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Abstract.  This work presents a performance analysis of a Multi-Branches 
Genetic Programming (MBGP) approach applied in symbolic regression (e.g. 
function approximation) problems. Genetic Programming (GP) has been 
previously applied to this kind of regression. However, one of the main 
drawbacks of GP is the fact that individuals tend to grow in size through the 
evolution process without a significant improvement in individual performance. 
In Multi-Branches Genetic Programming (MBGP), an individual is composed 
of several branches, each branch can evolve a part of individual solution, and 
final solution is composed of the integration of these partial solutions. Accurate 
solutions emerge by using MBGP consisting of a less complex structure in 
comparison with solutions generated by means of traditional GP encoding 
without considering any additional mechanisms such as a multi-objective 
fitness functions evaluation for tree size controlling. 

1 Introduction 

In function approximation problems based on GP approaches, two relevant aspects 
are considered. On the one hand, evolved functions must be accurate approximations; 
on the other hand, solutions complexity must be also kept as simple as possible 
without incurring in deterioration in accuracy. 
Accuracy for function approximation is general defined as an error between real and 
estimated values.  The must common way of calculating this error is by means of the 
normalised mean squared error (NRMS). In the case of complexity, this factor has 
been measured in a different ways. The most usual metric counts the number of 
functions (or nodes). However, Streeter and Becker (2003) have assigned a cost to 
each type of function. They have assigned a cost of 0.1 for functions such as + and -, a 
cost of 1 for * and /, and a cost equal to 10 for more expensive operations such as sqrt, 
log, exp and trigonometric operations. Then, complexity and accuracy measures must 
be combined in a cost function in order to produce accurate but simple solutions. 
The most common way of simultaneously evaluating these objectives is to measure 
the performance of each individual and penalise solutions with a large number of 
functions (or nodes) as shown by Koza (1992). However, this approach tends to 
produce short solution with a poor performance. Approaches which use multi-
objective fitness function have also proposed. The first work reported that used a 



      Katya Rodríguez-Vázquez and Carlos Oliver-Morales 

multi-objective fitness function evaluation based on a Pareto front concept with GP 
was by Langdon (1995). He did not apply it for tree size controlling.  Rodríguez et al. 
(1997) and Rodríguez and Fleming (1999) proposed the use of a multiobjective 
fitness function based on Pareto dominance for controlling complexity. More 
recently,  de Jong and Pollack (2003) and Streeter and Becker (2003) have also used a 
multiobjective fitness evaluation for tree size controlling.  
Then, this paper presented an alternative GP encoding based on multiple branches. 
Previous work have shown to work well in simple Boolean domain problems and also 
in symbolic regression [Rodríguez-Vázquez and Oliver-Morales; 2003], showing the 
evolution of accurate and simple solution without incurring in a multi-objective 
fitness function formulation or any mechanism for tree size controlling. However, 
behaviour of branches has not been studied. Then, this paper presents an analysis of 
branches behaviour and a detailed study of the effect of MBGP in function 
approximation problems. Fitness function is defined based only on minimisation of 
error metric (e.g. NMRS), analysing structure of evolved MB solutions. 
Then, paper is structured as follows. Section 2 gives a description of MBGP 
encoding. In section 3, description of function approximation problems is provided. 
Section 4 presents experimental results and section 5 is dedicated for discussion. 
Finally, section 6 draws conclusions and future work. 

