
A Grid-based Ant Colony System for Automatic
Program Synthesis

Sergio A. Rojas1, Peter J. Bentley1

1 Department of Computer Science
University College London

WC1E 6BT Gower Street, London, UK
{s.rojas, p.bentley}@cs.ucl.ac.uk

Abstract. The Ant Colony Metaheuristic was originally proposed for tack-
ling optimization problems. More recent research has suggested that it can
be applied for automatic generation of programs. By allowing the artificial
ants to visit functions and terminals nodes, they become able to build
pheromone trails that represent computer programs for optimizing a fitness
domain-specific function. In this paper a novel approach is addressed using
a grid architecture as a more suitable discrete world to be explored by the
ants. The resulting system was applied to automatically produce programs to
solve Boolean functions.

1 Introduction

Since computers were invented, it has been a dream of human programmers to enable
the automatic creation of code out of a set of specifications, without human interven-
tion. The automatic programming research field has been gratefully influenced by the
major achievements made by Genetic Programming (GP) in the last decade or so [7,
9]. GP is based on a stochastic process to iteratively modify a pool of program solu-
tion candidates by means of some genetic operations including selection, reproduction
and mutation. As a result, the average fitness of the population tends to increase in
similar fashion to the genetic algorithm (GA) on which GP was inspired. Recently
remarkable results have been reported [9] with synthesized programs with increasingly
levels of complexity (including loops, functions definition and temporal memory).

Also a decade or so ago the Ant Colony Metaheuristic (ACO) was proposed [3].
This idea, inspired in the foraging behaviour of real ants, state that a colony of agents
are able to explore the search-space of a complex problem. By means of a indirect
communication mechanism known as stigmergy (pheromone laying), ants can share
local and global information that can lead to the construction of shorter paths in that
space. Artificial ant colonies have been successfully applied mainly to a number of
optimization problems like the traveling salesman problem (TSP) [2]. In order to
extrapolate this interesting idea to other domains several issues must be taken into
account such those of defining the discrete world (problem-specific states and adja-
cency), the state transition policy, the stigmergy dynamics, the ants internal state, the
pheromone laying timing, the quality measure of the paths found and the local heuris-
tics to be combined.

Although some previous attempts have been made for automatic programming us-
ing the ACO metaheuristic, here we address these issues with a novel approach based
on a grid definition of the discrete world that the ants have to explore. It seems that
this is a more suitable representation for building programs out of pheromone trails
followed by the ants.

The paper is organized as follows. The next section is an overview of some related
work. Section 3 describes the proposed approach. In section 4 preliminary experi-
ments are shown. The last section is devoted to the conclusions and a discussion of
outgoing and future work.

2 Related work

2.1 GP and Variations

In standard GP, programs are represented as trees containing function and terminal
nodes. More complex programs may comprise a number of trees to include a main
branch, and several loop and function-definition branches. This allows GP to obtain
more powerful programs [9]. However some researchers argue that expression trees
are not the only or even the most natural way to synthesize programs [5, 12, 14].

A number of alternative variations to the tree representation have been proposed. In
Cartesian GP [13] the genome is represented as a linear array of indexes to functions
and variables. Partial results can be shared by connecting the outputs of one function
gate with the inputs of another located in a posterior loci in the genome. In this way,
some of the genes can be activated/deactivated and hence may or may not be present in
the expression of the final program. Another approach for linearising the expression
tree of the programs is the so-called Gene Expression Programming [4]. Here each
individual is represented as a character string of fixed length similar to GA. Each
symbol in the genome defines a function or a terminal. The mapping to the pheno-
type program is carried on by a level-order traversal of the tree (which is equivalent to
a breadth-first search) compared to the pre-order used in common GP. As all the
strings are of fixed-length the genetic operations for crossover and mutation can be
easily implemented, and also the presence of introns is natural [4].

Another interesting variation in the representation of programs is the Parallel Dis-
tributed GP (PDGP) [15]. In this approach the tree is represented as a graph with
functions and terminals nodes located over a grid. In this way it is possible straight-
forward to execute several nodes concurrently and even to represent loops and code
reusing by the addition of labels in the links of the graph.

