a1 ≡ a0)(b1 ≡ a0 ⊕ b0)

(a2 ≡ a1)(b2 ≡ a1 ⊕ b1)

(a0b0 + a1b1 + a2b2)

This formula can be translated into CNF and checked for satisfiability.
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Chapter 3

DPLL Algorithm

A number of algorithms exist for solving SAT problems. They are divided into com-
plete and stochastic methods: complete algorithms can always prove that a given
Boolean formula is either satisfiable or unsatisfiable given enough runtime and mem-
ory, while stochastic algorithms can only find a solution for satisfiable problems,
but are unable to prove that a formula is unsatisfiable. A very detailed overview of
complete and stochastic SAT solving algorithms can be found in [Gu96]. Stochas-
tic algorithms are applied when proving unsatisfiability is not required, for example
for FPGA routing [Nam99], but for verification problems complete algorithms are
needed.

The currently most efficient SAT solvers for industrial applications are based on
extended versions of the algorithm proposed by Davis, Logemann and Loveland
[Davis62] in 1962 which is usually called the DPLL or DLL algorithm. DPLL is
a complete, backtracking-based algorithm that performs a depth-first search of all
possible variable assignments to find a model. If no model is found, then the prob-
lem must be unsatisfiable. Later versions of the algorithm introduce learning new
clauses during the search and various other improvements that substantially improve
the “classic” version, especially for structured, industrial problems. A formal proof
of DPLL’s correctness can be found in [Marić10].

In this chapter the basic DPLL algorithm as well as the improvements that are in
use in modern SAT solvers will be presented, with a focus on their implementation in
MINISAT. For more details, various overview articles on modern SAT solvers exist in
the literature, for example [Zhang02; Dixon04; Eén04] and [vanHarmelen07, ch. 2].

3.1 Classic DPLL

Fig. 3.1 shows the pseudocode of the DPLL algorithm in its recursive form (taken
from [Marić10]). This form of the DPLL algorithm is known as the “classic” DPLL
algorithm as presented in [Davis62]. The SAT problem to be solved is a CNF for-
mula φ. The expression φ(l) stands for the CNF that is obtained by replacing all
occurrences of the literal l in φ with 1 and of l̄ with 0, then simplifying (this effec-
tively deletes clauses which contained l from the CNF and removes l̄ from the clauses
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containing it).

1 P r o c e d u r e DPLL(CNF f o r m u l a φ )
2 i f φ i s empty re turn yes .
3 e l s e i f t h e r e i s an empty c l a u s e i n φ re turn no .
4 e l s e i f t h e r e i s a pu re l i t e r a l l i n φ re turn DPLL(φ(l) )
5 e l s e i f t h e r e i s a u n i t c l a u s e {l} i n φ re turn DPLL(φ(l) )
6 e l s e
7 s e l e c t a v a r i a b l e v o c c u r r i n g i n φ
8 i f DPLL(φ(v) ) = yes
9 re turn yes .

10 e l s e
11 re turn DPLL(φ(v̄) ) .
12 end
13 end

Figure 3.1: The DPLL algorithm in recursive form [Marić10]

If φ consists only of clauses that contain a 1 (φ is “empty”), then the CNF is satis-
fied and the algorithm exits after backtracking with the result “yes” (SAT). Otherwise
if at least one clause in φ evaluates to 0 (the clause is “empty” because all literals in it
are valued 0) then the entire formula evaluates to 0 and DPLL returns “no” (UNSAT).
This situation is also called a conflict), which causes DPLL to backtrack to an earlier
recursion level. The clause that is the cause of the conflict is called the conflicting
clause [Zhang03].

If neither of these apply, the CNF is simplified by assigning 1 to any pure literals
(whose opposite literal does not occur in the CNF), which effectively removes all
clauses that contained the literal. When no pure literals are left, DPLL assigns 1
to all literals that are in unit clauses (clauses that contain only 1 literal). In real
SAT solvers the pure literal rule is often not used during the search, but only once
at the beginning since the effect of this rule tends to be negligible and it is costly to
implement.

The simplifications result in recursive calls to the DPLL procedure with succes-
sively more simplified CNFs. When neither pure literals nor unit clauses are left in
the CNF, a variable v to branch the search on is chosen (this is called making a deci-
sion) and DPLL is recursively called on the CNF φ(v). If this partial CNF becomes
SAT at some point, DPLL returns SAT, otherwise DPLL is recursively called on the
CNF φ(v̄) with the opposite assignment of v. This is called the splitting rule, since
the assignments split the CNF into smaller partial problems where a variable has been
replaced with either a constant 1 or 0.

The search space of a SAT problem can be represented by a binary tree, also called
a decision tree [Silva96]. Fig. 3.2 shows an example tree for the formula (a + b),
which is obviously satisfiable. DPLL starts at the root node at the top of the tree,
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Figure 3.2: Binary tree representation of a SAT problem’s search space

where no variables are so far assigned and the value of the formula is still undeter-
mined (nodes where the formula’s value is undetermined are marked with a “U” for
clarification). At every node an assignment to one of the variables is made, with the
search progressing down either to the left edge for 0-assignments, or down the right
edge for 1-assignments. Depending on the assignment the value of the formula can
remain undetermined or become 0 (conflict) or 1 (SAT); the node is then marked with
“0” or “1”.

If DPLL encounters a conflict, some assignments are taken back and the algorithm
backtracks to a node further up the tree, then continues there with the opposite, un-
tried assignment (Fig. 3.3). At the leaf nodes at the very bottom all the variables have
been assigned and the formula must have a determined value. The formula is UNSAT
if all the leaf nodes result in a 0 for the value of the formula, and it is SAT if there is
at least one (leaf) node that has the value 1.

3.2 Conflict-driven clause learning (CDCL)

The features that make DPLL successful on industrial problems are relatively recent
developments. Foremost of these is conflict-driven clause learning (CDCL), which
was introduced in [Silva96]. The original DPLL algorithm uses chronological back-
tracking, so called because the backtrack steps always go in the strict order of the
previously assigned decision variables, never “skipping” over decisions which have
been tried in only one polarity so far. When the solver needs to backtrack, it looks
for the last decision that has not been tried in both polarities and assigns the oppo-
site truth value (the decision is flipped). In contrast, SAT solvers with CDCL use
non-chronological backtracking which can “jump” back over several not yet flipped
decision variables at once, pruning a large part of the search space, by analyzing the
conflict more thoroughly. Non-chronological backtracking is intertwined with clause
learning: the information gained from analyzing a conflict is expressed as a learned
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Figure 3.3: Backtracking in the DPLL algorithm

clause (also conflict clause) that is added to the CNF, which also serves to avoid
arriving at the same conflict later. The underlying proof system of CDCL is funda-
mentally more powerful than chronologically backtracking DPLL, which is vital for
solving many structured problems, but classic DPLL is more efficient for randomly
generated problems [Beame04].

In [Silva96] DPLL was rewritten as an iterative algorithm, and the structure of the
algorithm was logically partitioned into three engines: the decision, deduction and
diagnosis engines. Fig. 3.4 shows the pseudocode of the iterative form of the DPLL
algorithm (taken from [Zhang02]). One of the advantages of the iterative form is that
it makes non-chronological backtracking easier to implement. Implementations of
DPLL usually differ mostly in the details of the three engines. The decision engine’s
responsibility is choosing branching variables (decisions), and the deduction engine
computes the implications of assigned decisions and detects resulting conflicts. If
conflicts occured, the diagnosis engine analyzes them and deduces how far to back-
track.

3.2.1 Preprocessor

In addition to the engines the preprocessor (preprocess() in line 1 of Fig. 3.4) is some
algorithm or set of algorithms that transform the CNF in some way beneficial to solv-
ing before the actual DPLL algorithm is entered. Examples for such techniques are
simple removal of redundancies like duplicated clauses, duplicate literals in clauses
and tautology clauses, but also the application of the unit clause rule and the pure
literal rule to ensure that the CNF contains no obvious required assignments before
the search. MINISAT 1.14 for example only removes redundancies and applies BCP,
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1 s t a t u s = p r e p r o c e s s ( ) ;
2 i f ( s t a t u s !=UNKNOWN)
3 re turn s t a t u s ;
4 whi le ( 1 )
5 {
6 d e c i d e n e x t b r a n c h ( ) ;
7 whi le ( t r ue )
8 {
9 s t a t u s = deduce ( ) ;

10 i f ( s t a t u s == CONFLICT)
11 {
12 b l e v e l = a n a l y z e c o n f l i c t ( ) ;
13 i f ( b l e v e l == 0)
14 re turn UNSAT;
15 e l s e
16 b a c k t r a c k ( b l e v e l ) ;
17 }
18 e l s e i f ( s t a t u s == SAT)
19 re turn SAT ;
20 e l s e
21 break ;
22 }
23 }

Figure 3.4: Pseudocode of the DPLL algorithm in iterative form [Zhang02]

but does not use the pure literal rule.
[Lynce01] contains an overview of preprocessing techniques and investigates their

effectiveness experimentally. Apart from the previously mentioned basics it investi-
gated techniques for detecting equivalency of variables, limited forms of resolution
for generating new clauses and probing techniques that identify necessary assign-
ments. A surprising result of that study was that preprocessing does not necessarily
reduce search time even if it significantly reduces the number of variables and infers
a lot of additional clauses.

[Eén05b] introduced efficient preprocessing techniques that were shown to de-
crease formula sizes further and also improve solving times for industrial problems
more consistently than previous algorithms. The techniques are implemented in the
SATELITE preprocessor, which became a part of MINISAT following version 2.

3.2.2 Decision engine

The decision engine is implemented in the decide next branch() function (line 6 of
Fig. 3.4) and chooses a currently unassigned (free) variable to branch on, as well as
the truth value that will be assigned to it. Decision variables are given a decision
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level that starts with 1 for the first decision and is incremented by 1 each for every
following decision. Any variables assigned during preprocessing have the decision
level 0.

3.2.3 Deduction engine
After the decision the deduce() (line 9 of Fig. 3.4) function (deduction engine) will
determine and apply all forced assignments and detects if a conflict arises from these.
All implied variables that follow from a decision with the decision level n also are
given the decision level n. Running the deduction engine will result in the formula ei-
ther remaining undetermined or becoming SAT or UNSAT. A SAT result will end the
algorithm, or if the formula remains undetermined another decision is made (increas-
ing the decision level by 1). If the formula becomes UNSAT, a conflict has occurred
and the diagnosis engine has to analyze it.

3.2.4 Diagnosis engine
If the formula became UNSAT, the analyze conflict() function (diagnosis engine, line
12 of Fig. 3.4) will determine the reason for the UNSAT state, meaning it will an-
alyze why a clause contains only 0-valued literals. This will result in a backtrack
level, which is the decision level to which the algorithm needs to revert to resolve
the current conflict. If the backtrack level is 0, it means that resolving the conflict
is not possible at all and the algorithm exits with the result that the formula is UN-
SAT. On the other hand if the conflict is resolvable, the diagnosis engine will prepare
some assignment that will be used for the following call of deduce(), and it can store
some information that will avoid the same conflict in the future (usually in the form
of learned clauses that are added to the CNF).

In the following sections some of the more popular implementations of the engines
will be presented in detail.
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3.3 Decision engine

The purpose of the decision engine is to choose one free variable that will be branched
on as well as the truth value to assign to it. In the pseudocode of the DPLL algorithm
in Fig. 3.4 it is implemented inside the decide next branch() function. The variable
order should cause the DPLL algorithm to traverse as small as possible a part of the
entire search space until it finds a model or proves that the CNF is UNSAT. Computing
the optimal variable order for DPLL was proven to be both NP-hard and coNP-hard
(and also to belong in the complexity class PSPACE, which is a superset of NP)
[Liberatore00], therefore practical decision-making algorithms are always heuristic
in nature. While the decision heuristic is an important part of the solver, it was found
that for real-world SAT instances techniques for pruning the search space (like clause
learning) generally have an even larger impact on solving time [Silva99].

The decision algorithm is either static if it uses a predetermined variable order
that never changes, or it is dynamic if the variable order changes depending on how
the search goes. Static variable orders are very slow in practice, so solvers use some
heuristic that dynamically chooses branching variables depending on the current state
of the CNF and/or statistics of the search progress so far. Lastly, the decision heuristic
can also be a meta-heuristic that dynamically chooses among a set of decision heuris-
tics during the course of DPLL (for example [Herbstritt04]). This section presents
a number of successful (dynamic) decision heuristics that have been used in solvers
over the years in roughly chronological order.

3.3.1 Random heuristic (RAND)

The RAND heuristic selects a random free variable and randomly assigns either 0 or
1 to it. Obviously this heuristic does not take any underlying structure of the CNF
or any information collected during the search into account. As the simplest possible
heuristic RAND can serve as a baseline to compare against when investigating the
power of other heuristics.

3.3.2 Böhm’s heuristic

The solver using Böhm’s heuristic had the best performance in the 1992 SAT compe-
tition [Buro93]:

“The idea of the heuristic used in step 4 is based on the idea of selecting a
literal for assignment occuring as often as possible in the shortest clauses
of the formula. Therefore, a shortest clause is either removed or reduced
in size by one. Performing this step a few times, clauses of length 1 will
result often, hence the formula collapses fast.”
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For every variable x of the CNF a vector (H1(x), H2(x), ..., Hn(x)) is computed
according to Eq. 3.1.

Hi(x) = α ·max(hi(x), hi(x)) + β ·min(hi(x), hi(x)) (3.1)

The length n of a vector is equal to the length of the largest (unresolved, meaning
not already satisfied) clause that contains the variable x. Each hi(x) is the number
of unresolved clauses of length i that contain the literal x. The parameters α and β
are weights that have to be set by the user ([Buro93] used α = 1 and β = 2). The
variable that is ultimately chosen as the decision is the one that has the largest vector
according to a lexicographical sorting of all vectors.

3.3.3 MOMS heuristics
In solvers without clause learning the main objective of decision heuristics is to cause
as many unit propagations per branching variable as possible, which should quickly
lead to smaller subformulas and possibly a solution [Dixon04]. A popular implemen-
tation of this idea was MOMS, sometimes also written as MOM’s, which stands for
branching on the variable with Maxmimum Occurrences in clauses of Minimum Size
[O. Dubois93] [Freeman95] [Pretolani93] [Zabih88] (minimum size meaning 2 liter-
als and up). Such variables are the most highly constrained ones in the CNF and are
intuitively more likely to lead the search to a dead end quickly for UNSAT problems
or to force values for yet unassigned variables for satisfiable problems [Dixon04].
There are various methods to make the choice. In [Freeman95] it is suggested to
choose the variable x for which the expression H(x) (Eq. 3.2) is maximal, where w(l)
is the number of occurences of the literal l in the smallest not yet satisfied clauses.

H(x) = w(x̄) ∗ w(x) ∗ 2k + w(x̄) + w(x) (3.2)

The SAT solver SATZ [Li97] uses k = 10 for example.

3.3.4 Jeroslow-Wang heuristics
The Jeroslow-Wang (JW) heuristics [Jeroslow90] compute the value J(l) for literals
l (Eq. 3.3) where ω is a clause of the CNF and |ω| is the number of literals in the
clause.

J(l) =
∑

l∈ω

2−|ω| (3.3)

The one-sided JW heuristic [Jeroslow90] chooses the literal with the highest J(l).
The two-sided JW heuristic [Hooker95] selects the variable x which has the largest
sum of J(x) + J(x̄) and assigns x = 1 if J(x) ≥ J(x̄), otherwise x = 0. The
motivation of the JW heuristics is that shorter clauses are considered to be exponen-
tially better than longer ones [Giunchiglia02]. In contrast to MOMS all clauses are
considered, not just the shortest ones.
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3.3.5 Unit Propagation (UP) heuristics

Unit Propagation (UP) heuristics [Freeman95; Crawford96; Li96] are another ap-
proach to decision heuristics which test the impact of a variable assignment by actu-
ally assigning both 0 and 1 and counting the number of resulting implications through
unit propagation. UP heuristics can be considered an “exact” variant of MOMS, but
of course this approach is very costly in computation time due to the need to fully
propagate assignments. A hybrid approach combining MOMS and UP was presented
in [Li97].

3.3.6 DLIS/DLCS/RDLIS (GRASP)

Literal count heuristics [Silva99] count the number of times literals occur in still
unresolved clauses of the current CNF. If p is a literal, let h(p) be the number of times
p occurs in all unresolved clauses. The Dynamic Largest Combined Sum (DLCS)
heuristic will select the free variable x for which h(x) + h(x̄) is maximal (ties are
broken randomly). In other words, DLCS selects the variable occuring most often in
either polarity currently. If h(x) ≥ h(x̄) then x = 1 will be assigned, otherwise x =
0. DLCS attempts to satisfy or shorten (because literals that evaluate to 0 “disappear”
from the clauses) as many clauses as possible with each branch assignment.

Similar to DLCS, the Dynamic Largest Individual Sum (DLIS) heuristic chooses
the literal rather than the variable that occurs most often in the still unresolved
clauses, or in other words the literal p for which h(p) is maximal (ties can be broken
randomly). If the literal p is positive, then the variable of p (var(p)) will be assigned
var(p) = 1, otherwise var(p) = 0. DLIS attempts to satisfy as many clauses as
possible with one branch assignment and to shorten as many clauses as possible with
the opposite branch assignment. DLIS is the default heuristic in the ground-breaking
SAT solver GRASP [Silva96], which introduced clause learning and conflict-driven
non-chronological backtracking.

RDLIS is a variant of DLIS that randomly chooses if a positive or negative assign-
ment is made to the selected variable first, rather than letting the respective number
of literals decide the polarity. This is because DLIS is sometimes too greedy, which
leads to worse performance. A similar RDLCS variant of DLCS can be made the
same way.

3.3.7 VSIDS (CHAFF)

The SAT solver CHAFF [Moskewicz01] was a major step in the evolution of SAT
solvers due to its use of both watched literals for BCP (deduction engine) and
the light-weight but efficient decision heuristic VSIDS. Unlike GRASP’S DLIS the
VSIDS heuristic does not keep track of variable or literal counts in the current CNF,
which is quite expensive, but rather only keeps a “score” (also called activity) for
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each literal (positive and negative) that is increased when a new clause is learned that
contains the literal. The algorithm works as follows:

1. Before the search starts, initialize all activities with the numbers of the respec-
tive literal in the original CNF.

2. When a new learned clause is generated, increase the activity of all literals that
occur in the clause.

3. When a decision is needed, choose the unassigned literal with the highest ac-
tivity (ties are broken randomly).

4. Periodically divide all activities by a constant.

The advantage of VSIDS is its high performance while requiring low computation
overhead.

3.3.8 MINISAT heuristic

MINISAT [Eén04] uses a slightly modified variant of VSIDS. The MINISAT heuristic
(MSH), as implemented in version 1.14 of the solver, is the target for optimization
in this work and will therefore be explained in detail here. In MHS each variable
rather than each literal as in VSIDS has an activity associated with it. Rather than
dividing the activities by a constant periodically as in VSIDS, the increment value
for the activities rises itself: every time a new clause is learned, the activity of each
variable occuring in the clause is increased by a value (“bumped”) which is itself
increased multiplicatively afterwards. The algorithm of the decision heuristic is as
follows:

1. The activities are stored in a vector of double precision floating-point numbers
named activity[N] and are all 0 before the search starts (N is the number
of variables).

2. When a decision has to be made, the variable with the currently highest activity
is chosen (ties are broken randomly). Decision variables are always assigned
the truth value false.

3. When a new learned clause is generated, increase the activity of all variables
that occur in the clause by the current variable incremement value var inc,
which has the starting value 1. Afterwards, var inc is increased itself by
multiplying it with the constant VARDECAY (default value is 1

0.95
≈ 1.053).

It is also checked if any activity exceeds 10100: if yes, all activities and also
var inc are multiplied with 10−100.
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4. With a small probability defined by the constant RANDOMVARFREQ (de-
fault value 0.02 (2 %)), MINISAT sometimes chooses a random variable; this
has been found to help solving some problems without causing too much over-
head for other problems [Eén04].

The parameter VARDECAY is actually given in inverted form to the solver and is re-
inverted for use for the search (since it must be value > 1 to serve as an increasing,
multiplicative factor). The effective range for var decay is then (0, 1], with the
“aging” effect becoming more pronounced the closer to 0 the value gets, but negative
values for VARDECAY can be used to enforce a static variable ordering in MIN-
ISAT. The highest sensible value is 1, since for values greater than 1 the increase
value var inc would become smaller after every learned clause.