2 Representation of Executable Structure  

An important aspect of evolutionary algorithms performance is population 
representation. Angeline (1996) mentioned that representation in Evolutionary 
Algorithms plays an important role in order to get a successful search. 
The work by Cramer in 1985 introduced the representation of computer programs. 
Cramer represented individuals by means of constant size strings. However, 
representations of fixed size reduce the flexibility and applicability of these 
implementations. In 1992, Koza introduced the Genetic Programming paradigm. This 
uses representations of variable size, hierarchical tree structures. In Koza’s proposal 
these are S-expression (Koza described GP based on LISP programming language). 
This GP tree representation requires a set of primitives. Selecting the adequate 
primitives determines the efficiency of using this encoding.  
New representation proposals followed Koza’s initial work. One of these was the use 
of modular structures (sub-routines). In this area, Angeline and Pollack (1994) 
introduced the GLIB. A similar version of GLIB approach is the ADF’s 
(Automatically Defined Functions). The aim of ADF’s is to protect branches with an 
important genetic value from the destruction of the genetic operators: mutation and 
recombination (Koza, 1994). Rosca and Ballard (1996) have also proposed an 
Adaptative Representation which defines heuristics for detecting useful branches. 
In some cases, alternative representations have been proposed for solving specific 
problems. In symbolic regression, an alternative is to use a representation by means of 
different types of polynomials. An example of this sort of representations is the 
GMDH (Group Method of Data Handling) proposed by Ivakhnenko (1971), which 
uses a network of transfer polynomials for pruning a layer and the outputs of a 
previous layer are the inputs of subsequent ones. Nikolaev and Iba (2001) introduced 
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the Accelerated Genetic Programming of Polynomials which also considers the use of 
transfer polynomials combined with a recursive least squares algorithm. Others 
problems have been also solved by using genetic programming and polynomials as 
the case of modelling chemical process (1996). Using polynomials has the advantage 
of estimating associated coefficients by means of diverse forms. In Koza’s proposal 
(1992), coefficients and constants values are obtaining by means of evolution process. 
Other GP versions compute coefficients by means of Least Squares algorithms 
(Nikolaev and Iba, 2001; Rodríguez et al., 1997).  
The multi-branches representation presented in this paper also states the use of 
polynomials. This approach searches a solution by dividing the problem into sub-
problems (branches) and solving each of these sub-problems individually. Once sub-
problems are solved, partial solutions of branches are integrated in order to obtain a 
global solution of the problem.  

2.1 Multi-Branches GP Representation 

The multi-branches (MB) representation used in this work consists of four parts: a 
root node, N branches, N+1 coefficients and an output. The number of coefficients is 
N+1, a coefficient for each branch plus the constant term. Following expression 
provides details of multi-branches representation. 

 
(ADD  
  V1  

(divd (.* V4 (.* V4 V4)) V5)  
(divd (divd V1 (divd V1 V4)) V5)  
(.* V1 V4)  
(divd (divd (.* V2 V2) (.* V5 V2)) V5)  
(divd V3 (divd V5 V1))  
(divd V3 V5)  
(.* (+ V1 (divd V4 V5)) V4)  
(divd V3 (divd V5 (- V3 V1)))  
3.3067  
3.5036  
0.87467  
0.82177  
0.0060857  
0.70499  
-0.2266  
-2.6548  
0.59913  
-1.6498 

) 

 
In this example of MBGP encoding, rooted-node has been defined as the addition 

operation (ADD). First branch only consists of variable V1, while second branch is 
defined as V43/V5. Coefficients for each branch are also expressed. Last coefficient 
corresponds to constant term into polynomial expressin.  
The two main genetic operators are crossover and mutation. Crossing over consists of 
selecting a pair of parent structures. Then, a branch is randomly selected in each 
parent; finally, selected branches are exchanged between them. Mutation operator 
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randomly selects an individual. A branch is then selected, deleted and substituted by a 
new branch randomly generated.  

3 Problem Statement  

Fitting data points (curves) can be performed by means of a combination of known 
functions. The function approximation g(x) is obtained by estimating the set of 
coefficients ai, one for each of the n known functions f(x) and  a0 (the independent 
coefficient), as given by equation (1). 
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Determining the set of more adequate functions a priori is not an easy task. The set of 
known functions can be larger and the value of some coefficients can be so small that 
the associated function is insignificant and estimating coefficients for all possible 
functions is computationally expensive. A better approximation method should 
consider only the most significant functions and computational costs must be also 
low. Thus, the main point is to find such functions p(x) and associated coefficients 
which are the most significant in order to better approximate a curve.  
Using genetic programming, a given finite set of primitives (functions and terminals 
or argument) bounds the problem of function approximation. The set of primitives can 
then build a wide range of functions. The only restriction presented in GP is the 
maximum size of the hierarchical tree structure.    

4 Experiments 

A set of problems was defined in order to have a wide range of function 
approximation cases, which are described as follows. 

 
Case a: In this case, the harmonic number defined in equation (2) is used in order to 
approximate the well-known function expansion given in equation (3), an asymptotic 
expansion where γ is the Euler’s constant (γ ≈ 0.57722).   
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642n )++++= γ  (3) 

 
where n = 1, 2, …, 50 (the first 50 harmonic numbers defined as fitness cases). The 
function set used in this problem is F = {+, -, *, %, -x, plog, psqrt, cos}, where %, 
plog and psqrt are the protected division, the protected natural logarithm and the 
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protected square root, respectively. Then, the aim of this experiment is to rediscover 
terms of an already known approximation. 