Yet another variant of GP is known as Probabilistic Incremental Program Evolu-
tion (PIPE) [18]. Even though PIPE adopts the tree representation for a program, it
does not maintain a population of individuals. Instead it builds a probabilistic proto-
type tree in which each node comprise a probability distribution over all the possible
elements in the function and terminal sets. Thus the programs are generated using a
stochastic process based on that distribution, and the tree is modified by a reinforce-
ment learning technique combined with mutation operators.

It is worth noting that most of these approaches claimed to obtain better results
than GP for specific problems.

2.2 ACO and Automatic Programming

One of the best-known instantiations of the ACO algorithm was called the Ant Col-
ony System (ACS) [3] and was used for solving the traveling salesman problem
(TSP). In this method ants are randomly located in a graph with numbered nodes that
represent cities. Each ant visits the next city as a consequence of a rule that allows for
the pheromone concentration and a local heuristic towards the closest neighbor. After
all ants have finished up their tours, they are evaluated and the best ant is allowed to
deposit pheromones over the edges of the cities in its tour. The Ant System success-
fully outperformed other methods for medium-size TSP problems, and hence research-
ers have been encouraged to perform further research in the application of ACO to
different optimization problems [2].

The first attempt to apply the ACO algorithm for automatic programming was re-
ported in [17] with the name Ant Programming (AP). They use the ants to navigate
the nodes of a prototype tree similar to that of PIPE, but using a pheromone distribu-
tion instead of a probability distribution. The pheromone update obeys the ACO dy-
namics with a reinforcement given by the ant that maximizes a fitness problem-
dependant measure. The results obtained by this system did not show remarkable suc-
cess over some benchmark tasks; nevertheless the authors pointed out that the solu-
tions found by AP tend to be more parsimonious than those given by GP [17].

Recently two more proposals have been reported: the so-called Ant Colony Pro-
gramming (ACP) [1] and Generalized Ant Programming (GAP) [6]. ACP was used
for solving symbolic regression problems with ants that explored a tree with two dif-
ferent versions. In the first version nodes were expressions corresponding to func-
tional and terminal elements. In the second, nodes store assignment instructions
working over function, terminal and temporary variables. The authors had to tackle
problems such as programs that are not closed or programs with redundant instructions
(they need to carry out post-generation program pruning). They state that when using
the instructions tree the solution found were more accurate, albeit they also take
longer to execute [1]. On the other hand, GAP uses an ant colony approach to build
programs specified by a context-free grammar. A financial stocks market application
was chosen as test bed. Programs obtained by this method showed approximation
results that outperformed other presented in literature [6].

3 A Grid-Based Ant Colony System for Program Synthesis

3.1 Overview

Based on the ideas above, a novel instantiation of the ACO algorithm for automatic
programming, the Grid Ant Colony Programming (GACP), is presented in this sec-
tion. In this approach a population of ants is used to navigate across the nodes of a
grid, each one associated with a symbol of the functional or terminal set of instruc-
tions. Taken the tours given by the colony in each iteration of the algorithm, the sys-
tem is provided with a population of fixed-length strings that can be translated to func-
tional programs using an order-level traversal. The search process is guided by the
dynamics of laying/evaporation pheromones. A correlation instead of a raw or normal-

ized fitness case is used to evaluate the quality of the paths followed by the ants. The
reminder of this section provides an explanation of each component of the system.

3.2 Grid Representation of the World

The reason why using a grid instead of a graph (like in the ACS) or a tree (like in GP,
PIPE, AP or ACP) complies with the fact that in order to explore the program search
space, an ant is allowed to visit a node several times. Therefore an additional temporal
parameter must be considered when choosing the next edge to follow. This will de-
pend on the point of the tour that the ant is following. Without this information it
will not be able to discriminate the relevance of the pheromone concentration for that
particular point. This is clearly shown in figure 1. Assume that one ant builds a pro-
gram by jumping from one node to another during five times. The node X appears
twice in the program OR(X,AND(X,Y)). In the graph representation (1a), after
visiting the first OR and X nodes, the ant can not decide between X->AND or X->Y as
the next edge to follow in the third step. On the other hand, the grid representation
(1b) holds different edges for each step, so the ant will not get confused. Alternatively
the grid can be thought as an array of graphs with a temporal index (1c) to control the
step that the ant is jumping (this type of view is particularly useful for implementa-
tion purposes).

