
HAL Id: tel-01829464
https://theses.hal.science/tel-01829464

Submitted on 4 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design tools for the engineering of biological systems
Elise Rosati

To cite this version:
Elise Rosati. Design tools for the engineering of biological systems. Quantitative Methods [q-bio.QM].
Université de Strasbourg, 2018. English. �NNT : 2018STRAD008�. �tel-01829464�

https://theses.hal.science/tel-01829464
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE STRASBOURG

ÉCOLE DOCTORALE MATHEMATIQUES, SCIENCES
DE L’INFORMATION ET DE L’INGENIEUR (ED 269)

Laboratoire des Sciences de l’Ingénieur,
de l’Informatique et de l’Imagerie (ICube, UMR 7357)

THÈSE présentée par :

Elise ROSATI

soutenue le : 5 avril 2018

pour obtenir le grade de : Docteur de l’université de Strasbourg

Discipline : Sciences de l’ingénieur

Outils d’aide à la conception pour
l’ingénierie de systèmes biologiques

THÈSE dirigée par :

Mr. LALLEMENT Christophe Professeur, université de Strasbourg

RAPPORTEURS :
Mr. O’CONNOR Ian Professeur, école Centrale Lyon
Mr. AMAR Patrick Maître de conférences HDR, université Paris-Sud

AUTRES MEMBRES DU JURY :
Mr. PÊCHEUX François Professeur, Sorbonne Universités
Mme. DEJAEGERE Annick Professeur, université de Strasbourg
Mr. MADEC Morgan Maître de conférences, université de Strasbourg

Page 1

Remerciements

Tout d’abord, j’aimerais remercier mon directeur de thèse Christophe Lallement, pour avoir fait le pari

risqué d’accueillir une biologiste au sein de son équipe. J’aimerais aussi remercier Michel de Mathelin pour

m’avoir accueillie au sein de son laboratoire.

Je voudrais remercier Patrick Amar, Ian O’Connor, Annick Dejaegere et François Pêcheux d’avoir accepté de

faire partie de mon jury.

Je remercie Jacques Haiech qui a été à l’origine de discussions enrichissantes sur la biologie ainsi que Pierre

Collet pour m’avoir initiée au monde des algorithmes évolutionnaires.

Merci aussi et surtout à mon encadrant de thèse, Morgan Madec, qui a été mon interlocuteur privilégié au

cours de ces 3 ans. Les discussions scientifiques sont toujours riches et le quotidien de ma thèse s’est trouvé

nettement amélioré par sa constante disponibilité et gentillesse. Merci aussi de m’avoir fait découvrir les

merveilleux mondes de l’électronique numérique et de l’enseignement.

Mes remerciements vont à Luc Hébrard, pour son expertise et le temps qu’il m’a dédié au sujet des

éléments finis. Merci aussi à Yoshitate Takakura pour son aide sur le plan expérimental et théorique. Je

tiens aussi à remercier les membres de l’équipe, pour les diverses conversations que j’ai pu avoir avec

chacun d’entre vous, sur des sujets scientifiques mais pas que… Je tenais tout particulièrement à remercier

Norbert, sans qui les pauses midi auraient connu beaucoup moins de débats et d’aléas.

Côté biologiste, j’aimerais aussi remercier Annie-Paule Sibler, qui m’a ouvert les portes des salles de TP et

offert une aide précieuse.

J’aimerais remercier tous les stagiaires et les étudiants en projet qui ont été impliqués de près ou de loin à

mon travail de thèse, et notamment : Anaïs, Michaël, Nicolas, Rémi. Vous êtes les cailloux qui ont parsemé

mon chemin.

Je tenais aussi à mentionner les doctorants de l’équipe (et orbites proches), bien que rencontrés sur le tard

(même si n’étant parfois pas loin du tout !), pour les sympathiques soirées passées en votre compagnie :

Alexi, Alexis, François, Lucas, Timothé, Vinh.

Parce que je ne vous considère plus comme mes stagiaires mais comme mes amis, je tenais à vous remercier

dans un paragraphe à part, vous la petite bande sans qui ces 3 ans (et quelques) auraient été bien moins

agréables et drôles : Florian, Laurent, Quentin, Thomas, Thomas, Zoé

Merci à tous mes amis, avec qui je n’ai cessé et ne cesserai de passer de bons moments.

Je n’oublie pas ma famille, dont le soutien s’est manifesté en de nombreuses occasions. Vous avez toujours

été présents, jusqu’à la dernière minute !

Et enfin, last but not least, j’aimerais exprimer toute ma gratitude à mon compagnon, pour son indéfectible

soutien et sa précieuse aide pendant cette ardue période de rédaction. La liste complète de tes hauts faits

est bien trop longue pour apparaître ici ! Merci pour tout.

Page 2

Page 3

Abstract

In synthetic biology, Gene Regulatory Networks (GRN) are one of the main ways to create new

biological functions to solve problems in various areas (therapeutics, biofuels, biomaterials,

biosensing). However, the complexity of the designed networks has reached a limit, thereby

restraining the variety of problems they can address. How can biologists overcome this limit and

further increase the complexity of their systems?

The goal of this thesis is to provide the biologists with tools to assist them in the design and simulation

of complex GRNs. To this aim, the current state of the art was examined and it was decided to adapt

tools from the micro-electronic field to biology, as well as to create a Genetic Programming algorithm

for GRN design. On the one hand, models of diffusion and of other various systems (band-pass, prey-

predator, repressilator, XOR) were created and written in Verilog A. They are already implemented

and well-functioning on the Spectre solver as well as a free solver, namely NgSpice. On the other hand,

the first steps of automatic GRN design were achieved. Indeed, an algorithm able to optimize the

parameters of a given GRN according to a specification was developed. Moreover, Genetic

Programming was applied to GRN design, allowing the optimization of both the topology and the

parameters of a GRN.

These tools proved their usefulness for the biologists’ community by efficiently answering relevant

biological questions arising in the development of a system. With this work, we were able to show that

adapting micro-electronics and Genetic Programming tools to biology is doable and useful. By assisting

design and simulation, such tools should promote the emergence of more complex systems.

Page 4

Résumé

En biologie synthétique, il existe plusieurs manières d’adresser les problèmes soulevés dans plusieurs

domaines comme la thérapeutique, les biofuels, les biomatériaux ou encore les biocapteurs. Nous

avons choisi de nous concentrer sur l’une d’entre elles : les réseaux de régulation génétique (RRG). Un

constat peut être fait : la diversité des problèmes résolus grâce aux RRGs est bridée par la complexité

de ces RRGs, qui a atteint une limite. Quelles solutions s’offrent aux biologistes, pour repousser cette

limite et continuer d’augmenter la complexité de leur système ?

Cette thèse a pour but de fournir aux biologistes les outils nécessaires à la conception et à la simulation

de RRGs complexes. Un examen de l’état de l’art en la matière nous a mené à adapter les outils de la

micro-électronique à la biologie ainsi qu’à créer un algorithme de programmation génétique pour la

conception des RRGs. D’une part, nous avons élaboré les modèles Verilog A de différents systèmes

biologiques (passe-bande, proie-prédateur, repressilator, XOR) ainsi que de la diffusion

spatiotemporelle d’une molécule. Ces modèles fonctionnent très bien avec plusieurs simulateurs

électroniques (Spectre et NgSpice). D’autre part, les premières marches vers l’automatisation de la

conception de RRGs ont été gravies. En effet, nous avons développé un algorithme capable d’optimiser

les paramètres d’un RRG pour remplir un cahier des charges donné. De plus, la programmation

génétique a été utilisée pour optimiser non seulement les paramètres d’un RRG mais aussi sa

topologie.

Ces outils ont su prouver leur utilité en apportant des réponses pertinentes à des problèmes soulevés

lors du développement de systèmes biologiques. Ce travail a permis de montrer que notre approche,

à savoir adapter les outils de la micro-électronique et utiliser des algorithmes de programmation

génétique, est valide dans le contexte de la biologie synthétique. L’assistance que notre

environnement de développement fournit au biologiste devrait encourager l’émergence de systèmes

plus complexes

Page 5

Table of Contents

Remerciements .. 1

Abstract ... 3

Table of contents ... 5

Glossary ... 11

General Introduction ... 13

Part One – Context and Objectives .. 17

Chapter 1 – Synthetic Biology and Applications 19

 1. A brief history of synthetic biology .. 19

 2. Applications ... 23

 2.1. Therapeutics .. 23

 2.2. Biofuels... 24

 2.3. Biosensors .. 25

 2.4. Other domains ... 27

 3. Main synthetic biology stakeholders ... 27

 4. From handmade design to the next step .. 28

 5. References ... 29

Chapter 2 – Theoretical Background ... 33

 1. Basic electronic concepts... 33

 1.1 The main electronic devices... 33

 1.2 Kirchhoff’s laws .. 35

 1.3 Digital electronics vs analog electronics .. 36

 2. The classical dogma of biology and its limitations .. 38

 2.1 Transcription and translation ... 38

 2.2 Limitations.. 39

 3. Genetic regulatory networks ... 41

 3.1 Transcription factors .. 41

 3.2 Networks .. 42

 3.3 Modeling .. 43

 4. Micro-RNA ... 44

 4.1 Micro-RNA silencing ... 44

Page 6

 4.2 Modeling micro-RNA .. 45

 4.3 Micro-RNA genetic circuits .. 46

 5. Analogy between electronics and biology ... 48

 6. Conclusion ... 49

 7. References ... 49

Chapter 3 – Design Flow of Synthetic Biology 53

 1. The design flow .. 54

 1.1. Bottom-up .. 54

 1.2. Top-down ... 54

 1.3. Meet-in-the-middle.. 55

 1.4. Common use of top-down and bottom-up in synthetic biology 55

 1.5. Microelectronics design flow ... 56

 1.6. Synthetic biology design flow .. 58

 Models and simulators .. 60

 2.1. Digital abstraction .. 60

 2.2. Multivalued logic .. 63

 2.3. Ordinary differential equations ... 63

 2.4. Stochastic simulation ... 64

 2.5. Spatio-temporal simulation ... 65

 Designing GRNs .. 65

 3.1. Assisted-design tools.. 65

 3.2. Automated design .. 70

 References ... 70

Part Two – Design Automation of Biological Systems 73

Introduction to Part Two ... 75

Chapter 4 – Design at Boolean Level ... 77

 1. Design automation in digital electronics ... 77

 1.1. Digital synthesis ... 78

 1.2. Silicon compiler .. 79

 1.3. Back annotation and layout versus schematics ... 79

 2. Design of combinatorial GRNs ... 79

 2.1. Description of GeNeDA .. 79

 2.2. Results on combinatorial systems ... 83

 3. Design of sequential GRNs ... 88

 3.1. Definition of a sequential system .. 88

 3.2. Design of a sequential system ... 89

 3.3. Stability of sequential system .. 90

Table of Contents

Page 7

 3.4. Results .. 91

 3.5. Synchronization of sequential GRN ... 95

 4. Design of a biological D-Flip-Flop .. 96

 4.1. Description ... 96

 4.2. Modeling and simulation results ... 98

 4.3. Design of biological counters ... 100

 4.4. Necessity to split the system ... 102

 5. Conclusion ... 103

 6. References ... 103

Chapter 5 – Design at Analog level .. 107

 1. Introduction ... 107

 2. Parameter optimization for a given GRN... 109

 2.1. A brief overview of inverse problem ... 109

 2.2. Evolutionary algorithms ... 111

 2.3. Results on the band-pass ... 113

 2.4. Results obtained on a XOR gate ... 122

 2.5. From an evolution strategy to genetic programming 123

 3. Evolving the GRN topology .. 125

 3.1. Introduction to genetic programming ... 125

 3.2. Genetic programming with generic functions ... 125

 3.3. Genetic programming with ADF .. 127

 4. Conclusion ... 137

 5. References ... 137

Summary on Part Two ... 141

Part Three – Virtual Prototyping of Time- and Space-
Dependent Biological Systems ... 143

Introduction to Part Three ... 145

Chapter 6 – Description of the Simulator .. 147

Page 8

170

Chapter 7 – Validation and Results .. 173

 Validation on the finite differences model .. 174

 1.1. Transverse diffusion ... 174

 1.2. Radial diffusion from a central source ... 178

 Validation of the finite element model ... 182

 2.1. Comparison with finite difference model .. 182

 2.2. Different boundary conditions ... 184

 2.3. Comparison between models .. 184

 2.4. Interface between two zones of different refinement level 184

 2.5. Conclusion and outlook ... 186

 Summary on both models ... 186

 Results on biological use cases .. 187

 4.1. Band-pass system ... 187

 4.2. XOR .. 189

 4.3. A simple prey-predator .. 194

 4.4. Synchronized Oscillators .. 196

 Conclusion ... 201

 Reference ... 202

Summary on Part Three ... 205

Conclusion ... 209

List of publications ... 211

Table of Contents

Page 9

Appendices ... 213

Appendix I – Demonstration Used in the Finite Element Discretization
Scheme .. 215

 Basics ... 215

 1.1. Notation ... 215

 1.2. Equation of heat conduction ... 215

 1.3. Variational formulation .. 216

 Space discretization – General case .. 217

 Space discretization – 4-nodes models ... 219

 3.1. Matrix of rigidity 𝐊𝐞 ... 219

 3.2. Computation of the external fluxes (matrix 𝐅𝐞) 222

 3.3. Computation of the border conditions .. 224

Appendix II – Verilog-A Model of the Elementary Mesh 229

1. ... 229

2. Finite Elements – Triangular Composition... 231

Résumé en français .. 233

Page 10

Page 11

Glossary of terms

ABC The part compiler: combines element of a library to achieve a target function

AHL Acyl Homoserine Lactone, a small molecule involved in cell-to-cell communication

Band-pass System that exhibits a bell-shaped response

BioBrick Also called part, DNA sequences that are the building blocks of GRNs

BLIF Berkeley Logic Interchange Format, a language used to represent a logic circuit at a high-level
of abstraction

Boolean Boolean logic is a paradigm where entities can have two values, 0 or 1

Bottom-up Design methodology composing a system starts by assembling elementary building blocks

CAD tools Computer-Aided Design tools

COPASI A software application for simulation and analysis of biochemical networks and their
dynamics

Design flow Set of methods and tools that are used sequentially during the process of system’s design

DNA Deoxyribonucleic acid, the base block of genetic information encoding

EDA Set of tools for Electronic Design Automation

Evolutionary
algorithms

Population-based metaheuristic optimization algorithm inspired by biological evolution

Flip-flop Synchronous memory that is updates only on the tick of a clock signal

HDL Hardware Description Language, language used for the description of hardware (electronic
devices and systems)

Genetic
Programming

A kind of evolutionary algorithm that manipulate programs

GPL Genetic Part Library, a library of biological parts

Grounded In electronics, connected to the reference of the circuit

GRN Gene Regulatory Networks

Leakiness Residual transcription of an inactivated gene

miR Micro-RNA, non-coding RNA able to silence a gene by binding to its mRNA and inhibiting its
translation and/or initiating its degradation

mRNA Messenger RNA, an RNA molecule processed to be translation-ready

MSE Mean Square Error

ODE Ordinary Differential Equations

ODIN II A digital synthesizer, converts a Verilog file into an RTL-netlist

PDE Partial Differential Equations

RBS Ribosome-binding site

RNA Ribonucleic acid, intermediary molecule in the expression of a gene

RTL netlist Register Transfer Level netlist, a circuit composed of Boolean functions and memories

SBML Systems Biology Markup Language. SBML is a widely used format for computer models of
biological processes

Page 12

Search space The space defining the set of all possible solutions of an optimization algorithm

SPICE Simulation Program with Integrated Circuit Emphasis. SPICE is a freeware used to run
different kind of simulation of analog electronic circuits.

Top-down Design methodology which consists in decomposing the system hierarchically down to
elementary building blocks

USBO Universal Set of Boolean Operators, a set of Boolean operators sufficient to produce any
Boolean expression when combined.

VCCS Voltage Controlled Current Source

Verilog a hardware description language used to describe digital electronic systems.

Verilog-A a hardware description language used to describe analog and mixed electronic systems.

VHDL VHSIC (Very High Speed Integrated Circuit) Hardware Description Language, a language used
to describe the structure and the behavior of electronic systems.

Page 13

General Introduction

Synthetic biology is a relatively recent field of investigation, as it emerged in the 2000’s. Synthetic

biology requires a general know-how in many disciplines and is commonly defined as the application

of engineering principles on biology (http://www.synbioproject.org/topics/synbio101/definition/),

although many definitions of the term can be found. The term appeared first under the pen of

Stephane Leduc early in the XXth century, who declared that biology should be “successively

descriptive, analytic and synthetic” (Le Duc 1910). The idea behind this is that in order to truly

understand a biological phenomenon, one has to be able to recreate it. If description and analysis of

biological organisms and systems are well-established disciplines, synthesis, hence synthetic biology is

only at its beginnings.

Fig. 1 List of the words most commonly associated with Synthetic biology. Source:

http://www.synbioproject.org/topics/synbio101/definition/, consulted on 22/11/16. Generated with www.worldclouds.com

Key words such as “design”, “engineering”, “systems”, “devices”, “parts” and “function” are often

found in definitions of synthetic biology (Fig. 1). This is well illustrated by the definition established by

a group of European experts, the European Commission for Biotechnologies, Agriculture and Food:

Synthetic biology is the engineering of biology: the synthesis of complex,

biologically based (or inspired) systems which display functions that do not

exist in nature. This engineering perspective may be applied at all levels of

the hierarchy of biological structures – from individual molecules to whole

cells, tissues and organisms. In essence, synthetic biology will enable the

design of ‘biological systems’ in a rational and systematic way.

http://www.synbioproject.org/topics/synbio101/definition/
http://www.synbioproject.org/topics/synbio101/definition/

Page 14

Typical established characteristics of synthetic biology are summarized by the SynBERC (a U.S. research

program) which states that synthetic biology’s hallmarks are the following (“What Is Synthetic Biology?

- Synthetic Biology Project” 2017):

The application range of synthetic biology is very large, including therapeutics, the creation of

innovative biomaterials, biosensors ... This field of research has several aspects. The main one concerns

biotechnologies allowing the modification of existing biological systems or the creation of artificial

biological systems. In parallel, efforts have been made in order to develop tools to facilitate the design

process of these systems. This is the context of this thesis.

During the past few years, designed systems have grown in size and in complexity. The development

of efficient computer-aided design (CAD) tools is therefore crucial. Many research teams from all over

the world worked on the development of such tools, whether in a generic way or ad hoc to an

application. Our team suggested a few years ago an alternative that consists in extending existing tools

from engineering sciences to synthetic biology. This approach has two main advantages: i) engineering

sciences’ CAD tools are reliable and have already proven themselves in the recent decades and ii)

adding synthetic biology to these CAD tools might also facilitate the integration of biological parts into

large-scale transdisciplinary systems such as lab-on-chips or bio-sensors.

The starting point of this thesis is an existing environment composed of different tools that form a

complete workflow, ranging from the specification of a biological system at a high level of abstraction

to its practical realization. Several bricks of this workflow have already been developed by previous

PhD or master students, in particular those related to the modeling and simulation of biological

systems. My contribution to this work concerns two missing tools: the improvement of the design

automation process for gene regulatory networks (GRN) during the early stages of the design process

and the development of a simulation tool to support models for which spatial location plays a major

role.

For the first point, as for electronic circuits, the automation of GRN design is highly dependent on their

type and complexity. For GRNs that can be described by a Boolean behavior, the solution we

implemented consists in reusing digital synthesizer from micro-electronics. Nevertheless, this tool has

to be accurately parametrized because on some points, the specificities of GRN and electronic circuits

differ. Digital circuits are split into two main families: the combinatorial circuits and the sequential

circuits. The design of sequential circuits is generally trickier because of internal feed-back loop that

may cause instability and malfunctions. This point is also addressed in this manuscript and solutions

are brought to light.

On the other hand, for GRNs that are described by an “analog” function (transfer function, temporal

or frequency characteristics, etc), digital synthesizer cannot be employed. Despite active research in

the domain of analog circuit synthesizer, the design of such circuits is still mostly handmade. In this

predictable, off-the-shelf parts and devices with standard connections,

robust biological chassis (such as yeast and E. coli) that readily accept those

parts and devices, standards for assembling components into increasingly

sophisticated and functional systems and open-source availability and

development of parts, devices, and chassis.

General Introduction

Page 15

thesis, we evaluate the potential of nature-inspired algorithms for the design automation of such GRN.

In particular, two kind of algorithms are implemented: evolutionary algorithms that can be used to

optimize the parameters of a model in order to fit a targeted response and genetic algorithms which

evolve both the parameters and the model itself to reach a response defined a priori.

The other major contribution to the workflow concerns the development of a simulation tool to handle

models mixing both local phenomena (biochemical mechanisms confined to a given space, diffusion

through membranes or walls) and global phenomena (free diffusion in a medium, degradation, etc).

This kind of systems are more and more encountered in systems biology or in synthetic biology. From

a modeling point of view, their particularity is that they are no longer described by ordinary differential

equations but by partial differential equations. The resolution of such equation requires quite

sophisticated algorithms of space discretization and of resolution of large sets of equations. To tackle

this issue, we take inspiration from a similar problem encountered in the design of microelectronics

integrated circuits: the electro-thermal simulation. We dispose in our team of a tool developed for a

previous project. Our approach has been to adapt this tool to the biological context. In this manuscript,

this approach is presented, as well as the results obtained on actual biological systems.

The manuscript is divided into three main parts. Part Two is dedicated to the design automation of

biological systems while Part Three describes the spatiotemporal simulator mentioned above.

Beforehand, the main concepts for understanding the ins and the outs as well as the content of this

work are discussed in Part One. This part is itself divided into three chapters. Chapter 1 is an

introduction to synthetic biology and its applications, giving the general framework of this thesis.

Chapter 2 provides the reader with the theoretical background in electronics and in biology required

all along this manuscript. Finally, Chapter 3 deals with the design approach used in synthetic biology

and presents a state-of-the-art of existing computer-aided design tools for synthetic biology.

Page 16

Page 17

Part One

Context and Objectives

Chapter 1 – Synthetic Biology and Applications 19

Chapter 2 – Theoretical Background 33

Chapter 3 – Design Flow of Synthetic Biology 53

Part One – Context and Objectives

Page 18

Page 19

Chapter 1
Synthetic Biology and Applications

 A brief history of synthetic biology ... 19

 Applications ... 23

2.1. Therapeutics ... 23

2.2. Biofuels ... 24

2.3. Biosensors ... 25

2.4. Other domains .. 27

 Main synthetic biology stakeholders .. 27

 From handmade design to the next step .. 28

 References ... 29

 A brief history of synthetic biology

Synthetic biology uses knowledge and techniques that have been proving their worth for decades.

Here, we retrace the emergence of synthetic biology and its main enabling techniques. The most

significant milestones are given in a timeline on Fig. 1.

The design of novel biological devices requires a variety of techniques, from DNA manipulation to cell

culture as well as a good understanding of biological systems. One could date the first milestone that

enabled the emergence of synthetic biology to 1961, when François Jacob and Jacques Monod

established the model of an operon, inducing the first notions of regulatory circuits (Jacob and Monod

1961). In the following 40 years, many technical steps were taken, such as the first Polymerase Chain

Reaction (PCR) (Mullis et al. 1986), the beginning of molecular cloning (Cohen et al. 1973; Mullis et al.

1986) or later affordable DNA sequencing methods via high throughput techniques (Fahnestock et al.

1991; Ronaghi et al. 1996). The latter notably lead to the sequencing of the whole human genome

(draft version in 2001 (Lander et al. 2001; Venter et al. 2001), final version in 2004 (Hattori 2005)).

Later on, so-called second generation high throughput DNA sequencing techniques arrived on the

market (Illumina’s Genome Analyzer II in 2006 (Mardis 2008), Life Technologies’ Ion torrent’s device in

2010 (Rothberg et al. 2011), a portable sequencer from Oxford Nanopore Technologies in 2014

(Mikheyev and Tin 2014)), greatly reducing the cost of sequencing.

This decrease is often compared to Moore’s law (Moore 1965). Moore predicted that the number of

transistors integrated per microprocessor would double every two years. When observing the cost of

DNA sequencing (Fig. 2), we see that it decreases by a factor two every year, up until 2007 when the

cost of sequencing dropped significantly more than predicted. This corresponds to the arrival on the

market of the second-generation of sequencing devices.

Part One – Context and Objectives

Page 20

Fig. 1 Timeline of the main events and hallmarks leading to the development of synthetics biology

With the possibility to read DNA came the need to edit genes and genomes. To edit a genome, which

is to insert, delete or replace DNA at a specific site in the genome, scientists developed so-called

molecular scissors. They include nucleases, such as CRISPR with its associated protein Cas9 (Sander

and Joung 2014), zinc finger proteins (Laity, Lee, and Wright 2001; Urnov et al. 2010) and TALE

nucleases (Miller et al. 2011). Other techniques use viral systems such as the Recombinant Adeno-

Associated Virus. These are tools we can engineer to target and edit a specific region in a genome.

Novel molecular cloning techniques such as Gibson assembly and Golden gate (Engler, Kandzia, and

Marillonnet 2008) facilitated the building of constructs made of several DNA fragments. Among others,

these techniques allow an easy and repeatable manipulation of DNA material.

The pioneering of synthetic biology as a field of investigation per se can be attributed to Randy Rettberg

and Tom Knight. Their story illustrates nicely the multidisciplinarity of synthetic biology and gives an

interesting point of view on how to envision the scope of synthetic biology. R. Rettberg and T. Knight

were computer and electrical engineers who both had had a successful career. Knight participated in

the development of ARPAnet, the pre-internet. Rettberg has behind him a 30-years career as an

executive in the computer industry (at Apple Computer and Sun Microsystems). In the 90s, these two

engineers decided to learn all they could about biology, with the idea that the modularity found in

biological systems would allow the design and rewiring of cells. Their ultimate goal was to make

biological circuits through the assembly of standardized “parts”, just like electronical circuits are

composed of an assembly of resistors, capacitors and transistors. Such circuits would allow synthetic

biologists to perform highly specific and sophisticated tasks that would not be possible with only

classical genetic engineering principles. They started a lab with Ron Weiss as a PhD student, a scientist

François Jacob and Jacques
Monod: model of an

operon. First notions of
regulatory circuits.

PCR
Molecular cloning

DNA sequencing
High throughput techniques

G
E

N
E

 R
E

G
U

L
A

T
O

R
Y

C
IR

C
U

IT
S Metabolic

engineering

- Artemisinin-producing E. coli (Martin et al., 2003)

First synthetic
circuits

iGEM

Pioneers of Synthetic Biology
R. Rettberg

T. Knight
S
T

A
N

D
A

R
D

IZ
A

T
IO

N

A
B

S
T

R
A

C
T

IO
N

Librairies

IN
C

R
E

A
S
E

 I
N

S
C

A
L
E Larger circuits

Genome editing and
engineering

Language

- SBML

Computational
design and
simulation

1961 1970-1980 1990s 2000 2003

- Bio-logic gates (Tamsir
et al., 2011)

Diversification of the
systems

- Cell-cell communication
- RNA-based circuits

Second generation of
high throughput DNA

sequencing techniques

Improved manipulation
of genetic material

Conferences

- SB1.0 (MIT, 2003)
- IWBDA (San Francisco, 2009)
- IMSBW (Boston, 2014)

- Molecular scissors
- Gibson assembly

2006 2008 20112010 20142005

Chapter 1 – Synthetic Biology and Applications

Page 21

who has now become an important actor in the synthetic biology community (a tenured professor at

MIT, with 33 publications on PubMed on Synthetic Biology). The first synthetic gene regulatory circuits

appeared in the beginnings of the 21st century. Noteworthy are the repressilator (Elowitz and Leibler

2000), a three-genes oscillating system and the toggle switch (Gardner, Cantor, and Collins 2000), a

bistable system able to switch from one state to the other depending on an external environment cue.

Fig. 2 Cost per raw megabase of DNA sequence compared to Moore’s law
(https://www.genome.gov/images/content/costpermb2015_4.jpg)

In 2003, Rettberg, Knight and Drew Endy started the iGEM (International Genetically Engineered

Machine) competition, where undergraduate teams have a few months to elaborate any synthetic

biology-related system based on the BioBrick standard biological parts library (“Registry of Standard

Biological Parts” 2015). This library is a database of plasmids commonly used in synthetic biology and

is equivalent to these found in electronics catalogs and design kits. Growing from a 5-team

competition, iGEM became a worldwide highly wanted event with now, in 2017, 14 tracks gathering

5600 participants from 42 different countries. iGEM is held every year and its final is always at Boston,

MA. After the project, each team has to the share the new DNA parts they may have come up with,

therefore increasing the pool of available constructs.

Alongside with genetic regulatory networks, scientists also started to investigate metabolic systems

and redesign them to enhance them or provide them with novel proprieties, with for example the

reprogramming of Escherichia coli (E. coli) bacteria into artemisinin producing factories (Ro et al. 2006).

Moreover, protein design shifted from random mutagenesis to directed evolution: scientists started

to design proteins with novel structural and ligand-binding characteristics, specific protein-protein

interactions or with hyperstable protein folds (Yoder and Kumar 2002).

Part One – Context and Objectives

Page 22

Fig. 3 Synthetic biology oscillator (the repressilator on the left, (Elowitz and Leibler 2000)) and switch (the toggle switch
on the right, (Gardner, Cantor, and Collins 2000)), both constructed in bacteria. The graph on the left shows the

oscillations of the three repressor proteins in the repressilator. The graph on the right shows a working toggle switch
(pIKE107) and one that does not exhibit bistability as expected (pIKE105).

With a growing community appeared the first international conferences. In the U.S., the international

conference for synthetic biology, SB1.0, was held at the MIT in 2003. Later on, other conferences

emerged such as the 1st International Workshop on Bio-Design Automation (San Francisco 2009), or

more recently the International Mammalian Synthetic Biology Workshop (Boston 2014) and the

Synthetic Biology: Engineering, Evolution & Design (Los Angeles 2014). In Europe, the annual

conference advances in Systems and Synthetic Biology (aSSB) had its first occurrence in 2002 in

Grenoble, France. Synthetic biology also appeared in other major conference, whose thematic was

related to synthetic biology in a way. For example, in 2009 IEEE International Symposium on Circuits

and Systems (ISCAS) had a special session dedicated to synthetic biology.

In the following years, a focus was put on standardization of the parts. This promoted applications such

as the library of bio-logical gates established by (Tamsir, Tabor, and Voigt 2011). Synthetic biologists

diversified their circuits, by using RNA (Xie et al. 2011) or by redesigning natural cell-to-cell

communication systems (Bacchus and Fussenegger 2013). As shown by the previous examples, the

systems designed by the scientists became larger, containing up to a dozen of genes, or spread on

different cells. Another field of interest in the community of synthetic biology is genome editing and

engineering, with the ultimate goal to find a minimal genome. The idea behind this project is close to

the fundamental perspective of Stephane Leduc, in that creating a protocell, a fully synthetic and

functional cell, would ensure deep understanding of biological phenomena and evolution, as well as

giving a ready-to-use chassis for synthetic systems. An ongoing example can be found in project Sc2.0

(Richardson et al. 2017). The goal is to modify the yeast (Saccharomyces cerevisiae) genome, to strip it

from as many non-essential genes as possible, chromosome by chromosome, in a bottom up approach.

In this project, many teams from all over the world collaborate (see Fig. 4), each one working on a

different chromosome. This is not the first project that requires scientists from different teams to

collaborate: in order to simplify communication, it soon appeared that a common language was

Repressilator Reporter

Inducer 2

Inducer 1

Reporter

Prom. 2

Repr. 2 Repr. 1Prom. 1

N
o

rm
al

iz
ed

 G
FP

ex

p
re

ss
io

n
Hours

A B Toggle switch

Chapter 1 – Synthetic Biology and Applications

Page 23

needed. Just like a micro-electronic system can be described in Verilog A, synthetic biologists created

SBML (System Biology Markup Language (Hucka et al. 2003)), an HTML-like language for the

description of biological systems. It features lists of species, compartments, reactions rates…

Fig. 4 Project Sc2.0 : list of Saccharomyces cerevisiae chromosomes and teams devoted to it (Richardson et al. 2017).
Each line represents a chromosome of the yeast, the name on the right correspond to the team who worked on it.

The development of a common language, though human-readable, helped the development of user-

friendly design and simulation tools, providing an easier manipulation of SBML files. Software such as

Copasi (Hoops et al. 2006) or VCell (XML-based at date of creation) allow the simulation of biological

reactions through a set of ordinary differential equations (ODE), and therefore the simulation of gene

regulatory networks.

Currently, a new effort is made to increase the complexity of designed systems, by for example

distributing networks on different cells. The wet-bench research is also accompanied by research in

models and tools to implement the latter, as well as design tools, since “computational tools […] should

make routine the engineering of biology”, says Drew Endy (Endy 2005), who also states that in

synthetic biology, one should “consider past lessons from other engineering disciplines”.

 Applications

Over the last decades, a growing interest was demonstrated towards synthetic biology (Fig. 5). Not

only does it implicate scientists from various domains and display interesting challenges, it also opens

the door to a next level of applications.

2.1. Therapeutics

In medicine, drug delivery is a hot topic which has already received many solutions. However, the

crucial problem of delivering a drug in a specific way, in terms of target and timing, still lacks relevant

solutions. Synthetic biology approaches promise such a delivery via elaborate genetic networks

embedded in living or non-living compartments. Indeed, these systems allow the sensing of various

parameters (O2 concentration, cell density, mRNA pattern…) to “decide” what command to execute:

slowly delivering the drug, fast lysis of surrounding cells, etc. Progress in this direction includes the

Size of the chromosome (kb)

Part One – Context and Objectives

Page 24

work of Xie et al.(Xie et al. 2011), with a system allowing the detection of cancerous cells, a first step

towards curing cancer. Spatially precise targeting can be envisioned with the work of Basu et al. (Basu

et al. 2005), whose system is able to sense a continuous cue (a molecular gradient) for a timed and

precise response.

Fig. 5 Increase in research interest on synthetic biology

The manufacturing of drugs to be delivered is also a field of investigation for synthetic biologists, as

metabolic engineering would allow low-cost synthesis of these (Ro et al. 2006). A famous example is

the Golden Rice (Paine et al. 2005). Researchers from Syngenta enabled the production of beta-

carotene, a precursor of vitamin A, in the edible parts of rice, by adding two genes from others species

(namely psy and crtI). With this rice, vitamin A-deficient population would be able to alleviate their

lack of it at a low cost.

Synthetic biology was also used to design a new metabolic function in mammalian cells with the

potential of curing obesity (Kemmer et al. 2011).

2.2. Biofuels

Metabolic engineering can also find applications in the environment with the production of biofuels.

Replacing fossil fuels by biofuels is the road toward a sustainable bioeconomy, an attractive goal for

many. Biofuel production relies on an efficient use of the biomass, which is renewable.

The current main ideas are to take advantage of the photosynthesis machinery of various organisms

or to engineer autotrophic microorganisms (Aro 2016). Cyanobacteria, prokaryotic microorganisms,

can be used as cell factories to produce biomass or directly fuel, from light and/or CO2. Various

synthetic biology tools were applied to cyanobacteria (e.g. a controllable synthetic promoter library

like TetR- regulated promoters (Huang and Lindblad 2013), oxygen-responsive genetic circuits

(Immethun et al. 2016), the CRISPR/Cas9 system (Wendt et al. 2016)). With these tools at hand, it is

possible to tinker the metabolic pathways of Synechococcus elongates, a cyanobacterium, into

producing free fatty acids from CO2, a potential biofuel precursor (Ruffing and Jones 2012). This study

and many others reported that producing and excreting a product not naturally present in the

microorganism, or in lesser amounts, can lead to reduced cell growth. A notable consequence is a low

0

500

1000

1500

2000

2500

3000

3500

N
u

m
b

er
 o

f
ar

ti
cl

e
p

u
b

lis
h

ed
 in

 P
u

b
m

ed

Year of publication

Chapter 1 – Synthetic Biology and Applications

Page 25

yield in the excreted product of interest. Synthetic biology appears here as a promising technology: an

envisioned solution is switchable systems. The organism alternatively grows without producing the

molecule of interest or, on a certain criterion, switches to producing it (Aro 2016).

Fig. 6 Example of an engineered micro-organism. Here cyanobacteria metabolic pathways are designed to produce
biofuels (Savakis and Hellingwerf 2015).

2.3. Biosensors

In the environmental domain, focus is also put on biosensors. The idea is to have a sensory module

responsive to the environment and a transducer module delivering a biological response based on the

state of the sensory module (see Fig. 7).

A classical solution is to have an environment-responsive promoter sensitive to a molecule you want

to detect (like a pollutant). This promoter is coupled to a genetic circuit, in charge of processing the

information detected by the promoter (more information on genetic circuit will be given in Chapter 3).

This genetic circuit has the final goal to output a signal like a protein (for example a toxin or a reporter

protein) in response to the presence or absence of the molecule. This is illustrated by the E. coli

bacteria engineered by Kobayashi et al. (2004) which combine a toggle switch (described above) with

an acyl-homoserine lactone (AHL)-sensitive module. Their system was able to detect and memorize

the presence of the AHL molecule in the medium. The next step would be to change the sensibility of

the system: instead of AHL, have a system sensitive to a relevant molecule.

Another typical illustration is the work of Wang et al. (Wang, Barahona, and Buck 2013) in which they

describe a set of biosensors they engineered (Fig. 8). These cellular biosensors allow the precise

identification of various chemical signals, and combinations thereof, with a quantitative fluorescent

output. We find in this example an actuation of each module presented on Fig. 7, with the different

inputs, the sensory part, the internal logic circuit and the output signal.

Part One – Context and Objectives

Page 26

Fig. 7 Components of a biosensor. The green components (Signal and Biological response) are typically expected to
interact in the environment whereas the blue components (Sensitive module and Gene regulatory network) are
traditionally embedded in a cell, though recent focus has been put on cell-free systems (Zhang and Ruder 2015).

Fig. 8 Architecture of a synthetic modular cell-based biosensor (Wang, Barahona, and Buck 2013). The modules
described on Fig. 7 can be found here in an actual biosensor.

Biosensors are somewhat modular: with adjustments of the different components (like the properties

of the promoters) it is possible to envision a wide variety of actors for each part. For example, the

signal could be any biologically-detectable signal, like cell density, temperature or light. Reading the

signal can be done by environment-responsive promoters but also by aptamers, which are RNA

molecules able to recognize and bind a specific molecule. Upon binding, the RNA aptamer changes its

conformation, resulting in translation activation or inhibition. Both of these modules can be connected

to different types of gene regulatory networks, like a NOT gate for a one input gate or an AND gate for

a two inputs gate (Anderson, Voigt, and Arkin 2007). Finally, the outcome being the expressed protein,

Biological response
Reporter
protein

Toxin
Biological process

activation

Gene regulatory network
NOT gate AND gate

Sensitive module
Environment-

responsive promoter
Aptamer

Signal
Molecule

Cell
density

Temperature Light

Chapter 1 – Synthetic Biology and Applications

Page 27

it can be fully modular: the gene can code for a reporter protein, or a toxin, or even trigger a biological

process.

2.4. Other domains

What falls under the label ‘wild and crazy’ ideas: biocomputers. We are already capable of storing data

on DNA (Bornholt et al. 2016; Mike Brunker 2016). Qian et al. also reported the possibility to create

neural networks with DNA (Qian, Winfree, and Bruck 2011). Their system relies on DNA base-pairing

properties (see Chapter 2 for more information on so-called Watson-Crick base-pairing). They use DNA

strand displacement cascades, in which a single-stranded DNA binds to a partially double-stranded

DNA. Upon binding, the originally bound strand is released. Such a reaction can also produce a

fluorescent signal. With this system, they could build a scalable neural network able to remember 4

single-stranded DNA patterns (see Fig. 9).

Fig. 9 Biological neural network implemented with DNA molecules. (Qian, Winfree, and Bruck 2011)

 Main synthetic biology stakeholders

As synthetic biology is still in its infancy, research groups in Europe are still scattered and concentrated

in a few teams (Gaisser et al. 2009). This report also highlights the need for increased interdisciplinary

research to access the next step in the roadmap they established for synthetic biology. They also state

that the situation is more advanced in North America.

 Here is a list of a few teams working on synthetic biology and whose work we came across during the

making of this thesis:

 At the MIT (USA) work Ron Weiss and Tom Knight

 At Berkeley (USA) work Adam Arkin and Drew Endy

 At the Genopole (France), the first synthetic biology lab iSSB (institute of Systems and Synthetic

Biology)

 At the Imperial College London (England) work Tom Ellis and Geoff Baldwin

 Part of the Systems Biology program at the Centre for Genomic Regulation (Spain), Luis

Serrano’s team focuses on synthetic biology

Part One – Context and Objectives

Page 28

These are only a few examples highly biased by the course taken by this thesis.

To reflect the impact on synthetic biology on the different countries, I used my personal reference

library of articles to try to see where most of the published work comes from. To this end, I searched

in the keyword section for the name of one of these countries. The pie chart below (Fig. 10) shows the

proportion of articles according to the country filled as a keyword. This procedure is somewhat

inaccurate in the sense that an article can show up in a research for a given country even though it was

not produced by a team from this country (e.g. the name “France” could appear in the text body).

Fig. 10 Country of origin of 320 articles on the subject or related to synthetic biology. Other EU countries include Spain
and Belgium. Other corresponds to the number of article not found by any of the queries showed in this chart.

The fact that France appears as the first of the European countries in terms of published articles is

most probably a bias due to the fact that I have worked in a French lab with mainly French

collaborators. However, a clear observation is the fact that the USA are the leader in the field. This

personal analysis is confirmed by a large-scale rational scientometric analysis performed by Raimbault

in (Raimbault, Cointet, and Joly 2016).

These elements all lead to the conclusion that trying to catch up with the USA, which are also a step

ahead, will prove difficult and probably fruitless in terms of innovation. Instead of competing on the

same ground, our research team promotes an alternative approach that puts synthetic biology as a

new field of physics and engineering. By this way, we would like to bring an alternative approach to

existing solutions, especially in terms of design methodologies and computer-aided design tools, which

take up concepts from more mature domains of physics (as for instance electronics, mechanics and

optics). This approach provides solutions built on tools whose reliability and robustness is no longer to

prove. Moreover, these solutions are directly operational for the study of more complex

transdisciplinary systems including other domains of physics besides synthetic biology.

 From handmade design to the next step

The historic of synthetic biology showed that the first designed circuits contained a low number of

genes (two genes for the toggle switch (Gardner, Cantor, and Collins 2000) and three genes plus a

reporter gene for the repressilator (Elowitz and Leibler 2000)). These systems were designed by hand.

USA

France

Germany

England

Switzerland

Netherlands

Other EU
countries

Japan

China
Other

Chapter 1 – Synthetic Biology and Applications

Page 29

Often, hand-designed systems require a back and forth between the bench and the desk where

scientists plan their systems. Systems biology provided mathematical models describing biological

phenomenon (some of them are described in Chapter 2), enabling the simulation of basic reactions

with computer tools. With a growing size and complexity of the designed systems, it has become

necessary to use computer tools to simulate the designed systems. Adapted computer tools are indeed

key to the further developing of complex systems in synthetic biology. Not only do we need

appropriate simulation tools but also design tools, to go from a trial-error approach to a predictive

approach, reducing the time spent at the bench. Existing computer-aided design tools are discussed in

the Chapter 3 of this manuscript. Beforehand, the key concepts of biology and electronics that are

used along this manuscript is described in the next chapter.

 References
Anderson, J Christopher, Christopher A Voigt, and Adam P Arkin. 2007. “Environmental Signal Integration by a

Modular AND Gate.” Molecular Systems Biology 3. European Molecular Biology Organization: 133.
doi:10.1038/msb4100173.

Aro, Eva-Mari. 2016. “From First Generation Biofuels to Advanced Solar Biofuels.” Ambio 45 Suppl 1 (Suppl 1).
Springer: S24-31. doi:10.1007/s13280-015-0730-0.

Bacchus, William, and Martin Fussenegger. 2013. “Engineering of Synthetic Intercellular Communication
Systems.” Metabolic Engineering 16 (March). Elsevier: 33–41. doi:10.1016/j.ymben.2012.12.001.

Basu, Subhayu, Yoram Gerchman, CH Collins, FH Arnold, and R Weiss. 2005. “A Synthetic Multicellular System for
Programmed Pattern Formation.” Nature 434 (April).

Bornholt, James, Randolph Lopez, Douglas M. Carmean, Luis Ceze, Georg Seelig, Karin Strauss, James Bornholt,
et al. 2016. “A DNA-Based Archival Storage System.” ACM SIGOPS Operating Systems Review 50 (2). ACM:
637–49. doi:10.1145/2954680.2872397.

Cohen, Stanley N, Annie C Y Chang, Herbert W Boyert, and Robert B Hellingt. 1973. “Construction of Biologically
Functional Bacterial Plasmids In Vitro (R Factor/restriction
Enzyme/transformation/endonuclease/antibiotic Resistance)” 70 (11): 3240–44.

Elowitz, Michael B, and S Leibler. 2000. “A Synthetic Oscillatory Network of Transcriptional Regulators.” Nature
403 (6767): 335–38. doi:10.1038/35002125.

Endy, Drew. 2005. “Foundations for Engineering Biology.” Nature 438 (7067): 449–53. doi:10.1038/nature04342.

Engler, Carola, Romy Kandzia, and Sylvestre Marillonnet. 2008. “A One Pot, One Step, Precision Cloning Method
with High Throughput Capability.” PLOS ONE 3 (11). Public Library of Science: e3647.
https://doi.org/10.1371/journal.pone.0003647.

Fahnestock, M, A J Johnston, P Ross, and R Y Tsien. 1991. Dna sequencing, issued 1991.

Gaisser, Sibylle, Thomas Reiss, Astrid Lunkes, Kristian M Müller, and Hubert Bernauer. 2009. “Making the Most
of Synthetic Biology. Strategies for Synthetic Biology Development in Europe.” EMBO Reports 10 Suppl 1
(August): S5-8. doi:10.1038/embor.2009.118.

Gardner, T S, C R Cantor, and James J Collins. 2000. “Construction of a Genetic Toggle Switch in Escherichia Coli.”
Nature 403 (6767): 339–42. doi:10.1038/35002131.

Hattori, Masahira. 2005. “Finishing the Euchromatic Sequence of the Human Genome.” Tanpakushitsu Kakusan
Koso. Protein, Nucleic Acid, Enzyme 50 (2): 162–68. doi:10.1038/nature03001.

Hoops, Stefan, Sven Sahle, Ralph Gauges, Christine Lee, Jürgen Pahle, Natalia Simus, Mudita Singhal, Liang Xu,
Pedro Mendes, and Ursula Kummer. 2006. “COPASI--a COmplex PAthway SImulator.” Bioinformatics

Part One – Context and Objectives

Page 30

(Oxford, England) 22 (24). Oxford University Press: 3067–74. doi:10.1093/bioinformatics/btl485.

Huang, Hsin-Ho, and Peter Lindblad. 2013. “Wide-Dynamic-Range Promoters Engineered for Cyanobacteria.”
Journal of Biological Engineering 7 (1): 10. doi:10.1186/1754-1611-7-10.

Hucka, M., A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin, et al. 2003. “The Systems Biology
Markup Language (SBML): A Medium for Representation and Exchange of Biochemical Network Models.”
Bioinformatics 19 (4): 524–31. doi:10.1093/bioinformatics/btg015.

Immethun, Cheryl M., Kenneth M. Ng, Drew M. Delorenzo, Ben Waldron-Feinstein, Ying Chiang Lee, and Tae Seok
Moon. 2016. “Oxygen-Responsive Genetic Circuits Constructed in Synechocystis Sp. PCC 6803.”
Biotechnology and Bioengineering 113 (2): 433–42. doi:10.1002/bit.25722.

Jacob, F, and J Monod. 1961. “Genetic Regulatory Mechanisms in the Synthesis of Proteins.” Journal of Molecular
Biology 3 (3): 318–56. doi:10.1016/S0022-2836(61)80072-7.

Kemmer, Christian, David Andreas Fluri, Ulrich Witschi, Alain Passeraub, Andreas Gutzwiller, and Martin
Fussenegger. 2011. “A Designer Network Coordinating Bovine Artificial Insemination by Ovulation-
Triggered Release of Implanted Sperms.” Journal of Controlled Release 150 (1): 23–29.
doi:10.1016/j.jconrel.2010.11.016.

Kobayashi, Hideki, Mads Kærn, Michihiro Araki, Kristy Chung, Timothy S Gardner, Charles R Cantor, and James J
Collins. 2004. “Programmable Cells : Interfacing Natural and Engineered Gene Networks.”

Laity, J H, B M Lee, and P E Wright. 2001. “Zinc Finger Proteins: New Insights into Structural and Functional
Diversity.” Current Opinion in Structural Biology 11 (1): 39–46.

Lander, E S, L M Linton, Bruce W Birren, C Nusbaum, M C Zody, J Baldwin, K Devon, et al. 2001. “Initial Sequencing
and Analysis of the Human Genome.” Nature 409 (6822): 860–921. doi:10.1038/35057062.

Le Duc, Stéphane. 1910. Théorie Physico-Chimique de La Vie et Générations Spontanées. Paris: A. Poinat.
doi:10.5962/bhl.title.32591.

Mardis, Elaine R. 2008. “The Impact of next-Generation Sequencing Technology on Genetics.” Trends in Genetics
24 (3): 133–41. doi:10.1016/j.tig.2007.12.007.

Mike Brunker. 2016. “Microsoft and University of Washington Researchers Set Record for DNA Storage - Next at
Microsoft.”

Mikheyev, Alexander S., and Mandy M. Y. Tin. 2014. “A First Look at the Oxford Nanopore MinION Sequencer.”
Molecular Ecology Resources 14 (6): 1097–1102. doi:10.1111/1755-0998.12324.

Miller, Jeffrey C, Siyuan Tan, Guijuan Qiao, Kyle A Barlow, Jianbin Wang, Danny F Xia, Xiangdong Meng, et al.
2011. “A TALE Nuclease Architecture for Efficient Genome Editing.” Nat Biotech 29 (2). Nature Publishing
Group, a division of Macmillan Publishers Limited. All Rights Reserved.: 143–48.
http://dx.doi.org/10.1038/nbt.1755.

Moore, Gordon E. 1965. “Cramming More Components onto Integrated Circuits.” Electronics, 114–17.

Mullis, K, F Faloona, S Scharf, R Saiki, G Horn, and H Erlich. 1986. “Specific Enzymatic Amplification of DNA in
Vitro: The Polymerase Chain Reaction.” Cold Spring Harbor Symposia on Quantitative Biology 51 Pt 1. Cold
Spring Harbor Laboratory Press: 263–73. doi:10.1101/SQB.1986.051.01.032.

Paine, Jacqueline A, Catherine A Shipton, Sunandha Chaggar, Rhian M Howells, Mike J Kennedy, Gareth Vernon,
Susan Y Wright, et al. 2005. “Improving the Nutritional Value of Golden Rice through Increased pro-Vitamin
A Content.” Nat Biotech 23 (4). Nature Publishing Group: 482–87.

Qian, Lulu, Erik Winfree, and Jehoshua Bruck. 2011. “Neural Network Computation with DNA Strand
Displacement Cascades.” Nature 475 (7356). Nature Publishing Group: 368–72. doi:10.1038/nature10262.

Raimbault, Benjamin, Jean-Philippe Cointet, and Pierre-Benot Joly. 2016. “Mapping the Emergence of Synthetic
Biology.” PLoS ONE 11 (9): e0161522. doi:http://dx.doi.org/10.1371/journal.pone.0161522%23sec016.

Chapter 1 – Synthetic Biology and Applications

Page 31

“Registry of Standard Biological Parts.” 2015. Accessed November 6. http://parts.igem.org/Main_Page.

Richardson, Sarah M, Leslie A Mitchell, Giovanni Stracquadanio, Kun Yang, Jessica S Dymond, James E DiCarlo,
Dongwon Lee, et al. 2017. “Design of a Synthetic Yeast Genome.” Science (New York, N.Y.) 355 (6329).
American Association for the Advancement of Science: 1040–44. doi:10.1126/science.aaf4557.

Ro, Dae-Kyun, Eric M Paradise, Mario Ouellet, Karl J Fisher, Karyn L Newman, John M Ndungu, Kimberly A Ho, et
al. 2006. “Production of the Antimalarial Drug Precursor Artemisinic Acid in Engineered Yeast.” Nature 440
(7086). Nature Publishing Group: 940–43.

Ronaghi, Mostafa, Samer Karamohamed, Bertil Pettersson, Mathias Uhlén, and Pål Nyrén. 1996. “Real-Time DNA
Sequencing Using Detection of Pyrophosphate Release.” Analytical Biochemistry 242 (1). Academic Press:
84–89. doi:10.1006/abio.1996.0432.

Rothberg, Jonathan M., Wolfgang Hinz, Todd M. Rearick, Jonathan Schultz, William Mileski, Mel Davey, John H.
Leamon, et al. 2011. “An Integrated Semiconductor Device Enabling Non-Optical Genome Sequencing.”
Nature 475 (7356). Nature Research: 348. doi:10.1038/nature10242.

Ruffing, Anne M, and Howland D T Jones. 2012. “Physiological Effects of Free Fatty Acid Production in Genetically
Engineered Synechococcus Elongatus PCC 7942.” Biotechnology and Bioengineering 109 (9). NIH Public
Access: 2190–99. doi:10.1002/bit.24509.

Sander, Jeffry D, and J Keith Joung. 2014. “CRISPR-Cas Systems for Editing, Regulating and Targeting Genomes.”
Nat Biotech 32 (4). Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights
Reserved.: 347–55. http://dx.doi.org/10.1038/nbt.2842.

Tamsir, Alvin, Jeffrey J Tabor, and Christopher A Voigt. 2011. “Robust Multicellular Computing Using Genetically
Encoded NOR Gates and Chemical ‘Wires’.” Nature 469 (7329): 212–15. doi:10.1038/nature09565.

Urnov, Fyodor D, Edward J Rebar, Michael C Holmes, H Steve Zhang, and Philip D Gregory. 2010. “Genome Editing
with Engineered Zinc Finger Nucleases.” Nature Reviews. Genetics 11 (9): 636–46. doi:10.1038/nrg2842.

Venter, J C, M D Adams, Eugene W Myers, P W Li, Mural RJ, Granger G Sutton, Hamilton O Smith, et al. 2001.
“The Sequence of the Human Genome.” Science 291 (5507): 1304–51. doi:10.1126/science.1058040.

Wang, Baojun, Mauricio Barahona, and Martin Buck. 2013. “A Modular Cell-Based Biosensor Using Engineered
Genetic Logic Circuits to Detect and Integrate Multiple Environmental Signals.” Biosensors & Bioelectronics
40 (1). Elsevier: 368–76. doi:10.1016/j.bios.2012.08.011.

Wendt, Kristen E., Justin Ungerer, Ryan E. Cobb, Huimin Zhao, and Himadri B. Pakrasi. 2016. “CRISPR/Cas9
Mediated Targeted Mutagenesis of the Fast Growing Cyanobacterium Synechococcus Elongatus UTEX
2973.” Microbial Cell Factories 15 (1). BioMed Central: 115. doi:10.1186/s12934-016-0514-7.

“What Is Synthetic Biology? - Synthetic Biology Project.” 2017. Accessed October 6.
http://www.synbioproject.org/topics/synbio101/definition/.

Xie, Zhen, Liliana Wroblewska, Laura Prochazka, Ron Weiss, and Yaakov Benenson. 2011. “Multi-Input RNAi-
Based Logic Circuit for Identification of Specific Cancer Cells.” Science (New York, N.Y.) 333 (6047). American
Association for the Advancement of Science: 1307–11. doi:10.1126/science.1205527.

Yoder, Nicholas C., and Krishna Kumar. 2002. “Fluorinated Amino Acids in Protein Design and Engineering.”
Chemical Society Reviews 31 (6): 335–41. doi:10.1039/b201097f.

Zhang, Ruihua, and Warren C. Ruder. 2015. “A New Environmental Biosensor for Cell Free Synthetic Biological
Systems.” Biophysical Journal 108 (2). Cell Press: 481a. doi:10.1016/j.bpj.2014.11.2630.

Part One – Context and Objectives

Page 32

Page 33

Chapter 2
Theoretical Background

1. Basic electronic concepts .. 33

1.1 The main electronic devices ... 33

1.1.1 Resistor ... 34

1.1.2 Capacitor ... 34

1.1.3 Transistor .. 35

1.2 Kirchhoff’s laws ... 35

1.3 Digital electronics vs analog electronics 36

2. The classical dogma of biology and its limitations 38

2.1 Transcription and translation ... 38

2.2 Limitations .. 39

2.2.1 Other functional RNAs .. 39

2.2.2 Epigenetics .. 40

3. Genetic regulatory networks .. 41

3.1 Transcription factors ... 41

3.2 Networks ... 42

3.3 Modeling ... 43

4. Micro-RNA ... 44

4.1 Micro-RNA silencing .. 44

4.2 Modeling micro-RNA ... 45

4.3 Micro-RNA genetic circuits ... 46

4.3.1 NOT gate and NOR gate .. 46

4.3.2 Generalization of any Boolean equation 47

5. Analogy between electronics and biology .. 48

6. Conclusion ... 49

7. References ... 50

Before exposing the findings of this thesis, this chapter presents useful biological and electronical

knowledge for the rest of this reading. Let us start with some basic electronic concepts.

1. Basic electronic concepts

1.1 The main electronic devices

We present here the main electronic components used in a model described later in this thesis. In

electronic circuits, the relation between two main variables serves to define the behavior of a

component: the electric potential at a point or difference of potential between two points (also called

voltage) and the electric current. The potential at point 𝑖 corresponds to the amount of electron at this

point in the circuit and is often expressed as 𝑉𝑖. The difference of potential between point A and point

Part One – Context and Objectives

Page 34

B is named the voltage between A and B and is defined as follows: 𝑈𝐴𝐵 = 𝑉𝐴 − 𝑉𝐵. A potential is

expressed in Volts 𝑉. The electric current 𝐼 is defined on a section as the quantity of electrons flowing

through this section per 𝑠. A current is expressed in Amperes 𝐴.

In the following, we assume that the components are linked by perfect wires, so that the voltage

between two points that are not separated by a component is null. Moreover, we assume that the

ground is at a potential of 0. Indeed, the ground is a reference point used in electrical circuits.

1.1.1 Resistor
As its name suggests, a resistor resists the flow of electron passing through it. It acts as an obstacle. A

resistor is a two-terminal passive device that simply reduces the current flow of a circuit: the energy

loss is translated by an emission of heat by the component. The current 𝐼𝑅 flowing through a resistor

and the voltage 𝑈 between its terminals are bound by Ohm’s law (Ohm 1827):

𝐼𝑅 =
𝑈

𝑅
=

𝑉1 − 𝑉2

𝑅

With 𝑉1 and 𝑉2 the potential at its terminals and R a constant modeling the resistance of the

component. A resistor is often represented by a rectangle (Fig. 1) or by a see-saw line. By convention,

the voltage 𝑈 is represented as an arrow opposite to the current. As the resistance is a positive

constant, if the current 𝐼𝑅 is positive we can deduce that 𝑉2 is inferior to 𝑉1, confirming the role of

obstacle of a resistor.

Fig. 1 Schematic representation of a resistor and its current, voltage and resistance.

1.1.2 Capacitor
Capacitors are passive devices that store electrons. They can also release them. They act as electrical

potential energy storage. They have two terminals. We define the capacitance of the device as the

electrical charge it carries; the capacitance is often noted 𝐶 but in this thesis, we term it 𝐾 because 𝐶

will refer to the concentration of a soluble chemical species. The classical model of a capacitor binds

the current 𝐼𝐾 flowing through it to the time derivate of the voltage 𝑈 between its terminals:

𝐼𝐾 = 𝐾 ∙
𝑑𝑈

𝑑𝑡

If the capacitor is connected to the ground, we have the following:

𝐼𝐾 = −𝐾 ∙
𝑑𝑉

𝑑𝑡

with 𝑉 the potential at the terminal that is not grounded (see Fig. 2). A capacitance is often

represented by two thick bars of the same size, perpendicular to the wire (Fig. 2). The rake-like symbol

is a common representation of the ground.

R

Chapter 2 – Theoretical Background

Page 35

Fig. 2 A capacitor of capacitance 𝑲, traversed by a current 𝑰𝑲

1.1.3 Transistor
Transistors are active devices that are used to generate or process electrical signals in a circuit. Metal

Oxide Semiconductor Field Effect Transistors (MOS-FET) have the following 3 terminals: the drain, the

source and the gate. The current flowing through the transistor is controlled by the voltage between

the gate and the source. In Fig. 3, the source is connected to the ground so that the voltage 𝑉 controls

the current 𝐼 exiting the drain of the transistor. Thus, it can be modeled by a Voltage Controlled Current

Source (VCCS).

Fig. 3 A MOS-FET with its 3 pins acting like a Voltage Controlled Current Source (VCCS). 𝑽 is the voltage controlling the
current 𝑰 flowing through the component.

1.2 Kirchhoff’s laws

Kirchhoff’s laws constitute a set of two equalities that govern electrical circuits. Kirchhoff’s Current

Law (KCL) states that the algebraic sum of the electrical currents meeting at a node is zero. Kirchhoff’s

Voltage Law (KVL) states that the algebraic sum of the electrical voltages along a closed loop is also

equal to zero.

KCL and KVL can be combined in order to find the relationship between currents and voltages in a

circuit. To illustrate this point, let us consider the circuit of Fig. 4. We would like to compute the voltage

𝑉𝐵𝐷 as a function of the voltages 𝑉𝐴𝐷and 𝑉𝐶𝐷 generated by external sources. First, we can apply the

KVL on the left loop (incl. A, B, D and the resistors R1 and R2):

𝑉𝐴𝐵 + 𝑉𝐵𝐷 + 𝑉𝐷𝐴 = 0

We do the same on the right loop (incl. B, C, D and the resistors R2 and R3):

𝑉𝐵𝐷 + 𝑉𝐷𝐶 + 𝑉𝐶𝐵 = 0

Using Ohm’s laws, these two equations can be rewritten:

𝑖𝑅1 ∙ 𝑅1 + 𝑖𝑅3 ∙ 𝑅3 − 𝑉𝐴𝐷 = 0

𝑖𝑅3 ∙ 𝑅3 − 𝑉𝐶𝐷 + 𝑖𝑅2 ∙ 𝑅2 = 0

gate

drain

source

Part One – Context and Objectives

Page 36

Then, we can write the KCL at the nodes B:

𝑖𝑅1 + 𝑖𝑅2 − 𝑖𝑅3 = 0

The three last equations form a set of linear equations that can be solved in order to find the three

unknown current 𝑖𝑅1, 𝑖𝑅2 and 𝑖𝑅3. For 𝑖𝑅3 we obtain:

𝑖3 =
𝑅1 ∙ 𝑉𝐶𝐷 + 𝑅2 ∙ 𝑉𝐴𝐷

𝑅1 ∙ 𝑅2 + 𝑅1 ∙ 𝑅3 + 𝑅2 ∙ 𝑅3

Finally,

𝑉𝐵𝐷 = 𝑅3 ∙
𝑅1 ∙ 𝑉𝐶𝐷 + 𝑅2 ∙ 𝑉𝐴𝐷

𝑅1 ∙ 𝑅2 + 𝑅1 ∙ 𝑅3 + 𝑅2 ∙ 𝑅3

Fig. 4 Electronic circuit used to illustrate the Kirchhoff’s laws.

By analogy, Kirchhoff’s laws can be generalized to any conservative domain, such as mechanics or

thermal physics or even biology. This last point is discussed in more details in the last section of this

chapter.

1.3 Digital electronics vs analog electronics

Analog electronics are electronic systems that generate or process continuously variable signals

(voltages or currents) using some basic passive (resistor, capacitor, inductor) or active (transistor,

amplifier) devices. By opposition, digital electronics consist in circuits for which signals can only have

two values: true (or ‘1’) or false (or ‘0’). In this case, signals are processed by logic gates that performs

Boolean operation on signals. The three main Boolean operators are the inverter (NOT), the AND

operator for which output is true only if both inputs are true and the OR operator for which output is

true if at least one input is true. These operators are summarized on Table 1. Different symbols exists

to write these operators in equations. In this manuscript, we will use a dot (∙) for an AND, a plus (+)

for an OR and a bar before or over the expression (̅) for a NOT. They form a universal set of Boolean

operators (USBO), which means that any Boolean function can be realized with a combination of these

operators.

R1
R

3
R2

Chapter 2 – Theoretical Background

Page 37

Table 1 The main logic operators and their representation.

Operator
Mathematical

symbol

Symbol of the gate Logical propoition

Output is true if … European US

NOT 𝐴̅

… input is false

AND 𝐴 ∙ 𝐵

… both inputs are true

OR 𝐴 + 𝐵

… at least one input is true

NAND
𝐴 ∙ 𝐵̅̅ ̅̅ ̅̅

𝐴 ↑ 𝐵

… at least one input is false

(see de Morgan’s theorem)

NOR
𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅

𝐴 ↓ 𝐵

… both inputs is false

(see de Morgan’s theorem)

XOR 𝐴⨁𝐵

… one and only one input is true

INH 𝐴/𝐵

… the first input is true and the

second is false

Several other operators can be defined from this USBO. The most common are the XOR, the NAND and

the NOR operator. Noteworthy, the NOR in itself also constitutes a USBO. The INH operator is less

common in digital electronics but we mention it here because we will reuse it later in this manuscript.

In addition to these operators, a large amount of properties and theorems can be used to manipulate

Boolean functions. Most of them are straightforward because they stem from a simple logical

reasoning. The de Morgan's theorem (also used later in this chapter), is an example. It states that “A is

false and B is false” is equivalent to “(A or B) is false” and that “A is false or B is false” is equivalent to

“(A and B) is false”:

𝐴̅ ∙ 𝐵̅ = 𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅ and 𝐴̅ + 𝐵̅ = 𝐴 ∙ 𝐵̅̅ ̅̅ ̅̅

Most of the time, the behavior of a digital circuits is described by a Boolean function. As inputs can

only have two states, the number of possible input combinations is finite. Thus, a digital circuit can

also be described exhaustively by a table that gathers all the possible combinations. This table is named

a truth table (Table 2).