The solver parameters VARDECAY and RANDOMVARFREQ were targets for
optimization with EA in this work.

3.3.9 Progress saving
It was found in [Pipatsrisawat07] that standard VSIDS-style decision heuristics do not
deal efficiently with SAT problems that consist of several independent components,
meaning problems where the CNF can be partitioned into sets of clauses that do not
have variables in common. Non-chronological backtracking leads to already assigned
variables being unassigned, undoing the progress achieved in one partial problem
which has to be redone afterwards, possibly multiple times. To remedy this loss of
information [Pipatsrisawat07] introduces an efficient component caching technique
called progress saving for the decision heuristic: every time the solver backtracks
and erases an assignment, the last assigned value is saved in a saved-literal array.
When a decision is later made for a variable whose value has been saved, the saved
assignment is used. Progress saving is easy to implement, has low overhead and was
shown to be effective for real-world SAT instances.
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3.4 Deduction engine
The deduction engine (deduce() function in line 9 of Fig. 3.4) infers forced variable
assignments due to decisions to avoid unnecessary assignments, and also detects con-
flicts resulting from the assignments. Iteratively detecting and assigning implications
due to unit literal clauses is the simplest and also a very effective method of deduc-
tion, therefore all DPLL SAT solvers perform this operation. It is known that in
most cases greater than 90% of the computation time in DPLL is spent propagating
chains of implications [Moskewicz01], making a powerful BCP (Boolean constraint
propagation) engine vital for the efficiency of the solver.

Other deduction mechanisms have been implemented (for example the pure lit-
eral rule and equivalency reasoning [Li00]), but are in practice only effective
for some problem classes while making performance worse in the general case
[Moskewicz01].

SAT solvers usually store the clauses of the CNF as lists of literals in memory.
For example, MINISAT represents variables as integer values, and literals as integers
where the least significant bit indicates the polarity of the literal and the rest of the
bits contain the variable’s number. Clauses are represented as an array of literals,
with an additional integer that stores the size of the clause and in which the least
significant bit indicates if the clause is learned or it was in the original CNF.

After assigning a variable value the solver must detect if any clause now contains
only one unassigned literal and the rest are all 0-valued (then it is a unit clause which
creates an implication), and also when any clause contains only 0-valued literals (then
a conflict has occurred). Clauses that contain at least one 1-valued literal are satisfied
and have no consequences for BCP, and neither do clauses containing at least two
unassigned literals and no 1-valued literals. Various methods to detect implications
and conflicts have been implemented.

3.4.1 Counter-based BCP

A simple method for detecting clauses becoming unit or conflicting is to use coun-
ters [Crawford96]. For example, the solver GRASP [Silva96] uses two counters per
clause, one for the number of 0-valued literals and one for the 1-valued literals in it.
Every variable has two lists associated with it that point at the clauses that contain
its positive or negative literal. When a variable is assigned a value, the respective
counters in the clauses indicated in the lists are updated accordingly. When a clause
becomes unit, its 0-literals counter is exactly one less than the clause size and for a
conflict clause the counter is equal to the clause size. While this scheme is easy to
understand and implement, a major drawback is that the number of necessary updates
rises roughly linearly with the number and size of the clauses [Zhang02]. The up-
dates must be performed when assigning a variable as well as when backtracking, to
revert the counters. Moreover, clause-learning solvers tend to add a large amount of
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relatively long clauses during solving, making this problem even worse.

3.4.2 2-literal watching
The counter scheme for BCP is inefficient because it visits every clause (with all
the memory, cache and CPU operations that implies) that contains a literal that has
just been assigned, even though many of these clauses will likely not generate impli-
cations or become conflicting. Ideally a BCP mechanism would only access clauses
where an implication or a conflict are imminent. Satisfied clauses and not yet satisfied
clauses that contain more than one unassigned literal have no consequence for BCP
and should not be visited at all. A scheme known as head/tail lists that was intro-
duced in the SAT solver SATO [Zhang96] goes towards this ideal because it requires
no operations on clauses that contain literals evaluating to 1 after assigning. The
underying concept is further improved in the solver CHAFF [Moskewicz01], which
implements a BCP mechanism called 2-literal watching.

In the scheme, as the name implies, 2 unassigned literals in every clause are
“watched” and the clause is only inspected when 0 is assigned to either of them.
Every variable has two watch lists that contain pointers to clauses that contain either
the positive or the negative literal. Initially, any two (unassigned) literals in each
clause of the CNF are picked and entered into the respective watch lists. When, for
example, 1 is assigned to the variable v, the negative literals v̄ now all evaluate to 0;
the respective watch list of variable v that contains pointers to watched occurrences of
v̄ is iterated and all clauses in it are inspected. Four different situations are possible:

1. All literals in clause C are 0: exit with result UNSAT.

2. At least one in clause C literal is 1: continue with next clause.

3. C contains exactly one unassigned literal l and the rest are all 0: found the
implication l, continue with next clause.

4. There is at least one unassigned literal l in the clause that is not the other
watched literal: remove the watch on literal v̄ and create a new watch in the
respective watch list of l.

The 2-literal watching scheme requires much fewer clause inspections on assign-
ments than the counting scheme. Additionally, when backtracking the watches can
simply be left in place, requiring no operations at all.

3.4.2.1 Binary clauses

MINISAT also uses an implementation of the 2-literal watching scheme, and addition-
ally (starting with version 1.13) handles binary clauses in a special way. Since binary
clauses consist only of two literals, an assignment of 0 to either of the literals will
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result in an implication for the other literal (or a conflict) immediately. It is possible
and more efficient to store the respective “other” literal directly in the watch lists of
the relevant variables. This avoids the overhead associated with having to create and
manage clause data structures in heap memory and improves performance because
there are no clauses that might need to be loaded from memory into the CPU cache
on inspection. Industrial SAT problems tend to have a large number of binary clauses,
making this relatively simple measure particularly effective.

3.4.2.2 Blocking literals

It was noticed by several authors [Jain07; T. Schubert07] that for industrial problems
watched clauses are often already satisfied. Accessing the clause in memory is likely
to cause a cache miss, therefore some solvers (MINISAT in version 2.2) implement
so-called blocking literals in the watch lists. Every pointer to a watched clause is
paired with a blocking literal from that clause, which can be immediately checked
if it is satisfied or not. If yes, the clause can be skipped, avoiding a costly memory
access.
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3.5 Diagnosis engine
The purpose of the diagnosis engine (analyze conflict() function in line 12 of Fig. 3.4)
is analyzing the reasons for a conflict and computing a backtrack level.

3.5.1 Chronological backtracking
When a conflict has occured, it means that the current subtree (for example Fig. 3.2
after assigning a = 0 and b = 0) of the search space can not contain a satisfying set of
variable assignments and the algorithm has to back up to a previous node to explore
a different subtree. The simplest way to deal with conflicts is to backtrack to the last
tree node for which both assignments have not been tried yet; this is chronological
backtracking and was used in the original DPLL algorithm. It was implemented by
storing a Boolean flag for each variable that indicates if the variable was already
tried in both polarities (flipped) or not. Chronological backtracking is competitive on
randomly generated SAT problems [Zhang01], but on more structured instances like
transformed EDA problems it is inefficient.

3.5.2 Non-chronological backtracking
With non-chronological backtracking the DPLL algorithm can jump back over sev-
eral decision levels (Fig. 3.5) rather than simply to the last decision variable that was
not yet tried in both polarities. This feature, which has its origins in the Constraint
Satisfaction Problem (CSP) domain [Prosser93], was first used in in the SAT solvers
GRASP [Silva96] and RELSAT [Bayardo97].

To avoid missing a possible SAT solution in the part of the search space that is
jumped over, the diagnosis engine must determine exactly which of the previous
decisions were involved in the conflict. For example [Zhang03, pg. 40], if the CNF
contains these 4 clauses:

(ā + b̄ + c)(ā + b̄ + c̄)(ā + b + c)(ā + b + c̄)

and the solver sets variable a = 1 on decision level 3, then the remaining clauses:

(b̄ + c)(b̄ + c̄)(b + c)(b + c̄)

can not be satisfied by any combination of assignments to variables b and c. The
solver will not notice this though until it actually assigns b or c (assigning one will
directly generate an implication for the other, followed by a conflict). The solver
continues for example with variables x and y on decision levels 4 and 5. If b or
c are then assigned at decision level 6, then the solver will immediately encounter
conflicts for any values of b and c. With chronological backtracking the solver then
would return to decision level 5 and flip the variable that was the decision there.
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Figure 3.5: Chronological vs. Non-chronological backtracking

However, following the decision a = 1 at decision level 3 the CNF can never be
satisfied no matter what assignments are made to any other variables, and the solver
uselessly tries out assignments on decision levels 4 and 5 until eventually it can return
to decision level 3 and flip a. A solver with non-chronological backtracking would
have analyzed the conflict at decision level 6 and found that it can only be resolved
by going back to decision level 3 directly.

3.5.2.1 Implication graphs

The process of conflict analysis can be visualized using an implication graph (IG);
Fig. 3.6 shows an example IG [Silva96] (clause k6 was the conflict clause). An IG is
a directed acyclic graph (DAG) where each vertex is labeled with a variable assign-
ment (and its decision level, given after the @) made during the search. The incident
edges of each vertex (which stands for a variable assignment) connects it to the ver-
tices/assignments that were the reason for its assignment, and the edge is labeled with
the clause that caused the implication (its antecendent clause). From this follows that
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decision variables have no incident edges. Fig. 3.6 shows the clauses k1 to k9 of the
CNF relevant for the given IG; it can be seen that for example the assignment x3 = 1
was an implication following from clause k2 due to assigning x1 = 1 and x9 = 0.
When a conflict has occurred, the IG contains two opposite assignment vertices for
the same variable (the conflicting variable); in Fig. 3.6 this is variable x6.

Figure 3.6: Implication graph

A new clause can then be generated from the IG by making a cut; the cut biparti-
tions the IG so that one side contains the conflicting variable (both its vertices). The
side containing the conflicting variable is called the conflict side, the other is the rea-
son side. Fig. 3.6 shows 3 such cuts. The vertices on the reason side whose edges
cross the cut line signify assignments that will always lead to a conflict. For example,
cut 1 corresponds to the assignments x5 = 1, x4 = 1 and x11 = 0, which must not
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occur together. Using DeMorgan’s law this condition can be turned into a clause:

x5 · x4 · x11 = (x5 + x4 + x11)

The new clause is redundant to the original CNF and can be added to it without
changing its satisfiability. This is also true of the clauses corresponding to the other
two cuts: cut 2 results in the clause (x10 +x4 +x11) and cut 3 in (x10 +x1 +x9 +x11),
both of which could be added to the CNF. It is furthermore possible to extract clauses
from reconverging parts of the IG that do not involve the conflict directly; this is
called a cut not involving conflicts [Zhang01]. In Fig. 3.6 cut 4 is one such cut, from
which the clause (x1 + x9 + x4) could be learned (because the IG shows that when
x1 = 1 and x9 = 0 are assigned, the implication x4 = 1 follows).

The process of generating learned clauses from an IG can alternatively be under-
stood as a series of resolution operations (see Sec. 2.2.1.3) on the clauses involved in
the conflict [Zhang02]. Replacing a literal in the conflict clause with its reason as-
signments is equivalent to performing the resolution operation on the conflict clause
with the respective antecedent clause, with the reason variable as the pivot.

Indiscriminately adding large numbers of clauses to the CNF generated from the
IG is not useful, because it slows down the BCP engine. Instead, clauses should
be chosen that are likely to aid the further search. Which clauses to extract and
learn from the IG is the objective of the solver’s learning scheme. It was shown that
solving times differ greatly depending on the learning scheme used [Zhang01]. For
non-chronological backtracking, the clause also has to have the property of being
asserting. A clause generated by some cut that contains exactly one literal assigned
at the current decision level and where all the other literals are assigned at lower
decision levels is asserting; after backtracking to the second-highest decision level in
the clause all literals except the one at the highest decision level will have the value
0, meaning that this clause becomes a unit literal clause that causes an implication
for the remaining literal (it is asserted). Such an asserting clause can always be
constructed.

Unique Implication Points (UIPs) are defined as such [Zhang01]:

“In an implication graph, vertex a is said to dominate vertex b iff any
path from the decision variable of the decision level of a to b needs to
go through a. A Unique Implication Point (UIP) [Marques-Silva99] is
a vertex at the current decision level that dominates both vertices corre-
sponding to the conflicting variable. . . . The decision variable is always
a UIP. Note that there may be more than one UIP for a certain conflict.
. . . Intuitively, a UIP is the single reason that implies the conflict at the
current decision level. We will order the UIPs starting from the conflict.”

In Fig. 3.6 there are 2 UIPs, x1 and x4 on the current decision level 6. Asserting
clauses can be constructed by making sure that a UIP is on the boundary of the cut
[Zhang01]:
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“To make a conflict clause an asserting clause, the partition needs to have
one UIP of the current decision level on the reason side, and all vertices
assigned after this UIP on the conflict side. Thus, after backtracking, the
UIP vertex will become a unit literal, and make the clause an asserting
clause.”

Actual SAT solvers do not explicitely build an IG on encountering a conflict, but
rather store a pointer to the antecedent clause of each implication during BCP. The
IG can then be traversed by following the pointers.

3.5.2.2 Learning schemes

The solver’s learning scheme determines which and how many clauses to learn from
a conflict.

The solver RELSAT [Bayardo97], which was one of the first SAT solvers using
learning and non-chronological backtracking, makes the cut in the IG such that all
variables of the current decision level except the decision variable are on the conflict
side, and all variables assigned at earlier levels and the current decision variable are
on the reason side. In the example in Fig. 3.6, the cut chosen by the relsat scheme
corresponds to cut 3.

In the solver GRASP [Silva96] the learning scheme tries to learn as much about the
conflict as possible. It adds all clauses resulting from the IG reconverging on UIPs
(cuts not involving conflicts), and in addition a cut is made that puts the variables
assigned on the current decision level after the first UIP (the closest to the conflict
vertices) on the conflict side, and everything else on the reason side. This results in
an asserting clause. In the example in Fig. 3.6, this first UIP cut corresponds to cut 2.

Adding only the clause resulting from the first UIP cut is called the first UIP learn-
ing scheme (also known as 1 UIP scheme); it was experimentally shown to be su-
perior [Zhang01] to the relsat and GRASP schemes (which learns more clauses in
addition to the 1 UIP clause). The CHAFF solver uses the 1 UIP scheme.

MINISAT also uses the 1 UIP scheme and gives a simple description of the algo-
rithm that computes the learned clause [Eén04]:

“In a breadth-first manner, continue to expand literals of the current de-
cision level, until there is just one left.”

This algorithm starts with the conflict clause, in which all literals are valued 0, and
expands (replaces with the reasons for the assignment) literals in a loop until the
clause contains only one literal that is on the current decision level.

3.5.2.3 Conflict clause minimization

Conflict clause minimization attempts to eliminate superfluous literals from the newly
generated learned clause, making it a stronger constraint (the conflict clause is
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strengthened). It has become a standard feature in many solvers and is present in,
among others, MINISAT in all versions following 1.13 [Eén05a]. In MINISAT, after
the learning scheme generates the 1 UIP clause, the solver attempts to remove literals
from it by using the resolution operation (Sec. 2.2.1.3) on it with antecedent clauses
from the IG. For example, if the clause (a + b + c) is the 1 UIP clause and the an-
tecedent of the assignment a = 0 was the clause (a + b), then the resolution of these
clauses with a as the pivot variable results in the clause (b + c), which is a stronger
constraint than the original clause (a + b + c): clause (a + b + c) is self-subsumed
by (a + b) w.r.t. a. Conflict clause minimization dramatically reduces memory usage
(about half that of without minimization) and also reduces the search space, leading
to faster solving times [Sörensson09].

3.5.2.4 Assignment stack shrinking

Assignment stack shrinking [Nadel10] is a technique that modifies the backtracking
behavior of a CDCL SAT solver under certain circumstances; it was introduced in
the solver JERUSAT in 2002. If a shrinking condition is satisfied, the solver applies a
sorting scheme to the conflict clause literals and then computes and backtracks to a
shrinking backtrack level. For Jerusat these are:

• Shrinking condition: “conflict clause contains no more than one variable from
each decision level”

• Sorting scheme: “sort literals by decision level from lowest to highest”

• Shrinking backtrack level: “The shrinking backtrack level for Jerusat is the
highest possible decision level where all the literals of the conflict clause be-
come unassigned. Jerusat then guides the decision heuristic to select the literals
of the conflict clause according to the sorted order and assign them the value
false, whenever possible.”

The effect of assignment stack shrinking is to make assignments more relevant to the
current area of the search space. Irrelevant variables are unassigned and the deci-
sion heuristic is steered toward assigning variables that occur in the recently learned
clauses. This leads to shorter learned clauses and faster solving times.
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3.6 Restarts
Complete search methods for combinatorial problems (like DPLL SAT solvers) often
display wildly different solving times for nearly identical problems, for example sim-
ply changing the numbering of the variables in a SAT problem can make a formerly
easy problem suddenly unsolvable. This phenomenon also appears in search algo-
rithms of different problem domains, for example CSP. In [Gomes98] it was found:

“Unpredictability in the running time of complete search procedures can
often be explained by the phenomenon of “heavy-tailed cost distribu-
tions”, meaning that at any time during the experiment there is a non-
negligible probability of hitting a problem that requires exponentially
more time to solve than any that has been encountered before.”

When such a distribution is present, it was found that randomization techniques can
be used to stabilize solving times somewhat or even make it possible to solve prob-
lems that were impossible before [Gomes98].

These techniques are the introduction of randomization into the decision step of
the backtrack search algorithm, and restarts: the solver is stopped when it has spent
too much time in some area of the search space (which is likely very hard and will not
yield a solution quickly) and forced to restart the search from the beginning (taking
back all decisions assgigned so far), which may lead it to a different search space sec-
tion where the solution is easier to find. Restarts have become an important standard
feature in DPLL SAT solvers, including CHAFF and MINISAT.

There are various techniques in use to schedule the restarts (as described in
[Ryvchin08]):

1. Arithmetic series: restart after x conflicts, increase this by y after every restart
(used for example in CHAFF with x = 700 and y = 0).

2. Geometric series: restart after x conflicts, multiply this by y after every restart
(used in MINISAT prior to version 2).

3. Inner-Outer Geometric series: a nested loop creates an oscillating series of
restarts with geometrically increasing number of conflicts (used in the solver
PICOSAT).

4. Luby series: [Luby93] proved that in the absence of any knowledge about the
search space Las Vegas algorithms (these always produces the correct answer
eventually, but with random runtime) have optimal runtime if they are restarted
according to the Luby-sequence 1, 1, 2, 1, 1, 2, 4, . . . (in words: “One way to
describe this strategy is to say that all run lengths are powers of two, and that
each time a pair of runs of a given length has been completed, a run of twice
that length is immediately executed” [Luby93]). This was empirically shown
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to be effective for DPLL restarts in [Huang07], though the Luby numbers are
multiplied with a constant factor since a limit of only 1 or 2 conflicts would be
too low to be efficient (used in MINISAT 2.2).

The restart algorithm in MINISAT 1.14 is the relatively simple geometric series
(Fig. 3.7). The search() function that executes the actual DPLL search has a param-
eter nof conflicts that sets the maximum number of conflicts that are allowed
before it stops, takes back all decisions and returns the solver to decision level 0,
then returns to an outer search loop. Initially nof conflicts is 100 (conflicts),
and every time search() returns to the outer loop its value is multiplied with a con-
stant. The constant’s default value is 1.5, which is placed directly in the source
code. Hereafter, the initialization value of nof conflicts will be referred to as
NOFCONFLICTSBASE, and the incremental constant as NOFCONFLICTSINC.
These two parameters were among the objects of optimization for the evolutionary
algorithms in this work.

