
Function Approximation by means of Multi-Branches

Genetic Programming

Katya Rodríguez-Vázquez and Carlos Oliver-Morales

IIMAS-UNAM, Circuito Escolar, Ciudad Universitaria, 04510 Coyoacán
Mexico City, Mexico

{katya@uxdea4.iimas.unam.mx, oliver_carlos_99@yahoo.com}

Abstract. This work presents a performance analysis of a Multi-Branches
Genetic Programming (MBGP) approach applied in symbolic regression (e.g.
function approximation) problems. Genetic Programming (GP) has been
previously applied to this kind of regression. However, one of the main
drawbacks of GP is the fact that individuals tend to grow in size through the
evolution process without a significant improvement in individual performance.
In Multi-Branches Genetic Programming (MBGP), an individual is composed
of several branches, each branch can evolve a part of individual solution, and
final solution is composed of the integration of these partial solutions. Accurate
solutions emerge by using MBGP consisting of a less complex structure in
comparison with solutions generated by means of traditional GP encoding
without considering any additional mechanisms such as a multi-objective
fitness functions evaluation for tree size controlling.

1 Introduction

In function approximation problems based on GP approaches, two relevant aspects
are considered. On the one hand, evolved functions must be accurate approximations;
on the other hand, solutions complexity must be also kept as simple as possible
without incurring in deterioration in accuracy.
Accuracy for function approximation is general defined as an error between real and
estimated values. The must common way of calculating this error is by means of the
normalised mean squared error (NRMS). In the case of complexity, this factor has
been measured in a different ways. The most usual metric counts the number of
functions (or nodes). However, Streeter and Becker (2003) have assigned a cost to
each type of function. They have assigned a cost of 0.1 for functions such as + and -, a
cost of 1 for * and /, and a cost equal to 10 for more expensive operations such as sqrt,
log, exp and trigonometric operations. Then, complexity and accuracy measures must
be combined in a cost function in order to produce accurate but simple solutions.
The most common way of simultaneously evaluating these objectives is to measure
the performance of each individual and penalise solutions with a large number of
functions (or nodes) as shown by Koza (1992). However, this approach tends to
produce short solution with a poor performance. Approaches which use multi-
objective fitness function have also proposed. The first work reported that used a

 Katya Rodríguez-Vázquez and Carlos Oliver-Morales

multi-objective fitness function evaluation based on a Pareto front concept with GP
was by Langdon (1995). He did not apply it for tree size controlling. Rodríguez et al.
(1997) and Rodríguez and Fleming (1999) proposed the use of a multiobjective
fitness function based on Pareto dominance for controlling complexity. More
recently, de Jong and Pollack (2003) and Streeter and Becker (2003) have also used a
multiobjective fitness evaluation for tree size controlling.
Then, this paper presented an alternative GP encoding based on multiple branches.
Previous work have shown to work well in simple Boolean domain problems and also
in symbolic regression [Rodríguez-Vázquez and Oliver-Morales; 2003], showing the
evolution of accurate and simple solution without incurring in a multi-objective
fitness function formulation or any mechanism for tree size controlling. However,
behaviour of branches has not been studied. Then, this paper presents an analysis of
branches behaviour and a detailed study of the effect of MBGP in function
approximation problems. Fitness function is defined based only on minimisation of
error metric (e.g. NMRS), analysing structure of evolved MB solutions.
Then, paper is structured as follows. Section 2 gives a description of MBGP
encoding. In section 3, description of function approximation problems is provided.
Section 4 presents experimental results and section 5 is dedicated for discussion.
Finally, section 6 draws conclusions and future work.