In practice, digital electronics is an abstraction of analog electronics. A digital signal can be a voltage

(or a current) and the ‘0’ and ‘1’ corresponds to the fact that this voltage is above or below a given

threshold. Moreover, digital gates are transistor-based circuits which function can be computed in an

analog transfer function (𝑣𝑜𝑢𝑡 = 𝑓(𝑣𝑖𝑛)) that is so discriminating that it can be abstracted by a truth

table.

Part One – Context and Objectives

Page 38

Table 2 Truth table of different logic operators.

𝑨 𝑩 𝑨 ∙ 𝑩 𝑨 + 𝑩 𝑨 ∙ 𝑩̅̅ ̅̅ ̅̅ 𝑨 + 𝑩̅̅ ̅̅ ̅̅ ̅̅ 𝑨 ⊕ 𝑩 𝑨/𝑩

0 0 0 0 1 1 0 0
0 1 0 1 1 0 1 0
1 0 0 1 1 0 1 1
1 1 1 1 0 0 0 0

2. The classical dogma of biology and its limitations

After these fundamental reminders of electronics, let us deal with the central dogma of biology.

2.1 Transcription and translation

The central dogma of molecular biology refers to how information is coded and exploited (read and

used) in living organisms. This dogma states that the genetic information is coded with

deoxyribonucleic acid (DNA); this code is named the genetic code and is composed of four different

nucleotides (cytosine (C), guanine (G), adenine (A), or thymine (T)) as seen on Fig. 5. DNA is a double-

stranded molecule: each cytosine is paired with a guanine, and each adenine is paired with a thymine

base.

The cell is able to read the DNA-encoded information and create a cognate ribonucleic acid (RNA)

molecule by a process called transcription. This molecule is single-stranded and composed of three

similar bases as DNA, namely cytosine, guanine and adenine, whereas the thymine is replaced by uracil

(U). With the replacement of T by U, the sequence of RNA is the same as the coding strand of its DNA

(see Fig. 5).

Fig. 5 DNA and RNA bases (Roland1952 2010). DNA bases pair according to the so-called Watson-Crick base-pairing:
Adenine binds Thymine (two hydrogen bounds) and Cytosine binds Guanine (three hydrogen bounds).

The RNA strand is processed into a messenger RNA (mRNA) and then, in a step called translation, the

cell reads the mRNA strand and produces necklace of aminoacids that fold into a protein (see Fig. 6).

Chapter 2 – Theoretical Background

Page 39

Three RNA bases form a codon. Each codon codes for an aminoacid according to the genetic code. As

there are 22 aminoacids and one stop codon to code with 4 different bases, this code is redundant.

Fig. 6 The central dogma of biology

These processes require the cell machinery, namely enzymes and ribozymes. An enzyme is a protein

that catalyzes a reaction, like the RNA-polymerase which is responsible for the transcription. A

ribozyme is a biomolecule composed of RNA with catalytic properties, such as the ribosome,

responsible for the translation (the ribosome is a complex made from protein and RNA, but the RNA is

the catalytic actor).

This processes are similar across all the kingdoms of life, with the main point being that the genetic

code is shared by all living species. However, some distinctions are to be made. Eukaryotic cells, such

as mammalian cells, are cells that have a nucleus, an organelle holding genomic DNA. Prokaryotic cells

are cells that do not have a nucleus, such as bacteria. In prokaryotic cells, both transcription and

translation occur in the same compartment, the cellular compartment named the cytoplasmic

compartment. In eukaryotic cells, transcription happens in the nucleus, then the strand of RNA travels

out of the nucleus to be translated by a ribosome.

2.2 Limitations

2.2.1 Other functional RNAs
Most of the DNA does not code for a protein. Indeed, some sequences code for functional RNAs like

ribosomal RNA, transfer RNA (involved in translation), micro RNA.

Reverse transcription
Biological information is not always initially coded as DNA. Some viruses code genetic information on

RNA that has to be reverse transcripted into DNA and sometimes integrated into the host’s genome.

This is the case of the human immunodeficiency virus (HIV).

Post-translational modifications
Protein post-translational modifications correspond to the covalent addition of functional groups or

proteins, proteolytic cleavage of regulatory subunits, or degradation of entire proteins, often executed

by enzymes. They occur during or after protein biosynthesis and can alter the protein’s function,

DNA

RNA

Protein

Ala

Thr

Glu

Leu

Codon
1

Codon
2

Codon
3

Codon
4

Part One – Context and Objectives

Page 40

affecting almost all aspects of the cell biology. In fact, a given gene does not correspond exactly to a

given molecule: taking into account also alternative splicing (see (Black 2003) for more details), a single

gene could potentially give rise to 100 different proteins. These modifications therefore increase the

proteome (set of expressed proteins of an organism) complexity. Common post-translational

modifications include phosphorylation, acetylation, methylation and ubiquitination (the covalent

linkage to the protein ubiquitin).

The maturation of pre-proinsulin into insulin is a rich example of post-translational modifications, like

cleavage (see Fig. 7).

Fig. 7 Insulin maturation. A: Pre-proinsulin is translated with the help of a ribosome. The polypeptidic chain is
translocated into the endoplasmic reticulum (ER). B: in the ER, the signal peptide (blue) is cleaved giving rise to

proinsulin. Proinsulin fold in the ER and 3 disulfide bonds form between the different peptide chains of the protein: two
between the B chain and the A chain and one between 2 amino acids from the A chain. C: proinsulin is exported from the

ER to the Golgi apparatus and then packed into a secretory vesicle. D: proinsulin becomes mature insulin through the
cleavage of the C peptide. Upper case names correspond to cell compartments (they are not to scale in this

representation).

Post-translational modifications are used in synthetic biology (Park, Zarrinpar, and Lim 2003).

2.2.2 Epigenetics
Epigenetics traits are stable heritable traits resulting from changes in a chromosome without

alterations in the DNA sequence (Berger et al. 2009). Epigenetic traits can be triggered by the

environment, like the temperature for the plants. Epigenetic marks on the genome include covalent

modifications of the DNA (e.g. DNA methylation) or of the histone proteins (such as several post-

translational modifications mentioned above).

GOLGI APPARATUS

A

B

C

D

Signal peptide

B chain

C peptide

A chain

Disulfide bond

Insulin:

Chapter 2 – Theoretical Background

Page 41

Prions are another example of epigenetics. Prions are infectious protein that are able to pass from a

soluble state to an aggregate state (Koonin 2012). In this latter state, they can induce the aggregation

of the native version of the same protein. Hence they are capable of these changes without changing

the genome. This violate the central dogma by allowing “information flow from proteins to the

genome” (Koonin 2012).

3. Genetic regulatory networks

Of particular focus for us are the Genetic Regulatory Networks (GRN). Genetic regulation is performed

naturally by cells, as it was discovered by Monod and Jacob (Jacob and Monod 1961). A gene is a DNA

sequence containing the information to create a protein as seen previously. This sequence is preceded

by a promoter sequence, onto which can bind different actors of gene expression. Other elements play

an important role in the expression (i.e. the production) of a protein. These elements are also DNA-

encoded, often before the coding sequence of the protein. They include the ribosome binding site

(RBS), whose sequence affects the rate at which the ribosome reads the mRNA ((Shine and Dalgarno

1975) for bacteria and (Kozak 1981) for eukaryotes). Hereafter, we will only focus on the binding of

transcription regulators.

3.1 Transcription factors

As a reminder, the first step in the production of a protein from DNA is transcription: the DNA molecule

is “read” by an RNA-polymerase, which produces a cognate RNA molecule. In order for this step to

happen, the RNA-polymerase needs to bind to the afore-mentioned promoter sequence. Other

proteins, named regulators or transcription factors, can also bind this region, and modulate

transcription. A regulator enhancing transcription is an activator whereas a regulator prohibiting it is

an inhibitor (Fig. 8). Certain promoter sequences are constitutive: they do not need any activators to

initiate transcription, i.e. they are always “on”. In most cases, in synthetic biology’s GRNs, when a

promoter is only targeted by a repressor, it is a constitutive promoter. In the rest of this thesis, we

assume this when not otherwise stated. Please note that this does not include promoters that are both

repressed and activated, as they need an activator to be “on”.

Fig. 8 Schematic representation of inhibition (upper part) or activation (lower part) of the transcription of a gene of
interest (GOI) by a transcription factor.

Negative regulation often works by steric hindrance. Steric hindrance is the prohibition of a reaction

(such as transcription) by a large molecule, obstructing the reaction by its large size. The transcription

GOI

R

A

GOI

ACTIVATION

INHIBITION

Part One – Context and Objectives

Page 42

factors that act this way bind to a DNA sequence which is located near the RNA-polymerase binding

site. Hence the RNA-polymerase cannot bind or initiate transcription.

Another mechanism of inhibition is the deformation of DNA. This is illustrated by the inhibitor LacI.

Target sequences of LacI are located upstream and downstream of the RNA-polymerase binding region

(Fig. 9). LacI proteins bind to these sequences and form dimers. Upon dimer formation, the DNA strand

is folded in a way that prevents its access by RNA-polymerase. Transcription is therefore halted.

Fig. 9 LacI-regulated genes’ induction by lactose. LacI is an inhibitory protein. Its binding to DNA provides the RNA-
polymerase from binding and transcripting the downstream genes. Lactose relieves this inhibition, therefore acting as an

activator.

Activators positively regulate transcription directly or indirectly. Direct effectors are composed of two

domains: a DNA-binding domain targeting the transcription factor’s regulating sequence on the gene’s

promoter and an activation domain recruiting the RNA polymerase or stabilize its binding (Ptashne and

Gann 1997). For example, the activator protein Gal4 in yeast activates the genes responsible for the

galactose metabolism (Lohr, Venkov, and Zlatanova 1995). Indirect regulation consists in the relieving

of a negative regulation. For example, tetracycline activates the transcription of the gene TetA by

binding to the inhibitor TetR, a protein that binds the TetA promoter region and inhibits its

transcription (Ramos et al. 2005). Another similar example is the binding of lactose to LacI inhibitors

(Fig. 9). LacI bound by lactose cannot repress the expression of downstream genes. Lactose therefore

acts as an activator.

The produced proteins can be regulators that will in turn affect the expression of other genes (including

their own gene). The produced proteins can also interact with other proteins or molecules, or produce

molecules, which in turn affect gene expression.

3.2 Networks

Systems biology further demonstrated the organization of such interacting genes into systems, hence

the notion of GRN. These systems are composed of small modules that interact together, giving rise to

the final behavior of the whole system. Genes are « wired » to one another thanks to regulatory

proteins (transcription factors). Typical circuits are composed of regulated genes coding for a

regulating protein. Such networks exist in nature (Filloux 2012). However, synthetic biologists aim to

Regulated genes Regulated genes

L

L
L L

L

L

L

Low lactose High lactose

LacI

RNA-polymerase

Lactose

Chapter 2 – Theoretical Background

Page 43

design their own networks to perform specific tasks (Moon et al. 2012; Bacchus and Fussenegger

2013).

3.3 Modeling

Here we present a classical ordinary differential equations model of GRNs. We write one equation per

chemical species. The inputs of a system are often regulators and intervene in the equations as

modifiers only: their concentration is considered to be externally controlled. In reality, these molecules

are often small molecules, like arabinose or anhydrotetracycline, that bind to transcription regulators,

like araC and TetR respectively. Upon binding, the behavior of the transcription regulator will change.

In the two previous examples, araC and TetR are repressors when unbound and become activators in

the presence of their cognate molecule. In such cases, the transcription regulators are often expressed

continuously so that the small molecules act as activators.

In each of these equations, the time derivative of the concentration of 𝑋𝑖 is simply equal to the sum of

the rate of the 𝑁 reactions that consume/produce the species. As no species is infinitely stable in

biology, we further subtract a term of degradation of the first order (see Equation 1):

Equation 1

𝑑𝑋𝑖

𝑑𝑡
= ∑ 𝑣𝑖,𝑗

𝑁

𝑗=1

− 𝑑𝑖 ∙ 𝑋𝑖

with 𝑣𝑖,𝑗 the equation rate giving the production (if positive) or the consumption (if negative) of the

species 𝑖 by the reaction 𝑗. 𝑣𝑖,𝑗 that may depend on other species of the system.

To model the dynamics of a regulated gene’s expression, we first focus on the binding of a transcription

factor to its DNA regulating sequence. Since the dynamics of transcription are often much slower than

those of this binding (Alon 2006) we consider the binding reaction to be at its equilibrium and apply

the classical law of mass action with the quasi-static states approximation. This gives rise to a Hill

equation term.

We can now explicit the production of 𝑚𝑅𝑁𝐴𝑘 from gene k, regulated by activators 𝐴𝑖 and repressors

𝑅𝑖 . In our case, 𝑚𝑅𝑁𝐴𝑘 only has a synthesis term corresponding to its expression 𝐸𝑥𝑝𝑟𝑘 and no

consumption term. We add the contribution 𝐴𝑐𝑡𝑘 and 𝑅𝑒𝑝𝑘 of respectively each activators and each

repressors of gene 𝑘:

𝐴𝑐𝑡𝑘 = ∑ (
[𝐴𝑖]

𝐾𝐴,𝑖,𝑘
)

𝑛𝐴,𝑖,𝑘
𝑁

𝑖=1

𝑅𝑒𝑝𝑘 = ∑ (
[𝑅𝑖]

𝐾𝑅,𝑖,𝑘
)

𝑛𝑅,𝑖,𝑘
𝑀

𝑖=1

with 𝑛 the Hill number and 𝐾𝐴,𝑖,𝑘 and 𝐾𝑅,𝑖,𝑘 the dissociation constant of respectively 𝐴𝑖 and 𝑅𝑖 to gene

𝑘. We also define the maximal transcription rate 𝑘𝑡𝑟,𝑘 of this process and the leakiness 𝛼𝑘 of the

promoter. The leakiness is a number comprised between 0 and 1 and models the leaky production of

the unbound promoter. Indeed, without any activator, tight promoters (promoters that are not leaky)

should not express any mRNA, as expected. On the other hand, leaky promoters produce a small

Part One – Context and Objectives

Page 44

amount of mRNA even when they are not supposed to. With that we obtain the following expression

term:

𝐸𝑥𝑝𝑟𝑘 = 𝑘𝑡𝑟,𝑘 ∙ (𝛼𝑘 + (1 − 𝛼𝑘) ∙
𝐴𝑐𝑡𝑘

1 + 𝐴𝑐𝑡𝑘
∙

1

1 + 𝑅𝑒𝑝𝑘
)

And finally for 𝑚𝑅𝑁𝐴𝑘 with its degradation term:

Equation 2

𝑑[𝑚𝑅𝑁𝐴𝑘]

𝑑𝑡
= 𝐸𝑥𝑝𝑟𝑘 − 𝑑𝑚𝑅𝑁𝐴,𝑘 ∙ [𝑚𝑅𝑁𝐴𝑘]

with 𝑑𝑚𝑅𝑁𝐴,𝑘 the degradation rate of 𝑚𝑅𝑁𝐴𝑘.

The protein 𝑋𝑘 translated from 𝑚𝑅𝑁𝐴𝑘 also only features a synthesis term and a degradation term in

this case:

𝑑[𝑋𝑘]

𝑑𝑡
= 𝑘𝑡𝑙,𝑘 ∙ [𝑚𝑅𝑁𝐴𝑘] − 𝑑𝑋,𝑘 ∙ [𝑋𝑘]

with 𝑑𝑋,𝑘 the degradation rate of 𝑋𝑘 and 𝑘𝑡𝑙,𝑘 the translation rate.

Other types of regulation exist. It is possible to introduce an auxiliary protein that forms a complex

with protein 𝑋𝑘, thereby adding both a term of production (proportional to 𝑘𝑂𝐹𝐹 the dissociation rate

of the binding reaction) and of consumption (proportional to 𝑘𝑂𝑁 the association rate of the binding

reaction). It is also possible to introduce regulation at the level of mRNA. This is discussed in the

following paragraph.

4. Micro-RNA

The regulation process described hereabove consists in modulating the transcription rate of a

promoter with third-party molecules. Thus, this regulation is called transcriptional regulation, by

opposition to translational regulation which consists in modifying the translation rate of an mRNA.

4.1 Micro-RNA silencing

Micro-RNAs or miR are non-coding eukaryotic single-stranded RNAs. They are generally 21 to 24

nucleotides long and bind to the 3’ UTR of their target mRNA (located after the coding region of an

mRNA). The target recognized by a miR is almost its complementary sequence (a few nucleotides may

differ). MiR binding induces the degradation of the bound mRNA or inhibits its translation.

MiR are involved in many essential cellular processes like growth (Ambros et al. 2003) and cell

differentiation (Ivey and Srivastava 2010), apoptosis (Baulcombe 2002), metabolism (Lee, Feinbaum,

and Ambros 1993), etc.

MiR are also involved in several pathologies like cancer (Jansson and Lund 2012) and heart diseases

(Latronico and Condorelli 2009). They are therefore a therapeutic target as well as biomarkers for

cancer, as envisioned by (Xie et al. 2011). Indeed, each cancer has its own “micro-RNA pattern” and

therefore its specific cure.

Chapter 2 – Theoretical Background

Page 45

Fig. 10 miR silencing. The binding of a miR on a mRNA inbhibits its translation or induces its cleavage. The result is the
same in both cases: mRNA decays.

4.2 Modeling micro-RNA

As seen above, miR can be used in synthetic biology to create networks able to identify the micro-RNA

pattern of a cell. For a reminder, a miR forms a complex with an mRNA molecule, inhibiting its

translation into a protein.

Fig. 11 Modeling the dynamics of micro-RNA silencing. The constants represent the reaction rates. In orange, the target
mRNA, in purple the miR and in orange circles the protein coded by the mRNA.

To represent this phenomenon with ODEs, we model the dynamics of this binding. Let [𝑚𝑅𝑁𝐴], [𝑚𝑖𝑅],

[𝑚𝑅𝑁𝐴 − 𝑚𝑖𝑅] and [𝑃] be the concentrations of the mRNA, the miR, the mRNA and miR complex,

and the protein respectively. The miR is an input in our system: we consider that its concentration is

controlled externally.

We choose to model 5 reactions (see Fig. 11): the binding of the miR to the mRNA with an association

rate of 𝑘𝑂𝑁 and the dissociation of the complex mRNA- miR at the rate of 𝑘𝑂𝐹𝐹, the translation of the

mRNA (not consumed here) into a protein P at the rate beta and three degradations, one for the mRNA

alone at the rate 𝛼𝑚, one for the complex mRNA-miR at the rate 𝛼𝑐 and another one for the protein

at the rate 𝛼𝑃. In this system, the miR is an input: therefore, we do not model its decay. We could

model each process with more details (for example the degradation process can be divided into the

dilution of the degraded species in the cell and its active degradation by the cellular machinery), but

this level of details is sufficient for our needs.

mRNA

Micro-RNA

INHIBITION OF TRANSLATION

MRNA CLEAVAGE

MRNA DECAY

+
BINDING kON

kOFF

+
TRANSLATION

∅

∅

DEGRADATION

β

αm

αC

∅
αP

Part One – Context and Objectives

Page 46

Here are the equations representing the dynamics of mRNA, the complex mRNA-miR and the protein

P:

Equation 3

𝑑[𝑚𝑅𝑁𝐴]

𝑑𝑡
= 𝑘𝑂𝐹𝐹 ∙ [𝑚𝑅𝑁𝐴 − 𝑚𝑖𝑅] − 𝑘𝑂𝑁 ∙ [𝑚𝑅𝑁𝐴] ∙ [𝑚𝑖𝑅] − 𝛼𝑚 ∙ [𝑚𝑅𝑁𝐴]

Equation 4

𝑑[𝑚𝑅𝑁𝐴 − 𝑚𝑖𝑅]

𝑑𝑡
= 𝑘𝑂𝑁 ∙ [𝑚𝑅𝑁𝐴] ∙ [𝑚𝑖𝑅] − 𝑘𝑂𝐹𝐹 ∙ [𝑚𝑅𝑁𝐴 − 𝑚𝑖𝑅] − 𝛼𝐶 ∙ [𝑚𝑅𝑁𝐴 − 𝑚𝑖𝑅]

Equation 5

𝑑[𝑃]

𝑑𝑡
= 𝛽 ∙ [𝑚𝑅𝑁𝐴] − 𝛼𝑃 ∙ [𝑃]

Degradations are of the first order (Equation 3, Equation 4, Equation 5), as well as the production of

the protein, dependent of the concentration of mRNA (Equation 5). The miR acts here as a repressor

of the translation by pumping the mRNA and transforming it into an inactive complex, the mRNA-miR

complex.

An alternative modeling approach consists in applying again the quasi-static states approximation by

considering the binding miR-mRNA much faster than the translation itself. Under this assumption, the

derivative of the concentration of the complex miR-mRNA is equal to zero and we can write:

[𝑚𝑅𝑁𝐴 − 𝑚𝑖𝑅] =
𝑘𝑂𝑁

𝑘𝑂𝐹𝐹 + 𝛼𝐶
∙ [𝑚𝑅𝑁𝐴] ∙ [𝑚𝑖𝑅]

Then, we introduce in Equation 5 the quantity of unbound mRNA [𝑚𝑅𝑁𝐴]𝐹 instead of the total

concentration of mRNA [𝑚𝑅𝑁𝐴]. The relationship between [𝑚𝑅𝑁𝐴]𝐹 and [𝑚𝑅𝑁𝐴] is:

[𝑚𝑅𝑁𝐴]𝐹 = [𝑚𝑅𝑁𝐴] − [𝑚𝑅𝑁𝐴 − 𝑚𝑖𝑅]

Combining the two last equations leads to

[𝑚𝑅𝑁𝐴]𝐹 = [𝑚𝑅𝑁𝐴] ∙ (1 −
𝑘𝑂𝑁

𝑘𝑂𝐹𝐹 + 𝛼𝐶
∙ [𝑚𝑖𝑅])

4.3 Micro-RNA genetic circuits

Using only negative regulation of the DNA and miR binding, it is possible to realize any Boolean

equation. An example can be seen with the work of (Xie et al. 2011).

4.3.1 NOT gate and NOR gate
The sole action of a miR on a gene corresponds to a NOT gate (see the upper panel on Fig. 12): the

signal of the input miR is inverted as the target gene is only expressed when the input is absent.

Moreover, multiple miR binding sites can be inserted on a target mRNA. Since the presence of any of

the miR would inhibit translation, this construct acts as a NOR gate (see the lower panel on Fig. 12):

the miRs must all be absent for the target to be expressed.

Chapter 2 – Theoretical Background

Page 47

Fig. 12 MiR NOT and NOR gates. The promoters are constitutive (they always initiate transcription). The presence of only
one miR suffices to inhibit translation. The upper panel shows a NOT gate: the input signal A is inverted, as seen on the

logic gate. The lower panel shows a 3-inputs NOR gate: translation happens only when none of the three inputs A, B and
C are present (all the other combinations of inputs results in translation inhibition). Note that this construct is

generalizable to any number of inputs.

Noteworthy here is that a NOR gate with only one miR is a NOT gate.

4.3.2 Generalization of any Boolean equation
Using only repressors as intermediates, it is possible to express any Boolean equation with miR inputs.

The first key observation is that a gene regulated by multiple repressors on the same promoter acts as

a NOR, in a similar way than the miR NOR gate. The second key observation is that NOR gates are a

universal set of operators: this means that any logic equation can be represented as NOR gates.

We will try to systematize the construction of a genetic circuit with miR inputs. Let 𝐴, 𝐵, 𝐶 and 𝐷 be

miR. Let 𝑌 be a protein whose logical equation is the following:

𝑌 = 𝐴 ∙ 𝐵̅ ∙ 𝐶 + 𝐴̅ ∙ 𝐵 ∙ 𝐶 ∙ 𝐷̅

Every logical equation can be written under an OR-sum of AND terms (monomials). Let replace 𝐴 ∙ 𝐵̅ ∙

𝐶 by 𝑆1 and 𝐴̅ ∙ 𝐵 ∙ 𝐶 ∙ 𝐷̅ by 𝑆2. The first operation consists in the double complement, which creates

a NOT gate and a NOR gate:

𝑌 = 𝑆1 + 𝑆2 = 𝑆1 + 𝑆2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑆1 ↓ 𝑆2

̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑆𝐹
̅̅ ̅

with 𝑆𝐹 = 𝑆1 ↓ 𝑆2 . The first thing to implement is therefore a NOT gate that inverts signal 𝑆𝐹 . In

practice (see Fig. 13), we create a repressor protein RepF that represses the expression of 𝑌. Signal 𝑆𝐹

corresponds itself to a NOR gate of signal 𝑆1, represented by the blue frame in Fig. 13, and signal 𝑆2,

represented by the green frame in Fig. 13. Both of these signals are coded by the same protein Rep1.

This is not a problem as the only relevant combination is when both of these signals are absent (see

above for details) and this reduces the number of components in the circuit.

The following step is to deal with signals 𝑆1 and 𝑆2. We will only detail 𝑆1, as the same procedure can

be applied for 𝑆2. Let replace the AND gates by NOR gates:

OUT

A
NOT

A OUT

0 1

1 0

OUT

A
NOR

A B C OUT

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

… … … …

1 1 1 0

B C

0

Part One – Context and Objectives

Page 48

𝑆1 = 𝐴 ∙ 𝐵̅ ∙ 𝐶 = 𝐴̅ ↓ 𝐵 ↓ 𝐶̅

Signals 𝐴 and 𝐶 need to be inverted. They are inverted by introducing a regulatory protein as

intermediate. Therefore, we implement this NOR gate as a “mixed” NOR gate: both regulatory proteins

and miR are used. As seen on Fig. 13, we create two separate genes both coding for the same regulator

Rep0 (same explanation as above), one inhibited by 𝐴 and the other by 𝐶. 𝐵 can directly inhibit Rep1.

The same logic is followed for 𝑆2.

In fact, this can be generalized for any number of monomial (Boolean equation with only AND and NOT

operators). If the equation comprises 𝑛 monomials, we create 𝑆1, 𝑆2, …, 𝑆𝑛 in a similar fashion.

Fig. 13 Implementation of a miR logic equation. A, B, C and E are miR. Rep are inhibitor proteins. The equation to be
implemented is shown in the red frame below the output gene Y. This equation is divided into its two monoms, in the

blue frame and the green frame. Promoters are all constitutive (the protein is expressed in the absence of any regulatory
protein).

5. Analogy between electronics and biology

In the first paragraph of this chapter, we introduced 3 electronic components. A resistor that is

responsible of a first order loss of electron, a capacitor whose model involves a time derivate of its

voltage and a transistor that can act as a source of electron controlled by an external voltage. With

Y = A.B.C + A.B.C.E

A.B.C

Rep0

Rep0

Rep1

C

A

B

Rep2

Rep2

Rep1

B

C

A

A.B.C.D

D

RepF Y

Chapter 2 – Theoretical Background

Page 49

these 3 components, it is possible to model a GRN. The concentration of a species corresponds to the

voltage between the pins of a capacitor, its degradation is modeled by a resistor connected to the

ground and any source of production or consumption can be materialized by a transistor connected to

the voltage of another species (the regulator).

Fig. 14 Electronic equivalent of the transcription regulated by a regulator. The resistor has a resistance of
𝟏

𝒅𝑿
 and the

capacitor has a capacitance of 1.

If we take the example of the transcription of mRNA (modeled by voltage 𝑉𝑚) regulated by one

regulator (modeled by voltage 𝑉𝑅𝑒𝑔), we can draw the diagram shown on Fig. 14. As explained above,

we have:

𝐼𝑇 = 𝑓(𝑉𝑅𝑒𝑔)

𝐼𝑅 = −𝑑𝑋 ∙ 𝑉𝑚

𝐼𝐶 = −
𝑑𝑉𝑚

𝑑𝑡

with 𝑓(𝑉𝑅𝑒𝑔) a function of the voltage 𝑉𝑅𝑒𝑔 and 𝑑𝑋 the degradation rate of the mRNA. Using the law

of current conservation (Kirchhoff’s law), we have the following:

𝐼𝑇 + 𝐼𝑅+𝐼𝐶 = 0

So that:

𝑑𝑉𝑚

𝑑𝑡
= 𝑓(𝑉𝑅𝑒𝑔) − 𝑑𝑋 ∙ 𝑉𝑚

If we replace the function 𝑓 by the appropriate function (Hill function times the transcription rate), we

have indeed the ODE of transcription (Equation 2). Function 𝑓 can also be replaced by a simple

production term depending on the mRNA to find the equation of translation. With this paradigm,

function 𝑓 can be replaced by any desired function to obtain the corresponding dependency.

6. Conclusion

With this chapter, we give an overview of the main concepts addressed throughout this manuscript.

This will ease the deciphering of the presented results for the unspecialized reader. We particularly

focused on Boolean equations and associated abstraction, the main electronic components used in our

models and the classic ODE models by which we simulate the behavior of biological systems.

Part One – Context and Objectives

Page 50

7. References
Alon, Uri. 2006. An Introduction to Systems Biology: Design Principles of Biological Circuits.

Ambros, Victor, Bonnie Bartel, David P Bartel, Christopher B Burge, James C Carrington, Xuemei Chen, Gideon
Dreyfuss, et al. 2003. “A Uniform System for microRNA Annotation.” RNA (New York, N.Y.) 9 (3): 277–79.

Bacchus, William, and Martin Fussenegger. 2013. “Engineering of Synthetic Intercellular Communication
Systems.” Metabolic Engineering 16 (March). Elsevier: 33–41. doi:10.1016/j.ymben.2012.12.001.

Baulcombe, D. 2002. “DNA EVENTS: An RNA Microcosm.” Science 297 (5589): 2002–3.
doi:10.1126/science.1077906.

Berger, Shelley L, Tony Kouzarides, Ramin Shiekhattar, and Ali Shilatifard. 2009. “An Operational Definition of
Epigenetics.” Genes & Development 23 (7). Cold Spring Harbor Laboratory Press: 781–83.
doi:10.1101/gad.1787609.

Black, Douglas L. 2003. “Mechanisms of Alternative Pre-Messenger RNA Splicing.” Annual Review of Biochemistry
72 (1): 291–336. doi:10.1146/annurev.biochem.72.121801.161720.

Filloux, Alain. 2012. Bacterial Regulatory Networks. Caister Academic Press.

Ivey, Kathryn N., and Deepak Srivastava. 2010. “MicroRNAs as Regulators of Differentiation and Cell Fate
Decisions.” Cell Stem Cell 7 (1): 36–41. doi:10.1016/j.stem.2010.06.012.

Jacob, F, and J Monod. 1961. “Genetic Regulatory Mechanisms in the Synthesis of Proteins.” Journal of Molecular
Biology 3 (3): 318–56. doi:10.1016/S0022-2836(61)80072-7.

Jansson, Martin D., and Anders H. Lund. 2012. “MicroRNA and Cancer.” Molecular Oncology 6 (6). No longer
published by Elsevier: 590–610. doi:10.1016/j.molonc.2012.09.006.

Koonin, Eugene V. 2012. “Does the Central Dogma Still Stand?” Biology Direct 7 (August). BioMed Central: 27.
doi:10.1186/1745-6150-7-27.

Kozak, M. 1981. “Possible Role of Flanking Nucleotides in Recognition of the AUG Initiator Codon by Eukaryotic
Ribosomes.” Nucleic Acids Research 9 (20): 5233–52.

Latronico, Michael V. G., and Gianluigi Condorelli. 2009. “MicroRNAs and Cardiac Pathology.” Nature Reviews
Cardiology 6 (6). Nature Publishing Group: 418–29. doi:10.1038/nrcardio.2009.56.

Lee, R C, R L Feinbaum, and V Ambros. 1993. “The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with
Antisense Complementarity to Lin-14.” Cell 75 (5): 843–54.

Lohr, D, P Venkov, and J Zlatanova. 1995. “Transcriptional Regulation in the Yeast GAL Gene Family: A Complex
Genetic Network.” FASEB Journal : Official Publication of the Federation of American Societies for
Experimental Biology 9 (9): 777–87.

Moon, Tae Seok, Chunbo Lou, Alvin Tamsir, Brynne C Stanton, and Christopher A Voigt. 2012. “Genetic Programs
Constructed from Layered Logic Gates in Single Cells.” Nature 491 (7423): 249–53.
doi:10.1038/nature11516.

Ohm, Georg Simon (1789-1854). Auteur du texte. 1827. “Die Galvanische Kette : Mathematisch Bearbeitet / von
Dr. G. S. Ohm.”

Park, S.-H., Ali Zarrinpar, and Wendell A Lim. 2003. “Rewiring MAP Kinase Pathways Using Alternative Scaffold
Assembly Mechanisms.” Science 299 (5609): 1061–64. doi:10.1126/science.1076979.

Ptashne, M, and A Gann. 1997. “Transcriptional Activation by Recruitment.” Nature 386 (6625): 569–77.
doi:10.1038/386569a0.

Ramos, J. L., M. Martinez-Bueno, A. J. Molina-Henares, W. Teran, K. Watanabe, X. Zhang, M. T. Gallegos, R.
Brennan, and R. Tobes. 2005. “The TetR Family of Transcriptional Repressors.” Microbiology and Molecular
Biology Reviews 69 (2): 326–56. doi:10.1128/MMBR.69.2.326-356.2005.

Chapter 2 – Theoretical Background

Page 51

Roland1952. 2010. “File:Difference DNA RNA-EN.svg - Wikimedia Commons.”

Shine, J, and L Dalgarno. 1975. “Determinant of Cistron Specificity in Bacterial Ribosomes.” Nature 254 (5495):
34–38.

Xie, Zhen, Liliana Wroblewska, Laura Prochazka, Ron Weiss, and Yaakov Benenson. 2011. “Multi-Input RNAi-
Based Logic Circuit for Identification of Specific Cancer Cells.” Science (New York, N.Y.) 333 (6047). American
Association for the Advancement of Science: 1307–11. doi:10.1126/science.1205527.

Part One – Context and Objectives

Page 52

Page 53

Chapter 3
Design Flow of Synthetic Biology

1. The design flow ... 54
1.1. Bottom-up ... 54

1.2. Top-down .. 54

1.3. Meet-in-the-middle .. 55

1.4. Use of top-down and bottom-up in synthetic biology 55

1.5. Microelectronics design flow .. 56

1.5.1. The beginnings .. 56

1.5.2. The path to standardization .. 56

1.5.3. The shift towards a top-down approach 57

1.5.4. Digital and analog parts in the design flow 57

1.6. Synthetic biology design flow ... 58

 Models and simulators .. 60
2.1. Digital abstraction ... 60

2.2. Multivalued logic... 61

2.3. Ordinary differential equations .. 63

2.4. Stochastic simulation .. 64

2.5. Spatio-temporal simulation .. 65

 Designing GRNs ... 65
3.1. Assisted-design tools .. 65

3.1.1. TinkerCell .. 66

3.1.2. BioJADE ... 66

3.1.3. ProMoT ... 67

3.1.4. GenoCAD ... 67

3.2. Automated design ... 70

 References ... 70

As mentioned in the previous chapter, the complexity of the designed systems in synthetic biology is

limited both by technological bottlenecks and by the shortcomings of the design tools. While the

design process is often hand-made, virtual prototyping is coming of age. However, most of these tools

are ad hoc and lack genericity and reusability. Standardizing design and simulation tools as well as the

whole process of creating a new biological function/system has now become a key for advancing

towards more complicated systems. To this aim, inspiration from micro-electronics can be taken.

Indeed, this field has had decades of experience in system design, and instead of redeveloping system

design for synthetic biology, it can be time-saving to adapt tools and knowhow from micro-electronics.

To this end, we first present the different design approaches used in synthetic biology and in other

domains of physics. A focus is put on microelectronics, since it is the domain from which we draw

Part One – Context and Objectives

Page 54

inspiration. Then, we establish a state-of-the-art of existing tools for the two main parts of system-

level design flow, i.e. virtual prototyping (modeling and simulation) and design automation.

1. The design flow

The design flow of a system (incl. electronics, mechanics, thermodynamics, software etc.) is a set of

steps, methods and tools that are implemented to go from the specification of a system to its practical

implementation. Two traditional approaches can be envisioned: bottom-up and top-down. For the

purpose of this work, we will see what they consist in and how they relate to designing a biological

system.

1.1. Bottom-up

The bottom-up approach consists in building systems by assembling standardized well-characterized

components, usually sorted in a library, into sub-systems, themselves being assembled to give rise to

the final system (see Fig. 1). This final system is then compared to the expected result.

Fig. 1 Bottom-up approach

If this approach allows a higher control throughout the design process, notably by controlling the

development of each sub-system, on the long term this can be expensive: with this approach, one lacks

global understanding of the complete system to be handed, needing backtracking to correct errors in

the sub-systems. Hence, the latest a mistake appears in the design process, the hardest it is to repair.

Furthermore, this approach hinders multi-domain team work and complicates division of tasks.

1.2. Top-down

The top-down approach consists in decomposing hierarchically the expected systems into a set of sub-

functions (see Fig. 2). At each step of the decomposition, the specification of each sub-function and

the interfaces between them are established. The consistency of these sub-functions is checked by

modeling and simulation.

System
Specifications

Design of
Sub-systems

Assembling
+ Tests

Experience
and know-how

Designed
System

Validation and
tests

Chapter 3 – Design Flow of Synthetic Biology

Page 55

Fig. 2 Top-down approach

For each of the specified sub-functions, a sub-system is implemented by picking up standardized

components from a library. In this hierarchic concept, each steps therefore consists in spreading the

global specifications into sub-specification. This approach allows an understanding of all the sub-

system composing the final system beforehand. Ideally, top-down approach ensures that if the

hierarchical decomposition has been executed without mistakes and if each sub-system meets its

specification, the assembly of the sub-systems is problem-free. The final system would be right by

design.

Although this method is theoretically very efficient, applying it to an actual use case is very difficult.

Indeed, such a comprehension requires predicting models of the behavior of each sub-system.

1.3. Meet-in-the-middle

Both aforementioned approaches have advantages and drawbacks. In practice, it is often very

hazardous to design a system from scratch using a bottom-up approach without a global plan.

Conversely, the top-down approach may be useful for the first stages of decomposition but can be

troublesome and time-consuming when the number of sub-systems becomes large and/or the sub-

systems are simple enough to be hand-designed. Thus, in the industry, a “meet-in-the-middle”

approach is often used, benefiting both from a top-down approach for the earlier stages of the design

and then from a bottom-up approach.

1.4. Common use of top-down and bottom-up in synthetic biology

“Top-down” and “bottom-up” are terms that are often met in the context of synthetic biology. They

are related to the way a new artificial organism is built rather that the design methodology of the

artificial function itself. To build a minimal cell using a bottom-up approach (see Fig. 3), the biologist

would need to select non-living components (amino-acids, genes…), assemble them into subsystems

(enzymes interacting with other components) that when combined together, give rise to a functioning

cell. Continuing with the example of building a minimal cell (see Fig. 3), with a top-down the biologist

would start with a living cell and modify it, by stripping it from various functions while the cell is still

viable.

System
Specification

Architecture

Sub-system
Specifications

+

Architecture

Sub-system
Specifications

+

Design of
Sub-systems

Right by design Designed
System

Part One – Context and Objectives

Page 56

Fig. 3 Illustration of the top-down and bottom-up approaches in biology.

1.5. Microelectronics design flow

In order to envision a biology design flow, we first take a look at the traditional microelectronics design

flow.

1.5.1. The beginnings
The density of integration of electronic circuits has increased since the 1970s (Moore's law). The

complexity of current circuits is such that their design cannot be done without computer-aided design

(CAD) tools. Historically, the first CAD tool is probably SPICE (Simulation Program with Integrated

Circuit Emphasis). This software was created in the 1970s at the University of Berkeley (California) by

the team of Larry Nagel. SPICE capabilities include the instantiation and the virtual connection of

electronic devices as it would be done in actual electronic circuits, the simulation of the circuit realized

and the analysis of simulation results for circuit behavior prediction and optimization purposes. SPICE

quickly became a standard in the field of circuit simulation and has been adopted both by circuit

manufacturers and by designers.

1.5.2. The path to standardization
Subsequently, other standards appeared for the representation of circuits, the description of their

function and their characteristics. In particular, electronic devices are always provided with datasheets

containing a set of information required for the designer, such as the pinout of the device, several

characteristics, the mechanical drawing, etc. These information are strictly codified so that it is easy

for a user to read them and to compare several components, even if they are provided from different

vendors.

Another example of standardization concerns the design of digital circuits. In the early 1980s, when

the number of digital gates integrated in a single circuit exceeded the thousand, many manufacturer

started developing proprietary software dedicated to their circuits. In 1993, manufacturers of

microelectronics decided to pool their know-how in order to define together and adopt standard

languages for the description of digital circuits. This is how the VHDL (VHSIC (Very High Speed

Integrated Circuit) Hardware Description Language) and Verilog languages were born. They are now

widespread and allow an easier exchange of models and better interoperability between software.

Bottom-up
Nonliving

Living

Minimal cell

Modifications

Construction

Top-down

Chapter 3 – Design Flow of Synthetic Biology

Page 57

The tools and standards developed for the design of electronic circuits allowed a separation of the

trades between “those who know how to design a circuit by assembling elementary bricks” (the

designer) and “those who know how to realize the basic bricks” (the process engineers and circuits

manufacturers). They exchange information through model libraries, often called design kits,

developed by process engineers or circuit manufacturers and which contain all information required

by the designer to interconnect them with the rest of the circuit without being concerned by what it

contains. This "black box" approach also led to a hierarchical approach of the design of circuits and the

notion of “level of abstraction”. At each level of abstraction, the system is described with the level of

detail which is suitable for its interface with the rest of the system. For example, an analog filter can

be seen, by decreasing abstraction level, as a transfer function, as a quadrupole, as an assembly of

passive components and operational amplifiers, or as an assembly of passive components and

transistors.

1.5.3. The shift towards a top-down approach
Historically, electronic circuits were rather designed with a bottom-up approach. The designers started

from their know-how and assembled elementary bricks until the desired function was achieved. With

the increasing complexity of electronic systems, this approach is no longer possible because it becomes

very difficult to predict what type of elementary brick are required from the high level specifications

of the system. Thus, top-down approach gradually replaced bottom-up approach. As seen above, even

though systems designed this way should be “right by design”, a practical implementation of this

approach is difficult, especially for large multi-domain systems. Hence, a handful of CAD tools, generic

or domain-specific have been developed to assist designers teams. As this design approach combines

virtual prototypes (assembly of models) and actual ones, it is often called “functional virtual

prototyping”.

1.5.4. Digital and analog parts in the design flow
In electronics, digital parts and analog parts are often distinguished. On the one hand, digital parts

described by Boolean functions are very well adapted to the top-down approach, because there exist

CAD tools to handle and automate the design flow. Thus, electronic gate-level schematics, integrated

circuit layouts or a programming file for programmable logical devices can be generated directly and

automatically from a high-level description. On the other hand, analog parts, described by Kirchhoff’s

laws, are much more complex to design. The subdivision, the modeling of each sub-circuits and the

wiring between models is manual and the design of each sub-circuit is mostly done with a trial and

error approach. Up to now, plenty of tools have been developed in order to manage models, analyze

and compare circuit performance or optimize circuit parameters. Nevertheless, despite some

breakthroughs in the last 20 years, no generic automated analog circuit synthesizer has been capable

of establishing itself as a standard amongst analog designers’ community. To illustrate the purpose, it

is now estimated that more than 75% of manufactured integrated circuits have at least an analog part.

This part represents on average 2% of the functionality of the circuit but its design requires 20% of the

project’s resources and is responsible of 40% of the faults which lead to a redesign.

In hindsight, the evolution of electronic circuits since the 1970s has been spectacular. The density of

integration, and therefore the complexity of the circuits realized has progressed by six orders of

magnitude in forty years. This development is of course due to the technological progress made in the

manufacturing of integrated circuits, but also to the development and acceptance by the community

of standards and CAD tools. If we compare the timeline of electronics and the one of synthetic biology,

Part One – Context and Objectives

Page 58

we are, for synthetic biology, at the beginning of the history. This corresponds to when the first

precursor tools that are now widely used in electronics system design were born.

1.6. Synthetic biology design flow

Here is presented the design flow for synthetic biology (Fig. 4) and more particularly for gene

regulatory networks (GRN) (Gendrault, Madec, Lallement, et al. 2014). The input is a set of

specifications and the output is a list of gene/cells composing the GRN. This workflow could be

implemented in a single software handling all these steps but also many tools can be adapted

separately and exchange data in a compatible format. We will discuss in more details the four main

stages that should compose this tool suite.

Fig. 4 A microelectronics-inspired design flow for synthetic biology (Gendrault, Madec, Lallement, et al. 2014)

The first block is the high-level system analyzer. The goal of this first step is to find the topology of the

biological system to design (e.g. a GRN) that matches a specification given as an input. This

specification can be either a Boolean function, a transfer function or the temporal evolution of the

system after a given stimulus.

The second block is in charge of selecting appropriate biological components from a database to match

the previously selected functions. These components are often called parts or Biobricks and mainly

consist in plasmid or simply DNA sequence of a promoter, a gene and a terminator. A database like the

iGEM (International Genetically Engineered Machine) Catalog (“Registry of Standard Biological Parts”

2015) contains more than 12000 parts, arranged in different categories (see Fig. 5). Unlike their

microelectronic counterparts in TTL libraries, Biobricks are not documented in a standardized way.

When taking two of the top 10 most documented parts (http://parts.igem.org/Part:BBa_K863005;

http://parts.igem.org/Part:BBa_K404163), one can see many differences in the type of information

available and how it is displayed.

The function of the parts are described in text and/or on a figure, one of the parts only (BBa_K863005)

has a descriptive subtitle from which data could be extracted. Most of the data consists in cultivation,

purification and analysis details of the DNA for BBa_K863005 whereas transfection and transduction

details with microscopy pictures could be found for BBa_K404163. None of these two parts contain

any standardized file containing their abstracted function, nor kinetic experiments or dynamic

constants estimations. The only standard criterion shared by both entries is the BioBrick RCF standard.

This is an assembly standard designed by Tom Knight for interchangeable parts. RCF-compatible

plasmids display certain sequence properties (like a given prefix and suffix sequences, containing

restriction enzyme sites for example). These type of entries are however still far from the standard

Spatial simulator

Simulation results

(Quantitative)

http://parts.igem.org/Part:BBa_K863005

Chapter 3 – Design Flow of Synthetic Biology

Page 59

datasheet of parts envisioned by Drew Endy (see Fig. 6). Such a datasheet allows a direct and clear

understanding of the inputs and outputs of a part, and its functioning.

Fig. 5 Summary of the 12-pages long entry of part BBa_K863005 (left panel) and the 2-pages long entry of part
BBa_K404163 (right panel). Black comments are added. Both of these entries appear in the top 10 most documented

parts. On the left panel, the entry displayed a full table of contents as shown. On the right panel, the entry had no table
of contents: the one displayed here is a copy/pastes of the titles of the paragraphs (without font modifications).

Moreover, the ‘plasmid’ diagram was displayed at the bottom of the page on the right entry, contrary to the entry on the
left. Comments and table of contents show how different the two entries are. Left panel URL:

http://parts.igem.org/Part:BBa_K863005. Right panel URL: http://parts.igem.org/Part:BBa_K404163.

The third block consists in the virtual prototyping (modeling and simulation) of the assembly of

BioBricks. Depending on the system complexity, the degree of accuracy required and the allowed

simulation time, different levels of abstraction are relevant. First of all, as mentioned before, many

biological systems sub-modules can be seen as bio-logic gates. The module can have an off and an on

state. It is therefore possible to reuse digital abstraction models of microelectronics, with the

difference that here the information is not carried out by electrons but by a molecule. As biology is not

inherently digital, a lower level of abstraction can be used: multivalued logic. This type of logic

abstraction is multi-valued: the module can have intermediary states between being completely off or

completely on. At last, a more accurate way of describing biological systems is to use ordinary

differential equations (ODE) that have many parameters to fit precisely a module’s behavior. In this

block, many tools have been implemented and others still lack; they will be further detailed in section…

The fourth block corresponds to the foundry of the circuit in micro-electronics. With this step, an actual

system is created. This system can be tested at the wet bench and according to the result, a new loop

of system design/optimization can be launched.

Text only

Text and graphs on biochemical
experiments (purification of
bacteria and protein)

Text and graphs on various activity
tests (different molecules and
conditions)

Screenshots of the mass spectrum
of the protein

Text and graphs on miscellaneous
experiments

Downloadable png
image

Text

RCF compatibility

Text file describing the RCF standard

• Usage in Biology:
• Characterization:

• Transduction Efficacy by Flow Cytometry
• Infectious Titer by qPCR
• Killing cells: Time-Lapse
• Validating Integration of modified Viral
Proteins into the Virus Capsid: ELISA

References

Text only

Text, graphs, images and diagrams on
biological tests, activity tests and functioning
of the part.

Same diagram as part BBa_K863005 but
located at the end of the page

http://parts.igem.org/Part:BBa_K863005
http://parts.igem.org/Part:BBa_K404163

Part One – Context and Objectives

Page 60

Fig. 6 Proposition for a standard datasheet for biological parts, by Drew Endy (Canton, Labno, and Endy 2008)

 Models and simulators

As mentioned previously, the third block is composed of tools able to simulate the behavior of a GRN.

According to the requirements (what kind of function is to be realized? With what precision should the

GRN match the requirements?), different types of models can be used.

2.1. Digital abstraction

At the highest level of abstraction, a gene can be seen as having two states: an OFF state corresponding

to its cognate protein not being expressed, and an ON state corresponding to the contrary. In reality,

we define thresholds of the protein concentration: one under which the gene is OFF or the protein is

‘absent’, and another one, higher, above which the gene is ON or the protein ‘present’.

Chapter 3 – Design Flow of Synthetic Biology

Page 61

The inputs and outputs of GRNs are molecules, such as transcription factors for the inputs or a drug

for the output. The ON and OFF states can also be defined for these molecules. With this abstraction,

it is possible to describe a GRN’s function by the states of its outputs according to the states of its

inputs. This corresponds to a logic function, this is why we can make the analogy between logic gates

and GRN. The OFF state of a molecule correspond to a logic 0 and the ON state corresponds to 1.

Fig. 7 Different representations of two different logic gates. The upper one is a NOT gate and the lower one is an OR
gate. At the left, a possible implementation with genes and regulators. In the middle, the truth table of the gate. At the

right, the electronic representation of the gate.

As an example, let be our gene of interest express the protein Gene Of Interest (GOI). In one case (Fig.

7 upper part), this gene is inhibited by a so called repressor R (in red on Fig. 7). While the repressor is

absent, meaning its state is 0, the gene can express GOI, so that the state of GOI is 1. Conversely, while

the repressor is present (1), the gene is no longer able to express GOI, which state becomes 0. This can

be summarized in a truth table. We see that this behavior corresponds to the behavior of a NOT gate,

with the input being R and the output GOI. In another example, our gene of interest is activated by

two activators, A1 and A2 (in grey and blue on Fig. 7). Here, the GOI can only be expressed when at

least one activator is present. This translate into a logic gate active when at least one of its inputs is at

1, a so-called OR gate. Many biological implementations of the classical logic gates can be found in the

literature (Fig. 8).

2.2. Multivalued logic

A way to improve the modeling of the behavior of a promoter and its regulator is to use multivalued

logic. Multivalued logic allows another distinction between the active and inactive state of a variable,

by introducing intermediate levels. Both inputs and outputs can be at this intermediate level (see Fig.

9).

Part One – Context and Objectives

Page 62

Out

0 0 0

0 1 1

1 0 1

1 1 0

aTcAra

Output
PTetPBAD

Out

0 0 0

0 1 1

1 0 1

1 1 1

Out

0 0 1

0 1 0

1 0 0

1 1 0
supressor

RNA-pol*

Ara

Sal

Output

Psal

PBAD

IpgC

mxlE

IPTG

Ara

Output

PTac

PBAD

Out

0 0 0

0 1 0

1 0 0

1 1 1

AND NOR

OR XOR

a

b

c

d

e

f

alpha

DOX

PFUS1

Output
PFUS3as

6a

PTetOff

aTcAra

CI
PTetPBAD

Output
PCI

Ara

aTc

Output
PRhlI

NOR

NOR

NOR

PTetPBAD

Rep

LasI

PBAD

RhlI

PLas

RhlI

PLasPTet

Rep

Rep

Chapter 3 – Design Flow of Synthetic Biology

Page 63

Fig. 8 : GRN implementations of classical logic gates and their truth tables: AND, NOR, OR and XOR. GRN a is based on a
corrupted sequence of the T7 RNA-polymerase (Anderson, Voigt, and Arkin 2007). The sequence contains 2 premature

stop codons that can be overstepped with the presence of the suppressor protein. The successful production of T7 RNA-
polymerase enables the expression of the output. GRN b codes for a transcription factor, MxiE, that is activated in the

presence of its chaperone IpgC (Moon et al. 2012). Only the activated transcription factor can activate the expression of
the output. GRN c uses a promoter activated by either arabinose (Ara) or anhydrotetracycline (aTc) (Tamsir, Tabor, and
Voigt 2011). GRN d is an extension of GRN c: the first gene codes for a repressor protein, CI, that inhibits the expression

of the output when present. In its absence, the output is produced (Tamsir, Tabor, and Voigt 2011). GRN e uses two
inhibitions (simplified from (Regot et al. 2011)). The production of the alpha pheromone is repressed by doxycycline

(DOX). After unrepresented steps, the alpha factor activates the expression of the output, which is also inhibited by 6a.
GRN f is composed of 3 similar NOR gates (see GRN d) split across 4 “wired” cells. Indeed, they use Pseudomonas
aeruginosa cell-to-cell communication systems (LasI and RhlI) to pass the signal from a NOR gate to another one.

Fig. 9 Multivalued logic truth tables. i represents an intermediate level which is between 0 and 1.

It is therefore possible to use different representation of a “NOT” gate, just as different proteins would

have different level of activation. Several examples use multivalued logic to design systems. We can

notably mention Bernot et al. (Bernot et al. 2004) and also an approach based on fuzzy logic by

Gendrault et al. (Gendrault, Madec, Lemaire, et al. 2014).

2.3. Ordinary differential equations

Both digital and fuzzy logic abstractions allow the representation of only a quantified concentration of

proteins. To represent concentrations as continuous variable, we must use differential equations (cf

Chapter 2). This kind of description is more accurate, allowing to describe the variation of a protein’s

concentration in function of the concentration of its regulators. The model of protein expression can

be fine-tuned with numerous parameters (e.g. kinetic parameters of reactions, affinity constants…).

In biology, ODE-level descriptions of biological systems are often formalized by an SBML (Systems

Biology Markup Language) file. SBML is a language introduced in 2003 (M. Hucka et al. 2003) and

composed of a large list of markups corresponding to the different elements of a biological model. For

example, SBML allows the definition of units, of compartments where different reactions can take

place, of the species involved in these reactions, of the parameters of these reactions, of events to be

applied when simulating the model (see (Michael Hucka et al. 2017) for more details).

Many simulation tools handle SBML. We can notably cite COPASI, one of the most widely used

simulation tool of biological systems. COPASI also has a GUI (Graphical Use Interface) that can be used

to define the biological network to simulate and the associated parameters (Fig. 10). The classical time

In Out

0 1

i 0

1 0

In Out

0 i

i 0

1 0

In Out

0 1

i 1

1 0

1

0

Gate

1

0
i i

Part One – Context and Objectives

Page 64

course and steady state simulations can be performed. Moreover, COPASI proposes other types of

simulations like parameter scan and flux balance analysis among others. COPASI allows the

specification of compartments of different sizes but does not provide a space simulation. Simulation

data can be viewed in the software or exported in a text file.

Fig. 10 COPASI interface

We can also mention BioCham, which is able to read SBML files as well as ODEs written in a specific

format. BioCham shares similar features to COPASI in terms of simulations and plotting but does not

have a GUI. Notably, BioCham proposes a furnished set of qualitative analysis of the network: the

network is analyzed at the Boolean level. It is not possible to simulate space with BioCham.

Virtual Cell or VCell is also a major tool for simulating biological systems, with a GUI and a

comprehensive set of analyses. As this tool features a space simulator, we will discuss it in more details

in Chapter 6.

However, these tools are not robust enough to tackle very large number of equations. This is why a

formalism based on the analogy between electronics and biology seen in Chapter 2 was developed by

Madec et al. to simulate biological networks with electronic simulators (Madec, Lallement, and Haiech

2017). BB-SPICE is able to read an SBML file and produces a SPICE simulation ready file. It has been

demonstrated that BB-SPICE can handle a model of a biological network with more than 10,000

reactions while COPASI crashes due to the lack of memory with only 1,000 reactions. This formalism is

reused in Chapter 6.

2.4. Stochastic simulation

ODEs imply that the observed quantities are large and therefore the mean behavior of the particles is

a good representation of each particle. However, in problems involving low numbers of molecules, a

new level of simulation is needed: stochastic simulation. This level of abstraction does not compute

the concentration of a molecule but its number. The reactions are not represented by kinetic constants

but probabilities for the reaction to occur. In electronics, electrons are often considered as a whole

and not individually. The stochastic simulation is therefore not used to simulate electrons. However,

Chapter 3 – Design Flow of Synthetic Biology

Page 65

physical reactions involved in the functioning of the circuit remain random at the microscopic scale. To

account for this stochasticity, noise is added to the variables of a deterministically-solved system.

COPASI and BioCham both feature stochastic simulations. We see on Fig. 11 the difference between

a deterministic and a stochastic simulation. The global behavior is the same but local small variations

illustrate the stochasticity of any chemical reaction when observed on a microscopic scale.

Fig. 11 COPASI results for a deterministic (left) and stochastic (right) simulation of an enzymatic reaction (E+S↔ ES→P).
Light blue: substrate S. Dark blue: enzyme E. Red: enzymatic complex. Green: product.

2.5. Spatio-temporal simulation

As the designed systems grow in size, it has become necessary to split them into different cells. Indeed,

contrary to electronics where the signal is confined in a wire that leads the electron only to where we

want them to go, in biology the molecules are free to diffuse in the whole cell. This means that they

can potentially interact with every component of the system. As the number of components (genes)

in a system increases, it becomes harder to avoid cross talk between the components. However, this

diffusion is limited by various membranes. The plasma membrane is one of them, it delimits the cell

itself. Proteins cannot cross a naked plasma membrane without help. Furthermore, different

compartments in the cell (e.g. the nucleus, mitochondria, endoplasmic reticulum…) are also delimited

by membranes.

Taking these phenomena into account in biological models is mandatory to tackle the virtual

prototyping of the next generation of artificial biosystems. Existing solutions as well as the original

approach we developed are described in the third part of this manuscript (Chapter 6).

 Designing GRNs

CAD tools allow an easy handling of models of the systems and cognate biological data. Such tools exist

for synthetic biology. Design automation is the next step: the CAD tool would not only need to enable

the manipulation and simulation of the system but also, given a set of requirements, create the system.

Here we review the current tools and their capabilities.

3.1. Assisted-design tools

Many such tools exist for synthetic biology: TinkerCell (Chandran, Bergmann, and Sauro 2009),

CellDesigner (Funahashi et al. 2003), BioJADE (Goler 2004), ProMot (Mirschel et al. 2009), GenoCAD

(Czar, Cai, and Peccoud 2009). Most of them take advantage of the “design by parts” that the BioBricks

N
u

m
b

e
r

o
f

p
ar

ti
cl

e
s

Part One – Context and Objectives

Page 66

standard enables. These tools often have a visual interface for an easy manipulation of the parts,

therefore facilitating the design of circuits composed of many parts.

3.1.1. TinkerCell
Developed by a team from Seattle, TinkerCell presents a graphical interface where the user can draw

a biological systems. Many biological reactions are available (synthesis, degradation, enzymatic

catalysis, gene regulation via transcription factor binding). Some reactions, like the enzymatic catalysis,

can be specified. For example, the user can specify the different states of the enzyme/substrate

complex (see Fig. 12).

Fig. 12 TinkerCell diagram. The enzymatic catalysis can be described by different models

Each reaction and each type of reaction have an associated model, used to perform various analysis

(deterministic simulation, stochastic simulation, steady state computation, parameter scan, etc). Most

of them are performed using COPASI. The idea is that the biologist draws the imagined biological

network on TinkerCell and simulates it. According to the delivered results, he can change elements of

his systems and simulate it again. The user can also load a sequence which is analyzed by a Python

script to determine what type of part it is (promoter, RBS (ribosome-binding site), coding region, or

transcription factor). TinkerCell is pluggin-friendly, as it is the desire of the developers of the tool to

allow external inputs and editions when certain functions/components are needed.

3.1.2. BioJADE
BioJADE was developed at the Massachusetts Institute of Technology (MIT) by the same team that

created the BioBricks repository. BioJADE therefore makes an interactive use of the BioBricks. BioJADE

key concept is “genetic component prototype”: they regroup circuits by their functions (e.g. NAND,

NOT, reporter, etc) and use the abstracted function as the building block (see Fig. 13).

BioJADE enables system designers to specify a system abstractly with an XML file or a full RDBMS (a

relational database). They can also design new parts.

Then, they can tune the system, simulate its behavior using a variety of simulators (from simple logic

tests to the level of protein binding), and finally package the part for use by either the designer or the

public. There is the possibility to interface tools written in other languages.

Chapter 3 – Design Flow of Synthetic Biology

Page 67

3.1.3. ProMoT
ProMoT was designed by a German team from the Max Planck institute. ProMoT uses models based

on digital abstraction as well as differential algebraic equations. Systems can be editing with a graphic

interface, or loaded from a SBML file. A validation again structural modeling errors is performed while

editing.

The representation displayed by the graphical interface is zoom-dependent: zooming on a module

reveals its specific components. Otherwise, only relevant components are showed. This adaptive

visualization serves to aid the user in analyzing and interpreting the simulation results.

3.1.4. GenoCAD
Developed in Virginia, GenoCAD assists the user in constructing GRNs with the final goal to obtain the

DNA sequence for synthesis. GenoCAD is an online tool, with a library of parts for various organisms

(see Fig. 15).

GenoCAD also converts DNA sequences into genetic parts. Designs can be exported as FASTA (DNA

sequence format) or text files. GenoCAD designs rely on the concept of grammar. A grammar defines

an ordered list of parts a construct should have. They can be species specific and different grammars

are available for a given construct (see Fig. 16). One can also create its own grammar.

Simulation of the design is performed using the COPASI engine.

Fig. 13 BioJADE interface

Part One – Context and Objectives

Page 68

Fig. 14 ProMoT zoom-dependent visualization

Table 1 Summary of the reviewed biological CAD tools

Input Output

DNA
sequence
support

Possibility to
implement custom

parts/functions
Automated

design

TinkerCell
Graphical

interface, DNA
sequence

SBML,
Octave,
Matlab

yes yes no

BioJADE yes

ProMoT SBML
SBML,
Matlab

no

GenoCAD
Graphical
interface

SBML yes yes no

Chapter 3 – Design Flow of Synthetic Biology

Page 69

Fig. 15 Overview of the GenoCAD library of parts.

Fig. 16 Example of a construct (a toggle switch) with GenoCAD. The different parts (TER, RBS, …) and the available
choices underneath are shown.

Part One – Context and Objectives

Page 70

The reviewed tools are only a fraction of all the existing tools. Most of them support DNA sequences,

a useful feature for a direct implementation of the system at the wet bench. Some tools (mainly

BioJADE and GenoCAD) are connected to a furnished database of parts. Automatic retrieval of newly

added parts in the BioBrick repository has however not been encountered during the reviewing of any

tool. The possibility to add custom parts is also interesting, as biological construct are constantly

evolving and new construct are appearing. The SBML language is expectably a common point for all

format used for exchanges. Noteworthy is also the BioModels repository of computational models of

biological processes, a European Bioinformatics Institute initiative (Juty et al. 2015). The models are

written in SBML. In this database, more than 7000 models published in literature are available in a

standard layout.

3.2. Automated-design tools

With the previous tools, the traditional approach of trial and error for handmade optimization of

systems is aided. The next step is to automate this process. Given a specification, an automated design

tool finds the optimal system fitting this specification. We will discuss these tools in more details in

Chapter 4.

 References
Anderson, J Christopher, Christopher A Voigt, and Adam P Arkin. 2007. “Environmental Signal Integration by a

Modular AND Gate.” Molecular Systems Biology 3. European Molecular Biology Organization: 133.
doi:10.1038/msb4100173.

Bernot, Gilles, Jean-Paul Comet, Adrien Richard, and Janine Guespin. 2004. “Application of Formal Methods to
Biological Regulatory Networks: Extending Thomas’ Asynchronous Logical Approach with Temporal Logic.”
Journal of Theoretical Biology 229 (3). Elsevier: 339–47.

Canton, Barry, Anna Labno, and Drew Endy. 2008. “Refinement and Standardization of Synthetic Biological Parts
and Devices.” Nature Biotechnology 26 (7). Nature Publishing Group: 787–93. doi:10.1038/nbt1413.

Chandran, Deepak, Frank T Bergmann, and Herbert M Sauro. 2009. “TinkerCell: Modular CAD Tool for Synthetic
Biology.” Journal of Biological Engineering 3 (1): 19. doi:10.1186/1754-1611-3-19.

Czar, Michael J, Yizhi Cai, and Jean Peccoud. 2009. “Writing DNA with GenoCAD.” Nucleic Acids Research 37 (Web
Server issue). Oxford University Press: W40-7. doi:10.1093/nar/gkp361.

Funahashi, Akira, Mineo Morohashi, Hiroaki Kitano, and Naoki Tanimura. 2003. “CellDesigner: A Process Diagram
Editor for Gene-Regulatory and Biochemical Networks.” BIOSILICO 1 (5): 159–62. doi:10.1016/S1478-
5382(03)02370-9.

Gendrault, Yves, Morgan Madec, Christophe Lallement, and Jacques Haiech. 2014. “Modeling Biology with HDL
Languages: A First Step toward a Genetic Design Automation Tool Inspired from Microelectronics.” IEEE
Transactions on Biomedical Engineering 61 (4). IEEE Computer Society: 1231–40.

Gendrault, Yves, Morgan Madec, Martin Lemaire, Christophe Lallement, and Jacques Haiech. 2014. “Automated
Design of Artificial Biological Functions Based on Fuzzy Logic.” In Biomedical Circuits and Systems
Conference (BioCAS), 2014 IEEE, 85–88.

Goler, Jonathan Ari. 2004. “BioJADE: A Design and Simulation Tool for Synthetic Biological Systems.”
https://dspace.mit.edu/handle/1721.1/30475.

Hucka, M., A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin, et al. 2003. “The Systems Biology
Markup Language (SBML): A Medium for Representation and Exchange of Biochemical Network Models.”
Bioinformatics 19 (4): 524–31. doi:10.1093/bioinformatics/btg015.