1 NOFCONFLICTSBASE = 100 ; / / d e f a u l t v a l u e s
2 NOFCONFLICTSINC = 1 . 5 ;
3

4 n o f c o n f l i c t s = NOFCONFLICTSBASE ;
5 whi le ( s t a t u s == u n d e f i n e d ) {
6 s t a t u s = s e a r c h ( . . . , n o f c o n f l i c t s , . . . ) ;
7 n o f c o n f l i c t s ∗= NOFCONFLICTSINC ;
8 }

Figure 3.7: MINISAT 1.14 restart strategy

3.6.1 Learned clause removal
Clause-learning SAT solvers generate a large amount of learned clauses over the
course of the search. After a restart, the previously learned clauses are still there and
help the solver avoid already explored areas of the search space. Unfortunately the
learned clauses also slow down the BCP engine more and more unless at least some
of them are cleared away regularly. Determining which learned clauses to remove is
the purpose of a learned clause removal heuristic.

In MINISAT 1.14 the lifetime of a learned clause is governed by its clause ac-
tivity, a single-precision floating point value similar to the variable activities that
control decisions. The clause activity is attached to learned clauses (except binary
clauses, which are stored directly in the watch lists and therefore have no activity and
consequently never get deleted). A clause’s activity rises when it is touched during
conflict analysis (while traversing the IG when generating the 1 UIP clause). To sim-
ulate an “aging” of the clause activities the “bump” value that increases the activity
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is incremented over time, similar to the way variable activities age (see Sec. 3.3.8).
Periodically learned clauses whose activity is below a limit are removed.

The solver variable cla inc contains the bump value with which the clause ac-
tivities are incremented; its starting value is 1. After every conflict the new learned
clause’s activity is set to the current value of cla inc. Afterwards cla inc is mul-
tiplied with the solver parameter constant CLAUSEDECAY, which is larger than (or
equal to) 1, though the value is given as the inverse to the solver. The default value of
CLAUSEDECAY is 1

0.999
≈ 1.001. If a learned clause is used during conflict anal-

ysis, its clause activity is also bumped up (cla inc is added to its current value).
If the new value of a clause activity exceeds 1020, the clause activities of all learned
clauses as well as cla inc itself is multiplied with 10−20.

The search() function (see Fig. 3.7) that executes the actual DPLL search also
has a parameter nof learnts that sets the limit of learned clauses that are al-
lowed for this search run. The initial value of nof learnts is the number of
original CNF clauses divided by 3. This division factor will hereafter be referred
to as NOFLEARNTSDIVISOR and is a target of optimization for the EA. Af-
ter every restart nof learnts is multiplied with the solver parameter constant
NOFLEARNTSINC, so that the number of learned clauses allowed steadily rises.
Inside search(), if the current number of learned clauses exceeds the limit set by
nof learnts a cleanup function is called. The cleanup function always deletes
half of all currently learned clauses (unless they are “locked”, meaning they are rea-
son clauses for some assignment) and furthermore all clauses whose activity is below
cla inc divided by the current number of learned clauses.

The parameters NOFLEARNTSDIVISOR, NOFLEARNTSINC and
CLAUSEDECAY were objects of optimization for the EA in this work.
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Chapter 4

Genetic Algorithms

Genetic Algorithms (GAs) are one of the four main sub-fields of Evolutionary Al-
gorithms. In GAs, the candidate solutions are always represented as strings of bits
(binary strings). How to interpret the strings as solutions on the problem. EAs that use
binary string encodings are usually called “classic GAs” today. The foremost early
practicioner of GAs is John Holland, who wrote his groundbreaking work “Adapta-
tion in natural and artificial systems” in 1975 [Holland92]. Holland also provided
some theoretical foundations on why GAs work (known as schema theory).

The implementation of a basic GA is very simple and can be done in a few hundred
lines of code. There are a great number of variations of the classic GA procedure, for
example [Goldberg89] describes the Simple Genetic Algorithm (SGA) and [Coley98]
the Little Genetic Algorithm (LGA), which are basically equivalent. The GA im-
plementation used in this work is based on SGA/LGA. The SGA procedure works
roughly as follows (details of the operators will be described in the following):

1. Generate the initial population of bit strings.

2. Decode all individuals into their phenotype.

3. Compute the objective function value for each decoded individual.

4. Fitness scaling: transform the objective function value to a fitness value (the
fitness and objective function value can also be the same).

5. Use the selection operator to choose pairs of individuals to be parents.

6. Depending on a crossover probability Pc either apply the crossover operator
(a type of recombination) to create two new offspring from a parent pair, or
copy the parents unchanged to the temporary new population. Repeat selection
and crossover/copying until the temporary population is the same size as the
original.

7. Apply the mutation operator on every individual in the temporary population.
A bit in an individual has a mutation probability Pm to change to its opposite
value.
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8. Delete the old population and replace it with the temporary one.

9. Increment the generation counter. If the maximum number of generations has
been reached then exit, otherwise continue at step 2.

4.1 Encoding numbers as binary strings
In a numerical optimization problem the solutions are vectors of numbers. To solve
such a problem with a GA, the vector has to be encoded as a binary string. Usually
this is achieved by encoding each variable as one section of the whole string (Fig. 4.1
shows an example for a problem with 2 variables encoded as 4 bits each). How many
bits are needed for each section depends on the allowed range of the corresponding
variable (and in the case of real-valued variables also on the precision which the result
should have). A section consisting of l bits can represent 2l different values.

Figure 4.1: For numerical optimization problems the binary string encoding a GA
individual is partitioned into sections that encode one object variable each

4.1.1 Integers
If the variable of the optimization problem is an integer value with the range rmin ≤
x ≤ rmax (rmin < rmax), then the length l of the bit vector has to be at least l =
dlog2(rmax− rmin +1)e. Each binary code is mapped to one integer value. Assuming
the standard binary encoding (“1” = 1, “10” = 2, “11” = 3 etc.) the code for the lower
limit rmin is then “00...0”, rmin + 1 is represented by “00...1” and so on.

For example, to encode an integer variable with the range [0, 1000] a section at
least dlog2(1000 − 0 + 1)e = dlog2(1001)e ≈ d9.96e = 10 bits long is needed. A
string of length 10 can encode 1024 values, meaning that apart from the 1001 valid
integers in the range [0, 1000] there are also 23 superfluous binary codes that do not
correspond to an allowed value. Since the genetic operators are blind as far as the
validity of the resulting bit string is concerned, the GA has to deal with individuals
that encode invalid solutions in some way. This can be achieved by imposing fitness
penalties on illegal individuals, or by ensuring that individuals are always decoded
into legal phenotypes [Davis87]. In either case there are unfortunately drawbacks,
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like lost computation time and wasted population space for illegal individuals, or the
extra effort required to build advanced decoding algorithms. For the example treating
every decoded value over 1000 as the value 1000 is a simple way to enforce legality,
but for different optimization applications with non-numerical domains this problem
is harder to deal with.

4.1.2 Real values

If the domain of a variable is real numbers in the range rmin ≤ x ≤ rmax (rmin <
rmin), the most common representation is a linear mapping between the binary codes
and the real numbers in the range [rmin, rmax] [Coley98, pg. 19].

The (partial) binary string of length l is first translated into a base-10 integer value
z between 0 and the maximum value 2l−1. The code for z = 0 translates to rmin and
the code for z = 2l−1 translates to rmax. The granularity with which values between
the two bounds can be described depends on the string length, which must be adjusted
accordingly. The variable value r can be computed as in Eq. 4.1 [Coley98, pg. 21].

r =
rmax − rmin

2l − 1
z + rmin (4.1)

4.1.3 Gray coding

The format that is used to represent the values is also not irrelevant and influences
the behavior of the GA. The standard binary format for numbers is just one possible
way to encode decimals as binary strings, but there are many more permutations to
translate the codes into numbers. One of the reasons that the standard format may
not be the ideal representation is that two very similar solutions of the problem may
have substantially different encodings. For example, if the solution of a numerical
optimization problem is the decimal number 128 and the encoding is 8 bit unsigned
integers in the standard format between 0 and 255, the optimal solution will be the
string 100000002 = 12810. Decoded values that are close to, but lower than 128,
for example 12710 = 011111112, have very different encodings (in this case even
the bit-wise negation of the optimum), so that changing one such suboptimal solution
into the optimal one would take either many mutation operations over several genera-
tions or several mutations all at once, with either event having a low probability. This
phenomenon is called a Hamming cliff [Goldberg89], because there is a large Ham-
ming distance (number of differing bits) between the genotypes of two very close
phenotypes. Intuitively, similar solutions should have similar encodings so that small
changes in the encoding space are equivalent to small changes in the solution space,
making it more likely that a random small mutation will bring a near-optimum so-
lution closer to the optimum rather than transforming it into one that is far from the
optimum. Such an encoding should improve a GA’s ability to pinpoint an optimum.
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One way to remedy Hamming cliffs while still using bit string encoding is to use
Gray coding (named after its inventor, American physicist Frank Gray). Gray code
represents numbers in such a way that each subsequent number’s bit string encoding
differs in exactly 1 bit (Tab. 4.1 shows the first 8 Gray codes). Gray coding can be
used both for integer and real-valued variables. It should be noted that while a single-
bit mutation in Gray code may change the decimal value by only 1, it can also change
it by a different amount depending on the position of the bit being changed, including
one that is larger than for the equivalent binary representation.

Decimal Binary Gray code
0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

Table 4.1: Gray codes

4.2 Initial population

The initial population contains randomly generated individuals. Tab. 4.2 shows a
sample initial population assuming a population size N = 8 and a binary string
length of l = 12. The strings were generated by setting the bits of each string to 0 or
1 with a 50% probability.

The univariate objective function for the example is F (x) = x2, which is to be
maximized (the fitness is assumed to be equal to the objective function). The encod-
ing is standard binary encoding with a variable range of x ∈ {0, 1, . . . , 4095}. The
optimal solution for the example objective function using the 12 bit binary string as
genotype would be “111111111111”, which is the encoding of the highest number
(4095) in the search space. The best solution of the initial population is number 4,
with x = 3161 and F (x) = 9991921. The worst solution is number 6 with x = 163
and F (x) = 26569. It should be noted that although solution 6 is very bad in quality
(low fitness), it is also the only string in the population that has a 1 in the second
position from the right. If this string were discarded early on, and the GA had no
mechanism to generate another string with a 1 in the second position from the right,
the optimal solution “111111111111” could never be found due to the missing 1.
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Individual Nr. String Decoded value Fitness
1 100100011100 2332 5438224
2 000110111000 440 193600
3 100101110101 2421 5861241
4 110001011001 3161 9991921
5 101011110001 2801 7845601
6 000010100011 163 26569
7 011001000000 1600 2560000
8 011101100101 1893 3583449

Table 4.2: Sample initial GA population, N = 8, l = 12, objective function = fitness
F (x) = x2

This emphasizes the necessity of the mutation operator, which can regenerate lost
(or never previously present) genetic information. In this case the mutation operator
could regenerate the 1 in the second position from the right in some other individual.
In contrast, crossover (a recombination operator) can not replace such lost informa-
tion because it does not create new values but only swaps parts of parent strings.

4.3 Fitness scaling

In GAs, the fitness of individuals is always assumed to be a non-negative number
and the higher the fitness, the “better” (more likely to create offspring) the individual
is considered to be. For a minimization problem lower objective values are better,
therefore some transformation is necessary that generates the highest fitness values
for the lowest objective values. Even for maximization problems where the objective
function is known to be non-negative it can be beneficial to apply a fitness scaling
rather than just using the objective value as the fitness.

For example, in the first generation of a GA run there are often a few highly fit
“superindividuals” and a lot of fairly bad ones. Without scaling, the few good indi-
viduals are likely to take up most of the space in the next generation, forcing out all
the weak individuals that may possibly contain important genetic information. The
genetically impoverished new population is then stuck at the solutions encoded by
the superindividuals and can not move away easily. This phenomenon is known as
premature convergence to a local optimum and is a general problem of optimiza-
tion algorithms [Michalewicz94, pg. 57]. On the other hand, towards the end of the
GA run the population likely contains individuals that are all fairly similar to each
other and have similar fitness values. Then it is hard for the selection operator to
discern between good and bad individuals and the GA progresses very slowly, if at
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all, towards the optimum. To improve performance, fitness scaling would decrease
the differences in fitness at the beginning of the GA and increase the differences later
when the population contains mostly similar individuals.

Unfortunately many different scaling algorithms have been designed (for example
linear static scaling, logarithmic scaling, exponential scaling etc.), but it is not ob-
vious which of these are optimal for a given application. Bäck writes in [Bäck96,
pg. 112]:

“However, even empirical comparisons of the performance of Genetic
Algorithms relying on different scaling methods have not been per-
formed, such that the choice of a scaling method and its parameterization
can be thought of as a “black art”.”

Bäck goes on to suggest using John J. Grefenstette’s scaling window method
[Grefenstette] when using GAs for minimization tasks.

4.3.1 Scaling window method
Simple to implement, the scaling window method is used when applying a GA for
minimization. It transforms small objective values into large fitness values and also
ensures that the resulting fitnesses are always non-negative. The fitness of an indi-
vidual is computed by subtracting its objective value from the largest (meaning the
worst) objective value observed in the last w generations (w is called the window
size). Bäck suggests a window size of w = 5.

4.4 Selection operator
After the evaluation of a generation (meaning that all fitnesses of the individuals have
been computed) and fitness scaling, the parents of the next generation are chosen by
the selection operator. In GAs proportional selection [Bäck96, pg. 117] is used
which chooses the parents of the next generation randomly from the population with
survival probabilities that are proportional to the fitness value of the individuals.

Proportional selection can only work correctly if the fitness values are non-negative
(since a negative value does not make sense as a proportion). If the problem is one
of minimization rather than maximization then some sort of scaling is needed to
translate small objective values into large fitness values. Such transformations always
have an effect on the survival probabilities.

4.4.1 Roulette wheel selection
The simplest implementation of the proportional selection operator is called roulette
wheel selection. As the name implies, roulette wheel selection works like a simulated
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throw of a ball in a roulette wheel. Each individual is represented by one “slot” of the
wheel, but in contrast to a real roulette wheel each slot is different in size, proportional
to the fitness of the individual. To select a parent, the wheel is spun and the individual
in whose slot the ball stops is chosen. This is implemented by generating a random
number between zero and the sum of all fitnesses in the population and selecting the
individual at the position at which the running sum of fitnesses exceeds the random
number. Fig. 4.2 shows the roulette wheel for the example population in Tab. 4.2 and
the survival probabilities of the individuals.

Figure 4.2: “Roulette wheel” for the first generation of the example problem

4.4.2 Stochastic universal sampling

Stochastic universal sampling (SUS) selection [Baker87] is an improved implemen-
tation of proportional selection that is faster than roulette wheel selection and also
avoids random sampling errors to large degree [Bäck96, pg. 120]. SUS also uses a
roulette wheel with the spokes sized proportionally to the fitness of the respective
individual, but instead of throwing the ball once for each selection, the entire set of
parents is selected in one go. This is achieved by making as many evenly spaced
markers around the wheel as parents are needed, and then spinning the wheel just
once. The individuals that are under the markers are the ones that will be selected.
SUS is the recommended selection operator for GA [Bäck96].
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4.5 Recombination operator

The selection operator could be used alone to create the next generation, by applying
it N times to choose the N individuals that make up the next generation. But if only
selection were used, the population would eventually consist only of the fittest indi-
vidual of the initial population (provided it isn’t lost by chance) or another relatively
fit individual that was present there, but the GA would not be able to find any solu-
tions that were not present from the beginning. Additionally applying mutation on
the offspring would generate individuals that were not part of the initial population,
but at reasonable (meaning low) mutation rates progress would be very slow. Recom-
bination greatly speeds up the evolution process by combining the genes of parent
individuals to form offspring.

In GAs the crossover operator provides a way to recombine the already present so-
lutions, potentially creating even better solutions. Crossover constructs the offspring
strings from alternating parts of the parent strings. It is inspired by the biological
DNA crossover process that generates the DNA of a child from the DNA of its par-
ents by assembling it from pieces of the parent’s strands. Crossover is a vital part of
GAs [Bäck96, pg. 114]:

“While mutation in Genetic Algorithms serves as an operator to reintro-
duce “lost alleles” into the population, i.e. bit positions that are converged
to a certain value throughout the complete population and therefore could
never be regained again by means of recombination, the crossover op-
erator is emphasized as the most important search operator of Genetic
Algorithms.”

4.5.1 Single point crossover

The simplest form of recombination for GA is the single point crossover operator,
which takes two parent strings and cuts them at a random position (the same in both
strings, sometimes called locus after the analogous expression from biology) and then
exchanges the two tailing parts, yielding two new offspring strings. For example a
crossover of the strings “0000” and “1001” when cut exactly in the middle results in
the offspring strings “0001” and “1000” (Fig. 4.3).

Using the crossover operator, the new population can be generated thus: use selec-
tion twice to choose two parent strings from the current population. With a certain
probability, the crossover probability Pc, the two strings will undergo single point
crossover. If they do, choose a random locus, perform crossover, and copy the two
resulting strings into the temporary new population. If they do not, copy the two
parent strings unchanged to the new population. This is repeated until the new pop-
ulation has as many members as the previous one. Then the previous population can
be deleted and the new one takes its place.
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Figure 4.3: Single point crossover example

Multi-point crossover (two-point, three-point etc.) introduces more locus points to
make the cuts. In this work, only single point crossover was used.

4.6 Mutation operator

Once the new population is created with selection and crossover, there is a chance
that some of the individuals mutate. Mutation is named after biological mutation,
where sometimes random copying errors will create base pair differences in a child’s
DNA strand.

The implementation used in this work is known as flip mutation because the oper-
ator loops through all bits of a string and each bit has a mutation probability Pm to
be flipped to its opposite value. Pm should generally be very low because otherwise
the GA degenerates into a random search. Mutation is applied on all members of the
new population (after crossover has occured).

4.7 Schema theory

John Holland is the inventor of schema theory, which attempts to explain why clas-
sic GAs work. Though it is not without controversy concerning its conclusiveness,
a short overview will be given here (for details see [Holland92], [Goldberg89] or
[Coley98]).

A schema (plural schemata) is a string template made up of the original represen-
tation’s characters and in addition a wildcard character or meta-symbol (“#”). One
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schema therefore represents a set of strings, for example the schema “1#001” repre-
sents both the bit strings “10001” and “11001”. The order of a schema is equal to
the number of non-wildcard characters in it, and its defining length is the distance
between the first and the last non-wildcard character.

The Schema Theorem that follows from schema theory computes that “short, low-
order, above-average schemata will be given exponentially increasing trials in subse-
quent generations” [Goldberg89] (essentially because these are the schemata that will
be least disturbed by the genetic operators). These schemata are also called building
blocks. The building block hypothesis [Goldberg89] states that GAs work by gradu-
ally combining building blocks into larger solutions, and that GAs work best if the
problem is structured in such a way that this is possible.

According to Goldberg [Goldberg89] the principle of minimal alphabets also fol-
lows from schema theory. It states that the set of characters (the alphabet) used for
encoding should be as small as possible for the problem at hand, because the smaller
the alphabet, the more schemata are processed per generation. The smallest possible
alphabet is the binary alphabet of just 0 and 1, so that one should use binary encoding
preferentially.
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Chapter 5

Evolution Strategies

5.1 History
In 1964 the two German aerospace engineering students Ingo Rechenberg and Hans-
Paul Schwefel tested heuristics for experimental optimization (“experimental” be-
cause this experiment was not simulated in a computer, but actually performed with
a physical object). The objective was to adjust the angles on a jointed, folding
plate so that it would achieve the shape with the minimal drag in a wind tunnel
[Rechenberg65]. In the beginning the plate would have a random “snake” shape,
and the known optimum was a completely straight plate (Fig. 5.1). They first tried a
method that modified only one variable (joint angle) at a time and a gradient based
technique, both of which failed because they got stuck prematurely in sub-optimal
configurations. Rechenberg then developed a different approach: all angles at once

Figure 5.1: The jointed plate experimentum crucis for Evolution Strategies

would be changed randomly, and the amount of the change would be more likely to be
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small rather than large (from an observation that in nature small mutations are more
likely than large ones). If the performance of the new shape was better than the pre-
vious one, it would become the new starting point for the next mutation (in essence
there was one “parent” and one “offspring”). This new method had unexpectedly
good results and was applied on a few more hydrodynamical problems with success
[Beyer02]. They called their method “cybernetic solution path” or Evolution Strategy
(ES). The folding plate experiment became to be known as the experimentum crucis
of ESs.