(a) (b) (c)
Fig. 1. Different representations for the world to be explored by ants in order to build the
program OR(X, AND(X, Y)). Chosen edges are shown in bold. (a) Edges in a single
graph are not differentiated for every step. (b) A grid maintaining a separate set of edges for
each chosen instruction (each step corresponds to a row in the grid). The program can be
retrieved reading from top to down, similarly to a feed- forward network. (c) Alternative
view of the grid as a matrix of directed graphs.

The grid is a 2D network of nodes similar to that found in PDGP. Each row in the
grid contains the same number of columns as the elements in the functional and ter-
minal set. The adjacency of the grid are restricted to connections only between two
consecutive layers of nodes (similar to a feedforward neural net). Besides, the number
of rows is determined by the depth parameter

€

δ , and the arity parameter

€

γ . Firstly, the
parameter

€

δ defines the maximum number of functional nodes that an ant is allowed
to visit from the beginning of its tour. Secondly, the

€

γ parameter is the number of

arguments of the function with maximal arity in the functional set. With these values
it is possible to compute the number of rows of the grid as defined in equation (1),
that is, the number of steps that an ant must accomplish to guarantee the closeness of
the generated programs. This is true even when one program contains

€

δ times the
function with maximum arity

€

γ [4].

€

steps = δ + (δ * (γ −1) +1) (1)

3.3 Ant Internal State and Program Synthesis

Each ant has a memory to keep a trace of its tour. This memory is a character string
containing the symbol identifiers of the nodes visited in each step. The string can be
considered a kind of genotype that can be mapped to a phenotype (program tree) by
using a traversing algorithm. A level-order traversal (breadth-first search) was chosen
in order to keep the functional nodes into the first

€

δ nodes of the string, in the same
way as proposed for GEP [4]. The final synthesized program is expressed as a sentence
in prefix notation. Suppose for example that the colony is requested to solve the 6-
multiplexor problem (fig. 2). For this problem the functional set is F={I}, where I
represents the function IF(·,·,·) and terminal set is comprised of the inputs
T={a,b,w,x,y,z} with a maximum arity

€

γ=3 and depth

€

δ=4. The best path
followed by any ant, as showed in fig 3(a), is IaIIbwxbyzxw which is mapped
(3b) to the program IF(a,IF(b,w,x),IF(b,y,z)) . Observe that during
the mapping, the last two steps of the path are discarded.

Fig. 2. The 6-multiplexor. Inputs a and b are used to code the address of the line
w, x, y, z which will be retrieved at the output.

(a)

(b)
Fig. 3. Example of a path followed by an ant to solve the 6-multiplexor problem. (a) Grid
representation for the problem. The nodes chosen by the ant are shown on the right. Step
numbers are shown on the left. After the 4th step, nodes corresponding to functions are
banned to the ant. (b) Program synthesis. The character string memory of the ant i s
mapped to a program tree by an order-level traversal. The executable program is shown
below. During the mapping, the two last positions of the path were discarded because they
are non-coding regions of the “genotype”.

3.4 Stigmergy Dynamics

The pheromone updating rules are the same proposed for the ACS [3], as can be seen
in equations (2) and (3),

€

τ(r,s) = (1−α)τ (r,s) +ατ 0 (2)

ηατατ Δ+−=),()1(),(srsr (3)

where),(srτ is the pheromone level between nodes r and s. Equation (2) is executed
on-line each time an ant choose to move from r to s. This is intended to simulate the
pheromone evaporation caused by all the ants that followed the same path. On the
other hand, equation (3) is executed off-line in each iteration by a daemon that takes
the edges of the tour completed by the best ant, in order to reinforce their pheromone
concentration with a quantity proportional to the winner’s fitness.

€

α is a tuning pa-
rameter such that 0 <

€

α < 1.