Chapter 3 – Design Flow of Synthetic Biology

Page 71

Hucka, Michael, Frank T Bergmann, Sarah M Keating, Chris J Myers, Brett G Olivier, Sven Sahle, James C Schaff,
Lucian P Smith, Dagmar Waltemath, and Darren J Wilkinson. 2017. “The Systems Biology Markup Language
(SBML): Language Specification for Level 3 Version 2 Core.” http://sbml.org/specifications/sbml-level-
3/version-2/core.

Juty, N, R Ali, M Glont, S Keating, N Rodriguez, MJ Swat, SM Wimalaratne, et al. 2015. “BioModels: Content,
Features, Functionality, and Use.” CPT: Pharmacometrics & Systems Pharmacology 4 (2): 55–68.
doi:10.1002/psp4.3.

Madec, Morgan, Christophe Lallement, and Jacques Haiech. 2017. “Modeling and Simulation of Biological
Systems Using SPICE Language.” PloS One 12 (8). Public Library of Science: e0182385.
doi:10.1371/journal.pone.0182385.

Madec, Morgan, François Pecheux, Yves Gendrault, Elise Rosati, and Christophe Lallement. 2016. “GeNeDA: An
Open-Source Workflow for Design Automation of Gene Regulatory Networks Inspired from
Microelectronics.” Journal of Computational Biology.

Mirschel, Sebastian, Katrin Steinmetz, Michael Rempel, Martin Ginkel, and Ernst Dieter Gilles. 2009. “ProMoT:
Modular Modeling for Systems Biology.” Bioinformatics 25 (5): 687–89.
doi:10.1093/bioinformatics/btp029.

“Registry of Standard Biological Parts.” 2015. Accessed November 6. http://parts.igem.org/Main_Page.

Part One – Context and Objectives

Page 72

Page 73

Part Two

Design Automation of

Biological Systems

Introduction to Part Two .. 75

Chapter 4 – Design Automation at Boolean Level 77

Chapter 5 – Design Automation at Analog Level 107

Summary of Part Two ... 141

Part Two – Design Automation of Biological System

Page 74

Page 75

Introduction of Part Two

As mentioned in the first part of this manuscript, automated design tools are still lacking for biology.

However, automated part selection derived from a high-level specification has seen several successful

breakthroughs, confined to the Boolean abstraction of Gene Regulatory Networks (GRNs). TASBE,

developed by the Massachusetts Institute of Technology and Boston University, is one of them (Beal

et al. 2012). It consists in a tool-suite (including several new or existing tools such as Proto,

BioCompiler, MatchMaker and BiOCAD) that starts from high-level specifications given in a specific

language and leads to a DNA assembly that meets the specifications. The upstream stages of TASBE

include the high-level description and “Bio-compilation” (interpretation of the high-level description

as a set of abstracted elementary biological functions) (Densmore et al. 2010; Bilitchenko et al. 2011;

Beal, Lu, and Weiss 2011; Yaman et al. 2012). Another interesting approach, also based on Boolean

abstraction of GRN, has been suggested by Marchiso et al. (Marchisio and Stelling 2011).

We also mention in the first part that many synthetic GRNs can be described by a Boolean equation.

In this case the problems encountered for their design are very similar to the problems encountered

in digital synthesis in microelectronics. We therefore want to benefit from electronics’ years of

experience in addressing this issue by reusing and adapting their tools to our problem at hand. This is

tackled in the first chapter of this section (chapter 4). First, we present a tool suite (GeNeDA) adapted

from electronics to automate the design of digitally-described GRNs. GeNeDA is first tested and

validated on combinatorial circuits. Then, in a second time, the design of sequential functions is

discussed. In particular the robustness of the designed system towards the variation of its biochemical

parameters is tested. As for microelectronics circuits, the realization of synchronous circuit is often

necessary to avoid the risks of malfunction and instability. This, however, implies the ability to design

a robust biological D-flip-flop, which is presented in the third subpart of the chapter.

The second chapter of the section (Chapter 5) deals with the design automation of biological system

that cannot be abstracted by a Boolean function. For these questions, we land into the field of “analog

synthesis”, an area of investigation of electronics for which several solutions have been put forward

but none has been able to impose itself as a standard. Different optimization methods and algorithms

have been tested in the past. Among them, nature-inspired algorithms, and in particular evolutionary

algorithms have showed promising results (Koza et al. 1997). Its application to synthetic biology is

evaluated in the Chapter 5. The work is composed of two main parts. First, we fixed a priori the

topology of the GRN and evolve the model parameters in order to find the targeted behavior. Then,

we use genetic programming to evolve both the network and its parameters in order to tend to a true

design automation algorithm.

Part Two – Design Automation of Biological Systems

Page 76

References
Beal, Jacob, Ting Lu, and Ron Weiss. 2011. “Automatic Compilation from High-Level Biologically-

Oriented Programming Language to Genetic Regulatory Networks.” PloS One 6 (8): e22490.
doi:10.1371/journal.pone.0022490.

Beal, Jacob, Ron Weiss, Douglas Densmore, Aaron Adler, Evan Appleton, Jonathan Babb, Swapnil
Bhatia, et al. 2012. “An End-to-End Workflow for Engineering of Biological Networks from High-
Level Specifications.” ACS Synthetic Biology 1 (8): 317–31.

Bilitchenko, Lesia, Adam Liu, Sherine Cheung, Emma Weeding, Bing Xia, Mariana Leguia, J
Christopher Anderson, and Douglas Densmore. 2011. “Eugene-a Domain Specific Language for
Specifying and Constraining Synthetic Biological Parts, Devices, and Systems.” PloS One 6 (4).
Public Library of Science: e18882.

Densmore, Douglas, Joshua T. Kittleson, Lesia Bilitchenko, Adam Liu, and J. Christopher Anderson.
2010. “Rule Based Constraints for the Construction of Genetic Devices.” Proceedings of 2010
IEEE International Symposium on Circuits and Systems, May. Ieee, 557–60.
doi:10.1109/ISCAS.2010.5537540.

Koza, John R JR, FH Forrest H Bennett, David Andre, Martin A Keane, and Frank Dunlap. 1997.
“Automated Synthesis of Analog Electrical Circuits by Means of Genetic Programming.” … IEEE
Transactions on 1 (2). IEEE: 109–28.

Marchisio, Mario A, and Jörg Stelling. 2011. “Automatic Design of Digital Synthetic Gene Circuits.”
PLoS Comput. Biol 7 (2): e1001083.

Yaman, Fusun, Swapnil Bhatia, Aaron Adler, Douglas Densmore, and Jacob Beal. 2012. “Automated
Selection of Synthetic Biology Parts for Genetic Regulatory Networks.” ACS Synthetic Biology 1
(8). American Chemical Society: 332–44. doi:10.1021/sb300032y.

Page 77

Chapter 4
Design Automation at Boolean Level

1. Design automation in digital electronics 77

1.1. Digital synthesis .. 78

1.2. Silicon compiler ... 79

1.3. Back annotation and layout versus schematics 79

2. Design of combinatorial GRNs .. 79

2.1. Description of GeNeDA ... 79

2.1.1. The input interface .. 79

2.1.2. The digital synthesizer – Odin II .. 79

2.1.3. The GRN compiler – ABC ... 80

2.1.4. The genetic part library (GPL) ... 80

2.1.5. The output interface ... 82

2.2. Results on combinatorial systems .. 83

3. Design of sequential GRNs .. 88

3.1. Definition of a sequential system ... 88

3.2. Design of a sequential system .. 89

3.3. Stability of sequential system ... 90

3.4. Results ... 91

3.4.1. Rendez-vous gate .. 91

3.4.2. Crossing system .. 93

3.4.3. Sensibility of the GRN parametrization 94

3.5. Synchronization of sequential GRN .. 95

4. Design of a biological D-Flip-Flop .. 96

4.1. Description .. 96

4.2. Modeling and simulation results .. 98

4.2.1. Global behavior ... 98

4.2.2. Robustness towards leakiness of operon #3 99

4.2.3. Robustness towards noise during transcription 100

4.3. Design of biological counters .. 100

4.4. Necessity to split the system .. 102

5. Conclusion ... 103

6. References .. 103

1. Design automation in digital electronics

Automation of the design of electronic circuits from a high-level specification has been a very active

area of research since the very beginning of microelectronics history in the 60s. From the outset,

separated ways have been investigated for analog circuits and for digital circuits. Analog circuits are

usually described by their transfer function, by analytic equations or by a set of coupled ordinary

Part Two – Design Automation of Biological Systems

Page 78

differential equations. Despite some breakthroughs in the end of the 90’s, the development of a

generic fully automated analog synthesis tool is still an open field of investigation (Rutenbar 1993;

Ismail and Franca 2012; Jerke and Lienig 2009; Koza et al. 1997). Up to now, CAD tools in analog context

are helpful for the designer but are not automated. On the other hand, design automation of digital

circuits has been a common practice since the early 80’s (Rabaey, Chandrakasan, and Nikolic 2002;

Micheli 1994; Brayton et al. 1996). Nowadays, several design automation tools exist and are integrated

to high-performance commercial software suites (e.g. RTL Encounter of Cadence© tool suite or Design

Complier for Synopsis©). They can carry out the synthesis of circuits with hundreds of thousands of

logic gates. In addition several open-source tools developed by academics also exist.

Basically, design automation of digital circuits is a three-stage process that requires a formal

description (high-level specification) of the system we would like to design and a toolbox (design kit)

with the elementary functions (parts) that can be achieved with a given technology. The complete

design flow is summarized on Fig. 1.

Fig. 1 Automated workflow for the design of electronic digital circuits

1.1. Digital synthesis

The first stage of the process is called digital synthesis. The high-level specification is usually given

through a description written in hardware description languages (HDL) such as VHDL (Ashenden 2010)

or Verilog (Thomas and Moorby 2002). At this level, the description can be purely behavioral and does

not include any clue about how it will be performed. For instance, the HDL description of a counter is

a memory device that is incremented at each rising edge of a clock signal.

The high-level specification is interpreted and converted into an interconnection of Boolean functions

(gates) and memories (registers). This level of description is called Register Transfer Level (or RTL

netlist). This step involves syntax analysis and Boolean computation.

Chapter 4 – Design Automation at Boolean Level

Page 79

1.2. Silicon compiler

The design kit comes into play in the second step and contains all the Boolean functions that can be

achieved with a given technology. A tool named the silicon compiler finds the combination of parts

from the design kit that is equivalent (from a Boolean viewpoint) to the RTL netlist while minimizing a

user-defined cost function. After this step, the circuit is designed.

1.3. Back annotation and layout versus schematics

For the third step, back annotation consists in generating a model of the circuit fed with information

from the design kit. This implemented version of the circuit is then simulated. The comparison between

layout and schematics consists in comparing the results of this simulation to the high-level

specification. Moreover, a set of design rules (size of the transistors, clearance between transistors,

etc) is checked at this stage. This allows the validation in silico of the circuit before manufacturing.

2. Design of combinatorial GRNs

Among others, two open-source tools catch our interest because of their relative simplicity and

accessibility: Odin II (Jamieson et al. 2010), which is a digital synthesizer developed by the University

of Miami and ABC (Mishchenko 2015) which is a silicon compiler developed by the University of

Berkeley for the configuration of FPGA (Field-Programmable Gate Array). In the following paragraph,

we will describe how these tools have been reused, adapted and integrated into an automated design

workflow for GRN.

2.1. Description of GeNeDA

GeNeDA stands for Gene Regulatory Network Design Automation and is described in Fig. 2. Its

framework is composed of six parts: the input interface (1), the digital synthesizer (ODIN II - 2) and the

GRN compiler (ABC - 3), a library of elementary mechanisms (parts) used in GRN (4) and an output

interface (5). Moreover, GeNeDA provides models of the generated GRN that can be simulated by

third-party analog and mixed simulator features (6). These parts are described in more details in this

following section.

2.1.1. The input interface
ODIN II requires a high-level specification provided in Verilog (Thomas and Moorby 2002) or Berkeley

Logic Interchange Format (BLIF) languages. The input interface bridges the gap between those specific

languages and most common ways to describe a combinatorial digital system, such as a truth table or

a set of Boolean equations. An online PHP script converts the specification given through a graphical

user interface into a single Verilog file.

2.1.2. The digital synthesizer – Odin II
ODIN II converts the provided (or generated) Verilog file into an RTL netlist. As for microelectronics,

this operation involves only syntax analysis and mathematical manipulations of Boolean equations.

This operation does not depend on the technology (silicon integrated circuits or gene regulatory

networks) used to perform the function. As a consequence, Odin II can be integrated directly to the

framework without modification. Odin II provides the RTL netlist in a standard BLIF file.

Part Two – Design Automation of Biological Systems

Page 80

Fig. 2 GeNeDA workflow. The six parts composing the GRN synthesizer are detailed in text.

2.1.3. The GRN compiler – ABC
ABC maps the RTL netlist on a specific technology, GRN in this case. ABC uses BLIF files provided by

ODIN II and is strongly linked to a Genetic Part Library (GPL) described hereafter. ABC computes a

combination of GPL elements that achieves the targeted function in an optimal way. The two main

performance criteria that are estimated are the cost of the system (computed as the sum of the cost

for each instantiated part) and the delay of the critical path (the longest time separating an input and

output changes). The results are returned as a netlist giving the instantiated parts and their

connections.

Several adaptations have been made on ABC in order to fit to biology requirements. One of the trickiest

issues concerns the differentiation between activators and repressors, which does not exist in

microelectronics. This constraint arises from the assumption that a protein cannot carry on both the

role of activator on one promoter and repressor on another one. ABC checks whether this case occurs

on the suggested GRN and solves this problem by inserting a second gene (one coding for an activator

and one for a repressor) on a construct for which the synthesized regulating protein have to play both

roles. Should this occur on an input of the system, an additional buffer (inducible promoter without

repressor) is implemented with two protein coding sequences, one for an activator and one for a

repressor. This increases the complexity of the system and, as a consequence, should be taken into

account in the cost of the construction. The remaining adjustments of ABC to biological context have

been made directly in the genetic part library.

2.1.4. The genetic part library (GPL)
The GPL includes all the genetic mechanisms that may be involved in a GRN. The library should be

written according to a proprietary GenLib format. The GenLib file contains one entry per part and for

each of them the followings: the cost of the part, its Boolean function and its list of inputs. For each

input, the following electrical parameters are provided: the phase (inverting or non-inverting), the

input load, the max load, the rise and fall block delay and the rise and fall block fan-out. GeNeDA

Abstracted
BioBrick

Assembly
Multi-format

High-level
specification

Verilog

RTL netlist
BLIF

ODIN II ABC

Event-driven
Simulator

Event-driven
digital simulation

Abstracted
BioBrick

Database

Quantitative
simulation

Validation, performances
analysis and optimization

Output
interface

Simulation-
ready file

SBML, SystemC-AMS

GRN cartoon
png

1

2

3

5

4
6

Chapter 4 – Design Automation at Boolean Level

Page 81

involves a default library described hereafter and a GenLib generator allowing to define a subset of the

default library.

Minimal library and generic library
To be consistent and usable by ABC, a GPL has to contain, at least, a Universal Set of Boolean Operators

(USBO) and a synchronous memory (Paul Horowitz and Hill 1989). This memory is not required for the

design of combinatorial circuits. Nevertheless ABC checks the consistency of the GPL (GenLib file)

before the compilation and returns an error if the memory is missing.

In GRN context, the smallest USBO is a construct with an inducible promoter that can be activated by

an activator A or repressed by a repressor R. This construct achieves the Boolean “inhibition” operator

symbolized by the slash operator (see Chapter 2): 𝐴/𝐵 = 𝐴 ∙ 𝐵̅. Indeed, by cascading several instances

of such constructs, any combinatorial Boolean function can be achieved. The three elementary

operators of Boolean algebra NOT, AND and OR form a USBO. The following equations show how to

perform NOT, AND and OR with the INH operator:

 𝐴̅ = 1/𝐴

 𝐴 ∙ 𝐵 = 𝐴 ∙ 𝐵̅̅ = 𝐴/(1/𝐵)

 𝐴 + 𝐵 = 𝐴̅ ∙ 𝐵̅̅̅ ̅̅ ̅̅ = 1/((1/𝐴)/𝐵)

However, it is also possible to enrich the GPL with more complex operators, as for instance a promoter

driven by more than one activator or more than one repressor (Fig. 3A), cascaded constructs achieving

advanced Boolean functions (multiplexer, encoder …), or constructs involving alternative mechanisms

(see Chapter 2 for more details) such as Moon’s AND gate (Moon et al. 2012) depicted in Fig. 3B. It

can also be envisioned to add the operator corresponding to a promoter activated by n activators and

repressed by m repressors: (𝐴1 + 𝐴2 + ⋯ + 𝐴𝑛) ∙ 𝑅1
̅̅ ̅ ∙ 𝑅2

̅̅ ̅ ∙ … ∙ 𝑅𝑚
̅̅ ̅̅ .

The default library of GeNeDA includes all the Boolean functions that can be achieved with a promoter

regulated by a combination of up to four activators or repressors, the AND and NAND functions

realized according to Moon’s principle and a flip-flop which is not yet described.

Fig. 3 Description of the BPL, which contains the basic functions that can be realized with GRN: (A) the generic
combinatorial gate which consists in a promoter regulated by k transcription factors. It achieves the Boolean function A1
OR A2 OR … AND NOT R1 AND NOT R2…, (B) the AND gate which consists in two promoters and two genes, each of them

synthesizing a part of a transcription factor (Moon et al. 2012).

Cost of the part
The cost of a part reflects the difficulty to construct an actual system (promoter, regulatory sequence,

protein coding sequence) that uses this part. In the default library, costs have been affected to Boolean

functions according to the following assumptions:

Part Two – Design Automation of Biological Systems

Page 82

 It is more complex to add the 𝑛 + 1-th regulating protein on a promoter than adding the 𝑛-th. As

a consequence, the relationship between the cost and the number of regulating proteins is a

power law.

 In a general way, for a given promoter, it is easier to find a repressor than an activator. As a

consequence, for an equivalent number of regulating proteins, a Boolean function involving

promoter activation should be penalized in comparison with a function involving promoter

repression.

The mathematical law that has been used to take these two facts into account in the cost 𝐶 of each

part is the following:

 𝐶 = 1.6(𝐴+𝑅−1) × 1.25𝐴

where 𝐴 and 𝑅 are the numbers of activators and repressors respectively. The constants were found

empirically.

Input and output parameters
For each operator, additional parameters have to be added in the GenLib file, namely the phase, the

rise and fall delays, the input load and the fan out. The phase parameter is specific to electronics and

is not used in a biological context. Nevertheless, we use this entry to specify the sign of the regulation

(activation or repression). This information is processed by an ABC add-on we developed to tackle the

problem of proteins that carry both the role of activator and repressor, as described in the previous

section.

Rise and fall delays are used both for timing consideration during simulation as well as for the

computation of the critical path of the system. Rise and fall delays can be defined similarly in biology

and in electronics. It should be noticed that, by opposition to electronics, time constants of the

biological phenomena involved in rise (gene expression) and fall processes (self or forced decay) may

be very different.

An analogy can also be found for the input load and fan out which are important characteristics of

digital gates. Let X be a regulating protein synthesized by the gene #0 and which represses (or activates)

N other promoters. If N is too large, there might not be enough proteins for the regulation (repression

or activation) to be effective of all the promoters. In this context, the input load can be seen as the

number of proteins required to efficiently repress a promoter and the fan out as the maximum number

of protein that a gene can synthesize. The GRN compiler ensures that, for each protein, the fan out is

always greater than the sum of the input load of the promoter it regulates.

Current version of the GPL does not take these features into account (i.e. rise and fall time are fixed to

1 for each gate, the fan out is also 1 and the input load 0.1, allowing a transcription factor to regulate

up to 10 promoters).

2.1.5. The output interface
The raw output of ABC tool is a C-structure which contains all the information about the circuit (input,

output, part instances, connections…). Several add-ons have also been developed in order to provide

descriptions that can be used by simulators. Up to now, 4 formats are supported:

 a BLIF file, i.e. a text file giving the name of the instantiated part as well as the regulation between

parts

Chapter 4 – Design Automation at Boolean Level

Page 83

 a graphical representation of the GRN in PNG format generated by the online design visualizer

Pigeon CAD (Bhatia and Densmore 2013)

 a SBML model (standard for the description in system’s biology (Hucka et al. 2003)) that can be

simulated with COPASI (Hoops et al. 2006)

 SystemC-AMS files (Vachoux, Grimm, and Einwich 2003), an open source C++ library used for the

description and the simulation of heterogeneous systems such as GRNs (Pêcheux, Madec, and

Lallement 2010). It is a powerful alternative simulation feature though unusual for the biologists’

community. This feature manages several Models of Computation (MoC), namely non-

conservative Timed Data Flow or conservative Electrical Linear Networks. With this language, the

model is written in C++ and, as such, it has been designed to freely interact with other MoCs (i.e.

Discrete Event of SystemC) as well as common C++ libraries (Cublas, FFT, access to databases, etc).

The SBML and the SystemC-AMS files provide a simulation-ready model based on the classical

equations, described in Chapter 2.

Parameters as well as their default value for model generation are summarized in Table 1 (Alon 2006).

Table 1 Default parameters for the SBML and SystemC-AMS models.

SYMBOL DESCRIPTION DEFAULT VALUE

𝐾𝐴,𝑖,𝑘 Activator-promoter binding affinity 0.01 µMol

𝑛𝐴,𝑖,𝑘 Activator-promoter binding Hill’s number 2

𝐾𝑅,𝑗,𝑘 Repressor-promoter binding affinity 0.01 µMol

𝑛𝑅,𝑗,𝑘 Repressor-promoter binding Hill’s number 2

𝛼𝑘 Promoter leakiness 0.01

𝑘𝑡𝑟,𝑘 Transcription rate 10 µMol.s-1

𝑘𝑡𝑙,𝑘 Translation rate 1 µMol.s-1

𝑑𝑚𝑅𝑁𝐴,𝑘 mRNA decay rate 0.01 s-1

𝑑𝑋,𝑘 Transcription factor decay rate 0.001 s-1

2.2. Results on combinatorial systems

This section describes the results obtained by GeNeDA over a benchmark of standard digital circuits

used in microelectronics. Eight of them (namely a 2-input AND, a 4-input AND, a 4-input NOR, a 2-input

XOR, a 4-input XOR, a 1-bit half adder, a 1-bit full adder and an 8-bit comparator) are used.

To the emphasis on the importance of the GPL, five different GPL have been investigated. The simplest

(GPL0) contains only one inverter (INV) and one inhibition operator (INH). GPL1 is enriched with

constitutive promoters that can be inhibited by two repressors (leading to a 2-input NOR behavior or

NOR2) or a promoter which can be induced by two activators (2-input OR gate, or OR2). GPL2 is

enriched with 2-input AND and NAND gates designed according to Moon’s construct (Moon et al.

2012). GPL3 involves GPL1’s function as well as promoters that can be regulated by 3 transcription

factors: 3-input OR (3 activators, OR3), 3-input NOR (3 repressors, NOR3) but also Boolean function

that corresponds to 2 activators and 1 repressor (INH2A1R) and 1 activator and 2 repressors

(INH1A2R). Finally, GPL4 involves all the Boolean functions that can be achieved with a promoter

regulated by 4 transcription factors: OR4, NOR3, INH3A1R, INH2A2R and INH1A3R.

Part Two – Design Automation of Biological Systems

Page 84

Table 2 Parameters of the 16 parts and as the list of GPL in which they are included.

Name Boolean Function

#P
ro

m
o

te
r

R
egu

l.

P
ro

te
in

s

A
civato

rs

C
o

st

D
e

lay

G
P

L0

G
P

L1

G
P

L2

G
P

L3

G
P

L4

BUF S=a 1 1 1 1.25 1 ● ● ● ● ●

INV S=!x 1 1 0 1.00 1 ● ● ● ● ●

OR S=a+b 1 2 2 2.50 1 ● ● ● ●

INH S=a+!x 1 2 1 2.00 1 ● ● ● ● ●

NOR S=!(x+y) 1 2 0 1.60 1 ● ● ● ●

OR3 S=a+b+c 1 3 3 5.00 1 ● ●

INH2A1R S=(a+b)&!x 1 3 2 4.00 1 ● ●

INH1A2R S=a&!(x+y) 1 3 1 3.20 1 ● ●

NOR3 S=!(x+y+z) 1 3 0 2.56 1 ● ●

OR4 S=a+b+c+d 1 4 4 10.00 1 ●

INH3A1R S=a&!(x+y+z) 1 4 3 8.00 1 ●

INH2A2R S=(a+b)&!(x+y) 1 4 2 6.40 1 ●

INH1A3R S=a&!(x+y+z) 1 4 1 5.12 1 ●

NOR4 S=!(a+b+c+d) 1 4 0 4.10 1 ●

AND S=a&b 2 2 2 5.00 1 ●

NAND S=!(a&b) 2 2 0 4.00 1 ●

Table 3 Synthesis results for different functions with different GPLs. The tables display the gates instantiated for each
library, the corresponding cost of the generated system, the number of promoters, the number of internal regulations

and the maximum number of genes between the input and the output, named delay.

2-input AND gate

Library

Instantiated Gates

Cost Promoters
Internal

Regulation
Delay

B
U

F

IN
V

O
R

IN
H

N
O

R

O
R

3

IN
H

2
A

1
R

IN
H

1
A

2
R

N
O

R
3

O
R

4

IN
H

3
A

1
R

IN
H

2
A

2
R

IN
H

1
A

3
R

N
O

R
4

A
N

D

N
A

N
D

BIOLIB0 1 1 3.00 2 1 2

GPL1 1 1 3.00 2 1 2

GPL2 1 1 3.00 2 1 2

GPL3 1 1 3.00 2 1 2

GPL4 1 1 3.00 2 1 2

Chapter 4 – Design Automation at Boolean Level

Page 85

4-input AND gate

Library

Instantiated Gates

Cost Promoters
Internal

Regulation
Delay

B
U

F

IN
V

O
R

IN
H

N
O

R

O
R

3

IN
H

2
A

1
R

IN
H

1
A

2
R

N
O

R
3

O
R

4

IN
H

3
A

1
R

IN
H

2
A

2
R

IN
H

1
A

3
R

N
O

R
4

A
N

D

N
A

N
D

GPL0 3 3 9.00 6 5 4

GPL1 3 1 2 9.50 6 5 3

GPL2 3 1 2 9.50 6 5 3

GPL3 3 1 1 8.20 5 4 2

GPL4 1 1 8.10 5 4 2

4-input NOR gate

Library

Instantiated Gates

Cost Promoters
Internal

Regulation
Delay

B
U

F

IN
V

O
R

IN
H

N
O

R

O
R

3

IN
H

2
A

1
R

IN
H

1
A

2
R

N
O

R
3

O
R

4

IN
H

3
A

1
R

IN
H

2
A

2
R

IN
H

1
A

3
R

N
O

R
4

A
N

D

N
A

N
D

GPL0 3 3 9.00 6 5 4

GPL1 1 1 1 6.10 3 2 2

GPL2 1 1 1 6.10 3 2 2

GPL3 1 1 4.80 2 1 2

GPL4 1 4.10 1 0 1

2-input XOR gate

Library

Instantiated Gates

Cost Promoters
Internal

Regulation
Delay

B
U

F

IN
V

O
R

IN
H

N
O

R

O
R

3

IN
H

2
A

1
R

IN
H

1
A

2
R

N
O

R
3

O
R

4

IN
H

3
A

1
R

IN
H

2
A

2
R

IN
H

1
A

3
R

N
O

R
4

A
N

D

N
A

N
D

GPL0 2 2 3 10.50 7 8 5

GPL1 2 1 2 9.00 5 6 2

GPL2 2 1 2 9.00 5 6 2

GPL3 2 1 2 9.00 5 6 2

GPL4 2 1 2 9.00 5 6 2

4-input XOR gate

Library

Instantiated Gates

Cost Promoters
Internal

Regulation
Delay

B
U

F

IN
V

O
R

IN
H

N
O

R

O
R

3

IN
H

2
A

1
R

IN
H

1
A

2
R

N
O

R
3

O
R

4

IN
H

3
A

1
R

IN
H

2
A

2
R

IN
H

1
A

3
R

N
O

R
4

A
N

D

N
A

N
D

GPL0 2 6 9 26.50 17 21 11

GPL1 2 2 1 4 4 21.40 13 14 7

GPL2 2 2 1 4 4 21.40 13 14 7

GPL3 4 2 1 2 2 23.40 11 18 5

GPL4 4 2 1 2 2 23.40 11 18 5

Part Two – Design Automation of Biological Systems

Page 86

1-bit half-adder

Library

Instantiated Gates

Cost Promoters
Internal

Regulation
Delay

B
U

F

IN
V

O
R

IN
H

N
O

R

O
R

3

IN
H

2
A

1
R

IN
H

1
A

2
R

N
O

R
3

O
R

4

IN
H

3
A

1
R

IN
H

2
A

2
R

IN
H

1
A

3
R

N
O

R
4

A
N

D

N
A

N
D

GPL0 2 3 4 13.50 9 9 5

GPL1 2 1 1 3 11.0 7 7 3

GPL2 2 1 1 3 11.0 7 7 3

GPL3 2 1 1 3 11.0 7 7 3

GPL4 2 1 1 3 11.0 7 7 3

1-bit full adder

Library

Instantiated Gates

Cost Promoters
Internal

Regulation
Delay

B
U

F

IN
V

O
R

IN
H

N
O

R

O
R

3

IN
H

2
A

1
R

IN
H

1
A

2
R

N
O

R
3

O
R

4

IN
H

3
A

1
R

IN
H

2
A

2
R

IN
H

1
A

3
R

N
O

R
4

A
N

D

N
A

N
D

GPL0 2 7 11 31.50 20 20 8

GPL1 2 3 3 3 5 26.50 17 18 5

GPL2 2 3 3 3 5 26.50 17 18 5

GPL3 3 3 1 2 3 1 1 1 27.81 15 18 4

GPL4 3 3 1 2 3 1 1 1 27.81 15 18 4

8-bit comparator

Library

Instantiated Gates

Cost
Promote

rs
Internal

Regulation
Delay

B
U

F

IN
V

O
R

IN
H

N
O

R

O
R

3

IN
H

2
A

1
R

IN
H

1
A

2
R

N
O

R
3

O
R

4

IN
H

3
A

1
R

IN
H

2
A

2
R

IN
H

1
A

3
R

N
O

R
4

A
N

D

N
A

N
D

GPL0 16 33 75 203.00 121 157 15

GPL1 15 20 14 41 159.60 90 90 11

GPL2 15 20 14 41 159.60 90 90 11

GPL3 4 16 2 33 14 9 146.67 78 81 9

GPL4 2 16 8 28 2 3 2 6 2 7 194.70 76 73 7

We discuss the results obtained with the 4-input AND gate in particular. The GRNs obtained for this

gate with different libraries are depicted in Fig. 4 and the instantiated parts and the GRN performances

are shown in Table 3, 4-inputs AND gate. In GPL0, the synthesizer uses only an inverter (INV), which is

a constitutive promoter that can be repressed and an inhibition gate (INH). The results involve 6

promoters and a delay of 4 (i.e. the critical path, D-R2-R3-R4-GFP, involves 4 promoters, each of them

introducing a delay of 1). In another words, when D switches from one state to another, the expression

of 4 promoters have to change sequentially in order to observe the switch of GFP at the output. With

GLP1, the introduction of 2-activators and 2-repressors promoters reduces the critical path down to 6,

despite an extra cost of 6%. With GPL3, a 1-activator 2-repressor promoter can be used instead of one

OR and one INH. By this means, the system improves both characteristics: the delay is reduced to 2

Chapter 4 – Design Automation at Boolean Level

Page 87

and the cost to 8.2. Finally, the 4-input NOR gate of GPL4 makes the system less expensive. This last

solution corresponds to the one that can be obtained theoretically by applying de Morgan’s theorem:

𝐴 ∙ 𝐵 ∙ 𝐶 ∙ 𝐷 = 𝐴̅ + 𝐵̅ + 𝐶̅ + 𝐷̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅.

Fig. 4 Results of the synthesis of a 4-input AND gate with 4 different GPL. (A) GPL0, (B) GPL1, (C) GPL3 and (D) GPL4.

The main conclusions of this study on combinatorial circuits that deserve to be highlighted are the

following:

 As expected, the complex (and thus expensive) parts added into library GPL3 and GPL4 are used

sparingly in the designs.

 The AND gate designed by Moon’s construct is never used by the synthesizer. This is explained by the

cost affected to this construct (4.0) which is too high in comparison with other construct.

 For the very simple Boolean function, the use of complex parts on the same promoter does not bring

remarkable improvement with respect to the cost or the circuit delay.

 For more complex functions, GPL3 and GPL4 lead to important cost or delay reductions. For instance,

25% of cost and delay reduction for the 8-bit comparator between GPL1 and GPL4.

A

B

C

D

A

B

C

D

Symbols
Gene coding

for a repressor

Gene coding
for an activator

Gene coding for the
output proteim

Promoter Repression Activation

Part Two – Design Automation of Biological Systems

Page 88

3. Design of sequential GRNs

3.1. Definition of a sequential system

By opposition to combinatorial circuits, the output of the sequential circuits depends both on the

combination of inputs and on the state of the circuit. The state of the circuit itself depends on previous

values of inputs and is stored in internal memories as a signal. As depicted in Fig. 5 the circuit

performing sequential function is divided into two parts: the output logic and the transition logic. The

output logic is given by the value of the outputs 𝑆𝑖 as a function of the inputs 𝐸𝑖 and the state encoded

in several signals 𝑋𝑖 . The transition logic gives the next values of 𝑋𝑖 as a function of the current ones

and the inputs.

Fig. 5 Diagram of a sequential function. Ei and Si are respectively the inputs and the outputs of the system. Xi are the
internal variables of the system ; their values depend on time t.

Since a given input combination can lead to different outputs, the representation of a sequential

system by a truth table is no longer possible. Therefore more complex representations such as flow

graphs are required. An example of a flow graph is given in Fig. 6. It corresponds to a rendez-vous gate.

This example is used all along this subsection to illustrate Huffman’s method. It is composed of states

(bubbles) defined by a combination of inputs and outputs, and transitions (arrows) between states. A

transition between two states can only be triggered by the change of one and only one input. Thus, in

this flow graph, it can be read that when the system is in the state S1, the two inputs and the output

are “0”. If the input A rises to “1”, the system goes into the state S3 and the output remains at “0”. If

A falls back to “0”, the system returns to state S1. Otherwise, if the system is in state S2 and A rises to

“1”, the system goes in state S4 and, in this case, the output rises to “1”.

Fig. 6 Flow graph of the rendez-vous gate. The bubbles represent the different states with the values of the inputs A and
B and output O corresponding to the side inside (AB/O).

This flow graph can also be represented as a transition table (Table 4). The header line corresponds to

the inputs values. Then, each line corresponds to a state. The state number is written under its

Logique de
sortie

Logique
d’excitation

Ei Si

Xi
(t+dt)

Xi
(t)

Output

logic

Transition
logic

11/1

10/001/0

00/0

10/101/1

State S1

State S3State S2

State S4

State S5 State S6

Chapter 4 – Design Automation at Boolean Level

Page 89

corresponding combination (bold and gray values) whereas the transitions (italic) are written below

the combination of entries that corresponds to the targeted state.

Table 4 Transistion table of the rendez-vous gate. Each line is a state, with in grey the cell corresponding to the input
combination of this state. For each possible transition (one of the two inputs varies), the next state is written (not in

bold) in the same line.

Inputs 

State↓
0 0 0 1 1 1 1 0

S1 S1 S2 S3

S2 S1 S2 S4

S3 S1 S4 S3

S4 S5 S4 S6

S5 S1 S5 S4

S6 S1 S4 S6

3.2. Design of a sequential system

As depicted on Fig. 5, the sequential system is composed of two parts and involves internal signals

that encode the states. For a given flow graph, there are several synthesis methods for computing a

circuit at the gate-level. For sequential asynchronous systems the most common one is Huffmann’s

method (Giovanni De Micheli 1994).

The first stage of the design of a sequential system is to set the number of internal signals as well as

the way each state is encoded. It should be noted that two states can be encoded in the same way as

soon as they can be distinguished from each other with their inputs combination. The minimal number

of internal variables required to encode all the states is given by a compressed form of the transition

table. This form is obtained by grouping together the lines that do not exhibit contradictions

(contradiction occurs when two lines have two different state number under the same input

combination). In the example of Table 4, the first 3 lines can be grouped into one, as well as the last

three. This leads to the compressed transition table on Table 5.

Table 5 Compressed transition table of a rendez-vous gate. The first row corresponds to the inputs. Inside the cell is
reported the state number.

0 0 0 1 1 1 1 0

S1 S2 S4 S3

S1 S5 S4 S6

The second stage consists in choosing the way each line is encoded. Here, it is quite intuitive to encode

states 1 to 3 with the interval variable X=0 and states 4 to 6 with X=1. For systems with a single internal

variable, the way the states are encoded does not matter. Conversely, when there is more than one

internal variable, the encoding has to be chosen such that a transition only induces a change in a single

internal variable. This improves the stability of the system (see next section).

Part Two – Design Automation of Biological Systems

Page 90

The third stage of the design consists in computing the Boolean equation of the transition logic. To do

that, we replace in Table 5 each state number by its corresponding code. We obtain Table 6, which is

a Karnaugh map (alternative representation of a truth table).

Table 6 Karnaugh map of the internal variable X in function of the inputs. Inside the cell is reported the future value of X.
Grey cells correspond to stable states.

Inputs 

Int. Variables (X) ↓
0 0 0 1 1 1 1 0

0 0 0 1 0

1 0 1 1 1

The Boolean equation corresponding to this Karnaugh map is:

Equation 1

𝑿(𝒕+𝒅𝒕) = 𝑨 ∙ 𝑩 + 𝑿(𝒕) ∙ (𝑨 + 𝑩)

The last stage consists in computing the output. Again, from the compressed transition table, we

replace the state number by the value of the output corresponding to the state. In our example, we

obtain the same Karnaugh map. Thus, we can write directly that 𝑆 = 𝑋(𝑡+𝑑𝑡) .

The gate-level circuit that corresponds to the function is given in Fig. 7. Green signal is the internal

variable that realizes the feedback loop. As the transition logic and the output logic are combinatorial

function, the GRN that performs these functions can be computed with GeNeDA (see Fig. 8 in the next

paragraph).

Fig. 7 Gate-level circuit of a rendez-vous gate.

3.3. Stability of sequential system

Feedback loops are unavoidable in sequential systems and, as in many other systems, can be a source

of instability and malfunction. Here, the problem lies in the short-lived changes, also known as glitches.

In electronics, glitches corresponds to delays introduced by the propagation time of signals inside

gates. In biology, it corresponds to the gene activation/inhibition during transitions of the system and

in the delays induced by the genetic mechanisms used in GRN. As an example, let's consider the GRN

described here above. The transition from state 1 to state 2 occurs when B rises to “1” whereas A is

“0”. According to the theory, the internal variable should stay at “0”. But a production of X may occur

during the transition. Even if this production is weak, it can be sufficient to induce a self-activation of

the corresponding gene, instead of going to state 2, the system goes into state 5, which is a

malfunction.

Chapter 4 – Design Automation at Boolean Level

Page 91

Obviously, this phenomenon is more likely to occur when the number of internal variables and the

coupling between internal variables increases. The risks also increase dramatically when several

internal variables have to change at the same time, because delays induced by the genetic mechanisms

are very hard to control. Consider a transition for which two internal variables have to rise from 0 to

1. If a delay occurs between the transition of the first and the second internal variable, the ghost states

“10” appears and can lead the system into a unexpected state (other than “11”) or can trigger

oscillations. Thus, multiple changes of internal variables during a transition are generally avoided

during the design process. The same rule prevails in electronics, although it is easier to control delays.

This question of the stability of an asynchronous sequential GRN is addressed in the following. MATLAB

simulations are carried out on two examples: the rendez-vous gate, which corresponds to the system

used to illustrate this section and a crossing system that requires two internal variables.

3.4. Results

3.4.1. Rendez-vous gate

GRN implementation

We used GeNeDA to compute the GRN corresponding to a rendez-vous gate. The expression of 𝑋(𝑡+𝑑𝑡)

given above (Equation 1) correspond to the “Transition logic” on Fig. 5 and is a combinatorial circuit

(with the system’s inputs and the current state as inputs and the next state as output). Thus, the GRN

that corresponds to the output logic can be computed by GeNeDA. By the same way, GeNeDA can also

be used to compute the ouput logic.

We obtain a GRN with 5 promoters and 5 repressors, including X which plays the role of the internal

variable. Input A should be buffered (it is both an activator and a repressor) but for clarity we do not

represent it here. The buffer is therefore also absent from the simulated system. The internal variable

X and input B are both repressors here.

MATLAB simulations
A model of the GRN represented in Fig. 8 and based on the equations given in Chapter 2 is established

with MATLAB and simulated on different test benches. Parameters are set to the values given in Table

7.

Table 7 Default values of the parameters used in simulations

Constants Value

Dissociation constant
𝐾𝑎 3.3 µmol/L

𝐾𝑟 3.3 µmol/L

Hill’s number
𝑛𝑎 2.5

𝑛𝑟 2.5

Transcription rate 𝐾𝑡𝑟 0.1 /s

Translation rate 𝐾𝑡𝑙 1 /s

Protein degradation 𝑑𝑋 0.001 /s

mRNA degradation 𝑑𝑚𝑅𝑁𝐴 0.01 /s

Part Two – Design Automation of Biological Systems

Page 92

Fig. 8 GRN generated by GeNeDA to perform a rendez-vous gate

A test bench that cover all the possible paths in the flow graph is given is shown on Fig. 9. Simulation

results are in accordance with the specifications of the system. We notably see that output is not

produced before the first occurrence of both inputs A and B being high (concentration at 1) at the

same time. The output is then returning to a low state only when both inputs are low at the same time.

Fig. 9 MATLAB simulation of the rendez-vous gate

R1

B

YFP

A

B

A

R4

X

R3

R2

Time (s)

Chapter 4 – Design Automation at Boolean Level

Page 93

3.4.2. Crossing system

Presentation
The second system is more complicated. Its flow graph is represented of Fig. 10. The crossing system

can be specified as following. It is composed of two inputs A and B and one output S. In the initial state

S1, both the inputs and the output are low. When an input rises, the output rises and remains high

until the other input rises and falls. The rise of the second input may occur before or after the fall of

the first input.

Fig. 10 Flow graph of the crossing function

The synthesis of such system requires two internal signals, 𝑌 and 𝑍. Boolean equations giving the next

state of 𝑌 and 𝑍 as a function of the actual ones and the inputs are:

 𝑌(𝑡+𝑑𝑡) = 𝑍(𝑡) ∙ (𝐴̅ ∙ 𝐵̅ + 𝐴 ∙ 𝐵) + 𝑌(𝑡) ∙ (𝐴̅ ∙ 𝐵 + 𝐴 ∙ 𝐵̅)

𝑍(𝑡+𝑑𝑡) = 𝑍(𝑡) ∙ (𝐴̅ ∙ 𝐵̅ + 𝐴 ∙ 𝐵) + 𝑌(𝑡)̅̅ ̅̅ ̅ ∙ (𝐴̅ ∙ 𝐵 + 𝐴 ∙ 𝐵̅)
The output is then given by:

 𝑆 = 𝐴 + 𝐵 + 𝑍(𝑡)

MATLAB simulation
The GRN corresponding to this system involves 29 genes leading to 60 differential equations. A test

bench that covers the 4 relevant paths in the flow graph is given (Fig. 11). The output signal is in

accordance with the flow graph. As soon as one of the two inputs is high, if the output was low, it is

produced. The output then stays in a high state until the other output is low after having been high.

However, this accordance leans on a good choice of the biological parameters of the regulators. This

will be discussed in the next section.

10/101/1

00/0

State S2

00/111/1

10/101/1

State S3

State S4 State S5

State S6 State S7

State S1

Part Two – Design Automation of Biological Systems

Page 94

Fig. 11 MATLAB simulation of the crossing gate

3.4.3. Sensibility of the GRN parametrization
As mentioned, the parameters are set to the values given in Table 7. They are identical for each

regulator.

In this paragraph, we investigate designed GRNs’ sensibility towards the dispersion of the parameters

associated to the regulators. These parameters are related to the affinity of the regulator to its

promoter and the cooperativity of this binding, i.e. respectively the dissociation constants 𝐾𝐴 and 𝐾𝑅

and Hill's numbers 𝑛𝐴 and 𝑛𝑅. To that end, these parameters are allowed to vary around their default

value. Let Λ be the vector containing these parameters. A test consists in 100 random draws

(Λ1, … , Λ100) in which each set is computed as following: Λ𝑘 = Λ0 ⋅ 10σ∙Ψ𝑘 for the dissociation

constants and Λ𝑘 = Λ0 ⋅ (1 + σ ∙ Ψ𝑘) for the Hill’s number, where Λ0 is the default value of the

parameter, Ψ𝑘 is randomly drawn with a standard normal distribution and σ is the standard-deviation

of the spread of the parameters. Results were compared to the expected ones (Fig. 9 and Fig. 11).

The success rate corresponds to the percentage of parameters sets producing the expected response:

a threshold is fixed for the differentiation between a high and a low level. The success rate for different

configurations as a function of σ (relative standard deviation of the perturbation given in %) is shown

on Fig. 12. We observe that both systems are stable towards a dispersion of up to 10%. Above this

value, malfunctions appear. As expected, the system with a double feedback loop (crossing system) is

more sensitive than the system with a single one.

Biological noise, i.e. temporal fluctuation of the reaction rates around their deterministic value, was

also investigated: we tested the influence of the variation of the species concentration on the

performance of the circuits. Here, a Gaussian noise is added on each production and each degradation

term of the differential equations of the system. The standard deviation of the noise is proportional to

the each production and each degradation term to model a Poisson process.

Time (s) x104

Chapter 4 – Design Automation at Boolean Level

Page 95

Fig. 12 Success rate for different perturbations. A and B: a fixed fluctuation is applied on parameters related to the
regulators. C: success rate in function of the dispersion applied to the affinity constant, for different values of dispersion
of Hill’s number. D: a variation is added to the flux of species (production and degradation) in form of a Gaussian noise

with a fixed standard deviation.

The last graph shows that the rendez-vous gate is very robust. Indeed this system is robust towards a

noise relative standard deviation of over 50%. By opposition, the crossing system with the double

feedback loop is much more sensitive. Malfunction appears above 7%.

The results show that feedback loops in a GRN reduces robustness towards biological noise in

particular. We will therefore seek a solution to these malfunctions.

3.5. Synchronization of sequential GRN

A deeper analysis of malfunction in asynchronous sequential systems highlights that issues arise from

the continued update of the internal variables. Indeed, calculated internal variables are fed back

permanently to the input of the system, even if they are not yet stable or if the computation of their

new value is still in progress. Thus, a solution to avoid malfunction could be to update the values of

internal variable only at specific times, when we are sure that they are stable and consistent with the

theory. The transition between states becomes synchronous.

The design of these circuits follows the same process as for asynchronous sequential systems with the

addition of synchronization devices on feed-back loops. These devices, often called D-Flip-Flops (DFF),

are memories that can be updated only on edges of a synchronization signal, namely the clock. Three

conditions have to be met in order to ensure the proper functioning of synchronous systems:

 a DFF have to be added in the feed-back loop for each internal variable,

 the DFF have to share the same clock signal and the signal have to be distributed without

delay to all the DFF,

 the interval between two consecutive clock edges have to be large enough to let the

internal variable to update and stabilize.

A B

C D

Part Two – Design Automation of Biological Systems

Page 96

Thus, the realization of synchronous systems with GRN implies first the ability to realize a GRN that

mimics the behaviors of electronic DFF and second the ability to generate a clock signal and to

distribute it synchronously to all the instantiated DFF. The first challenge is discussed hereafter. The

second one is discussed in the third part of the manuscript.

4. Design of a biological D-Flip-Flop

The design of a biological synchronous memory is a tricky challenge. The first artificial biosystems

exhibiting a non-combinatorial feature are oscillators which switch from a state to another at defined

regular time steps (Elowitz and Leibler 2000) and a toggle switch (Gardner, Cantor, and Collins 2000)

in 2000. Alternative constructs have also been described, most of them being based on a positive

feedback loop in order to maintain state without external stimulus (Chang et al. 2010; Becskei,

Séraphin, and Serrano 2001). All of these solutions are asynchronous (the memory can be updated at

any time) and cannot be used in the GPL. In 2012, Hoteit et al. suggested a GRN achieving a D-flip-flop

behavior (Hoteit, Kharma, and Varin 2012a) (Fig. 13). The solution is very expensive (7 promoters and

about 10 involved proteins) and has been designed upon the standard structure used in

microelectronics, i.e. two D-latches cascaded in a master-slave structure (Paul Horowitz and Hill 1989).

In their DFF, light acts as the clock signal by modulation of the effectiveness of a transcription factor.

Note that equivalent behavior has also been reached using non-genetic systems (enzymatic reactions)

(MacVittie, Halámek, and Katz 2012).

Fig. 13 The gene regulatory network of the BioD, a biological DFF with 7 promoters (Hoteit, Kharma, and Varin 2012b).

We propose a more compact implementation using only 3 promoters and a competitive cross-

repression presented in Fig. 14. In the next paragraphs, we describe the system and exemplify how it

can be used to construct sequential systems.

4.1. Description

A DFF is sensitive to two signals, namely Data (D) and Clock (Clk). By opposition with standard

memories, the output of the DFF (Q), which should be bistable, may only change after rising (or falling)

edges of the clock signal and according to the value of D: the output copies the state of D and

memorizes it. Hence if D is high during the falling edge, Q turns (or stays) high whereas if D is low Q

turns (or stays) low (Table 8). In the biological domain, a falling edge is a sharp decrease in the

concentration of a protein (by enhanced degradation or by inhibition).

Chapter 4 – Design Automation at Boolean Level

Page 97

Table 8 Behavior of a flip-flop

Clk (PreQ1) D (AHL) Output (GFP)

L H/L Outputprev

↓ L L

↓ H H

The structure of the biological DFF (BioDFF) we developed for the bacteria Escherichia coli is composed

of 3 operons and involves 8 proteins and molecules. In addition, the system possesses two input signals

and one reporter (GFP in this case). In this example, the D input can be 3-oxo-C12-homoserine lactone

(3OC12HSL, thereafter termed AHL), which activates the LasR protein, which can in turn bind the luxI

promoter and activate expression of operon #1. The oscillating Clk signal can be realized with pre-

queuosine1 (PreQ1) and the adequate riboswitch (Winkler and Breaker 2005). The corresponding

cartoon is given in Fig. 14.

Fig. 14 A biologic D-flip-flop.

The operon #1 uses the luxI promoter (PluxI). Three proteins are synthesized when this operon is

expressed: a repressor (CII), an enzyme (LasI) and an activator (CI). The enzyme LasI produces AHL

(3OC12HSL). Upon binding with AHL, the protein LasR (expressed constitutively on a separate operon)

activates the transcription of the luxI promoter on operon #1 (Gray et al. 1994). LasI therefore plays

the role of a self-activator. Direct addition of AHL, here Data signal, achieves the same effect. CII is a

cross-repressor for operon #2 (Hoteit, Kharma, and Varin 2012b). The phage λ regulator protein CI

activates the transcription of operon #3 by binding to the OR domains of its PRM promoter (Court,

Oppenheim, and Adhya 2007). The transcript of operon #1 contains a so-called riboswitch, a short RNA

sequence located on the mRNA and sensitive to the presence of a specific ligand (PreQ1 in our system).

Upon addition of the ligand, formation of a premature terminator structure on the mRNA stops the

Part Two – Design Automation of Biological Systems

Page 98

transcription process (Gong et al. 2012): the ligand acts as a repressor of the genes located

downstream of the riboswitch. The promoter of operon #1 also contains a LacI binding site. Hence, its

expression is turned down in the presence of the repressor LacI. The expression of the operon #1 is

controlled by the concentration of AHL, from the direct input or from the enzyme LasI, the molecule

PreQ1 and LacI synthesized by the operon #2. The operon #2 synthesizes LacI, a repressor inhibiting

the expression of operons #1 and #3. It has the same riboswitch sequence as operon #1 and is

therefore also inhibited by PreQ1. Furthermore, operon #2 is sensitive to the repressor CII synthesized

by operon #1. The operon #3 has a positive linear feedback construct (Gardner, Cantor, and Collins

2000), that is to say that it synthesizes a self-activator CI. Expression of the operon #3 is controlled by

two regulating proteins: an activator synthesized by operon #1 and a repressor synthesized by operon

#2.

The most obvious case is when PreQ1 is present. Operons #1 and #2 are repressed by PreQ1. As a

consequence, the operon #3 is “insulated” from the rest of the circuit and acts as a bistable memory:

if active, this activity is maintained by the synthesis of CI. If not active, there is no activator, thus it

remains inactive. Now, let us consider the case where PreQ1 drops from high to low. At this point we

have to distinguish between two cases. If AHL is high, the activity of both operons #1 and #2 increases:

of operon #1 because of AHL and of operon #2 because of its constitutive promoter which is no more

repressed. But at the same time, they start to synthesize cross-repressors LacI and CII. Therefore, a

race occurs between the two genes (lacI and cII). In order to reach the expected behavior, production

of CII should be “boosted” in comparison with LacI. This could be achieved, for instance, by inserting

two coding sequences for CII protein in the operon #1. This boost leads to the inhibition of the operon

#2 and the activation of the operon #3 by CI. As a consequence, the output can rise to high. On the

other hand, if AHL is low when PreQ1 drops from high to low, the scenario is more obvious because

the operon #1, which does not have a constitutive promoter, remains inactive. A steady state in which

the operon #2 is active and represses operons #1 and #3 is quickly reached. As a consequence, the

output activity drops to low. When PreQ1 is low, activity of the operon #2 depends only on activity of

operon #1. If the operon #1 is inhibited, CII is not synthesized, thus the operon #2 is active and the

output is low. If the operon #1 is active, the operon #2 is repressed and the output is high.

Nevertheless, AHL may change at any time and especially may fall to low while PreQ1 is on. If the

output is already inactive, it does not matter. However, to prevent a change of output state while it is

active, the activity of the operon #1 has to be maintained by the self-activation of LasI. Finally, when

PreQ1 rises from low to high, activity of operons#1 and #2 decreases without any modification of the

output gene activity.

4.2. Modeling and simulation results

The BioDFF is modeled with Matlab. We reuse the classical equations introduced in Chapter 2. For the

three operons, all the 20 parameters are set to the default value (see Table 1) except 𝐾𝑅2, which is

equal to the half of the default value (0.005) and models the fact that the repression of CII is boosted

in comparison to one of LacI. Parameter values are chosen accordingly to (Alon 2006).

4.2.1. Global behavior
The behavior of the system is tested for a regular signal Clock (frequency of 10-5 Hz) and a signal Data
which is alternatively on and off according to a pattern that covers all the possible use cases.

Chapter 4 – Design Automation at Boolean Level

Page 99

Fig. 15 Global behavior of the system. The y axis is in nM. The system is turned on (i.e. the output protein GFP is
produced) only when the data is ON (high level) at a falling edge of the clock (blue rectangles). The output of the system

does not vary if the data varies between falling edges of the clock (yellow rectangles).

First of all, the results of the simulation show that at each falling edge of the clock, the output (GFP)

follows the input data: when data is low, the output is or turns low and when data is high, the output

is or turns high. The modeled system correctly imitates the input at the falling edge of the clock, as

expected. As for the memorization process, we can see that it is also correct. The output has to

memorize its previous state whenever the clock is not falling from high to low. To see that we varied

the input data between two falling edges of the clock (yellow rectangles on Fig. 15) and we see that

the output does not vary.

We can also notice that the level of GFP, though being and staying high whenever it should, varies

slightly (less than 20%). This phenomenon is due to the clock signal going high, meaning that the

operon #1 no longer produces CI, activator of operon #3 and therefore enhancer of GFP expression.

GFP high level only depends on its self-activation. Depending on the threshold needed to consider the

output to be high, this could pose a problem. In our case, as the level of GFP stays in the order of

magnitude of protein concentration considered high, we accept this difference. Increasing 𝐾𝑡𝑙3 (or

𝐾𝑡𝑟3) reduces this problem (data not shown). This can be achieved by using a stronger promoter.

4.2.2. Robustness towards leakiness of operon #3
As mentioned in the model description, the presence of a positive feed-back loop could render the

system unstable. We therefore added leakiness to promoter #3: we added a term 𝛼 ∙ 𝐾𝑡𝑟3 and the

maximal value of the Hill function was modified to (1 − 𝛼) ∙ 𝐾𝑡𝑟3.

The results show that for low values of leakiness (𝛼 < 5%) the system behaves normally (see Fig. 16).

However, when reaching high values of leakiness, operon #3 is able to self-activate when the clock is

on. If the data was previously off, operon #2 would previously have been on meaning that there would

still be the repressor protein CII present in the environment. What the simulation shows is that this

residual repressor is not enough to counteract the leakage of operon #3 when the said leakiness

LacI

CI

CII

LasI

Part Two – Design Automation of Biological Systems

Page 100

becomes too high. A potential solution would be to increase the strength of the said repressor, or to

ensure non-leaky promoter. The latter suggestion seems the more realizable.

Fig. 16 Simulation with a leaky promoter #3. The relative value of leakiness (alpha) is indicated in the upper right corner
of each diagram of the output, GFP.

4.2.3. Robustness towards noise during transcription
Another way to test the robustness of the circuit is to add noise during the transcription process. We

add Poisson noise on the 𝐾𝑡𝑟 of the 3 operons, which in biology corresponds to natural noise

concerning the transcription process. Results are shown in Fig. 17. Our system tolerates up to 10% of

noise on the transcription process.

We then integrate our circuit in systems implementing sequential functions, namely a frequency

divider by 2 also known as a 1-bit counter, and a 2-bits counter.

4.3. Design of biological counters

To design a 1-bit counter, we must first design a system that divides the frequency by 2. In

microelectronics, this is realized by connecting the output of the flip-flop to its own data input through

an inverter gate (Fig. 18A). To this aim, we need operon #3 (producing the output) to express a

repressor, which in turns represses an activator for operon #1. Thereafter, we will name this repressor

R4. In the model, we only modified the equations so that operon #3 synthesizes R4 and the data input

is now negatively regulated by R4.

t (in s)

P
ro

te
in

 c
o

n
ce

n
tr

at
io

n
 (

n
M

)

Chapter 4 – Design Automation at Boolean Level

Page 101

Fig. 17 Simulation of a noisy transcription. Relative value of noise attributed to the 3 Ktr is indicated in the upper right
corner of each diagram of the output.

Fig. 18 Frequency divider. A shows the theoretical circuit (/Q is the complementary output of Q). B shows the result, GFP
corresponds to the output Q.

We indeed obtain as output a signal with a frequency divided by 2 as shown by the simulation results

on Fig. 18B.

To build a counter on 2 bits, we need to put 2 flip-flop in series, the clock of the second one being the

output of the first (see Fig. 19). We simply copied the model of the first system. To avoid impedance

problem, the output of the first flip-flop was buffered so that the clock of the second flip-flop was in

the expected range. A buffer here is simply an activated gene. The activator is produced by operon #3

and act cooperatively with a Hill’s number of 2. This first system did not work because of not sharp

enough edges of the second clock. To solve this issue, two additional buffers were added, with the

same cooperativity (Fig. 19). It can be noted that 2 buffers with a Hill’s number of 3 or one buffer with

a Hill’s number of 5 also gives correct behavior. Because of biological delays, we observe ‘glitch’ state

when the system transitions from the state corresponding to 01 to the one corresponding to 10 (the

t (in s)

P
ro

te
in

 c
o

n
ce

n
tr

at
io

n
 (

n
M

)

A B

P
ro

te
in

 c
o

n
ce

n
tr

at
io

n
(n

M
)

Clk

Part Two – Design Automation of Biological Systems

Page 102

system briefly goes to the state 00) as well as between 11 to 00 (the system briefly goes to the state

10). Depending on the application, this might be an issue or not. If required, a solution to this problem

is found by using synchronous counters (Kuphaldt 2016).

Fig. 19 A biological counter. It is composed of two flip-flop, the clock of the second one being the output of the first (A).
The first (resp. second) digit is the output of the first (resp. second) flip-flop (B, last row). GFP (resp. GFP2) is the output
of the first (resp. second) flip-flop (B). Data2 is the buffered output of the first flip-flop. Glitches can be observed during

the transition between 01 to 10 (yellow rectangle), and between 11 to 00 (blue rectangle).

To conclude, a new genetic D flip-flop has been designed. It is an alternative of a structure previously

introduced by Hoteit et al. in 2012. Its main advantage consists in being more compact (only three

operons against seven for Hoteit). The other side of the coin is that our system relies on a competitive

reaction between two repressors and a cognate promoter, which renders the system less robust than

Hoteit’s. Indeed, the simulations carried out in Matlab showed that system parameters should be

controlled precisely enough to ensure proper functioning of the system, which can be easily done in

silico but could be a tricky challenge when realized with actual genetic material.

4.4. Necessity to split the system

With this DFF, we can now use GeNeDA with GPLs that include DFF and model sequential systems.

However, for large systems requiring more than one DFF, a drawback may arise. Indeed, this single

component, the DFF, requires many genes. In biology, crosstalk between genes has to be avoided as

there is no wire to connect a component to another one: the proteins are all in the same compartment,

the cell, and can interact with every other protein. To avoid this crosstalk, we would need different

implementations of the DFFs, which means a high number of genes, even though our construct is more

compact. In particular, this fact has not been taken into account in the design of the 2-bit counter

where it has been considered that it is possible to integrate two strictly identical D flip-flops within the

same cell.

As introducing a high number of genes in a cell might prove to be challenging, a second solution is

more often privileged nowadays: the system is split into several subsystems implemented into

different populations of cells. Looking back on the example of the counter, this would consist in

creating two populations of cells, one for the first bit and the other for the second. Each cell includes

a single D-flip-flop whose clock signal is generated by the previous cell. Virtual prototyping of this kind

of system requires a space simulator and the ability to synchronize signals (e.g. the clock signal) across

multiple cells. This paradigm is discussed in details in Chapter 7.

Clk

t (in s)

P
ro

te
in

 c
o

n
ce

n
tr

at
io

n
 (n

M
)

A B

00 01 10 11 00
Time (s)

Chapter 4 – Design Automation at Boolean Level

Page 103

5. Conclusion

In this chapter, we demonstrated a way to automate the design of combinatorial GRNs by reusing

electronics tools. From a high level specification (truth table, Verilog file), the tool suite designs a GRN

and provides associated SBML and SystemC-AMS models. A special care was given to the build of the

generic part library, which is the cornerstone of the software. It has been made as realistic as possible

regarding the possibilities offered by synthetic biology and has been validated on a benchmark of

standard circuits.

We also address the question of the design of sequential GRN. For asynchronous sequential systems,

Huffmann’s method provides two sets of Boolean equations which can be given as input of GeNeDA

to obtain the equivalent GRN. Nevertheless, simulation results highlight major shortcomings of

asynchronous GRN. Indeed, the delay introduced by gene activation/inhibition in the feedback loops

induces malfunction and/or instability.

For synchronous circuits, DFFs are required. Drawn from an analogy with electronics, Hoteit et al.

demonstrated a GRN having the behavior of a DFF but involving many genes and promoters. However,

its feasibility with actual biological material has not been demonstrated. Thus, we proposed a more

compact biological DFF. The robustness of this circuit, which also involves feedback loops, has been

validated. As the GeNeDA’s digital synthesizer can directly handle Verilog files that describe a

synchronous system, the introduction of our DFF in our Generic Part Library enables the design of any

Boolean GRN, at least from a theoretical point of view.

In practice, the realization of such GRN might be a little bit trickier. The first bottleneck that we will

encounter is the number of part required to build a synchronous system. An example is given in (Madec

et al. 2013). A simple 3-states synchronous system was generated with GeNeDA and required 11

promoters and 2 DFF, which is a large GRN in comparison with the technological know-how.

Concerning the DFF itself, another problem may arise. In synthetic biology, all the parts are put

together in the same compartment, the cell. Crosstalk between genes is thus unavoidable (there is no

wire to connect a component to another one, as in electronics) and may lead to the same issues that

we highlighted for asynchronous systems.

For a system with multiple DFFs, a solution consists in using, for each instance of the DFF, a different

set of promoters and regulators that are uncoupled from the other. As this solution might be

challenging, a privileged alternative consists in splitting the system into several subsystems that are

implemented into different populations of cells. The study of this kind of system is more complicated

and requires a simulator that takes spatial location into account. In particular, the issue of the

synchronous distribution of the clock signal to each cell may arise.

These points are discussed in much more details in the third part of this manuscript. Before that, the

question of the design automation of GRN that cannot be represented at the Boolean level of

abstraction (typically, a system exhibiting a bell-shaped response) is tackled in the next chapter.

6. References
Alon, Uri. 2006. An Introduction to Systems Biology: Design Principles of Biological Circuits.

http://books.google.fr/books/about/An_Introduction_to_Systems_Biology.html?id=pAUdPQlCZ54C&pgis
=1.

Part Two – Design Automation of Biological Systems

Page 104

Ashenden, Peter J. 2010. The Designer’s Guide to VHDL. Morgan Kaufmann.

Becskei, A, B Séraphin, and L Serrano. 2001. “Positive Feedback in Eukaryotic Gene Networks: Cell Differentiation
by Graded to Binary Response Conversion.” The EMBO Journal 20 (10): 2528–35.
doi:10.1093/emboj/20.10.2528.

Bhatia, Swapnil, and Douglas Densmore. 2013. “Pigeon: A Design Visualizer for Synthetic Biology.” ACS Synthetic
Biology 2 (6): 348–50.

Brayton, Robert K, Gary D Hachtel, Alberto Sangiovanni-Vincentelli, Fabio Somenzi, Adnan Aziz, Szu-Tsung Cheng,
Stephen Edwards, et al. 1996. “VIS: A System for Verification and Synthesis.” In Computer Aided
Verification, 428–32.

Chang, Dong-Eun, Shelly Leung, Mariette R Atkinson, Aaron Reifler, Daniel Forger, and Alexander J Ninfa. 2010.
“Building Biological Memory by Linking Positive Feedback Loops.” Proceedings of the National Academy of
Sciences of the United States of America 107 (1): 175–80. doi:10.1073/pnas.0908314107.