Schwefel later ran the first computer simulation of the ES on a Zuse Z23 com-
puter [Schwefel65]. Just like the experimental optimization version of the algorithm,
this two-membered ES used one “parent” and one “offspring”, where the offspring
would compete with the parent and replaced it if it was better. The representation
of the individuals was a vector of floating point numbers, making ESs more similar
to EPs rather than the bit strings of GAs. The mutation operator added a normally
distributed random number N(0, σ) with a mean of zero and standard deviation σ to
every variable v of a solution, so that small changes from the parent would be more
likely than large ones:

v′ = v + N(0, σ) (5.1)

Rechenberg later found a rule to adjust the standard deviation σ of the random num-
bers optimally during the run of the algorithm depending on the success of the mu-
tation operator. This is a major difference that distinguishes ESs from both GAs and
EPs: in ESs the mutation parameters are evolved along with the solution variables,
they use self-adaptation.

ESs are generally used for solving problems with continuous values, but they have
been extended for solving discrete problems as well. In this work, only the real valued
ES is used.

5.1.1 Multimembered ES

The original ES’s use of a temporary “population” consisting of one parent and one
offspring, combined with the selection process that always chooses the better of these
two individuals is now referred to as a (1 + 1)-ES. The first number is the number
of parents, the second number is the number of generated offspring and the + sign
indicates that the selection operation chooses the new population from the best of
both parents and offspring.

This notation is used in the literature to describe more advanced forms of ESs
with larger populations as well: traditionally the symbol µ stands for the number of
parents, λ is the number of offspring and the selection operator is either plus selection
(choosing the new population from the combined set of parents and offspring) or
comma selection (choosing only from the set of offspring). All ESs can therefore be
classified as either a (µ, λ)-ESs or a (µ + λ)-ESs. For example, a (15, 100)-ES has a
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parent population size of 15 that generates 100 offspring in each generation, and the
new population is chosen from the 100 offspring only.

Multimembered ESs can also use recombination operators, although these work in
a different way than those used in GAs and EPs. In ESs several parent individuals
can participate in the creation of a single offspring (in contrast to GAs, where the
crossover operation creates two offspring from two parents). The number of parents
involved in the creation of an offspring is denoted by ρ, which is called the mixing
number [Beyer02]. The case ρ = 2 is the standard case of sexual recombination (two
parents per offspring), cases with ρ > 2 are called multirecombination [Beyer01] or
panmictic recombination [Bäck96]. If ρ = 1 then no recombination is used. When
recombination is used, this can be indicated in the ES notation as (µ/ρ +, λ) (read
“Mu Slash Rho Plus/Comma Lambda”-ES).

5.1.2 Self-adaptation
Schwefel’s mutation operator added a random normal-distributed value with a mean
of zero and a standard deviation σ to each solution variable. Rechenberg later derived
a rule for automatically adjusting σ during the course of the algorithm to achieve op-
timal performance. His 1/5-success rule states that if more than 1/5 of the mutations
so far were successful, increase σ to continue with larger steps, otherwise decrease
it (by multiplying it with a factor a). The 1/5-success rule is limited in applicability
since it only works on a single strategy parameter (a parameter controlling the algo-
rithm that is not part of the problem solution) and is usually only used for (1+1)-ESs.

Schwefel [Schwefel74] further improved self-adaptation in ESs by including the
strategy parameters into the individuals themselves: individuals contain endogenous
strategy parameters which are also subject to evolution, meaning that they are modi-
fied by mutation and recombination. In practice this means that every object param-
eter (a part of the problem solution) is coupled with its own σ-parameter. This type
of self-adaptation is known as σ-self-adaptation or σSA [Beyer95].

Other strategy parameters that are not part of individuals and stay constant over
the run of the algorithm are called exogenous strategy parameters (for example µ and
λ). When self-adaptation with endogenous strategy parameters is used, the ES must
include mutation and recombination operators for these. In ESs there is no obligation
to use the same type of mutation or recombination on the strategy parameters as for
the object parameters, and indeed the strategy parameters of an offspring need not
necessarily come from the same parents that provided its object parameters.

In the following the details of the ES implementation used in this work will be
presented. Details of the history and theory of ESs can be found in [Beyer02],
[Michalewicz94], [Bäck96] and [Schwefel95].



5.2. (µ +, λ)-ES 104

5.2 (µ +, λ)-ES
The ES used in this work can be set to use plus- or comma-selection, and the number
of parents µ and the number of offspring λ can be chosen freely. Self-adaptation is
based on an endogenous strategy parameter σ coupled to every object variable (so a
solution for a problem with n variables will also include n σ-parameters). Recombi-
nation uses either two parents (ρ = 2) or is panmictic (ρ = n). Strategy parameter
and object parameter recombination are separate algorithms. Fig. 5.2 shows the pseu-
docode of the ES.

1 i n i t i a l i z e PARENT SET wi th mu random i n d i v i d u a l s ;
2 f o r (N g e n e r a t i o n s )
3 {
4 new OFFSPRING SET ;
5 f o r ( lambda o f f s p r i n g )
6 {
7 new OFFSPRING ;
8 s t r a t e g y p a r a m e t e r r e c o m b i n a t i o n ( PARENT SET , OFFSPRING ) ;
9 o b j e c t p a r a m e t e r r e c o m b i n a t i o n ( PARENT SET , OFFSPRING ) ;

10 add OFFSPRING t o OFFSPRING SET ;
11 }
12

13 f o r ( a l l OFFSPRING i n OFFSPRING SET )
14 {
15 m u t a t e s t r a t e g y p a r a m e t e r s ( OFFSPRING ) ;
16 m u t a t e o b j e c t p a r a m e t e r s ( OFFSPRING ) ;
17 }
18

19 compute f i t n e s s e s o f OFFSPRING SET ;
20

21 i f ( p l u s mode )
22 add PARENT SET t o OFFSPRING SET ;
23

24 PARENT SET = b e s t mu i n d i v i d u a l s i n OFFSPRING SET ;
25 }

Figure 5.2: Pseudocode of the (µ +, λ)-ES

5.2.1 Representation
Similar to the EP implementation, an ES individual is represented as a vector of ES
genes. An ES solution S = {G1, G2, . . . , Gn} is a vector of n ES genes Gi, where
each gene Gi itself has the structure Gi = {vi, LBi, UBi, σi} (all elements of Gi are
floating point numbers).
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The vi are the actual variable values and the LBi and UBi are the respective lower
and upper bounds in between which the vi may assume any value (vi ∈ [LBi, UBi]).
Each gene also carries σi, an endogenous strategy parameter that is used for the σSA
mutation operator.

The initial population is generated by assigning each gene of every individual a
random value from the allowed range, and the σi are set to a chosen constant.

5.2.2 Selection operator

ESs contains essentially two “selection” steps: the first occurs in the stage where the
offspring are generated from the parents (lines 5-11 in Fig. 5.2). In this step the actual
fitness of the parents does not figure into which parent participates in the creation of
an offspring, but rather the parents are chosen totally randomly. This is unlike GAs
and EPs where the probability of an individual being chosen for recombination is
proportional to its fitness.

The second selection step is the one that determines which of the offspring indi-
viduals survive into the next generation (line 24 in Fig. 5.2). In ESs, only the µ best
offspring individuals are selected, while the rest are destroyed. This type of selection
is called truncation selection or breeding selection and is completely deterministic,
as opposed to GAs and EPs which normally use some probabilistic selection operator
like roulette wheel selection.

In the (µ+λ)-ES the best µ individuals of the union of the parent and the offspring
set are selected to become the next generation. Therefore the (µ + λ)-ES is elitist
because the best solution is never lost. Bäck [Bäck96] notes that while the (µ + λ)-
ES may seem effective due to the inherent elitism, there are drawbacks as well: the
unlimited lifetime of individuals might lead to an inability to leave local optima, and
the self-adaptation mechanism can become disturbed by bad strategy parameters that
live for too long. Due to these reasons the (µ, λ)-ES is generally recommended.

In the (µ, λ)-ES only the best µ individuals of the parent set containing λ indi-
viduals are selected to become the next generation. This means that the parents die
off and are lost even if they were better than the offspring, and the best solution in a
generation may be less good than the previous best one (in contrast the progression of
the best fitness is monotonous in the (µ+λ)-ES). For the (µ, λ)-ES λ must be greater
than µ since for the case λ = µ every generated offspring is selected, meaning there
is no selection pressure at all and the algorithm becomes a random walk. According
to Schwefel [Schwefel95], it is considered sufficient that λ ≥ 6µ and Bäck [Bäck96]
suggests µ/λ ≈ 1/7. The parameter µ should be chosen larger than 1 so that selec-
tive pressure does not become too strong [Bäck96] and the search behaves unstably
[Schwefel95].
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5.2.3 Recombination operator
In contrast to the recombination operators in GAs and EPs which take 2 parents and
create 2 offspring from them (for example single point crossover), ES recombination
operators combine 2 (or more) parents into just one offspring. While recombination
is not strictly mandatory to use in ESs (when ρ = 1 one can simply copy a random
individual), Schwefel reported a noticeable improvement of the search process when
using it. For real-valued ESs there are two main types of recombination: discrete
recombination where each component offspring value is chosen randomly from one
of the parents, and intermediate recombination, which forms the offspring value from
averaging all the respective parent values (Fig. 5.3). There are two variations for both

Figure 5.3: Discrete and intermediate recombination in real-valued ESs

discrete and intermediate recombination: the sexual (or local) form combines two
chosen parent individuals and the panmictic (or global) form holds one parent fixed
and uses a random individual chosen from the entire population as the other parent (a
new parent is chosen for each component gene of the solution).

Recombination is applied separately on object and strategy parameters and need
not use the same type of operator, so there are four possible combinations for apply-
ing the two types of recombination operator: object parameter discrete/intermediate
and strategy parameter discrete/intermediate. It was found empirically that discrete
sexual recombination for object parameters and intermediate panmictic recombina-
tion for strategy parameters is generally optimal [Beyer02] [Bäck96].

5.2.4 Mutation operator
In ESs the mutation operator mutates the object parameters and the endogenous
strategy parameters contained in an individual. Strategy parameters are always mu-
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tated first before the object parameters to ensure a correctly behaving self-adaptation
[Beyer02]. This way the newly generated strategy parameter affects the new object
parameter immediately. A well adapted endogenous strategy parameter then indi-
rectly contributes to the fitness of the resulting individual.

5.2.4.1 Strategy parameter mutation operator

There are several versions of the self-adapting mutation operator used in ESs. The
simplest form uses a single σ for all object variables. A more advanced form uses
more than one σ, up to as many as there are solution variables. The Covariance Ma-
trix Adaptation-ES (CMA-ES) [Hansen96] goes further and introduces a covariance
matrix that correlates the mutation parameters.

The behavior of these mutation operators can be visualized as shown in Fig. 5.4
(for a two-dimensional objective function). The crosses represent the solution values.
Drawn around them is the area that contains offspring with the same probability of
generation. This is just a circle when a single σ is used, and an ellipse for many σ
because the mutation step size may be different for the search space’s axes. CMA-
ES enables the mutation to generate offspring in a rotated elliptical area, allowing
a better adaptation to the shape of the search space. Self-adaptation with a single
σ is called isotropic self-adaptation, when using many σ it is called non-isotropic
self-adaptation and CMA-ES is correlated self-adaptation [Deb99].

Figure 5.4: Visualization of ES mutation operators: 1. single σ 2. many σ
(uncorrelated mutation) 3. CMA-ES

In this work, only the many σ (one σ for each of the n solution variables) mutation
operator was used. It modifies the σi parameter of each ES gene of a solution as
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follows: [Bäck96]

σ′i = σi · exp(τ0 ·N(0, 1) + τ ·Ni(0, 1)) (5.2)

The normally distributed random number N(0, 1) (mean zero, standard deviation 1)
stays constant for the entire solution, while the Ni(0, 1) are generated separately for
each ES gene. The σ are modified using multiplication with a random number with
a lognormal distribution, which was suggested by Schwefel [Schwefel74] and has
become the standard. This choice of operation ensures that the σ always remain
positive, changes are more likely small than large and have a mean of 1.

The constants τ0 and τ are exogenous strategy parameters. τ0 is the global learning
parameter and τ the coordinate learning parameter. Schwefel recommends from
theoretical and empirical evidence [Beyer02] that these should be:

τ0 =
c√
2n

(5.3)

τ =
c√
2
√

n
(5.4)

The constant c is the progress coefficient, which depends on µ and λ. Bäck rec-
ommends setting c = 1 [Bäck96], and [Bäck97] contains a table with theoretically
derived values for ES using panmictic intermediate recombination that range from
about 0.3 to 2.3 for values of µ and λ up to 100.

The σi must be assigned a starting value when generating the initial population.
Bäck [Bäck96] recommends setting it to 3, and in [Deb99] (xu−xl)/

√
12 was chosen

for simulations (assuming that solutions are uniformly distributed in the range xl to
xu).

5.2.4.2 Object parameter mutation operator

After mutating the strategy parameter, each object parameter vi is mutated by adding
to it a normally distributed random value N(0, σi) with a mean of zero and a standard
deviation of σi:

v′i = vi + N(0, σ′i) (5.5)

The σi is part of the same ES gene that contains the object parameter vi.
Should a mutation operation in gene Gi lead to the object parameter vi being out-

side of its bounds LBi or UBi, the vi is set to the value of the closest exceeded limit.
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Chapter 6

Experimental Results

6.1 Measuring runtimes

6.1.1 Objective of the experiment

When optimizing the parameters of MINISAT the objective function (which is to be
minimized) will be the total run time required for solving a set of SAT problems.
To measure the runtime of a program, the wall clock time between its start and end
can be taken, but this will include the time spent on operating system jobs and other
unrelated activities. Operating systems offer functions for measuring only the actual
process time, which counts only the multitasking time slices used by the thread run-
ning the program. Under Linux, this user time can be retrieved with the getrusage()
system function. MINISAT uses getrusage() to measure its own solving time and
prints out the measured time after solving.

Unfortunately getrusage() is imprecise, meaning that even for the same program
the returned user time will vary somewhat with each execution due to inherent im-
precision of the time measurement. The EAs will have to be able to deal with these
imprecisions, therefore this experiment will investigate what order of magnitude the
variations of the measurements can reach.

6.1.2 Single user mode

The tests were first run under single-user mode to minimize interference by other
running programs (for example graphical interface services). In single user mode
the operating system provides a minimal environment and only runs essential pro-
cesses. A number of SAT problems were chosen from the first qualification round
of the 2006 SAT-Race [Sinz06] and each solved 1000 times with MINISAT on an
Intel R©Pentium R©4@2.4GHz and an Intel R©CoreTM2 4300@1.8GHz computer run-
ning Linux. A delay of 5 seconds was inserted between each solver start to allow the
system time to do any cleanup operations after the previous solving attempt.

The recorded solving times that were printed out by MINISAT after every execu-
tion were sorted from lowest to highest, and distributed into 31 (

√
1000) equidistant
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bins between the minimum and maximum time, yielding the histograms in Figs. 6.1
and 6.2. The roughly bell-shaped histograms show that nearly all the measured run
times are within 3 standard deviations σ of the mean µ, with a few outliers beyond.
Figs. 6.3 and 6.4 show the standard deviation and relative error (σ

µ
in percent) of each

experiment as a function of the mean solving time.
In both experiments the standard deviation rises roughly linearly with the mean

solving time, while the relative error varies between 0.48% to 1.17% for the slower
computer (Intel R©Pentium R©4@2.4GHz) and 0.20% to 0.41% for the faster com-
puter (Intel R©CoreTM2 4300@1.8GHz). It can also be seen that there are always
some rare outliers that are very strongly off from the average (for example the prob-
lem hoons-vbmc-s04-07 on the Pentium R©4 once runs 223 seconds when the
average is only about 211 seconds).

6.1.3 Interferences due to heavy load

Next it was investigated what effect many concurrent, CPU-heavy processes have on
run time measurements. This experiment was executed under the X-Windows graph-
ical environment with various demanding programs running alongside the MINISAT

benchmark program. Again a number of SAT problems were each solved 1000 times
with MINISAT on the Intel R©CoreTM2 4300@1.8GHz machine. The histograms are
shown in Fig. 6.5.

It can be seen that in all cases but one there are actually two different, far apart
peaks in the histograms. Due to this the relative error of the measurements is sub-
stantially higher than in the experiment under single-user mode, more than 10 times
higher in fact.

6.1.4 MiniSAT with timeout implementation

The standard implementation of MINISAT has no built-in functionality for stopping
after a timeout period is exceeded. Since timeouts are necessary for the optimization
with EAs, it was implemented as a periodic call to getrusage(), more specifically a
check if the alotted time is exceeded every time a new variable assignment decision
is made. Another experiment was run to investigate if this added overhead has an
influence on the imprecision of the time measurements. MINISAT with the timeout
implementation was used to solve the problem manol-pipe-c6n 1000 times (with
a high enough timeout so that the problem could be solved) on 6 PCs with different
speeds.

Fig. 6.6 shows the relative error in percent charted over the average solving time
on each of the 6 computers. It can be seen that the relative error stays under 1%
for all but the slowest computer, which reaches 1.31%. These figures are close to
the results for manol-pipe-c6n in standard MINISAT without timeout for this
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Figure 6.1: Solving time variation histograms on an Intel R©Pentium R©4@2.4GHz
machine in single-user mode
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Figure 6.2: Solving time variation histograms on an Intel R©CoreTM2 4300@1.8GHz
machine in single-user mode
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Figure 6.3: Standard deviation σ (left Y axis) and relative error σ
µ

(right Y axis) as a
function of mean solving time on an Intel R©Pentium R©4@2.4GHz machine in

single-user mode

Figure 6.4: Standard deviation σ (left Y axis) and relative error σ
µ

(right Y axis) as a
function of mean solving time on an Intel R©CoreTM2 4300@1.8GHz machine in

single-user mode
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Figure 6.5: Solving time variation histograms on an Intel R©CoreTM2 4300@1.8GHz
machine under heavy load in multi-user mode under X-Windows
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Figure 6.6: MiniSAT with built-in timeout implementation: standard deviation in
percent of measured runtimes vs. average solving time for problem

manol-pipe-c6n on 6 different computers

problem (0.84% and 0.22%). The overhead for the timeout checks was therefore
considered negligible.

6.1.5 Conclusion
Even under circumstances with minimal interference by other processes the user time
measurements using the getrusage() system function has some degree of impreci-
sion. The errors are roughly normally distributed, and the relative error is higher the
longer the computation takes. This means that any measured SAT solver run times
used as objective values for an optimization algorithm will have to be able to cope
with some amount of noise, since even the same solver configuration will have dif-
ferent objective values in two different evaluations. Additionally it should be ensured
that any optimization programs are run with as few other concurrent processes as
possible. Even then, there will be rare but unavoidable evaluations that give a much
higher run time than would be expected on average. A relative error of about 1-2%
should be expected when running under “ideal” conditions.
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6.2 Testing the EAs

6.2.1 Objective of the experiment
When an optimization algorithm has been newly implemented, it must be ensured
that it is working correctly. Programming errors or misconfigurations can cause the
software to become unable to find optima. For this reason, it is useful to have a suite
of test problems with known optima and fitness landscapes. The new algorithm can
be applied on the test problems and the results can be compared to known, reliable
implementations.

In this section, two test functions will be presented and then applied on the imple-
mentations of the GA and the ES that will be used for SAT solver optimization later.
The test functions as well as the parameter settings that will be used for the GA and
the ES were taken from [Bäck96], where it was also shown that the ES is generally
the best choice for numerical optimization problems. If the GA and ES are correctly
implemented, it should therefore be possible to show that both algorithms can find
the optima of the test functions and that the ES has better performance than the GA.

6.2.2 Test functions
GA test suites were thoroughly explored in Kenneth DeJong’s thesis [De Jong75],
which introduced a set of 5 problems that became a standard suite. Hans-Paul Schwe-
fel, one of the co-developers of Evolution Strategies, also presented a very large set
of test functions in [Schwefel81] specifically for that algorithm. [Torn89] describes
a number of popular test functions used in optimization. DeJong’s functions were
of low dimensionality and relatively simple, therefore Thomas Bäck expanded upon
the idea in [Bäck96]. Bäck describes a number of criteria a test suite should meet to
model the many difficulties an application can encounter.

• All functions should be scalable with regard to the number of unknowns to
optimize (the number of dimensions of the search space).

• Include a single-peaked (unimodal) function to test convergence speed.

• Include step functions that provide no gradient information.