2 Representation of Executable Structure

An important aspect of evolutionary algorithms performance is population
representation. Angeline (1996) mentioned that representation in Evolutionary
Algorithms plays an important role in order to get a successful search.
The work by Cramer in 1985 introduced the representation of computer programs.
Cramer represented individuals by means of constant size strings. However,
representations of fixed size reduce the flexibility and applicability of these
implementations. In 1992, Koza introduced the Genetic Programming paradigm. This
uses representations of variable size, hierarchical tree structures. In Koza’s proposal
these are S-expression (Koza described GP based on LISP programming language).
This GP tree representation requires a set of primitives. Selecting the adequate
primitives determines the efficiency of using this encoding.
New representation proposals followed Koza’s initial work. One of these was the use
of modular structures (sub-routines). In this area, Angeline and Pollack (1994)
introduced the GLIB. A similar version of GLIB approach is the ADF’s
(Automatically Defined Functions). The aim of ADF’s is to protect branches with an
important genetic value from the destruction of the genetic operators: mutation and
recombination (Koza, 1994). Rosca and Ballard (1996) have also proposed an
Adaptative Representation which defines heuristics for detecting useful branches.
In some cases, alternative representations have been proposed for solving specific
problems. In symbolic regression, an alternative is to use a representation by means of
different types of polynomials. An example of this sort of representations is the
GMDH (Group Method of Data Handling) proposed by Ivakhnenko (1971), which
uses a network of transfer polynomials for pruning a layer and the outputs of a
previous layer are the inputs of subsequent ones. Nikolaev and Iba (2001) introduced

 Function Approximation by means of Multi-Branches Genetic Programming

the Accelerated Genetic Programming of Polynomials which also considers the use of
transfer polynomials combined with a recursive least squares algorithm. Others
problems have been also solved by using genetic programming and polynomials as
the case of modelling chemical process (1996). Using polynomials has the advantage
of estimating associated coefficients by means of diverse forms. In Koza’s proposal
(1992), coefficients and constants values are obtaining by means of evolution process.
Other GP versions compute coefficients by means of Least Squares algorithms
(Nikolaev and Iba, 2001; Rodríguez et al., 1997).
The multi-branches representation presented in this paper also states the use of
polynomials. This approach searches a solution by dividing the problem into sub-
problems (branches) and solving each of these sub-problems individually. Once sub-
problems are solved, partial solutions of branches are integrated in order to obtain a
global solution of the problem.

2.1 Multi-Branches GP Representation

The multi-branches (MB) representation used in this work consists of four parts: a
root node, N branches, N+1 coefficients and an output. The number of coefficients is
N+1, a coefficient for each branch plus the constant term. Following expression
provides details of multi-branches representation.

(ADD
 V1

(divd (.* V4 (.* V4 V4)) V5)
(divd (divd V1 (divd V1 V4)) V5)
(.* V1 V4)
(divd (divd (.* V2 V2) (.* V5 V2)) V5)
(divd V3 (divd V5 V1))
(divd V3 V5)
(.* (+ V1 (divd V4 V5)) V4)
(divd V3 (divd V5 (- V3 V1)))
3.3067
3.5036
0.87467
0.82177
0.0060857
0.70499
-0.2266
-2.6548
0.59913
-1.6498

)

In this example of MBGP encoding, rooted-node has been defined as the addition

operation (ADD). First branch only consists of variable V1, while second branch is
defined as V43/V5. Coefficients for each branch are also expressed. Last coefficient
corresponds to constant term into polynomial expressin.
The two main genetic operators are crossover and mutation. Crossing over consists of
selecting a pair of parent structures. Then, a branch is randomly selected in each
parent; finally, selected branches are exchanged between them. Mutation operator

 Katya Rodríguez-Vázquez and Carlos Oliver-Morales

randomly selects an individual. A branch is then selected, deleted and substituted by a
new branch randomly generated.

3 Problem Statement

Fitting data points (curves) can be performed by means of a combination of known
functions. The function approximation g(x) is obtained by estimating the set of
coefficients ai, one for each of the n known functions f(x) and a0 (the independent
coefficient), as given by equation (1).

)(

)()()(

xfaa

xfaxfaaxg

i

n

i
i

nn

∑+=

+++=

=1
0

110 L

(1)

Determining the set of more adequate functions a priori is not an easy task. The set of
known functions can be larger and the value of some coefficients can be so small that
the associated function is insignificant and estimating coefficients for all possible
functions is computationally expensive. A better approximation method should
consider only the most significant functions and computational costs must be also
low. Thus, the main point is to find such functions p(x) and associated coefficients
which are the most significant in order to better approximate a curve.
Using genetic programming, a given finite set of primitives (functions and terminals
or argument) bounds the problem of function approximation. The set of primitives can
then build a wide range of functions. The only restriction presented in GP is the
maximum size of the hierarchical tree structure.