Court, Donald L, Amos B Oppenheim, and Sankar L Adhya. 2007. “A New Look at Bacteriophage Lambda Genetic
Networks.” Journal of Bacteriology 189 (2): 298–304. doi:10.1128/JB.01215-06.

Elowitz, Michael B, and S Leibler. 2000. “A Synthetic Oscillatory Network of Transcriptional Regulators.” Nature
403 (6767): 335–38. doi:10.1038/35002125.

Gardner, T S, C R Cantor, and James J Collins. 2000. “Construction of a Genetic Toggle Switch in Escherichia Coli.”
Nature 403 (6767): 339–42. doi:10.1038/35002131.

Giovanni De Micheli. 1994. “Synthesis and Optimization of Digital Circuits.” In Synthesis and Optimization of
Digital Circuits, 576. McGraw-Hill. https://dl.acm.org/citation.cfm?id=541643.

Gong, Zhou, Yunjie Zhao, Changjun Chen, and Yi Xiao. 2012. “Computational Study of Unfolding and Regulation
Mechanism of preQ1 Riboswitches.” Edited by Vladimir N. Uversky. PloS One 7 (9). Public Library of Science:
e45239. doi:10.1371/journal.pone.0045239.

Gray, K M, L Passador, B H Iglewski, and E P Greenberg. 1994. “Interchangeability and Specificity of Components
from the Quorum-Sensing Regulatory Systems of Vibrio Fischeri and Pseudomonas Aeruginosa.” Journal of
Bacteriology 176 (10): 3076–80.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=205467&tool=pmcentrez&rendertype=abstr
act.

Hoops, Stefan, Sven Sahle, Ralph Gauges, Christine Lee, Jürgen Pahle, Natalia Simus, Mudita Singhal, Liang Xu,
Pedro Mendes, and Ursula Kummer. 2006. “COPASI—a Complex Pathway Simulator.” Bioinformatics 22
(24). Oxford Univ Press: 3067–74.

Hoteit, Imad, Nawwaf Kharma, and Luc Varin. 2012a. “Computational Simulation of a Gene Regulatory Network
Implementing an Extendable Synchronous Single-Input Delay Flip-Flop.” BioSystems. Elsevier Ireland Ltd,
1–15. doi:10.1016/j.biosystems.2012.01.004.

———. 2012b. “Computational Simulation of a Gene Regulatory Network Implementing an Extendable
Synchronous Single-Input Delay Flip-Flop.” Bio Systems 109 (1). Elsevier Ireland Ltd: 57–71.
doi:10.1016/j.biosystems.2012.01.004.

Hucka, M., A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin, et al. 2003. “The Systems Biology
Markup Language (SBML): A Medium for Representation and Exchange of Biochemical Network Models.”
Bioinformatics 19 (4): 524–31. doi:10.1093/bioinformatics/btg015.

Ismail, Mohammed, and José E Franca. 2012. Introduction to Analog VLSI Design Automation. Vol. 95. Springer
Science & Business Media.

Jamieson, Peter, Kenneth B Kent, Farnaz Gharibian, and Lesley Shannon. 2010. “Odin II-an Open-Source Verilog
HDL Synthesis Tool for CAD Research.” In Field-Programmable Custom Computing Machines (FCCM), 2010
18th IEEE Annual International Symposium on, 149–56.

Jerke, Goeran, and Jens Lienig. 2009. “Constraint-Driven Design: The next Step towards Analog Design

Chapter 4 – Design Automation at Boolean Level

Page 105

Automation.” In Proceedings of the 2009 International Symposium on Physical Design, 75–82.

Koza, John R, Forrest H Bennett, David Andre, Martin A Keane, and Frank Dunlap. 1997. “Automated Synthesis
of Analog Electrical Circuits by Means of Genetic Programming.” Evolutionary Computation, IEEE
Transactions on 1 (2). IEEE: 109–28.

Kuphaldt, Tony R. 2016. “Asynchronous Counters : Sequential Circuits - Electronics Textbook.”
http://www.allaboutcircuits.com/textbook/digital/chpt-11/asynchronous-counters/.

MacVittie, Kevin, Jan Halámek, and Evgeny Katz. 2012. “Enzyme-Based D-Flip-Flop Memory System.” Chemical
Communications (Cambridge, England) 48 (96): 11742–44. doi:10.1039/c2cc37075a.

Madec, Morgan, Francois Pecheux, Yves Gendrault, Lujo Bauer, Jacques Haiech, and Christophe Lallement. 2013.
“EDA Inspired Open-Source Framework for Synthetic Biology.” In Biomedical Circuits and Systems
Conference (BioCAS), 2013 IEEE, 374–77.

Micheli, Giovanni De. 1994. Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher Education.

Mishchenko, Alan. 2015. “ABC Website.” Berkeley Website.

Moon, Tae Seok, Chunbo Lou, Alvin Tamsir, Brynne C Stanton, and Christopher A Voigt. 2012. “Genetic Programs
Constructed from Layered Logic Gates in Single Cells.” Nature 491 (7423): 249–53.
doi:10.1038/nature11516.

Paul Horowitz, and Winfield Hill. 1989. The Art of Electronics. Cambridge University Press.

Pêcheux, Francois, Morgan Madec, and Christophe Lallement. 2010. “Is SystemC-AMS an Appropriate ” Promoter
” for the Modeling and Simulation of Bio-Compatible Systems ?” In IEEE International Symposium on Circuit
and Systems (ISCAC).

Rabaey, Jan M, Anantha P Chandrakasan, and Borivoje Nikolic. 2002. Digital Integrated Circuits. Vol. 2. Prentice
hall Englewood Cliffs.

Rutenbar, Rob. 1993. “Analog Design Automation: Where Are We? Where Are We Going?” In Custom Integrated
Circuits Conference, 1993., Proceedings of the IEEE 1993, 11–13.

Thomas, Donald E., and Philip R. Moorby. 2002. The Verilog® Hardware Description Language.

Vachoux, Alain, Christoph Grimm, and Karsten Einwich. 2003. “Analog and Mixed Signal Modelling with SystemC-
AMS.” In Circuits and Systems, 2003. ISCAS’03. Proceedings of the 2003 International Symposium on, 3:III--
914.

Winkler, Wade C, and Ronald R Breaker. 2005. “Regulation of Bacterial Gene Expression by Riboswitches.” Annual
Review of Microbiology 59 (January): 487–517. doi:10.1146/annurev.micro.59.030804.121336.

Part Two – Design Automation of Biological Systems

Page 106

Page 107

Chapter 5
Design Automation at Analog Level

1. Introduction .. 107

2. Parameter optimization for a given GRN .. 109

2.1. A brief overview of inverse problem 109

2.1.1. Local algorithms .. 109

2.1.2. Global algorithms .. 110

2.1.3. Configurable algorithms.. 111

2.2. Evolutionary algorithms .. 111

2.2.1. Presentation .. 111

2.2.2. Description of an iteration .. 111

2.2.3. Implementation: EASEA platform 113

2.3. Results on the band-pass .. 113

2.3.1. Description of the system ... 113

2.3.2. Setup of the evolutionary algorithm 116

2.3.3. Results ... 118

2.3.4. Discussion.. 121

2.4. Results obtained on a XOR gate .. 122

2.5. From an evolution strategy to genetic programming 123

3. Evolving the GRN topology .. 125

3.1. Introduction to genetic programming 125

3.2. Genetic programming with generic functions 125

3.2.1. XOR gate .. 125

3.2.2. Band-pass system.. 127

3.3. Genetic programming with ADF ... 127

3.3.1. Rules of construction of the network 127

3.3.2. Reaction parameters ... 128

3.3.3. GP algorithm set up .. 129

3.3.4. Results with a 4-points target ... 131

3.3.5. Target with a higher number of evaluated points 136

4. Conclusion ... 137

5. References ... 137

1. Introduction

In this chapter, we will focus on the automatic design of biological systems that are described by an

analog behavior. This approach is based on two motivations. First, several systems cannot be described

by a Boolean function. An example of such a system is Basu’s band-pass (Basu et al. 2005) for which

the output reporter protein is synthesized only for an intermediate concentration of input protein

(more details about this system are given in the Section 2.3). Second, by opposition to digital

Part Two – Design Automation of Biological Systems

Page 108

electronics, the gap between the Boolean abstraction of a gene regulatory network and its actual

behavior can be important. In particular, connections between genes are not so obvious. For instance,

let gene #1 produce an activator for gene #2. Even if gene #1 is active, the amount of synthesized

protein may be not sufficient to activate gene #2. Thus, it is often necessary to supplement the high-

level design by a design at a lower level of abstraction. Another example is the amplification function

described in (Xie et al. 2011) where two layers of regulation are needed to generate a sufficiently sharp

transition between states.

In the Chapter 2, we defined two levels of abstraction below the Boolean one, namely multi-valued

logic and analog. Designing at intermediate levels of abstraction has already been demonstrated. René

Thomas’ investigations deserve to be highlighted (Thomas, Thieffry, and Kaufman 1995). Indeed, he

developed a formalism for the modeling of dynamical behaviour of biological regulatory network

through multivalued logic variables, rules, graphs and graphical representation of the state space. A

few years later, Gilles Bernot extended this approach to include temporal properties of GRN (Bernot

et al. 2004). An alternative has been recently investigated based on fuzzy logic which is used to describe

the rules that govern the relations between protein concentration and gene states (Gendrault et al.

2014). The main asset of fuzzy logic in comparison with standard multivalued logic is that the link

between fuzzy value and actual concentration of protein is never lost. Fuzzy logic can be used to

describe systems at an intermediate level of abstraction, but also for design purposes, as it has been

shown in (Gendrault et al. 2014). In this case, an algorithm tests all the possible combinations of rule

matrices (picked up from a library) and finds the one that best meets the expected behavior. Each rule

matrix corresponds to a gene-protein interaction and its content provides the designer with important

clues about the choice of the gene-protein interaction to implement.

Design automation of GRN at the analog level of abstraction is very close to the analog synthesis in

miocroelectronics. This topic has been widely investigated since the beginning of the 80’s and is still

an open question. Several tools and methods have been demonstrated using specific formalisms and

formal computation (Doboli and Vemuri 2003; Lohn and Colombano 1998). Nevertheless, these

developments have not led to a generic tool which would have been widespread in the analog

designers community. The main reason is that they were too complex and too specific to be used for

a large range of circuits. In addition, they require libraries and/or artificial learning methods or the

translation of designer experience to formal rules, which is not straightforward. In a more general way,

it was observed that the ratio between the implementation complexity of such algorithms and the

complexity of circuits that can be synthesized were poor in comparison to a hand-made design.

One of the most outstanding breakthrough in the domain of analog synthesis has been made by Koza

in 1997 (Koza et al. 1997) based on genetic programming algorithms. He demonstrates the potential

of his method on a large set of electronic circuits (filters, amplifiers, controllers) for which genetic

algorithms provided solutions (circuit topology and component dimensioning) very competitive in

comparison with human intelligence (Koza 2003). At the time, the main shortcoming of evolutionary

algorithms was that they required computing power that could only be provided by supercomputers.

This is no longer true with current technologies: the exploitation of the parallelized computation over

small networks and/or the exploitation of the performance of the Graphical Processor Units (GPU)

(Maitre et al. 2009) makes it possible to obtain such results with reasonably priced computing systems.

Generally speaking, analog synthetis is a subset of inverse problems. Inverse problems consist in

searching the functions (in this case the model of the system) which give a response as close as possible

Chapter 5 – Design Automation at Analog Level

Page 109

to the expected one (in this case, the specification). Several methods exist to tackle this kind of

problems. Most of them require the topology of the system to be known a priori and optimize the

system’s parameters to converge toward a target. They are briefly overviewed in the first Section of

this chapter. Emphasis is put on evolutionary algorithms which seems to be promising in our context.

The application of different families of evolutionary algorithms in the context of synthetic biology is

demonstrated. First, we consider GRN for which the topology (i.e. the assembly of elementary

mechanisms) has been previously fixed and for which we aim at finding the most appropriate building

block to realize each mechanism. For this purpose, two approaches are possible. On the one hand,

combinatorial optimization can be used to try different combinations of building blocks and find those

exhibiting the best response. On the other hand, continuous optimization can be used to find the sets

of parameters for each model of each mechanism that give the best response. These sets of

parameters then guides the designer in the choice of the building blocks that will be used to perform

each mechanism. This second method is illustrated in the context of a GRN in Section 2. Finally, we

tackle the much more complex problem of the design automation of a GRN for which the topology of

the network is not defined a priori. To do that, genetic programming methods can be applied, as

discussed in Section 3.

2. Parameter optimization for a given GRN

The first task at hand is to optimize the components of a given system. For a GRN of a given topology,

many implementations can exist. Indeed, many activators and repressors of different affinity towards

their promoter can be used. However, not all kind of regulators are suited to realize a given function.

We will first see which method is best suited to solve this issue, then we present our approach with

evolutionary algorithms and finally show our results obtained with this algorithm on two different

problems.

2.1. A brief overview of inverse problem

Let 𝑓 be a function (in our case, the GRN model) that depends on a set of parameters 𝑥 (model’s

biochemical parameters). Applying 𝑓 on 𝑥 leads to 𝑦, the response of the system. Inverse problem

consists in defining a response 𝑦̃ (the target response) and exploring the search space to find a value

of 𝑥 such as 𝑓(𝑥) = 𝑦̃. In other words, it is equivalent to look for the value of 𝑥 that minimizes the

function ℎ(𝑥) = 𝑓(𝑥) − 𝑦̃ (the subtraction here corresponds to an operator able to evaluate the

difference between two responses). Most of the time, ℎ(𝑥) (also called the score function) is

multimodal function, i.e. it may have many local optima. The research of the global minimum among

all local ones is not straightforward.

2.1.1. Local algorithms
Greedy algorithms like hill climbing and gradient descent allow to find a local minimum. For a discrete

function, hill climbing starts with a random solution (𝑥0 on Fig. 1A). This algorithm visits its neighbors

(other solutions in the search space) and only changes to the new solution if it is a better one (lower

in case of minimization). Gradient descent can be applied to continuous derivable functions and also

starts with a random solution 𝑥0. This algorithm computes the gradient of the point and selects a new

solution in the direction of the negative gradient (arrows on Fig. 1B). The distance of the newly visited

point depends on the absolute value of the gradient: the greater the farther. This algorithm will

Part Two – Design Automation of Biological Systems

Page 110

therefore achieve « big steps » when on a steep slope and gradually reduce the size of these steps

when close to a gradient equal to 0, representing a local (if not global) minimum.

Both of these algorithms can be stuck in the first valley (local minimum) they find, therefore the

position of the starting point 𝑥0 is crucial. Moreover, if the discrete function is generated from a

continuous one, the increment between each step is crucial not to miss the global minimum: we see

on Fig. 1A that the global minimum (red cross) is only sampled by two solutions (the two blue lines

flanking it) that are both above the lowest local minimum (red arrow). Thus, the computation time of

greedy algorithms increases with the number of dimensions (more neighbors to evaluate).

Fig. 1 Local optimization algorithms. A: Hill climbing used on a discrete function. 𝒙𝟎 is the starting point of the algorithm,
the red arrow shows the local minimum found by the algorithm while the red cross shows the expected global minimum.

B: gradient descent for a continuous function. 𝒙𝒊 are the successive points visited by the algorithm, the blue and yellow
arrows represent the associated negative gradients.

An alternative to local methods are global algorithms which search the global optimum.

2.1.2. Global algorithms
We can distinguish two categories of global algorithms: enumerative and stochastic. Enumerative

algorithms are applied to problems that have a finite number of solutions (like combinatorial

problems). They explore all solutions, hence guaranteeing to find the global optimum. However this

exploration can be extremely long. Furthermore, not all problems at hand possess a finite number of

solutions. We therefore focus here on stochastic algorithms.

On their lowest degree, stochastic algorithms such as Monte Carlo (Metropolis and Ulam 1949)

evaluate a random set of solutions and select the best. Simulated annealing (Kirkpatrick, Gelatt, and

Vecchi 1983) uses Monte Carlo. This algorithm introduces a variable called the temperature. The

starting point is a random solution 𝑥0 with a high temperature T. At each iteration, the algorithm

evaluates a new solution. If this solution is better, it is selected as the next point. Otherwise, the

algorithm selects the new points instead of keeping the initial one with a probability depending on the

difference between the evaluation of both points and the temperature T (Metropolis et al. 1953). Then

the temperature T decreases. With this probability, there is a chance not to always search in the

current valley: the algorithm can also explore other points that might appear at first evaluation worse

but lead to more promising valleys. Under certain conditions and an infinite time, this algorithm

guarantees to find the global optimum. Obviously, an infinite convergence time is not practical.

Hill climbing Gradient descentA B

Chapter 5 – Design Automation at Analog Level

Page 111

In practice, global methods are often used with local methods. First, the global algorithm roughly scans

every valley and selects the most promising one. Then the local algorithm is used to search the selected

valley and find its minimum. These are called hybrid methods.

2.1.3. Configurable algorithms
Some algorithms allow to tune the convergence speed by adjusting two parameters: the exploration

rate and the exploitation rate. Exploration relates to the scanning of the search space: the more

exploration, the more the algorithm will evaluate unknown solutions. On the other hand, exploitation

encourages the deepening of an explored region to find a better optimum and enhance convergence.

A good trade-off between exploration and exploitation is important to explore all promising valleys

and not miss an important one but also converge in a reasonable time. An example of such a tunable

algorithm is the ant colony optimization (Dorigo and Stützle 2004). However, to adapt this kind of

algorithm to a given problem, two parameters are often insufficient.

In a nutshell, we want an algorithm able to handle a wide variety of functions (discrete, continuous,

derivable, multimodal…), that can find a global optimum in a reasonable time and that has enough

parameters to adapt it to a given problem. Evolutionary algorithms are good candidates to these

requirements and we chose to focus on them.

2.2. Evolutionary algorithms

2.2.1. Presentation
Evolutionary algorithms are composed of several adjustable operators. By specializing our algorithm

to our problem, we have an algorithm that will converge faster than a simple stochastic search.

However, we lose the guarantee to find the global optimum.

The concept of evolutionary algorithms appeared earlier than the other algorithms mentioned

previously, with the work of Fraser in 1957 (reprinted in (Fogel and B. 1998)) and Bremermann in 1962.

The foundations laid by this early work were left aside for a few years because the computing power

could not keep up with the demands of such algorithms. A renaissance happened in the 1990s with

the work and funding of super computers of Koza (Koza 1992).

To solve a problem with evolutionary algorithms, we need to be able to represent solutions to it, by a

single value, a vector of integer or real numbers, a bit string, etc. Evolutionary algorithms can be

classified into categories according to their representation among others (e.g. the operators): genetic

algorithms (Kalyanmoy Deb and Goldberg 1989; Holland 1975) work with bit strings, evolutionary

strategies (Rechenberg 1965) use real-valued vectors and genetic programming (Cramer 1985; Koza

1992) represents the solution as a program. In general, implemented algorithms use representations

and operators from different paradigms so that this classification is less accurate.

As for other algorithms, we need a way to evaluate a solution. In evolutionary algorithm, the evaluator

is called the fitness function. The evaluation can be absolute or relative.

Evolutionary algorithms take their inspiration from Darwinian evolution: the two main principles are

stochastic modifications to an individual and selection among a population. An evolutionary algorithm

therefore manipulates a population of solutions called individuals and applies operators to them.

2.2.2. Description of an iteration
Evolutionary algorithms proceed through different steps described on Fig. 2.

Part Two – Design Automation of Biological Systems

Page 112

The first step of an evolutionary algorithm is the initialization of the population. Random solutions are

generated. These solutions need to be evaluated with the help of the user-defined evaluation function.

Each individual of the population therefore receives a fitness score. These individuals constitute the

parents.

Here we can set an early stop condition. If the algorithm fulfills this condition, it stops and retrieves

the best individual.

The next step is the creation of new individuals called children. For each child, the process is the

following:

i) a given number (depending on the selection operator) of parents is selected in the

population with a probability depending on their fitness score,

ii) a crossover operator is applied to create a child with a recombination of the parameters

of the parents,

iii) a mutation operator is applied, leading to small alteration of the child’s parameters.

Then, the children are evaluated and the population (parents + children) can be reduced using a

selection operator. The surviving individuals constitute the next generation. The way the selection is

performed and, more precisely, the way parents and children are treated is referred to as elitism. A

strong elitism means that the next generation is only composed of children (every parent dies).

Conversely, a weak elitism means that the next generation is only composed of best individuals, should

they be parents or children.

A new iteration with the same steps is then carried out until the stop criterion (if one has been defined)

is met or until the algorithm reaches a given number of generations.

Fig. 2 Diagram of an evolutionary algorithm (adapted from MOOC Pierre Collet).

In comparison with other methods, evolutionary algorithms have the advantage to be highly

configurable, especially through their different operators (crossover, mutation, selection). There are

many ways to select, recombine and mutate individuals. The best way to have an efficient algorithm is

to customize these operators to adapt them to the problem. During this tuning phase, one has to keep

in mind that, for evolutionary algorithms, convergence speed is not a guarantee of quality. An

Initialization
of the

population

Evaluation Parents Stop ?

Best individual

Selection of n
parents

Variation operators
(crossover, mutation)

Evaluation Children

Reduction

GENERATION

Chapter 5 – Design Automation at Analog Level

Page 113

algorithm converging too fast will probably converge to a local optimum. Conversly, a long converging

time is neither practical nor competitive. We therefore tinker our operators so that the selection

pressure (increasing the convergence speed) and the stochasticity (decreasing the convergence speed)

are in a good balance.

2.2.3. Implementation: EASEA platform
In evolutionary algorithms, a major limiting factor in the execution time of an iteration is the

evaluation. However, it is possible to evaluate each individual in parallel, as they have no influence on

the evaluation of others. We therefore decided to implement our algorithm on the EASEA (Easy

Specification of Evolutionary Algorithms) platform, developed in 1999 by Collet et al. (Collet et al.

2000). This platform allows an easy implementation of evolutionary algorithms and an automatic

parallelization over GPGPUs.

2.3. Results on the band-pass

Continuous optimization with genetic algorithm can be used to select the most appropriate actual

promoter and regulator to use in an abstracted GRN once its topology has been fixed (for instance, by

a first design automation stage at a higher level of abstraction). An ODE-based model of the network

is first written. Features of promoters and transcription factors (strength of a repression, leakiness of

a promoter) correspond to the parameters employed in the model (Hill function notably). Then, an

evolutionary algorithm is used. The individuals that evolve are represented by a vector of the

parameters of the model. This vector is referred to as the genome of the individual. In this context, a

gene is therefore an element of this vector. However, to avoid confusion, we will employ the term

algogene to refer to an element of this vector. The best individual resulting from the computation

guides the designer in the choice of the promoters and regulators to implement.

This principle is applied to the design of an existing GRN (a band-pass detector) which performs a

function that cannot be modeled by Boolean equations. The system and its model is first described.

The algorithm is then described with an emphasis put on the choice we made for the different

operators. Finally results are discussed. At the end of this section, results obtained on another system

(GRN also involving protein-protein interaction) are also described.

2.3.1. Description of the system
The biological band-pass system developed by Basu et al. (Basu et al. 2005) is depicted in Fig. 3. This

system allows the detection of an intermediate concentration of acyl-homoserine lactone (AHL). The

complete system consists in two populations of cells: senders and receivers. Senders synthesize and

emit isotropic AHL (the signal) inside a Petri dish. AHL is a small molecule able to diffuse in the gelose

of the Petri dish and to enter cells. Receivers react to the concentration of AHL and produce GFP, a

Green Fluorescent Protein (the output in this system) if the concentration of AHL ([AHL]) is comprised

within a specific interval (around 5.10-2 µM). In practice, one or many groups of senders are laid on

specific spots on a Petri dish covered with receiver cells.

Behavior
Our focus was put on the biological core that is computing the output, namely the receiver cells. They

are composed of three operons (Fig. 3). Operon #1 is positively regulated by AHL (via LuxR, a

constitutively expressed protein) and expresses a modified LacI (LacIM1). Operon #1 also produces CI,

which in turn inhibits the expression of operon #2 which produces LacI. Both LacIM1 and LacI inhibits

the expression of GFP via the operon #3. As mentionned, LacIM1 is a modified version of the LacI

Part Two – Design Automation of Biological Systems

Page 114

repressor: it is a weaker repressor, meaning that its dissociation constant with its promoter is higher

than LacI. A higher concentration of LacIM1 (with regards to LacI) is required to shut down GFP

expression.

Fig. 3 The band-pass system described by Basu et al. (Basu et al. 2005) and the table describing its behavior for various
concentrations of AHL. ++, + and – correspond respectively to a high, medium and low concentration.

Let us consider that the sender cells are constantly sending AHL. Like every molecule, AHL degrades

over time. Hence its concentration is higher near the sender cells than far away from them. The

receiver cells near a group of sender cells therefore receive more AHL than those further away.

Depending on this AHL concentration, GFP is or is not expressed.

Indeed, the level of LacIM1 and CI depends on the concentration of AHL: the more AHL, the higher the

concentration of LacIM1 and CI (see Chapter 2 for the Hill equation governing this correlation).

With the fact that LacIM1 is a weaker promoter, we can know understand the different scenarios

summarized in the table on Fig. 3. When AHL concentration is high (++), LacIM1 concentration is also

high and GFP is not expressed. When AHL concentration is low (-), LacIM1 is low but also CI hence LacI

is high. A high concentration of LacI results in no expression of GFP. When AHL concentration is

medium, LacIM1 concentration is medium and as it is a weak repressor, it is not sufficient to repress

GFP. However, CI is a strong repressor: even at a medium concentration, it can repress LacI expression.

With no LacI and not enough LacIM1, GFP is expressed.

Model
Each gene transcription into mRNA and subsequent translation into protein can be modeled by

ordinary differential equations similar to the one described in Chapter 2. As the system is evaluated at

the steady state, ODEs lead to direct analytic relationship giving the GFP concentration as a function

of AHL concentration (Equation 1 to Equation 4) and 22 parameters summarized in Table 1. For the

evolutionary algorithm, these parameters constitute the genome of the individuals to be evolved.

LacIM1

LuxR

CI

LacI

GFP

AHL

LuxI

TetR

aTc SENDER RECEIVER

AHL CI LacIM1 LacI GFP

++ ++ ++ - -

+ + + - +

- - - ++ -

Operon #1

Operon #2

Operon #3

Chapter 5 – Design Automation at Analog Level

Page 115

Equation 1

[𝐿𝑎𝑐𝐼𝑀1] =
𝑘𝑇𝐿1

𝑑𝐿𝑎𝑐𝐼𝑀1
∙

𝑘𝑇𝑅1

𝑑𝑚𝑅𝑁𝐴1
∙

1

1 + (
𝐾𝐴1

[𝐴𝐻𝐿]
)

𝑛𝐴1

Equation 2

[𝐶𝐼] =
𝑘𝑇𝐿1

′

𝑑𝐶𝐼
∙

𝑘𝑇𝑅1

𝑑𝑚𝑅𝑁𝐴1
∙

1

1 + (
𝐾𝐴1

[𝐴𝐻𝐿]
)

𝑛𝐴1

Equation 3

[𝐿𝑎𝑐𝐼] =
𝑘𝑇𝐿2

𝑑𝐿𝑎𝑐𝐼
∙

𝑘𝑇𝑅2

𝑑𝑚𝑅𝑁𝐴2
∙

1

1 + (
[𝐶𝐼]
𝐾𝑅2

)
𝑛𝑅2

Equation 4

[𝐺𝐹𝑃] =
𝑘𝑇𝐿3

𝑑𝐺𝐹𝑃
∙

𝑘𝑇𝑅3

𝑑𝑚𝑅𝑁𝐴3
∙

1

1 + (
[𝐿𝑎𝑐𝐼𝑀1]

𝐾𝑅3
)

𝑛𝑅3

+ (
[𝐿𝑎𝑐𝐼]

𝐾𝑅3
′)

𝑛𝑅3
′

Table 1 Parameters table. The boundaries correspond to the limits in which the parameters were constrained during
initialization (as well as crossover and mutation if relevant). Dissociation constants are given in µM and transcription

constants in µM.s-1.

Parameter Description
Boundaries

min max

𝒌𝑻𝑹𝟏 Transcription constant of operon #1 10-3 103

𝑲𝑨𝟏 Dissociation constant of AHL 10-4 103

𝒏𝑨𝟏 Hill’s number of AHL 1 4

𝒅𝒎𝑹𝑵𝑨𝟏 Degradation constant of mRNA of operon #1 10-3 10-1

𝒌𝑻𝑳𝟏 Translation constant of LacIM1 (op. #1) 10-7 10-5

𝒅𝑳𝒂𝒄𝑰𝑴𝟏 Degradation constant of LacIM1 10-4 10-2

𝒌𝑻𝑳𝟏
′ Translation constant of CI (op. #1) 10-7 10-5

𝒅𝑪𝑰 Degradation constant of CI 10-4 10-2

𝒌𝑻𝑹𝟐 Transcription constant of operon #2 10-3 103

𝑲𝑹𝟐 Dissociation constant of CI 10-4 103

𝒏𝑹𝟐 Hill’s number of CI 1 4

𝒅𝒎𝑹𝑵𝑨𝟐 Degradation constant of mRNA of operon #2 10-3 10-1

𝒌𝑻𝑳𝟐 Translation constant of operon #2 10-7 10-5

𝒅𝑳𝒂𝒄𝑰 Degradation constant of LacI 10-4 10-2

𝒌𝑻𝑹𝟑 Transcription constant of operon #3 10-3 103

𝑲𝑹𝟑 Dissociation constant of LacIM1 10-4 103

𝒏𝑹𝟑 Hill’s number of LacIM1 1 4

𝑲𝑹𝟑
′ Dissociation constant of LacI 10-4 103

𝒏𝑹𝟑
′ Hill’s number of LacI 1 4

𝒅𝒎𝑹𝑵𝑨𝟑 Degradation constant of mRNA of operon #3 10-3 10-1

𝒌𝑻𝑳𝟑 Translation constant of operon #3 10-7 10-5

𝒅𝑮𝑭𝑷 Degradation constant of GFP 10-4 10-2

Part Two – Design Automation of Biological Systems

Page 116

2.3.2. Setup of the evolutionary algorithm

Population size and selection operator
The population is composed of 1000 individuals. At each generation, 1000 offspring were generated

and individuals for the next generation were selected via a binary tournament with weak elitism. A

binary tournament is a stochastic operator defined with a probability 𝑝 comprised between 0.5 and 1.

The operator randomly selects 2 individuals in the population and returns the best with a probability

𝑝.

A deterministic tournament of size 𝑛 randomly selects 𝑛 − 1 individuals in the population. The

tournament gives a rank to an individual of this group based on the number of outperformed solutions

in this group. Namely, the rank is 𝑛 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒𝑎𝑡𝑒𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠. The algorithm then selects the

solutions with the best rank. As the group is formed randomly, the obtained rank is stochastic.

Tournaments are easily parallelizable and configurable. Parents selection also uses a binary

tournament.

Initializer
Each parameter is initialized randomly within its respective range (see Table 1). For the four Hill’s

numbers, a random number is drawn from a uniform distribution between 1.0 and 4.0. Because we

are in a biological system, for all the other parameters, the random value is drawn from a logarithmic

distribution between the two boundaries. In practice, for example, 𝑘𝑇𝑅1 is fixed to 10𝑥 where 𝑥 is

random value drawn from a uniform distribution between -3 and 3.

Crossover function
Different crossover functions were tested: a simple replacement called the parental replacement (a

tosscoin decides whether the child will be a copy of parent 1 or 2), a barycentric crossover, a BLX-α

crossover (Eshelman and Schaffer 1992) and an SBXν crossover (K Deb and Agrawal 1995) (Table 2).

The crossover function is called for all children creation and involves 2 parents for the creation of 1

child. The 3 crossovers are summarized on Fig. 4 and explained in the following.

Fig. 4 Schematics of the different crossover operators used in this section. The red box shows the zone in which the child
parameter can be created (with a uniform repartition). For the SBX crossover, the probability is represented on the

vertical axis.

Barycentric crossover
For the barycentric crossover, a random value 𝛼 is drawn between 0 and 1. The crossover is applied to

every parameter 𝑥 of the child to create as follows:

𝑐ℎ𝑖𝑙𝑑𝑥 = (1 − 𝛼) ∙ 𝑝𝑎𝑟𝑒𝑛𝑡1𝑥 − 𝛼 ∙ 𝑝𝑎𝑟𝑒𝑛𝑡2𝑥

Children

p

0,5 - Children

SBX (Simulated Binary Crossover)

Children

BLX-a (Blending Crossover)Barycentric crossover

Chapter 5 – Design Automation at Analog Level

Page 117

A new value for 𝛼 is drawn for each parameter of the genome. The parameter of the child is therefore

always comprised in its parents’ parameters, increasing the convergence speed and reducing the

explored space search.

BLX-α crossover
The BLX-α crossover allows to explore “beyond” the two parents, in both direction. BLX-α is

parametrized by 𝛼. For each parameter, a random 𝛾 is created as follows:

𝛾 = (1 + 2𝛼)𝜐 − 𝛼

With 𝜐 a random value drawn between 0 and 1. The child parameter is created as follows:

𝑐ℎ𝑖𝑙𝑑𝑥 = (1 − 𝛾) ∙ 𝑝𝑎𝑟𝑒𝑛𝑡1𝑥 − 𝛾 ∙ 𝑝𝑎𝑟𝑒𝑛𝑡2𝑥

The value of 𝛼 determines how far out of the limits of the interval [𝑝𝑎𝑟𝑒𝑛𝑡1𝑥, 𝑝𝑎𝑟𝑒𝑛𝑡2𝑥] the child

parameter can be created. If 𝛼 = 0, we have a barycentric crossover.

SBX crossover
The SBX crossover is inspired from an operator applied to binary strings. This operator generates two

children. A random value 𝑢 is drawn between 0 and 1. According to this value, 𝛽 is calculated as

follows:

𝛽 = {
(2𝑢)

1
1+𝜂 𝑖𝑓 𝑢 ≤ 0.5

(2(1 − 𝑢))
1

1+𝜂 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Two parameters 𝑐ℎ𝑖𝑙𝑑𝑥1 and 𝑐ℎ𝑖𝑙𝑑𝑥2 are then created:

𝑐ℎ𝑖𝑙𝑑𝑥1 = 0.5 ∙ ((1 + 𝛽) ∙ 𝑝𝑎𝑟𝑒𝑛𝑡1𝑥 + (1 − 𝛽) ∙ 𝑝𝑎𝑟𝑒𝑛𝑡2𝑥)

𝑐ℎ𝑖𝑙𝑑𝑥1 = 0.5 ∙ ((1 − 𝛽) ∙ 𝑝𝑎𝑟𝑒𝑛𝑡1𝑥 + (1 + 𝛽) ∙ 𝑝𝑎𝑟𝑒𝑛𝑡2𝑥)

In our case, as we only create one child, one of the two parameters is randomly chosen. This operator

gives a solution that has a high probability to be close to either one of the parents.

Mutation function
Different mutation functions were tested: a simple replacement (a parameter is replaced by a new

value randomly drawn in the parameter’s range), relative mutation (addition of a gaussian variation

with a dispersion based on the nominal value) and self-adaptive mutation (from Evolutionary

Strategies, see (Rechenberg 1974)). Self-adpative consists in letting the amplitude of the variation

evolve as well. The mutation operator is applied to each algogene with a probability of 0.05%. If

involved, the parameter sigma of the self-adaptive mutation is mutated whenever its corresponding

algogene is.

Evaluator
To evaluate the individuals, a first step was to select 40 values of AHL concentration spread uniformly

in the logarithmic scale between 10-4 to 101. Then for each of these values, the simulated GFP

concentration is computed according to equations 1, 2, 3 and 4 fed with the parameters of the

algogene. The simulation results are compared to the target response, which is approximated as a

Gaussian (in the logarithmic space) centered on 𝜇 = −2, of maximal height 𝐺𝐹𝑃𝑚𝑎𝑥 = 20 and of

standard deviation 𝜎 = 0.2 as follows:

Part Two – Design Automation of Biological Systems

Page 118

𝑓(𝑥) = 𝐺𝐹𝑃𝑚𝑎𝑥𝑒
−

(log (𝐴𝐻𝐿)−𝜇)²
2𝜎2

The evaluator computes the Mean Square Error (MSE) between all computed and expected points. The

aim of the algorithm is to minimize the error.

In general, if any of the operators allowed the parameters to cross the boundaries used for

initialization, an additional limiting step was applied to the child parameter.

2.3.3. Results
Table 2 shows the operators that were used in the results analysis: barycentric crossover operator,

auto-adaptative mutation or gaussian noise, gaussian curve with 40 points for the evaluator. Stopping

criterion was the number of generations. Analysis of the biological parameters is performed on the

genome of the best individual after 5000 generations.

Table 2 Summary of the preliminary tests. Par.Replacement is a parental replacement. When not indicated, mutator
operator was applied with a probability of 0.05%. Each score corresponds to the mean score of three to six runs after
1000 generations, with their standard deviation value. BLXα-x (respectively SBXν-x): x corresponds to the value of α

(respectively ν). Evaluation was performed with 40 samples taken uniformly in the log domain.

Crossover
Mutator Boundaries

Average
time (s)

Average score
of the best Operator Domain

Par.Replacement lin simple bounded No 35 0.02 ± 0.007

Par.Replacement lin simple bounded 0.1% No 34.8 0.04 ± 0.013

Par.Replacement lin relative (sig=0.2) Yes 30.3 0.012 ± 0.005

Par.Replacement lin relative (sig=0.1) Yes 32.4 0.006 ± 0.001

Par.Replacement lin relative (sig=0.3) Yes 30.8 0.011 ± 0.003

Par.Replacement lin mut_autoad noise 1.0 Yes 32.5 0.05 ± 0.031

Par.Replacement lin mut_autoad noise sqrt(L) Yes 28.5 0.02 ± 0.008

Barycentric log simple bounded 0.01% No 39.9 0.08 ± 0.004

Barycentric log simple bounded No 40.1 0.07 ± 0.002

Barycentric log simple bounded 0.1% No 40.5 0.10 ± 0.009

Barycentric log simple bounded 0.2% No 40.6 1.27 ± 0.555

Barycentric log mut_autoad noise sqrt(L) Yes 41.8 0.04 ± 0.002

BLXα-0.1 lin simple bounded No 36.4 12.23 ± 10.56

BLXα-0.1 log simple bounded No 40.2 0.05 ± 0.005

BLXα-0.1 log simple bounded Yes 40.3 0.05 ± 0.006

BLXα-0.2 log simple bounded No 40.3 0.03 ± 0.001

BLXα-0.2 log simple bounded Yes 40 0.04 ± 0.005

SBXν-1 log simple bounded 0.005% Yes 35.2 4.15 ± 0.057

SBXν-1 log simple bounded Yes 35.3 2.66 ± 0.609

SBXν-2 log simple bounded 0.005% Yes 38.7 1.00 ± 0.867

SBXν-2 log relative (sig = 0.1) Yes 39.1 1.19 ± 1.309

The evolutionary algorithm has been implemented on the EASEA platform (P. Collet F. Krüger 2013;

Collet et al. 2000). Computations have been performed on a standard computer without GPU

acceleration. Several combinations of crossover operator and mutator have been tested. The main

results are summarized in Table 2. Stopping criterion is the number of generations. Analysis of the

biological parameters is performed on the genome of the best individual after 5000 generations.

Chapter 5 – Design Automation at Analog Level

Page 119

The score reflects how far the function fed by the 22 parameters found by the algorithm is from the

target function. Scores and computing time correspond to the mean of these values over 30 runs if not

indicated otherwise. For clarity, only the first four runs are shown on Fig. 5 and Fig. 6.

Relevance of the parental replacement on a biological point of view
When using parental replacement as crossover operator, the results are the best in terms of computing

time (158s) and score of the best individual (9.91.10-3 corresponding to a relative error (score of the

best individual over the height h of the peak) of 0.05%). Out of five runs, four parameters (𝑘𝑇𝑅1, 𝑑𝐶𝐼,

𝐾𝑅2, 𝑛𝑅3
′) systematically reached their lower boundary and one (𝑛𝐴1) reached its upper one. Decreasing

the mutator’s Gaussian standard deviation did not alter significantly this tendency (out of four runs,

the same parameters but 𝑘𝑇𝑅1 reached systematically one of their boundary).

Validity of the results
As shown on Fig. 5, the algorithm solutions always requires for 𝐾𝑅3 (the repression constant of LacIM1)

to be lower than 𝐾𝑅2 by at least one order of magnitude. In the original work (Basu et al. 2005), this is

also a requirement, which they solve by using CI as a strong repressor (to have a low 𝐾𝑅2 constant),

and as a weaker repressor. Similarly, we observe that the constants related to LacI and LacIM1 (𝐾𝑅3 and

𝑑𝐿𝑎𝑐𝐼𝑀1 and respectively 𝐾𝑅3
′ and 𝑑𝐿𝑎𝑐𝐼) are close for the two proteins. This is also the case in the

original work. It is to be noted that the degradation constants of the proteins obtained by our algorithm

are in accordance with the parameters used by Basu et al. to represent their actual system. As for the

global synthesis rates (for a given protein, it corresponds to
k𝑇𝑅k𝑇𝐿

𝑑𝑚𝑅𝑁𝐴
), they are in the range of 0.1 µM.min-

1 in our results and of 1 µM.min-1 in the original work.

Fig. 5 Value of the algogenes for four runs after 5000 generations. The dissociation constants are given in M.s-1, the
transcription constants in , the translation and the degradation constants in s-1.

The assets of self-adaptive mutation
Self-adaptive mutation offers the possibility to retrieve information about key parameters of the

system. After the algorithm reached its stopping criteria, we retrieved the sigma values of the best

individual. Out of 30 runs, less than 5% algogenes showed a sigma value lower than 0.2 whereas more

Part Two – Design Automation of Biological Systems

Page 120

than 17% had sigma values greater than 0.3 (see Fig. 6). We observed that no algogene has a

particularly low value of sigma. On the contrary, parameter 𝑘𝑇𝐿1
′ has an average sigma value of 0.38,

showing that it is less sensitive to variation.

Fig. 6 Values of the self-adaptive mutator sigma values for four runs after 5000 generations.

Validation on different targeted responses
We tried to see whether the algorithm could solve similar problems with the same set-up by shifting

the target function and increasing its peak (Fig. 7). Three other gaussian curves were tested: one with

µ = 1 and GFPmax = 5 µM, another one with µ = 10-1 and GFPmax = 10 µM and a last one with µ = 10-3 and

GFPmax = 40 µM. In each case, relative error was under 0.3%, in 200s on average (see Fig. 7). For each

peak, we took the average of each parameter out of three runs. It appears that most parameters are

similar. Major differences can be observed for the dissociation constants of the regulators, namely

activation constant 𝐾𝐴1 and repression constants 𝐾𝑅2, 𝐾𝑅3 and 𝐾𝑅3
′ . Apart for 𝐾𝑅3

′ where the tendency

is opposed, they decrease with the height of the peak. The same is observed for nR3. To observe

whether this difference was due to the positional shift or the height difference, a new set of runs were

performed with the same position for each peak (10-1 µM). The results showed that the tendency

observed previously is absent. Moreover, the differences between the dissociation constants of each

setup are negligible (they are non-existent or spread over less than one order of magnitude). No

difference could be observed for the values of kTL3, the translation constant of GFP. Only minor

differences could be observed (when observed).

We also wanted to see whether this biological function was able to return a step-shaped response.

The target function was changed to a step function with a value of 20 µM between 10-2.5 and 10-1.5 and

0 µM everywhere else. The algorithm found decent solutions (average relative error inferior to 2%) in

200s on average (see Fig. 7).

Chapter 5 – Design Automation at Analog Level

Page 121

Fig. 7 Representation of the best individual’s GFP response in function of [AHL] for different targets. The continuous
lines show the targets and the points the corresponding results for three runs. "Target x" corresponds to a gaussian curve

with height and "Peak x exp" the cognate results. For h = 40 (resp. 10, 5), the gaussian is centered on µ=10-3 (resp. 10-1,
100). "Target step" corresponds to a step function centered on 10-2 with a plateau value of 20µM. The algorithm was run

for 5000 generations with barycentric crossover and gaussian noise mutator.

Grouped evolution of algogenes
In nature, some biogenes coevolve: they are constrained by the same rules during evolution (Ehrlich

and Raven 1964; Goh et al. 2000). We tried to reproduce this phenomenon by allowing the algorithm

to divide the genome in n groups of algogenes (n varying from 1 to 22). In a group, the algogenes are

crossed with the same parameters. From two to five groups, the scores are higher than the one group-

algorithm. The algorithm is converging prematurely. Above five groups, compared to the one group-

algorithm the scores are similar. However, the algorithm requires 1.15 more time when using groups.

We also tried to run the algorithm with autoadaptive groups. Each individual had a random number of

groups, composed of algogenes randomly picked. Group setup of each individual was allowed to

mutate. Crossover of two individual creates a child with a number of groups of one of his two parents.

Results were neither conclusive in terms of score, nor in terms of biological interest: it was not

observed that specific algogenes had a higher tendency to form a group together.

2.3.4. Discussion
The obtained results show that the algorithm can find coherent solutions to a biological problem.

Indeed, the original work emphasizes some specificity of their system (significant differences in the

repressor constants) which the algorithm successfully shows. As the process contains modifying

operators (crossover, mutation), the parameters could have virtually taken any value in their

respective allowed range. Interestingly enough, all the values obtained were biologically relevant and

consistent with the original paper.

Part Two – Design Automation of Biological Systems

Page 122

Self-adaptive mutation was expected to be an additional hint towards which elements of the system

are of key importance in the correct realization of the expected function. However, no algogene

showed a particular constraint (low sigma value). The general tendency for sigma values to be rather

above average than below is due to the way the sigma is mutated. Indeed, its value is multiplied by

the exponential of a random number drawn from a Gaussian distribution centered on 0.0 with a

variance of 1.0. The high value of 𝑘𝑇𝐿1
′ (translation of CI) sigma suggests that this parameter is allowed

to vary from the returned optimized value. This would give the biologist more freedom regarding the

promoter he needs to use.

Running the algorithm with other targets revealed key parameters to set the desired position of the

peak. These parameters are dissociation constants of regulators, which makes sense since these

parameters control the sensitivity of a promoter towards its regulator. Two groups can be

distinguished. 𝐾𝐴1 and 𝐾𝑅2 allow to shift the peak, and 𝐾𝑅3 and 𝐾𝑅3
′ to sharpen it. Indeed, a decrease

on 𝐾𝐴1 will lead to a higher sensitivity of operon #1 promoters towards AHL, so that a lower [AHL] will

be required to initiate LacIM1 and CI expression. This leads to an increase of GFP at lower [AHL], namely

a shift of the rising edge of the peak to the lower concentrations. Similarly, a decrease on KR2 will

increase the sensitivity of operon #2 towards CI, resulting in a stronger repression of LacI by CI: the

falling edge of the peak will shift to lower [AHL]. Finally, 𝐾𝑅3 and 𝐾𝑅3
′ control directly GFP expression

and therefore act on the thinness of the peak. Indeed an increase on 𝐾𝑅3
′ decreases the sensitivity of

GFP’s promoter towards CI. The rising edge of the peak will therefore be shifted towards lower [AHL].

Seemingly, a decrease on 𝐾𝑅3 will result in a shift of the falling edge of the peak towards lower [AHL]

as well. This can be verified by simulating GFP levels in function of [AHL] while varying the above

mentionned constants (data not shown).

We can expect that a change in GFP peak height only would involve a similar change in GFP translating

constant. As it is not the case, we investigated the product
𝑘𝑇𝐿3𝑘𝑇𝑅3

𝑑𝑚𝑅𝑁𝐴𝑑𝐺𝐹𝑃
 (see Equation 4), which indeed

grows proportionally to the height of the peak. The algorithm is therefore capable of finding non trivial

solutions regarding this biological problem.

With the possibility for the algogenes to evolve in groups, we expected to observe the appearance of

groups of linked parameters. Indeed, as described above, the maximal [𝐺𝐹𝑃] depends of the constants

𝑘𝑇𝐿3 , 𝑘𝑇𝑅3 , 𝑑𝐺𝐹𝑃 and 𝑑𝑚𝑅𝑁𝐴3 . When the algorithm found a good individual, if 𝑘𝑇𝐿3 and 𝑘𝑇𝑅3

(respectively 𝑑𝐺𝐹𝑃 and 𝑑𝑚𝑅𝑁𝐴3) evolve in the same direction (or not at all), the individual should keep

its good score. We therefore expected for such parameters to tend to gather in the same group. This

tendency was not observed.

To further validate the strength of this approach, a comparison with other methods (such as particle

swarm or simulated annealing) could be carried out.

2.4. Results obtained on a XOR gate

To see whether this approach could be generalized to other types of genetic networks, we tried to

optimize a bio-logic XOR gate with a similar algorithm. The complete description of the biological

system can be found here (Ausländer et al. 2012). A simplified illustration is given on Fig. 8. Phloretin

(Ph) and Erythromycin (Er) are the input of the system while YFP (Yellow Fluorescent Protein) is the

output of the system. In the presence of both inputs, mRNA are not synthesized. Thus YFP is not

produced. If there is no Ph nor Er, both mRNA are synthesized but inhibited because they are bound

Chapter 5 – Design Automation at Analog Level

Page 123

with L7 (for mRNA1) and MS2 (for mRNA2). Finally, when Ph (respectively Er) is present alone, mRNA2

(resp. mRNA1) is produced but not MS2 (resp. L7). As a consequence, mRNA2 or mRNA1 can be

translated and YFP is synthesized.

Fig. 8 Simplified XOR bio-logic gate. Barred red lines indicate a repression on the operon coding for the corresponding
mRNA; red dashed arrows indicate a binding reaction; black heavy arrows indicate production. Ph: Phloretin. Er:

Erythromycin. YFP: Yellow Fluorescent Protein.

The equation set that models this system is composed of 15 parameters (2 transcription rates, 2

dissociation constant and 2 Hill’s numbers for Ph and Er repression, 2 dissociation constants for MS2-

mRNA2 and L7-mRNA1 binding reaction and 3 translation rate and 4 decay rates).

Evaluation is performed by taking the MSE between the value of this function and the target function

on 10 values of [𝑃ℎ] times 10 values of [𝐸𝑟], spread uniformly on the log domain between 10-9 and 10-

3 µM. The target function is a classic binary XOR, with low plateaus being set at 10-12 µM and high

plateaus at 10-8 µM. Threshold value is set at 10-6 µM for both inputs (namely Er and Ph). The algorithm

was able to produce a set of parameter with a score around 10-17 (Fig. 9). With the same network

topology we also use the algorithm to obtain alternative Boolean functions, namely an NAND gate (no

YFP when both Er and Ph are present) and an INH gate (YFP is produced when Er is present and Ph is

absent).

2.5. From an evolution strategy to genetic programming

This work demonstrates the relevance of evolutionary algorithms in synthetic biology, in particular in

the field of biological networks. Being able to optimize the parameters of a defined system before

going to the bench is an important speedup in the process of biological networks design. Indeed,

biologists typically have to test various sets of components before finding the most suitable. Such an

algorithm gives hints on which parameters are of key importance and which kind of components

should be used (e.g. a strong or weak repressor). Moreover, as this tool is capable of generating sets

of parameters realizing a large variety of functions, it can also help to understand the specifics of a

system, by varying the target function used in evaluation and analyzing the returned parameters. This

modularity enlarges designers’ horizon by giving them the possibility to preliminary test in silico any

(crazy) idea they might have.

Our initial goal is to design an algorithm able to create a relevant biological system (a GRN here) from

scratch to answer the biologist’s problem. Two tasks are still not adressed. First, the research into a

device library (typically the Biobricks library (“Registry of Standard Biological Parts” 2015)) of the

closest components to the returned parameters has always to be done by hand. Second, to use our

Part Two – Design Automation of Biological Systems

Page 124

algorithm, the biologist still has to imagine the biological system’s architecture before ’feeding’ it to

the algorithm. Genetic Programming could be used to automate this step.

Fig. 9 [YFP] in function of [Er] and [Ph] for three different targets. B (resp. D and F) shows the target function for a XOR
(resp. NAND and INH) gate. A (resp. C and E) corresponds to the results for the target B (resp. D and F). Score corresponds

to the fitness score of the best individual for each target.

Chapter 5 – Design Automation at Analog Level

Page 125

3. Evolving the GRN topology

3.1. Introduction to genetic programming

Genetic programming (GP) is a form of artificial intelligence as it is able to find solutions humans would

not be able to find (Hornby et al. 2018). They were initially designed to evolve functions. More

generally, they are able to manipulate genomes of variable sizes. In comparison to inverse problem

(see Section 2), GP evolve both the function 𝑓 and the parameters 𝑥 in order to find 𝑓0 and 𝑥0 such as

𝑓0(𝑥0) = 𝑦̃. Attributing a fitness score to an individual is done by executing (running) the individual. In

our case, this refers to simulation. GP can be used on constructions, like GRNs.

The first apparition of GP dates back to 1958 with Friedberg’s self-modifying algorithm. Pioneering

work was published by Cramer (Cramer 1985) in an article that deals with most elements used in GP

algorithms. His algorithm manipulates a variable-size genome in form of a graph and applies different

operators like mutation, crossover and self-recombination. The major step in this domain was

accomplished by Koza and his massive computer power in the 1990s (Koza 1992; Koza 2003; Koza and

R. 1989; Koza 1994; Koza, Bennet III, and Andre 1999). His books on GP are foundational and his

algorithms led to the submission of patents on electronic analog circuits. In a biological context,

François and Hakim used GP to design a bistable switch and an oscillating GRN (François and Hakim

2004). An algorithm based on their work is described later in this chapter. The work of Patil et al. also

deserves to be highlighted (Patil et al. 2005). They applied an evolutionary programming based method

on metabolic pathways of the whole yeast Saccharomyces cerevisiae. Their method suggested non-

intuitive metabolic engineering strategies for optimizing an industrial fermentation process.

Our ultimate goal here is to design the topology of a GRN and find the optimal parameters of each of

its components (according to a set of requirements).

3.2. Genetic programming with generic functions

GP algorithms can create and optimize mathematical functions represented as trees. We first try to

evolve a mathematical function and then map its elements to biological functions. We apply this

approach on a XOR gate and a band pass system. Then, we changed the genome representation and

opted for graphs (to allow feedback loops) and fed the algorithm with prepared biological functions

only. This work is presented on the example of a band pass target function.

In what follows, tournament x refers to a tournament selection operator with a selection pressure of

x (when the selection pressure is an integer over 0, the best individual from the x will be selected;

when the selection pressure is a real number between 0.0 and 1.0, the best individual of 2 will be

selected with the probability x).

3.2.1. XOR gate
In this first example, we only used Boolean operators. This simple example is a good entry point for

testing GP. Moreover, it is interesting to evaluate GP as an alternative to GeNeDA. Indeed, the

stochastic nature of GP algorithms enables them to find different solutions for a design where GeNeDA

has a deterministic solution based on the library used for the design.

We therefore use a NOT, an AND and an OR operator. The target is set to a 2-inputs XOR gate.

Part Two – Design Automation of Biological Systems

Page 126

Algorithm parametrization
A generation is composed of 5000 individuals. A strong elitism with 1 elite (number of surviving parent)

is used to select with a tournament 2 after the creation of 5000 children. The mutation and crossover

probability are 0.1 and 0.9 respectively. The selection operator is a tournament 7. The stop criterion is

the number of generation which is fixed to 50. Initialization of the tree is performed with a ramped

half-and-half method with a depth of tree comprised between 2 and 4. That is to say that half of the

initial trees are fully grown (with a depth of 4) whereas the others are grown with a depth between

minimal and maximal depth value (Koza 1992). The maximum tree depth authorized during the

iterations is 8. The individuals’ functions were evaluated on the 4 cases of the truth table. The fitness

score is the number of cases where the individual does not provide the right output.

Results
The different equations obtained for 6 runs are summarized in Table 3.

Table 3 Different versions of a 2-input XOR gate.

Run # Equation NOT AND OR Total

1 (𝐴 + 𝐵) ∙ 𝐴 ∙ 𝐵 ̅̅ ̅̅ ̅̅ ̅ 1 2 1 4

2 𝐵 ∙ 𝐴 ∙ 𝐵̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ (𝐴 + 𝐵) 1 3 1 5

3 (𝐵̅ ∙ 𝐴) + (𝐵 ∙ 𝐴̅) 2 2 1 5

4 (𝐵̅ + 𝐴̅) ∙ (𝐴 + 𝐵) 2 1 2 5

5 𝐵̅̅ ∙ 𝐴
̅̅ ̅̅ ̅̅

∙ (𝐴 + 𝐵) 3 2 1 6

6 𝐵 ∗ 𝐴 ∗ 𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∗ (𝐴 + 𝐵) 1 3 1 5

All runs achieved a score of 0 for the best and also the whole population. Indeed, all solutions

correspond to a XOR gate. We note the variety of solutions found by the algorithm. No pressure was

put on the number of operators used (apart from the maximal tree depth), so that some equations

employ useless terms (𝐵 ∙ 𝐴 ∙ 𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ is the same as 𝐵 ∙ 𝐴̅̅ ̅̅ ̅̅).

We also note that the term (𝐴 + 𝐵) appears in all but one solution. As the OR (+) operator is in itself

very close to the XOR gate (3 of the 4 inputs states show the same result), it is expected that this term

stands out.

The result of the run #1 is also very interesting. XOR expression suggested by GP used 4 operators,

which is one less that the number of operator used in the standard XOR formulation (𝐴̅ ∙ 𝐵 + 𝐵̅ ∙ 𝐴)

which would be almost systematically suggested by humans, even the specialists of digital electronics.

Such results are easily readable and implementable. Compared to GeNeDA, this method has the

advantage of offering several possible variations of the same GRN function, sometimes even very

complex or redundant, instead of offering only the simplest one. On the other hand, the stochastic

search of the solution is much less efficient than the formal research carried out by GeNeDA in terms

of computing power. We now want to go further, i.e. evolving GRN by taking into account their analog

behavior and try to match targets described by an analog behavior.

Chapter 5 – Design Automation at Analog Level

Page 127

3.2.2. Band-pass system
To that end, we use as a target function the Gaussian target of the Basu system studied in Section 2.

Here we allow the algorithm to use the classical mathematical operators (addition, subtraction,

multiplication, division and power) used in real-valued equations. The parametrization of the algorithm

is the same as for the Boolean approach except that the initial maximal tree depth is 6 and the maximal

one is 12, the number of generations is increased to 100 and the population size to 20,000. Evaluation

is performed by comparing the response of the generated system to Basu Gaussian target on 1024

random AHL concentrations which decimal logarithms are uniformly spread between -4 and 1. Taking

the evaluation points randomly ensures that the solutions found by the algorithm do not match specific

points in particular but the whole target in general.

The algorithm is able to find a function that fits almost perfectly. However, the evolved functions (data

not shown) involve a large number of arithmetic operators and do not relate to any known biological

function: it is therefore impossible to build a GRN accordingly.

GP algorithms allow the implementation of Automatically Defined Functions (ADF). To populate a

node, GP can either choose between an operator and a terminal (a value or a variable). With ADFs, the

user can define a custom function that the algorithm can choose as a third option.

This concept is reused in the following work. Indeed, it appeared that trees were not the ideal way to

represent GRNs, as GRNs often imply feedback loops.

3.3. Genetic programming with ADF

Another way to represent the structure of a GRN is to use graphs, with each node being a molecule

and each edge a reaction. Predefined functions, namely the ADFs, are embedded in each reaction. The

parameters of the reaction however may be modified. The algorithm we want to elaborate would

therefore be able to build a network according to a list of predefined biological reactions and optimize

its structure and parameters to fit the target response. The target response is a dose-response curve

in the continuous domain.

3.3.1. Rules of construction of the network
The network build by the algorithm follows the following guidelines:

1. there is at least one input, and all inputs have to be directly or indirectly connected to the only

output;

2. a gene or a set of genes cannot be strictly independent from the main network of the output;

3. a gene produces only one protein and a protein has always at least one function, such as an

interaction with a gene or with another protein to form a complex;

4. a complex always has two predecessors;

5. if a complex has no function, one of its predecessors has at least 2 functions (the complex

formation and another). This complex has a role similar to a negative regulator in that its

formation sequesters its predecessor (the binding consumes the reactants), thereby reducing

their concentration.

6. two nodes can only be connected by one regulation and a node cannot have an interaction on

itself (as DNA is differentiated from the protein it produces, a protein may still influence its

own production).

Part Two – Design Automation of Biological Systems

Page 128

7. Other limitations can be fixed: the number of proteins interacting with a same gene and

maximal number of genes in a network.

During the course of the algorithm, addition or deletion of a node or an edge is also subject to specific

rules:

1. If a node producing a protein is added, the protein has to have a function;

2. after the addition of a complex, the choice of the targeted node (the destination of the edge

from the complex) cannot be another complex to avoid the formation of a grid of complexes

in one round;

3. a protein may only be deleted if its coding gene is deleted;

4. an input or an output cannot be added or deleted by a mutation;

5. if a gene or a complex is removed, every predecessor of the node connects with every direct

successor of the node and the parameters of these new interactions are copied from the old

node-children interactions;

6. if a sub-network becomes independent after a deletion, it is removed if it is not possible to

make a link with the successors of the deleted node or if this last has no children;

7. if a complex is removed because one of its predecessors is removed, the remaining

predecessor forms a link with the children, even if they are complexes;

8. If there are creations or modifications of a node during a deleting mutation, the parameters

which have to be defined will be copied from the deleted node or edge.

All functions must have these behaviors. It is important to understand that the nodes called

“complexes” are not biological complexes but a representation of the interaction of two other nodes.

So a “complex” could be a complex or the modification of a protein by another, like a phosphorylation

or an ubiquitination.

3.3.2. Reaction parameters
As usual, a differential equation solved at the steady state is computed for each species. In this work,

mRNA was not taken into account. This differential equation comprises several parameters that are

held in the different reactions involving this node. Hence each node and each edge is represented by

the following according to its type:

 each node but genes has a quantity in µMol. This quantity is constant over time for the inputs;

 for genes and the output: the maximal and minimal productions of a protein by its gene, in

µMol.s-1;

 for edges from proteins, complexes and inputs: the dissociation constant (in µMol) and Hill’s

number of its binding to associated promoters;

 for complexes: the stoichiometric coefficients a and b for the formation of a complex such as

a*A + b*B = AB;

 for complexes: the reaction constants kon and koff for the complex binding and dissociation

respectively such as A + B -> AB (kon) -> A + B (koff);

 for proteins, complexes and the output: the degradation constant, in s-1.

These parameters are optimizable by the algorithm. However, we limit this variation to a given domain

(see Table 4). Pmax corresponds to the maximal expression rate of the protein (if mRNA was integrated

in the model, it would correspond to the ratio 𝑘𝑡𝑟 ∗ 𝑘𝑡𝑙/𝑑𝑚𝑅𝑁𝐴). 𝛼 is a number between 0 and 1 and

Chapter 5 – Design Automation at Analog Level

Page 129

corresponds to the leakiness of the promoter: this allows a reduced expression of the gene even if the

promoter should be off (inhibited or in the absence of activator).

Table 4 Biological reactions parameters and their range of variation.

Parameters Variation domains

Pmax [10e-7, 10e-1]

𝛼 [0,1]

K [10e-4, 10e+3]

Hill’s number [1, 4]

Coeff. Stoech. [1, 5]

kon [10e+4, 10e+8]

koff [10e-6, 10e+5]

dY [10e-3, 10e-1]

The differential equations are the classical expression used for representing protein expression and

complex binding (see Chapter 2) with the following modification: as mRNA is not represented, it is

considered at its steady state and parameter 𝑃𝑚𝑎𝑥 represents the ratio
𝐾𝑡𝑙𝐾𝑡𝑟

𝑑𝑚𝑅𝑁𝐴
.

3.3.3. GP algorithm set up
We adapted our algorithm from the work of P. François and V. Hakim (François and Hakim 2004). We

consider a population of N networks. At the initialization step, there are N identical networks with one

or more inputs acting on a gene, producing a protein which activates the output. The latter is a gene

coding for a protein which is not represented in the graph and so the output node must be considered

like a set of two nodes (the gene and its protein).

Mutation
At each generation, a copy of each network is mutated and added into the pool with the other

networks, giving a population of 2N elements.

Mutations can be of six different types:

1. m1: random change of a parameter;

2. m21: removal of a gene or a complex;

3. m22: removal of an interaction of a drawn node;

4. m31: addition of a gene and with a link to a chosen node;

5. m32: creation of a new interaction of a protein/complex on a gene;

6. m33: creation of a new complex between two proteins and/or complexes.

Each mutation has a different probability to be chosen, with P(m1) > P(m21) > … > P(m33).

The sum of all probabilities is 1. During the last generations of a run, the algorithm focused on

optimizing the parameters only and sets the probabilities of m31 to m32 to 0 (the other probabilities

are updated so that the sum still equals 1).

The network is mutated a number of times proportional to the number of nodes in the network. The

proportion is fixed by the user but must be above 1. A maximal number of mutations per networks can

be fixed.

For each mutation, a node is chosen according to its age. The age of a node corresponds to the number

of generations since its creation. The goal is to mutate aged nodes preferably so that young nodes that

Part Two – Design Automation of Biological Systems

Page 130

were just created are not deleted right away. This release in selection pressure allows the network to

evolve around this new node before being pressured. To that end, the nodes are sorted by age and

divided into 5 groups. A group is randomly drawn according to an exponential probability law and a

node from this group is randomly picked. The equation of probability for a group 𝐺𝑘 is:

𝑃(𝐺𝑘) =
𝑁𝑘

∑ 𝑁𝑖
𝑀
𝑖=1

∙ 𝛾 ∙ 𝑒𝛾∙𝑘

With 𝑀 the total number of groups (5 in our case), 𝑁𝑘 the number of elements belonging to 𝐺𝑘 and 𝛾

a parameter of the exponential law. 𝛾 = 0.8 was a good compromise between a very high probability

for the oldest group to be chosen and a uniform probability; with this value, the probability of the

oldest is 0.5 and second oldest 0.25. This probability 𝑃(𝐺𝑘) is then divided by the sum of all

probabilities.

Fitness score
Currently, the following two scores are computed:

 The output score, which is the mean squared error for each specified test point of the dose-

response curve (which can be of more than 2 dimensions if there are many inputs).