• Include multimodal functions (several peaks).

His suite of 5 functions are separated into two groups: two relatively easy functions
for testing convergence velocity and three harder functions for testing convergence
reliability (“the capability to yield reasonably good solutions in case of highly mul-
timodal topologies” [Bäck96]). In this work, two functions (one each from the easy
and the hard set) from Bäck’s test suite were used: the sphere model and Ackley’s
function.
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Figure 6.7: Sphere model for n = 2

6.2.2.1 Sphere model

The sphere model (Eq. 6.1) was DeJong’s first test function, so called because it is a
smooth (continuous) (hyper-)sphere with a single minimum (uni-modal) with value
0 at the origin.

SPHERE(~x) =
n∑

i=1

x2
i (6.1)

Bäck also uses SPHERE in his easy group of test functions. The number of di-
mensions can be adjusted with the paramater n. Since it is so simple in structure,
performance on SPHERE is a measure of the convergence speed of an optimization
algorithm.

Bäck [Bäck96] assumes n = 30 as the standard test case and a variable range of
−40 ≤ xi ≤ 60. The upper and lower limits are asymmetrical to avoid having the
global optimum at the exact center, where for example a GA encoding might have a
highly regular structure (for example all zeroes) that could make finding the global
optimum easier than it would otherwise be. Fig. 6.7 shows the three-dimensional plot
of the sphere model (for n = 2, f(~x) = x1

2 + x2
2; x1, x2 ∈ [−40, 60]).
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Figure 6.8: Ackley’s function for n = 2 (entire search region)

6.2.2.2 Ackley’s function

Ackley’s function (Eq. 6.2) is continuous and multimodal (has many peaks).

ACKLEY(~x) = −c1 · exp


−c2

√√√√ 1

n

n∑
i=1

x2
i


− exp

(
1

n

n∑
i=1

cos(c3 · xi)

)
+ c1 + e

(6.2)
It was presented in [Ackley87] for the two-dimensional case and generalized for the
n-dimensional case in [Bäck96]. Bäck uses it in his harder group of test functions
and sets the parameters to c1 = 20; c2 = 0.2; c3 = 2π so that the global minimum is at
the origin at ~x = (0, . . . , 0) with the function value 0, and assumes a search region of
−20 ≤ xi ≤ 30. Fig. 6.8 shows the plot of the entire search region for n = 2; f(~x) =

−20 exp
(
−0.2

√
1
2
(x2

1 + x2
2)

)
−exp

(
1
2
(cos(2πx1) + cos(2πx2))

)
+20+e; x1, x2 ∈

[−20, 30] and Fig. 6.9 shows a close-up of the region near the global optimum. The
outer regions are relatively flat, but there is a trough around the global minimum
where the oscillations of the cosine wave become more pronounced. Ackley’s func-
tion is considered moderately hard because simple hill climbing algorithms will get
stuck in one of the many local minima.
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Figure 6.9: Ackley’s function for n = 2 (close-up view of the area around the global
optimum at the origin)
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6.2.3 Standard GA and ES parameters

Before an EA can be applied on a problem, values for a set of exogenous parameters
have to be decided. These include for example the population size to use, the types
of operators and everything else that is not subject to evolution but rather controls the
evolutionary process. For this work, the standard parameters given in [Bäck96] were
used as a baseline:

• Length of each object variable: 30 bits.

• Gray code is used for the bit string encoding.

• For noisy objective functions all fitness values were recomputed in each gener-
ation.

• Population size: 50.

• Maximum number of generations: 50.

• Elitism was not used.

• Recombination operator: single point crossover with crossover probability 0.6.

• Mutation rate: pm = 0.001 (flip mutation).

• Selection operator: Stochastic universal sampling (SUS) selection.

• For fitness scaling, the scaling window algorithm with window size 5 was used.

In addition to GAs, Bäck [Bäck96] also provides a set of standard parameters for
ESs. To make the GA and ES comparable, his recommended offspring population
size λ = 100 was halved for this work, and likewise the parent population size µ = 15
was halved (and rounded up). This way both the GA and the ES are allowed to
perform the same total number of objective funtion evaluations (50 times in each
generation for 50 generations, so 2500 total). Otherwise Bäck’s recommendation
were accepted and the settings are:

• Selection type is comma selection ((µ, λ)-ES).

• n standard deviations for n object parameters.

• Parent population size: µ = 8.

• Offspring population size: λ = 50.

• Maximum number of generations: 50.
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• Recombination is used: discrete sexual recombination for object parameters,
intermediate panmictic recombination for strategy parameters.

• Mutation parameters: τ0 = c√
2n

, τ = c√
2
√

n
, c = 1.

• Initial value of standard deviations σ: the smaller value of either (xu
i −xl

i)/
√

12
(assuming that the allowed range of object parameter xi is xl

i to xu
i ) or 3. Lim-

iting the initial value is necessary because setting too high values can lead to
the ES becoming unstable and incapable of converging on any optima.

• No lower bound for the σ.

• For fitness scaling, the scaling window algorithm with window size 5 was used.

6.2.4 Tests on the sphere model

The sphere model is a very simple test function on which any optimization procedure
should be effective. Failing to find the optimum on this function is an indicator that
there possibly is an error in the algorithm’s implementation. If the algorithms are cor-
rectly implemented, tests on the sphere model allow to compare relative convergence
speed.

Using the standard parameters, first the GA was used on the sphere model with
varying numbers of dimensions (from n = 1 to n = 9). Because a single GA run can
not be considered reliable evidence of performance due to the probabilistic nature of
the algorithm, the GA was executed 1000 times so that the results could be averaged.
The upper part of Fig. 6.10 shows the progression of the best (meaning lowest) ob-
jective value found in each generation for n = 1 to n = 9. It can be seen in the figure
that the GA approaches the single global optimum with value zero gradually. The
higher the dimension, the worse the level is at which the best values stagnate in the
later generations.

The lower part of Fig. 6.10 shows the best solutions ever found during each of the
1000 runs for n = 2. The diagram is a top-down view for this three-dimensional case,
with the X- and Y-coordinates of each point (represented as little crosses) signifying
the two object parameters and the Z-coordinate being that point’s objective value.
The Z-coordinate is represented by drawing the crosses in varying shades of gray,
with black being used for the lowest points and white for the highest ones (the scale
on the right side of the diagram shows the respective objective values for the shades).
While the solutions are generally clustered around the global optimum at the origin,
the region in which each individual solution falls is fairly wide. The average distance
of the points from the global optimum at the origin is 0.63, or 0.63% of the full range
of each variable of 100 units (−60 to 40). The GA obviously has trouble pinpointing
the best solution even at this low dimension and with a very easy test function.
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Figure 6.10: Progression of the average lowest objective value over 1000 runs in
each generation when using a GA on the sphere model for n = 1 to n = 9, and best

points found for n = 2
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Next, the ES was applied to the sphere model using the standard settings (also
1000 times). The upper part of Fig. 6.11 shows the progression of the best (meaning
lowest) objective value found in each generation for n = 1 to n = 9. Although the
convergence becomes slower the higher the dimension is, just as in the case of the
GA, the ES generally converges much faster for all dimensions. In contrast to the GA
the ES also never stagnates at some non-optimal level but rather always reaches the
best value of zero for all dimensions.

The lower part of Fig. 6.11 shows the best solutions ever found by the ES during
each of the 1000 runs for n = 2. All solutions are very close to the global optimum at
the origin, with the average distance being only 1.38·10−8, many orders of magnitude
better than the GA.

6.2.5 Tests on Ackley’s function

Next, the tests were performed on Ackley’s function using the GA and the ES with
standard settings and the results averaged over 1000 runs each. The upper part of
Fig. 6.12 shows the progression of the best (meaning lowest) objective value found
in each generation for n = 1 to n = 9. Just as in the case of the sphere model, the GA
approaches the global optimum at the origin with value zero gradually, but stagnates
at some level which is worse the higher the dimension is.

The lower part of Fig. 6.12 shows the best solutions ever found by the GA during
each of the 1000 runs for n = 2. The figure shows the best solutions clustered
around the global optimum, but also around the local optima surrounding the global
optimum. The average distance of the points is 0.44, or about 0.87% of the full range
of 50 units for each variable.

The ES was then applied on Ackley’s function 1000 times. The upper part of
Fig. 6.13 shows the progression of the best (meaning lowest) objective value found
in each generation for n = 1 to n = 9. The ES converges visibly faster than the GA
and when it stagnates at some level in the higher dimensions, that level is much lower
than the corresponding one for the GA.

The lower part of Fig. 6.13 shows the best solutions ever found by the ES during
each of the 1000 runs for n = 2. All the solutions are very close to the global
optimum, with an average distance of only 8.3·10−9, again many orders of magnitude
better than the GA as in the case of the sphere model. The ES can be said to have a
much higher convergence reliability than the GA then.

6.2.6 Conclusion

Both algorithms were shown to be capable of finding the global optimum of the
two test functions. For both functions the ES was found to be superior to the GA
in convergence speed as well as convergence reliability. The implementations are
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therefore assumed to be correct, and Bäck’s [Bäck96] findings that the ES is generally
the best suited algorithm for numerical optimization tasks could be confirmed as well.
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6.3 Effects of noise on the EAs

6.3.1 Objective of the experiment

Run-time measurements of programs are imprecise (see Sec. 6.1). When such a run-
time is the objective function in an optimization problem, the optimization algorithm
has to be able to deal with the random fluctuations without losing the ability to find
an optimum. Experimental investigation [Beyer98] has shown:

“Perhaps it may have appeared as a surprise, but the effects of fitness
noise seem to be similar in GAs and ESs:

(a) reduction of convergence velocity, and
(b) deterioriation of the final optimum location quality (R∞ > 0)

Although this has been tested and quantified for the sphere model only,
it should have been clear that the effects are of universal nature.”

In [Nissen98] this was also tested empirically and confirmed:

“The population-based GA and ES showed a remarkable robustness at
all noise levels. In particular, for medium and high levels of noise, even
a sample size of one frequently produced better results than a sample size
of ten for the point-based techniques.”

“Sample size” in the previous quote refers to the number of objective function evalua-
tions that are performed for each individual. Increasing the sample size and averaging
over the results provides a way to determine the actual objective value despite noise,
but obviously this is very costly due to the increased computational effort. For a
costly operation like a SAT solver run, the sample size should be kept as small as
possible, ideally at 1.

In this experiment it will be attempted to confirm the results of [Nissen98] for the
ES and GA implementation used in this work on the sphere model and on Ackley’s
function with a certain amount of noise. The noise in [Nissen98] was modeled by
adding a normally distributed random value to the objective function value whose
standard deviation was set to a percentage of the average expected value of the ob-
jective function. If F (~x) is the objective function, the noisy objective function is:

Φ(~x, σ) = F (~x) + N(0, σ) (6.3)

The standard deviation σ of the noise (assuming that the global minimum of F (~x) is
0) is defined as:

σ = α · m̄ (6.4)
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Dimension n Sphere m̄ Ackley m̄

1 933.123 17.491
2 1867.01 19.3724
3 2798.75 19.945
4 3734.67 20.2002
5 4665.53 20.338
6 5601.14 20.4232
7 6532.93 20.4828
8 7462.97 20.5244
9 8400.39 20.557

Table 6.1: Average values of 2,500,000 random evaluations of the sphere model and
Ackley’s function

The parameter α determines the noise level. The values tested in [Nissen98] were
α ∈ {0.2%, 0.5%, 2%, 5%, 10%}. The value m̄ is the average objective value when
evaluating a large number N of random solutions ~x from the search space S:

m̄ =
1

N

N∑
j=1

F (~xj); ~xj ∈ S, ~xj chosen randomly (6.5)

The test functions to be used will be the sphere model and Ackley’s function. Tab. 6.1
shows the values of m̄ that were determined for each function depending on the di-
mension n averaged over 2,500,000 random points (since the tests will be executed
for 1000 runs, with 2500 objective function evaluations each).

The noise level chosen for the experiments was α = 5% (meaning a value of
α = 0.05) since it was determined in the run-time variation experiments that in the
expected environment (Linux in single user mode or under low load) the imprecision
of run-time measurements stays under 5%.

6.3.2 Tests on the sphere model
The GA and ES were used to find the global minimum of the sphere model with noise
added for 1000 runs, with the number of dimensions ranging from 1 to 9. The upper
parts of Fig. 6.14 and Fig. 6.15 show the progression of the average best (lowest)
objective value per generation over all runs for the GA and the ES respectively. The
lowest objective values in this experiment reach negatives despite both test functions
being non-negative everywhere because of the Gaussian noise, which can take on
positive as well as negative values. The ES converges visibly faster than the GA.

The lower parts of Fig. 6.14 and Fig. 6.15 show the best points found in each run
of the GA and ES for the case n = 2. The general area in which the result points
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are found is roughly the same for both algorithms inside the range −5 ≤ x1 ≤ 5
and −5 ≤ x2 ≤ 5. In this range the maximum possible objective function value is
x2

1 + x2
2 = 52 + 52 = 50, and the standard deviation of the noise is σ = α · m̄ =

0.05 ·1867.01 = 93.3505. Since the maximum objective function value in this area is
only about half of the standard deviation of the noise it is not surprising that neither
algorithm could narrow the optimum down any further.

6.3.3 Tests on Ackley’s function
The upper parts of Figs. 6.16 and 6.17 show the progression of the average best (low-
est) objective value per generation over 1000 runs for the GA and the ES respectively.
As in the case of the sphere model, the ES converges visibly faster than the GA for
all dimensions. Additionally here the ES also finds better optima on average since
the asymptotic values reached at the end of the runs are lower than those found by
the GA.

The lower parts of Figs. 6.16 and 6.17 show the best points found in each run of the
GA and ES for the case n = 2. While the GA found many points that are clustered
around the global minimum, there are also many points which are clearly nearer to
any of more than ten different local minima. The ES on the contrary found always
found the global minimum and the points are very close to it.

6.3.4 Conclusion
As in the case of the tests without noise, both algorithms were shown to be capable
of finding the global optimum of the two test functions. The ES was found to be
superior to the GA in convergence speed as well as convergence reliability even when
the objective function evaluation is noisy.
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6.4 Fitness landscapes

6.4.1 Objective of the experiment

A fitness landscape is a visualization of the search space of an optimization problem
where optima are shown as peaks (maximization problem) or valleys (minimization
problem) on a three-dimensional map (see for example Fig. 1.3 in Sec. 1.5). Such a
map is useful to get a general idea of what kind of problems an optimization algo-
rithm will encounter (for example, it shows how multimodal the search space is). A
number of fitness landscapes for the SAT solver optimization problem using differ-
ent parameter combinations were constructed using various SAT problems to try and
gain some insight into what kind of behavior can be expected from the EAs.

6.4.2 Setup

To plot a fitness landscape two of the numerical parameters of the optimization prob-
lem have to be selected, as well as a region of interest for their values (meaning upper
and lower limits for each parameter). One of the parameters forms the X axis of the
fitness landscape and the other the Y axis, and the objective values of the optimiza-
tion problem (in this case, the runtime of the SAT solver measured in seconds) form
the Z axis of the landscape. The set of possible optimization parameter combinations
forms a rectangle in the two-dimensional XY-plane, with the lower and upper lim-
its of each axis variable being the sides. Inside this rectangle, some number of data
points can be sampled. To get a “landscape” rather than just a collection of points,
some type of interpolation can be used to approximate the area between the points.
The more data points are computed, the more detailed the landscape will be.

In this work the fitness landscapes were created by putting a regular grid of N ×N
points over the rectangular search space, then running MINISAT on a SAT problem
with the parameters described by the grid points (all other parameters were held at
their default values). The measured run times for each parameter combination are the
Z components of data points in the fitness landscape. If a problem can not be solved
within a predetermined time-out period, then the respective data point is assigned a
solving time of twice the time-out period (equivalent to how the objective function
was computed in such cases for the EAs later). A number of (unsatisfiable) industrial
SAT problems from the benchmark set of the 2006 SAT Race first qualification round
[Sinz06] were chosen as the basis for the fitness landscape experiments.

The open-source graph software GNUPLOT1 was used to generate three-
dimensional images from the gathered data points. The landscapes are represented as
“wiremesh” surfaces where each data point is at the meeting point of the wires (linear
interpolation between the data points). The wiremesh diagrams are of course only an

1Homepage: http://www.gnuplot.info/
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approximation of what the fitness landscape “really” looks like, since time measure-
ments are noisy, and additionally the area between data points is represented here by
simple planes where in reality it is likely much less smooth. Higher grid resolutions
give a more detailed image, but since the number of run times to measure rises with
the square of the number of subdivisions per axis, at most about 100 points per axis
(yielding about 10000 data points per landscape) were used.

For each fitness landscape the resolution of the grid used (subdivisions per axis),
the time-out and the name of the machine the data points were computed on (see the
following section) is given in the title. In the upper left corner of all fitness landscapes
“Min.: (X/Y/Z), Max.: M” states the X- and Y -coordinates of the point with the
lowest computed run time Z, and M is the highest run time encountered (which is
the “timed out” value in some cases). Additionally the minimum point is marked by a
filled black circle in the landscape. The point in the landscape defined by the default
values of each parameter in MINISAT (with a Z value of 0) is marked by a filled
black triangle; the default values are additionally also noted in the upper left corner
of the figures as “Default (default X/default Y)”.

6.4.2.1 Runtime normalization

Generating a fitness landscapes can take a large amount of time depending on the
grid resolution and time out period. For example, assuming a grid of 100 × 100
points (10000 total) and an average run time per data point of 5 minutes, the entire
landscape would take about 34 days to compute. The landscapes in this work were
usually completed in shorter times, but still took too long to repeat them arbitrarily
often. To save time the experiments were conducted on several different computers
concurrently (and generally out of order, whenever machines became free), though
of course all run times for a single fitness landscape were taken on the same machine.
Tab. 6.2 shows the hardware configurations of the 6 different types of machine that
were used. Pc0 was the slowest machine, Pc1 was faster than Pc0 and so on. The
designation of the machine used for each landscape is indicated in the title of the
diagram.

The available computers had different architectures and speeds, which of course
leads to different solving times being measured for the same problem and solver con-
figuration. The usefulness of the landscapes would be questionable if they looked
entirely different for the same problem on different computers, but fortunately it ap-
peares that solving times are more or less a linear function of a computer’s “power”.
Tab. 6.3 shows the measured run times when solving the problems used for the fitness
landscapes with MINISAT using standard parameters. These times were measured
while running in single-user mode under Linux to minimize the imprecision. All
fitness landscapes were computed with no concurrent non-essential tasks running as
well.

The computer Pc1 was the first dedicated machine that was available for experi-
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Designation Hardware
Pc0 Intel R©Pentium R©4@2.4GHz / 512KB cache
Pc1 Intel R©Pentium R©4@3.2GHz / 2MB cache
Pc2 Intel R©CoreTM2 4300@1.8GHz / 2MB cache
Pc3 Intel R©CoreTM2 6320@1.86GHz / 4MB cache
Pc4 Intel R©CoreTM2 Duo E6550@2.33GHz / 4MB cache
Pc5 Intel R©CoreTM2 Duo E8400@3GHz / 6MB cache

Table 6.2: Hardware configurations of the computers used

ments and was therefore chosen as the “reference” machine. If tref is the solving time
for some problem on the reference machine and tother the solving time on a different
computer, the normalization factor cnorm is:

cnorm =
tother

tref
(6.6)

Tab. 6.3 shows the median, average and standard deviation (in % of the average) of all
the normalization factors; it can be seen that the factors cnorm remain at fairly similar
values for each machine across the problems. It is therefore assumed that landscapes
generated on different machines are essentially equivalent apart from a scaling factor
for the “heights” of the data points and some amount of noise due to imprecise time
measurements and other factors such as different CPU architectures, cache sizes and
memory speeds whose effects can not be quantified easily.