4 Experiments

A set of problems was defined in order to have a wide range of function
approximation cases, which are described as follows.

Case a: In this case, the harmonic number defined in equation (2) is used in order to
approximate the well-known function expansion given in equation (3), an asymptotic
expansion where γ is the Euler’s constant (γ ≈ 0.57722).

∑≡
=

n

1
n

1
 H
i i

 (2)

n

1
O(

n 120

1

n 12

1
 -

2n

1
 ln(n) H

642n)++++= γ (3)

where n = 1, 2, …, 50 (the first 50 harmonic numbers defined as fitness cases). The
function set used in this problem is F = {+, -, *, %, -x, plog, psqrt, cos}, where %,
plog and psqrt are the protected division, the protected natural logarithm and the

 Function Approximation by means of Multi-Branches Genetic Programming

protected square root, respectively. Then, the aim of this experiment is to rediscover
terms of an already known approximation.

Case b: A set of three problems consisting of one independent variable is tested in
this case. Function approximations are performed over three different ranges as
shown in Table 1. A maximum branch depth was set to 6, except for case b.1 where
this parameter was 4. The function set consists of the four basic arithmetic operations
F = {+, -, *, %}.

Table 1. Range for each approximation problem.

function Range 1 Range 2 Range 3

ln(x) [1,2] (b.1) [1,11] (b.2) [1,101] (b.3)
sqrt(x) [0,1] (b.4) [0,10] (b.5) [0,100] (b.6)
arcsinh(x) [0,1] (b.7) [0,10] (b.8) [0,100] (b.9)

Case c: In this case, a function of two (equation (4)) independent variables was used
in order to analysis the ability of MBGP for approximating functions consisting of
more than two variables. Here, the function set is defined as case b.

y x =z (4)

Results of this experiment will compare with Streeter and Becker’s work (2003)
which is based on traditional GP representation (Koza’s style) but using a multi-
objective fitness function. Parameter setting for these three experiments is shown in
Table 2.

 Table 2. Parameter settting for cases a), b) and c)

Population Size 50
Maximum Number of Generation 100
% Selection 95
% Crossover 100
% Mutation 5
Maximum Number of Branches 10
Maximum Branch Depth 6

5 Result Analysis and Discussion

Results of case b) in terms of accuracy (error metric), number of generations and
number of nodes (complexity) are summarised in Table 3. The minimum, average and
maximum values of 25 runs are presented.
In following Figures (1 to 11), the Padé approximations and GP Pareto front (see
Streeter and Becker, 2003) as well as the solution with smallest error generated by
means of MBGP are presented. Figure 1 shows experiment (a) results. Figures 2 to 10
present solutions for experiment (b); finally, Figure 11 displays solutions of problem
(c). It is important to mention that cost was calculated based on Streeter and Becker’s

 Katya Rodríguez-Vázquez and Carlos Oliver-Morales

criterion: assigning a cost of 0.1 for + and -, 1.0 for % and *, and 10 for other
functions.

Table 3. Performance of experiment b)

 Error

Generations

minimun Nodes

case min mean max min mean Max min mean max cost

a.1 3.19E-5 2.56E-4 7.09E-4 19 43.28 70 15 17.88 22 18.5

b.1 2.24E-8 1.38E-7 4.91E-7 14 58.48 97 42 64.72 104 6.7

b.2 1.59E-5 0.00055 0.00265 43 86.2 100 48 126.9 190 15.1

b.3 4.15E-8 1.92E-6 1.68E-5 21 81.04 100 44 106.2 204 10.2

b.4 7.60E-7 3.51E-6 1.77E-5 49 83.04 100 86 136.6 200 14.4

b.5 1.01E-5 6.05E-4 2.60E-3 39 85.92 100 58 133.7 246 13.7

b.6 1.95E-5 4.90E-4 2.53E-3 54 87.52 100 78 130.3 250 8.0

b.7 1.08E-4 7.19E-4 2.97E-3 36 82.12 100 80 135.0 190 17.9

b.8 5.32E-4 6.37E-3 5.02E-2 23 83.96 100 38 114.1 196 15.9

b.9 2.09E-4 2.34E-3 6.39E-3 53 90.32 100 90 124.6 188 15.7

c.1 3.50E-4 1.75E-3 6.18E-3 28 85.8 100 34 68.64 98 13.2

 Fig. 1. Harmonic number, [1, 50]. Fig. 2. Ln(x), x ∈ [1,2].