 The complexity score, derived from the cost function used in GeNeDA. This score equals to

∑ 1.6𝐴𝑖+𝑅𝑖−1 ∙ 1.25𝐴𝑖 ∙ 1.25𝐶𝑖𝑁
𝑖=1 for N nodes, with A, B and C the number of activating edges,

repressing edges and protein-protein interactions from the node i respectively. The genes and

the output are not considered because they don’t have these types of edges.

The networks are then ranked with Pareto’s algorithm. Pareto’s algorithm is a way to find the optimal

solutions of individuals evaluated on more than one criterion. To that end, for a set of solutions, we

find the Pareto front. This Pareto front regroups the solutions that are not dominated by any other on

all criteria. On the example on Fig. 10, we want to minimize scores 𝑓1 and 𝑓2. We see that all solutions

that have a better (lower) 𝑓1 than solution A (all solutions below A, including solution B) are

dominated by A on 𝑓2. Moreover, all solutions that dominate A on 𝑓2 (solutions on its left) are

dominated by A on 𝑓1. There is no solution that dominates A on both criteria at the same time, A

belongs to the Pareto front. The symmetric reasoning can be applied to B, which also belongs to the

Pareto front. For C however, we can find at least on point that dominates C on both 𝑓1 and 𝑓2 (A for

example). C does not belong to the Pareto front.

In our case, the two scores used for the Pareto front are the output score (or MSE) and the complexity

score. Rank 1 is attributed to the solution in the Pareto front which are then removed from the pool

of solutions to evaluate. These steps are repeated for the remaining solutions (the new Pareto front is

computed on this reduced pool of solution and rank 2 is attributed to the newly found Pareto front).

Selection for the next generation
The population is reduced until reaching the initial size 𝑁 of the population. Two phases are

distinguished.

During the first phase, the networks are allowed to grow because their complexity is not taken into

account in the selection process. The networks are selected with a tournament of the size of half of

the population based only on the output score.

Chapter 5 – Design Automation at Analog Level

Page 131

Fig. 10 Pareto front (https://commons.wikimedia.org/wiki/File:Front_pareto.svg)

During the second phase, the networks are deterministically selected based on their rank obtained

with the Pareto algorithm. Beginning with rank 1 and ascending, all solutions belonging to a rank are

selected for the next generation. If adding a rank contains too many solutions (the size of the selected

group would exceed 𝑁), solutions from this rank are randomly selected. The corollary to that is that

the higher the number of ranks, the lower the number of individuals chosen randomly because the

ranks contain less solutions. To achieve a higher number of ranks, it is possible to introduce a bias in

the selection operator. For each Pareto front, the solutions are ranked according to the MSE score: the

first half has a rank that is higher than the second half, resulting in twice as more ranks than without

the bias.

3.3.4. Results with a 4-points target
For the mutations probability, two steps are distinguished. In the first step, mutation probabilities are

set to their default values. In the second step called the pruning step, these probabilities are altered

so that only deletion of a node or modification of the value of a genetic parameter is authorized.

Without the possibility to add a new node as a mutation, the network cannot grow in this pruning step.

Combined with the use of the complexity score, the idea is to only keep the core nodes of a network

in the final rounds of the algorithm. In this example, complexes are not authorized (the probability

m33 is set to 0 in the first step already). By default, we used the biased selection operator.

Default parametrization for the algorithm is described in Table 5.For each case described thereafter, 5

repetitions of each run are carried out and the best solutions are described.

The target was defined with 4 points: two low points at input values of 1e-05 and 1000.0 where the

expected output is 0 and two high points at input values of 0.01 and 0.5 where the expected output is

30. The idea is to obtain a network that behaves like a band-pass.

End of the growth phase and start of the pruning step
We first assess the effect of the growth phase and the pruning step. The tuning of the length of these

periods influences the pressure put on the networks to have a low complexity. If this pressure is too

high, we might obtain very simple networks at the expense of the MSE score. On the other hand,

without limit the networks might grow to the maximal authorized size to minimize the MSE score. We

https://commons.wikimedia.org/wiki/File:Front_pareto.svg

Part Two – Design Automation of Biological Systems

Page 132

therefore try different combinations of growth phase stop time and pruning step start time (in

generations).

Table 5 Default set-up of the algorithm

Parameter Default value

Number of generations 50

Population size 20

Start of the pruning step 45

End of the growth phase 45

Number of mutations per
node

2

Max. number of mutation
per network

2

Default probabilities :
m1

m21
m22
m31
m32
m33

0.5
0.2
0.1
0.1
0.1
0

Pruning step probabilities :
m1

m21
m22
m31
m32

m33

0.8
0.1
0.1
0
0

0

Default values
First of all, we run the algorithm with the default values (Fig. 11). The end of the growth phase

corresponds to the start of the pruning step at generation 45. For most of the runs, the average

complexity increases until the start of the pruning phase, as expected. In some rare cases, the average

complexity increased (see the column on the right on Fig. 11). This could mean that the pruning step

mainly produced less performing networks that were not selected, increasing the concentration in

complex networks.

In all the cases, we noted a global decrease in the MSE score starting around generation 40. This

decrease was not impaired by the end of the growth phase and start of the pruning phase, meaning

that these steps are not deleterious. The five best networks of each run were mostly very simple, with

a number of nodes and edges rarely exceeding 10. The MSE scores of these networks however spanned

across a large range: between 0.038 and 15. The complexity score did not exceed 10. For each run,

these five best networks are very similar with one another: if at least one network shows a band-pass

behavior, the other 4 networks also did. This shows that when the algorithm found a good solution, it

converged toward it. However, due to the stochastic nature of the algorithm, in some runs no band-

pass behavior was observed: in these cases, the algorithm converged toward a simple activation of the

output by the input.

Chapter 5 – Design Automation at Analog Level

Page 133

Most of the networks performing a band-pass showed the same core features: an incoherent feed-

forward loop. This means that the input was both leading to activation of the output and inhibition of

it (see the two schematics on Fig. 11). This behavior is very similar to the Basu system described

previously (Basu et al. 2005). However, our algorithm proposes here a system with less genes.

When looking at the parameters, we first observe that the 𝑃𝑚𝑖𝑛 are all very low compared to the 𝑃𝑚𝑎𝑥

(more than 3 orders of magnitude). The leakiness is not to account for in the behavior of the system.

Moreover, in both runs shown on Fig. 11 (and in most cases) the sharp increase noted in the

concentration of output at around 10-3-10-4 input is due to the high Hill coefficient of the output

activation by protein 1.1 (above 3). In both cases, the threshold (dissociation constants 𝐾) for 1.1

activation and the output inhibition by the input differ by at least 2 orders of magnitude, with the

activation being realized for lower values of inputs. This difference in parameter values is key for

enabling the band-pass behavior as without it, both activation and repression would proceed for the

same values of inputs and the output would never be expressed.

Noteworthy is the self-inhibition of protein 1.1 in the run on the left on Fig. 11. First of all, as its

dissociation constant is 20, it only serves to prematurely lower the concentration of output, resulting

in a lower MSE score of this network. Moreover, this protein is both an activator and a repressor. As

an improvement on the current version of the algorithm, a new constraint could be added, similar to

the one existing in GeNeDA: a protein cannot be both an activator and a repressor. For the time being,

we can consider that in such cases, a buffer protein would be added to split the roles of activators and

repressors on two different proteins.

Premature end of growth phase
The end of the growth phase was set at generation 40 (instead of 45). In most of the 5 runs (4 out of

5) the end of this phase coincided with a decrease in the average complexity and MSE score of the

population (see the orange triangle on left diagram of Fig. 12). The results are comparable to the

default runs in the number of band-pass system generated by the algorithm, the MSE score span (3.8

to 20) and the GRN performing a band-pass (both in terms of topology and parameters scale).

Premature start of the pruning step
The algorithm was run with the default values but the start of the pruning step was step to generation

40. Overall, the average complexity score of the population shows a slight tendency to decrease at

generation 45 (orange triangle on the right diagram of Fig. 12) which corresponds to the end of the

growth phase. The average MSE score however consistently decreased after generation 45.

The runs generated a similar number of band-pass systems. However, many of these band-pass did

not match the high target points (at 30) and were below, hence these systems had a high MSE score.

Moreover, the generated band-pass GRN were in general more complicated (with at least on more

gene) than for the previous cases (Fig. 13). These networks show the same core networks with the

intermediate gene 1.1 than for the previous runs. The self-inhibition is however replaced by a self-

activation. As the core function does not rely on the supplementary genes (shown in grey on Fig. 13),

this set-up proves to be less efficient in reducing the complexity of the generated solutions.

Part Two – Design Automation of Biological Systems

Page 134

Fig. 11 Results of default runs. Each column corresponds to a run performed with default values. First row shows the
evolution of the average MSE (blue) and complexity (red) score with the standard deviation across the population.

Second row shows the expected outputs (blue dots) versus the simulation of the best network of the run (red curve). The
best network is the network in rank 1 with the lowest MSE. In the third row, the schematics of the best network and its

scores. Orange triangle: end of the growth phase. Black triangle: start of the pruning step. Near each regulation
(activation or inhibition) the dissociation constant K and the Hill number are shown.

Considering the results, we find that the end of the growth phase is the most critical parameter. As

both the default run and the premature end of the growth phase provided good results, both set-ups

were reused.

Increasing the number of generations
To see whether evolving the networks for a higher number of generation would give better results (at

the expense of computing time) we increased the number of generations to 150. The start of the

pruning step was set to 135 and the end of the growth phase to 120.

1.1

OUT
Input

1.1

OUT
Input

MSE score: 1.38
Complexity score: 4.0

MSE score: 0.165
Complexity score: 3.25

Po
p

u
la

ti
o

n
B

e
st

 in
d

iv
id

u
al

 (
M

SE
 s

co
re

)

K=0.01
n=3.5

K=5
n=1

K=0.01
n=1.5

K=20
n=3

K=0.01
n=3

K=10
n=2

K=0.009
n=3

Chapter 5 – Design Automation at Analog Level

Page 135

Fig. 12 Evolution of the population scores (MSE in blue and complexity in red) of two runs. The run on the left has a
pruning step starting at generation 45 whereas its growth phase ends at generation 40. The run on the right has a
pruning step starting at generation 40 whereas its growth phase ends at generation 45. Black triangle: start of the

pruning step.

Similar observations can be made for the MSE score and the complexity score (a decrease coinciding

with generation 120), confirming the previous results.Most of the 5 best networks of each run

performed a band-pass behavior. Most of these networks were however more complicated, as an

overall higher complexity score reflects. The topology of core GRN generated by the default run was

found in almost all networks, though the parameters similarity was not evaluated.

Fig. 13 Two band-pass generated by our GP algorithm with a premature start of the pruning step. Over the orange
background, the fundamental core of the networks, also found in default runs.

When compared to the default run; the MSE score span was lower but the best MSE score was in the

same range (around 0.02). As the run demanded a higher computing power but provided far more

complicated solutions for a similar score, a high number of generation is not necessarily required.

A less demanding solution to virtually increase the number of generations would be to increase the

number of mutations. As our algorithm has no crossover, the only operations that are added by an

increased number of generations are the mutations and the selections. We therefore used the default

1.1

OUT
Input

1.2

1.3

1.1

OUT
Input

1.3

Part Two – Design Automation of Biological Systems

Page 136

set-up and augmented the maximal number of mutation to 6. This solution gave a better tradeoff

between results and demanded computing power.

Conclusion on the 4-points target
Most of the obtained GRN performed very wide band-pass. This was in accordance with a permissive

target, which only included low-value output points at very low and very high values of input only. Not

constraining the output allows to obtain a wide variety of band-pass, with exotic implementations.

However, if a more defined response is to be obtained, the target has to possess more points.

3.3.5. Target with a higher number of evaluated points
For the following input values [1e-05, 0.01, 1, 10, 1000.0] the following output values were expected

[0, 3, 20, 3, 0]. Using otherwise default parameters, except for the maximal number of mutations that

was 6, the algorithm was able to find band-pass systems. None of them matched the 5 points, as

reflected by a best MSE score of 5. The algorithm provided very simple networks with only a few

exceeding 3 nodes.

As the algorithm found no solution toward which it could converge, we tried to increase the size of the

population. With a higher number of individuals, more mutations are performed per generations so

that the chances to find a good solution to direct convergence are increased. The results were however

similar in all points but the computing time, which was higher.

In general, the band-passes generated were very flat. As our target function is relatively peaky, we

tried to increase the weight of the central point so that its matching would favor the individual. The

weight of the central point was therefore 5 times higher than the weight of the others points. This

resulted in two types of behaviors only: a flat response (left diagram Fig. 14) and an activation

response (right diagram Fig. 14).

Fig. 14 Results for a 5-points target with 6 maximal mutations per networks and an increased weight for the central
point. The blue dots are the expected outputs and the red curve is the simulation result of the network.

A 40 –points target was also tried. The algorithm also failed to provide satisfying results. We therefore

see that for a finer description of the expected response, the fine-tuning of the algorithm is delicate

and requires a deeper examination.

Chapter 5 – Design Automation at Analog Level

Page 137

4. Conclusion

We evaluated our algorithm on a band-pass target. We see that with only 4 points directing the

evolution of the networks, our algorithm provides a large variety of band-pass responses and possible

implementations thereof. A sub-defined target has the advantage of computing solutions in a reduced

time, as the evaluation is rather fast. Interestingly, we could obtain a system competing with the Basu

system in terms of number of genes. A coarse analysis revealed the core features of the different

networks evolved by the algorithm. A finer analysis supplemented with wet bench trials could lead to

a very compact biological band-pass.

With a finer target having more points to match, we could not find the correct parametrization of the

algorithm. Only few parameters were tweaked. A lead for investigation would be to give the algorithm

the possibility to add complexes in the networks. The initial population could also be initialized

randomly.

5. References

Ausländer, Simon, David Ausländer, Marius Müller, Markus Wieland, and Martin Fussenegger. 2012.
“Programmable Single-Cell Mammalian Biocomputers.” Nature 487 (7405). Nature Publishing
Group: 123–27. doi:10.1038/nature11149.

Basu, Subhayu, Yoram Gerchman, CH Collins, FH Arnold, and R Weiss. 2005. “A Synthetic Multicellular
System for Programmed Pattern Formation.” Nature 434 (April).

Bernot, Gilles, Jean-Paul Comet, Adrien Richard, and Janine Guespin. 2004. “Application of Formal
Methods to Biological Regulatory Networks: Extending Thomas’ Asynchronous Logical Approach
with Temporal Logic.” Journal of Theoretical Biology 229 (3). Elsevier: 339–47.

Collet, Pierre, Evelyne Lutton, Marc Schoenauer, and Jean Louchet. 2000. “Take It EASEA.” In Parallel
Problem Solving from Nature PPSN VI, 1917:891–901. Springer, Berlin, Heidelberg.
doi:10.1007/3-540-45356-3_87.

Cramer, Nichael Lynn. 1985. “A Representation for the Adaptive Generation of Simple Sequential
Programs.” In Proceedings of the 1st International Conference on Genetic Algorithms, edited by
John J. Grefenstette, 183–87. Lawrence Erlbaum Associates.

Deb, K, and R W Agrawal. 1995. “Simulated Binary Crossover for Continuous Search Space.” Complex
Systems 9: 115–48.

Deb, Kalyanmoy, and David E. Goldberg. 1989. “An Investigation of Niche and Species Formation in
Genetic Function Optimization.” In Proceedings of the 3rd International Conference on Genetic
Algorithms, 42–50. M. Kaufmann Publishers.

Doboli, Alex, and Ranga Vemuri. 2003. “Exploration-Based High-Level Synthesis of Linear Analog
Systems Operating at Low/medium Frequencies.” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on 22 (11). IEEE: 1556–68.

Dorigo, Marco., and Thomas. Stützle. 2004. Ant Colony Optimization. MIT Press.
https://mitpress.mit.edu/books/ant-colony-optimization.

Ehrlich, P.R., and P.H. Raven. 1964. “Butterflies and Plants: A Study in Coevolution.” Evolution 18 (4):
586–608. doi:10.2307/2406212.

Eshelman, Larry J, and J David Schaffer. 1992. “Real-Coded Genetic Algorithms and Interval-Schemata.”

Part Two – Design Automation of Biological Systems

Page 138

In FOGA, edited by L Darrell Whitley, 187–202. Morgan Kaufmann.

Fogel, David B., and David B. 1998. Evolutionary Computation : The Fossil Record. IEEE Press.

François, Paul, and Vincent Hakim. 2004. “Design of Genetic Networks with Specified Functions by
Evolution in Silico.” Proceedings of the National Academy of Sciences of the United States of
America 101 (2): 580–85. doi:10.1073/pnas.0304532101.

Gendrault, Yves, Morgan Madec, Martin Lemaire, Christophe Lallement, and Jacques Haiech. 2014.
“Automated Design of Artificial Biological Functions Based on Fuzzy Logic.” In Biomedical Circuits
and Systems Conference (BioCAS), 2014 IEEE, 85–88.

Goh, C S, A A Bogan, M Joachimiak, D Walther, and F E Cohen. 2000. “Co-Evolution of Proteins with
Their Interaction Partners.” Journal of Molecular Biology 299 (2): 283–93.
doi:10.1006/jmbi.2000.3732.

Hansen, Nikolaus, and Andreas Ostermeier. 2001. “Completely Derandomized Self-Adaptation in
Evolution Strategies.” Evol. Comput. 9 (2). Cambridge, MA, USA: MIT Press: 159–95.
doi:10.1162/106365601750190398.

Holland, John H. 1975. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence. The Quarterly Review of Biology. Vol.
1. MIT Press. doi:10.1086/418447.

Hornby, Gregory S, Al Globus, Derek S Linden, and Jason D Lohn. 2018. “Automated Antenna Design
with Evolutionary Algorithms.” Accessed February 15.

Kirkpatrick, S, C D Gelatt, and M P Vecchi. 1983. “Optimization by Simulated Annealing.” Science, New
Series 220 (4598): 671–80.

Koza, John R. 2003. Genetic Programming IV: Routine Human-Competitive Machine Intelligence.
Norwell, MA, USA: Kluwer Academic Publishers.

Koza, John R. 1992. Genetic Programming : On the Programming of Computers by Means of Natural
Selection. MIT Press.

Koza, John R. 1994. Genetic Programming II : Automatic Discovery of Reusable Programs. MIT Press.

Koza, John R, Forrest H Bennet III, and David Andre. 1999. “Method and Apparatus for Automated
Design of Complex Structures Using Genetic Programming.”
https://patents.google.com/patent/US5867397A/en.

Koza, John R, Forrest H Bennett, David Andre, Martin A Keane, and Frank Dunlap. 1997. “Automated
Synthesis of Analog Electrical Circuits by Means of Genetic Programming.” Evolutionary
Computation, IEEE Transactions on 1 (2). IEEE: 109–28.

Koza, and John R. 1989. “Hierarchical Genetic Algorithms Operating on Populations of Computer
Programs.” Proceedings of the 11th International Joint Conference on Artificial Intelligence -
Volume 1. Morgan Kaufmann Publishers Inc.

Lohn, Jason D, and Silvano P Colombano. 1998. “Automated Analog Circuit Synthesis Using a Linear
Representation.” In Evolvable Systems: From Biology to Hardware, 125–33. Springer.

Maitre, Ogier, Laurent A Baumes, Nicolas Lachiche, Avelino Corma, and Pierre Collet. 2009. “Coarse
Grain Parallelization of Evolutionary Algorithms on GPGPU Cards with EASEA.” In Proceedings of
the 11th Annual Conference on Genetic and Evolutionary Computation, 1403–10.

Metropolis, Nicholas, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and Edward
Teller. 1953. “Equation of State Calculations by Fast Computing Machines.” J. Chem. Phys. J.

Chapter 5 – Design Automation at Analog Level

Page 139

Chem. Phys. Journal Homepage 21 (6). doi:10.1063/1.1699114.

Metropolis, Nicholas, and S Ulam. 1949. “The Monte Carlo Method.” Journal of the American Statistical
Association 44 (247): 335–41.

P. Collet F. Krüger, O Maitre. 2013. “Massively Parallel Evolutionary Computation on GPGPUs.” In ,
edited by S Tsutsui and P Collet, 15–34. Springer.

Patil, Kiran, Isabel Rocha, Jochen Förster, and Jens Nielsen. 2005. “Evolutionary Programming as a
Platform for in Silico Metabolic Engineering.” BMC Bioinformatics 6 (1): 308. doi:10.1186/1471-
2105-6-308.

Rechenberg, I. 1974. “Adaptive Mechanismen in Der Biologischen Evolution Und Ihr Einfluss Auf Die
Evolutionsgeschwindigkeit: Arbeitsbericht.”

Rechenberg, I. 1965. “Cybernetic Solution Path of an Experimental Problem.” Journal of Theoretical
Biology 215: 441–48.

“Registry of Standard Biological Parts.” 2015. Accessed November 6.
http://parts.igem.org/Main_Page.

Thomas, René, Denis Thieffry, and Marcelle Kaufman. 1995. “Dynamical Behaviour of Biological
Regulatory networks—I. Biological Role of Feedback Loops and Practical Use of the Concept of
the Loop-Characteristic State.” Bulletin of Mathematical Biology 57 (2). Springer: 247–76.

Xie, Zhen, Liliana Wroblewska, Laura Prochazka, Ron Weiss, and Yaakov Benenson. 2011. “Multi-Input
RNAi-Based Logic Circuit for Identification of Specific Cancer Cells.” Science (New York, N.Y.) 333
(6047). American Association for the Advancement of Science: 1307–11.
doi:10.1126/science.1205527.

Part Two – Design Automation of Biological Systems

Page 140

Page 141

Summary of Part Two

In this part dedicated to design automation of biological systems, we have developed and validated

several tools. First, we have developed GeNeDA, a tool that takes as input a Boolean description of a

GRN in a specific format (BLIF, Verilog, truth table, etc) and synthesizes, from this description, a

combinatorial GRN. The tool involves a digital synthesizer from electronics and has been tuned in order

to take into account the specificities of biology, as for instance the set of elementary digital functions

that can be achieved by genetic regulation mechanisms.

Then we turned to the synthesis of sequential systems. For this, we first applied a design method

borrowed from digital electronics (namely Huffmann method) to compute the Boolean equations of

the system. Then, we used GeNeDA to obtain the GRN from these Boolean equations A deep analysis

highlighted the limits of this approach. Two main difficulties have been identified: i) even for simple

systems, the designed GRN are in general quite complex and are at the limit of what can be integrated

in a single cell and ii) they are quite sensitive to the variations of the biochemical parameters

(dissociation constants, translation and transcription rate, degradation coefficient, etc). Thus, these

parameters have to be well-controlled and homogenized to guarantee the proper operation and the

stability of the designed systems made.

Electronics tackled the problem of stability of sequential systems by deploying synchronous solutions.

In this case, the feedback loops (source of malfunctions) are no longer calculated permanently but only

at the tick given by a clock signal. This principle can be applied to synthetic biology as long as we can

implement a D flip-flop. We have proposed a new GRN architecture to realize this function, composed

of only 3 operons (versus 7 for the existing one). The biological D flip-flop has been validated in

simulation, its robustness has been challenged by a set of Monte-Carlo simulation and it has been

tested in some classic examples, such as counters. Again, the difficulty of integrating more than one

flip-flop in a given cell has been highlighted. In addition, the question of the generation and the

propagation of the clock signal, which is also a critical point in synchronous systems, has been raised.

In a second time, we were interested in the synthesis of circuits for which a Boolean description is not

possible or is not sufficient to specify properly the system to realize. To tackle this question, we

implemented genetic algorithms. In particular, we demonstrated that, using these algorithms, it is

possible to find a set of parameters for a GRN that matches a response specified a priori. This is an

important step toward design automation but the network structure has to be defined by a preliminary

abstracted synthesis. Moreover, this approach still does not answer the question of the link between

an abstracted GRN and an actual building block that can be found in part libraries. At the most, this

tool gives clues to the designers on the key parameters of the system for which a particular care has

to be paid when choosing these building blocks.

For this last limitation, we expected to bring a better solution with combinatorial search algorithms.

Unfortunately, this study has not been successful. Besides, we tried to implement genetic

programming to meet the challenge of the design of a GRN from scratch. We developed a Python tool

than can evolve both the network topology and its parameters. The tuning of this algorithm in order

to obtain consistent results is very subtle. In particular, we tinkered the selection pressure of the

algorithm, the freedom that GRNs have in order to grow, the way the complexity of the network is

taken in to account, the way the networks are pruned at the end of the algorithm, etc. Nevertheless,

Part Two – Design Automation of Biological Systems

Page 142

we managed to find with the algorithm relevant results on some examples picked up from the

literature.

The design approach we employ could, of course, be improved. The current tool allows the evolution

of a GRN based on a set of requirements of the type dose-response with the possibility to have many

inputs and outputs. The employed model however lacks the simulation of mRNA. Modeling mRNA as

a species would give more precise results but also enable a new type of interactions: micro-RNA (miR)

inhibition. This inhibition happens at the mRNA level (see Chapter 2). Having miR in our GRNs would

allow a greater diversity of repressors and therefore a reduced risk of crosstalk. Moreover, the miR

pattern of a cell (which miR are expressed in this cell) can be used to identify cancerous cells (Xie et al.

2011). A new version of the tool is an undergoing work. This new version includes mRNA and miR

interactions as well as the possibility to have dynamic response as a target.

The tools that we developed in this thesis allows us to consider the design of GRN of an intermediate

size (10 to 20 regulations). In this case, the main question will not be how to design the biological

circuit but rather how to implement it in a cell. The solution to split the logical function in different

cells that communicate with each other by chemical messengers has made its way in recent years. We

have to be ready to answer it. The algorithms described in this part will be handle problems with such

a level of complexity. However, since the system is distributed in several cells, spatialization plays a

crucial role in the model. It will be necessary to couple the algorithm to an evaluation function that

supports models depending on both space and time. This is the topic of the next part of the manuscript.

In addition, computation time may be a bottleneck for this approach, combining an algorithm that is

itself time-consuming and evaluating multiple models at each iteration, the simulation of each model

being also time-consuming. In such a situation, we try to find a good trade-off that allows the algorithm

to converge fast (but not too fast, because of the risks of being trapped into a local minimum) but that

provides simulation results accurate enough to be trustable.

Page 145

Introduction to Part Three

The Design Automation part highlighted one observation: as soon as we want to realize GRNs that

perform a non-elementary function (e.g. sequential systems, finite state machines, counters, etc) the

system cannot be integrated in a single cell due to technological issues. Thus, we have to divide it into

several sub-networks, each of them being implemented in a different cell. This new way of making

GRN has been suggested a few year ago and experimentally validated on a small-scale circuits (i.e. a

XOR gate composed of 4 cells) (Brenner, You, and Arnold 2008; Li and You 2011; Tamsir, Tabor, and

Voigt 2011). The design at a larger scale of such systems requires a tool that enables the combined

simulation of intracellular biological mechanisms and map of concentration of the molecule involved

in cell-to-cells communications. This is the issue we are addressing in this part.

A non-exhaustive list of the requirements for such a tool are given below:

 The tool should be able to combine local and global phenomena.

 For local phenomena, it should take as input common formalism, such as SBML, under which

models of biological systems already exist.

 It should be fully integrated in our design environment

 It should be configurable in such a fashion that the user can play with the trade-off between

accuracy and computation time in different ways.

 It should open-source.

Several solutions already exist to handle such models. They have been studied beforehand and some

of them are described in this manuscript. However, this state of the art brings to light that no tool

fulfils all of our requirements. On the other hand, members of our team have recently developed a

simulator dedicated to tackle a similar issue, but in a very different domain. Their purpose was the

electro-thermal simulation of integrated circuits (Krencker et al. 2010). The tool we developed during

this thesis is an adaptation of this simulator to a biological context.

This part of the manuscript is divided into two chapters. The first one (Chapter 6) describes the way

the tool has been developed. It begins with a state of the art of existing approaches and tools that can

be used to take space location into account in biological models. An emphasis is put on three existing

tools: HSIM, COMSOL and Virtual Cell. In the Section 2, the theoretical background on the reaction-

diffusion equation (Fick’s law used to model space- and time-dependent biological systems) and its

counterpart, the heat equation, is reminded. Then, our tool is described. It is mainly composed of a

mesher, a circuit generator and a model for an elementary mesh, on which focus is put in the Sections

4 and 5. Two discretization schemes have been evaluated to compute this model: finite differences

and finite element methods.

The second chapter of this part (Chapter 7) is devoted to the validation of the tool and its application

on several use cases:

 Basu’s pattern generator, already presented in Part Two, but this time in its complete version

including sender and receiver cells (Basu et al. 2005)

 A XOR realized with a consortium of 3 cells, each performing a NOR function and

communicating with each other via AHLs (Tamsir, Tabor, and Voigt 2011)

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 146

 A simplified prey-predator system (Balagaddé et al. 2008)

 The study of the synchronization of biological oscillators (Garcia-Ojalvo, Elowitz, and Strogatz

2004)

References
Balagaddé, Frederick K, Hao Song, Jun Ozaki, Cynthia H Collins, Matthew Barnet, Frances H Arnold,

Stephen R Quake, and Lingchong You. 2008. “A Synthetic Escherichia Coli Predator-Prey
Ecosystem.” Molecular Systems Biology 4 (1): 187. doi:10.1038/msb.2008.24.

Basu, Subhayu, Yoram Gerchman, Cynthia H Collins, Frances H Arnold, and Ron Weiss. 2005. “A
Synthetic Multicellular System for Programmed Pattern Formation.” Nature 434 (7037): 1130–
34. doi:10.1038/nature03461.

Brenner, Katie, Lingchong You, and Frances H Arnold. 2008. “Engineering Microbial Consortia : A New
Frontier in Synthetic Biology,” no. July: 483–89. doi:10.1016/j.tibtech.2008.05.004.

Garcia-Ojalvo, J., M. B. Elowitz, and S. H. Strogatz. 2004. “Modeling a Synthetic Multicellular Clock:
Repressilators Coupled by Quorum Sensing.” Proceedings of the National Academy of Sciences
101 (30): 10955–60. doi:10.1073/pnas.0307095101.

Krencker, Jean-Christophe, Jean-Baptiste Kammerer, Yannick Hervé, and Luc Hébrard. 2010. “Direct
Electro-Thermal Simulation of Integrated Circuits Using Standard CAD Tools.” In Thermal
Investigations of ICs and Systems (THERMINIC), 2010 16th International Workshop on, 1.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5636296.

Li, Bochong, and Lingchong You. 2011. “Synthetic Biology: Division of Logic Labour.” Nature 469
(7329). Nature Publishing Group: 171–72. doi:10.1038/469171a.

Tamsir, Alvin, Jeffrey J Tabor, and Christopher A Voigt. 2011. “Robust Multicellular Computing Using
Genetically Encoded NOR Gates and Chemical ‘wires.’” Nature 469 (7329). Nature Publishing
Group: 212–15. doi:10.1038/nature09565.

Page 147

Chapter 6
Description of the Simulator

 State of the art on spatial simulation in biology 148
1.1. Simulation approaches ... 148
1.2. Existing tools ... 149

1.2.1. HSIM .. 149
1.2.2. COMSOL .. 151
1.2.3. Virtual Cell ... 152

1.3. Outcome on the state of the art ... 153
 Theoretical background .. 154
2.1. Space and time modeling in biology 154
2.2. Analogy between biology, thermic and electronic 155
2.3. Electro-thermal simulation of integrated circuits 155
 Overview of our simulator .. 156
3.1. Mesher .. 156
3.2. Overview of the model of the elementary mesh 158
3.3. Netlist generator ... 158

3.3.1. Instantiation of the elementary mesh 159
3.3.2. Boundary conditions ... 159
3.3.3. External models and sources .. 159

 Model of the elementary mesh: finite difference approach 160
4.1. Model core .. 160
4.2. Finite difference discretization scheme 161
4.3. Link with the elementary mesh model 162

4.3.1. Case of a regular lattice .. 162
4.3.2. Case of an irregular lattice .. 163
4.3.3. Integration of external fluxes .. 163

4.4. Verilog-A implementation .. 165
 Model of the elementary mesh: finite element approach 165
5.1. Model of the elementary mesh in regular lattices 165
5.2. Model of the elementary mesh in adaptive lattices 166

5.2.1. Direct computation ... 166
5.2.2. Composition of triangle models 168
5.2.3. Boundary conditions ... 169

6. Conclusion ... 170
 Reference .. 170

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 148

 State of the art on spatial simulation in biology
1.1. Various simulation approaches
Space can be taken into account in biological models and simulators by different means (Takahashi,
Arjunan, and Tomita 2005). Three main approaches exist: particle-centered modeling, concentration
map and compartmental modeling.

In particle-centered modeling, each instance of each chemical species is modeled by an entity with a
given position in a continuous space and with a given displacement vector. At every time step, the
position of the particle is updated and a new displacement vector is computed according to a random
walk which may depend on physico-chemical properties. When two particles are close enough, an
interaction (binding, degradation, synthesis of another particle) may occur. HSim is an example of
simulator that uses such an approach (Amar, Bernot, and Norris 2004). It is described in more details
in the next section. The complexity of such algorithm grows linearly with the number of instances and
the number of interactions. As a consequence, particle-centered modeling can be very useful for the
study of elementary mechanisms with a low number of particle but it is not adapted to predict the
behavior of large-scale systems.

Cellular automata are an alternative to perform particle-centered modeling. In this case, space is
separated in elementary volumes (voxels). Voxel are in a given state depending on the number and
the type of species occupying it. At each time step, the state of a voxel is updated according to rules
depending on its current state and those of its neighbors (Ermentrout and Edelstein-Keshet 1993) .
These rules may correspond to particle displacement (e.g. if a voxel is in an “empty” state and the
neighbor on its right is in an “occupied” state, it turns to an “occupied” state and right neighbor on its
right turns to an “empty” state) and/or chemical reactions (e.g. if the present voxel is in an “occupied
by molecules A and B” state, it turns to an “occupied by AB” state). Rules might be either deterministic,
stochastic or hybrid. The main advantage of this approach is the use of Boolean conditions instead of
probability distributions that could be complex to describe and to calculate. However, simulation
results may be very sensitive to the way space is divided, as it has been demonstrated in (Madec et al.
2012). Moreover, the computation complexity, which depends on the number of rules to evaluate and
thus the number of states of the voxel, still grows exponentially with the number of potential
interactions.

An alternative to particle-centered modeling is to compute concentration maps depending on both
space and time for each species involved in the system. In this case, space is divided into a lattice of
connected nodes. The concentration of chemical species is computed at every node and every time
step as a function of the concentration at neighbor nodes. Many variants of this approach exist. The
lattice can be regular or adaptive (the grid layout depends on the context), fluxes of particles between
nodes can be deterministic or stochastic and, in both cases, computed by different ways.

For deterministic simulations, the system is described through partial differential equations (PDE)
(Schaff et al. 1997). Most of the time, no analytical solution of these PDEs exists. Therefore, numerical
resolutions methods such as finite differences, finite elements or finite volume are required (Johnson
2009; Evans, Blackledge, and Yardley 2000). Such methods are already implemented in several existing
tools such as COMSOL™, which is one of the most used commercial generic PDE solver with an
interactive graphical user interface (see next section) or FreeFEM++ (Hecht 2012), an open-source PDE
solver written in C++ and a language using C++ idioms to describe systems. These methods can lead to

Chapter 6 – Description of the Simulator

Page 149

very accurate results when using very refined lattices and sophisticated methods but the price to pay
is often a very high computation time.

For stochastic simulation, the computation process is the same as for stochastic simulations of
dimensionless problems, except that it is executed in each voxel (Lecca et al. 2010). Diffusion between
one voxel and each neighbor is put at the same level as reaction. The probabilities of the mechanisms
are computed from the reaction rate on the one hand and from the diffusion law on the other.
Gillespie’s algorithms (Gillespie 1977) are then applied in each voxel in order to compute the transient
evolution of the system.

Stochastic simulations are very accurate, especially for problems in which the concentrations are low
(i.e., the computed concentrations correspond to quantities of molecule in the order of the unit).
However, they are in general very computationally intensive, in comparison to deterministic methods.
To take advantage of both methods, hybrid simulation algorithms have been developed(Spill et al.
2015; Harrison and Yates 2016). The main idea is to divide for each species space into two regions: one
in which the concentrations are high and where a deterministic simulation is performed and one in
which the concentrations are low and where a stochastic simulation is performed. The stochastic and
deterministic regions overlap at an interface in which both simulation are coupled. This interface
moves during the simulation according to conditions on concentrations.

The third alternative, which is the less expensive from a computation time perspective, is to compute
the concentration of species only at several points of interest instead of over the whole space. In this
case, space is divided into compartments and diffusion is modeled as fluxes between compartments.
Compartments are therefore not located in space. The distance and properties of the inter-
compartments medium are integrated as fixed parameters in the diffusion fluxes that connect
compartments to each other. By this means, the space- and time-dependent problem is reduced to a
time- only dependent problem. In most of the cases, even for simple diffusion problems, there are no
analytic equation to compute these fluxes over complex geometrical shapes. Thus, approximation has
to be made. Most of the biological simulators, as for instance COPASI (Hoops et al. 2006) or Virtual Cell
(Loew and Schaff 2001) use this approach.

1.2. Existing tools
After reviewing different approaches for the spatio-temporal simulation of biological systems, focus is
put on 3 existing tools: HSIM, COMSOL and Virtual Cell.

1.2.1. HSIM
HSIM is a biochemical simulator based on a stochastic automaton. HSIM was first released in 2004
(Amar, Bernot, and Norris 2004). As for every particle-centered simulator, the position and the type of
each involved molecule are stored in a table. To describe a system, users have to write a configuration
file according to a proprietary formalism. This file contains the following information: i) the geometry
of the system (total length and diameter), ii) the name, the type, the size and the speed of the involved
molecules, iii) a list of interaction with, for each, a probability of occurrence when the involved
molecules collide and iv) the initial amount of each molecule. At each time step and for each molecule,
the simulation loop depicted in Fig. 1 is computed.

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 150

Fig. 1 Simulation loop of HSIM simulator. Extracted from (Amar and Paulevé 2015)

To develop a model with HSIM, the user first defines the geometry, i.e. a list of compartments. Then,
he has to set the initial conditions, i.e. the number of each molecule and their initial position. Finally,
he writes a list of rules that corresponds to every involved biochemical mechanisms according to a
proprietary formalism. Parameters of the model are the following: the size of the compartments, the
probability for each species to move during one time step and the probability for a reaction to occur
when both reactants collide during a displacement. An example of the simulation of an enzymatic
reaction is given on HSIM website. In our case, we are interested in the diffusion of molecules in a
closed space and from a source point. To implement such model on HSIM, we start from the enzymatic
reaction example. We set the number of enzyme to 1 and fix its position. Each time a substrate
molecule collides with the enzyme, a product is synthesized. Simulation results are given on Fig. 2.

Recent versions of HSIM include more sophisticated features, as for instance the ability to couple
particle-centered simulation with stochastic non-spatial simulations (Amar and Paulevé 2015). By this
way, the simulation time decreases drastically for systems composed of species present in small
amount and for which spatial localization is relevant as well as for systems composed of species
present in larger amount and for which spatial localization is not relevant. In practice, there are two
types of species: the one that are treated individually and the one that are treated globally. The
previous algorithm (Fig. 1) has been modified as follows to take into account of all the possible
interactions. Interactions between individually treated molecules are dealt with as in the original
version of HSIM. Interaction between globally treated molecules are treated with a stochastic
simulation algorithm such as Gillespie’s algorithm (Gillespie 1977). Interaction between individually
treated molecules and globally treated molecules are computed as follows. During the diffusion phase,
the average numbers of collisions between both kinds of molecules is computed and the corresponding
reaction rules are applied.

Chapter 6 – Description of the Simulator

Page 151

Fig. 2 Simulation results obtained with HSIM. Top three images correspond to the simulation of the diffusion of the
product (red dots) synthesized at the enzyme (blue dot at the center). Bottom left diagram gives the distribution of the

concentration of product into concentric spheres as a function of the radius of the sphere. Bottom right figure is
equivalent except that the concentration is estimated in a 5µm donut instead of in a complete sphere.

1.2.2. COMSOL
COMSOL Multiphysics is a commercial finite element analysis, solver and multiphysics simulation
software. It is composed of a tool for the specification of the geometry of the problem, several modules
that correspond to the different domains of physics supported by the tool, an adaptive and physics-
driven mesher, a computation core that handles and solves PDEs generated by the modules and tools
for the analysis and the visualization of simulation results. Moreover, modules can be coupled together
in order to perform multiphysics simulations. Different tools are accessible to the user through a
Graphical User Interface or can be called in a MATLAB script.

Here is a step-by-step description of how to describe a model with COMSOL. The use case is the free
diffusion of a molecule in a 100x100 square which is emitted by a cell at the center.

a) Selection of the module and the interface we would like to use. In our case, we use the
“Chemical Species Transport” interface of the “Chemical Reaction Engineering” module. At this
first step we also define the number and the name of the molecule under study. In our case,
1.

b) Definition of the geometry. In our case, a square of 100 mm with a point P at the center.
c) Definition of the boundary conditions. In our case, we set the concentration on the borders of

the square to 0 and a flux is applied on the central point P.
d) Tuning of the physics. The master equation of the module we would like to use is the following:

݀ܿ
ݐ݀

+ ܝ ∙ ∇ܿ = ∇ ⋅ (D ∙ ∇ܿ) + ܴ

where ܿ is the space- and time-dependent concentration of the species (in mol/m3), u is the
velocity vector (in m/s), ܦ is the fluid is diffusion coefficient (in m2/s) and ܴ is the reaction rate
expression for the species (in mol/m3/s). In our case, the diffusive medium is not in movement,

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 152

so ܝ = 0. Moreover, the only reaction that occurs in the diffusion medium is degradation of
the molecule. Thus, ܴ is set to −݀ ∙ over the whole surface of (with ݀ the degradation rate) ܥ
the square. The last step is to fix the values of ܦ and ݀.

e) Generation of the mesh. The mesh is generated through the GUI with different options. The
mesh generated for our study is given in Fig. 3. It has been obtained with the following options:
“Physics-controlled meshing” and “Finer”.

f) Start of the computation.
g) Analysis of the results. In our case, the output is a map of the concentration over the square

(Fig. 3).

Fig. 3 Simulation results obtained with COMSOL. On the left, the lattice obtained with the COMSOL mesher in standard
configuration. On the right, simulation results for the diffusion of molecules from a source at the center in a closed space.

1.2.3. Virtual Cell
Virtual Cell (VCell) is an open-source software platform dedicated to modeling and simulation of
biochemical systems. Basically, a model is composed of different parts, described in an XML file: the
compartments in which the reactions occur (cell nucleus, cytosol, membrane, etc), a list of species in
each compartment, a list of fluxes between compartments and a list of chemical reactions with their
equation rate and the compartment in which they occur. This information is used to set a list of
ordinary differential equation that describes the system. These equations can be solved either with
deterministic or stochastic methods.

Features introduced in recent versions of VCell enable spatial simulation. Geometries can be specified
by analytic geometry equations, derived from combination of simple shapes or derived from imported
images, such as 3D confocal microscope stacks.

Another specificity of VCell is that the computation is not performed on your own computer but
deported on a server. This is both an advantage because the simulation does not consume local
resources but also a drawback because it limits the coupling of the tool with others, or prevent the
launch of simulation batches.

The simulation of a simple diffusion process on Virtual Cell can be carried out as follows.

Chapter 6 – Description of the Simulator

Page 153

a) Firstly, the user defines the system without taking localization into account. In particular,
involved species, compartments, reactions inside compartments and fluxes between
compartments have to be provided in the same way as if it was a non-spatial system. In our
case, we define two compartments and a membrane between the two compartments. At the
membrane, molecules spec2 are produced with a constant rate. Inside the diffusion
compartment, spec2 is degraded with a standard linear model (Fig. 4A).

b) Secondly, the user has to describe the geometry of the system. In our case, we define a 100
mm x 100 mm square with a small 1 mm radius circle at the center (Fig. 4B).

c) Thirdly, the user has to map the non-spatial compartments and membranes defined in a) with
actual compartments and membranes delimited by the geometry defined in b). In our case,
we map the center compartment with the circle, the diffusion department with the square
(excluding the circle) and the membrane with the perimeter of the circle (Fig. 4C).

d) Fourthly, the user specifies the type of simulation he would like to perform (spatial vs non-
spatial, stochastic vs deterministic). The model is sent to the VCell server that performs the
simulation. Results are available through a dedicated graphical user interface (Fig. 4D).

Fig. 4 Simulation results obtained with Virtual Cell. On the top left (A), the system is defined through the dedicated input
graphical user interface. In our case, it is composed of 2 compartments and a membrane. A flux of the species under

analysis is generated through the membrane and diffuse in the diffusion compartment, where it can be degraded. On the
bottom left (B), the geometry of the system is defined. In our case, it is composed of 0.625 µm radius circle at the center

and a 100x100 mm square. On the top right (C), the compartments defined in the system are mapped to the zones
defined by the geometry. On the bottom middle (D), simulation results provided by Virtual Cell. On the bottom right (E),
illustration of the results that can be obtained from the extracted simulated data: evolution of the concentration of the

diffusing protein as a function of the time and the distance to the center.

1.3. Outcome on the state of the art
To meet the needs expressed in the introduction of part III, the ideal tool has to integrate an algorithm
for the resolution of PDEs whose complexity can be controlled. The tool is intended to be used in design
processes which would require a large number of simulations. Thus, simulation time has to be reduced,
even if it leads to a loss of accuracy. Quantifying the tolerated accuracy loss is a very hazardous task
but we are confident that targeting a very high precision equivalent to the one that would be provided
by sophisticated meshes and solvers used by COMSOL is not necessary. We have to keep in mind that
biological models (both for the diffusion process but also for involved biochemical reactions) also have

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 154

their limitations. Thus, it would be a waste of time to perform a simulation with a higher accuracy than
the models themselves.

Moreover, we also have to keep in mind that our goal is to adapt design tools from electronics to
biology. Thus, it will be necessary to build interfaces between the simulator and the other tools of the
design flow. COMSOL would probably be the most suitable tool for that purpose. Unfortunately, it is a
commercial tool. With HSIM, building interfaces seems to be difficult because the data structure
resulting from HSIM simulation (particle positions) is very different from the one handled by
electronics design tools of microelectronics (physical quantities such as voltages or current or
concentrations in biological context). Finally, since the computation core of Virtual Cell is not local but
is deported to a VCell server, interfacing VCell with tools running on a local machine also seems
complex, or at least inefficient due to the large amount of data to transfer.

In the light of this state-of-the-art, it appears that existing solutions do not fully meet our needs and
that the redevelopment of a PDE solver compatible with SPICE’s electronic circuit simulator would be
a better alternative. The use of SPICE ensures naturally the compatibility with a large number of tools
used in electronics circuit design (e.g. circuit optimizers, performance analyzer…). Moreover, this
choice is also motivated by the existence of another tool developed by our team and dedicated to the
electro-thermal simulation of integrated circuits. This tool includes a PDE solver that can be easily
adapted to our problem. It is described in the next chapter.

 Theoretical background
In this section, we will first describe the analogy between electronics, thermics and biology on which
our tool relies. More precisely, our tool is based on an electro-thermal simulator developed a few years
ago in our team and which aim is to analyze the impact of temperature gradient inside an integrated
circuit (Krencker et al. 2010; Garci, Kammerer, and Hebrard 2014). This tool is described in the second
subsection. Finally, the finite difference discretization scheme, which is used in the first version of the
model, is described.

2.1. Space and time modeling in biology
The generic model for a biological system that depends both on time and space is a set of PDEs (one
per species) which can be written as follows:

Equation 1

߲ܺ௞

ݐ߲
= ௞݂(ܺ௞, ,ݐ ,ݔ ,ݕ (ݖ + ෍ ,܆)௝,௞ݒ ,ݐ ,ݔ ,ݕ (ݖ

ோ

௝ୀଵ

− ݀௞ ∙ ܺ௞(ݐ, ,ݔ ,ݕ ݇ (ݖ = ሼ1 … ܰሽ

where ܰ is the number of involved species, ݐ)܆, ,ݔ ,ݕ ,ݐ)is a vector with ܰ elements ܺ௞ (ݖ ,ݔ ,ݕ each ,(ݖ
being the concentration of the ݇ -th species at time ݐ and position (ݔ, ,ݕ (ݖ , ܴ the number of
biochemical reactions which influence the local concentrations, ݒ௝,௞(܆, ,ݐ ,ݔ ,ݕ is the rate at which (ݖ
the ݆-th reaction produces or consumes the ݇-th species, ݀௞ is the degradation constant associated
with the ݇-th species and ௞݂(ܺ௞, ,ݐ ,ݔ ,ݕ is a term that models the diffusion of the ݇-th species into (ݖ
space. Equation 1 is often called reaction-diffusion equation. Generally, ௞݂(ܺ௞, ,ݐ ,ݔ ,ݕ corresponds (ݖ
to Fick’s law (Fick 1855):

Chapter 6 – Description of the Simulator

Page 155

Equation 2

௞݂(ܺ௞, ,ݐ ,ݔ ,ݕ (ݖ = ,ݐ)௞ܦ ,ݔ ,ݕ (ݖ ∙ ∇ଶܺ௞ = ,ݐ)௞ܦ ,ݔ ,ݕ (ݖ ∙ ቆ
߲ଶܺ௞

ଶݔ߲ +
߲ଶܺ௞

ଶݕ߲ +
߲ଶܺ௞

ଶݕ߲ ቇ

where ܦ௞(ݐ, ,ݔ ,ݕ (ݖ is the diffusion constant of the ݇ -th species and ∇ଶ is the Laplace operator.
Sometimes, ௞݂(ܺ௞ , ,ݐ ,ݔ ,ݕ (ݖ can be more sophisticated (e.g. cell membrane, time- or space-
dependence of the diffusion constant, obstacles, etc).

For the ݒ௝,௞ functions, standard models of biochemistry such as Hill’s equations (Konkoli 2011),
Michaelis-Menten’s models (Michaelis and Maud Menten 1913) or protein-binding polynomial
(Haiech, Gendrault, and Kilhoffer 2014) are implemented. Such models may depend on the
concentration of all other involved species, the time and the position.

2.2. Analogy between biology, thermic and electronic
On the one hand, the analogy between electronics and biology at the device level has already been
described in the chapter 2. With this analogy, it is possible to model ݒ௝,௞(܆, ,ݐ ,ݔ ,ݕ the degradation ,(ݖ
term and the derivative term of Equation 1 with an equivalent electronic circuits.

On the other hand, an analogy can be drawn between biology and thermal physics when considering
the diffusion phenomenon. The model of the diffusion of heat in a material is given by heat the
equation derived from Fourier’s law (Blundell and Blundell 2010).

Equation 3

,ݐ)ܥ ,ݔ ,ݕ (ݖ ∙
߲ܶ
ݐ߲

= ,ݐ)଴ߣ ,ݔ ,ݕ (ݖ ∙ ∇ଶܶ + ,ݐ)ܳ ,ݔ ,ݕ (ݖ − ℎ(ݐ, ,ݔ ,ݕ (ݖ ∙ ,ݐ)ܶ ,ݔ ,ݕ (ݖ

where ܶ(ݐ, ,ݔ ,ݕ (ݖ is the temperature, ݐ)ܥ, ,ݔ ,ݕ (ݖ is the local heat capacity, ߣ଴(ݐ, ,ݔ ,ݕ (ݖ is the
thermal conductivity, ܳ(ݐ, ,ݔ ,ݕ ,ݐ)is the distribution of heat sources in space and time, and ℎ (ݖ ,ݔ ,ݕ (ݖ
is the convection constant. Similarities between heat equation (Equation 3) and the reaction-diffusion
equation (Equation 1) are obvious.

Finally, the analogy between electronics and thermal physics is also well-known (Blundell and Blundell
2010). Electro-thermal simulations of integrated circuits are mostly based on this analogy.

2.3. Electro-thermal simulation of integrated circuits
The electro-thermal simulation of an integrated circuit is needed especially for high density integrated
circuits, for mixed circuits with integrated power devices or for the next generation of 3D integrated
circuits. Such a simulation requires two modeling layers, one dedicated to the computation of the
thermal map and one dedicated the computation of the voltages and currents in the electronic circuit.
Direct coupling on the one hand and relaxation on the other can be used to address this problem
(Digele, Lindenkreuz, and Kasper 1997)

In the relaxation approach, a first electrical simulation is carried out with all the devices at room
temperature. Then the power dissipated by each device is estimated and a 2D/3D thermal map of the
chip is computed with an external tool. The mean temperature of each device is then computed from
this map and fed back to the electrical simulator. This simulation loop is performed iteratively until
convergence is obtained. This approach is straightforward but requires two separated tools. Moreover,

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 156

very fast changes cannot be considered as the simulation is therefore becoming highly time
consuming.

The last generation of electro-thermal simulators use a direct coupling, i.e. both layers are computed
together with the same solver. The principle is described in (Krencker et al. 2010; Garci, Kammerer,
and Hebrard 2014). On the thermal layer, the heat equation is discretized and modeled with electronic
equivalent circuits. Such circuits are composed of thermal capacitors on each node of the lattice to
model heat accumulation by the chip, thermal resistors between nodes to model the heat transfer,
thermal resistor between nodes and the thermal ground (ambient temperature) to model heat
convection, and localized heat sources. The electronic layer is composed of temperature-dependent
models of devices instantiated in the circuit. Each model is connected to the closest thermal node,
uses the node temperature inside models to set temperature-dependent parameters and computes
the localized heat source associated to the device.

Our tool, described in the next subsection, is based on an electro-thermal simulator developed in our
lab and takes advantage of the aforementioned analogy between thermal and biological problems.

 Overview of our simulator
The tool we developed is based on the SPICE environment. The ability of the language associated to
SPICE to handle both biological systems (Madec, Lallement, and Haiech 2017) and thermal convection-
diffusion problems (Garci, Kammerer, and Hebrard 2014) has already be proven. In this way, we take
advantage of almost 50 years of experience and curation. Two SPICE distributions are used. Spectre
MMSIM, a commercial simulator integrated in the Cadence Integrated Circuit Design Suite
(https://www.cadence.com) that offers different types of analysis (operating point, transient, DC
analysis, AC analysis, noise analysis, parameter sweep …). Moreover, it is parallelized and can thus
simulate large-scale systems (with thousands of equation) in a very low computation time compared
to other software. Beside, an open-source SPICE simulator, namely NgSpice (Nenzi and Vogt 2011) has
also been tested and integrated in the following tool in order to keep the complete workflow free. The
tool is composed of a suite of five main modules written in different languages (see Fig. 5): a mesher
written in C++, a SPICE netlist generator written in Python, a generic model of an elementary mesh
described in Verilog-A or directly in SPICE, a SPICE simulator and a Python script to read simulation
output files and plot results. The complete workflow is detailed in the following subsections. Our tool
supports 3D modeling but for clarity of explanation, the following will use 2D models to explain how
our approach works.

3.1. Mesher
The role of the mesher is to discretize space into elements according to the problem topology and
user-defined parameters. To reduce the computation time and the complexity of the model, we opted
for a lattice composed of square meshes with variable degrees of refinement. Firstly, the user has to
provide an input file (see the grey box on Fig. 5) that contains the list of the molecules that diffuse,
general parameters concerning the lattice (its total size, the maximal size of an element) as well as
information concerning the biological entities (cells) influencing the concentration. For each entity the
description file must contain its position, its flux/reaction altering the concentration of molecule and
its influence zone. Influence zones are ovoids (ellipse in 2D) characterized by their semi-axis and a

Chapter 6 – Description of the Simulator

Page 157

degree of refinement. Strong concentration gradients may be observed in these regions which thus
must be finely meshed to obtain an accurate simulation.

Fig. 5 Core modules of the designed tool. The label indicates the language in which the module was written.

The input file is read by the core module, namely the mesher, a C++ program that creates a list of
elementary mesh and their associated nodes, as well as a list of all node coordinates. In a two-
dimensional space, a first lattice made of rectangles of the maximal size defined by the user is
generated. In a second step, each rectangle overlapping an influence zone (red circle in Fig. 6) is
divided into 4 identical sub-rectangles if its size is larger than the maximal size allowed inside this zone.
This operation is repeated until all the rectangles overlapping an influence zone are smaller than the
maximal size. Finally, transitions between rough and refined lattice are smoothed: if the difference
between the refinement levels of two adjacent rectangles is larger than 1, i.e. when the ratio of their
sides is larger than 2, the largest rectangle is divided in 4 and this last operation is also repeated until
each couple of adjacent rectangles have a difference of refinement level lower or equal to 1.

The mesher provides two output files. The netlist file is a CSV file composed of one line per mesh in
the lattice and 27 columns per line. The first column is the net label. Columns 2 to 9 correspond to the
node number of each corner. Columns 10 to 15 correspond to the node number of the center of each
face. Columns 16 to 27 correspond to the number of the middle of each edge. The value -1 is affected

Generates a .cir
file for SPICE

PYTHON

Processes the
output file for
visualization

PYTHON

Model of an
elementary mesh

& biological
system

VERILOG-A
Spectre

simulates the
diffusion of
molecules

SPICE

INPUT PARAMETERS
(biological)

 Position of influencing
cells and their influence
zone

 Total size of the lattice
 Max and min mesh size

Diffusing molecule

Core mesher,
generates a list

of meshes

C++ TOOL’S CORE

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 158

if the node number does not exist (i.e. the node of the given mesh is not connected to any corner node
of any other mesh). The nodelist file is a CSV file composed of one line per node in the lattice and 4
columns. The first column is the node number. The three following are the node coordinates in ݕ ,ݔ
and ݖ.

Fig. 6 Example of a lattice with 4 initial divisions and with a central refinement zone of n=2 (red circle). The algorithm

checks whether the n value of each mesh in contact with the zone is superior or equal to expected value (here 2). If not,
the relevant meshes are sub-divided. In order to keep a progressive refinement, some meshes have to be divided even if

not in contact with the refining zone: green shapes illustrate this case.

3.2. Overview of the model of the elementary mesh
The model of the elementary mesh is composed of 9 terminals representing the concentration of
molecules at each corner (C0, C1, C2 and C3) and at the middle of each edge (C01, C12, C23 and C30)
as well as a reference node. It is also composed of 10 parameters described in Table 1. Corner nodes
are always connected whereas the middles of each edge are connected only if the adjacent mesh is
refined. Obviously, the model of the elementary mesh depends on the number and the position of the
connected middles, which is described by parameters X01, X12, X23 and X30.

Two equivalent versions of the model have been developed, one in Verilog-A (more readable but not
compatible with NGSPICE) and one directly in SPICE language. The Verilog-A model is given in Appendix
III. More details on the content of the model (electronic equivalent circuit) are given in the next section.

1.3. Netlist generator
The SPICE simulator requires a description of the system as a netlist, i.e. a list of instantiated electrical
devices (resistors, capacitor, current source, sub-circuit such as the model of the elementary mesh, …).
This file contains the following elements: i) the definition of the global parameters of the model; ii) the
instantiations of the elementary mesh models; iii) a map of initial concentrations; iv) boundary
conditions; v) instantiations of all the local biological mechanisms and vi) simulation directives.

Chapter 6 – Description of the Simulator

Page 159

Table 1 Parameters of the model of a mesh

Parameter Definition

ID Id of the mesh (mostly for debugging purpose)

N Refinement degree

X01, X12, X23 and
X30

Boolean that indicates if a smaller neighbor mesh is connected at the middle
of the corresponding edge

R0 Local degradation constant

K0 Scaling parameter (default = 1)

D0 Local diffusion constant

MeshSize (࢙ࡹ) Maximal allowed size of the edge of a mesh

3.2.1. Instantiation of the elementary mesh
Elementary mesh instantiations are created directly from the netlist delivered by the mesher. The
Verilog-A model of the elementary mesh is encapsulated in a SPICE sub-circuit called Mesh_unit. A
Mesh_unit is instantiated for each line in the netlist file. The k-th mesh is labelled Mk and a list of
the 9 connections (8 nodes of the elementary mesh and the reference node which is always 0) is
provided. Unconnected nodes are grounded (they have no influence on other nodes). Finally, the
parameters that are not equal to their default value are specified.

Here is an example of instantiation of the elementary mesh #15 in the netlist. Bottom-left, bottom-
right, top-right and top-left corners are respectively connected to node number 53, 54, 52 and 11. In
addition, there is a connection at the middle of the right edge which is connected to the node 80. Local
diffusion and degradation are set to their default value and the mesh is refined twice in comparison
with the initial one.

M15 53 54 52 11 0 80 0 0 0 Mesh_unit X12 = 1 n=2.0 ID=15

For a system involving multiple diffusing species, a layer of elementary mesh is generated for each
species. These layers are independent from each other but might be connected through reaction
models (see next subsections).

3.2.2. Boundary conditions
The model allows us to consider different boundary conditions. By default, the space represented by
the mesh is considered as closed. From a modeling point of view, it corresponds to open circuits after
each boundary nodes. Space can also be considered as sufficiently large to have null concentrations at
the border nodes: in this case, boundary nodes are grounded. Finally, it is also possible to model further
diffusion outside of the mesh borders by adding a grounded resistor to all of the border nodes.

3.2.3. External models and sources
Reaction terms of Equation 1 are added by connecting associated Verilog-A or SPICE model to the
electrical network generated. The path to the models and the position of the reactions are given in
the input parameter file. The model of each cell must be described in Verilog-A or SPICE beforehand.
SBML models can also be imported with the help of the BB-SPICE SBLML-to-SPICE translator. For each

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 160

reaction model, the netlist generator connects one instance of the model of a cell to every node in
contact with a cell according to the input parameter file.

 Model of the elementary mesh: finite difference approach
The external view of the model is described in Section 3.2 . In this section we describe in more details
the content of the model of an elementary mesh. In the following, for simplicity’s sake, the name of a
node (e.g. C1) will implicitly correspond to its potential, which in our analogy also corresponds to the
local concentration of molecules on that node.

4.1. Model core

Fig. 7 Upper part: 2D elementary mesh with 8 potential connections: 4 corners (always connected, red dots) and 4 edges

(not connected if the degree of refinement of the neighbor mesh is the same, grey dots). Plain arrows (blue and green)
show the fluxes. Lower part: representation of the electronic devices connected to a corner node (left) or an edge node

(right).

The model of the elementary mesh is given in Fig. 7. Four devices are connected to each corner node:
two resistors connected at the adjacent node, a resistor ܴ௡ connected to the reference node, and a
capacitor ܭ௡ also connected to the reference node. The two resistors represent the molecule flux ܨ௜௝
between the two nodes they connect, which is proportional to the difference of concentration
between these two nodes ܨ௜௝ = ௡ܦ ∙ ൫ܥ௜ − ௝൯. The resistor ܴ௡ represents the decay at a node. In theܥ
following, fluxes are renamed as follows, to identify the fluxes more easily and to avoid confusion
between the nodes’ numbers inside the mesh (0 to 3) and in the lattice (1 to the total number of nodes
in the lattice): ܨ௑ଵ = ௑ଶܨ ,ଵ଴ܨ = ௒ଵܨ ,ଶଷܨ = ௒ଶܨ ଷ଴ andܨ = ଶଵ. For terminals Cij, the model is slightlyܨ
different with a Voltage-controlled Current Source (VCCS) instead of the two diffusion resistors. VCCS
are instantiated only if the node is connected to another mesh, i.e. if the corresponding Xij is True.
The values of the resistance, capacitor and VCCS have been calculated in order to match the equations

C0 C1

C2C3

x

y

C01

C23

C30 C12

C0

C3

C1
C01

-FY1-FY2

FX2

FX1

FY1 FY2

Chapter 6 – Description of the Simulator

Page 161

obtained with the finite difference discretization scheme once all the instances of the elementary mesh
are assembled.

4.2. Finite difference discretization scheme
Solving reaction-diffusion equation (or heat transfer equation) implies the resolution of PDEs. The
easiest way to do that is to discretize space according to a finite difference scheme (Mazumder and
Mazumder 2016). In this paragraph, we use this method to discretize Fick’s equation. For simplicity’s
sake, a 2D system is considered.

Let ݔ)ܥ, ,ݕ ,be the concentration of the molecules diffusing in a 2D space. In the following equations (ݐ
this concentration is named C for a clearer demonstration. Fick’s equation is given by:

Equation 4

ܥ߲
ݐ߲

= ܥ∆ܦ − ݀௑ܥ = ܦ ቆ
ܥ²߲
²ݔ߲

+
ܥ²߲
²ݕ߲

ቇ − ݀௑ܥ

with diffusion constant ܦ and the degradation constant ݀௑ of the diffusing molecule. We now consider
a regular lattice. Let ܥ௜,௝ be the concentration at point with discrete coordinates (݅, the ݕ∆ and ݔ∆ ,(݆
size of the mesh on both directions (Fig. 8). The second derivative term of ܥ at (݅, ݆) can be expressed
as a function of the concentration at the neighbor nodes as following:

ܥ²߲
²ݔ߲

=

ܥ߲
ݔ߲ ݔ) + (ݔ∆ −

ܥ߲
ݔ߲ ݔ) − (ݔ∆

ݔ∆
=

ݔ)ܥ + (ݔ∆ − (ݔ)ܥ
ݔ∆ −

(ݔ)ܥ − ݔ)ܥ − (ݔ∆
ݔ∆

ݔ∆

Reusing the notation in discrete space established in the previous paragraph, we obtain:

ܥ²߲
²ݔ߲

=
௜ାଵ,௝ܥ − ௜,௝ܥ − ௜,௝ܥ) − (௜ିଵ,௝ܥ

²ݔ∆

We assume that our mesh is made of squares so that we have:

ݔ∆ = ݕ∆ = ∆݈

Hence:

ܥ߲
ݐ߲

=
ܦ

∆݈²
൫ܥ௜ାଵ,௝ + ௜ିଵ,௝ܥ + ௜,௝ାଵܥ + ௜,௝ିଵܥ − ௜,௝൯ܥ4 − ݀௑ܥ

Fig. 8 Notations in a discrete space

i, j

i, j+1

i+1, j

i-1, j

i, j-1

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 162

4.3. Link with the elementary mesh model
4.3.1. Case of a regular lattice
In a regular lattice, a node (node #5 in this case) is surrounded by 4 squares of the same size. Fig. 9
defines the names of the neighbor nodes and meshes that are used in the following.