The knowledge of the relative speeds of different computers used for the experi-
ments was also used in this work to allow roughly the same amount of “searching”
per evaluation with the DPLL algorithm in the optimization experiments with EAs:
the timeouts were adjusted up or down depending on if a computer was slower or
faster compared to a reference machine. Compared to the timeout period Tref on the
reference machine the timeout Tother was adjusted to be:

Tother = cnorm × Tref (6.7)
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6.4.2.2 Optimization parameter set

In the SAT solver optimization problem in this work there are 7 parameters to choose
from for the fitness landscapes. To optimize a real-valued variable with an EA an
allowed range has to be decided into which it may fall, which in the current case may
only contain values which make sense as settings for the SAT solver. Tab. 6.4 shows
the 7 MINISAT parameters to be optimized, including their default values as well
as the lower and upper limit of values between (and including) which the EAs will
search. Following list summarizes the function of the parameters:

1. VARDECAY (see Sec. 3.3.8): inverse of the multiplication factor with which
the variable activity “bumping” amount is multiplied periodically to simulate
an aging of the activities. The multiplication factor must be greater than 1 (or in
the borderline case where there is no aging equal to 1) for the aging mechanism
to work: 1

VARDECAY
≥ 1. Therefore VARDECAY has to be positive, not zero,

and less than or equal to 1, making its possible range 0 < VARDECAY ≤
1. The closer to 0 VARDECAY is, the stronger the aging effect becomes.
Conversely, the closer to 1 the parameter is, the weaker the aging effect is, with
no aging at all when it is equal to 1. The lower limit was arbitrarily set to 0.01,
which gives a maximum increase factor of up to 100, which is much higher
than the default aging factor and should give a more than sufficient range to
explore.

2. CLAUSEDECAY (see Sec. 3.6.1): works in a very similar way as
VARDECAY, but it controls the aging of learned clauses. The possible range
is 0 < CLAUSEDECAY ≤ 1, and 0.01 was chosen as the lower limit for this
parameter.

3. NOFCONFLICTSINC (see Sec. 3.6): multiplication factor for MINISAT’s
geometric series restart strategy. Must be ≥ 1, where value 1 means that
restarts are periodically triggered after a constant number of conflicts. The
upper limit was chosen as 2, which was considered high enough due to the
very quick (exponential) rise of the number of conflicts and relatively rare use
of the parameter.

4. NOFCONFLICTSBASE (see Sec. 3.6): base number of conflicts for MIN-
ISAT’s geometric series restart strategy. Must be any positive number; 10 and
1000 were arbitrarily chosen as limits.

5. NOFLEARNTSINC (see Sec. 3.6.1): after every restart the limit of learned
clauses that are allowed for the current search run is multiplied with this pa-
rameter. Must be ≥ 1, upper limit was chosen as 2.



6.4. FITNESS LANDSCAPES 140

Variable Lower limit Upper limit Default value
1 VARDECAY 0.01 1.0 0.95
2 CLAUSEDECAY 0.01 1.0 0.999
3 NOFCONFLICTSINC 1.0 2.0 1.5
4 NOFCONFLICTSBASE 10.0 1000.0 100
5 NOFLEARNTSINC 1.0 2.0 1.1
6 NOFLEARNTSDIVISOR 0.1 10.0 3.0
7 RANDOMVARFREQ 0.0 0.5 0.02

Table 6.4: The MINISAT parameters to optimize, with their chosen ranges and
default values

6. NOFLEARNTSDIVISOR (see Sec. 3.6.1): the initial number of allowed
learned clauses is the number of original CNF clauses divided by this parame-
ter; 0.1 and 10 were arbitrarily chosen as limits.

7. RANDOMVARFREQ (see Sec. 3.3.8): with a probability defined by this pa-
rameter MINISAT sometimes chooses a random variable. The value 0 means
no random decisions at all and is the lower limit. The upper limit was chosen
as 0.5, meaning half the decisions are random; higher values were considered
not useful.

Of the 7 values, 6 were paired as fitness landscape axis variables due to the similar-
ity of their function or because they affect the same part of the solver. VARDECAY
and CLAUSEDECAY affect different parts of the solver (decision heuristic and
learned clause deletion), but work in a similar way (both are “decay” constants).
They also have very similar possible ranges.

NOFCONFLICTSINC and NOFCONFLICTSBASE both affect the restart pol-
icy of the solver and are a natural choice for pairing as axis variables. Here the ranges
are very different.

At last, NOFLEARNTSINC and NOFLEARNTSDIVISOR control the solver’s
learned clause deletion mechanism (along with CLAUSEDECAY) and were consid-
ered a good choice to pair. Their ranges differ by one order of magnitude.

RANDOMVARFREQ was charted alone by itself.
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6.4.3 VARDECAY / CLAUSEDECAY

For the parameter pair VARDECAY and CLAUSEDECAY in addition to the full
range fitness landscape (0.01 ≤ VARDECAY ≤ 1 and 0.01 ≤ CLAUSEDECAY ≤
1) a close-up of the region 0.9 ≤ VARDECAY ≤ 1 and 0.9 ≤ CLAUSEDECAY ≤
1 that contains the default values was generated.

Additionally, full range fitness landscapes of 9 shuffled versions of each SAT prob-
lem were computed, though with a lesser number of grid points to keep computa-
tion times acceptable. For the shuffled problems in this experiment, the seeds were
100001 to 100009. Fig. 6.19 to Fig. 6.28 show the computed fitness landscapes. Each
double page contains the landscapes for one of the test problems.

6.4.3.1 Observations

1. It can be seen that all the fitness landscapes are highly multimodal: the surfaces
are rough, with many peaks and valleys.

2. Despite the roughness there is a visible downward trend of the landscapes in
the directions of VARDECAY = 1 as well as CLAUSEDECAY = 1. Also
noticeable is that the solving time jumps up noticably or the solver even times
out at exactly VARDECAY = 1 in some cases.

3. The landscapes contain ridge-shaped structures of long valleys extending along
the CLAUSEDECAY axis. The ridges are not completely level but rather they
slowly slope downwards in the direction of CLAUSEDECAY = 1.

4. The lower-resolution landscapes of the shuffled problems are fairly similar to
each other and the high resolution landscape of the original problem. The
minimum points are always near VARDECAY = 1 and CLAUSEDECAY =
1.

6.4.3.2 Interpretation

1. The roughness of the fitness landscapes is not unexpected, due to the com-
plexities of the interplay between the various elements of the solver. A single
different decision can lead the solver down a very different area of the search
space, leading to potentially very different solving times for two similar pa-
rameter configurations.

2. The solving times seem to get better the closer to the value 1 both parameters
CLAUSEDECAY and VARDECAY are, though VARDECAY should not be
exactly 1. The decay parameters control the aging of variable and clause activ-
ities. The more quickly variables age, the more focused on variables that oc-
cured in recent conflict clauses the search becomes. The more quickly learned
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clauses age, the more likely they become to be deleted early. Very high decay
strengths (parameter values near 0) are apparently not useful. In the case of
clause decay, very high values would mean that a lot of learned clauses get
deleted quite frequently, leading to a high loss of information and a therefore a
less efficient search. The drawback of very high variable decay is less clear, but
the need to more frequently having to rescale all activities once a maximum is
exceeded may be one factor. Turning off the variable decay completely (equal
to 1) leads to high solving times or timeout in some cases, indicating that the
presence of this feature is important for the solver performance.

3. The ridge structures indicate that the solving time varies less strongly with
changes of CLAUSEDECAY than of VARDECAY. Presumably the solving
time reacting more strongly to changes in VARDECAY is due to the variable
activities coming into play every time a decision is needed (which is very often)
while the clause activities are only relevant when the learned clause database
is cleaned up (which happens much less frequently).

4. For shuffled problems the solving time can be different from the original prob-
lem using some set of parameters, but generally the best choice of parameter is
still somewhere near VARDECAY = 1 and CLAUSEDECAY = 1.

Fig. 6.18 shows a summary of all minimum points founds in the landscapes along
with their averages, medians, minimum and maximum value found and standard de-
viations in percent. The figure also visualizes the best points in a XY-diagram. It can
be seen that according to the fitness landscapes values that are very near to the default
values used in MINISAT (VARDECAY = 0.95 and CLAUSEDECAY = 0.999) are
optimal.
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Figure 6.18: Analysis and visualization of all best points found in fitness landscapes
for VARDECAY / CLAUSEDECAY
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Figure 6.19: Fitness landscapes of problem manol-pipe-c6n for VARDECAY /
CLAUSEDECAY using the full range (top, 101× 101 grid, timeout 300s, Pc2) and

a close-up (bottom, 51× 51 grid, timeout 300s, Pc5)
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Figure 6.21: Fitness landscapes of problem manol-pipe-c7 i for VARDECAY
/ CLAUSEDECAY using the full range (top, 51× 51 grid, timeout 120s, Pc0) and

a close-up (bottom, 51× 51 grid, timeout 120s, Pc0)
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Figure 6.23: Fitness landscapes of problem goldb-heqc-desmul for
VARDECAY / CLAUSEDECAY using the full range (top, 101× 101 grid, timeout

300s, Pc2) and a close-up (bottom, 51× 51 grid, timeout 300s, Pc4)
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Figure 6.25: Fitness landscapes of problem velev-eng-uns-1.0-04a for
VARDECAY / CLAUSEDECAY using the full range (top, 101× 101 grid, timeout

300s, Pc2) and a close-up (bottom, 51× 51 grid, timeout 300s, Pc4)
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Figure 6.27: Fitness landscapes of problem velev-npe-1.0-02 for
VARDECAY / CLAUSEDECAY using the full range (top, 51× 51 grid, timeout

120s, Pc3) and a close-up (bottom, 51× 51 grid, timeout 120s, Pc3)
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6.4.4 NOFCONFLICTSINC / NOFCONFLICTSBASE

For the parameter pair NOFCONFLICTSINC and NOFCONFLICTSBASE in ad-
dition to the full range fitness landscape (1 ≤ NOFCONFLICTSINC ≤ 2 and
10 ≤ NOFCONFLICTSBASE ≤ 1000) two close-ups of the area near the default
values were made. Fig. 6.30 to Fig. 6.39 show the fitness landscapes. Each double
page contains the landscapes for one of the test problems.

6.4.4.1 Observations

For this parameter pair it became apparent early on that the fitness landscapes
are generally extremely noisy and show little structure, so that generating land-
scapes for shuffled problems (which would have to have much less resolution as
well) did not seem promising. Instead, in addition to a “low resolution” close-up
of the area around the default values (1.4 ≤ NOFCONFLICTSINC ≤ 1.6 and
10 ≤ NOFCONFLICTSBASE ≤ 200) another, even narrower close-up (1.49 ≤
NOFCONFLICTSINC ≤ 1.51 and 90 ≤ NOFCONFLICTSBASE ≤ 110) with a
high resolution grid (101× 101 points instead of 51× 51) was computed.

1. None of the full range fitness landscapes show any discernible structure in the
vast majority of the examined area; the run times seem to be very noisy. The
landscapes contain a large number of seemingly randomly distributed, very
narrow peaks and valleys without any apparent order. The landscapes remind of
the surface of sandpaper. For problem goldb-heqc-desmul the landscape
barely even shows these surface features: it is very flat all over, though still
noisy, but to a lesser degree than the other landscapes.

2. The landscapes of problems manol-pipe-c6n, goldb-heqc-desmul
and velev-eng-uns-1.0-04a have a visible increase of the solving time
in the corner NOFCONFLICTSINC = 1 / NOFCONFLICTSBASE = 10
(the lower limits for both parameters).

3. The minimum points of the full range landscapes are found more toward the
upper end of the parameter ranges (1.46 − 2 for NOFCONFLICTSINC and
406 − 980 for NOFCONFLICTSBASE). The minima in the close-up land-
scapes seem to have no system to them at all.

4. The first close-up landscapes are nearly indistinguishable from the full range
landscapes: they seem to show a comparable amount of randomness as the full
range ones, despite showing an area only about 1/25th in size but with the same
grid resolution. No order is obvious in the landscapes.

5. The extreme close-up landscapes still show a lot of randomness despite
the very small range for the parameters (NOFCONFLICTSINC only
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varies in a range of 0.02 and NOFCONFLICTSBASE in 20, which is
2% of the full range for both axes). For clarity, Fig. 6.29 shows the
graphs of NOFCONFLICTSINC and NOFCONFLICTSBASE as they pass
through the default point (1.5, 100) in the extreme close-up landscape for
problem manol-pipe-c6n (Fig. 6.31). It can be seen that varying
NOFCONFLICTSINC even by a tiny amount (the distance between points
on this axis is only 0.0002) can drastically change the run time of the solver.
The graph for NOFCONFLICTSBASE has “steps” about 5 grid points wide
where the run time does not change. Small changes to this parameter also can
change the run time by a large amount.

6.4.4.2 Interpretation

The parameters NOFCONFLICTSINC and NOFCONFLICTSBASE control the
solver’s restart strategy. Only integer values of NOFCONFLICTSBASE are sensi-
ble (since it defines the number of conflicts after which a restart is performed), and
any positions after the decimal point for this parameter will be cut off when given
to the solver. This leads to the many 5 grid points wide edges in the extreme close-
up landscapes along which the run time is always the same (the decimal places of
the parameter are cut off there), because the distance between grid points along the
NOFCONFLICTSBASE axis is only 0.2.

The increase of run times in the NOFCONFLICTSINC = 1 /
NOFCONFLICTSBASE = 10 corner of problems manol-pipe-c6n,
goldb-heqc-desmul and velev-eng-uns-1.0-04a is most likely
due to these values signifying very frequent restarts after relatively few conflicts,
and a slowly (in the extreme case linearly) rising number of conflicts. The frequent
restarts cause a lot of overhead, which increases the run time. Why this effect is
visible only in three of the five test problems (and undetectable in the other two) is
unknown.

Very small changes in either of the two parameters lead to wildly changing run
times, as can be seen in the extreme close-up landscapes. In the full range and
wider close-up landscapes this means that every grid point has a totally random
run time, so that these landscapes have a “sandpaper” appearance. Why problem
goldb-heqc-desmul is apparently less susceptible to changes of the parameters
is unknown. In light of this randomness it seems doubtful that any weight can be
given to the locations of the minimum points detected in the landscapes.

Restarts (see Sec. 3.6) are considered a vital part of SAT solving strategy to sta-
bilize solving times and to keep the solver from being bogged down in unpromis-
ing regions of the search space. In this experiment restarts are never “turned off”
completely, only the parameters of the geometric series that sets the limits af-
ter which a restart is performed are modified. At the “frequent restart” extreme,
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Figure 6.29: Separate graphs for run time versus NOFCONFLICTSINC and
NOFCONFLICTSBASE passing through the default value point taken from the

extreme closeup of the fitness landscape of problem manol-pipe-c6n
(101× 101 grid, timeout 120s, Pc5)
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restarts are performed after every 10 conflicts (NOFCONFLICTSINC = 1 and
NOFCONFLICTSBASE = 10); at the other extreme (NOFCONFLICTSINC = 2
and NOFCONFLICTSBASE = 1000) they are performed after 1000 conflicts, then
2000 more, then 4000, 8000, 16000, . . . etc. The only conclusion that could be drawn
from the landscapes seems to be that restarts should not be extremely frequent, as ev-
idenced by the “raised corners” in three of the five problems, though even then some
problems are not affected at all. Apart from this any choice of parameter inside the
used limits seems viable, or at least not obviously preferable to another. There is no
indication that the default values for the parameters are particularly good except that
they do not lead to very frequent restarts.



6.4. FITNESS LANDSCAPES 158

 

 

 Min.: (1.524/192.4/8.80366), Max.: 60.3788
 Default (1.5/100)

 1.4

 1.45

 1.5

 1.55

 1.6

NOFCONFLICTSINC

 20
 40

 60
 80

 100
 120

 140
 160

 180
 200

NOFCONFLICTSBASE

 0
 10
 20
 30
 40
 50
 60
 70

 

 

 Min.: (2/406/20.8293), Max.: 103.498
 Default (1.5/100)

 1

 1.2

 1.4

 1.6

 1.8

 2

NOFCONFLICTSINC

 100
 200

 300
 400

 500
 600

 700
 800

 900
 1000

NOFCONFLICTSBASE

 0
 20
 40
 60
 80

 100
 120

Figure 6.30: Fitness landscapes of problem manol-pipe-c6n for
NOFCONFLICTSINC / NOFCONFLICTSBASE using the full range (top,

51× 51 grid, timeout 300s, Pc2) and a close-up (bottom, 51× 51 grid, timeout
300s, Pc5)
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 Min.: (1.4982/99.8/9.24159), Max.: 73.6718
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Figure 6.31: Extreme closeup of the fitness landscape of problem
manol-pipe-c6n for NOFCONFLICTSINC / NOFCONFLICTSBASE

(101× 101 grid, timeout 120s, Pc5)
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Figure 6.32: Fitness landscapes of problem manol-pipe-c7 i for
NOFCONFLICTSINC / NOFCONFLICTSBASE using the full range (top,

51× 51 grid, timeout 120s, Pc0) and a close-up (bottom, 51× 51 grid, timeout
120s, Pc0)
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Figure 6.33: Extreme closeup of the fitness landscape of problem
manol-pipe-c7 i for NOFCONFLICTSINC / NOFCONFLICTSBASE

(101× 101 grid, timeout 120s, Pc3)
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 Min.: (1.568/32.8/29.4225), Max.: 33.12
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Figure 6.34: Fitness landscapes of problem goldb-heqc-desmul for
NOFCONFLICTSINC / NOFCONFLICTSBASE using the full range (top,

51× 51 grid, timeout 300s, Pc2) and a close-up (bottom, 51× 51 grid, timeout
300s, Pc4)
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 Min.: (1.4946/98/29.5015), Max.: 33.2339
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Figure 6.35: Extreme closeup of the fitness landscape of problem
goldb-heqc-desmul for NOFCONFLICTSINC / NOFCONFLICTSBASE

(101× 101 grid, timeout 120s, Pc4)
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 Min.: (1.58/139.2/15.0157), Max.: 32.1201
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Figure 6.36: Fitness landscapes of problem velev-eng-uns-1.0-04a for
NOFCONFLICTSINC / NOFCONFLICTSBASE using the full range (top,

51× 51 grid, timeout 300s, Pc2) and a close-up (bottom, 51× 51 grid, timeout
300s, Pc4)
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 Default (1.5/100)

 1.49

 1.495

 1.5

 1.505

 1.51

NOFCONFLICTSINC

 90

 95

 100

 105

 110

NOFCONFLICTSBASE

 0
 5

 10
 15
 20
 25
 30
 35

Figure 6.37: Extreme closeup of the fitness landscape of problem
velev-eng-uns-1.0-04a for NOFCONFLICTSINC /

NOFCONFLICTSBASE (101× 101 grid, timeout 120s, Pc4)
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 Min.: (1.468/127.8/4.90831), Max.: 34.8022
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 Min.: (1.46/782.2/4.56428), Max.: 44.4668
 Default (1.5/100)
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Figure 6.38: Fitness landscapes of problem velev-npe-1.0-02 for
NOFCONFLICTSINC / NOFCONFLICTSBASE using the full range (top,

51× 51 grid, timeout 120s, Pc2) and a close-up (bottom, 51× 51 grid, timeout
120s, Pc2)
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 Min.: (1.4922/103/4.39233), Max.: 26.392
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Figure 6.39: Extreme closeup of the fitness landscape of problem
velev-npe-1.0-02 for NOFCONFLICTSINC / NOFCONFLICTSBASE

(101× 101 grid, timeout 300s, Pc3)
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6.4.5 NOFLEARNTSINC / NOFLEARNTSDIVISOR
For the parameter pair NOFLEARNTSINC and NOFLEARNTSDIVISOR in
addition to the full range fitness landscape (1 ≤ NOFLEARNTSINC ≤ 2
and 0.1 ≤ NOFLEARNTSDIVISOR ≤ 10) a close-up of the region 1 ≤
NOFLEARNTSINC ≤ 1.2 and 2 ≤ NOFLEARNTSDIVISOR ≤ 4 that con-
tains the default values was generated. Additionally, full range fitness landscapes of
9 shuffled versions of each SAT problem were computed. For the shuffled problems
in this experiment, the seeds were 100001 to 100009. Fig. 6.40 to Fig. 6.49 show the
computed fitness landscapes. Each double page contains the landscapes for one of
the test problems.

6.4.5.1 Observations

1. All full range landscapes are noticeably separated into two distinct “zones”:
the “mountainous” zone is a roughly triangular area of random peaks and val-
leys, and the “flat” zone is the rest of the landscape which is completely flat.
For problem goldb-heqc-desmul the mountainous zone is much smaller
than for all the other problems. The corners of the triangular mountainous
zones are at the points (1, 0.1), (1, 10) and (x, 10), where x is some value of
NOFLEARNTSINC that is at the highest about 1.2. The peaks in this zone
can reach over the level of the flat zone, and the valleys can reach levels under
the flat zone.