 Function Approximation by means of Multi-Branches Genetic Programming

 Fig. 3. sqrt (x), x ∈ [0,1]. Fig. 4. arcsinh(x), x ∈ [0,1].

 Fig. 5. ln(x), x ∈ [1,11]. Fig. 6. sqrt (x), x ∈ [0,10].

 Fig. 7. arcsinh(x), x ∈ [0,10]. Fig. 8. ln(x), x ∈ [1,101].

 Katya Rodríguez-Vázquez and Carlos Oliver-Morales

 Fig. 9. sqrt(x), x ∈ [0,100]. Fig. 10. arcsinh(x), x ∈ [0,100].

Fig. 11. x y , x, y ∈ [1,2].

5.1 Discussion

First experiment had the aim of finding terms and coefficients already known
based on function expansion used for approximating the harmonic number (equation
(3)). In this case, the following approximation emerged,

(ADD
(divd (divd V1 V1) (.* V1 V1))
(log_p (+ V1 V1))
(divd (ngt V1) (.* V1 V1))
-0.072444
2.302
-0.49414
-0.1147)

)

Translating this MBGP model and substituting V1 by n, the function expansion is

expressed as,

() 1147049414023022
1

0724440
22

..ln.. −−−+−=
n

n
n

n
Hn

ordering this equation,

 Function Approximation by means of Multi-Branches Genetic Programming

()[] () ()

() ()n
nn

n

n
nn

nH n

23021
813

1

02372

1
57840

23021
813

1

02372

1
114702

2

2

ln.
..

ln.

ln.
..

ln.ln

+−++=

+−++−=

It is observed that MBGP approximated the first four terms given in equation (3),
showing an approximation error of 3.18742x10-5.
Experiments (b) and (c) had the aim of finding a good approximation but also to
analyses the computational cost. As can be seen form Figures 1-11, MBGP was
superior to traditional GP in terms of accuracy. These figures show two curves
corresponding to the Pareto front produced by GP using a multi-objective fitness
function and Padé approximations (Streeter and Becker, 2003). It is also shown an
isolated dot corresponding to the solution generated by means of MBGP. Because of
MBGP does not use a multiobjective fitness function, only one solution emerges for
each run. From these graphs, it is observed that MBGP solutions dominate some
solutions from the Pareto-GP approach. Thus, the Pareto front is modified by
including MBGP individual solution. Solutions that are not dominated by MBGP, are
better in terms of complexity (cost). Comparing Padé, Pareto-GP (see Streeter and
Becker, 2003) and MBGP, it was observed that both GP approaches showed a better
performance than Padé for larger ranges (see cases b.7, b.8 and b.9 from Table 3). In
contrast, GP showed a worse performance when the range was small (see cases b.1,
b.2 and b.3 from Table 3).

5.2 Introns

In GP, the individual growth in size without any improvement in performance is
known as bloat (Langdon and Poli, 1997). Some of the identified causes that produce
bloating are the presence of introns (Harries and Smith, 1998; Nordin and Banzhaf,
1995; Soule et al., 1996). Introns are parts of a chromosome that does not affect the
individual evaluation (phenotype).
Introns are considered as a sort of structures that protect part of the chromosome from
destructive effects produced by genetic operators (Nordin et al., 1996). However,
some researchers argue that introns have more negative effects than beneficial. In the
literature, diverse mechanisms for destructing introns are reported: remove of
redundant code (introns) by means of an edition operator (Koza, 1992), penalisation
of individual size (Nordin and Banzhaf, 1995; Zhang and Muhlenbein, 1998),
constraint operators (Langdon, 1999; Sims, 1993) and alternatives selection schema
(Harries and Smith, 1998).