 
Case b: A set of three problems consisting of one independent variable is tested in 
this case. Function approximations are performed over three different ranges as 
shown in Table 1. A maximum branch depth was set to 6, except for case b.1 where 
this parameter was 4. The function set consists of the four basic arithmetic operations 
F = {+, -, *, %}. 

Table 1.  Range for each approximation problem. 

function Range 1 Range 2 Range 3 

ln(x) [1,2]         (b.1) [1,11]         (b.2) [1,101]         (b.3) 
sqrt(x) [0,1]         (b.4) [0,10]         (b.5) [0,100]         (b.6) 
arcsinh(x) [0,1]         (b.7) [0,10]         (b.8) [0,100]         (b.9) 

 
Case c: In this case, a function of two (equation (4)) independent variables was used 
in order to analysis the ability of MBGP for approximating functions consisting of 
more than two variables. Here, the function set is defined as case b.  

y  x   =z  (4) 

Results of this experiment will compare with Streeter and Becker’s work (2003) 
which is based on traditional GP representation (Koza’s style) but using a multi-
objective fitness function. Parameter setting for these three experiments is shown in 
Table 2.  

                                  Table 2. Parameter settting for cases a), b) and c) 

Population Size 50 
Maximum Number of Generation 100 
% Selection 95 
% Crossover 100 
% Mutation 5 
Maximum Number of Branches 10 
Maximum Branch Depth 6 

                            

5 Result Analysis and Discussion 

Results of case b) in terms of accuracy (error metric), number of generations and 
number of nodes (complexity) are summarised in Table 3. The minimum, average and 
maximum values of 25 runs are presented. 
In following Figures (1 to 11), the Padé approximations and GP Pareto front (see 
Streeter and Becker, 2003) as well as the solution with smallest error generated by 
means of MBGP are presented. Figure 1 shows experiment (a) results. Figures 2 to 10 
present solutions for experiment (b); finally, Figure 11 displays solutions of problem 
(c). It is important to mention that cost was calculated based on Streeter and Becker’s 
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criterion: assigning a cost of 0.1 for + and -, 1.0 for % and *, and 10 for other 
functions.  
 

Table 3.  Performance of experiment b) 

  Error   

Generations 

minimun   Nodes   

case min mean max min mean Max min mean max cost 

a.1 3.19E-5 2.56E-4 7.09E-4 19 43.28  70 15  17.88  22 18.5 

b.1 2.24E-8 1.38E-7 4.91E-7 14 58.48  97 42  64.72 104   6.7 

b.2 1.59E-5 0.00055 0.00265 43 86.2 100 48 126.9 190 15.1 

b.3 4.15E-8 1.92E-6 1.68E-5 21 81.04 100 44 106.2 204 10.2 

b.4 7.60E-7 3.51E-6 1.77E-5 49 83.04 100 86 136.6 200 14.4 

b.5 1.01E-5 6.05E-4 2.60E-3 39 85.92 100 58 133.7 246 13.7 

b.6 1.95E-5 4.90E-4 2.53E-3 54 87.52 100 78 130.3 250   8.0 

b.7 1.08E-4 7.19E-4 2.97E-3 36 82.12 100 80 135.0 190 17.9 

b.8 5.32E-4 6.37E-3 5.02E-2 23 83.96 100 38 114.1 196 15.9 

b.9 2.09E-4 2.34E-3 6.39E-3 53 90.32 100 90 124.6 188 15.7 

c.1 3.50E-4 1.75E-3 6.18E-3 28 85.8 100 34  68.64  98 13.2 
 
 
 

           
            Fig. 1. Harmonic number, [1, 50].                              Fig. 2. Ln(x), x ∈ [1,2]. 
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                   Fig. 3. sqrt (x),  x ∈ [0,1].                           Fig. 4.  arcsinh(x),  x  ∈ [0,1]. 

 

     
               Fig. 5.  ln(x),  x  ∈   [1,11].                             Fig. 6.  sqrt (x),  x  ∈  [0,10]. 

 
 
 

     
        Fig. 7.   arcsinh(x),  x  ∈ [0,10].                          Fig. 8.  ln(x),  x  ∈  [1,101]. 
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        Fig. 9. sqrt(x),  x  ∈ [0,100].                                Fig. 10. arcsinh(x),  x  ∈  [0,100]. 