Fig. 9 A node surrounded by 4 squares of the same size

We designate as ܥ௜ the potential ௜ܸ on node ݅. Let write the equation governing the dynamic of the
concentration at the node 5 (blue dot on Fig. 9) by applying Current Kirchhoff’s Law (see Chapter 2).
Four fluxes per adjacent lattice have to be taken into account, two from the diffusion phenomenon,
one from the degradation resistance and one from the capacitor charge/discharge.

௘௤,ହܭ ∙
ହܥ݀

ݐ݀
= ௑ଶ,ఈܨ− + ௒ଶ,ఈܨ + ௒ଵ,ఉܨ + ௑ଶ,ఉܨ + ௑ଵ,ఊܨ − ௒ଵ,ఊܨ − ௑ଵ,ఋܨ − ௒ଶ,ఋܨ −

ହܥ

ܴ௘௤,ହ

with the flux defined as in Section 4.1. The equivalent resistor connected to the ground seen at the
node #5 is the parallel association of the resistor in each mesh:

Equation 5

ܴ௘௤,ହ =
1

1
ܴ௡,ఈ

+
1

ܴ௡,ఉ
+

1
ܴ௡,ఊ

+
1

ܴ௡,ఋ

= ܴ଴

And the equivalent capacitor connected to the ground seen at the node #5 is the parallel association
of the capacitor in each mesh:

Equation 6

௘௤,ହܭ = ௡,ఈܭ + ௡,ఉܭ + ௡,ఊܭ + ௡,ఋܭ

On the other hand, application of Equation 4 on node #5 leads to the following equation:

ହܥ߲

ݐ߲
=

ܦ
∆݈²

ଵܥ) + ଷܥ + ହܥ + ଻ܥ − (ସܥ4 − ݀ܺ ∙ ହܥ

Thus, by identification of terms, we obtain:

1 2 3

4 5 6

7 8 9

δ

α

γ

β

Chapter 6 – Description of the Simulator

Page 163

Equation 7

݀ܺ =
1

௘௤,ହܭ ∙ ܴ௘௤,ହ

and:

Equation 8

௡ܦ = ௘௤,ହܭ ∙
ܦ

2 ∙ ௡ݏܯ
ଶ

with ݏܯ௡ = ∆݈, the size of the meshes.

Because the problem is symmetric, ܴ௡ and ܭ௡ should be equal in the four meshes. Finally, from the
previous equations (Equation 5 to Equation 8) we extract the formula of ܴ௡, ܭ௡ and ݏܯ௡ as a function
of the maximal mesh size ݏܯ , the degree of refinement ݊ , the local decay rate ܴ଴ and the local
diffusion constant ܦ଴ as follows:

ܴ௡ =
4ܴ଴

ቀ
1
2ቁ

௡

௡ܭ =
ቀ

1
2ቁ

௡

4

݊ݏܯ =
ݏܯ
2௡

4.3.2. Case of an irregular lattice
To check the consistency of our definition, we repeat the same process for different configurations
involving different refinement levels ݊. We also consider squares only. In this case, the discretization
process involves more variables, as nodes in the middle of a segment also intervene. We therefore

note ܥ௜ାభ
మ

,௝ and ܥ௜,௝ାభ
మ

 the concentration of a node at a distance ∆௟

ଶ
 of ܥ௜,௝ in the ݔ and ݕ axis

respectively. We summarize the demonstrations in Table 2 by giving the discretization partial
equations, the model equation and the figure of the corresponding configuration.

In our model, ݏܯ corresponds to the length of the undivided square, so that ெ௦

ଶ೙ is the length of a

square of refinement ݊. With that in mind, we see that the equations from the discretization in Table
2 are equal to the equations given by our model. The 4 cases presented in the table can be rotated to
obtain all possible configurations (we remind here that two adjacent squares can only have a difference
of 1 in their refinement level). By symmetry, we see that the equations are still equal. We therefore
conclude that our model is correct according to the finite difference method.

4.3.3. Integration of external fluxes
The user can add external fluxes on any node of the lattice. Let ܨ଴ be the value of a constant external
flux. This flux has to be given as a concentration per second. This value is then treated inside the python
module to be adequately set as a current source on the node. Let ܨ௘௙௙ be the value of this current
source, corresponding to the flux ܨ଴ set by the user on node (x0, y0). A flux ܨ on a punctual zone (a
node in our case) can be defined as follows:

= ܨ න ଴ܨ ∙ ݔ)ߜ − ,଴ݔ ݕ − (଴ݕ ∙ ݀ܵ
ାஶ

ିஶ

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 164

With ݔ)ߜ − ,଴ݔ ݕ − :଴) the Dirac function defined by its integral as followsݕ

න න ݔ)ߜ − ,଴ݔ ݕ − (଴ݕ
ାஶ

ିஶ
∙ ݔ݀ ∙ ݕ݀

ାஶ

ିஶ
= 1

Table 2 Comparison between the model and the discretized diffusion equation for particular meshes. Equations are
written for the central node (blue dot). The largest squares have a refinement level ࢔ and a length of ∆࢞ = ∆࢟ = ࢒∆ =

࢔ The smaller squares have a refinement level .࢔࢙ࡹ + ૚ and a length of ∆࢞

૛
=

∆࢟

૛
=

࢒∆

૛
.

Configuration Discretization Model

ܥ²߲
²ݔ߲

=
4
7

ܥ2
௜ାଵ

ଶ,௝
+ ௜ାଵ,௝ܥ + ௜ିଵ,௝ܥ2 − ௜,௝ܥ5

²ݔ∆

ܥ²߲
²ݕ߲

=
4
7

ܥ2
௜,௝ାଵ

ଶ
+ ௜,௝ାଵܥ + ௜,௝ିଵܥ2 − ௜,௝ܥ5

²ݕ∆

7
8

଴ܭ

2௡

ହܥ߲

ݐ߲
=

2௡ܦ଴

ଶݏܯ

1
2

ଶܥ) + ସܥ2

+ ଺ܥ2 + ଻ܥ + ଼ܥ2
+ ଵଶܥ − (ହܥ10

−
7
8

ହܥ

2௡ܴ଴

ܥ²߲
²ݔ߲

=
2
3

ܥ2
௜ାଵ

ଶ,௝
+ ܥ2

௜ିଵ
ଶ,௝

+ ௜ାଵ,௝ܥ + ௜ିଵ,௝ܥ − ௜,௝ܥ6

²ݔ∆

ܥ²߲
²ݕ߲

=
2
3

ܥ2
௜,௝ାଵ

ଶ
+ ܥ2

௜,௝ିଵ
ଶ

+ ௜,௝ାଵܥ + ௜,௝ିଵܥ − ௜,௝ܥ6

²ݕ∆

3
4

଴ܭ

2௡

ଽܥ߲

ݐ߲
=

2௡ܦ଴

ଶݏܯ

1
2

ଶܥ) + ଺ܥ2

+ ଻ܥ + ଼ܥ2
+ ଵ଴ܥ2 + ଵଵܥ
+ ଵ଺ܥ+ଵଶܥ2

− (ଽܥ12 −
3
4

ଽܥ

2௡ܴ଴

ܥ²߲
²ݔ߲

=
4
3

ܥ2
௜ାଵ

ଶ,௝
+ ௜ିଵ,௝ܥ − ௜,௝ܥ3

²ݔ∆

ܥ²߲
²ݕ߲

=
2
3

ܥ2
௜,௝ାଵ

ଶ
+ ܥ2

௜,௝ିଵ
ଶ

+ ௜,௝ାଵܥ + ௜,௝ିଵܥ − ௜,௝ܥ6

²ݕ∆

3
4

଴ܭ

2௡

଼ܥ߲

ݐ߲
=

2௡ܦ଴

ଶݏܯ

1
2

ଶܥ) + ସܥ2

+ ଻ܥ2 + ଽܥ4
+ ଵଵܥ4 + ଵହܥ

− (଼ܥ12 −
3
4

଼ܥ

2௡ܴ଴

ܥ²߲
²ݔ߲

=
4
5

ܥ4
௜ାଵ

ଶ,௝
+ ܥ2

௜ିଵ
ଶ,௝

+ ௜ିଵ,௝ܥ − ௜,௝ܥ7

²ݔ∆

ܥ²߲
²ݕ߲

=
4
5

ܥ2
௜,௝ାଵ

ଶ
+ ܥ4

௜,௝ିଵ
ଶ

+ ௜,௝ାଵܥ − ௜,௝ܥ7

²ݕ∆

5
8

଴ܭ

2௡

ଵଶܥ߲

ݐ߲
=

2௡ܦ଴

ଶݏܯ

1
2

଻ܥ4) + ଵ଴ܥ

+ ଵଵܥ2 + ଵଷܥ4
+ ଵଽܥ+ଵହܥ2
− (ଵଶܥ14

−
5
8

ଵଶܥ

2௡ܴ଴

In our model, a node represents a surface, a part of the whole space to model. ܨ௘௙௙ therefore
corresponds to the flux through this “node” surface. To obtain the flux ܨ we need to integrate this

1 2 3

4 5 76

8 109

11 12 1413

1 2 3

1110

4 65

7 98

141312

18171615

1 2 3

11

10

4 65

7 98

1312

17161514

1 2 4

1413

5 76

10 1211

171615

21201918

98

3

Chapter 6 – Description of the Simulator

Page 165

constant flux over the surface S represented by the node (this surface depends on the mesh
refinement). We therefore have:

ܨ = න ௘௙௙ܨ ⋅ ݀ܵ
ௌ

= ௘௙௙ܨ ⋅ ܵ = ଴ܨ න ݔ)ߜ − ,଴ݔ ݕ − (଴ݕ ⋅ ݀ܵ
ାஶ

ିஶ
= ଴ܨ

Hence:

௘௙௙ܨ =
଴ܨ

ܵ

Moreover, in our model a node is connected to 4 capacitors, one per neighboring mesh. These 4
capacitors are connected to the ground and a correspondence can be made to one equivalent
grounded capacitor of value ܭ௘௤ (see an example with Equation 6). We see clearly with the equation
of the model that the fluxes are divided by this capacitance. Hence we have to multiply the value of
the current source to implement by the equivalent capacitance of the node.

To summarize, the effective value ܨ௘௙௙
ᇱ of the current source implemented in the model is defined as

follows:

௘௙௙ܨ
ᇱ = ௘௙௙ܨ ⋅ ௘௤ܭ =

଴ܨ

ܵ
⋅ ௘௤ܭ

4.4. Verilog-A implementation
In the Verilog-A model, the voltage between nX and the ground is noted as follows: V(nX,nref). It
corresponds to the concentration of molecules at node nX. The sources modeling the fluxes between
nodes are written as follows: I(nref,nX) <+ Fy1/2 with I(nref,nX) being the value of the
current incoming node nX.

The capacitor and the resistor correspond to the following line:

I(nX ,nref) <+ + (ddt(V(nX ,nref))*Kn + V(nX ,nref)/Rn);

with I(nX ,nref) the current exiting node nX and ddt the time derivative function. The first
element represents the capacitor whereas the second represent the node connected to the reference
node (i.e. the grounded reference). These elements are the same for all 8 nodes.

 Model of the elementary mesh: finite element approach
In this part, we study an alternative to finite difference to model the elementary mesh: the finite
elements approach. First, we study the finite element discretization scheme on the convection-
diffusion problem in thermal physics. Then, by analogy, we build the model of the elementary mesh
adapted to our problem. The complete demonstration in thermal domain is given in Appendix I. In this
section, only the main results and their adaptation to the biological context are described.

5.1. Model of the elementary mesh in regular lattices
The model of the elementary mesh in regular lattices is straightforward. We use the analogy between
temperature, molecule concentration and voltage on the one hand and heat flux, molecule flux and

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 166

current on the other hand. Results from Appendix I can be used. The electrical equivalent model of the
elementary mesh is composed of 6 resistors (Fig. 10). The values of the resistance are:

ܴଵଶ = ܴଷସ =
1
ܦ

∙
ܹܮ6

ଶܮ− + 2ܹଶ

ܴଵଷ = ܴଶସ =
1
ܦ

∙
ܹܮ6

ଶܮ + ܹଶ

ܴଵସ = ܴଶଷ =
1
ܦ

∙
ܹܮ6

−ܹଶ + ²ܮ2

where ܦ is the diffusion constant associated to the diffusing molecule.

Fig. 10 The electrical mesh used in the diffusion model. Here all nodes are connected to one another with resistors.
External currents can be taken into account on each node.

The degradation of molecules is equivalent to the convection in thermal physics. On Fig. 10, it
corresponds to the external current ܫ௘௫௧,௜. Equations giving ߮௘௫௧,௜ in the case of thermal convection are
given in Appendix:

൮

߮௘௫௧,ଵ
߮௘௫௧,ଶ
߮௘௫௧,ଷ
߮௘௫௧,ସ

൲ = −݀௑ ∙
ܹܮ
36

∙ ൮

4 2 1 2
2 4 2 1
1 2 4 2
2 1 2 4

൲ ∙ ൮

ଵܥ
ଶܥ
ଷܥ
ସܥ

൲

By opposition to the finite difference model, the molecule flow ߮௘௫௧,௜ outing from a node does not
depend only on the concentration ܥ௜ on that node. Thus, VCCS have been implemented in the Verilog-
A model. Moreover, a unitary capacitor is added to each node to model the fluxes related to the
accumulation of molecules.

The 4-node model only allows to use regular matrix, which is very limiting in our context. This is why
5-node, 6-node, 7-nodes and 8-nodes models have to be investigated.

5.2. Model of the elementary mesh in adaptive lattices
5.2.1. Direct computation
The theory described in Appendix I is generic and may be applied on mesh with any number of nodes.
Thus, it is possible to compute the rigidity matrix, the external flux matrix and the equivalent electronic
circuit for a model with extra nodes at the middle of edges. Let us start with the 5-node model.

Chapter 6 – Description of the Simulator

Page 167

 matrix ࢋࡷ
The additional node is hereafter called a segment node. This node can be positioned between either
of the following nodes: node 0 and 1, 1 and 2, 2 and 3 and 3 and 0, and is respectively named 01, 12,
13 and 30. The canonic base used is either [1, ,ݔ ,ݕ ,ݕݔ when the additional node is on an horizontal [²ݔ
edge or [1, ,ݔ ,ݕ ,ݕݔ when the additional node is on a vertical edge. Computation has been carried [²ݕ
out with MAPLE. The analytic expression of the rigidity matrix is too complex to be written explicitly
here. Equation 9 correspond to the case of in which the segment node is between 1 and 2 and with
ܹ = .ܮ

Equation 9

܍۹ =
ܦ
6

∙

ۉ

ۈ
ۇ

4 −1 −2 −1 0
∗ 12 7 −2 −16
∗ ∗ 12 −1 −16
∗ ∗ ∗ 4 0
∗ ∗ ∗ ∗ 32 ی

ۋ
ۊ

The fifth row and column correspond to segment node. We first notice that we also obtain a
symmetrical matrix, as expected. Moreover, also expected is the sum of each row and column, which
is equal to 0.

The rigidity matrix give the value of the resistance that needs to be implemented between each couple
of nodes of the electric equivalent model. With the appearance of a fifth node, negative resistance
appears between node 1 and node 2, the two nodes having a segment node inbetween. The resistance
value between two adjacent corner nodes, named ܴ௔ௗ௝,௜௝, is the same as with the 4-node element
when the two adjacent nodes do not have a segment node inbetween (e.g. node 0 and 1, node 2 and
3 and node 3 and 0). The diagonal resistance value between two diagonal nodes, ܴௗ௜௔௚, is unchanged
from the previous model. Finally, resistors connecting the fifth node to the other nodes are named as
follows: ܴ௔ௗ௝,௑ is the resistance value between a segment node and its corner nodes neighbors (here
between nodes 12 and 1 and between nodes 12 and 2), ܴௗ௜௔௚,௑ is the resistance value between a
segment node and its opposite corner nodes (here between nodes 12 and 0 and between nodes 12
and 3).

From a modeling perspective, we can generalize the values found for the resistors. We obtain a generic
expression including Boolean parameters Xij valid for 4 or 5 nodes. For instance, with ܹ = ,ܮ

ܴ௔ௗ௝,௜௝ =
଺

ଵି଼∗௑೔ೕ
 ܴ௔ௗ௝,௑ =

଺

ଵ଺ ௜ܺ௝ ܴௗ௜௔௚ = 3 ܴௗ௜௔௚,௑ = 0

 matrix ࢋࡲ
We also computed the matrices ۴܍ for five nodes element. Again, the analytic expression of the rigidity
matrix is too complex to be written explicitly here. As above, we only show the matrix for the case with
a segment node at node 12 and ܹ = .ܮ

܍۴ = −݀௑ ∙
²ܮ

180
∙

ۉ

ۈ
ۇ

20 −5 −10 10 30
∗ 14 4 −10 −18
∗ ∗ 14 −5 −18
∗ ∗ ∗ 20 30
∗ ∗ ∗ ∗ 96 ی

ۋ
ۊ

×

ۉ

ۈ
ۇ

ଵܥ
ଶܥ
ଷܥ
ସܥ
یଵଶܥ

ۋ
ۊ

Again, negative resistance values appear with the presence of an additional fifth node. We also
computed the analogy to the electronic model by implementing VCCS and generalized it. For

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 168

simplicity’s sake, we will show here the implementation of one such VCCS for a corner node and for a
segment node. A simple circular permutation allows the reader to find the other VCCS. As above, Xab
is a Boolean value equal to 1 when a segment node is present between node a and b and 0 otherwise.

We also create the constant ݀݁݃ as follows:

݀݁݃ = −݀௑
²ܮ

180

For the corner node 0 we obtain:

I(nref, n0) <+ deg *((20 - 4*(X01+X30)) * V(n0, nref) +(10 - 6*X01 -
15*(X12+X30)) * V(n1, nref) +(5 - 15*(X01+X12+X23+X30)) * V(n2, nref)
+(10 - 15*(X01+X23) -20*X12 - 6*X30) * V(n3, nref));

For the segment node 01 we obtain:

I(nref, n01) <+ deg * X01*(-18*V(n0, nref) - 18*V(n1, nref) + 30*V(n2,
nref)+ 30*V(n3, nref));

In order to simulate any kind of lattice, we need a generic model of an 8-node element that can be
parametrized by the Boolean parameters Xij. Such approach has two main shortcomings. Firstly, the
canonical base for such an element has to be defined, which is not very intuitive. For a 6-node mesh
with one segment node on each direction, the canonical base [1, ,ݔ ,ݕ ,ݕݔ ,²ݔ .seems to be suitable [²ݕ
For other configurations (6-node mesh with segment nodes on the same direction, 7-node and 8-node
meshes) we need to introduce 3rd degree terms in the base. It was unclear whether to add ݕ²ݔ and
 ଷ. Secondly, generic analytic expressions are already very complex with 5 nodes. Theݕ ଷ andݔ or ²ݕݔ
definition of a single model that covers all the possible configurations, as it has been done for finite
differences, seems very tricky.

5.2.2. Composition of triangle models
Because of these shortcomings, we change our approach: the rectangular mesh is seen as a
composition of triangular elements. In the following, let us consider only square elements. Thus,
triangles are right-angled and isosceles.

Model of an elementary triangle
Again, the model for the elementary isosceles right-angled triangle with a side of length L (see Fig. 11)
is computed with a generic formalism described in the Appendix I. The canonical base used to find the
,matrices is [1 ܍and ۴ ܍۹ ,ݔ .[ݕ

Fig. 11 Model of a triangular element.

1

2

0

L

L

Chapter 6 – Description of the Simulator

Page 169

We obtain the following ۹܍ matrix:

܍۹ = ܦ ∙
1
2

∙ ൭
2 −1 −1

−1 1 0
−1 0 1

൱

We observe that to reach the value 0, the resistance value has to be infinite. This means that nodes 1
and 2 are not directly connected. Nodes 0 and 1 and nodes 0 and 2 are connected by resistance values
of 2 (relative values to a ܦ coefficient).

Moreover, we obtain the following ۴܍ matrix:

܍۴ = −݀௑ ∙
²ܮ
48

∙ ൭
2 1 1
∗ 2 1
∗ ∗ 2

൱ × ൭
଴ܥ
ଵܥ
ଶܥ

൱

Construction of the rectangular model
The superposition of 4 such elementary triangles in 4 different orientations but with the right-angled
corner at the center gives rise to a 4-node square element (see Fig. 12 left element). Upon addition of
a segment node, the triangle located at this segment is divided into two smaller triangles (see Fig. 12
middle and right elements). The smaller triangle is computed following the same model, where ܮ is
replaced by 2/ܮ and the right-angled corner of the triangle corresponds to the additional segment

node. On Fig. 12, the resistance values are relative: in the model they are multiplied by ଵ

஽
.

On Fig. 12, the resistance values correspond to the value of the equivalent resistance. Indeed, two
resistors connect a corner node to the central node, due to the existence of two triangles. If ܴଵ and ܴଶ
are two resistors connecting the same two nodes, here is the formula of the equivalent resistor that
can replace the two resistors:

ܴ௘௤ =
ܴଵܴଶ

ܴଵ + ܴଶ

As the two resistors connecting a corner node and the central node have a value of 2 when no segment
node is present, the equivalent resistor has a value of 1.

To generalize this approach to rectangular meshes, we would need to use generic isosceles triangles.

Verilog-A model
In order to keep square elements with 8 terminals, the 9th node is kept internal to the model. It does
not appear outside of the Verilog-A model, so that we can still use the same mesher to divide space.

In the model, the central node is treated like the other nodes (it has a degradation flux and is connected
to its neighbor nodes). However, it has no capacitor, which is irrelevant in an operating point
simulation (capacitors only influence the dynamics of a system and not its steady state).

5.2.3. Boundary conditions
As for finite differences, three boundary conditions can be defined: no-flux (blocked diffusion), fixed
concentration and further diffusion. When nodes have a no-flux conditions, they are not connected to
any external device. Fixed concentration means the application of a fixed voltage to the node. This can
be done with an external fixed voltage source. Finally, for further diffusion, the model to implement
depends on the position of the border. These conditions are described in the Appendix I.

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 170

Fig. 12 Square elements modeled with triangles. The upper line shows a representation of the elements and the number
of nodes they contain (the grey node is the central node and is an internal node of the model). The lower line show the
value of the resistors connecting each node after implementing the adequate triangles. On the left, an element with 4

nodes, on the center with 5 nodes and on the right with 8 nodes.

We see again that we need to model a VCCS dependent on the voltage of the two nodes located on
the border of the lattice.

In conclusion, these fluxes are to be represented by VCCS depending on the potential of the node
located on the border. The relative contribution has been established. As for the absolute value of

these fluxes (ଵ

ோ
), it corresponds to the diffusion coefficient D of the molecule (as defined in the model

described in section 4).

 Conclusion
We described in this chapter the tool we developed for the modeling and the simulation of space- and
time-dependent biological system. The model is written and simulated with the SPICE language. It is
generated by a software environment combining C++ and Python. First, space is discretized in an
adaptive lattice. Then the tool assembles the building blocks of the model (model of each mesh of the
lattice, boundary conditions, local biological models). Two types of discretization schemes have been
implemented, finite difference and finite elements.

In the next chapter, we first validate the model by comparing simulation and theory on well-chosen
examples for which the reaction-diffusion equation can be analytically integrated. Then, the tool is
applied on some use cases.

 Reference
Amar, Patrick, Gilles Bernot, and Vic Norris. 2004. “HSIM: A Simulation Programme to Study Large Assemblies of

Proteins.” Journal of Biological Physics and Chemistry 4: 79–84.

Amar, Patrick, and Loïc Paulevé. 2015. “HSIM: A Hybrid Stochastic Simulation System for Systems Biology.”
Electronic Notes in Theoretical Computer Science 313 (May). Elsevier: 3–21.

Chapter 6 – Description of the Simulator

Page 171

doi:10.1016/J.ENTCS.2015.04.016.

Blundell, Stephen, and Katherine M. Blundell. 2010. Concepts in Thermal Physics. Oxford University Press.

Digele, G., S. Lindenkreuz, and E. Kasper. 1997. “Fully Coupled Dynamic Electro-Thermal Simulation.” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 5 (3): 250–57. doi:10.1109/92.609867.

Ermentrout, G.Bard, and Leah Edelstein-Keshet. 1993. “Cellular Automata Approaches to Biological Modeling.”
Journal of Theoretical Biology 160 (1): 97–133. doi:10.1006/jtbi.1993.1007.

Evans, Gwynne A., J. M. (Jonathan M.) Blackledge, and Peter D. Yardley. 2000. Numerical Methods for Partial
Differential Equations. Springer London.

Fick, Adolph. 1855. “On Liquid Diffusion.” Philosophical Magazine Series 4 10 (63): 30–39.

Garci, Maroua, Jean-Baptiste Kammerer, and Luc Hebrard. 2014. “Compact Modeling and Electro-Thermal
Simulation of Hot Carriers Effect in Analog Circuits.” In 2014 IEEE 12th International New Circuits and
Systems Conference (NEWCAS), 125–28. IEEE. doi:10.1109/NEWCAS.2014.6933999.

Gillespie, Daniel T. 1977. “Exact Stochastic Simulation of Coupled Chemical Reactions.” The Journal of Physical
Chemistry 81 (25). American Chemical Society: 2340–61. doi:10.1021/j100540a008.

Haiech, J, Y Gendrault, and MC Kilhoffer. 2014. “A General Framework Improving Teaching Ligand Binding to a
Macromolecule.” Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1843 (10): 2348–55.
http://www.sciencedirect.com/science/article/pii/S0167488914000974.

Harrison, Jonathan U., and Christian A. Yates. 2016. “A Hybrid Algorithm for Coupling Partial Differential Equation
and Compartment-Based Dynamics.” Journal of The Royal Society Interface 13 (122): 20160335.
doi:10.1098/rsif.2016.0335.

Hecht, F. 2012. “New Development in Freefem++.” Journal of Numerical Mathematics 20 (3–4). De Gruyter: 251–
66. doi:10.1515/jnum-2012-0013.

Hoops, Stefan, Sven Sahle, Ralph Gauges, Christine Lee, Jürgen Pahle, Natalia Simus, Mudita Singhal, Liang Xu,
Pedro Mendes, and Ursula Kummer. 2006. “COPASI—a Complex Pathway Simulator.” Bioinformatics 22
(24). Oxford Univ Press: 3067–74.

Johnson, Claes. 2009. Numerical Solution of Partial Differential Equations by the Finite Element Method. Dover
Publications.

Konkoli, Zoran. 2011. “Safe Uses of Hill’s Model: An Exact Comparison with the Adair-Klotz Model.” Theoretical
Biology & Medical Modelling 8 (1). BioMed Central Ltd: 10. doi:10.1186/1742-4682-8-10.

Krencker, Jean-Christophe, Jean-Baptiste Kammerer, Yannick Hervé, and Luc Hébrard. 2010. “Direct Electro-
Thermal Simulation of Integrated Circuits Using Standard CAD Tools.” In Thermal Investigations of ICs and
Systems (THERMINIC), 2010 16th International Workshop on, 1.

Lecca, Paola, Adaoha E C Ihekwaba, Lorenzo Dematté, and Corrado Priami. 2010. “Stochastic Simulation of the
Spatio-Temporal Dynamics of Reaction-Diffusion Systems: The Case for the Bicoid Gradient.” Journal of
Integrative Bioinformatics 7 (1): 150. doi:10.2390/biecoll-jib-2010-150.

Loew, L M, and J C Schaff. 2001. “The Virtual Cell: A Software Environment for Computational Cell Biology.”
Trends in Biotechnology 19 (10): 401–6. doi:10.1016/S0167-7799(01)01740-1.

Madec, Morgan, Yves Gendrault, Christophe Lallement, and Jacques Haiech. 2012. “A Game-of-Life like Simulator
for Design-Oriented Modeling of BioBricks in Synthetic Biology.” In Conference Proceedings : ... Annual
International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in
Medicine and Biology Society. Conference, 2012:5462–65. doi:10.1109/EMBC.2012.6347230.

Madec, Morgan, Christophe Lallement, and Jacques Haiech. 2017. “Modeling and Simulation of Biological

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 172

Systems Using SPICE Language.” PloS One 12 (8). doi:10.1371/journal.pone.0182385.

Mazumder, Sandip, and Sandip Mazumder. 2016. “Chapter 2 – The Finite Difference Method.” In Numerical
Methods for Partial Differential Equations, 51–101. doi:10.1016/B978-0-12-849894-1.00002-0.

Michaelis, Von L, and Miss L Maud Menten. 1913. “Die Kinetik Der Invertinwirkung.” Biochemistry 29: 332–69.

Nenzi, P, and H Vogt. 2011. “Ngspice Users Manual Version 23.”

Schaff, J, C C Fink, B Slepchenko, J H Carson, and L M Loew. 1997. “A General Computational Framework for
Modeling Cellular Structure and Function.” Biophysical Journal 73 (3): 1135–46. doi:10.1016/S0006-
3495(97)78146-3.

Spill, Fabian, Pilar Guerrero, Tomas Alarcon, Philip K Maini, and Helen Byrne. 2015. “Hybrid Approaches for
Multiple-Species Stochastic Reaction-Diffusion Models.” Journal of Computational Physics 299 (October).
Elsevier: 429–45. doi:10.1016/j.jcp.2015.07.002.

Takahashi, Kouichi, Satya Nanda Vel Arjunan, and Masaru Tomita. 2005. “Space in Systems Biology of Signaling
Pathways--towards Intracellular Molecular Crowding in Silico.” FEBS Letters 579 (8): 1783–88.
doi:10.1016/j.febslet.2005.01.072.

Page 173

Chapter 7
Validation and Results

 Validation on the finite differences model 174

1.1. Transverse diffusion .. 174

1.1.1. Analytical solution ... 174

1.1.2. Simulation results ... 176

1.2. Radial diffusion from a central source 178

1.2.1. Analytical solution ... 178

1.2.2. Results ... 179

 Validation of the finite element model ... 182

2.1. Comparison with finite difference model 182

2.2. Different boundary conditions .. 184

2.3. Comparison between models ... 184

2.4. Interface between two zones of different refinement level .. 184

2.5. Conclusion and outlook .. 186

 Summary on both models ... 186

 Results on biological use cases .. 187

4.1. Band-pass system ... 187

4.1.1. Description of the system ... 187

4.1.2. Modeling ... 187

4.1.3. Simulation results ... 188

4.1.4. Conclusion ... 188

4.2. XOR.. 189

4.2.1. Presentation of the XOR system 190

4.2.2. Modeling ... 190

4.2.3. Results ... 191

4.2.4. Conclusion ... 194

4.3. A simple prey-predator ... 194

4.3.1. Presentation of the system ... 194

4.3.2. Model .. 195

4.3.3. Results ... 195

4.3.4. Conclusion ... 196

4.4. Synchronized Oscillators ... 196

4.4.1. Description of the repressilator 196

4.4.2. Model .. 196

4.4.3. Results ... 198

4.4.4. Conclusion ... 200

 Conclusion ... 201

 Reference .. 202

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 174

In this chapter, we first focus on the validation of the models. For this purpose, two cases are

considered. The first one is the transvers diffusion from one border (where molecule are synthesized)

to the other. This is a 1-D problem for which an analytic solution can be found at steady state. The

second case is the radial diffusion from a punctual source at the center of the lattice. Again, an

analytical solution, which will serve as a reference for the validation process, exists for this. Then, the

validated model is applied on some actual biological problems.

 Validation of the finite difference model

1.1. Transverse diffusion

First, we consider a 2D square of length 𝐿 . A reaction generates a constant and uniform flux of

molecules 𝜙0
 on each point of the left border and the concentration of the molecule is set to 0 on the

right border. At the top and bottom border, a no-flux boundary condition is applied (Fig. 1). Thus, the

concentration only depends on the position along the 𝑋 axis.

Fig. 1 Description of the transverse diffusion problem and reference lattice composed on 40x40 squares.

1.1.1. Analytical solution
The PDE equation governing the space and time variation of the concentration is reminded here:

Equation 1

𝜕𝐶

𝜕𝑡
= 𝐷 ∙ ∆𝐶 − 𝑑 ∙ 𝐶

where 𝐷 is the diffusion constant and 𝑑 the degradation constant. Taking into account that

𝐶(𝑥, 𝑦, 𝑧, 𝑡) = 𝐶(𝑥, 𝑡), the PDE at the steady state becomes a simple ODE:

So
u

rc
e

Ze
ro

-c
o

n
ce

n
tr

.

No flux

Chapter 7 – Validation and Results

Page 175

𝐷 ∙
𝑑2𝐶

𝑑𝑥2
− 𝑑 ∙ 𝐶(𝑥) = 0

with the following boundaries conditions:

𝐶(𝐿) = 0 ;
𝑑𝐶

𝑑𝑥
(0) = −𝜙0

An analytic solution can be computed for this equation. If 𝑑 ≠ 0, the solution of this equation is a

combination of two exponential:

𝐶(𝑥) = 𝐶1 ∙ 𝑒
𝑥

𝐿0 + 𝐶2 ∙ 𝑒
−

𝑥
𝐿0

with 𝐶1 and 𝐶2 two integration constants and 𝐿0 = √
𝐷

𝑑
. Two relationships can be established between

𝐶1 and 𝐶2 from the boundary conditions:

Equation 2

𝐶1 ∙ 𝑒
𝐿

𝐿0 + 𝐶2 ∙ 𝑒
−

𝐿
𝐿0 = 0

And

𝐶1

𝐿0
−

𝐶2

𝐿0
= −𝜙0

Reinjecting 𝐶1 = 𝐶2 − 𝜙0 ∙ 𝐿0 in Equation 2 leads to:

𝐶2 ∙ 𝑒
𝐿

𝐿0 + 𝐶2 ∙ 𝑒
−

𝐿
𝐿0 − 𝜙0 ∙ 𝐿0 ∙ 𝑒

𝐿
𝐿0 = 2 ∙ 𝐶2 ∙ 𝑠ℎ (

𝐿

𝐿0
) − 𝜙0 ∙ 𝐿0 ∙ 𝑒

𝐿
𝐿0 = 0

Hence,

𝐶2 =
𝜙0 ∙ 𝐿0 ∙ 𝑒

𝐿
𝐿0

2 ∙ 𝑠ℎ (
𝐿
𝐿0

)

And

𝐶1 = 𝜙0 ∙ 𝐿0 (
𝑒

𝐿
𝐿0

2 ∙ 𝑠ℎ (
𝐿
𝐿0

)
− 1) =

𝜙0 ∙ 𝐿0

2 ∙ 𝑠ℎ (
𝐿
𝐿0

)
∙ 𝑒

−
𝐿

𝐿0

Finally,

𝐶(𝑥) =
𝜙0 ∙ 𝐿0

2 ∙ 𝑠ℎ (
𝐿
𝐿0

)
∙ (𝑒

𝑥−𝐿
𝐿0 + 𝑒

−𝑥+𝐿
𝐿0) = 𝜙0 ∙ 𝐿0 ∙

𝑠ℎ (
𝐿 − 𝑥

𝐿0
)

𝑠ℎ (
𝐿
𝐿0

)

If 𝑑 = 0, the solution can be obtained by a double integration:

𝐶(𝑥) = 𝐴 ∙ 𝑥 + 𝐵

Boundary conditions leads to 𝐴 = −𝜙0 and 𝐵 = 𝐿 ∙ 𝜙0. Hence,

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 176

𝐶(𝑥) = 𝜙0 ∙ (𝐿 − 𝑥)

1.1.2. Simulation results
The system is simulated with four different lattices, and with or without degradation. Lattice A and C

are regular lattices composed respectively of 40x40 and 160x160 squares. Lattice B corresponds to

Lattice A with two vertical refinement zones (Fig. 2A). Finally, lattice D corresponds to lattice A with a

circular refinement zone at the center of the lattice (Fig. 2B). Characteristics of the lattices are given

in Table 1.

Fig. 2 Lattice B and D, obtained from the Lattice A (Fig. 1) by vertical or circular refinement zone.

Table 1 Characteristics of the lattices used for the validation.

Lattice
number

Initial Lattice Refinement Number of nodes Number of meshes

A 40 x 40 1 681 1 600

B 40 x 40
n=2 for x < 40
n=1 for x < 80

13 399 13 132

C 160 x 160 25 921 25 600

D 40 x 40 n=1 for r < 25 2 779 2 656

Fig. 3 shows the accordance between the simulation results and the analytical solution. Error

introduced by the refinement is analyzed on Fig. 4. As expected, the most refined lattice (lattice C) is

the one giving the best results. The adaptive lattice is a good tradeoff: the maximal error is about 2.5

% but it reduces the number of nodes by a factor of about 2. Fig. 5 also shows the simulation results

in semilog scale for three different cross-sections at different values of 𝑦. These last results confirm

the validity of the model, even for small concentrations far from the sources.

B D

Chapter 7 – Validation and Results

Page 177

Fig. 3 Simulation results and comparison with the theoretical models for the lattice A. Parameters used for the
simulation are the following: 𝑳=100, 𝑫=10 , 𝒅=0.1, 𝝓𝟎=0.01 without degradation, and 𝝓𝟎=0.1 with degradation.

Fig. 4 Comparison of the relative error between simulation results and analytic solution for the lattice A, B and C.
Parameters used for the simulation are the following: 𝑳=100, 𝑫=10 , 𝒅=0.1 and 𝝓𝟎=0.1 with degradation.

Fig. 5 Comparison of the analytical solution and the simulation results for lattice D for different values of 𝒚. Parameters
used for the simulation are the following: 𝑳=100, 𝑫=10 , 𝒅=0.1 and 𝝓𝟎=0.1.

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 178

1.2. Radial diffusion from a central source

In this case, we still consider the same 2D square of length 𝐿. The no-flux boundaries condition is

applied on each border and an incoming flux is applied to the center of the square 𝑂.

1.2.1. Analytical solution
For analytic computation, polar coordinates (𝑟, 𝜃) centered on 𝑂 are preferred. As our problem is

isotropic, the concentration is independent of 𝜃 and, at the steady state, Equation 1 can be rewritten

as follows:

𝐷 ∙ (
𝑑2𝐶

𝑑𝑟2
+

1

𝑟
∙

𝑑𝐶

𝑑𝑟
) − 𝑑 ∙ 𝐶(𝑟) = 0

The analytical solution of this equation is a linear combination of the modified Bessel functions. More

precisely, 𝐶(𝑟) can be written as follows:

𝐶(𝑟) = 𝐶1 ∙ 𝐼0 (√
𝑑

𝐷
∙ 𝑟) + 𝐶2 ∙ 𝐾0 (√

𝑑

𝐷
∙ 𝑟)

With 𝐼0 and 𝐾0 the modified Bessel functions of order 0 and of the first and second kind respectively

and 𝐶1 and 𝐶2 the integration constants.

The first boundary condition is 𝐶(∞) = 0. As lim
x→∞

𝐼0(𝑥) = ∞ and lim
x→∞

𝐾0(𝑥) = 0, it is only met if 𝐶1 is

equal to zero. Computation of 𝐶2 is a bit more tricky. Because the source is punctual, the outgoing flux

is −𝜙0 ∙ 𝛿(𝑟) where 𝛿(𝑟) is the Dirac function. Neuman boundary condition cannot be used for 𝑟 = 0

because 𝛿(0) is infinite. We have to integrate the flux along the border Σ of a small circle on radius 𝛿𝑟

around 𝑂.

∫ 𝐠𝐫𝐚𝐝(𝐶)
Σ

∙ 𝐧 ∙ 𝑑𝑙 = ∫
𝑑𝐶

𝑑𝑟
(𝛿𝑟)

Σ

∙ 𝑑𝑙 =
𝑑𝐶

𝑑𝑟
(𝛿𝑟) ∫ 𝑑𝑙

Σ

= 2 ∙ 𝜋 ∙ 𝛿𝑟 ∙
𝑑𝐶

𝑑𝑟
(𝛿𝑟) = −𝜙0

By definition:

𝑑𝐶

𝑑𝑟
(𝑟) = 𝐶2 ∙

𝑑𝐾0

𝑑𝑟
(𝑟) = −𝐶2 ∙ 𝐾1(𝑟)

where 𝐾1 is the modified Bessel function of second kind and at order 1. The asymptotic form of Bessel

function 𝐾1(𝑟) for 𝑟 ≪ 1 is:

𝐾1(𝑟) ∼
1

𝑟

Thus,

−𝐶2 ∙ 2 ∙ 𝜋 ∙ 𝛿𝑟 ∙ 𝐾1(𝛿𝑟) ∼ −𝐶2 ∙ 2 ∙ 𝜋 = −𝜙0

Finally,

𝐶(𝑟) =
𝜙0

2 ⋅ 𝜋
∙ 𝐾0 (√

𝑑

𝐷
∙ 𝑟)

Chapter 7 – Validation and Results

Page 179

1.2.2. Results
Eleven different lattice layouts have been compared. They are summarized in Table 2.

Table 2 Description of the lattices for the benchmark. For all of them, the initial (unrefined) lattice, the refinement zones,
the number of nodes and elementary meshes, as well as the simulation time for steady state (SSA) analysis and time-
course (TC) simulations are given, both for NGSpice and Spectre. Values in the refinement column are the diameter of

the refinement zone (centered on O). Computation time with Spectre and NGSPICE have been obtained on a 12-core 2.6-
GHz CPU with 40 Go of RAM. TC simulations are performed with a built-in adaptive time step algorithm configured to

simulate over 100 seconds with a minimal time step of 5 s.

 Lattice

Description Model CPU time (s)

Initial
Lattice

Refinement Number
of

nodes

Number
of

meshes

Spectre NG Spice

n =
1

n =
2

n =
3

SSA TC SSA TC

1 40 x 40 1 681 1 600 1.5 1.7 1.4 9.4

2 40 x 40 25 2 779 2 656 2.1 4.6 3.1 20.1

3 20 x 20 441 400 0.6 0.5 0.4 2.4

4 80 x 80 6 561 6 400 5.5 8.7 11.3 59.1

5 40 x 40 100 6 561 6 400 5.3 9.3 11.0 57.4

6 40 x 40 100 50 25 36 991 36 514 111.0 202.0 323.0 996.0

7 100 x 100 10 201 10 000 14.5 18.7 20.5 80.8

8 25 x 25 50 25 3 997 3 844 3.1 6.6 5.6 29.9

9 25 x 25 30 15 1 969 1 855 1.29 3.4 2.2 13.2

10 25 x 25 20 5 1 109 1 024 0.7 1.1 1.3 6.3

11 25 x 25 50 8 647 8 446 7.7 15.4 19.0 74.4

When comparing the steady state values of the nodes for the different layouts, it appears that they

are very similar whatever far they are from the source. For this reason, we choose to show only the

close vicinity of the source in the results. Mesh #4 and Mesh #5 are equivalent but have been obtained

by two different ways: one directly, the other using a refinement on the whole area. Thus, even if their

netlists are different, the ODE sets generated by model compilation and thus the simulation results are

identical. This indicates that the refinement has been well considered in the model of the elemental

mesh. Moreover, we can see that most results obtained with different lattices overlap and are in

accordance with the theoretical model (Fig. 6).

However, we note a significant difference at the source. This difference is an effect of discretization. It

is illustrated on Fig. 7. When PDEs are solved with a finite difference model, the value computed for

the concentration at a given node is the integral of the concentration on a surface around this node.

Obviously, the size of this surface depends on the mesh refinement around the given node. The blue

curve on Fig. 7 corresponds to the theoretical model and thus tends to infinity for 𝑟 = 0. Consider

now the center of the lattice. For large meshes (typ. Lattice #3), the integration surface is larger and

the value at the central point is lower. For thinner meshes (typ. Lattice #5), the integration surface

decreases and the value at the central point increases. This phenomenon is amplified around the

center where the gradient of concentration is higher than near the borders. The difference between

observed curves shows that some lattices used for simulation are not refined enough to produce

accurate results near the center (Fig. 6). Conversely, if the area of interest is far from the center, all

the lattices give equivalent results.

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 180

Fig. 6 Simulation results of the steady state concentration on nodes according to their distance toward the source for
different lattice layouts, and comparison with the analytic solution. L=100, D=10 , d=0.1 and 𝝓𝟎=0.628.

Fig. 7 Illustration of the discretization effect on the central node. Blue and yellow rectangles illustrate the integration
surface of a lattice with respectively a low and high refinement level.

The relative error between simulation results and the analytic solution as a function of the lattice is

represented on Fig. 8. As expected, the finer lattice, the more accurate the results.

Obviously, the drawback of a highly-refined grid is the increased number of nodes and meshes and

thus an increase in the computation time, as illustrated on Fig. 9. In addition, the two simulators

compatible with our tool (namely Spectre and NGSPICE) have been compared on this benchmark of

models. On Fig. 9A, we observe that for a steady state analysis, the computation time with NGSPICE

and Spectre are comparable. A linear increase in the computation time with respect to the complexity

of the model is observed. Conversely, Fig. 9B shows that for transient analysis, the solver of Spectre is

about 10 times more efficient. Finally, the tradeoff between accuracy and computation time is

highlighted on Fig. 9C.

0.0E+0

2.0E-9

4.0E-9

6.0E-9

8.0E-9

1.0E-8

1.2E-8

1.4E-8

1.6E-8

0 5 10 15 20 25 30 35 40

C
o

n
c
e

n
tr

a
ti
o
n

 (
m

o
l/
L

)

Distance to the central node

Chapter 7 – Validation and Results

Page 181

Fig. 8 Relative error between simulation and analytical solution as a function of the distance to center for different
lattices.

Fig. 9 Computation time for the different lattices. (A) gives a comparison of the evolution of the computation time as a
function of the number of nodes for a steady state simulation with Spectre and NG Spice. (B) is the same comparison for

a time course analysis. Finally, (C) gives the position of the different lattices on maximal relative error versus
computation time map for a steady state simulation with Spectre. Simulation have been carried out on a 12-core 2.6-GHz

CPU with 40 Go of RAM.

Both examples demonstrate the validity of the finite difference model. On the one hand, the results of

simulations on these use cases are in accordance with the theoretical expectations. Moreover, we

obtain strictly equivalent models with a fine lattice and with a coarse lattice that has been refined,

which proves the validity of our refinement equations. Finally, we also demonstrate that results

obtained with an adaptive lattice get very close to those obtained with a fine lattice while preserving

a good compromise between precision and complexity of the model. Transitions between areas of

A B C

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 182

different degrees of refinement seem to introduce some artifacts but they remain acceptable in terms

of model accuracy.

 Validation of the finite element model

2.1. Comparison with finite difference model

First, we compare the results obtained with the finite element model to those obtained with the finite

difference model. The radial diffusion with the lattices described in Table 2 are used. First, let us

consider Lattice #7 which is a regular lattice (Fig. 10). Results are in accordance with those obtained

with finite differences and thus, with theory. As expected, the 4- and 5-nope models give equivalent

results on a regular lattice. Near the source, the triangular model is closer to the theory than the finite

difference model and the 4-nodes model (2% of error). Nevertheless, a drift seems to appear as one

moves away from the center by opposition to other models for which the error vanished (Fig. 11). This

drift remains to be explained.

Fig. 10 Simulation results obtained with different versions of the model for the steady state concentration on nodes
according to their distance toward the source for different lattices for the Lattice 7 (regular). L=100, D=10 , d=0.1 and

𝝓𝟎=0.628.

Lattice #11 is a refined lattice which can be used to validate the refinement model. The 4-node model

is no longer usable for this lattice. Again, results are in accordance with those obtained with finite

differences and thus, with theory. The same observation as above can be done regarding the triangular

model (Fig. 12 and Fig. 13).

Finally, we compare the computation time for several lattices (Table 3). Results show that even though

the finite element model is more complex than the finite difference one, the computation time is

similar for small lattices (<7000 nodes). For larger lattices however, the gap between these two

approaches increases.

Chapter 7 – Validation and Results

Page 183

Fig. 11 Relative results obtained between the different versions of the model and the analytic solution for the steady
state concentration on nodes according to their distance toward the source for the Lattice 7 (regular). L=100, D=10 ,

d=0.1 and 𝝓𝟎=0.628.

Fig. 12 Simulation results obtained with different versions of the model for the steady state concentration on nodes
according to their distance toward the source for different lattice layouts, and comparison with the analytic solution for

the Lattice 11 (refined near the source). L=100, D=10 , d=0.1 and 𝝓𝟎=0.628.

Fig. 13 Relative error obtained between the different versions of the model and the analytic solution for the steady state
concentration on nodes according to their distance toward the source for the Lattice 11 (refined near the source). L=100,

D=10 , d=0.1 and 𝝓𝟎=0.628.

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 184

Table 3 Comparison of the computation time for different models and different lattices. It corresponds to a steady state
analysis performed with Spectre on a 12-core 2.6-GHz CPU with 40 Go of RAM. Figure given in parenthesis corresponds

to the computation time increase (in %) between the model and the finite difference model

Lattice number 8 4 7 6

Number of nodes 3 997 6 561 10 201 36 991

Computation time (finite differences) 3.15 4.27 6.07 55.5

Computation time (finite elements / 4-nodes model)
4.53

(+5.1%)
7.16

(+18%)

Computation time (finite elements / 5-nodes model)
3.31

(+5.1%)
5.13

(+5.1%)
7.84

(+29%)
109

(+96%)

Computation time (finite elements / triangular model)
3.09

(-2.0%)
4.93

(+5.1%)
7.88

(+30%)
92

(+66%)

2.2. Different boundary conditions

We use the lattice 2 with a source in the same position (50, 50) to test the different border conditions.

The 3 conditions to be tested are blocked diffusion where no additional treatment is performed in

border nodes (no additional resistors are implemented), fixed condition where all border nodes are

fixed to a given concentration (we chose to fix all border nodes to C=0) and further diffusion where

additional border resistors are computed for all border nodes. The additional border resistors values

are scaled on the diffusion constant D. The results can be seen on Fig. 14.

We first notice that all the curves follow the same trend. The only difference between the different

border conditions is an offset. As expected, the lower curve corresponds to the simulation where some

of the nodes were fixed to 0. This has the effect to drain all the others. Moreover, the higher curve

corresponds to contained diffusion. Indeed, with no additional border resistors it is expected that the

overall steady-state concentration level of the lattice would be higher than in the simulation with

additional border resistors (further diffusion).

2.3. Comparison between the triangular model and the 4- and 5-node models

Simulation results on lattice #1 also show that the triangle model is actually more “smooth” than the

4- and 5-node models. This is particularly observable on the high-gradient part of the curve (the nodes

closest to the center). On close-up (see Fig. 15), we see that the triangle model is less rugged than the

two other models and closest to the expected curve (not plotted here).

On a regular lattice, the triangle model is therefore more accurate than the two previously mentioned

models.

2.4. Interface between two zones of different refinement level n

Lattices #6 and #7 gave results that showed the same glitch: on the regular parts of the lattice the

model performs well, as expected, but at each frontier between meshes of different refinement levels

a “bump” appears. This phenomenon is best observed on lattices with fewer nodes (shown on the right

panel on Fig. 16), this is why we will show here results obtained on elementary lattices of 100x100

with 4 initial divisions.

Chapter 7 – Validation and Results

Page 185

Fig. 14 Comparison of the 3 different border conditions on lattice 2. In fixed concentration, all border nodes are fixed to
C=0. In further diffusion, additional border resistors are implemented following the matrix found previously. In contained

diffusion, no additional border resistance is implemented.

Fig. 15 Comparison of 3 models: 4-node, 5-node and triangle models. Close-up of the concentration of the nodes closest
to the center, where the curve is less rugged for the triangle model than for the 4-node and 5-node models.

Lattice alpha has a circular central refinement zone of n=1 and of radius 25. Lattice beta is lattice alpha

with an additional circular central refinement zone of n=2 and of radius 12.5.

The results show an unexpected increase in the concentration as a function of the distance to the

source. These increases are located on the segment nodes (see the red and purple circles on Fig. 16).

This problem was not solved during the thesis hence the triangle model was only fit for regular lattices.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 10 20 30 40 50 60 70

C
o

n
ce

n
tr

at
io

n
 (

A
U

)

Distance to the center (AU)

Fixed concentration

Further diffusion

Contained diffusion

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5

C
o

n
ce

n
tr

at
io

n
 (

A
.U

.)

Distance to the center (A.U.)

4-node model

5-node model

triangle model

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 186

Fig. 16 Simulation results of the triangle model for the lattices alpha and beta. Unexpected increases (grey rectangles on
the graph) are observed at segment nodes (circled on the 2D representation of the lattices) located at the border

between meshes of different refinement levels n. In red, the border between n=0 and n=1 and in purple the border
between n=1 and n=2.

2.5. Conclusion and outlook

We tried to establish a finite element version of our finite differences model. When restraining the

lattices to only 4- or 5-node elements, we found a model that functions appropriately, the 5-node

model. However, with more than one refinement zone, it often becomes necessary to model elements

with more nodes. As the initial model allowed the simulation of 8-node elements, we tried to find an

8-node element with the finite element method. It appeared clear that an additional internal node was

needed, which lead to the division of the square into triangles. This new model performs better on

regular lattices but is not mature for irregular lattices involving elements with more than 5 nodes. In

the following sections of the simulation tool, the results are therefore presented using the finite

difference model.

The next step is obviously to fix the segment node problem observed on the triangle model. Moreover,

the current triangle model is only applicable to square elements. An important generalization to

rectangular elements should be envisioned.

 Summary on both models

The finite difference model is correct for each configuration of the lattice. The finite element model is

more accurate than its counterpart as the computing of the flux in a node are dependent on all its

neighbors. However, this version of the model is only stable for a restrained pool of configurations.

Therefore, we present the following results with the initial version of the model which corresponds to

a finite difference model. All the results have been generated with the Spectre simulator.

BETA

ALPHA

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

C
o

n
ce

n
tr

at
io

n
 o

n
 la

tt
ic

e
b

et
a

(A
.U

.)

C
o

n
ce

n
tr

at
io

n
 o

n
 la

tt
ic

e
al

p
h

a
(A

.U
.)

Distance to the center (A.U.)

Lattice alpha

Lattice beta

Chapter 7 – Validation and Results

Page 187

 Results on biological use cases

Now that we have validated the tool on from a theoretical point of view, we will show its pertinence

over several use cases. We will use our tool to demonstrate what type of results it can provide in

synthetic biology experiments and problems. Beforehand, two issues must be addressed: the addition

of external components (cell, localized reaction, membrane walls ...) and the description of multi-layer

lattices in the case if a system composed of multiple diffusions species.

For the first point, descriptions of biological models in SPICE or in Verilog-A are required. A SPICE model

can be generated from a SBML description or from a proprietary input file (which is composed of a list

of parameters, a list of reactions and a list of reaction with predefined rate equation) with BB-SPICE

(Madec, Lallement, and Haiech 2017). Moreover, writing from scratch a Verilog-A model associated

with a biological mechanism is not so challenging. This is done with the help of the analogy between

electronic and biology described in Chapter 2. The writing of a biological model in VHDL language has

also been demonstrated in (Gendrault et al. 2014). The transposition of the methodology to Verilog-A

is pretty straightforward.

Second, the description of multi-layered lattices has already been taken into account in the netlist

generator (see the description of the tool, in Chapter 6). The current version of the generator

duplicates the basic lattice as many times as necessary by creating new nodes whose numbers are

incremented by the total number of nodes in one lattice. Thus, the nodes of each layer are unique and

the lattices are independent from each other. By this way, they are superimposable, which facilitates

their interconnection via external component models.

4.1. Band-pass system

The first system we study is the band-pass system described in Chapter 5 (Basu et al. 2005). This system

involves two populations of cells, placed at different positions, and allow the creation of a variety of

patterns. In this system, the spatiotemporal behavior of AHL is decisive in the obtained pattern (the

receiver cells that express GFP). We therefore want to simulate the diffusion of AHL and the response

of the receiver cells. We first describe the system and how we model it and then present our simulation

results.

4.1.1. Description of the system
The Basu system allows the formation of GFP (Green Fluorescent Protein) patterns in a closed space.

Two populations of cells compose this system: the senders and the receivers. The senders

communicate with the receivers by synthesizing and isotropically emitting a small molecule able to

diffuse and enter cells: acyl-homoserine lactone (AHL). The senders emit AHL when aTc

(anhydrotetracycline) is present. In the results however, we will consider that AHL is always emitted

by the sender cells. The system is described in more details in Chapter 5. In brief, GFP is only produced

by the cells receiving an intermediate concentration of AHL. This translates in 2D by induction of the

receiver cells located at medium range from the sender cells.

4.1.2. Modeling
Our model is composed of a lattice with two layers: one layer for the AHL (red layer on Fig. 17) and

the other for the GFP (blue layer on Fig. 17). On the AHL layer, we dispose punctual AHL sources on

various nodes. AHL diffuses on this layer. Each node of the GFP layer is connected to a node of the AHL

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 188

layer by the means of a component modeling the band-pass system. On this layer, diffusion is set to 0

because GFP does not diffuse: it stays inside the receiver cell.

Fig. 17 Schematic representation of the 2D model used to simulate the band-pass behavior in space and time. The band-
pass model grey square represents the Verilog-A model of the band-pass.

4.1.3. Simulation results
Two configurations are tested: one with only one group of sender cells in the middle and another one

with 3 groups of sender cells (Fig. 18). Corresponding experimental results can be seen in (Basu et al.

2005). In both configurations, we use as a base lattice a square of 100x100 units with 40 divisions per

axis. In the first configuration, we added one circular refinement zone with a radius of 25 centered at

the sender cell (x = 50 and y = 50), with a refinement coefficient of 1 (each square in this zone is divided

once into 4 sub-squares). The concentration of AHL and GFP according to space at the steady-state can

be observed in Fig. 18A and B, with the sender cell represented as a red dot. Transient evolution of

AHL and GFP concentrations are monitored at three nodes (Fig. 18E), located on the diagonal from

the center towards the lower left corner (red dots). They are represented in Fig. 18A and B. As AHL

diffuses from its centered source, the peak of GFP propagates from the center toward the borders of

the lattice, as it first appears at node (40,40) in black and then at node (37.5, 37.5), where it stops as

expected. In the second configuration, we added three circular refinement zones with a radius of 35

centered at the sender cells (namely coordinates (50,35), (35,60) and (65,60)), with a refinement

coefficient of 2 (each square is divided twice). Steady-state spatial map of AHL and GFP for this

configuration are also given in Fig. 18D and E. The simulation results concur with the results provided

by Basu in (Basu et al. 2005). Indeed, our simulation successfully obtains a ring of fluorescent cells

around the emitting node (Fig. 18B), or a triangular ring around the 3 emitting cells in the second case

(Fig. 18E).

4.1.4. Conclusion
In conclusion, the tool can be used to accurately reproduce experimental results in a low computation

time. This means that one could use our tool to predict the pattern given by any other disposition of

the sender cells, thus sparing experimentation time.

AHL

GFP

Punctual source of AHL

…

Band-pass model

Chapter 7 – Validation and Results

Page 189

Fig. 18. Simulation of the band-pass system with one (A and B) or three (D and E) sender cells groups. A and D resp. B
and E) represent the concentration of AHL (resp. GFP) per mesh. The sources of AHL are represented as red dots. Blue

dots (in A and B) show the nodes of which the transient AHL (dotted line) and GFP (full line) concentrations are shown on
C.

4.2. XOR

A XOR gate is a 2-input logic gate which is on when only one of its inputs is on (see the table on Fig. 19

B). Many biological XOR gates can be found in the literature (Ausländer et al. 2012; Terzer et al. 2007;

Tamsir, Tabor, and Voigt 2011). We will focus on the system by Tamsir et al., a system splitted on 4

cells. We use our tool to study the influence of the position of these different cells on the correct

functioning of the XOR gate.

4.2.1 Presentation of the XOR system
In microelectronics a XOR gate can be obtained with a large variety of gates combinations. Tamsir et

al. decided to use 3 NOR gates and an implicit OR gate modeled by a buffer. Contrarily to

microelectronics where the signals are confined and directed through wires, inside a cell the molecules

diffuse and can reach any other component of a GRN. To avoid such a crosstalk, a solution is to split

the system into different cells (strains). Tamsir et al. opted for this solution and cloistered each NOR

gate into a different strain. To “wire” the NORs, they use the common AHL cell-cell communication

system encountered previously in this thesis (e.g. the band-pass system described hereabove). These

AHL molecules are the only ones able to enter and exit the cells. “Wiring” between cell is made possible

by the variety of AHL molecule and the high selectivity of each promoter towards its specific AHL.

The NOR gate used by this American team is composed of a repressor that inhibits the expression of

the output (Fig. 19 A). Two promoters allow the activation of the repressor’s expression by two

activators, the inputs. When at least one of them is present, the repressor is expressed. Hence it is only

when no activator is present that the output can be produced.

The inputs of this XOR gate are arabinose (Ara) and anhydrotetracycline (aTc). The first NOR gate takes

as inputs Ara and aTc and produces 3OC12-HSL (N-3-oxo-dodecanoyl-homoserine lactone), an AHL

synthesized by LasI. The two other NOR gates are sensitive to 3OC12-HSL22 and respectively to Ara for

Cell 2 and aTc for Cell 3 (see on Fig. 19). These two NOR gates produce another AHL named C4-HSL (N-

butyryl-homoserine lactone). For an easier monitoring of the output of the XOR gate, Tamsir et al. use

a fourth strain that acts as a buffer gate. This buffer gate produces YFP, a fluorescent protein, when

0

1

2

3

4

5

6

7

8

9

10

50 550 1050 1550 2050 2550 3050 3550

Concentration
(nmol/L)

Time (s)

(40,40) AHL (40,40) GFP

(37.5,37.5) AHL (37.5,37.5) GFP

(25,25) AHL (25,25) GFP

(a) (b)

(d) (e)

(c)

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 190

receiving C4-HSL. In silico, it is possible to monitor directly the concentration of every molecule (e.g.

C4-HSL), which is not the case in vivo. Thus, for simplicity sake, this 4th gate is not modeled. The output

is monitored by adding the signals emitted by Cell 2 and Cell 3 (hence the implicit OR gate).

Fig. 19 A biological XOR gate composed of 3 NOR gates and a buffer. A: generic NOR gate. B: “wired” NOR gates using
the AHL cell-cell communication system with a buffer that outputs YFP, a reporter protein (Tamsir, Tabor, and Voigt

2011).

The behavior of such a gate is that when no input (Ara and aTc) is present, the first NOR is high (its

output is present). Because only one of their input is high, the two other NORare low (their output is

absent). Hence the output of the XOR gate (YFP) is low. When the two XOR inputs are present, the first

NOR is low. Similarly, the two other NORare low and YFP is low. When Ara only is present, the first

NOR is low. As a consequence, the NOR of Cell 3 has both of its inputs low, meaning that its output is

high. Hence YFP is high. By symmetry, when aTc only is high, YFP is also high.

We have seen in the previous section that AHL degrades over time so that the concentration of an AHL

at one point in space depends on the distance between this AHL source(s) and this point. We want to

see whether the positioning of these AHL sources, the XOR gates, has an influence on the correct

functioning of the XOR gate.

4.2.2. Modeling
In the following, the length and surface units are arbitrary and designed respectively as u and u². By

default, the input sources are set to 1 µM/u²/s.

A Verilog-A model is written for a cell that performs a generic NOR gate. The module is composed of

two input nodes and one output node. In addition, internal nodes are created inside the Verilog-A

model and simulate the same 3 molecular species (inputs and output) inside the cell. A parameter

called membrane permeability 𝜂 is designed to model the diffusion across the plasma membrane of

the cell. This ratio is by default set to 0.5. The molecules have a degradation rate inside the cell that

can be different than outside the cell. In our case, the outside degradation rate is 0.01 s-1 and the inside

degradation rate 𝑑𝑖𝑛𝑡 is 0.1 s-1 by default. The NOR gates are described by the following equations:

𝑑[𝑅𝑒𝑝]

𝑑𝑡
= 𝛽 ∙

(
[𝐼𝑛0]
𝐾𝐴0

)
𝑛𝐴0

+ (
[𝐼𝑛1]
𝐾𝐴1

)
𝑛𝐴1

1 + (
[𝐼𝑛0]
𝐾𝐴0

)
𝑛𝐴0

+ (
[𝐼𝑛1]
𝐾𝐴1

)
𝑛𝐴1

− 𝛼 ∙ [𝑅𝑒𝑝]

𝑑[𝑚𝑅𝑁𝐴]

𝑑𝑡
= 𝐾𝑇𝑅 ∙

1

1 + (
[𝑅𝑒𝑝0]

𝐾𝑅)
𝑛𝑅 − 𝑑𝑚𝑅𝑁𝐴 ∙ [𝑚𝑅𝑁𝐴]

A B

Chapter 7 – Validation and Results

Page 191

𝑑[𝑂𝑢𝑡]

𝑑𝑡
= 𝐾𝑇𝐿 ∙ [𝑚𝑅𝑁𝐴] − 𝑑𝑖𝑛𝑡 ∙ [𝑂𝑢𝑡]

[𝐼𝑛0], [𝐼𝑛1] and [𝑂𝑢𝑡] are respectively the internal concentration of both inputs and the output

molecule inside the cell. This concentration inside and outside are balanced by a flux computed

depending on the value of 𝜂 and which is connected between the internal node at one end and the

lattice node at the other end.

[𝑋]𝑖𝑛𝑡 = [𝑋]𝑒𝑥𝑡 ∙
1 − 𝜂

𝜂
∙

1

𝑑𝑖𝑛𝑡

Table 4 shows the meaning of the parameters and their default value.

In this problem, 4 different molecules diffuse: Ara, aTc, 3OC12-HSL and C4-HSL. Thus, a four-layer

regular lattice of size 100x100 u2 with 100 division per axis is generated. The nodes of each NOR gate

are connected to the layer corresponding to the molecule they input/output. All the nodes of a NOR

are located on the same position. Moreover, for the two inputs of the system Ara and aTc, a constant

source positioned at specific spots in space is instantiated.

Table 4 NOR parameters and default values

Parameter Description Default value

𝜷 Repressor synthesis rate 100 µM.s-1

𝜶 Repressor degradation rate 10 s-1

𝑲𝑨𝟎,𝟏 Dissociation rate of input i 1e-3 µM

𝒏𝑨𝟎,𝟏 Hill number of input i 2

𝒅𝒎𝑹𝑵𝑨 Output mRNA degradation rate 10 s-1

𝑲𝑻𝑹 Output transcription rate 10 µM.s-1

𝑲𝑻𝑳 Output translation rate 100 µM.s-1

𝒏𝑹 Hill number of the repressor 2

𝑲𝑹 Dissociation rate of the repressor 1e-4 µM

𝒅𝒊𝒏𝒕 Internal degradation rate 1.0e-1 s-1

𝒅𝒆𝒙𝒕 External degradation rate 2.0e-1 s-1

𝜼 Membrane permeability 0.5

𝑫 Diffusion constant 1 m².s-1

4.2.3. Results
We hereafter name NORa, NORb and NORc the NOR gates that correspond respectively to Cell 1, Cell

2 and Cell 3. As we do not model the buffer of Cell 4, we name GFP the output of NOR 2 and NOR 3.