In the case of MBGP, two types of introns are identified. Analysing solution of
problem b.6., its structure is graphically represented in Figure 12. In this Figure,
content of branches are detailed. Note that content of branch d4 is repeated more than
one time. However, only one of these duplicated branches has a non-zero coefficient.
During evolution process, copies of branch d4 are kept in a same individual. Thus, it
is protected from destruction by the effects of crossover and mutation. The second
type of intron is presented in branch d9. Content of such branch is independent of any
variable. Equation (5) shows the structure of branch d9 prior to simplification. When

 Katya Rodríguez-Vázquez and Carlos Oliver-Morales

this expression is simplified, it remains -1. The effect of this sort of intron is to reduce
the number of branches needed for approximating a function.

Introns were not presented in problems that have the largest range. The number of
branches in these problems was up to 10.

1
2

−=−−

−−

x

xxxx

x

x

x

xx

)(

(5)

 Branch d2 Branch d3 Branch d4 Branch d5

Fig. 12. Solution structure of problem b.6.

6 Conclusions

The multi-branches representation for genetic programming analysed in this paper has
proved to be powerful. It has been tested on function approximation problems and
results showed to be promising. It was also observed that complexity tends to be
reduced by using this representation. It is also relevant to note that intros in multi-
branches representation are easily detected and show beneficial effects: allow
reducing the number of branches and the effect of destructing a relevant branch is
reduced.

Further studies will focused on both the flexibility of this representation in diverse
domains and the effects and control of introns.

 Function Approximation by means of Multi-Branches Genetic Programming

Acknowledgements

Authors would like to thank the financial support of Consejo Nacional de Ciencia y
Tecnología (CONACyT), México, under the project 40602-A, PAPPIT-UNAM under
the project EN100201.

References

1. ANGELINE P.J. (1996). Parse trees. Evolutionary Computation 1, basic algorithms
and operators. Edited by T. Back, D.B. Fogel and T. Michalewickz.

2. ANGELINE P.J. AND J.B. POLLACK (1994). Co–evolving high level representation
Artificial life III (C.G. Langton, ed.), Addison Wesley, pp 55–71.

3. CRAMER N.L. (1985) A representation for the adaptative generation of simple
sequencial programs. In Proc. 1st. Int. Conference on Genetic Algorithms, Pittsburg,
PA, July 1985 (J.J. Grefenstette, ed.), pp 183 – 187.

4. DE JONG, E.D. AND J.B. POLLACK (2003) Multi-Objective Methods for Tree Size
Control, Genetic Programming and Evolvable Machines, 4(3), pp. 211-234.

5. HARRIES K. AND P.W.H. SMITH (1998) Code Growth, Explicitly Defined Introns and
Alternative Selection Schemes, Evolutionary Computation, 6(4), pp 346-364.

6. HINCHIFFE, M., H. HIDEN, B. MCKAY, M. WILLIS, M. THAM AND G. BARTON (1996)
Modelling Chemical Process System using multi-gene Genetic Programming
Algorithm. In Late Breaking Papers at the Genetic Programming Conference (J.R.
Koza, ed.) Stanford University, C.A. Stanford Bookstore, pp. 56-65.

7. IVANKHNENKO, A.G. (1971) Polynomial Theory of Complex Systems, IEEE Trans.
on Systems, Man and Cybernetics, 1(4), pp. 364-378.

8. KEIJZER M. (2003). Improving Symbolic Regresion with Interval Arithmetic and
Linear Scaling. In Genetic Programming, 6th European Conference, EuroGP 2003.
Essex, U.K. (Ryan et al., eds.), pp. 70-82.

9. KEIJZER M. AND V. BABOVIC (2000) Genetic Programming, Ensemble Methods and
the Bias/Variance Tradeoff–introductory Investigations. In Genetic Programming,
European Conference, EuroGP 2000 (Edinburgh) (Poli et al., eds.) LNCS Vol. 1802,
Springer Verlag, 15-16 April 2000, pp. 76 – 90.

10. KOZA, J.R. (1992). Genetic Programming: on the Programming of Computers by
Means of Natural Selection. Cambridge Massachuset. MIT Press.

11. KOZA, J.R. (1994). Genetic Programming II: Automatic Discovery of Reusable
Programs. Cambridge Massachuset. MIT Press.