3.5 State Transition Policy

The transition policy followed by the ants in GACP resembles that of the ACS [3]
with a subtle difference, the whole colony is moved concurrently from one row to the
following in the grid. For each step a parameter 0 < e0 < 1 is used to randomly divide
the colony in two groups: exploitation and exploration ants. An exploiting ant is bi-
ased towards the path with the largest concentration of pheromone),(urτ , so it de-
cides where to move using equation (4). The affinity value }1,0{),(∈urη is used to
prevent the ant to choose an invalid edge (for example after

€

δ steps, ants are not al-
lowed to follow nodes belonging to functional set, so 0),(=urη for them). In con-
trast, an explorer ant decides which neighbor node to jump by means of a roulette
wheel rule based on the probability obtained with equation (5). In both equations r
represents the current node visited by the ant, and u are all the nodes connected to it in
the subsequent row of the grid.

)],(),([maxarg ururs
u

ητ ∗= (4)

∑ ∗
∗

=

i

s irir
urur

p
)],(),([
)],(),([

ητ
ητ

(5)

3.6 Fitness function

The paths explored by the ants in the program search-space of GACP have no length,
but yet they can be assessed with a fitness function which is problem-dependant. The
fitness function must allocate a better score for those programs that are closer to the
given set of specifications. This score will be reinforced in the pheromone trail of the
best ant.

So far the GACP system has been tested to build programs to solve Boolean prob-
lems. For this kind of problems usually a score is given by the number of correct
answers obtained by the program in a set of test cases. However it has been found
that the correlation measure of the number of true positives (tp), true negatives (tn),
false positives (fp) and false negatives (fn) cases could give a more accurate measure of
the predictive power of the synthesized program [8]. So the correlation rate given by
(6) was chosen as a fitness function. A good solution for the problem will have a fit-
ness near to one, whilst a worse program will have a score close to zero.












++++

−
−=

))()()((

**
1*5.0

fptpfntpfptnfntn

fpfntntp
fitness (6)

Scores (correlation) -> Solutions

Run 1: 0.89 -> iif(a,iif(x,x,w),iif(b,y,z))
Run 2: 1.00 -> iif(a,iif(b,w,x),iif(b,y,z))
Run 3: 0.88 -> iif(b,y,iif(iif(w,a,a),x,z))
Run 4: 0.88 -> iif(a,w,iif(b,y,z))
Run 5: 0.89 -> iif(a,iif(b,w,x),iif(y,b,y))
Run 6: 0.88 -> iif(a,iif(b,w,x),y)
Run 7: 0.88 -> iif(a,x,iif(b,y,z))
Run 8: 0.88 -> iif(a,w,iif(iif(a,w,b),iif(b,y,a),z))
Run 9: 0.88 -> iif(a,x,iif(b,y,z))
Run 10: 0.88 -> iif(b,w,iif(a,x,z))
Run 11: 0.88 -> iif(a,x,iif(b,y,z))
Run 12: 1.00 -> iif(b,iif(a,w,y),iif(a,x,z))
Run 13: 0.88 -> iif(a,w,iif(iif(b,b,b),y,z))
Run 14: 0.88 -> iif(b,w,iif(a,x,z))
Run 15: 0.88 -> iif(iif(iif(b,b,b),b,a),iif(b,y,x),z)
Run 16: 0.88 -> iif(b,y,iif(a,x,z))
Run 17: 0.88 -> iif(a,w,iif(iif(a,z,b),y,z))
Run 18: 1.00 -> iif(b,iif(a,w,y),iif(a,x,z))
Run 19: 1.00 -> iif(b,iif(a,w,y),iif(a,x,z))
Run 20: 0.88 -> iif(a,iif(iif(a,b,z),w,x),z)
Run 21: 0.88 -> iif(b,w,iif(a,iif(w,x,x),z))
Run 22: 0.88 -> iif(a,x,iif(b,y,z))
Run 23: 0.81 -> iif(iif(iif(w,x,y),a,b),w,z)
Run 24: 0.88 -> iif(iif(b,iif(a,a,w),b),w,iif(a,x,z))
Run 25: 1.00 -> iif(b,iif(a,w,y),iif(a,x,z))
Run 26: 0.88 -> iif(b,y,iif(a,x,z))
Run 27: 0.88 -> iif(a,iif(b,w,x),y)
Run 28: 0.88 -> iif(b,w,iif(a,iif(x,x,x),z))
Run 29: 0.88 -> iif(a,w,iif(b,iif(a,z,y),z))
Run 30: 0.88 -> iif(a,w,iif(b,y,z))

Average best fitness: 0.89

Fig. 4. System output for the 6-MP task. Correlation fitness and program explored by the
best ant during 30 experiments.