2. The close-up landscapes show the transition between the mountainous and the
flat zone. Even in magnification the flat zone appears completely flat.

3. The low-resolution landscapes of the shuffled problems indicate that these two
consist of the two zones. The mountainous zone is located in a similar region
as in the original problems.

4. The minimum points in the full range landscapes are all located inside the
mountainous zone, except for problem goldb-heqc-desmul where this
zone is a narrow strip of peaks and the entire rest of the landscape is flat. In the
landscapes of shuffled problems the minimum is sometimes in the mountain-
ous and sometimes in the flat zone, but due to the low grid resolution used for
these it is unknown if the “true” minimum points were simply missed.

6.4.5.2 Interpretation

The parameters NOFLEARNTSINC and NOFLEARNTSDIVISOR control the
deletion of learned clauses. The initially allowed number of learned clauses is the
total clauses divided by NOFLEARNTSDIVISOR; this means the higher this value
is the fewer learned clauses are allowed (at the lowest only 10% of the initial clauses
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since 10 is the highest allowed value). After every restart the allowed number of
learned clauses is multiplied with NOFLEARNTSINC.

The triangular mountainous zone marks the region where the number of learned
clauses is kept fairly low, while beyond it in the flat zone a large number of learned
clauses is allowed. The worst case of the lowest initial amount of learned clauses
being allowed and the smallest increase is at the point NOFLEARNTSINC = 1
and NOFLEARNTSDIVISOR = 10, which is the corner furthest in the back in
the diagrams. Learning a lot of learned clauses is generally considered problematic
since it slows down the BCP engine considerably (this is the reason why learned
clauses are deleted periodically in the first place). Deleting learned clauses can also
have the undesirable effect of destroying vital information that may be needed to
prove the satisfiability of the problem, therefore tuning this mechanism is a balance
act between throwing away “useless” clauses and keeping as many “useful” ones as
possible without slowing down BCP too much.

The landscapes indicate that after a certain point the allowed number of learned
clauses becomes large enough that further increases have no effect; this is the solver
operating in the flat zone. If the allowed number is kept low, the effect is that the
run time can increase but also decrease. Presumably if it increases, the solver deletes
useful clauses too often (the deletion cycle also costs time) and has to retrace its
steps continually to regenerate the necessary clauses until it can solve the problem.
If the run time decreases then the solver frequently deleted clauses, which keeps the
clause database small and BCP fast but useful clauses are not deleted, which leads to
an early success. Unfortunately no pattern can be seen in the landscapes for which
parameter setting is beneficial, making the use of very fast clause deletion settings a
gamble. The default parameters used in MINISAT are well within the flat zone.
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Figure 6.40: Fitness landscapes of problem manol-pipe-c6n for
NOFLEARNTSINC / NOFLEARNTSDIVISOR using the full range (top, 51× 51
grid, timeout 300s, Pc2) and a close-up (bottom, 51× 51 grid, timeout 300s, Pc5)
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Figure 6.42: Fitness landscapes of problem manol-pipe-c7 i for
NOFLEARNTSINC / NOFLEARNTSDIVISOR using the full range (top, 51× 51
grid, timeout 120s, Pc0) and a close-up (bottom, 51× 51 grid, timeout 120s, Pc0)
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Figure 6.44: Fitness landscapes of problem goldb-heqc-desmul for
NOFLEARNTSINC / NOFLEARNTSDIVISOR using the full range (top, 51× 51
grid, timeout 300s, Pc2) and a close-up (bottom, 51× 51 grid, timeout 300s, Pc4)
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Figure 6.46: Fitness landscapes of problem velev-eng-uns-1.0-04a for
NOFLEARNTSINC / NOFLEARNTSDIVISOR using the full range (top, 51× 51
grid, timeout 300s, Pc2) and a close-up (bottom, 51× 51 grid, timeout 300s, Pc4)
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Figure 6.48: Fitness landscapes of problem velev-npe-1.0-02 for
NOFLEARNTSINC / NOFLEARNTSDIVISOR using the full range (top, 51× 51
grid, timeout 120s, Pc2) and a close-up (bottom, 51× 51 grid, timeout 120s, Pc2)
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6.4.6 RANDOMVARFREQ
The remaining parameter RANDOMVARFREQ determines the probability with
which the decision heuristic chooses a random variable rather than the one with
the currently highest activity. The (two-dimensional) fitness landscapes in Fig. 6.50
to Fig. 6.52 chart the solving time for the test problems for different values of
RANDOMVARFREQ over the full range.

6.4.6.1 Observations

1. The data points form rough “tube” shapes that are slightly upwardly inclined.
The widths of the tubes are different for each problem, ranging from about 3
seconds up to about 20 seconds.

2. The general trend is that solving times get worse the higher
RANDOMVARFREQ is but due to the spread a solving time can also
be lower for a point further to the right.

3. The best solving times are found near the lower end of the range; only in one
case (for problem goldb-heqc-desmul) out of the five shown was the min-
imum at exactly 0 (meaning no random decisions). In four out of five cases the
solving time was better with some amount of randomness (ranging from 2.5%
to 12.5%).

6.4.6.2 Interpretation

The reasoning behind using rare random decisions is that it helps the solver solve
some problems without causing too much overhead in other problems. The fitness
landscapes seem to confirm this: in four out of five cases the best solving time was
achieved with some added randomness, and in the one case it did not help the solving
times with a small amount of randomness are not substantially higher.
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Figure 6.50: Fitness landscapes for RANDOMVARFREQ (default: 0.02) of
problems manol-pipe-c6n (top) and manol-pipe-c7 i (bottom), both using

100 points, timeout 120s on Pc4
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Figure 6.51: Fitness landscapes for RANDOMVARFREQ (default: 0.02) of
problems goldb-heqc-desmul (top) and velev-eng-uns-1.0-04a

(bottom), both using 100 points, timeout 120s on Pc4
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Figure 6.52: Fitness landscapes for RANDOMVARFREQ (default: 0.02) of
problem velev-npe-1.0-02 using 100 points, timeout 120s on Pc4
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6.4.7 Conclusion
In this section, fitness landscapes were generated for the seven MINISAT parameters
using five different SAT problems and their shuffled versions. In summary, following
conclusions could be drawn:

• The landscapes of the parameters VARDECAY and CLAUSEDECAY are
similar for all problems and their shuffled versions. Small variations of
VARDECAY have a stronger impact on solving time than variations of
CLAUSEDECAY, which can be seen on ridges in the landscape extend-
ing in the direction of the CLAUSEDECAY axis. The default values
VARDECAY = 0.95 and CLAUSEDECAY = 0.999 used in MINISAT are
essentially optimal.

• The parameters NOFCONFLICTSINC and NOFCONFLICTSBASE
strongly affect the solving time, but their effects are so random and so
sensitive even to tiny changes that no recommendation can be made for
their choice apart from that extremely frequent restarts (around the point
NOFCONFLICTSINC = 1 and NOFCONFLICTSBASE = 10) should be
avoided. The default parameters seem as good a choice as any.

• The landscapes for NOFLEARNTSINC and NOFLEARNTSDIVISOR are
divided into a “mountainous zone” where clause deletion is frequent and a “flat
zone” where it is relatively rare. In the mountainous zone the solving times
fluctuate strongly and may be substantially shorter than in the flat zone, but
may also be longer; no rule is obvious how to set the parameters so that the
solving time is shorter. In the flat zone the solving time is the same everywhere;
the default parameters are located in the flat zone.

• The landscapes for shuffled problems are in general similar to those of the
original problems apart from localized differences. This was not tested for
NOFCONFLICTSINC and NOFCONFLICTSBASE since those landscapes
were very random anyway.
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6.5 SAT optimization with GA and ES

6.5.1 Objective of the experiment

In this experiment, the GA and ES will be used to optimize a varying number of
MINISAT parameters (using the ranges given in Sec. 6.4.2.2) by running the solver
on SAT problems and attempting to minize the run time. This is the core operation
of the SAT solver optimization procedure (see Sec. 1.8.2.1): if this operation is too
unreliable or even impossible, the entire procedure can not work. While the ES was
shown to be faster and more precise than the GA when finding the optimum of noisy
test functions (see Sec. 6.3), tests are necessary to determine if the situation is the
same when the actual SAT solver is under optimization. The standard EA parameters
described in Sec. 6.2.3 will be used.

6.5.2 Setup

Since a single run does not provide reliable evidence of an EA’s efficiency, many runs
are needed; 10 runs total were executed for each partial experiment. Due to the very
large runtimes involved when optimizing the SAT solver the experiment had to be
performed on several computers, one distinct run on each PC, to be able to finish an
acceptable number of runs in the available time. The experiments were performed
on several different computers; run times reported here will be given normalized to
the reference machine (see Sec. 6.4.2.1). On that machine, the SAT Race problem
manol-pipe-c6n takes a little less than 1 minute to solve and was chosen as the
target problem. The GA and ES start with an initial population of random individu-
als and will attempt to find a configuration of the parameters that result in the SAT
problem being solved as quickly as possible.

6.5.3 Optimizing one parameter

In the first attempt at optimization only the VARDECAY parameter was the target
of optimization, while all others were held at their default values. The GA and ES
were then run and the progress recorded. The fitness landscape experiment (Sec. 6.4)
showed that VARDECAY has a strong influence on solving times, and expected
optimal results were values near but not equal to 1.

Tab. 6.5 shows the best results found over all generations of the 10 GA and ES
runs using manol-pipe-c6n as the training problem. The solving times given in
the table are normalized to the reference machine and sorted from lowest to highest.
Also shown are the minimum, maximum, median, average, standard deviation and
standard deviation in percent of the average of each column. The table shows that
both the GA and the ES found their best results in the range between ca. 0.9 and
0.97, with an average of 0.936 for the GA and 0.94 for the ES (the default value of
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Table 6.5: Best results of 10 GA and ES runs optimizing VARDECAY for training
problem manol-pipe-c6n

VARDECAY in MINISAT is 0.95). This is as expected, considering the fitness land-
scape for the training problem manol-pipe-c6n constructed in the last section.
The spread of the results is slightly lower for the ES than for the GA, though with
such a small sample and with the amount of noise involved the significance of this is
debatable and will not be considered valid evidence of the ES’s superiority yet.

Fig. 6.53 charts the average over all runs of the best result in each generation over
the course of 50 generations for the GA and the ES, given as a fraction of the timeout
(if the solving time was 30 seconds and the timeout was 60 seconds, the charted value
would be 0.5). Both the GA and the ES were capable of successfully navigating
the search space of the problem and found values of VARDECAY that are in line
with what was expected after computing the fitness landscape. The ES seemed to be
slightly more efficient than the GA, similar to the situation in the experiments with
noisy test functions, since the graph of the ES reaches lower (better) values quicker
than the GA.
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Figure 6.53: Progression of the lowest solving time (given as a fraction of the
timeout) per generation of the GA and ES optimizing only VARDECAY for

training problem manol-pipe-c6n
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6.5.4 Optimizing the complete parameter set

Next, both GA and ES were used to optimize the entire parameter set, again on prob-
lem manol-pipe-c6n. Tab. 6.6 and Tab. 6.7 show the best results found in each
run (run times are normalized to the reference machine). The entry “% of range” in
the tables gives the ratio of the entire search range for the respective variable into
which the results fall.

The best run times of all 10 runs have a somewhat higher spread for the GA than
for the ES. It was noticeable in the experiments with test functions (see Sec. 6.2 and
Sec. 6.3) that the GA tends to be less good at pinpointing optima than the ES, which
seems to be the case here as well.

In both tables that the results for the parameters VARDECAY, CLAUSEDECAY
and RANDOMVARFREQ are significantly more localized than those of the param-
eters NOFCONFLICTSINC, NOFCONFLICTSBASE, NOFLEARNTSINC and
NOFLEARNTSDIVISOR. For the GA, the results for the first set of parameters
cover only a range of 8-33% of the full allowed range, and the ES 3-16%. The results
of the second set of parameters cover a range of 65-94% (GA) and 68-100% (ES) of
the full range.

It was shown in Sec. 6.4 that the fitness landscape for VARDECAY
/ CLAUSEDECAY has a global minimum in the region near the point
VARDECAY = 1 and CLAUSEDECAY = 1; this minimum was relatively uni-
versal for all the tested problems as well as their shuffled versions. Both the GA
and the ES return results for these parameters that are in the general vicinity of this
optimum, though the ES seems to pinpoint the results more exactly.

The parameters NOFCONFLICTSINC, NOFCONFLICTSBASE,
NOFLEARNTSINC and NOFLEARNTSDIVISOR have in common that the fit-
ness landscapes generated from them are highly multimodal, though for different rea-
sons. The fitness landscapes for NOFCONFLICTSINC / NOFCONFLICTSBASE
are very random and “sandpaper”-like, with a huge number of very narrow local
minima. These landscapes also look the same anywhere in the allowed region apart
from one small “raised corner”, which makes it impossible to decide which of these
might be better than any other. In contrast, the landscapes for NOFLEARNTSINC
/ NOFLEARNTSDIVISOR contain large areas which are completely flat (in
addition to a “mountainous zone” where solving times are very random), so that
there is a large set of possible and equivalent choices for the values. The EAs in this
experiment had to navigate through the multidimensional search space that includes
both of these parameter pairs, therefore it is not surprising that their values in the
results are from a fairly large range (or even the entire range).

No fitness landscapes were generated that included the parameter
RANDOMVARFREQ, but it is known that this value (which controls the fre-
quency of random choices in the decision heuristic) must not be too high; the
default value is only 0.02 (2%). The best results of the GA had values for
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RANDOMVARFREQ ranging from less than 1% to about 6%, the ES from 0% to
a little less than 2%. This indicates that random variable decisions must be very rare
or they disrupt the search process too strongly.

Fig. 6.54 charts the average over all runs of the best result in each generation over
the course of 50 generations for the GA and the ES, given as a fraction of the timeout.
Although the initial populations were apparently worse for the ES, it reaches the best
results quicker than the GA. After less than 5 generations the ES surpasses the GA’s
results and after about 15 generations it has made the majority of progress, whereas
the GA needs about 35 generations until it reaches its best results.

It is interesting that both EAs are not “confused” by the parameters with very ran-
dom effects on the run time while simultaneously optimizing seven different param-
eters. This is an encouraging result that suggests that EAs are useful for optimization
even when faced with highly noisy (apart from measurement imprecisions) multidi-
mensional problems.

6.5.5 Conclusion
The GA and ES were used to optimize the parameters of MINISAT on the SAT prob-
lem manol-pipe-c6n, first just one parameter, then all seven simultaneously. In
both cases the EAs were successful in gradually improving the best solving time over
the generations, showing that either of them can serve as the optimization algorithm
for the SAT solver optimization procedure. It was found that the ES converges faster
than the GA; this is in line with the findings on noisy test functions in Sec. 6.3. The
best results found by both algorithms are of comparable quality, though the ES has
superior precision; this was also as expected after the earlier findings. An encourag-
ing result of the experiments was that the EAs are not confused by the highly random
effects of four of the parameters and can optimize the remaining three parameters
effectively.

For the parameters VARDECAY, CLAUSEDECAY and RANDOMVARFREQ
the EAs find values that are very close to the defaults (0.95, 0.999 and 0.02) used in
MINISAT, the latter two of which were in turn confirmed to be near optimal by the
fitness landscape experiments in Sec. 6.4. The fitness landscapes also indicated that
a small but not too high amount of randomness (meaning values around 0.1 and less)
in the variable decision heuristic is beneficial for the solver; the best results of the EA
optimization had small values for RANDOMVARFREQ.

It is noticeable for parameter NOFCONFLICTSINC that the median value of
the results found by the ES is a very high 1.939, which is close to the maxi-
mum allowed value; the (usually less precise) GA found values from the entire
range. For the parameters NOFCONFLICTSBASE, NOFLEARNTSINC and
NOFLEARNTSDIVISOR neither of the EAs found clear results. The fitness land-
scapes of these parameters were found to be highly multimodal earlier, which ex-
plains this result: there are are large number of viable choices for these parameters
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Figure 6.54: Progression of the lowest solving time (given as a fraction of the
timeout) per generation of the GA and ES optimizing all seven solver parameters for

training problem manol-pipe-c6n
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which had no discernable order to them. It is understandable then that the EAs did
not converge on any particular value, but rather resulted in any of the great number
of possible choices.
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6.6 SAT solver optimization experiments

6.6.1 Objective of the experiment

In the experiment described in this section MINISAT was optimized using a larger
set of SAT problems and their shuffled versions. This experiment implements the
“optimization on training sets” step of the SAT solver optimization procedure (see
Sec. 1.8.2.1).

One of the results of the previous Sec. 6.5 was that the ES is generally faster and
more precise when optimizing the SAT solver. The ES seems to reach a plateau for
the average best objective value found after about 15 generations, while the GA takes
longer. Since a SAT solver optimization run takes very long due to the evaluation
times, it is even more important that the optimization algorithm converges quickly so
that the maximum number of generations can be kept small. Therefore the ES is the
more promising algorithm in a “production” setting where a solver is optimized for
real-world applications, and will be exclusively used in this experiment.

6.6.2 Setup

For the ES all the standard settings were used as described in Sec. 6.2.3, except that
the maximum number of generations was limited to 15 instead of 50; this means that
in total 15× 50 = 750 individuals were evaluated. The SAT problems to solve were
drawn from the first qualification round of the 2006 SAT Race [Sinz06]; 27 different
problems were used. The problems were chosen arbitrarily from the easier instances
in the set; the relatively wide selection was intentional so that results could be ana-
lyzed for different types of problems. It was expected that the wide selection would
also lead to a relatively “general purpose” configuration in the result candidate selec-
tion step of the optimization procedure (see Sec. 1.8.2.1), which would be compared
to the default parameters which are also intended to be applicable in a wide range of
problems.

In each optimization run the ES attempted to minimize the sum of solving times
for one of the problems together with nine shuffled versions of that problem; this
means that for every individual’s evaluation 10 SAT problems were solved (so the
SAT solver was started 750×10 = 7500 times). If any of the solving attempts resulted
in a timeout, twice the timeout in seconds was added to the objective value. The
timeouts were adjusted individually to each machine so that it was about twice the
solving time for the original SAT problem using default parameters. In an industrial
setting it would not be possible to predetermine timeouts in this manner of course,
but it was done here to save time.
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6.6.3 Results
Tab. 6.8 lists the best solutions found in each ES run for the respective problem, along
with the default values, ES ranges, minimum, maximum, median, average, standard
deviation (as value and in %) and the ratio of the full range covered by the solutions
in each column. The problems are sorted in ascending order by the objective value
of the best solution, normalized to the reference machine Pc1, so the table gives a
rough estimate of how hard the problems are in relation to each other.

In the “result candidate selection” step of the SAT solver optimization procedure
(see Sec.1.8.2.1) some algorithm has to look at the data gathered in the trial database
and choose some configurations suitable as the final result. It may look at all trials for
that purpose, not just the top results. As a simple example of such a wider choice for
the candidate selection, the three best parameter configurations were extracted from
each ES run. Tab. 6.8 does not list the second- and third-best results, but shows the
statistics for this case.

To examine the results of the ES runs more closely, the three best solutions for
each of the 27 problems were charted as points in XY-diagrams (81 points total) for
the three parameter pairs and histograms were made to show in which ranges the
points accumulate. The histograms partition the allowed range2 of the parameter
into 50 bins and sort all recorded solutions into these bins, so that the number of
solutions that fall into a partial range can be counted; the sum over all bin counts
is 81, the total number of solutions. Fig. 6.55 to Fig. 6.61 show the XY-diagrams
and histograms, and give the statistical results of the relevant parameters taken from
Tab. 6.8. Following observations can be made in the results:

1. VARDECAY: Both the XY-diagram and the histogram show that optimal val-
ues for this parameter are almost always near or very near 1, as was already
known from previous EA experiments as well as fitness landscapes. The his-
togram makes clear that VARDECAY is best chosen at values from 0.9 to 1
(but not exactly 1) regardless of the type of problem and if the problem is shuf-
fled or not. Nevertheless, there are a handful of outliers outside of this range,
including the lowest allowed value 0.01.

2. CLAUSEDECAY: For this parameter the diagrams show that the optimal
value is exactly 1 in the vast majority of cases (the median is 1, meaning that
for more than half of the solutions CLAUSEDECAY = 1). This result co-
incides with those from the previous experiments. There are outliers further
away from 1 including the lowest possible value 0.01.