12. LANGDON, W.B. (1995) Evolving Data Structures with Genetic Programming. In
Proceedings of the Sixth International Conference on Genetic Algorithms (Eshelman,
editor), Morgan Kaufmann, pp. 295-302.

13. LANGDON W. B. (1999) Size Fair and Homologous Tree Genetic Programming
Crossovers. In Proceedings of the Genetic and Evolutionary Computation
Conference GECCO’99, Vol 2, (Banzhaf et al., eds.), Morgan Kaufmann, pp 1092-
1097.

14. LANGDON W.B. AND R. POLI (1997) Fitness Causes Bloat. Second On-line World
Conference on Soft Computing in Engineering Design and Manufacturing. Springer-
Verlag London (Chawdhry et al., eds.), pp 13-22.

15. NIKOLAEV I.N AND H. IBA (2001). Accelerated Genetic Programming of Polynomials.
In Genetic Programming and Evolvable Machines, 2(3), pp 231-258.

16. NORDIN P., F. FRANCONE AND W. BANZHAF (1996) Explicitly defined introns and
destructive crossover. In Advances in Genetic programming (Angeline and Kinnear,
eds), chapter 6, MIT Press, Cambridge, MA, USA, pp. 111-134.

 Katya Rodríguez-Vázquez and Carlos Oliver-Morales

17. NORDIN, J.P. AND W. BANZHAF (1995) Complexity Compression and Evolution. In
Proceedings of Sixth International Conference of Genetic Algorithms, (Eshelman,
ed.), Morgan Kaufmann, San Mateo, CA, pp. 310-317.

18. OLIVER, C. AND K. RODRÍGUEZ (2002) Estructuta de Arbol vs Estructura Polinomial
con Programación Genética en el Modelado de Variables Climatológicas. In 1er
Congreso Español de Algoritmos Evolutivos y Bioinspirados AEB’02, Merida,
España, pp. 124-130.

19. RODRÍGUEZ-VÁZQUEZ, K., C.M. FONSECA AND P.J. FLEMING (1997b) Multiobjective
Genetic Programming: A Non-Lineat System Identification Application. Late
Breaking Paper at the 2nd Int. Genetic Programming 97 Conference, Stanford
University, pp. 207-212.

20. RODRÍGUEZ-VÁZQUEZ, K. AND P.J. FLEMING (1999) Controlling Tree Size Growth in
Genetic Programming. Research Report No. 746. Department of Automatic Control
and Systems Engineering, University of Sheffield, United Kingdom.

21. RODRÍGUEZ, K. AND C. OLIVER (2003) Divide and Conquer: Genetic Programming
Based on Multiple Branches Encoding. In Genetic Programming, 6th European
Conference, EuroGP 2003 (Ryan et al., eds.), Essez, U.K., pp. 218-228.

22. ROSCA J.P. AND D.H. BALLARD (1996) Discovery of subroutines. In Advances in
Genetic Programming, Vol. 2 (Angeline and Kinnear, eds.) Cambridge Massachuset,
MIT Press, pp 177–202.

23. STREETER M. AND L.A. BECKER (2001) Automated Discovery of Numerical
Approximation Formulae via Genetic Programming. In Proceedings of the Genetic
and Evolutionary Computation Conference GECCO’01, San Francisco CA. (Spector
et al., eds.), Morgam Kaufmann, 7–11 July 2001, pp 147–154.

24. STREETER M. AND L.A. BECKER (2003) Automated Discovery of Numerical
Approximation Formulae via Genetic Programming. Genetic Programming and
Evolvable Machines, 4(3), pp. 255-286.

25. SOULE, T., J.A. FOSTER AND J. DICKINSON (1996) Code growth in genetic
programming. In Genetic Programming 1996: Proceedings of the First Annual
Conference (Koza, ed.), Stanford University, CA, USA, pp. 215-223.

26. SIMS, K. (1993) Interactive Evolution of Equations for Procedural Models. The
Visual Computer, 9, pp. 466-476.

27. ZHANG, B.-T. AND H. MUHLENBEIN (1995) Balancing Accuracy and Parsimony in
Genetic Programming, Evolutionary Computation, 3(1), pp.17-38.