 

 
Fig. 11.  x y ,  x, y  ∈ [1,2].        

5.1 Discussion 

First experiment had the aim of finding terms and coefficients already known 
based on function expansion used for approximating the harmonic number (equation 
(3)). In this case, the following approximation emerged, 

(ADD  
(divd (divd V1 V1) (.* V1 V1))  
(log_p (+ V1 V1))   
(divd (ngt V1) (.* V1 V1))  
-0.072444  
2.302  
-0.49414  
-0.1147) 

    ) 
 
Translating this MBGP model and substituting V1 by n, the function expansion is 

expressed as, 

( ) 1147049414023022
1

0724440
22

..ln.. −−−+−=
n

n
n

n
Hn  

ordering this equation, 
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It is observed that MBGP approximated the first four terms given in equation (3), 
showing an approximation error of 3.18742x10-5. 
Experiments (b) and (c) had the aim of finding a good approximation but also to 
analyses the computational cost. As can be seen form Figures 1-11, MBGP was 
superior to traditional GP in terms of accuracy. These figures show two curves 
corresponding to the Pareto front produced by GP using a multi-objective fitness 
function and Padé approximations (Streeter and Becker, 2003). It is also shown an 
isolated dot corresponding to the solution generated by means of MBGP. Because of 
MBGP does not use a multiobjective fitness function, only one solution emerges for 
each run. From these graphs, it is observed that MBGP solutions dominate some 
solutions from the Pareto-GP approach. Thus, the Pareto front is modified by 
including MBGP individual solution.  Solutions that are not dominated by MBGP, are 
better in terms of complexity (cost). Comparing Padé, Pareto-GP (see Streeter and 
Becker, 2003) and MBGP, it was observed that both GP approaches showed a better 
performance than Padé for larger ranges (see cases  b.7, b.8 and b.9 from Table 3). In 
contrast, GP showed a worse performance when the range was small (see cases b.1, 
b.2 and b.3 from Table 3).  
 
5.2 Introns 

In GP, the individual growth in size without any improvement in performance is 
known as bloat (Langdon and Poli, 1997).  Some of the identified causes that produce 
bloating are the presence of introns (Harries and Smith, 1998; Nordin and Banzhaf, 
1995; Soule et al., 1996). Introns are parts of a chromosome that does not affect the 
individual evaluation (phenotype).  
Introns are considered as a sort of structures that protect part of the chromosome from 
destructive effects produced by genetic operators (Nordin et al., 1996). However, 
some researchers argue that introns have more negative effects than beneficial. In the 
literature, diverse mechanisms for destructing introns are reported: remove of 
redundant code (introns) by means of an edition operator (Koza, 1992), penalisation 
of individual size (Nordin and Banzhaf, 1995; Zhang and Muhlenbein, 1998), 
constraint operators (Langdon, 1999; Sims, 1993) and alternatives selection schema 
(Harries and Smith, 1998). 

In the case of MBGP, two types of introns are identified. Analysing solution of 
problem b.6., its structure is graphically represented in Figure 12. In this Figure, 
content of branches are detailed. Note that content of branch d4 is repeated more than 
one time. However, only one of these duplicated branches has a non-zero coefficient. 
During evolution process, copies of branch d4 are kept in a same individual. Thus, it 
is protected from destruction by the effects of crossover and mutation. The second 
type of intron is presented in branch d9. Content of such branch is independent of any 
variable. Equation (5) shows the structure of branch d9 prior to simplification. When 
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this expression is simplified, it remains -1. The effect of this sort of intron is to reduce 
the number of branches needed for approximating a function.   

Introns were not presented in problems that have the largest range. The number of 
branches in these problems was up to 10. 
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  Branch d2        Branch d3                       Branch d4                      Branch d5 

 
Fig. 12. Solution structure of problem b.6. 

6 Conclusions 

The multi-branches representation for genetic programming analysed in this paper has 
proved to be powerful. It has been tested on function approximation problems and 
results showed to be promising. It was also observed that complexity tends to be 
reduced by using this representation. It is also relevant to note that intros in multi-
branches representation are easily detected and show beneficial effects: allow 
reducing the number of branches and the effect of destructing a relevant branch is 
reduced. 

Further studies will focused on both the flexibility of this representation in diverse 
domains and the effects and control of introns.  
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