GFP is the output of our XOR gate. It should be mentioned that in our model, GFP diffuses.

We simulate the system for 10000s divided into 4 periods: during the first period, no input is present,

during the second period only Ara is present, during the third period only aTc is present and during the

fourth both inputs are present. We first want to simulate the XOR gate with a disposition similar to the

published results. The sources are coherently placed (Ara source between NOR 1 and NOR 2 and aTc

source between NOR 1 and NOR 3) as shown on Fig. 20A.

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 192

Fig. 20 Disposition of the NOR gates (hexagones) and the input sources. Superimposition of hexagons means that two
NORs of the same kind are connected to the same node.

We observe the concentration of each gate’s inputs and output (Fig. 21). 3OC12-HSL is designated as

AHL. NORa shows a very clear behavior of a NOR gate with sharp transitions. NORb and NORc show

also a correct behavior except for a first spike of output observed at the very beginning of the

simulation (before 500 s). This peak of GFP is due to the delay caused by AHL diffusion and degradation.

The global XOR behavior cannot be observed at NORb nor at NORc but by combining the output of

both NORs a XOR behavior is indeed obtained. NORc is high only when Ara alone is present and NORb

is high only when aTc alone is present. This is observable at spots located between all three NORs (data

not shown).

a

c

b

NOR ara source aTc source

a

c

b

a

c

b

a a

c

b

a

b

c

A

C

B

D

Chapter 7 – Validation and Results

Page 193

Fig. 21 Dynamic simulation results of a XOR gate. Input and output concentrations are shown at each NOR gate.

We tried to obtain even sharper edges, i.e. faster transitions between two different states, in order to

reduce the first undesirable peak of GFP. To that end, we increased NORa Ktr to 100µM.s-1. The results

showed a reduced GFP first peak in width as it was less than 200 s large. Decreasing extracellular

degradation also reduces this initial peak but breaks the XOR behavior (GFP is almost always low). The

opposite also applies as a higher external degradation rate leads to a constant high GFP signal.

We then tried to invert the positions of the aTc and Ara sources (see disposition B on Fig. 20). The XOR

behavior was only achieved for increased fluxes of aTc and Ara. Indeed, the molecules have a higher

distance to travel before reaching their target cell.

We then tweaked the number of NORs. First, we position 2 NORa on the same node (see disposition C

on Fig. 20). As expected, this results in a doubled AHL production. A XOR behavior can be observed.

Dividing NORa Ktr by 2 restores the initial AHL production. We then doubled every NOR with each a

Ktr divided by two (compared to the default value), meaning that two NORs are connected to the same

node. When compared to the situation where only NORa is doubled the results are quasi identical. A

minor decrease (less than 5%) in Ara, aTc and GFP concentration is observed at NORb and NORc. Ara

and aTc are both pumped by an additional NOR each, explaining the decrease. Moreover, with more

NORs connected to the same node, the GFP is also more degraded, explaining the slight decrease

observed.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 000 4 000 6 000 8 000 10 000

C
o

n
ce

n
tr

at
io

n
 (

µ
M

)
Time (s)

Ara

aTc

0.0E+0

1.0E-4

2.0E-4

3.0E-4

4.0E-4

5.0E-4

6.0E-4

0.00

0.01

0.02

0.03

0.04

0 2 000 4 000 6 000 8 000 10 000

C
o

n
ce

n
tr

at
io

n
 o

f
A

H
L

an
d

 A
ra

(µ

M
)

C
o

n
ce

n
tr

at
io

n
 o

f
G

FP
 (

µ
M

)

Time (s)

GFP Ara AHL

0.0E+0

1.0E-4

2.0E-4

3.0E-4

4.0E-4

5.0E-4

6.0E-4

0.00

0.01

0.02

0.03

0.04

0 2 000 4 000 6 000 8 000 10 000 C
o

n
ce

n
tr

at
io

n
 o

f
A

H
L

an
d

 a
Tc

(µ

M
)

C
o

n
ce

n
tr

at
io

n
 o

f
G

FP
 (

µ
M

)

Time (s)

GFP

aTc

AHL

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 000 4 000 6 000 8 000 10 000
C

o
n

ce
n

tr
at

io
n

 (
µ

M
)

Time (s)

Ara

aTc

0.0E+0

1.0E-4

2.0E-4

3.0E-4

4.0E-4

5.0E-4

6.0E-4

0.00

0.01

0.02

0.03

0.04

0 2 000 4 000 6 000 8 000 10 000

C
o

n
ce

n
tr

at
io

n
 o

f
A

H
L

an
d

 A
ra

(µ

M
)

C
o

n
ce

n
tr

at
io

n
 o

f
G

FP
 (

µ
M

)

Time (s)

GFP Ara AHL

0.0E+0

1.0E-4

2.0E-4

3.0E-4

4.0E-4

5.0E-4

6.0E-4

0.00

0.01

0.02

0.03

0.04

0 2 000 4 000 6 000 8 000 10 000 C
o

n
ce

n
tr

at
io

n
 o

f
A

H
L

an
d

 a
Tc

(µ

M
)

C
o

n
ce

n
tr

at
io

n
 o

f
G

FP
 (

µ
M

)

Time (s)

GFP

aTc

AHL

NOR a

NOR c

NOR b

0.00

0.01

0.02

0.03

0.04

0 2 000 4 000 6 000 8 000 10 000

C
o

n
ce

n
tr

at
io

n
 (

µ
M

)

Time (s)

Ara

aTc

AHL

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 194

Finally, we tried to position each NOR randomly. Each source is still at the same spot as previously.

None of the 4 trials we made gave satisfying results. We then tried to place 10 of each NOR randomly,

with a Ktr divided by 10, and 100 of each with a Ktr divided by 100 (compared to the default value). In

both cases, none of the 4 trials produced a XOR behavior. To limit the scattering of the NOR of each

type, we clustered them. The 100 NORs of a type are randomly positioned inside a square of 10x10.

The position of the square is random and different for each type of NOR. Again, no XOR behavior could

be observed, even when placing only 10 NORs of each type.

4.2.4. Conclusion
The results showed that the position of the NORs have to be chosen carefully. The external degradation

rate, influenced by the nature of the external medium, is also critical. Simulation results revealed a

first undesirable peak of output of NORb and NORc gates due to delays introduced by the diffusion.

The results showed that the size and the amplitude of this peak can notably be controlled by the

external degradation rate. These peaks are typically the short-lived phenomena that are responsible

for malfunctions in some sequential circuits (see Chapter 4). The fact that the spatio-temporal

simulator highlights these glitches is important in the perspective of using this tool for the study of

sequential systems split in multiple cells.

As systems grow in size and complexity, and become also more standardized, the same component

have to be reused in the same system. Consequently, many systems also have to be splitted on

different cells to avoid crosstalk. With different strains of cells comes the question of the positioning

of these strains and we showed here that our tool can help for this topic. Our tool also allowed an easy

tinkering of the different parameters, making the search for a solution of a design problem (e.g. an

undesirable peak of output) easy, quick and cheaper than to redo an experiment.

Ideally, an even greater gain of time could be achieved by using an evolutionary algorithm (see Chapter

6) to optimize the position of each cell.

4.3. A prey-predator-like system

Up until now, we have studied interacting systems of cells with only unidirectional interaction. Cell-

cell communication systems described above (like the AHL system) are also used for bidirectional

interactions. Synthetic biologists have been studying many bidirectional systems (Brenner et al. 2007;

Shou, Ram, and Vilar 2007; Balagadde et al. 2008). In this paragraph, we want to focus on the simplified

oscillatory prey-predator system.

Prey-predator ecosystems are composed of two populations whose activity depends on each other’s

(e.g. rabbits and foxes). Recently, artificial prey-predator ecosystems have been demonstrated with

artificially reprogrammed cell (Fujii and Rondelez 2013; Balagaddé et al. 2008). In existing models,

spatiality, which may play an important role in the process, is not taken into account. In this work,

focus is put on the diffusion process. Thus, the model of the prey and the predator will be adapted to

retain the core oscillatory module only.

4.3.1. Presentation of the system
The modeled system is composed of two cells. A gene in the cell A, which mimics the prey, synthesizes

a regulator X for a gene inside the cell B, which mimics the predator. This gene synthesizes in turn an

inhibitor Y for the gene in the cell A. By this way, when the concentration of X increase, it promotes

Chapter 7 – Validation and Results

Page 195

the proliferation of Y which in turn reduces the concentration of X. Under appropriate condition, such

system should oscillate.

4.3.2. Model
Again, we use as a base lattice a square of 100x100 units with 4 divisions per axis. The positions of cells

A and B are respectively (25; 75) and (75; 25). Two circular refinement zones with a radius of 10 and a

degree of refinement of 4 are built around each cell. The obtained mesh is represented in Fig. 22A.

Two independent diffusion layers are defined, one for the activator molecule and one for the inhibitor.

Both layer are independent. They are connected on nodes (25; 75) and (75; 25) to two external model,

one for the cell A and one for the cell B. Models used in cell A and B correspond to simple regulation

using Hill’s equations (Konkoli 2011). Thus, in cell A, the transcription of DNA and the translation of

mRNA into the activator are given by:

𝑑[𝑚𝑅𝑁𝐴𝐴]

𝑑𝑡
= 𝐾𝑇𝑅 ∙

[𝐼𝑛ℎ]𝑛𝑅

𝐾𝑅
𝑛𝑅 + [𝐼𝑛ℎ]𝑛𝑅

− 𝑑 ∙ [𝑚𝑅𝑁𝐴𝐴]

𝑑[𝐴𝑐𝑡]

𝑑𝑡
= 𝐾𝑇𝐿 ∙ [𝑚𝑅𝑁𝐴𝐴] − 𝑑 ⋅ [𝐴𝑐𝑡]

By the same way, in cell B, the transcription of DNA and the translation of mRNA into the repressor are

given by:

𝑑[𝑚𝑅𝑁𝐴𝐵]

𝑑𝑡
= 𝐾𝑇𝑅 ∙

𝐾𝐴
𝑛𝐴

𝐾𝐴
𝑛𝐴 + [𝐼𝑛ℎ]𝑛𝐴

− 𝑑 ∙ [𝑚𝑅𝑁𝐴𝐵]

𝑑[𝐼𝑛ℎ]

𝑑𝑡
= 𝐾𝑇𝐿 ∙ [𝑚𝑅𝑁𝐴𝐵] − 𝑑 ⋅ [𝐼𝑛ℎ]

Again, to simplify the model, we consider that cells membrane are permeable to both the activator

and the inhibitor, so that the concentrations inside and outside are equal.

4.3.3. Results
As expected from (Balagaddé et al. 2008), three different dynamics can be found depending on the

parameters of the system as well as the distance between cells: coexistence, extinction or oscillations.

Oscillatory behavior is represented in Fig. 22B and Fig. 22C.

Fig. 22 On the left: mesh generated for the simulation of the simplified prey-predator system. On the right: simulation
results. Transient evolution of the concentration of activator and inhibitor at the position of cells A and B. Parameters

used for the simulation are the following: D=2 m2.s-1, d=10-6 min-1 for the diffusion, KTR=10-3 µmol.L-1.min-1, KTL=10-2 min-1
for transcription rate and translation rate inside the cells, KR=10-6 mol.L-1 and nR=3 for Hill’s equation used to model the
transcription in the cell A and KA=10-4 mol.L-1 and nR=3 for Hill’s equation used to model the transcription in the cell B.

A B

C

Prey Cell

Predator Cell

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 196

4.3.4. Conclusion
The model can now be used to study the impact on system parameters on the characteristics of the

oscillations (amplitude, frequency). In particular, the model can be used to tune the relative position

of the cell and/or the properties of the diffusion medium in order to match oscillation characteristics

defined a priori. This tuning is not straightforward and is greatly enhanced by simulation tools. Again,

this task can be done with the evolutionary algorithms described in Chapter 5.

4.4. Synchronized Oscillators

The aim of this application is to address the second main question related to the distribution of a

synchronous clock to sequential system divided in multiple cells. Literature shows examples of

synchronized oscillators (Zhou et al. 2008; Russo and Bernardo 2009; Wang and Chen 2005;

Wagemakers et al. 2006; Garcia-Ojalvo, Elowitz, and Strogatz 2004). In this part, we use our simulator

to address this problematic.

4.4.1. Description of the repressilator
A clock is an oscillatory signal. With GRNs, a simple negative feedback can give rise to oscillatory

behaviors. The best candidate to generate a clock signal is probably the repressilator, designed by

Elowitz and Leibler in 2000 (Elowitz and Leibler 2000). The system is composed of 3 genes and 3

interdependent repressors: the gene expressing CI is repressed by TetR, the gene expressing LacI is

repressed by CI and the gene expressing TetR is repressed by LacI (cartoon on the left on Fig. 23). This

system is oscillatory as the presence of a repressor induces its own inhibition. For example, if CI is

present (high), LacI is absent (low). Because LacI is low, TetR is not repressed and is therefore high.

However, because TetR is high, CI is repressed and becomes low. As CI falls, LacI is not repressed

anymore and rises, inducing the repression of TetR. With this repression, CI is again high and the cycle

goes on. Noteworthy is that these transitions from low to high and high to low (due to the degradation

of the repressor) are not instantaneous: they produce a delay in the system. Because of this delay we

observe the oscillations presented on Fig. 23, where each repressor has a peak while the two others

are falling for one and rising for the other. In this section, we want to synchronize a population of

repressilator units to obtain a space-synchronized biological clock.

Fig. 23 Repressilator system with its repressors and associated promoters and simulation results (ELOWITZ AND LEIBLER

2000): in red LacI, in yellow tetR and in blue CI.

4.4.2. Model
In order for different repressilators to synchronize, they need to be able to communicate. To that end,

we introduce a gene coding for AHL, a molecule able to cross the cellular membrane and diffuse across

CI

LacI

TetR

Ptet

PR

PLac

Chapter 7 – Validation and Results

Page 197

space. We choose to introduce AHL in the system with the following behavior: AHL production is

inhibited by LacI and AHL activates TetR production. By this way, the repressilator is sensitive to an

incoming AHL signal and also emits its own AHL signal, understandable by other repressilators. A single-

layer lattice is generated and each repressilator is connected to this lattice via the AHL terminal.

For LacI, TetR and CI, mRNA is modeled whereas for AHL, a single equation is used to model AHL

production (the intermediates, namely mRNA and LuxI, are skipped for a simpler system). The

equations are as follows:

𝑑[𝑚𝑅𝑁𝐴𝐶𝐼]

𝑑𝑡
= 𝐾𝑇𝑅 ∙

𝐾𝑅𝑇𝑒𝑡
𝑛𝑅𝑇

𝐾𝑅𝑇𝑒𝑡
𝑛𝑅𝑇 + [𝑇𝑒𝑡𝑅]𝑛𝑅𝑇

− 𝑑𝑚𝑅𝑁𝐴 ∙ [𝑚𝑅𝑁𝐴𝐶𝐼]

𝑑[𝐶𝐼]

𝑑𝑡
= 𝐾𝑇𝐿 ∙ [𝑚𝑅𝑁𝐴𝐶𝐼] − 𝑑𝑃𝑟𝑜𝑡 ⋅ [𝐶𝐼]

𝑑[𝑚𝑅𝑁𝐴𝐿𝑎𝑐𝐼]

𝑑𝑡
= 𝐾𝑇𝑅 ∙

𝐾𝑅𝐶𝐼
𝑛𝑅𝐶

𝐾𝑅𝐶𝐼
𝑛𝑅𝐶 + [𝐶𝐼]𝑛𝑅𝐶

− 𝑑𝑚𝑅𝑁𝐴 ∙ [𝑚𝑅𝑁𝐴𝐿𝑎𝑐𝐼]

𝑑[𝐿𝑎𝑐𝐼]

𝑑𝑡
= 𝐾𝑇𝐿 ∙ [𝑚𝑅𝑁𝐴𝐿𝑎𝑐𝐼] − 𝑑𝑃𝑟𝑜𝑡 ⋅ [𝐿𝑎𝑐𝐼]

𝑑[𝑚𝑅𝑁𝐴𝑇𝑒𝑡𝑅]

𝑑𝑡
= 𝐾𝑇𝑅 ∙

𝐾𝑅𝐿𝑎𝑐𝐼
𝑛𝑅𝐿

𝐾𝑅𝐿𝑎𝑐𝐼
𝑛𝑅𝐿 + [𝐿𝑎𝑐𝐼]𝑛𝑅𝐿

∙
[𝐴𝐻𝐿]𝑛𝐴

𝐾𝐴
𝑛𝐴 + [𝐴𝐻𝐿]𝑛𝐴

− 𝑑𝑚𝑅𝑁𝐴 ∙ [𝑚𝑅𝑁𝐴𝑇𝑒𝑡𝑅]

𝑑[𝑇𝑒𝑡𝑅]

𝑑𝑡
= 𝐾𝑇𝐿 ∙ [𝑚𝑅𝑁𝐴𝑇𝑒𝑡𝑅] − 𝑑𝑃𝑟𝑜𝑡 ⋅ [𝑇𝑒𝑡𝑅]

𝑑[𝐴𝐻𝐿]

𝑑𝑡
= 𝛽 ∙

𝐾𝑅𝐿𝑎𝑐𝐼
𝑛𝑅𝐿

𝐾𝑅𝐿𝑎𝑐𝐼
𝑛𝑅𝐿 + [𝐿𝑎𝑐𝐼]𝑛𝑅𝐿

with 𝐾𝑇𝑅 the transcription rate, 𝐾𝑇𝐿 the translation rate, 𝑑𝑚𝑅𝑁𝐴 and 𝑑𝑃𝑟𝑜𝑡 respectively the mRNA and

the protein degradation rate, 𝑛𝐴, 𝑛𝑅𝐿, 𝑛𝑅𝐶 and 𝑛𝑅𝑇 the Hill coefficient of respectively AHL, LacI, CI and

TetR, 𝐾𝑅𝑋 the dissociation coefficient of repressor X, 𝐾𝐴 the dissociation coefficient of AHL and 𝛽 the

synthesis rate of AHL. In this model, AHL degradation comes only from the lattice. Default parameters

are given in Table 5.

Table 5 Default parameters of our repressilator model and of the diffusion model

 Parameter Default value

Biological
model

β 1e-2 µM.s-1

KA 1e-2 µM

nA 2

dmRNA 10 s-1

dProt 10 s-1

KTR 10 µM.s-1

KTL 50 µM.s-1

nR 2

KR 1e-2 µM

Diffusion
model

D0 1

R0 1e3

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 198

4.4.3. Results
The lattice used is a regular 100x100 lattice with 100 divisions per axis.

Single repressilator
First, we simply simulate our model without diffusion, to see if our modification impairs the oscillatory

behavior of the repressilator. Simulation results show that the introduction of AHL in the system does

not affect the possibility to obtain sustained oscillations (Fig. 24). We note that the AHL concentration

is identical to the CI concentration.

Fig. 24 Simulation of the repressilator.

We wanted to assess the effect of modifications of the lattice degradation rate (named deg on Fig.

25). A single repressilator is positioned at the center of the mesh (coordinates (50, 50) with an initial

concentration of 0.01 µM for the node).

Fig. 25 Influence of the degradation rate of AHL (in s-1) over the oscillations of the repressilator

As expected, the oscillations amplitude and the length of the transitions from high to low state increase

when degradation decreases. We also notice a modification in the period length of the oscillations but

not with a monotone trend. Indeed, the period is the highest with a degradation rate of 10 s-1 (period

= 1872 s) whereas it is lower for a degradation rate of 1 s-1 and 100 s-1 (respectively period = 1872 s and

1838 s).

Multiple repressilators

Two repressilators
Two repressilator units are disposed at the following coordinates: repressilator 1 at (25,25) and

repressilator 2 at (75,75). We monitor the concentration of AHL on the medium at these two

0

20

40

60

80

0 2000 4000 6000 8000 10000

C
o

n
ce

n
tr

at
io

n

Time

AHL LacI CI TetR

0

0.1

0.2

0.3

0.4

0 2000 4000 6000 8000 10000

C
o

n
ce

n
tr

at
io

n
 o

f
A

H
L

(µ
M

)

Time (s)

deg = 100 deg=10 deg=1

Chapter 7 – Validation and Results

Page 199

coordinates and also at two additional points at coordinates (40,60) and (50,50). The disposition is

shown on Fig. 26.

Fig. 26 Simulation of two repressilators on a lattice. The disposition is summarize on the cartoon on the left. AHL
concentration is monitored at the two repressilators (upper diagram) and at two points at coordinates (40,60) and

(50,50) (lower diagram).

We see that combining two repressilators on a lattice results in oscillations both at the location of the

repressilators (upper diagram on Fig. 26) and other points on the lattice (lower diagram Fig. 26). The

oscillations are sustained, regular and synchronized even if the two sources exhibit a phase shift

between each other. This is a mandatory requirement for a synchronized clock. However, we notice

that at these different points, the concentration is not the same. If the system relying on the clock is

sensitive to a minimal concentration that is higher than the lowest amplitude of these different

oscillations, this system would only work at particular zones of the lattice. As this might be a problem,

we try to see if we can obtain a more uniform level of AHL over the whole lattice by increasing the

number of repressilator units.

Three repressilators
Three repressilator units are disposed at the following coordinates: repressilator 1 at (50,50),

repressilator 2 at (75,75) and repressilator 3 at (25,25). We monitor the concentration of AHL on the

medium at these 3 coordinates and also at an additional point at coordinates (40,60). The disposition

is shown on Fig. 27.

Each repressilator unit is set to a different initial condition. One of the three proteins has an initial

concentration set to 0.1 whereas the two others start at 0. This protein is different for each

repressilator: it is LacI, TetR and CI for respectively repressilator 1, 2 and 3.

We first observe the results for the default parameters (diagram D0=1 on Fig. 28). The three

repressilators are able to oscillate. Repressilators 2 and 3 oscillate at similar frequencies and this

frequency is only slightly reduced over time. Concentration oscillations at the repressilator in the

middle however gradually shift with regards to the two others, meaning that the frequency of these

oscillations increases more than the frequency at repressilators 2 and 3. The repressilator most

affected by diffusion seems to be the one in the middle. Since that with a higher diffusion coefficient,

the molecules will travel more easily from repressilator 2 to 3, we try to increase it to see whether the

diffusion can alter the oscillations of each repressilator so that they synchronize (Fig. 28).

0

0.02

0.04

0.06

0.08

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

rep1 rep2

0

0.005

0.01

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

coord 50 50 coord 40 60

2

1

(40,60)

(50,50)

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 200

Fig. 27 Disposition of the 3 repressilators. The repressilators are represented by hexagons with their number. The cross
corresponds to our additional observation point at coordinates (40,60).

Simulation results show that the higher the diffusion constant, the larger is the overlap between

repressilator 2’s oscillations and repressilator 3s’oscillations. However, with a high diffusion constant

(superior to 5) oscillations at repressilator 1 are not regular anymore. When observing AHL

concentration at a stop deprived of repressilators (namely the point at coordinates (40,60)), we see

that regular oscillations are never formed. Moreover, the amplitude of the oscillations is not the same

at every point of the lattice.

Decrease in the distance between the repressilators
We tried to position the repressilators closer to each other. Repressilator 1 is still at coordinates (50,50)

whereas repressilator 2 and repressilator 3 are respectively at coordinates (60,60) and (40,40). Initial

conditions are set as above. Simulation results show that the 3 repressilators have a similar frequency,

which they keep during the 10000s of the simulation. They are however not in phase. As there seem

to be no frequency shift, it is very unlikely that they would synchronize after a longer period of time.

Noteworthy, the amplitudes of the oscillations are in the same range.

Random initial conditions
The disposition on Fig. 27 is used. To see the influence of initial conditions on the synchronization of

oscillations, we tried to initialize each protein of the repressilators with random numbers between 0

and 1. Simulation results show that the oscillation of each repressilator gradually shifts with regards to

one another, indicating that they are not synchronized.

Adding an external source of AHL
We use the disposition shown on Fig. 27 with default parameters except for D0 which is set to 10.

Moreover, we instantiate a source of AHL at coordinates (50,50) and with a value of 0.1. We set the

initial concentrations of all proteins to 0. Repressilator 2 and 3 synchronize, whereas repressilator 1’s

oscillations are not sustained (data not shown). Their amplitudes are however very close (less than 5%

of difference).

4.4.4. Conclusion
We see that it is difficult to obtain both sustained regular oscillations and oscillations with a uniform

amplitude. Other configurations and other sets of parameters were tested, with similar results.

Nevertheless, as it is possible to obtain sustained oscillations of similar amplitudes in particular zones,

it could be envisioned to combine this imperfect synchronized spatial clock with the state machine

studied in Chapter 4 (the counter).

1

2

3

(40,60)

Chapter 7 – Validation and Results

Page 201

A genetic programming could be used to find the optimal number, disposition and parameters of

repressilators to successfully implement a spatial synchronized clock. This requires the spatial

simulator to be interfaced with a genetic algorithm. During the time of this thesis, a first step consisting

in interfacing an evolutionary algorithm with a SPICE simulator was realized. The next steps were still

ongoing at the end of this thesis and are therefore not discussed in this manuscript.

Fig. 28 Simulation results of the diffusion of AHL for a lattice with 3 repressilators. In blue, orange and grey the AHL
concentration at the position of respectively repressilator 1, 2 and 3. For the position of these repressilators, see Fig. 27.

The yellow curve corresponds to the concentration of AHL at coordinates (40,60).

 Conclusion

Different systems were simulated with our tool and interesting results were generated. These results

prove the validity of this approach (Sections 1 and 2). Moreover, we showed that our tool can be used

for the study and the optimization of simple biological systems (Section 4). The use of the tool in actual

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2000 4000 6000 8000 10000

rep1 rep2 rep3 coord 40 60

0

0.02

0.04

0.06

0.08

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

0.02

0.04

0.06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

0.01

0.02

0.03

0 2000 4000 6000 8000 10000

0

0.05

0.1

0.15

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
o

n
ce

n
tr

at
io

n
 o

f
A

H
L

Time

D0=1

D0=2

D0=4

D0=5

D0=10

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 202

cases also highlighted some limitations of the tool as well as some ways of improvement. These are

discussed in the conclusion of this part 3 hereafter.

 Reference
Ausländer, Simon, David Ausländer, Marius Müller, Markus Wieland, and Martin Fussenegger. 2012.

“Programmable Single-Cell Mammalian Biocomputers.” Nature 487 (7405). Nature Publishing Group: 123–
27. doi:10.1038/nature11149.

Balagadde, Frederick K, Hao Song, Jun Ozaki, Cynthia H Collins, Matthew Barnet, Arno, Frances H Ld, and Stephen
R Quake. 2008. “REPORT A Synthetic Escherichia Coli Predator – Prey Ecosystem,” no. 187: 1–8.
doi:10.1038/msb.2008.24.

Balagaddé, Frederick K, Hao Song, Jun Ozaki, Cynthia H Collins, Matthew Barnet, Frances H Arnold, Stephen R
Quake, and Lingchong You. 2008. “A Synthetic Escherichia Coli Predator-Prey Ecosystem.” Molecular
Systems Biology 4 (1): 187. doi:10.1038/msb.2008.24.

Basu, Subhayu, Yoram Gerchman, CH Collins, FH Arnold, and R Weiss. 2005. “A Synthetic Multicellular System for
Programmed Pattern Formation.” Nature 434 (April).

Brenner, Katie, David K Karig, Ron Weiss, and Frances H Arnold. 2007. “Engineered Bidirectional Communication
Mediates a Consensus in a Microbial Biofilm Consortium.” Proceedings of the National Academy of Sciences
of the United States of America 104 (44): 17300–304. doi:10.1073/pnas.0704256104.

Elowitz, Michael B, and S Leibler. 2000. “A Synthetic Oscillatory Network of Transcriptional Regulators.” Nature
403 (6767): 335–38. doi:10.1038/35002125.

Fujii, Teruo, and Yannick Rondelez. 2013. “Predator–Prey Molecular Ecosystems.” ACS Nano 7 (1). American
Chemical Society: 27–34. doi:10.1021/nn3043572.

Garcia-Ojalvo, J., M. B. Elowitz, and S. H. Strogatz. 2004. “Modeling a Synthetic Multicellular Clock: Repressilators
Coupled by Quorum Sensing.” Proceedings of the National Academy of Sciences 101 (30): 10955–60.
doi:10.1073/pnas.0307095101.

Gendrault, Yves, Morgan Madec, Christophe Lallement, and Jacques Haiech. 2014. “Modeling Biology with HDL
Languages: A First Step toward a Genetic Design Automation Tool Inspired from Microelectronics.” IEEE
Transactions on Biomedical Engineering 61 (4). IEEE Computer Society: 1231–40.

Konkoli, Zoran. 2011. “Safe Uses of Hill’s Model: An Exact Comparison with the Adair-Klotz Model.” Theoretical
Biology & Medical Modelling 8 (1). BioMed Central Ltd: 10. doi:10.1186/1742-4682-8-10.

Madec, Morgan, Christophe Lallement, and Jacques Haiech. 2017. “Modeling and Simulation of Biological
Systems Using SPICE Language.” PloS One 12 (8). Public Library of Science: e0182385.
doi:10.1371/journal.pone.0182385.

Russo, G., and M. Di Bernardo. 2009. “How to Synchronize Biological Clocks.” Journal of Computational Biology
16 (2). Mary Ann Liebert, Inc. 2 Madison Avenue Larchmont, NY 10538 USA : 379–93.
doi:10.1089/cmb.2008.21TT.

Shou, W., S. Ram, and J. M. G. Vilar. 2007. “Synthetic Cooperation in Engineered Yeast Populations.” Proceedings
of the National Academy of Sciences 104 (6): 1877–82. doi:10.1073/pnas.0610575104.

Tamsir, Alvin, Jeffrey J Tabor, and Christopher A Voigt. 2011. “Robust Multicellular Computing Using Genetically
Encoded NOR Gates and Chemical ‘Wires’.” Nature 469 (7329): 212–15. doi:10.1038/nature09565.

Terzer, M, M Jovanovic, A Choutko, O Nikolayeva, A Korn, D Brockhoff, F Zu, et al. 2007. “Design of a Biological
Half Adder.” IET Synthetic Biology, 53–58. doi:10.1049/iet-stb.

Chapter 7 – Validation and Results

Page 203

Wagemakers, Alexandre, Javier M. Buldú, Jordi García-Ojalvo, and Miguel A. F. Sanjuán. 2006. “Synchronization
of Electronic Genetic Networks.” Chaos: An Interdisciplinary Journal of Nonlinear Science 16 (1). American
Institute of Physics: 13127. doi:10.1063/1.2173048.

Wang, Ruiqi, and Luonan Chen. 2005. “Synchronizing Genetic Oscillators by Signaling Molecules.” Journal of
Biological Rhythms 20 (3). Sage PublicationsSage CA: Thousand Oaks, CA: 257–69.
doi:10.1177/0748730405275653.

Zhou, Tianshou, Jiajun Zhang, Zhanjiang Yuan, and Luonan Chen. 2008. “Synchronization of Genetic Oscillators.”
Chaos: An Interdisciplinary Journal of Nonlinear Science 18 (3). American Institute of Physics: 37126.
doi:10.1063/1.2978183.

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 204

Page 205

Summary of Part Three

As mentioned in the introduction of Part Three, it has become necessary to account for the spatio-temporal

behavior of biological systems. Indeed, with the systems growing in size and complexity, many biologists

are now splitting their systems into sub-systems implemented in different cell populations. As these cell

populations are often scattered in space, they communicate by sending and receiving a molecular signal

whose diffusion in space and time is of key importance for the proper functioning of the system.

Current tools for the simulation of biological systems over space and time include VirtualCell and COMSOL.

The key findings of our state of the art about these tools are summarized thereafter.

On the one hand, Virtual Cell has an intuitive Graphical User Interface (GUI) that can be used to define the

geometry of the problem and the biological reactions involved in the system. Several solvers are available,

including deterministic and stochastic simulations for 0D to 3D problems. It was tested and led to results

comparable to those obtained with our tool. Nevertheless, Virtual Cell performs only transient simulations.

Static simulation results have been obtained by performing a transient simulation up to the steady state,

which is time consuming. Computations are not done locally on the computer but are dispatched and

executed on a remote server. Thus, comparison of computation time is not very relevant. Results given in

Table 1 corresponds to clock-wall computation time and are independent of the computer on which they

are performed. Virtual Cell also uses a lattice to solve PDE but the mesh size is fixed. Thus, to obtain a 1mm

spatial resolution at the center, it is necessary to have a 1mm length mesh on the whole surface, which

leads to 10201 nodes. It is between 3 to 4 times more than the number of nodes required to obtain the

same spatial resolution near the source and the same accuracy with an adaptive lattice. Finally, another

limitation of Virtual Cell is the difficulty to couple biological models with models from other domains of

physics. It may be possible in several cases, but it requires a translation of physical problems into an

equivalent biochemical problem.

On the other hand, COMSOL is a software dedicated to the simulation of multi-physics systems. It provides

modules dedicated to the diffusion of chemical species and to the engineering of reactions that can be

coupled together and with other modules from other domains of physics. It has already been used for the

study of biochemical systems (Dreij et al, 2011; Vollmer et al, 2013). The PDE solver as well as the mesher

implemented in COMSOL are more sophisticated than those proposed in our approach. The adaptive lattice

can be computed automatically by COMSOL according to the geometry and the problem itself (detection of

hot spots to determine automatically the refinement zones) whereas it has to be defined by the user in our

case. The definition of the geometry and the diffusion equations are simplified by a GUI. Contrariwise, the

definition of the reactions is less intuitive. Importing existing biological models or integrating complex

reaction models is painful. The PDE resolution algorithms are various and optimized for a multi-core

implementation, which leads to low computation times as shown in Table 1. Most common simulation types

(i.e. static, dynamic, parametric) are available and COMSOL can be coupled with MATLAB to build an

enhanced test bench. Unfortunately, COMSOL is an expensive commercial tool which limits its application

range, especially in the academic field.

Compared to them, our approach offers a solution that positions itself as a good trade-off between accuracy

and computation speed, relies on tools that have proved their efficiency for years (to simulate systems

composed of 1-billion transistors microprocessors) and offers a direct coupling with other domains of

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 206

physics through the generalized Kirchhoff’s laws. Comparison of several features of our approach, COMSOL

and Virtual Cell are given in Table 1. Comparison between simulation results and computation time is not

straightforward because of the different ways the simulators are implemented and the different computers

on which the results were generated. The benchmark used for comparison is the one described in Chapter

7 Section 1 Table 2, i.e. a 100x100 mm² square with a source at (50,50) and no-flux boundary conditions.

The spatial resolution near the source should be at least 1 mm. As Virtual Cell does not feature an adaptive

mesher, a 100x100 lattice is used to discretize the whole surface. With COMSOL, an adaptive 1858-node

mesh is generated so that the smallest elements are less than 1mm at the center. Finally, with our tools,

different lattices have been tested. Reduction in the number of nodes obviously degrades the quality of the

results but, in counterpart, reduces drastically the computation time. Results retained for the comparison

are those from Mesh #7 (i.e. a 100x100 regular lattice) and Mesh #9 (i.e. a 25x25 adaptive lattice refined

once in a 30mm radius centered circle and twice in a 5mm centered circle) which can be considered as a

good trade-off between computation time and accuracy. Moreover, we compared the performances of

Spectre and NGSPICE for our approach. The commercial simulator has better performance that the open-

source one when the number of nodes exceeds 2000. This is even more marked on transient simulation.

This is probably due to the multi-thread feature proposed by Spectre that is not yet supported by NGSpice.

Table 1 Comparison of the features and the performances of COMSOL, Virtual Cell, and our approach (both with Spectre and NGSpice).

 COMSOL Virtual Cell Spectre NGSPICE

Mesher
Triangle

Adaptive mesh
Driven by physics

Rectangular
Fixed

Rectangular
Adaptive

Defined by user

Discretization
scheme

Finite element
(various scheme)

Finite
Differences

Finite Differences
Finite Element (still under dev.)

Multiphysic
interface

Yes
Coupling with other

COMSOL module

Not
straightforward

Yes, using Kirchhoff-based equivalent circuits
and HDL

Simulation type

Deterministic
Steady State,

Transient,
Parametric

Deterministic or
Stochastic
Transient

Deterministic
Steady State, Transient, Parametric, Frequency

analysis, Noise analysis

Scripting for the
development of
complex
testbenchs

Yes, with MATLAB No Yes, with SPICE simulation control directives

Software type Commercial Freeware

Open-source model
generator

Commercial
simulator

Fully open-source

Computation
time at the
steady state

< 1 sec for a
1858-nodes model

14.5 sec for the Mesh
#7 (regular, 10201

nodes)
1.29 sec for Mesh #9

(adaptive, 1969
nodes).

20.5 sec for the Mesh #7
(regular, 10201 nodes)

.
2.19 sec Mesh #9

(adaptive, 1969 nodes).

Computation
time in transient

19 sec for a
1858-nodes model
and 20 time steps

140sec for a
10201-nodes
model and 20

time steps

18.7 sec for the Mesh
#7 and 20 time steps

3.44 sec for The
Mesh #9and 20 time

steps

80.8 sec for the Mesh #7
and 20 time steps

13.18 sec for the Mesh
#9 and 20 time steps

To summarize, our simulator exhibits four main advantages over existing tools:

Page 207

 it is based on a very simple algorithm for the discretization of space, which facilitates the

description of the diffusion phenomena with simple compact models

 it provides a direct coupling between the diffusion model of molecules, models of biological

systems that play a role inside the diffusion medium and models from other domains of physics

 it uses a SPICE simulation core, which has proven its efficiency for years, especially for systems with

a high number of differential equations and which will be improved in the near future in order to

face the new challenges of microelectronics

 it is open-source.

With those features, it is a very powerful tool for the simulation and the virtual prototyping of biological

systems inside cells or involving diverse types of cells that communicate between them through chemical

messengers. For instance, it can be coupled with evolutionary algorithms to explore novel solutions that

exploit cells consortia in synthetic biology or to gain a level of complexity in the modeling of biological

systems.

Although the model is simplified due to the implemented discretization algorithm (in comparison with

COMSOL models for instance), the simulation of a complete model can be very time-consuming, especially

when the number of species increases. Considering the properties of the equations to solve, the

deployment of Graphical Processor Unit (GPU) could provide a solution to speed-up the computation.

Recent versions of GPU-optimized open-source SPICE simulator have been released (Keiter et al, 2014;

Lannutti, 2014) and their coupling with our tool is currently under investigation. Another outlook of this

work is to improve the way several mesh layers can be interconnected for systems with multiple diffusing

species. When multiple mesh layers are implemented (e.g. in the simplified prey-predator example), the

same refinement is applied on each layer to facilitate the interconnection between them (lattices of each

layer overlap and the node coordinates are the same on every layers). Applying specific refinement on each

layer would make the generation of the netlist more complex but, on the other hand, would reduce the

number of nodes in the model and speed-up the computation.

Up to now, our simulator was only used inside our team (see below for the details). The expertise on the

tool was therefore nearby and no GUI was required to properly run a simulation. However, a user-friendly

interface would have facilitated the set-up and running of our tool.

Moreover, to widen the field of application, a validation on a use case of a different scale could be the next

step. Indeed, in our examples, the cells (and therefore their compartments) are punctual. In some biological

systems, cell-level simulation of the fluxes of molecules is required. A notable example is the study of

calcium oscillations in a cell. These oscillations are involved in numerous processes in the cells and are

therefore widely studied by the biology community. Calcium is stored in different compartments in the cell

(e.g. the cytoplasm, the endoplasmic reticulum, the mitochondria…) and the fluxes of calcium between

these compartments (the pattern of calcium oscillations) determine the behavior of a cell in reaction to an

external signal. Being able to simulate these calcium exchanges at the level of a cell would surely bring a

new piece of knowledge in the wide world of calcium oscillation patterns. Additionally, this would open the

gates to predicting unobserved calcium patterns. With this possibility at hand, the designers would have a

dedicated tool to modulate a cell’s behavior. As dysregulations in calcium oscillations are of key importance

in several diseases, an obvious application is therapeutics. A useful extension to a lower-scale usage of our

tool would be the implementation of a 3D model.

In addition, as mentioned above, the tool has already been used in another project which is not directly

connected to synthetic biology. The goal was to simulate the diffusion transport between droplets in a

microfluidic chip. In such device, each droplet can be seen as a single independent bioreactor. However,

Part Three – Virtual Prototyping of Time- and Space-Dependent Biological System

Page 208

the leakage of chemical products from a droplet to the other changes the chemical composition inside the

reactor and introduces a crosstalk between each assay. Our simulator has been used to simulate the

diffusion phenomenon. More precisely, the droplets are described as two 2D disks with a high diffusion

coefficient separated by oil which is modeled by a low diffusion coefficient. Simulation results are promising

and can be used to optimize the device in the future.

To conclude, we developed an open-source tool that can be used for the modeling and the simulation of

biological systems that depend on space and time. The applications are numerous in systems biology, in

synthetic biology coupled with our virtual prototyping and/or automation design environment and for

applications at the interface with other domain of physics whose phenomena can be modeled by diffusion

equation and/or Kirchhoff networks, e.g. electronic devices, thermal phenomena, microfluidics in lab-on-

chips and biosensors.

Page 209

 Conclusion & Outlook

In Part One, we presented a design flow for biology. Our work palliates the two
identified missing elements by providing a solution for the automatic design of
biological systems and an (almost) ready-to-use open source space and time
simulator. As our tools are not encapsulated by a limiting graphical user
interface or by a cloaking commercial license (sometimes you do not really
know what these software really do…), our environment is open to extension.
By our choice of description language, simulating mixed systems comprising
elements from other domains than biology is easier with our tool than with
existing biology-dedicated ones. Moreover, our SBML-handling translator, BB-
SPICE, allows an easy specification of novel biological systems into the Verilog
format. The EASEA platform, as it name suggests, also facilitates the adaptation
of evolutionary algorithms to any biological problems even for any young
padawan of programming.

Our contribution to the
wondrous world of
synthetic biology

Our design flow is now almost complete and permits the handling of complex
biological systems, from the design step to the simulation. A recent example
(Müller et al. 2017) possesses all the features to illustrate the potential
contribution of our tool. Müller et al. designed a biological analog-to-digital
converter. Their system involves an analog part, the biosensor and a digital part
composed of a Boolean circuit. They also split their system over different cell
populations separated by a liquid interface where diffusion happens. With our
tool, they could have performed the virtual prototyping of the GRN to
implement in these different cell populations. Different solutions would
probably have been found by the algorithm, giving them alternatives to choose
from. Having a choice allows to order the suggested solutions by criteria that
might otherwise not have been considered. Besides enlarging the horizon of
the designers, our environment would probably have allowed them to save
some time at the bench, by proceeding to spatiotemporal simulations of the
systems to be tried.

Ease the developments
of innovative systems

As the bridge from an in silico simulation to the wet bench experiments requires
an actual implementation of the designed system, we need to mention here
the limitations of the current environment. Indeed, several connections are
missing, notably to a database of parts. As mentioned in Part One, there is no
mature standard database of parts for synthetic biology. The most advanced
library is currently the BioBrick repository, even though a standard description
of a BrioBrick is not implemented yet. As this ideal database does not exist, we
did not feature the possibility for the design tool to connect to such a
repository. A first outlook would be to manually curate such a library and
connect our tool to it, for the time being. Moreover, an actual implementation
of a GRN requires more than just being able to provide the user with the DNA
sequences corresponding to the parts of the system. Experimental constraints
related to wet bench implementation would probably need to be considered.
As the experimental side of this thesis was rather scarce, I gradually shifted to
the dark side of synthetic biology, which corresponds to the upstream work

Missing connections

Page 210

(namely tool development) that has to be completed so that experimenters and
designers have tools at hand to perform their task.

Beyond these missing links, other improvements were envisioned for the
design flow. The connections between the different tools could be boosted.
Indeed, the design tool relies on the capacity to simulate the biological system
to achieve. As seen in Chapter 5, simulation is required to assess the fitness
score used to evaluate the different solutions to a biological problem. Up to
now, ODEs only were used to simulate GRNs in the design tool. When designing
a system displaying a spatiotemporal behavior however, the simulation tool we
developed would need to be connected to the design tool. A first outlook would
be to create a weak interaction between these tools: the design tool would only
be able to run SPICE simulations on a fixed lattice. A second outlook would
require to bring intelligence in the choice of the lattice. A first step would be to
have the algorithm choose more and more refined lattices to simulate the
system over the course of the convergence (the refinement of the lattice
increases with the iterations of the evolutionary algorithm). In a second step,
we could imagine that the algorithm would be able to optimize the lattice as
well with regards to the ratio of the precision over the number of nodes (as
mentioned in Chapter 7, the finer the lattice, the more precise the results).
These trails are left open for the synthetic biology PhD newcomers…

The utopian tool

Page 211

List of publications

Papers in international peer reviewed journal
[1] M. Madec, F. Pêcheux , Y. Gendrault, E. Rosati, C. Lallement, J. Haiech, GeNeDA: an open-

source workflow for design automation of gene regulatory networks inspired from

microelectronics, Journal of Computational Biology, Volume 13, n° 6, juin 2016,

doi:10.1089/cmb.2015.0229

[2] E. Rosati, M. Madec, J.-B. Kammerer, L. Hébrard, C. Lallement, J. Haiech, Efficient modeling

and simulation of space-dependent biological systems, Journal of Computational Biology, mai

2018, doi: 10.1089/cmb.2018.0012

Papers in national peer reviewed journal
[3] M. Madec, J. Haiech, E. Rosati, A. Rezgui, Y. Gendrault, C. Lallement. Application à la biologie

synthétique des méthodes et outils de CAO de la microélectronique, Médecine/Sciences, EDP

Sciences, Volume 32, n° 2, 2017

International conferences with proceedings and peer review process
[4] E. Rosati, M. Madec, F. Pêcheux , Y. Gendrault, C. Lallement, J. Haiech, Design and simulation

of a compact genetic flip-flop, Advances in Systems and Synthetic Biology, Strasbourg,

France, pages 115-124, mars 2015

[5] L. Talide , Z. Blanck , M. Renou , T. Wallois , E. Rosati, M. Madec, A. Rezgui, C. Lallement, J.

Haiech, Modeling of intercellular transport for emerging applications in synthetic biology,

Advances in Systems and Synthetic Biology, Strasbourg, France, pages 149-156, mars 2015

[6] E. Rosati, M. Madec, J.-B. Kammerer, A. Rezgui, C. Lallement, J. Haiech, Verilog-A Compact

Space-dependent Mode for Biology, 22nd IEEE International Conference on Mixed Design of

Integrated Circuits & Systems (MIXDES 2015), Torun, Poland, pages 171-176, juin 2015,

doi:10.1109/MIXDES.2015.7208505.

[7] E. Rosati, M. Madec, A. Rezgui, Q. Colman, N. Toussaint, C. Lallement, P. Collet, Application of

Evolutionary Algorithms in Synthetic Biology, EuroGP - EvoStar 2016, Porto, Portugal, mars

2016.

[8] E. Rosati, M. Madec, J-B. Kammerer, A. Rezgui, C. Lallement, J. Haiech, Verilog-A Compact

Space-dependent Model for Biology, Advances in Systems and Synthetic Biology, Evry,

France, pages 103-117, Genopole (Eds.), EDP science, ISBN : 978-2-7598-1971-3, Volume 15,

mars 2016

[9] A. Biquet, R. Goerlich, E. Rosati, M. Madec, C. Lallement, Modeling of biological asynchronous

sequential systems, Advances in Systems and Synthetic Biology, Evry, France, Genopole

(Eds.), EDP science, ISBN : en cours, Volume 17, mars 2018.

[10] M. Madec, A. Bonament, E. Rosati, L. Hebrard, C. Lallement, Virtual Prototyping of Biosensors

Involving Reaction-diffusion phenomena, 16th IEEE International Conference on New Circuits

and Systems (NEWCAS 2018), Montreal, Canada, juin 2018.

Page 212

International conference without proceeding
[11] M. Madec, F. Pêcheux , Y. Gendrault, E. Rosati, C. Lallement, J. Haiech, Reuse of

microelectronics software for gene regulatory networks design automation, BioSynSys 2015,

Paris, France, septembre 2015

[12] E. Rosati, M. Madec, Q. Colman, N. Toussaint, A. Rezgui, C. Lallement, J. Haiech, P. Collet, A

Nature-Inspired Evolutionnary Algorithm for the Design and Optimization of Gene Regulatory

Networks, BioSynSys 2015, Paris, France, septembre 2015

[13] E. Rosati, M. Madec, J-B. Kammerer, A. Rezgui, C. Lallement, J. Haiech, A Verilog-A Mesher

Based on Eletronics to Model Space-Dependent Biological Systems, BioSynSys 2015, Paris,

France, septembre 2015.

[14] M. Madec, A. Rezgui, Y. Gendrault, E. Rosati, F. Pêcheux , C. Lallement, J. Haiech, Application

of Electrical Design Automation in Biological Context, CDN Live 2016, Munich, Germany, mai

2016. Academic Track Best Paper Award

[15] O. Bolaji, M. Madec, E. Rosati, C. Lallement, Evaluation of Open Source Electrical Simulator in

a Biological Context, 2nd international conference of the GDR BioSynSys, Bordeaux, France,

juin 2016

[16] N. Dumas, E. Rosati, M. Madec, V. Pasteur, D. Funfschilling, Simulating diffusion transport

between droplets in a microfluidic chip, Proceedings of the 5th European Conference on

Microfluidics, Debruary 28 – March 2, 2018, Strasbourg, France

National conference without proceeding
[16] E. Rosati, M. Madec, F. Pêcheux, Y. Gendrault, C. Lallement, J. Haiech, Development of design

tools for biosystems engineering, Journées du Campus d’Illkirch, mai 2014.

[17] E. Rosati, M. Madec, J.-B. Kammerer, L. Hébrard, C. Lallement, J. Haiech, Modélisation

compacte Verilog-A des problems biologiques dependent de l’espace, Journées Nationales du

Réseau des Doctorants en Microelectronique, Strasbourg, France, novembre 2017.

Page 213

Appendices

Appendix I – Demonstrations Used in the Finite Element

Discretization Scheme ... 215

Appendix II – Verilog-A Model of the Elementary Mesh ... 229

Appendices

Page 214

Page 215

Appendix I
Demonstration Used in the Finite Element

Discretization Scheme

 Basics ... 215
1.1. Notation .. 215
1.2. Equation of heat conduction .. 215

1.1.1. Heat equation ... 215
1.1.2. Boundary conditions ... 216

1.3. Variational formulation ... 216
 Space discretization – General case .. 217
 Space discretization – 4-nodes models ... 219
3.1. Matrix of rigidity ۹219 ... ܍

 calculation ... 219 ࢋࡺ .3.1.1
 calculation ... 220 ࢋࡷ .3.1.2
3.1.3. Representation as a resistor network 221

3.2. Computation of the external fluxes (matrix ۴܍) 222
3.2.1. Computation ... 222
3.2.2. Representation as a resistor network 222

3.3. Computation of the border conditions 224
3.3.1. Different boundary conditions .. 224
3.3.2. Implementation .. 227

 Basics
1.1. Notation
Let Ω be a rectangular plane. Let ߑ be the border of Ω. We define ܶ(ݔ, the temperature at a point (ݕ
of coordinates(ݔ, We will divide the space in rectangular elements Ω of length L and width W (see .(ݕ
Fig. 1).

1.2. Equation of heat conduction
1.1.1. Heat equation
In thermal physics, Fourier law gives us:

ࢗ = ߣ− ∙ (ܶ)܌܉ܚ܏

where ܙ is the rate of flow of heat energy per area unit, ݇ the thermal conductivity (supposed to be

isotropic) and ∇ሬሬԦܶ the gradient of temperature.

On the other hand, the first principle of thermodynamics (conservation law) states that locally

div(ܙ) + ܲ = 0

Appendix

Page 216

where ܲ is the heat power received by the system. Combining previous equations leads to the heat
equation without external sources:

ܥ
߲ܶ
ݐ߲

= ߣ ∙ Δܶ

Fig. 1 Notations

1.1.2. Boundary conditions
Boundaries are divided in two subsets: Σ் is the subset for which a temperature boundary condition
is defined:

,ݔ)ܶ (ݕ = ଴ܶ ∀(ݔ, (ݕ ∈ Σ்

Σఝ is the subset for which a flux boundary condition is defined.

ߣ ∙ ,ݔ)ܶ)܌܉ܚ܏ ((ݕ ∙ ܖ = ,ݔ)∀ ௡ݍ (ݕ ∈ Σఝ

In our case, we have:

௡ݍ = ߮ௌ + ℎ(௙ܶ − ܶ)

With ߮ௌ the constraint on incoming flux and ℎ(௙ܶ − ܶ) the expression of convection with ௙ܶ the
ambient temperature far from the modeled surface.

1.3. Variational formulation
Let ෠ܶ be a function which associates to a point (ݔ, an arbitrary temperature ܶ. ෠ܶ (ݕ is also constrained
on the border Σ் by the following condition:

෠ܶ(ݔ, (ݕ = ,ݔ)∀ 0 (ݕ ∈ Σ்

There is an infinity of such functions. Let us multiply the conservation equation by ෠ܶ and integrate on
the whole plane Ω:

න ෠ܶ(div(ܙ) − ܲ)݀ܵ
ஐ

= 0

From Liebnitz formula, we know that:

div൫T෡ܙ൯ = ෠ܶdiv(ܙ) +)܌܉ܚ܏ ෠ܶ) ∙ ܙ

So that:

n

Ω T(x, y) W

L

The entire space An element

1 2

34

 Appendix I – Demonstration Used in the Finite Element Discretization Scheme

Page 217

න div൫ ෠ܶܙ൯݀ܵ
ஐ

− න ൫܌܉ܚ܏(෠) ∙ ൯݀ܵܙ
ஐ

− න ෠ܶ ∙ ܲ ݀ܵ
ஐ

= 0

The Green-Ostrogradski theorem applied on the first term leads to:

න ෠ܶ(ܙ ∙ ܮ݀(ܖ
ஊ

− න ൫∇ ෠ܶ ∙ ൯݀ܵࢗ
ஐ

− න ෠ܶ ∙ ܲ ݀ܵ
ஐ

= 0

Finally, by separating Σ in Σ் and Σఝ, we can write that:

න ൫܌܉ܚ܏(෠) ∙ ൯݀ܵܙ
ஐ

= න ෠ܶ(ܙ ∙ ܮ݀(ܖ
ஊ೅

+ න ෠ܶ(ܙ ∙ ܮ݀(ܖ
ஊക

− න ෠ܶ ∙ ܲ ݀ܵ
ஐ

The integral on Σ் is equal to zero due to the boundary condition. Replacing ܙ by its expression and
introducing ݍ௡ (boundary condition on and replacing Σఝ) leads to the following expression.

න ܶ)܌܉ܚ܏ ߣ−)்(෢܌܉ܚ܏)݀ܵ
ஐ

= න ෠ܶ(−ݍ௡)݀ܮ
ஊക

− න ෠ܶ ∙ ܲ ݀ܵ
ஐ

Now, we have to find the expression of ܶ(ݔ, ,ݔ)that verifies previous equation for any function ෠ܶ (ݕ (ݕ
described previously.

 Space discretization – General case
Let us divide the plane Ω in ݊ elemental surfaces ܵ௘ and the border Σఝ in elemental lengths Σఝ௜ (see
Fig. 2).

Fig. 2 Discretization of the plane Ω.

For each element ܵ௘, we define an interpolation function ܰ௘ as:

,ݔ)ܶ (ݕ = ෍ ௜ܰ
௘(ݔ, (ݕ ௜ܶ

௘

௡௡௢ௗ௘

௜ୀଵ

,ݔ)∀ (ݕ ∈ ܵ௘

With ݊݊݁݀݋ the number of nodes of element ܵ௘, ௜ܰ
௘ the interpolation functions of ܵ௘ associated with

the node ݅ (its value is 0 outside of ܵ௘) and ௜ܶ
௘ the temperature at the node ݅ of ܵ௘ (i.e. ௜ܶ

௘ =
௜ݔ)ܶ

௘ , ௜ݕ
௘)).

1 32

pp-1

Appendix

Page 218

In case of a 4-nodes element, the previous equation can be written as follows:

,ݔ)ܶ (ݕ = ሾܰ௘(ݔ, ሿ(ݕ

ۉ

ۇ

ଵܶ
௘

ଶܶ
௘

ଷܶ
௘

ସܶ
௘ی

ۊ = ሾ ଵܰ
௘

ଶܰ
௘

ଷܰ
௘

ସܰ
௘ሿ

ۉ

ۇ

ଵܶ
௘

ଶܶ
௘

ଷܶ
௘

ସܶ
௘ی

,ݔ)∀ ۊ (ݕ ∈ ܵ௘

Based on Galerkin’s method, we chose for ෠ܶ the same approximation:

෠ܶ(ݔ, (ݕ = ෍ ௜ܰ
௘(ݔ, (ݕ ෠ܶ

௜
௘

௡௡௢ௗ௘

௜ୀଵ

,ݔ)∀ (ݕ ∈ ܵ௘

We can therefore explicit the gradient of ܶ as follows:

,ݔ) ൫ܶ܌܉ܚ܏ ൯(ݕ = ܌܉ܚ܏ ቌ ෍ ௜ܰ
௘(ݔ, (ݕ ௜ܶ

௘

௡௡௢ௗ௘

௜ୀଵ

ቍ = ෍)܌܉ܚ܏ ௜ܰ
௘(ݔ, ((ݕ ∙ ௜ܶ

௘

௡௡௢ௗ௘

௜ୀଵ

= ,ݔ)܍ۼ)܌܉ܚ܏ ்((ݕ × ࢋ܂

Where ࢋۼ is a vector matrix of dimension ݊݊݁݀݋ regrouping the ௜ܰ
௘(ݔ, a vector matrix of ࢋ܂ and (ݕ

dimension ݊݊݁݀݋ regrouping the ௜ܶ
௘ .

,ݔ) ൫ܶ܌܉ܚ܏ ൯(ݕ = ܌܉ܚ܏

ۉ

ۈ
ۇ

ሾܰ௘(ݔ, ሿ(ݕ

ۉ

ۇ

ଵܶ
௘

ଶܶ
௘

ଷܶ
௘

ସܶ
௘ی

ۊ

ی

ۋ
ۊ

= ,ݔ)ሾܰ௘)ࢊࢇ࢘ࢍ (ሿ(ݕ

ۉ

ۇ

ଵܶ
௘

ଶܶ
௘

ଷܶ
௘

ସܶ
௘ی

 ۊ

,ݔ) ܶ∇ (ݕ =

ۉ

ۇ

߲ ଵܰ
௘

ݔ߲
߲ ଶܰ

௘

ݔ߲
߲ ଷܰ

௘

ݔ߲
߲ ସܰ

௘

ݔ߲
߲ ଵܰ

௘

ݕ߲
߲ ଶܰ

௘

ݕ߲
߲ ଷܰ

௘

ݕ߲
߲ ସܰ

௘

ݕ߲ ی

ۊ

ۉ

ۇ

ଵܶ
௘

ଶܶ
௘

ଷܶ
௘

ସܶ
௘ی

ۊ = ෍ ௜ܶ
௘∇ ௜ܰ

௘(ݔ, (ݕ

௡௡௢ௗ௘

௜ୀଵ

,ݔ)∀ (ݕ ∈ ܵ௘

In the same way we obtain:

܌܉ܚ܏ ቀ ෠ܶ (ݔ, ቁ(ݕ = ෍)܌܉ܚ܏ ௜ܰ
௘(ݔ, ((ݕ ⋅ ෠ܶ

௜
௘ =

௡௡௢ௗ௘

௜ୀଵ

,ݔ)܍ۼ)܌܉ܚ܏ ((ݕ × ࢋ෡܂

regrouping the ෠ܶ ݁݀݋݊݊ a vector matrix of dimension ࢋ෡܂
௜
௘.

When introducing the new values for ܌܉ܚ܏൫ܶ (ݔ, ൯(ݕ and ܌܉ܚ܏ ቀ ෠ܶ (ݔ, ቁ(ݕ in the variational

formulation expression and integrating on the whole surface Ω, we obtain:

෍ ࢋ෡܂
୘

× න ,ݔ)܍ۼ)܌܉ܚ܏ ୘((ݕ ⋅ ߣ ⋅ ,ݔ)܍ۼ)܌܉ܚ܏ ((ݕ ∙ ݀ܵ
ௌ೐

×

௡

௘ୀଵ

܍܂ − ൥න ܍ۼ ∙ ௡ݍ ∙ ܮ݀
ஊക∩ௌ೐

+ න ܍ۼ ∙ ܲ ∙ ݀ܵ
ௌ೐

൩

× ࢋ෡܂ = 0

Let

܍۹ = න ,ݔ)܍ۼ)܌܉ܚ܏ ୘((ݕ ⋅ ߣ ⋅ ,ݔ)܍ۼ)܌܉ܚ܏ ((ݕ ∙ ݀ܵ
ௌ೐

and

 Appendix I – Demonstration Used in the Finite Element Discretization Scheme

Page 219

܍۴ = ቂ׬ ܍ۼ ∙ ௡ݍ ∙ ஊക∩ௌ೐ܮ݀
+ ׬ ܍ۼ ∙ ܲ ∙ ݀ܵ ݀ܵௌ೐

ቃ
୘

Equation X can be rewritten:

෍ ࢋ෡܂
୘

௡

௘ୀଵ

× ܍۹) × ܍܂ − (܍۴ = 0

It should be noticed that ࢋࡲ
୘ × ࢋ෡܂is a scalar, thus it is equal to ࢋ෡܂

୘
 ࢋࡲ ×

Now, let ܂෡, ܂, ۹ and ۴ be vector matrices (for ܂෡ and ܂) and square matrices (۹ and ۴) of dimension ݀
(with ݀ being the number of nodes of the whole surface ݌ minus the number of nodes on Σ்),
regrouping the element matrices ࢀ෡ࢋ , ࢋࢀ , ࢋࡷ and ࢋࡲ respectively. For this purpose, first element
matrices are extended to the dimension ݀ and completed by zeros for the terms that concern nodes
that are not involved in the mesh. Then, extended matrices are added to form ܂෡, ܂, ۹ and ۴.

Finally, since the previous expression is true for any ܂෡, we can write:

ࡷ × ࢀ − ࡲ = 0

 .is the matrix of rigidity ࡷ

 Space discretization – 4-nodes models
In this case, we consider that the plane Ω is divided in ݊ rectangular surfaces ܵ௘.

3.1. Matrix of rigidity ۹܍
We use the notation for an element as seen on the right-hand panel of Fig. 1. Let us first find ௘ܰ.

 calculation ࢋࡺ .3.1.1
Let ଵܶ, ଶܶ, ଷܶ and ସܶ be the temperature at the four corners of the rectangular surfaces ܵ௘ (Fig. 1).

ࢋ܂ = ൮

ଵܶ

ଶܶ

ଷܶ

ସܶ

൲

We define ݔ)܍ۼ, named canonical base. In our ,ݕ and ݔ as a linear combination of four functions of (ݕ
case, we chose the standard bilinear canonical base (1, ,ݔ ,ݕ To find the coefficient of the linear .(ݕݔ
combination, we use the values of ଵܶ , ଶܶ , ଷܶ and ସܶ . Let ۾ be a 4x4 matrix which contain these
coefficients.

,ݔ)܍ۼ (ݕ = (1 ݔ ݕ (ݕݔ × ۾

Thus,

௘ܶ(ݔ, (ݕ = (1 ݔ ݕ (ݕݔ × ۾ × ࢋ܂

Let

Appendix

Page 220

۾ × ࢋ܂ = ൮

ଵܲ

ଶܲ

ଷܲ

ସܲ

൲

With the temperature at the four corners, we can write:

௘ܶ(0, 0) = ଵܶ = ଵܲ

௘ܶ(ܮ, 0) = ଶܶ = ଵܲ + ܮ ଶܲ

௘ܶ(ܮ, ܹ) = ଷܶ = ଵܲ + ܮ ଶܲ + ܹ ଷܲ + ܮܹ ସܲ

௘ܶ(0, ܹ) = ସܶ = ଵܲ + ܹ ଷܲ

Writing these for equations as a vector-matrix product leads to:

ࢋ܂ = ൮

ଵܲ

ଶܲ

ଷܲ

ସܲ

൲ × ൮

1 1 1 1
0 ܮ 0 ܮ
0 0 0 ܮ ∙ ܹ
0 0 ܹ ܹ

൲

Inversion of the 4x4 matrix lead to the expression of ۾.

ܲ =

ۉ

ۈ
ۈ
ۈ
ۇ

1 0 0 0

−
1
ܮ

1
ܮ

0 0

−
1
ܹ

0 0
1
ܹ

1
ܮ ∙ ܹ

−
1

ܮ ∙ ܹ
1

ܮ ∙ ܹ
−

1
ܮ ∙ یܹ

ۋ
ۋ
ۋ
ۊ

Finally ࢋۼ equals

,ݔ)ࢋۼ (ݕ = ቀ1 −
ݔ
ܮ

−
ݕ
ܹ

−
ݕݔ

ܮ ∙ ܹ
ݔ
ܮ

−
ݕݔ

ܮ ∙ ܹ
ݕݔ

ܮ ∙ ܹ
ݕ
ܹ

−
ݕݔ

ܮ ∙ ܹ
ቁ

 calculation ࢋࡷ .3.1.2
The next step is to compute ࢋۼ ܌܉ܚ܏.