4 Preliminary Experiments

4.1 6-Multiplexor

A number of preliminary experiments using GACP with the parameters shown in
table 1 have been performed. Although some work is still needed for tuning the pa-
rameters and the implemented algorithms, so far results are encouraging. During 30
experiments, GACP has found the solution to the problem with a fitness score aver-
age of 0.89. In five occasions the system synthesized perfect programs. The results
are summarized in figure 4. The number of correct fitness cases per tour (averaged
over the 30 experiments) are shown in figure 5. The correlation fitness of the best ant
in each experiment is plotted in figure 6.

Table 1. Parameters used in GACP for the 6-MP problem.

Parameter

€

α e0

€

γ

€

δ colony_size generations fitness_cases
Value 0.1 0.8 3 6 100 80 64

Fig. 5. Number of corrected classified cases per tour averaged over 30 experiments.

Fig. 6. Correlation fitness of the best ant per experiment.

4.2 11-Multiplexor

Just some few trials were performed for this task. Results are summarized in figure 7.
Despite the fact that more exhaustive experiments should be conducted, the programs
obtained by GACP had on average a 75% of correct answers to the 2048 test cases,
which is better than the 59% reported with AP in [17] for the same task.

[0.62] 1<1216> 2<1248> 3<1216> 4<1200> 5<1248> … 8<1248>
[0.62] 9<1280> 10<1248> 11<1248> 12<1216> 13<1280>
[0.69] 14<1408> 15<1280> 16<1344> … 74<1408> 75<1280> 76<1280>
[0.69] 77<1408> 78<1408> 79<1408> 80<1408> 81<1408>
[0.75] 82<1536> 83<1536> 84<1536> … 166<1440> 167<1504> 168<1504>
[0.77] 169<1568> 170<1568> 171<1568> … 198<1568> 199<1568>
200<1568>

Solution proposed: iif(c,iif(b,iif(a,r,w),y),iif(iif(z,w,v),x,z))

[0.62] 1<1280> 2<1280>
[0.63] 3<1280>
[0.63] 4<1280>
[0.63] 5<1280>
[0.63] 6<1280>
[0.65] 7<1312>
[0.69] 8<1408>
[0.69] 9<1408> 10<1408> 11<1408> 12<1408> … 37<1408> 38<1408>
[0.75] 39<1536> 40<1536> 41<1536> … 298<1536> 299<1536> 300<1536>

Solution proposed: iif(b,iif(a,iif(c,r,s),w),t)

Fig. 7. Some programs found by GACP for the 11-MP problem.

5 Conclusions and Directions for Future Work

This paper has introduced a novel instantiation of ACO for automatic programming.
Grid Ant Colony Programming (GACP) uses a colony of artificial ants to explore a
program search space represented as a grid. The ants develop programs by taking ad-
vantage of global and local information harvested through a stigmergy dynamics. The
grid (as an alternative to a tree) allows the ants to maintain temporal data of the steps
they follow. Preliminary experiments showed that is possible to find perfect solu-
tions to Boolean problems of medium size. For bigger problems, GACP performs
better than some previous approaches. Some of the advantages of this approach are
the closeness and validity of any generated program, and the possibility of parallelized
synthesis of programs.

The system reported here is ongoing work and several specific issues such as scal-
ability, inclusion of constants, experiments with different fitness functions, use of
other ACO variants, automatic function definitions, inclusion of loops and memory
management, may be targets for further research. Moreover there are yet other signifi-
cant topics that can emerge from this research. The first one is using GACP with the
combination of ACO and local heuristics. This is motivated by the fact that most of
the time the colony built programs with the correct structure needed to solve the prob-
lem, but with a different ordering of terminals. In this sense, a local heuristic that
reassembles those terminals in different ways could be very useful to improve the per-
formance of the system.