3. NOFCONFLICTSINC: The median result for this parameter is 1, which is
very different from the results of the previous experiments where no order
could be detected for what value is optimal. The second noticeable peak in

2Where the lower limit was very near to 0, exactly 0 was used as the lowest bin



6.6. SAT SOLVER OPTIMIZATION EXPERIMENTS 196

Table 6.8: Best solutions found when optimizing 7 heuristic parameters in
MINISAT with an ES using 27 problems from the 2006 SAT Race (below are

statistics for 3 best solutions of each run)
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the histogram is at 2, the other extreme value, but this value is optimal for a far
smaller number of cases. Many values inbetween the two extremes also were
optimal sometimes, but only for 1 or 2 cases each.

4. NOFCONFLICTSBASE: Optimal solutions for this variable are widely dis-
tributed over the whole range. There are 3 big peaks centered around 120,
420 and 720, but it is not clear if this is simply an artifact of randomness. No
value seems particularly better than another, since even the peaks are only 5
occurrences each.

5. NOFLEARNTSINC: The points in the XY-diagram for this parameter are
widely distributed, but it can be seen in the histogram that approximately a
quarter of the values congregate at the extreme ends of the range (respectively
19 and 13 of 81 values), with the rest evenly distributed inbetween. It is un-
known if the massing of points near the extremes is due to a real advantage
of those values or if this is simply an artifact of the ES getting stuck near the
limits in the absence of clear selective pressure.

6. NOFLEARNTSDIVISOR: The histogram for this parameter looks similar to
the one for the previous parameter. The largest peaks are found at the extreme
ends of the range, which contain respectively 13 and 15 of the 81 points.

7. RANDOMVARFREQ: This parameter is optimal at exactly 0 for the vast
majority of cases, which was also indicated by the previous experiments.

To summarize, optimal values for the parameters according to the ES optimization
experiments were most often:

VARDECAY ≈ 1
CLAUSEDECAY = 1

NOFCONFLICTSINC = 1
NOFCONFLICTSBASE no recognizable pattern

NOFLEARNTSINC no recognizable pattern
NOFLEARNTSDIVISOR no recognizable pattern

RANDOMVARFREQ = 0
An investigation of the correlation between parameters that were not paired and

their results depicted in the XY-diagrams was not performed in this work. This is an
area that requires further study.



6.6. SAT SOLVER OPTIMIZATION EXPERIMENTS 198

Figure 6.55: All best 3 points in ES optimization results: XY-diagram for
VARDECAY / CLAUSEDECAY and histogram for VARDECAY
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Figure 6.56: All best 3 points in ES optimization results: histogram for
CLAUSEDECAY and statistics for VARDECAY / CLAUSEDECAY
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Figure 6.57: All best 3 points in ES optimization results: XY-diagram for
NOFCONFLICTSINC / NOFCONFLICTSBASE and histogram for

NOFCONFLICTSINC
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Figure 6.58: All best 3 points in ES optimization results: histogram for
NOFCONFLICTSBASE and statistics for NOFCONFLICTSINC /

NOFCONFLICTSBASE
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Figure 6.59: All best 3 points in ES optimization results: XY-diagram for
NOFLEARNTSINC / NOFLEARNTSDIVISOR and histogram for

NOFLEARNTSINC
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Figure 6.60: All best 3 points in ES optimization results: histogram for
NOFLEARNTSDIVISOR and statistics for NOFLEARNTSINC /

NOFLEARNTSDIVISOR
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Figure 6.61: All best 3 points in ES optimization results: histogram and statistics for
RANDOMVARFREQ
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6.6.4 Visualization of the search

To investigate the behavior of the ES in the search space of the SAT solver opti-
mization problem some diagrams were generated that display all the tested points.
Problem manol-pipe-c7idw, together with nine shuffled versions of itself, was
the training set, and the run was executed on the machine Pc3. The ES was applied
on this set for 15 generations, which yields a total of 750 tested points. Fig. 6.62
and Fig. 6.63 show the resulting diagrams. The usual pairs of parameters were the
X- and Y-axis of three-dimensional diagrams, and the objective values are the Z-axis
(RANDOMVARFREQ is in an additional two-dimensional diagram). Each cross
marks a point tested by the ES, and its height (and shade of gray) marks its objective
value. These diagrams are essentially “incomplete fitness landscapes” since they only
show the portion of the landscape actually explored by the ES.

It can be observed that in the VARDECAY / CLAUSEDECAY diagram the
points mass in the vicinity of the known global optimum. The diagram for
RANDOMVARFREQ shows that the best results all share a very low value for this
parameter.

The diagram for NOFCONFLICTSINC / NOFCONFLICTSBASE shows two
long masses of points (“stripes”) that extend along the entire length of the
NOFCONFLICTSINC-axis. The masses contain many optimal points, but also
many timed-out points. It was found after some investigation that the particular val-
ues indicated on the NOFCONFLICTSBASE axis where the masses are located are
not necessarily optimal, but rather that this phenomenon stems from a quirk of the ES
algorithm used in this work. The ranges of the two parameters are very different, with
NOFCONFLICTSINC having a range of only 1 and NOFCONFLICTSBASE a
range of nearly 1000. The initial value of the standard deviation σ for the ES mutation
operator is set to only 3 (see Sec. 6.2.3) for the parameter NOFCONFLICTSBASE,
which is much less than the total range, meaning that every generational step only
moves the children a small distance from their parents compared to the full range.
On the other hand, the range of the parameter NOFCONFLICTSINC which is much
smaller is fully explored. The σ values for NOFCONFLICTSBASE do not seem to
grow much over the 15 generations, possibly because the fitness landscape of these
parameters is so random. Indeed, using the ES on a completely random test func-
tion with variables with the same ranges revealed the same phenomenon of points
congregating in “stripes”.

The diagram for parameters NOFLEARNTSINC and NOFLEARNTSDIVISOR
shows that the entire range of both parameters is explored by the ES, and that there
are many semi-optimal points all over the search space with no visible order. This is
in line with the findings of the fitness landscape experiments.
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6.6.5 Conclusions
Optimization experiments were performed on MINISAT using the ES as the opti-
mization algorithm, with a shortened number of 15 generations maximum (instead of
50) which appeared to be adequate judging from the results of the previous section.
The training sets contained one of 27 different SAT problems and additionally 9 shuf-
fled version of that problem. Results showed that in the best configurations 4 of the
7 parameters converged to always the same values, while the remaining three were
apparently random. Of the converging parameters, 3 were known to have relatively
narrow optimal ranges from the fitness landscape experiments, while the parameter
NOFCONFLICTSINC which seemed to have a completely random influence in the
fitness landscapes now nearly always converged to the value 1. It is unknown why
this happens, though it may have do with using many shuffled problems in the train-
ing set; this line of investigaton was not further followed.

A visualization of the search space explored by the ES was created for one of
the experiments. The diagrams showed that VARDECAY, CLAUSEDECAY and
RANDOMVARFREQ have easy to find global optima. NOFCONFLICTSINC is
explored in the entire range, but NOFCONFLICTSBASE is apparently only ex-
plored in relatively narrow “stripes” due to the σ values of the ES being and remaining
much smaller than the full range of the parameter. Parameters NOFLEARNTSINC
and NOFLEARNTSDIVISOR are fully explored and have many optimal points
across their entire ranges.
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Figure 6.62: Visualization of the search space (first 4 parameters) after applying an
ES on problem manol-pipe-c7idw together with nine shuffled versions
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Table 6.9: Average and median of all parameters from the results of the ES
optimization experiment

6.7 Result candidate selection and testing

In the final step of the SAT solver optimization procedure (Sec. 1.8.2.1) candidates
for a “final” solver parameter configuration have to be chosen from the data gathered
in the optimization step. These should be sets of parameter values that solve as many
different problems as possible as fast as possible. Furthermore, this step has to be
performed by an algorithm, not a human programmer who can analyze the large
amount of data in detail. While sophisticated data mining algorithms may be the
most promising algorithms for this task, this would go beyond the scope of this work.
Instead, only some very basic algorithms will be tested.

6.7.1 Candidate selection

It was found from the results of the ES experiments presented in Sec. 6.6.3 that for
the majority of problems following four parameter values were ideal:

VARDECAY ≈ 1
CLAUSEDECAY = 1

NOFCONFLICTSINC = 1
RANDOMVARFREQ = 0

Of these parameters, CLAUSEDECAY, NOFCONFLICTSINC and
RANDOMVARFREQ even had a median value of 1 or 0, but there were
always some cases where a slightly different value was optimal. For the re-
maining three parameters NOFCONFLICTSBASE, NOFLEARNTSINC and
NOFLEARNTSDIVISOR no obvious choices were found; the results had values
for these parameters from all over the allowed range.

A simple algorithm to choose a set of parameter values that conceivably might
compromise between the many different solutions to create one that works accept-
ably well on many or even all of them is to choose the average or the median of the
parameter results. Tab. 6.9 shows the averages and medians for all parameter values
when using either only the best results for all problems or the three best results; the
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Figure 6.64: Snake plot for the candidate testing results on the test pool of 300
problems

four configurations have been designated 1med, 1avg, 3med and 3avg; for compari-
son the table also shows the standard MINISAT parameters.

6.7.2 Candidate testing

While the differences between these configurations may be small, it was decided to
determine how much of a difference such variations have when dealing with a large
benchmark set. The test pool Ptest (see Sec. 1.8.2.1) consisted of the full set of
benchmarks of the final round of the 2006 SAT Race (which contains a total of 100
SAT problems) including two shuffled versions of each problem, bringing the total
to 300 problems. All four of the computed configurations, along with the standard
MiniSAT parameter set, were then used to solve the test pool problems with a timeout
of 20 minutes. All times were taken on the machine Pc1.
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The solving times of all configurations for the original, non-shuffled problems are
listed in Tab. 6.10 and Tab. 6.11. Additionally, Fig. 6.64 shows a so-called snake plot
that charts how many of the 300 problems each configurations solves (charted on the
X-axis) if the timeout had been some amount of time (charted on the Y-axis). For
example it can be seen that given a timeout of 600 seconds (10 minutes) the con-
figurations 1avg and 3avg would have solved about 150 problems, but configuration
3med would have solved nearly 170 problems. In the snake plot the fastest configura-
tions have the lowermost line, while the configurations that ultimately solve the most
problems end farthest to the right. For example it can be seen that the standard param-
eter configuration solves the most problems (194 total) after the maximum timeout of
1200 seconds (20 minutes) has elapsed, followed by configuration 3med (192 total).

Tab. 6.10 and Tab. 6.11 show that both the average-derived configurations 1avg
and 3avg solved the least amount of problems (67 and 66), but the median-derived
result 1med solved 71 problems and 3med was equal to the standard parameter con-
figuration with 72 solved problems each. Interestingly, 1med and 3med do not solve
some problems that the standard parameters could, but on the other hand both did
very well on the velev class of benchmarks: both successfully solved 17 of 20
problems and the default configuration only managed 9. On the other hand, both the
median-derived configurations did noticeably badly on the grieu and mizh classes;
it is unknown what causes this. The average-derived configurations seem to have no
particular strengths.

The snake plot in Fig. 6.64 shows that both the average-derived configurations
1avg and 3avg are the slowest of the five tested configurations, since their lines are
generally the highest and end farthest to the left. Interestingly, the median-derived
configurations 1med and 3med both run below the line of the standard parameter
configuration up to a time of about 1000 seconds (meaning they solve more problems
in the same amount of time than the standard parameters), but then are overtaken by
the standard parameters. Configuration 3med is also noticeably better than 1med.

The simplest scoring scheme (used in the last step of the optimization procedure,
see Sec. 1.8.2.1) that determines which configuration is the final result is counting the
number of solved instances. More complicated scoring schemes might also take into
account how quickly the problems were solved and other details; this was not further
investigated in this work. Using an automatic procedure to choose the final result that
only takes the total number of solved problems into account would result in 3med
being chosen as the winner, considering either only the original problems or original
and shuffled problems together as the test pool. Fig. 6.65 shows a comparison of
3med with the standard parameter configuration. Taken together, both configurations
solve 217 of the 300 test pool problems. In 25.3% of these cases 3med is either
the only configuration that solves the problem or it is at least 10% of the timeout
(2 minutes) faster than the standard configuration. In 55.8% of the 217 problems
both 3med and the standard configuration solve the problem with a solving time
that differs by at most 10% of the timeout. For the remaining 18.9% the standard
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Figure 6.65: Problems solved using either the standard parameters or configuration
3med out of the 300 test pool problems
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parameter configuration solves the problems either more than 10% of the timeout
faster than 3med or is the only coniguration that solves them. In summary, for the
chosen test pool configuration 3med has a slight edge in solving speed compared to
the standard parameter configuration, but ultimately solves slightly less problems in
total.

6.7.3 Conclusions
Using the data gathered by the optimization on training sets, four different candidate
configurations were generated: two configurations are made of the averages of all
parameters of the best configurations or respectively the three best configurations of
all runs, and the other two using the same source configurations but by computing the
medians. Solving a test pool of 300 SAT problems (100 original plus two shuffled ver-
sions of each problem) showed that the median-derived configurations were roughly
equal in quality to the default parameters, though they did better at some benchmark
classes and worse at others compared to the default parameters. The average-derived
configurations were noticeably worse.

The result generated from computing the median of the best three results of each
optimization run was found to be the fastest overall. It had a slight edge in solving
speed compared to the standard MINISAT parameters, but ultimately solved a few
problems less after the maximum timeout period than the standard parameters.
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Table 6.10: Comparison of solving times for the SAT Race 2006 benchmarks using
different parameter configurations (pt. 1)
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Table 6.11: Comparison of solving times for the SAT Race 2006 benchmarks using
different parameter configurations (pt. 2)
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Chapter 7

Conclusion and Future Work

Many problems of scientific and industrial interest can be translated into instances
of the Boolean satisfiability problem (SAT) and then solved with SAT solvers. The
most important SAT solver algorithm is the DPLL algorithm, which in its newest in-
carnations is controlled by a multitude of heuristics which determine the speed of the
solver to a great degree. The heuristic parameters are for example numbers for which
“good” values are needed: finding these is an optimization problem. Researchers and
industry have published a large library of SAT problems for this reason; the problems
serve as benchmarks for optimizing new solvers and algorithms. Manually tuning
the (possibly large amount of) heuristic parameters of a DPLL SAT solver is time-
consuming; as an alternative, optimization algorithms could automate the cycle of
modifying parameter values and testing.

This work presented and tested a fully automatic heuristic parameter optimization
procedure that is based on using local search algorithms which attempt to find op-
timal parameters for training sets of SAT problems. A result configuration is then
synthesized drawing from the data that was gathered while optimizing on the training
sets. Although the presented procedure makes no assumptions about the details of
the local search algorithms (other than that they are capable of dealing with the types
of heuristic parameters being optimized), the focus in this work was on optimization
with Evolutionary Algorithms (EAs), robust and powerful stochastic local search al-
gorithms modeled after natural evolution. EAs are a sub-field of Soft Computing, a
collective term for “imprecise” problem solving techniques that are often inspired by
natural processes. They have been applied successfully in a wide variety of fields and
are intriguing due to their simplicity and surprising power. Subtypes of EAs differ
in the genotype that encodes the solutions; in this work, Genetic Algorithms (GAs),
which encode solutions as binary strings, and Evolution Strategies (ESs), which en-
code solutions as vectors of floating-point numbers, were used.

There exists some work that explored the use of automated reasoning algorithms to
perform the optimization, but to the author’s knowledge so far none that employ the
classic GA and ES for optimizing a DPLL SAT solver’s heuristic parameters. This
work closes this gap by using implementations of a standard GA and ES to optimize
seven parameters of the well-known open-source SAT solver MINISAT on a training
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set of SAT problems chosen from the portfolio of the SAT Race, a yearly competition
for solvers usually held concurrently with the annual SAT conference.

As a countercheck for the results of the EAs and for general investigative purposes
a number of fitness landscapes (visualizations of an optimization problem’s search
space) for the solver parameters on various training problems was generated. This is
extremely time-consuming, and the author believes this to be a first in the context of
SAT solver optimization.

7.1 Results

Some preliminary experiments were performed for investigating the amount of im-
precision that should be expected from run time measurements under Linux, since
these measurements would be the objective value for the optimization experiments.
It was found that the higher the load of concurrent tasks on a machine is, the more
imprecise the measurements become. All following experiments involving time mea-
surements were performed under minimal load, ideally after booting into single-user
mode where still a relative error of about 1-2% persists.

Tests of the EA implementations showed that they worked correctly on test func-
tions and could find the optima even when substantial amounts of noise were added.
The ES was found to be more precise and faster than the GA, which confirms what is
stated in the literature.

The fitness landscapes that were generated for different problems revealed some
patterns for three of the parameters, but also showed that the other four parameters
would be nearly impossible to optimize since their effects are very random.

The SAT solver was then optimized using the GA and the ES, to find out which
of these would serve better as the basis of the optimization procedure. Both algo-
rithms could find the optima of the two parameters that had relatively clearly defined
locations for the global optimum, and as expected returned strongly varying results
for the other four parameters. It was also found that the ES was more precise and
converged quicker, as in the experiments with noisy test functions.

Since the ES was found to be the superior optimization algorithm, it was then used
to optimize the SAT solver using training sets made up of one of 27 different SAT
problem together with nine shuffled versions of the same problem. The best three of
the resulting configurations of each run were charted as points in XY-diagrams and
the ranges into which the parameters fell were counted and set into histograms. It
was found that optimal values for four of the seven parameters predominantly fell
into the same narrow range; for one of the parameters this was unexpected, since it
had shown no particular order in the fitness landscape experiments. The remaining
three parameters showed no discernible order. For one of the runs all explored con-
figurations were charted as points in three-dimensional diagrams to investigate the
behavior of the ES. It was discovered that the ES does not vary one of the parameters
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to a large degree because its range is relatively large and the variation parameter of
the ES does not seem to increase.

After the optimization runs had completed, two simple algorithms for the gener-
ation of the final result candidates were applied on respectively the best or the best
three configurations collected in each run. One method calculates the candidate as a
the average of all parameter values of one type, and the other as the median of those
values. The test pool for comparing the candidates consisted of the 100 benchmarks
of the final round of the 2006 SAT Race, plus two shuffled versions of each prob-
lem. The result generated from computing the median of the best three results of
each optimization run was found to be the best overall; it had a slight edge in solving
speed compared to the standard MINISAT parameters, but ultimately solved a few
problems less after the maximum timeout period than the standard parameters.

7.2 Future work

Although the procedure framework is designed to be fully automatic, the experi-
ments in this work were handled manually and were computed only on single, non-
networked computers. All of the necessary steps can be relatively easily automated;
for convenience a database system would be useful to store the generated configu-
rations. If given net access, users elsewhere in the world could all feed their opti-
mization results into the same central database, which would hold a huge store of
configuration data to mine for patterns and hints on hidden structures in classes of
SAT problems.

The SAT solver evaluations are by far the most computation-intensive part of the
procedure. Distributed computing would help immensely to keep optimization times
down. The SAT solver optimization step is easily paralellizable and would enable
the use of much larger training sets, which presumably might yield results of higher
quality. In this work the procedure was only tested on MINISAT, other solvers should
be tested as optimization targets.

In this work only the simplest possible implementations of the various steps of the
optimization procedure were tested. The choice of the problem pools was limited here
to relatively small numbers of problems due to the lack of distributed computation.
The effects of larger training and test sets should be studied if more computing power
is available. The makeup of the training sets was chosen rather arbitrarily here; the
effect of using a problem and its shuffled variants may not be the most ideal choice
for getting usable optimization results.

In the optimization step, only a relatively simple form of the ES was used here;
more powerful versions exist, and may help against the problem of not adequately
explored parameters. The ES is also only intended to be used for real-valued vari-
ables, but SAT solvers can contain different types of parameters as well, for example
Boolean variables.
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In the candidate selection phase, only a very simple average and median of pa-
rameters was utilized, and then only took into account a small part of the generated
configurations. There is much room here for trying sophisticated data mining and
statistical methods. The candidate testing should be performed on very large sets of
benchmarks to counter the randomness of SAT. Finally, the scoring scheme to deter-
mine the final result was very simple in this work and should be improved.
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