Secondly, recent advances in the theoretical research of automatic programming by
GP have been done with the aim of providing deeper explanations [11, 16]. As it was
showed with GACP, programming by means of ACO can viewed into the framework
of genotypic/phenotypic mapping with innovative “genetic” operations to explore the
search space. It is anticipated that an extension of those theoretical studies to this new
field may prove fruitful.

One further avenue for research may be to use other natural computation approaches
for automatic programming. GP has shown successful application to some domains.
Artificial ants may also be applied. Therefore, it seems likely that particle swarms,
molecular computation or immune systems could be used for the same purpose. This
could give rise to a whole class of algorithms intended to achieve that long dream of
computer programmers, this time by “bio-inspired automatic programming”.

References

1. Boryczka, M.; Czech, Z. Solving Approximation Problems by Ant Colony Program-
ming. Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO'02), New York City, NY, USA, July 9-13, (2002)

2. Dorigo, M., Di Caro, G., Gambardella, L. Ant Algorithms for Discrete Optimization.
Artificial Life, Vol. 5, No.3. (1999). 137-172.

3. Dorigo M., Maniezzo, V., Colorni, A. The Ant System: Optimization by a Colony of
Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B,
26(1). (1996). 29-41.

4. Ferreira, C. Gene Expression Programming: a New Adaptive Algorithm for Solving
Problems. Complex Systems, Vol. 13, issue 2: 87-129. (2001).

5. Kantschik, W.; Banzhaf, W. Linear-Tree GP and its comparison with other GP structures.
Proceedings of the 4th European Conference on Genetic Programming, (EuroGP 2001),
Italy, April 18-20, (2001).

6. Keber, C., Shuster, M. Option valuation with Generalized Ant Programming. Proceed-
ings of the Genetic and Evolutionary Computation Conference, (GECCO'2002),
(2002).

7. Koza, J. Genetic Programming: On the Programming of Computers by Means of Natural
Selection. Cambridge, MA: The MIT Press. (1992).

8. Koza, J., Bennett III, F., David, A. Using programmatic motifs and genetic program-
ming to classify protein sequences as to extracellular and membrane cellular location.
Proceedings of Evolutionary Programming VII. 7h International Conference (1998).

9. Koza, J., Keane, M., Matthew J., Mydlowec, W., Yu, J., Lanza, G., and Fletcher, D.
Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer
Academic Publishers. (2003).

10. Levine, J., Ducatelle, F. Ants Can Solve Difficult Bin Packing Problems. Proceedings
of the 1st Multidisciplinary International Conference on Scheduling: Theory and Ap-
plications (MISTA 2003), Nottingham, UK, August 13-16th. (2003).

11. McPhee, N. F., Poli, R. A schema theory analysis of the evolution of size in genetic
programming with linear representations. Proceedings of EuroGP'2001, Lecture Notes
in Computer Science 2038, pp. 108-125. (2001).

12. Miller, J. What bloat? Cartesian Genetic Programming on Boolean problems. Late
Breaking Papers, Proceedings of the 3rd Genetic and Evolutionary Computation Con-
ference, (GECCO'01), pp. 295 -302 , (2001).

13. Miller, J.; Thomson, P. Cartesian Genetic Programming. Proceedings of the Third Euro-
pean Conference on Genetic Programming, (EuroGP 2003), Edinburgh, April 15-16,
(2000).

14. O'Neill M., Ryan C. Grammatical Evolution. Evolutionary Automatic Programming in
an Arbitrary Language. Kluwer Academic Publishers. (2003).

15. Poli, R. Evolution of Graph-like Programs with Parallel Distributed Genetic Program-
ming. Proceedings of the Seventh International Conference on Genetic Algorithms,
Michigan State University, July 19-23, (1997).

16. Poli, R., Langdon, W. B. Schema Theory for Genetic Programming with One-point
Crossover and Point Mutation. Evolutionary Computation Journal, 6(3): 231-252.
(1998).

17. Roux, O.; Fonlupt, C. Ant Programming: Or How to Use Ants for Automatic Program-
ming. Proceedings of the Second International Conference on Ant Algorithms
(ANTS2000), Belgium, September, (2000).

18. Salustowicz, R., Schmidhuber, J. Probabilistic Incremental Program Evolution. Evolu-
tionary Computation 5(2):123-141. (1997).