ࢋۼ ܌܉ܚ܏ =

ۉ

ۇ

߲ ௘ܰଵ

ݔ߲
߲ ௘ܰଶ

ݔ߲
߲ ௘ܰଷ

ݔ߲
߲ ௘ܰସ

ݔ߲
߲ ௘ܰଵ

ݕ߲
߲ ௘ܰଶ

ݕ߲
߲ ௘ܰଷ

ݕ߲
߲ ௘ܰସ

ݕ߲ ی

ۊ = ൮
−

1
ܮ

+
ݕ

ܮ ⋅ ܹ
1
ܮ

−
ݕ

ܮ ∙ ܹ
ݕ

ܮ ∙ ܹ
−

ݕ
ܮ ∙ ܹ

−
1
ܹ

+
ݔ

ܮ ∙ ܹ
−

ݔ
ܮ ∙ ܹ

ݔ
ܮ ∙ ܹ

1
ܹ

−
ݔ

ܮ ∙ ܹ

൲

Finally

ࢋࡷ = න ሾࢋۼ ܌܉ܚ܏ሿ௧ × ߣ × ܵ݀ࢋۼ ܌܉ܚ܏
ௌ೐

ߣ =

ۉ

ۈ
ۈ
ۈ
ۈ
ۇ

ܹ
ܮ3

+
ܮ

3ܹ
−

ܹ
ܮ3

+
ܮ

6ܹ
−

ܹ
ܮ6

−
ܮ

6ܹ
ܹ
ܮ6

−
ܮ

3ܹ

∗
ܹ
ܮ3

+
ܮ

3ܹ
ܹ
ܮ6

−
ܮ

3ܹ
−

ܹ
ܮ6

−
ܮ

6ܹ

∗ ∗
ܹ
ܮ3

+
ܮ

3ܹ
−

ܹ
ܮ3

+
ܮ

6ܹ

∗ ∗ ∗
ܹ
ܮ3

+
ܮ

3ܹ ی

ۋ
ۋ
ۋ
ۋ
ۊ

 Appendix I – Demonstration Used in the Finite Element Discretization Scheme

Page 221

Since ࢋࡷ is a symmetrical matrix, only half of the matrix is shown.

3.1.3. Representation as a resistor network
In this paragraph, we will see how to draw the analogy between the finite element discretization
scheme for an elementary mesh and a representation of this mesh as an electrical resistor network.
The model of the elementary is composed of 4 nodes and 6 resistors (Fig. 3). Let Rij (or Rji) be the
resistor between the nodes ݅ and ݆. Let ܫ௘௫௧,௜ be the external current applied on node ݅.

Fig. 3 The electrical mesh used in the diffusion model. Here all nodes are connected to one another with resistors.
External currents can be taken into account on each node.

With Kirchhoff’s law we can write the following equation:

෍
௝ܸ − ௜ܸ

ܴ௜௝
− ௘௫௧,௝ܫ = 0 for ݆ = ሼ1, 2, 3, 4ሽ

ସ

௜ୀଵ,௜ஷ௝

Matrix formulation of the previous equation is:

܍۵ × ࢋ܄ = ܍۵ × ൮

ଵܸ

ଶܸ

ଷܸ

ସܸ

൲ =

ۉ

ۇ

௘௫௧,ଵܫ

௘௫௧,ଶܫ

௘௫௧,ଷܫ

ی௘௫௧,ସܫ

ۊ = ܍,ܜܠ܍۷

With the coefficient of ۵܍ defined as follows:

݃௜௝ =

ە
ۖ
۔

ۖ
෍ۓ

ߣ
ܴ௜௞௞

 ݂݅ ݅ = ݆ ∀݇ ് ݅

−
ߣ

ܴ௜௞
 ݂݅ ݅ ് ݆

In a similar fashion as in the previous section (extension to the whole lattice and addition), we can
create the square matrix ۵ of dimension ݀ and a ݀-element vector ۷ܜܠ܍ such as :

۵ × ܄ − ܜܠ܍۷ = ۵ × ൭
ଵܸ
⋮
ௗܸ

൱ − ܜܠ܍۷ = 0

Using the electrical/thermal analogy (voltage are equivalent to temperature and current to heat flow),
we can identify this equation to the ۹ × ܂ − ۴ = 0 define hereabove. The conductance matrix ۵

Appendix

Page 222

corresponds to the rigidity matrix ۹ and ۷ܜܠ܍ corresponds to the matrix ۴ of incoming external fluxes.
The same analogy can go down to the level of the elementary mesh between ۵܍ and ۹܍. Thus

ܴଵଶ = ܴଷସ =
଺௅

ି௅మାଶௐ²
 ܴଵଷ = ܴଶସ =

଺௅ௐ

௅మାௐ²
 ܴଵସ = ܴଶଷ =

଺௅ௐ

ିௐమାଶ௅²

When meshes are squares, ܹ = :hence ,ܮ

ܴ௔ௗ௝ = 6 and ܴௗ௜௔௚ = 3

With ܴ௔ௗ௝ the resistance value between two adjacent nodes and ܴௗ௜௔௚ the relative resistance value
between two diagonal nodes (to have the absolute value one still needs to multiply by ߣ which
corresponds to the diffusion constant of the molecule).

3.2. Computation of the external fluxes (matrix ۴܍)
3.2.1. Computation
We want to compute the matrix ۴܍ defined as following:

܍۴ = ቂ׬ ܍ۼ ∙ ௡ݍ ∙ ஊക∩ௌ೐ܮ݀
+ ׬ ܍ۼ ∙ ܲ ∙ ݀ܵௌ೐

ቃ
୘

We first focus on an element which is not at the border so that Σఝ ∩ ܵ௘ = ∅. Thus:

܍۴ = ቂ׬ ܍ۼ ∙ ܲ ∙ ݀ܵ ௌ೐
ቃ

୘

Here ܲ is the flux incoming the element. We first assume there is no external heat source. Thus, the
only flux to consider is the convection modeled by a term ܲ = −ℎ ∙ ܶ with ℎ a constant representing
coefficient of convection. Using the approximation of ܶ, we get the following expression for ܲ:

ܲ = −ℎ ∙ ,ݔ)ܶ (ݕ = −ℎ ∙ ܍ۼ ∙ ൮

ଵܶ

ଶܶ

ଷܶ

ସܶ

൲

We therefore obtain for ܨ௘:

ࢋࡲ = −ℎ ∙
ܹܮ
36

∙ ൮

4 2 1 2
2 4 2 1
1 2 4 2
2 1 2 4

൲ × ൮

ଵܶ

ଶܶ

ଷܶ

ସܶ

൲

3.2.2. Representation as a resistor network
In the electrical model, a first model represented degradation by connecting a grounded resistor to
each node (see Fig. 4).

 Appendix I – Demonstration Used in the Finite Element Discretization Scheme

Page 223

Fig. 4 Initial model of degradation. Each node is connected to a grounded resistor.

The current passing through the resistor ܴௗ௜ connected to node ݅ corresponds to the previously
defined ܫ௘௫௧ ௜. With the Ohm’s law we can write:

௘௫௧ ௜ܫ = − ௜ܸ

ܴௗ௜

We assume the degradation rate of the molecule is constant over space, so that all the resistors have
the same value ܴௗ:

ܴௗ௜ = ܴௗ ∀݅

We obtain for the matrix ܫ௘௫௧,௘:

ࢋ,࢚࢞ࢋࡵ = −
1

ܴௗ
൮

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

൲ ൮

ଵܸ

ଶܸ

ଷܸ

ସܸ

൲

As seen in the previous section, an analogy can be drawn between ࢋ,࢚࢞ࢋࡵ and ࢋࡲ. We therefore need
to find a value of ܴௗ that satisfies the following equation:

−݀௑
ܹܮ
36

൮

4 2 1 2
2 4 2 1
1 2 4 2
2 1 2 4

൲ = −
1

ܴௗ
൮

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

൲

It is obviously impossible with this model. Noteworthy, even with different ܴௗ௜ values for each node,
this equation cannot be solved.

This means that according to finite element method, degradation of a molecule at a certain point not
only depends on its own concentration but also on the concentration of its neighboring nodes
(corresponding to the 0 in the ࢋ,࢚࢞ࢋࡵ matrix). Noteworthy is also the fact that the major contribution to
compute the degradation rate comes from the node itself (4 is the highest value on a line and is always
position on the diagonal) and that the closest nodes contribute more that the farthest ones (the value
1 always corresponds to the diagonal node, e.g. ଷܸ contributes 4 times less that ଵܸ to ଵܸ ’s
degradation).

Instead of just one resistor, one would actually need to implement as many resistors as coefficients in
the matrix. Another solution is envisioned: the new electrical model of an element has a VCCS (Voltage

Appendix

Page 224

Controlled Current Source) for each node. This VCCS is dependent on 4 voltages, the potential of the 4
nodes of an element. Moreover, this VCCS is dependent on the size of the element.

We know have to compute the ݁ܨ matrix for border nodes.

3.3. Computation of the border conditions
We distinguish 3 types of borders we might want to model. First, the limit of the lattice represents a
“wall” the diffusing molecules cannot cross. Second, a fixed concentration is imposed at the border
nodes. Third, diffusion proceeds further down after the border.

3.3.1. Different boundary conditions
Blocked diffusion
With this condition, we consider that there is no heat flux at the border Σఝ. Thus,

න ܍ۼ ∙ ௡ݍ ∙ ܮ݀
ஊക∩ௌ೐

= 0

and ۴܍ is limited to the term:

܍۴ = ቂ׬ ܍ۼ ∙ ܲ ∙ ݀ܵ ௌ೐
ቃ

୘

In case of a blocked diffusion,

Fixed temperature
Fixed temperature boundary condition intervene only on Σ் boundary which in not involved in the
computation of ۴܍. Thus,

܍۴ = ቂ׬ ܍ۼ ∙ ܲ ∙ ݀ܵ ௌ೐
ቃ

୘

Again, border nodes with fixed temperature condition are treated like every other nodes.

Modeling of further diffusion
We imagine here that heat diffusion proceeds further beyond the border of the lattice up to a distance
to which temperature is equal to the ambient temperature. We propose to model this continued
diffusion by adding a resistor to each border node (see the red resistor on Fig. 5).

This additional resistor represent the flux outing the lattice because of diffusion since a resistor creates
a flux of heat. Moreover, this flux is proportional to the potential of the nodes to which it is connected.
That is why the other terminal of the resistors are connected to the thermal ground.

By analogy, we would have in the heat diffusion model:

௡ݍ = ߮௑ ∙ ,ݔ)ܶ (ݕ

We can therefore calculate the first integral of ۴܍ expression (named ܖۿ
܍). Assuming that ߮௑ is

constant,

ܖۿ
܍ = ൥න ܍ۼ ∙ ௡ݍ ∙ ܮ݀

ஊക∩ௌ೐

൩

୘

= ൥න ܍ۼ ∙ ߮௑ ∙ ܮ݀
ஊക∩ௌ೐

൩

୘

= ߮௑ ∙ ൥න ܍ۼ ∙ ܮ݀
ஊക∩ௌ೐

൩

୘

 Appendix I – Demonstration Used in the Finite Element Discretization Scheme

Page 225

The expression of ܖۿ
܍ is a bit different depending on the position of mesh edge that belongs to the

boundary.

Fig. 5 Representation of the model of heat diffusion treatment beyond the lattice. The black square represent the lattice.
The green border shows a limit after which temperature can be considered as fixed (ambient temperature). In red, the

resistor used to model the continued diffusion after the lattice.

Vertical border
We imagine an element having an edge at ݔ = 0 or ݔ = ,In this case .(see Fig. 6) ܮ

ܖۿ
܍ = ߮௑ ∙ ቈන ܍ۼ ∙ ݕ݀

ௐ

ை
቉

୘

Thus

ܖۿ
(ݔ)܍ = ߮௑ ∙

ܮ
6 ∙ ܹ²

∙

ۉ

ۈ
ۇ

ܮ) − (ݔ ∙ ൫ܹ ⋅ (2 ∙ ଵܶ + ସܶ) + ݕ ∙ (−2 ∙ ଵܶ + 2 ∙ ଶܶ + ଷܶ − ସܶ)൯

ݔ ∙ ൫ܹ ∙ (2 ∙ ଵܶ + ସܶ) + ݕ ∙ (−2 ∙ ଵܶ + 2 ଶܶ + ଷܶ − ସܶ)൯

ݔ ∙ ൫ܹ ∙ (ଵܶ + 2 ∙ ସܶ) + ݕ ∙ (− ଵܶ + ଶܶ + 2 ∙ ଷܶ − 2 ସܶ)൯

ܮ) − (ݔ ∙ ൫ܹ ∙ (ଵܶ + 2 ∙ ସܶ) + ݕ ∙ (− ଵܶ + ଶܶ + 2 ∙ ଷܶ − 2 ସܶ)൯ ی

ۋ
ۊ

ܖۿ
ܖۿ correspond to the expression of (0)܍

܍ at the bottom border and ܖۿ
 at the top border. For (ܹ)܍

ݔ = 0:

࢔ࡽ
ࢋ = −

1
ܴ

ܹ
6

൮

2 0 0 1
0 0 0 0
0 0 0 0
1 0 0 2

൲ ൮

ଵܸ

ଶܸ

ଷܸ

ସܸ

൲

And for ݔ = :ܮ

࢔ࡽ
ࢋ = −

1
ܴ

ܹ
6

൮

0 0 0 0
0 2 1 0
0 1 2 0
0 0 0 0

൲ ൮

ଵܸ

ଶܸ

ଷܸ

ସܸ

൲

Appendix

Page 226

Fig. 6 Element with an edge on a vertical border. X and y coordinates are given in the element frame of reference.

Horizontal border
We repeat the computation for an element having an edge at ݕ = 0 or ݕ = ܹ (see Fig. 7). In this case:

ܖۿ
܍ = ߮௑ ∙ ቈන ܍ۼ ∙ ݔ݀

௅

ை
቉

୘

Thus

ܖۿ
(ݔ)܍ = ߮௑ ∙

ܹ
6 ∙ ²ܮ

∙

ۉ

ۈ
ۇ

ݕ ∙ ൫ܮ ⋅ (2 ∙ ଵܶ + ଶܶ) + ݔ ∙ (−2 ∙ ଵܶ − ଶܶ + ଷܶ + 2 ∙ ସܶ)൯

(ܹ − (ݕ ∙ ൫ܮ ∙ (2 ∙ ଵܶ + ଶܶ) + ݔ ∙ (−2 ∙ ଵܶ − ଶܶ + ଷܶ + 2 ସܶ)൯

(ܹ − (ݕ ∙ ൫ܮ ∙ (ଵܶ + 2 ∙ ଶܶ) + ݔ ∙ (− ଵܶ − 2 ଶܶ + 2 ∙ ଷܶ + ସܶ)൯

ݕ ∙ ൫ܮ ∙ (ଵܶ + 2 ∙ ଶܶ) + ݔ ∙ (− ଵܶ − 2 ଶܶ + 2 ∙ ଷܶ + ସܶ)൯ ی

ۋ
ۊ

ܖۿ
ܖۿ correspond to the expression of (0)܍

܍ at the left border and ܖۿ
 .at the right border (ܮ)܍

࢔ࡽ
ࢋ = −

1
ܴ

ܮ
6

൮

2 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0

൲ ൮

ଵܸ

ଶܸ

ଷܸ

ସܸ

൲

If ݕ = ܹ, we obtain:

࢔ࡽ
ࢋ = −

1
ܴ

ܮ
6

൮

0 0 0 0
0 0 0 0
0 0 2 1
0 0 1 2

൲ ൮

ଵܸ

ଶܸ

ଷܸ

ସܸ

൲

Corner element
The elements located at a corner of a lattice are treated in a similar way, except that two integrals are
calculated and added: one for the horizontal border at a given ݕ and one for the vertical border at a
given ݔ.

For the upper left corner we obtain:

࢔ࡽ
ࢋ = −

1
6ܴ

ۉ

ۈ
ۇ

ܹ ൮

2 0 0 1
0 0 0 0
0 0 0 0
1 0 0 2

൲ + ܮ ൮

0 0 0 0
0 0 0 0
0 0 2 1
0 0 1 2

൲

ی

ۋ
ۊ

൮

ଵܸ

ଶܸ

ଷܸ

ସܸ

൲

 Appendix I – Demonstration Used in the Finite Element Discretization Scheme

Page 227

Fig. 7 Element with an edge on a horizontal border. X and y coordinates are given in the element frame of reference.

For the upper right corner we obtain:

࢔ࡽ
ࢋ = −

1
6ܴ

ۉ

ۈ
ۇ

ܹ ൮

0 0 0 0
0 2 1 0
0 1 2 0
0 0 0 0

൲ + ܮ ൮

0 0 0 0
0 0 0 0
0 0 2 1
0 0 1 2

൲

ی

ۋ
ۊ

൮

ଵܸ

ଶܸ

ଷܸ

ସܸ

൲

For the lower left corner we obtain:

࢔ࡽ
ࢋ = −

1
6ܴ

ۉ

ۈ
ۇ

ܹ ൮

0 0 0 0
0 2 1 0
0 1 2 0
0 0 0 0

൲ + ܮ ൮

2 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0

൲

ی

ۋ
ۊ

൮

ଵܸ

ଶܸ

ଷܸ

ସܸ

൲

And for the lower right corner we obtain:

࢔ࡽ
ࢋ = −

1
6ܴ

ۉ

ۈ
ۇ

ܹ ൮

2 0 0 1
0 0 0 0
0 0 0 0
1 0 0 2

൲ + ܮ ൮

2 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0

൲

ی

ۋ
ۊ

൮

ଵܸ

ଶܸ

ଷܸ

ସܸ

൲

3.3.2. Implementation
In conclusion, these fluxes are to be represented by VCCS depending on the potential of the node
located on the border. The relative contribution has been establish. As for the absolute value of these

fluxes (ଵ

ோ
), it corresponds to the diffusion coefficient D of the molecule (as define in the model

described in Chapter 6).

Appendix

Page 228

Page 229

Appendix II
Verilog-A Model of the Elementary Mesh

1. ... 229

2. Finite Elements – Triangular Composition 231

 Finite differences

///

// 2D/3D Multi-level Biological Simulator

//

// Model: 2D mesh (square)

// Version: 8.0

// Date: 29/06/2015

// Author: Elise Rosati

// Last Revision: minor

// default n = 0

`include "disciplines.vams"

module Mesh2D(n0,n1,n2,n3,n01,n12,n23,n30,nref);

 inout n0,n1,n2,n3; // Corners

 inout n01,n12,n23,n30; // Middles of edges

 inout nref; // Reference

 electrical n0,n1,n2,n3,n01,n12,n23,n30,nref;

 //////////////////////

 // MODEL PARAMETERS //

 //////////////////////

 parameter integer ID = 0; // Mesh ID

 parameter real D = 2; // Diffusion constant

 parameter real K = 1; // Mesh capacitor

 parameter real dx = 1; // Degradation constant

 parameter real MeshSize = 1; // Initial Mesh Size

 parameter integer n = 0; // Mesh refinement factor

 parameter integer X01 = 0; // Connection of node 0-1

 parameter integer X12 = 0; // Connection of node 1-2

 parameter integer X23 = 0; // Connection of node 2-3

 parameter integer X30 = 0; // Connection of node 3-0

 ///////////////////

Appendix

Page 230

 // MODEL SIGNALS //

 ///////////////////

 real Fx1; // x-axis flux from 1 to 0

 real Fx2; // x-axis flux from 2 to 3

 real Fy1; // y-axis flux from 3 to 0

 real Fy2; // y-axis flux from 2 to 1

 real Dn; // Meshsize-dependent diffusion coefficient

 real Kn; // Meshsize-dependent condensator

 real Rn; // Meshsize-dependent resistor

analog begin

 ///

 // INTERNAL K, R, D COMPUTATION (INITIAL STEP) //

 ///

 Dn = D*pow(2,n) / pow(MeshSize,2);

 Rn = 1/(dx*(0.25* pow(0.5,n)));

 Kn = 0.25*K * pow(0.5,n);

 //////////////////////

 // FLUX COMPUTATION //

 //////////////////////

 Fx1 = Dn * (V(n1,nref) - V(n0,nref));

 Fx2 = Dn * (V(n2,nref) - V(n3,nref));

 Fy1 = Dn * (V(n3,nref) - V(n0,nref));

 Fy2 = Dn * (V(n2,nref) - V(n1,nref));

 ///////////////////////

 // FLUX DISTRIBUTION //

 ///////////////////////

 I(nref,n0) <+ Fy1/2;

 I(nref,n1) <+ Fy2/2;

 if (X01) begin

 I(nref,n01) <+ Fy1/2 + Fy2/2;

 end

 I(nref,n1) <+ - Fx1/2;

 I(nref,n2) <+ - Fx2/2;

 if (X12) begin

 I(nref,n12) <+ - Fx1/2 - Fx2/2;

 end

 I(nref,n2) <+ - Fy2/2;

 I(nref,n3) <+ - Fy1/2;

 if (X23) begin

 I(nref,n23) <+ - Fy1/2 - Fy2/2;

 end

 I(nref,n3) <+ + Fx2/2;

 I(nref,n0) <+ + Fx1/2;

 if (X30) begin

 I(nref,n30) <+ + Fx1/2 + Fx2/2;

 end

 Appendix II – Verilog-A Model of the Elementary Mesh

Page 231

 ///

 // CURRENT NODE COMPUTATION (CAPACITOR + RESISTOR) //

 ///

 // Corners

 I(n0 ,nref) <+ + (ddt(V(n0 ,nref))*Kn + V(n0 ,nref)/Rn);

 I(n1 ,nref) <+ + (ddt(V(n1 ,nref))*Kn + V(n1 ,nref)/Rn);

 I(n2 ,nref) <+ + (ddt(V(n2 ,nref))*Kn + V(n2 ,nref)/Rn);

 I(n3 ,nref) <+ + (ddt(V(n3 ,nref))*Kn + V(n3 ,nref)/Rn);

 // Middle of edges

 I(n01,nref) <+ + (ddt(V(n01,nref))*Kn + V(n01,nref)/Rn);

 I(n12,nref) <+ + (ddt(V(n12,nref))*Kn + V(n12,nref)/Rn);

 I(n23,nref) <+ + (ddt(V(n23,nref))*Kn + V(n23,nref)/Rn);

 I(n30,nref) <+ + (ddt(V(n30,nref))*Kn + V(n30,nref)/Rn);

 end

endmodule

 Finite element with triangular composition

The model is pin-to-pin compatible with Finite Difference model and has the same parameters. The

only differences between both models are:

 The definition of an internal node:

electrical nc; // central node

 The computation of flux (Fx1, Fx1, Fx1, Fx1) are no longer defined and fluxes at nodes are

computed directly from concentration (i.e. voltages) and X01, X12, X23, X30 parameters:

 I(n0,n01) <+ 0.5 * X01 * D * V(n0,n01);

 I(n0,n30) <+ 0.5 * X30 * D * V(n0,n30);

 I(n0,nc) <+ 0.5 * D * (2 - X01 - X30) * V(n0,nc);

 I(n1,n12) <+ 0.5 * X12 * D * V(n1,n12);

 I(n1,n01) <+ 0.5 * X01 * D * V(n1,n01);

 I(n1,nc) <+ 0.5 * D * (2 - X12 - X01) * V(n1,nc);

 I(n2,n23) <+ 0.5 * X23 * D * V(n2,n23);

 I(n2,n12) <+ 0.5 * X12 * D * V(n2,n12);

 I(n2,nc) <+ 0.5 * D * (2 - X23 - X12) * V(n2,nc);

 I(n3,n30) <+ 0.5 * X30 * D * V(n3,n30);

 I(n3,n23) <+ 0.5 * X23 * D * V(n3,n23);

I(n3,nc) <+ 0.5 * D * (2 - X30 - X23) * V(n3,nc);

 Degradation are now computed by additional Voltage Controlled Current Source that replaces the

resistor in current node computation:

// Corner nodes

I(nref, n0) <+ cfdeg *((4 - (X01+X30)) * V(n0, nref) + (1 - X01) *

V(n1, nref) + (1 - X30) * V(n3, nref) + (X01/2) * V(n01, nref)

+ (X30/2) * V(n30, nref) + (2 - (X01 + X30)/2) * V(nc, nref));

I(nref, n1) <+ cfdeg *((4 - (X12+X01)) * V(n1, nref) + (1 - X12) *

V(n2, nref) + (1 - X01) * V(n0, nref) + (X12/2) * V(n12, nref)

+ (X01/2) * V(n01, nref) + (2 - (X12 + X01)/2) * V(nc, nref));

Appendix

Page 232

 I(nref, n2) <+ cfdeg *((4 - (X23+X12)) * V(n2, nref) + (1 - X23) *

V(n3, nref) + (1 - X12) * V(n1, nref) + (X23/2) * V(n23, nref)

+ (X12/2) * V(n12, nref) + (2 - (X23 + X12)/2) * V(nc, nref));

 I(nref, n3) <+ cfdeg *((4 - (X30+X23)) * V(n3, nref) + (1 - X30) *

V(n0, nref) + (1 - X23) * V(n2, nref) + (X30/2) * V(n30, nref)

+ (X23/2) * V(n23, nref) + (2 - (X30 + X23)/2) * V(nc, nref));

 // Segment nodes

 I(nref, n01) <+ cfdeg * X01 * (2 * V(n01, nref) + V(n0, nref)/2 +

V(n1, nref)/2 + V(nc, nref));

 I(nref, n12) <+ cfdeg * X12 * (2 * V(n12, nref) + V(n1, nref)/2 +

V(n2, nref)/2 + V(nc, nref));

 I(nref, n23) <+ cfdeg * X23 * (2 * V(n23, nref) + V(n2, nref)/2 +

V(n3, nref)/2 + V(nc, nref));

 I(nref, n30) <+ cfdeg * X30 * (2 * V(n30, nref) + V(n3, nref)/2 +

V(n0, nref)/2 + V(nc, nref));

 // Central node

 I(nref, nc) <+ cfdeg * (8 * V(nc, nref) + (2 - (X01 + X30)/2) * V(n0,

nref) + (2 - (X01 + X23)/2) * V(n0, nref) + X01 * V(n01, nref)

+ (2 - (X12 + X23)/2) * V(n1, nref) + X12 * V(n12, nref) + (2 -

(X23 + X23)/2) * V(n2, nref) + X23 * V(n23, nref) + (2 - (X30 +

X23)/2) * V(n3, nref) + X30 * V(n30, nref)) ;

Page 233

Résumé de thèse
Outils d’aide à la conception pour l’ingénierie

de systèmes biologiques

1. Introduction générale ... 234

2. Contexte .. 236

2.1. Concepts utilisés dans cette thèse .. 236

2.2. Le design flow en biologie synthétique 236

2.3. Niveaux d’abstraction ... 239

2.4. Simulateurs ... 241

2.5. Design de RRG ... 241

 Partie 2 – Automatisation du design de systèmes biologioques 243

3.1. Conclusion obtenues sur le design au niveau digital 244

3.2. Automatisation du design au niveau analogue 245

3.3. Conclusion du chapitre 5 .. 247

 Partie 3 – Prototypage virtuel des systèmes biologiques dépendant du
temps et de l’espace ... 247

4.1. Aperçu de notre simulateur .. 248

4.2. Validation du simulateur et résultats obtenus 249

4.3. Résumé de la partie 3 ... 250

 Conclusion générale .. 254

5.1. Notre contribution au monde merveilleux de la biologie

synthétique ... 254

5.2. Faciliter le développement de systèmes innovants................ 255

5.3. Connexions manquantes .. 255

5.4. L’outil idéal .. 255

 References ... 257

Ce présent résumé montre une vue d’ensemble du travail de thèse réalisé. Les résultats n’y sont pas

présentés, nous invitons le lecteur à consulter le manuscrit de thèse pour plus de détails.

Part One – Context and objectives

Page 234

1. Introduction générale

La biologie synthétique est un nouveau domaine d’investigation qui a vu le jour au début du XXIième

siècle. La recherche en biologie synthétique demande d’avoir des connaissances générales dans

plusieurs disciplines et est souvent définie comme l’application des principes d’ingénierie à la biologie

(http://www.synbioproject.org/topics/synbio101/definition/). Le terme de « biologie synthétique »

est d’abord apparu sous la plume de Stéphane Leduc au XXième siècle, qui écrit que la biologie doit être

« successivement descriptive, analytique et synthétique » (Le Duc 1910). Ce principe fait écho à l’idée

que pour vraiment comprendre un mécanisme biologique, il faut être capable de le recréer. Si la

description et l’analyse des organismes biologiques sont des disciplines bien établies, la synthèse, et

donc la biologie synthétique, n’en est qu’à ses débuts.

Les mots « design » (conception), « ingénierie », « systèmes », « parts » (composant) et « fonctions »

sont des mots auxquels la biologie synthétique est souvent associée. C’est particulièrement bien

illustré par la définition établie par un groupe d’experts européens, la « Commission Européenne pour

les biotechnologies, l’Agriculture et la Nourriture » :

La biologie synthétique est l’ingénierie de la biologie : la synthèse de
systèmes complexes basés (ou inspirés) de la biologie et qui exhibent des

fonctions non présentes dans la nature. Cette perspective d’ingénierie
peut être appliquée à tous les niveaux de la hiérarchie des structures

biologiques – des molécules individuelles aux cellules, tissus et organismes
tout entier. Dans son essence, la biologie synthétique va permettre le

design rationnel et systématique de « systèmes biologiques ».

Les caractéristiques principales de la biologie synthétique sont résumées par le SynBERC (un

programme de recherche américain), qui énonce les éléments marquants de la biologie synthétique

ainsi (“What Is Synthetic Biology? - Synthetic Biology Project” 2017):

Des dispositifs et parts prédictibles, libres, avec des connections standard,
des châssis biologiques robustes (comme la levure et E. coli) qui
acceptent facilement ces parts et dispositifs, des standards pour

assembler des composants dans des systèmes fonctionnels de plus en plus
sophistiqués, et le développement de parts, dispositifs et châssis open

source.

Le champ d’application de la biologie synthétique est très large et inclue la thérapeutique, la création

de biomatériaux innovants, de biocapteurs… Ce domaine de recherche montre plusieurs facettes. La

principale concerne les biotechnologies qui permettent la modification de systèmes biologiques

existants ou la création de systèmes biologiques artificiels. En parallèle, des efforts ont été faits pour

développer les outils qui facilitent le processus de design de ces systèmes. C’est dans ce dernier

contexte que s’inscrit cette thèse.

http://www.synbioproject.org/topics/synbio101/definition/

Chapter 3 – Design Flow of Synthetic Biology

Page 235

Ces dernières années, les systèmes conçus ont grandi en complexité et en taille. Le développement

d’outils de conception assistée par ordinateur (CAO) efficaces est donc crucial. Partout dans le monde,

plusieurs équipes de recherches travaillent au développement de tels outils, génériques ou ad hoc. Il

y a quelques années, notre équipe a proposé une alternative qui consiste à adapter des outils existants,

du domaine des sciences de l’ingénieur à la biologie synthétique. Cette approche a deux avantages : i)

les outils de CAO des sciences de l’ingénieur sont fiables et ont déjà fait leurs preuves durant ces

dernières décennies et ii) l’ajout de la biologie synthétique à ces outils de CAO pourrait aussi faciliter

l’intégration de parts biologiques dans des systèmes transdisciplinaires de grande ampleur comme les

laboratoires sur puce ou les biocapteurs.

Le point de départ de cette thèse est un environnement préexistant composé de différents outils qui

forment un workflow complet, intégrant la spécification des systèmes biologiques à haut niveau

d’abstraction jusqu’à sa réalisation pratique. Plusieurs briques de ce workflow ont déjà été

développées par des étudiants de thèse ou de master auparavant, en particulier ceux liés à la

modélisation et à la simulation de systèmes biologiques. Ma contribution à ce travail concerne deux

outils manquants : l’amélioration du processus d’automatisation du design de réseaux de régulation

génétique (RRG) pendant les premières phases de conception et le développement d’un outil de

simulation pour les modèles dans lesquels la localisation spatiotemporelle joue un rôle important.

Pour le premier point, à l’instar des circuits électroniques, l’automatisation du design des RRGs est très

dépendante de leur type et complexité. Pour les RRGs qui peuvent être décrits par une équation

Booléenne, nous avons implémenté une solution qui consiste à réutiliser les synthétiseurs digitaux de

la microélectronique. Néanmoins, cet outil doit être précisément réglé pour correctement incorporer

les spécificités des RRGs qui diffèrent de celles des circuits électroniques. Les circuits digitaux sont

composés de deux grandes familles : les circuits combinatoires et les circuits séquentiels. Le dseign de

circuits séquentiels est souvent plus délicat à cause de leur boucle de retour interne qui peut causer

des instabilités et des mauvais fonctionnements. Ce point est aussi abordé dans la thèse ainsi que les

solutions que nous proposons.

D’un autre côté, pour les RRGs décrits par une fonction analogue (fonction de transfert,

caractéristiques temporelles ou fréquentielles…) on ne peut plus employer le synthétiseur digital.

Malgré une recherche active dans ce domaine, le design de ces circuits est la plupart du temps fait à la

main. Dans cette thèse, on évalue le potentiel d’algorithmes inspirés de la nature pour l’automatisation

du design de ces RRGs. En particulier, deux types d’algorithmes sont implémentés : des algorithmes

évolutionnaires qui peuvent être utilisés pour optimiser les paramètres d’un modèle pour

correspondre à une réponse cible, et des algorithmes génétiques qui font évoluer à la fois les

paramètres et le modèle en lui-même pour parvenir à une réponse définie a priori.

L’autre contribution majeure au workflow concerne le développement d’un outil de simulation pour

prendre en charge les modèles qui incluent aussi bien des phénomènes locaux (des mécanismes

biochimiques confinés à un espace donné, la diffusion à travers des membranes ou des murs) que des

phénomènes globaux (la diffusion libre dans un milieu, la dégradation, etc). Ce type de système est de

Part One – Context and objectives

Page 236

plus en plus courant en biologie synthétique et en biologie des systèmes. Du point de vue de la

modélisation, leur particularité est que ces systèmes ne sont plus modélisés par des équations

différentielles ordinaires mais par des équations aux dérivées partielles. La résolution de ces équations

requiert des algorithmes assez sophistiqués de discrétisation de l’espace et de résolution d’importants

ensembles d’équations. Pour pallier à ce problème, on tire inspiration d’un problème similaire

rencontré dans le design des circuits intégrés en microélectronique : la simulation életrothermale.

Dans notre équipe, nous disposons d’un outil développé pour un projet précédent. Nous avons cherché

à adapter cet outil au contexte biologique. Dans la thèse, nous présentons cette approche ainsi que

les résultats obtenus sur de véritables systèmes biologiques.

Dans ce résumé, nous présentons tout d’abord le contexte et les objectifs de la thèse, puis nous

abordons les résultats de la partie 2 de la thèse concernant l’automatisation du design de RRGs. Enfin

nous présentons les principaux résultats de la partie 3 qui est dédiée à l’outil de simulation

spatiotemporelle.

2. Contexte

2.1. Concepts utilisés dans cette thèse

Comme souvent en biologie synthétique, ce travail de thèse est à l’interface de plusieurs disciplines.

Des concepts fondateurs en microélectronique et en biologie sont donc présentés dans le chapitre 2

de la thèse. Il s’agit notamment des modèles des principaux composants de la microélectronique,

comme la résistance, la capacité et le transistor. Ces modèles sont souvent utilisés avec les lois de

Kirchhoff, la loi des mailles et la loi des nœuds. Du côté de la biologie, un rappel est fait sur le dogme

classique de l’expression de l’information génétique. Les étapes de transcription de l’ADN en ARN et

de traduction de l’ARN messager en protéine sont décrites. Les réseaux de régulations génétiques sont

introduits, ainsi que la régulation par micro ARN.

Ces concepts clés permettent de mieux appréhender l’analogie entre l’électronique et la biologie

dréssée en fin de chapitre. En effet, une analyse des modèles montre qu’en considérant la

concentration de molécule comme étant une tension, on peut simuler l’expression d’un gène avec un

transistor, qui joue le rôle de source de molécule, une résistance qui modélise la dégradation et une

capacité qui permet de monitorer la variation temporelle de la concentration.

2.2. Le design flow en biologie synthétique

Comme indiqué dans l’introduction de ce résumé, la complexité des systèmes conçus en biologie

synthétique est limitée par la technique d’une part et par les lacunes des outils de design d’autre part.

Alors que le design est souvent fait à la main, le protoypage virtuel prend une place de plus en plus

importante. Pourtant, la plupart des outils qui proposent cela sont souvent ad hoc et manque de

généricité et de réutilisabilité. La standardisation du design et des outils de simulation ainsi que de

tout le processus de création de nouveaux systèmes ou fonctions biologiques est devenu clé dans la

progression vers des systèmes plus compliqués. Pour cela, on va cherche l’inspiration en

Chapter 3 – Design Flow of Synthetic Biology

Page 237

microélectronique. En effet, ce domaine a derrière lui des années d’expérience dans le design de

systèmes et plutôt que de redéveloper les outils depuis le début, il peut être intéressant en termes de

temps d’adapter les outils et le savoir-faire de la microélectronique.

A ces fins, une introduction aux différentes approches de design utilisées en biologie synthétique et

dans d’autres domaines de la physique est faite, avec un focus particulier sur la microélectronique. Un

état de l’art sur les outils existant pour le prototypage virtuel (modélisation et simulation) et sur

l’automatisation du design est ensuite présenté.

2.2.1. Deux approches : top-down et bottom-up

2.2.1.1 Bottom-up
L’approche bottom-up consiste à construire des systèmes en assemblant des composants standard

bien caractérisés, souvent répertoriés dans des librairies de composants, en des sous-systèmes eux-

mêmes assemblés pour former le système final (cf Figure 1).

Figure 1 L’approche bottom-up

2.2.1.2 Top-down
L’approche top-down consiste à décomposer hierarchiquement le système attendu en sous-fonctions

(cf Figure 2). A chaque étape de la decomposition, on établit la specification de chaque sous-fonction

et des intarfaces entre elles. Une vérification de la cohérence entre ces sous-fonctions est faite par la

modélisation et la simulation.

System
Specifications

Design of
Sub-systems

Assembling
+ Tests

Experience
and know-how

Designed
System

Validation and
tests

Part One – Context and objectives

Page 238

Figure 2 L’approche top-down

2.2.1.3 En biologie synthétique
Les termes “top-down” et “bottom-up” sont souvent rencontrés en biologie synthétique. Ils sont liés

à la manière de construire un nouvel organisme artificiel plutôt qu’à la méthodologie de desgin de la

nouvelle fonction artificielle en elle-même. Pour construire une cellule minimale via une approche

bottom-up, les biologistes auraient besoin de sélectionner des composants non vivant (acides aminés,

gènes…), de les assembler en sous-systèmes (des enzymes qui interagissent avec d’autres composants)

qui génèrent une cellule fonctionnelle une fois combinés. Avec l’approche top-down, le biologiste part

d’une cellule vivante et la modifie en lui retirant différentes fonctions, et ce tant que la cellule reste

viable.

2.2.2. Le design flow utilisé pour la biologie synthétique
Le design flow imaginé par Gendrault et al. pour la biologie synthétique (Gendrault, Madec, Lallement,

et al. 2014) est repris dans cette thèse et présenté en Figure 3. L’entrée est un ensemble de

spécifications et la sortie une liste des gènes/cellules qui composent le RRG. Ce design flow pourrait

etre implémenté dans un software unique qui prendrait en charge toutes ces étapes, mais on peut

aussi envisager d’adapter plusieurs outils différents séparément. Ces outils séparés échangent ensuite

des données dans un format compatible.

Figure 3 Un desgin flow pour la biologie synthétique inspiré de la microélectronique (Gendrault, Madec, Lallement, et al.
2014)

System
Specification

Architecture

Sub-system
Specifications

+

Architecture

Sub-system
Specifications

+

Design of
Sub-systems

Right by design Designed
System

Spatial simulator

Simulation results

(Quantitative)

Chapter 3 – Design Flow of Synthetic Biology

Page 239

Le premier bloc est l’analyseur système haut-niveau. Le but de cette étape est de trouver la topology

du système à concevoir (par exemple un RRG) en accord avec la spécification donnée en entrée. Cette

spécification peut être une équation Booléenne, une fonction de transfer ou une évolution temporelle

du système après un stimulus donné.

Le second bloc sélectionne les composants biologiques appropriés dans une database pour

correspondre aux fonctions précédemment sélectionnées. Ces composants sont des Biobricks

(séquences d’ADN) ou des parts. Une database de ces composants existe (“Registry of Standard

Biological Parts” 2015) , mais chaque composant n’est pas décrit de manière standard, comme en

microélectronique.

Le troisième bloc est constitué du prototypage virtuel (modélisation et simulation) de l’assemblage des

Biobricks. Selon le niveau de complexité du système, le degré de précision requis et le temps de

simulation alloué, plusieurs niveaux d’abstraction peuvent être envisagés : le haut-niveau qui est

l’abstraction digitale (les composants sont vus comme des portes bio-logiques) et le bas niveau, plus

précis, qui est l’abstraction digitale et qui modélise les composants par des équations différentielles

ordinaires (EDO).

Le quatrième bloc correspond à la fonte des circuits en microélectronique. Avec cette étape, un

véritable système est créé. Ce système peut être testé à la paillasse et selon les résultats, une nouvelle

boucle de design/optimisation du système peut être lancée.

2.3. Niveaux d’abstraction

Comme mentionné, le troisième bloc est composé d’outils capable de simuler le comportement d’un

RRG. Selon les exigences (quel type de fonction doit être réalisé ? Avec quelle précision le RRG doit-il

correspondre aux exigences ?), différents types de modèles peuvent être utilisés.

2.3.1. Abstraction digitale
Au plus haut niveau d’abstraction, un gène peut être considéré comme ayant 2 états : un état OFF dans

lequel sa protéine associée n’est pas exprimée, et un état ON correspondant au contraire. Dans la

réalité, on définit des seuils de concentration de protéine : un sous lequel le gène est OFF (la protéine

est absente) et un autre, plus élevé, au-delà duquel le gène est ON (la protéine est présente).

Avec cette approche, il est possible d’obtenir les portes logiques classiques de la microélectronique (cf

Figure 4).

Part One – Context and objectives

Page 240

Figure 4 Implémentation des portes logiques classique en RRG : portes AND, NOR, OR et XOR. RRG a est basé sur une
séquence corrompue de la T7-polymérase (Anderson, Voigt, and Arkin 2007). RRG b code pour un régulateur qui est

activé en presence de sa preotéine chaperone IpgC (Moon et al. 2012). RRG c utilize un promoteur active par ou
l’arabinose (Ara) ou l’ anhydrotetracycline (aTc) (Tamsir, Tabor, and Voigt 2011). RRG d est une extension de RRG c: Le

premier gène code pour un répresseur (CI) qui inhibe l’expression de la sortie. En son absence, la sortie est produite
(Tamsir, Tabor, and Voigt 2011). Le RRG e utilize 2 inhibtions (modifié de (Regot et al. 2011)). Le RRG f est compose de 3

portes NOR similaires (cf RRG d) séparées sur 4 cellules “connectées”. En effet, elles utilisent les systèmes de
communication intercellulaires de Pseudomonas aeruginosa (LasI et RhlI) pour faire passer le signal d’une porte NOR à

l’autre.

Out

0 0 0

0 1 1

1 0 1

1 1 0

aTcAra

Output
PTetPBAD

Out

0 0 0

0 1 1

1 0 1

1 1 1

Out

0 0 1

0 1 0

1 0 0

1 1 0
supressor

RNA-pol*

Ara

Sal

Output

Psal

PBAD

IpgC

mxlE

IPTG

Ara

Output

PTac

PBAD

Out

0 0 0

0 1 0

1 0 0

1 1 1

AND NOR

OR XOR

a

b

c

d

e

f

alpha

DOX

PFUS1

Output
PFUS3as

6a

PTetOff

aTcAra

CI
PTetPBAD

Output
PCI

Ara

aTc

Output
PRhlI

NOR

NOR

NOR

PTetPBAD

Rep

LasI

PBAD

RhlI

PLas

RhlI

PLasPTet

Rep

Rep

Chapter 3 – Design Flow of Synthetic Biology

Page 241

2.3.2. Equations différentielles ordinaires
L’abstraction digitale ne permet de manipuler que des concentrations quantifiées. Pour avoir des

concentrations qui varient de manière continuent, il faut utiliser un modèle d’équations différentielles

ordinaires. Ce niveau de description est plus précis. En biologie, la formalisation de ce genre de

description est souvent réalisée via un fichier SBML (Systems Biology Markup Language). SBML est un

langage introduit en 2003 (Hucka et al. 2003) et est composé d’une liste conséquente de balises

correspondant aux différents éléments d’un modèle biologique. Par exemple, le SBML permet la

définition d’unités, de compartiments où les différentes réactions peuvent avoir lieu, d’espèces

impliquées dans ces réactions, de paramètres de ces réactions, d’évènements à appliquer pendant la

simulation du modèle…

2.4. Simulateurs

Différents simulateurs existent pour la biologie. L’un des plus utilisés est COPASI. Il permet la

manipulation de fichiers SBML, a une interface graphique et propose plusieurs types de simulation.

COPASI permet la spécification de compartiments de différentes tailles mais ne propose pas de

simulation spatiotemporelle.

BioCham est aussi capable de lire un fichier SBML ainsi que des EDO écrites dans un format spécifique.

BioCham propose des fonctionnalités similaires à COPASI mais n’a pas d’interface graphique. En

particulier, BioCham propose un ensemble fourni d’analyses qualitatives : le RRG est analysé au niveau

booléen. La simulation spatiale n’est pas disponible avec BioCham.

Virtual Cell est aussi un outil majeur pour la simulation des systèmes biologiques. Il dispose d’une

interface graphique et propose un ensemble complet d’analyses. Cet outil a un simulateur spatial, qui

sera repris dans la partie résumant le chapitre 6.

Pour autant, aucun de ces outils n’est assez robuste pour supporter de très grands nombres

d’équations. C’est pourquoi un formalisme basé sur l’électronique et la biologie a été dévelopé par

Madec et al. pour simuler des RRGs avec des simulateurs de l’électronique (Madec, Lallement, and

Haiech 2017). BB-SPICE est capable de lire un fichier SBML et de produire un fichier près à la simulation

avec SPICE. Il a été démontré que BB-SPICE peut gérer des modèles de RRGs avec plus de 10000

réactions tandis que COPASI plante à cause de manque de mémoire avec seulement 1000 réactions.

C’est sur ce formalisme que s’appuie notre outil, décrit dans le chapitre 6 de la thèse.

2.5. Design de RRG

Plusieurs outils de CAO existent pour la biologie synthétique. Ils facilitent la manipulation des modèles

biologiques et des données associées. L’automatisation du desgin est le prochain point clé à atteindre :

l’outil serait alors capable de simuler mais aussi créer le RRG en s’appuyant sur un cahier des charges

donné.

2.5.1. Outil d’assistance au design
Plusieurs outils existent pour la biologie synthétique : TinkerCell (Chandran, Bergmann, and Sauro

2009), CellDesigner (Funahashi et al. 2003), BioJADE (Goler 2004), ProMot (Mirschel et al. 2009),

Part One – Context and objectives

Page 242

GenoCAD (Czar, Cai, and Peccoud 2009). La plupart d’entre eux s’appuie sur le “design par parts” rendu

possible par le standard BioBricks. Ces outils ont souvent une interface graphique pour une

manipulation facilitée des parts, ainsi facilitant le processus de design des RRGs.

Le Tableau 1 résume les différentes fonctionnalités de ces outils.

Tableau 1 Résumé des outils de CAO pour la biologie

Input Output

DNA

sequence

support

Possibility to

implement custom

parts/functions

Automated

design

TinkerCell

Graphical

interface, DNA

sequence

SBML,

Octave,

Matlab

yes yes no

BioJADE yes

ProMoT SBML
SBML,

Matlab
no

GenoCAD
Graphical

interface
SBML yes yes no

Les outils étudiés ici ne représentent qu’une fraction de tous les outils existant. Leur étude nous

permet de spécifier les fonctionnalités que devrait avoir l’outil idéal. Ainsi, la plupart de ces outils peut

gérer des séquences ADN, une fonctionnalité utile pour une implémentation directe à la paillasse.

Certains outils (principalement BioJADE et GenoCAD) sont connectés à une database de parts. Le

retrait automatique de parts nouvellement ajoutées à la database n’a pas été observé cependant. La

possibilité d’ajouter des parts personnalisées est aussi intéressante, étant donné que les constructions

biologiques évoluent constemment et de nouvelles construction aparaissent. Comme attendu, le

langage SBML est un point commun à tous les formats utilisés pour échanger des données. Il est aussi

important de mentionner le dépôt de modèles informatiques de processus biologiques BioModels, une

initiative de l’Institut Européen pour la Bioinformatique (Juty et al. 2015). Les modèles y sont écrits en

SBML. Dans cette database, plus de 7000 modèles publiés sont disponibles dans un formatage

standard.

2.5.2. Automatisation du design
Avec les outils mentionnés précédemment, l’approche traditionnelle d’essai-erreur « à la main » pour

l’optimisation de systèmes est améliorée. La prochaine étape reste l’automatisation de ce processus.

Pour une spécification donnée, un outil de design automatique trouve le système optimal répondant

à cette spécification. Une réponse à ce besoin est décrite en chapitre 4 et 5 de la thèse, dans la seconde

partie du manuscrit.

Chapter 3 – Design Flow of Synthetic Biology

Page 243

 Partie 2 – Automatisation du design de systèmes biologioques

Comme mentionné dans la section précédente, on constante un manque en outils de design

automatisé de système biologiques. Cependant, la sélection automatique de parts à partir d’une

spécification haut-niveau a connu plusieurs percées, toutes limitées à l’abstraction Booléenne des

RRGs. Dévelopé par le MIT, TASBE (Beal et al. 2012) est l’un de ces outils. TASBE consiste en une suite

d’outils (qui comprend plusieurs outils nouveaux ou préexistants comme Proto, BioCompiler,

MAtchMaker et BioCAD) qui part d’une specification haut-niveau donnée dans un langage spécifique

et produit un assemblage AND qui répond à la specification. Les premières étapes de TASBE incluent

une description haut-niveau et une “bio-compilation” (la description haut-niveau est interprétée

comme un ensemble de fonctions élémentaires biologiques) (Densmore et al. 2010; Bilitchenko et al.

2011; Beal, Lu, and Weiss 2011; Yaman et al. 2012). Une autre approche intéressante, elle aussi basée

sur une abstraction Booléenne des RRGs, a été proposée par Marchisio et al. (Marchisio and Stelling

2011).

Il est aussi fait mention dans la première section que plusieurs RRGs synthétiques peuvent être décrits

par une équation Booléenne. Dans ce cas, les problèmes que l’on rencontre pour leur design sont très

similaires aux problèmes rencontrés lors du design digital en microélectronique. Pour bénéficier des

années d’expérience de la microélectronique dans ce problème, on réutilise et adapte leurs outils à

notre problématique. C’est ce qui est décrit plus précisément dans le chapitre 4 de la thèse. Tout

d’abord, la suite d’outils GeNeDA y est présentée. GeNeDA est adapté de l’électronique et permet le

design automatique de RRGs décrits au niveau digital. Dans un premier temps, GeNeDA est testé et

validé sur des circuits combinatoires. Dans un second temps, le design de fonctions séquentielles est

abordé. La robustesse des systèmes conçus envers la variation de ses paramètres biochimiques est

notamment testée. Comme pour la microélectronique, la réalisation de circuits synchrones est souvent

nécessaire pour éviter les risques de malfonctionnements et d’instabilité. Pour ce faire, il est

nécessaire de pouvoir utiliser une D-flip-flop biologique; ce travail-là est aussi présenté dans le chapitre

4 de la thèse.

Le second chapitre de cette partie (chapitre 5) est consacré à l’automatisation du design de systèmes

biologiques qui ne peuvent être représentés par une fonction Booléenne. Cette problématique nous

amène dans le domaine de la synthèse analogue, un champ d’investigation pour lequel l’électronique

a proposé plusieurs solutions mais auncune qui n’ait été capable de s’imposer comme standard. Dans

le passé, plusieurs algorithmes et méthodes d’optimisation ont été testés. Parmi eux, des algortihmes

inspirés de la nature (et en particulier les algorithmes évolutionnaires) ont montré des résultats

prometteurs (Koza et al. 1997). L’adaptation de ces algorithmes à la biologie fait l’objet du chapitre 5.

Dans un premier temps on fixe la topologie du RRG a priori et on fait évoluer les paramètres du modèle

dans le but d’obtenir le comportement cible. Ensuite, on utilise la programmation génétique pour faire

évoluer à la fois le réseau et ses paramètres, dans le but d’obtenir un véritable algorithme de design

automatisé.

Part One – Context and objectives

Page 244

3.1. Conclusion obtenues sur le design au niveau digital

Les résultats du chapitre 5 de la thèse ouvrent la voie vers l’automatisation du design de RRGs. On a

démontré la possiblité de faire du design automatique de RRG combinatoires en utilisant des outils

issus de la microélectronique. A partir d’une spécification haut-niveau (table de vérité, fichier Verilog),

l’outil conçoit un RRG et produit les modèles SBML et SystemC-AMS associés. Une attention

particulière a été portée à la construction de la librairie générique de parts, qui représente le pilier de

ce software. Elle a été rendue le plus réaliste possible en tenant compte des possibilités offertes par la

biologie synthétique et a été évaluée sur des circuits standard.

La question du desgin de RRGs séquentiels est aussi abordée. Pour les systèmes séquentiels

asynchrones, la méthode d’Huffmann fournit 2 ensembles d’équations Booléennes, qui peuvent être

fournies en entrée à GeNeDA pour obtenir le RRG équivalent. Pourtant, les résultats de simulations

mettent au jour plusieurs déficiences majeures des RRGs asyncrhones. En effet, le délai introduit par

l’activation/inhibition d’un gène lors des boucles de retour provoque des malfonctionnements et/ou

instabilités.

Pour les circuits asyncrhones, une D-flip-flop est requise. S’appuyant sur l’électronique, Hoteit et al.

ont dévelopé un RRG composé de nombreux gènes et promoteurs ayant le comportement d’une D-

flip-flop (Hoteit, Kharma, and Varin 2012). Cependant, la fesabilité de leur circuit avec du véritable

matériel biologique n’a pas été démontrée. Ainsi, nous proposons une D-flip-flop biologique encore

plus compacte. La robustesse du circuit, qui implique des boucles de retour, a été validée. Parce que

le synthétiseur digital de GeNeDA peut manipuler des fichiers Verilog (décrivant le système

asynchrone) directement, l’ajout de la D-flip-flop à la libraire de parts permet le design de n’importe

quel RRG Booléen, au moins d’un point de vue théorique.

En pratique, la réalisation de ces RRGs pourrait s’avérer plus délicate. Le premier problème rencontré

concerne le nombre de parts requis pour construire un système synchrone. Un exemple est donnée

dans (Madec et al. 2013). Un simple système synchrone à 3 états a été généré avec GeNeDA. Ce

système est composé de 11 promoteurs et 2 D-flip-flop, ce qui compose un RRG assez important

compte tenu du savoir-faire technique courrant. Un autre problème pourrait se présenter à propos du

D-flip-flop en lui-même. En biologie synthétique, toutes les parts sont présentes dans le même

compartiment, la cellule. Le couplage entre les gènes est par conséquent innévitable (il n’y a pas de fil

pour connecter un composant à un autre, à l’instar de l’électronique). Ce couplage peut mener aux

mêmes problèmes soulevés plus haut pour les systèmes asyncrhones.

Pour un système contenant de multiples D-flip-flop, une solution consiste à utiliser un ensemble

différent de promoteurs et de régulateurs qui n’interagissent pas ensemble pour chaque instance de

D-flip-flop. Cette solution pouvant se révéler ardue, une alternative à privilégier consiste à divisier le

système en plusieurs sous-systèmes qui sont implémentés dans différentes populations de cellules.

L’étude de tels systèmes est plus compliquée et requiert un simulateur capable de prendre en compte

la localisation spatiale des éléments biologiques. Notamment, le problème d’un signal d’horloge

synchrone distribué à chaque cellule est soulevé.

Chapter 3 – Design Flow of Synthetic Biology

Page 245

Ces derniers points sont discutés dans la troisième partie du manuscrit de thèse. Auparavant, il faut

s’intéresser à la question de l’automatisation du design de RRGs qui ne peuvent être représentés à un

niveau Booléen d’abstraction (typiquement, un système qui exhibe une réponse en forme de cloche).

C’est le sujet du chapitre 5 de la thèse.

3.2. Automatisation du design au niveau analogue

Le chapitre 5 de la thèse se concentre sur le design automatique de systèmes biologiques qui sont

décrits par un comportement analogue. Cette approche est motivée par deux choses. Tout d’abord, il

existe plusieurs systèmes qui ne peuvent être décrits par une fonction Booléenne. Par exemple le

passe-band de Basu et al. (Basu et al. 2005) dans lequel la protéine qui fait office de signal de sortie

n’est synthétisée que pour un niveau intermédiaire de la concentration de la protéine en entrée.

Ensuite, par opposition avec l’électronique, le fossé entre l’abstraction d’un RRG et son comportement

effectif peut être assez grand. Les connections entre les gènes sont en particulier peu évidentes à

régler. Prenons par exemple un gène #1 qui produit un activateur du gène #2. Même si le gène #1 est

actif, la quantité de protéine synthétisée pourrait ne pas être suffisante pour activer le gène #2. Ainsi,

il est souvent nécessaire de supplémenter le design à haut-niveau par un design à un niveau

d’abstraction plus bas. Un autre exemple est la fonction d’amplification decrite par Xie et al. (Xie et al.

2011) où il faut deux couches de régulation pour générer une transition suffisemment précise entre

les différents états du système.

La logique multivaluée est un niveau d’abstraction plus bas que la logique Booléenne, mais cependant

plus haute que le niveau analogue. Il a été montré qu’il est possible de faire du design à un niveau

intermédiaire d’abstraction. Les recherches de René Thomas dans ce domaine méritent d’être

soulignées (Thomas, Thieffry, and Kaufman 1995). En effet, il a dévelopé un formalisme pour la

modélisation de comportement dynamique de RRG via des variables logiques multivaluées, des règles,

des graphes et une représentation graphique des différents états. Quelques années plus tard, Gilles

Bernot a étendu son approche pour y inclure les propriétés temporelles des RRGs (Bernot et al. 2004).

Plus récemment, des recherches ont porté sur une altérnative basée sur la logique floue, utilisée pour

décrire les lois qui gouvernent les relations entre concentrations de protéines et état des gènes

(Gendrault, Madec, Lemaire, et al. 2014). Le principal atout de la logique floue sur la logique

multivaluée est que le lien entre la valeur floue et la véritable concentration n’est jamais perdu. La

logique floue peut être utilisée non seulement pour décrire les systèmes à un niveau intermédiaire

d’abstraction, mais aussi à des fins de design. Dans ce cas-là, un algorithm teste toutes les

combinaisons de matrices de règles possibles (piochée dans une librairie) et trouve celle qui

correspond au mieux au comportement désiré. Chaque matrice de règles correspond à une interaction

gène-protéine et son contenu fournit au designer des pistes de design importantes pour implémenter

ces dernières.

L’automatisation du design de RRG au niveau analogue est très proche de la synthèse analogique en

microélectronique. Ce sujet a été largement étudié depuis le début des années 80 mais la question

reste toujours ouverte. Plusieurs outils et méthodes ont été mises au point en utilisant des formalismes

Part One – Context and objectives

Page 246

spécifiques et des calculs formels (Doboli and Vemuri 2003; Lohn and Colombano 1998). Néanmoins,

ces développements n'ont pas conduit à un outil générique qui aurait été largement répandu dans la

communauté des designers analogiques. La raison principale est qu'ils étaient trop complexes et trop

spécifiques pour être utilisés pour une large gamme de circuits. En outre, ils exigent des bibliothèques

et/ou des méthodes d'apprentissage artificielles ou l’exploitation de l'expérience du designer pour

formaliser des règles, ce qui n'est pas simple. D'une manière plus générale, il a été observé que le

rapport entre la difficulté de mise en œuvre de tels algorithmes et la complexité des circuits pouvant

être synthétisés était médiocre par rapport à une conception faite à la main.

L'une des percées les plus remarquables dans le domaine de la synthèse analogique a été faite par

Koza en 1997 (Koza et al. 1997) à partir d'algorithmes de programmation génétique. Il démontre le

potentiel de sa méthode sur un grand nombre de circuits électroniques (filtres, amplificateurs,

contrôleurs) pour lesquels les algorithmes génétiques ont fourni des solutions (topologie des circuits

et dimensionnement des composants) très compétitives par rapport à l'intelligence humaine (Koza and

Stancalie 2003). À l'époque, le principal défaut des algorithmes évolutifs était qu'ils nécessitaient une

puissance de calcul qui ne pouvait être fournie que par des superordinateurs. Ce n'est plus le cas avec

les technologies actuelles: l'exploitation du calcul parallélisé sur de petits réseaux et/ou l'exploitation

de la performance des Graphical Processor Units (GPU) permet d'obtenir de tels résultats avec des

systèmes informatiques de prix raisonnable.

D'une manière générale, la synthèse analogique est un sous-ensemble des problèmes inverses. Les

problèmes inverses consistent à rechercher les fonctions (dans ce cas le modèle du système) qui

donnent une réponse aussi proche que possible à celle attendue (dans ce cas, la spécification).

Plusieurs méthodes existent pour s'attaquer à ce genre de problèmes. La plupart d'entre eux exigent

que la topologie du système soit connue a priori et optimise les paramètres du système pour converger

vers une cible. L'accent est mis sur les algorithmes évolutifs qui semblent prometteurs dans notre

contexte. Dans le chapitre 5, on réalise l'application de différentes familles d'algorithmes évolutifs au

contexte de la biologie synthétique. Tout d’abord, on considère les RRGs pour lequel la topologie (c'est-

à-dire l'assemblage des mécanismes élémentaires) a été précédemment fixée et pour laquelle nous

cherchons à trouver le bloc de construction le plus approprié pour réaliser chaque mécanisme. Pour

ce faire, deux approches sont possibles. L'optimisation combinatoire peut être utilisée pour essayer

différentes combinaisons de blocs de construction et trouver ceux qui présentent la meilleure réponse.

D'un autre côté, l'optimisation continue peut être utilisée pour trouver les ensembles de paramètres

pour chaque modèle de chaque mécanisme qui donne la meilleure réponse. Cet ensemble de

paramètres guide ensuite le concepteur dans le choix des blocs de construction qui seront utilisés pour

effectuer chaque mécanisme. Cette deuxième méthode est illustrée dans le contexte d'un RRG dans le

chapitre 5 de la thèse. Enfin, nous abordons le problème beaucoup plus complexe de l'automatisation

de la conception d'un RRG pour lequel la topologie du réseau n'est pas définie a priori. Pour ce faire,

des méthodes de programmation génétique doivent être appliquées.

Chapter 3 – Design Flow of Synthetic Biology

Page 247

3.3. Conclusion du chapitre 5

Nous avons évalué notre algorithme sur une cible passe-bande. Nous voyons qu'avec seulement 4

points orientant l'évolution des réseaux, notre algorithme fournit une grande variété de réponses

passe-bande et d'implémentations possibles de celles-ci. Une cible sous-définie a l'avantage de calculer

des solutions dans un temps réduit, car l'évaluation est plutôt rapide. Fait intéressant, nous pourrions

obtenir un système en concurrence avec le système Basu en termes de nombre de gènes. Une analyse

grossière a révélé les principales caractéristiques des différents réseaux élaborés par l'algorithme. Une

analyse plus fine complétée par des essais sur banc humide pourrait conduire à un passe-bande

biologique très compact.

Avec une cible plus fine ayant plus de points à correspondre, nous n'avons pas pu trouver la

paramétrisation correcte de l'algorithme. Seuls quelques paramètres ont été modifiés. Une piste

d'investigation serait de donner à l'algorithme la possibilité d'ajouter des complexes dans les réseaux.

La population initiale pourrait également être initialisée au hasard.

 Partie 3 – Prototypage virtuel des systèmes biologiques
dépendant du temps et de l’espace

La partie 2 a mis en évidence une observation: dès que nous souhaitons réaliser des RRGs qui exécutent

une fonction non-élémentaire (systèmes séquentiels, machines à états finis, compteurs, etc.), ces RRGs

ne peuvent pas être intégrés dans une seule cellule en raison de limitations technologiques. Ainsi, nous

devons les diviser en plusieurs sous-réseaux qui interagissent, chacun d'entre eux étant implémenté

dans une cellule différente. Cette nouvelle façon de faire des RRGs a été suggérée il y a quelques

années et validée expérimentalement sur un circuit à petite échelle (soit une porte XOR composée de

4 cellules) (Brenner, You, and Arnold 2008; Tamsir, Tabor, and Voigt 2011). La conception à plus grande

échelle de tels systèmes nécessite un outil qui permet la simulation combinée des mécanismes

biologiques intracellulaires et de la carte de la concentration des molécules impliquées dans les

communications de cellule à cellule. C'est la question abordée dans la partie 3 de la thèse.

Une liste non exhaustive des exigences pour un tel outil est donnée ci-dessous:

 L'outil devrait être capable de combiner des phénomènes locaux et globaux

 Pour les phénomènes locaux, il faut prendre comme entrée un formalisme commun, tel qu’un

fichier SBML, sous lequel existent déjà des modèles de systèmes biologiques

 Il devrait être entièrement intégré dans notre environnement de conception

 Il devrait être configurable de manière à ce que l'utilisateur puisse jouer sur le compromis

entre la précision et le temps de calcul

 Il devrait être open-source.

Plusieurs solutions existent déjà pour gérer de tels modèles et sont décrites dans le manuscrit.

Cependant, cet état de l’art n’a pas mis en évidence un outil qui répond à nos exigences. D'un autre

côté, nos collègues ont récemment développé un simulateur dédié à un problème similaire, mais dans

Part One – Context and objectives

Page 248

un domaine très différent. Leur but était la simulation électrothermique des circuits intégrés (Krencker

et al. 2010). L'outil que nous avons développé au cours de cette thèse est une adaptation de ce

simulateur à un contexte biologique.

Tout comme la partie 2, la partie 3 du manuscrit est divisée en deux chapitres. Le premier (chapitre 6)

décrit la façon dont l'outil a été développé. Il commence par un état de l'art des approches et des outils

existants qui peuvent être utilisés pour prendre en compte l'emplacement de l'espace dans les

modèles biologiques. L'accent est mis sur trois outils existants: HSIM, COMSOL et Virtual Cell. Dans la

section 2, le contexte théorique sur l'équation de réaction-diffusion (loi de Fick utilisée pour modéliser

les systèmes biologiques dépendant de l'espace et du temps) et sa contrepartie, l'équation de la

chaleur, sont rappelés. Ensuite, notre outil est décrit. Il est principalement composé d'un mailleur, d'un

générateur de circuit et d'un modèle de maille élémentaire. Deux schémas de discrétisation ont été

évalués pour calculer ce modèle: les méthodes des différences finies d’une part et des éléments finis

d’autre part.

Le deuxième chapitre de cette partie (Chapitre 7) est consacré à la validation de l'outil et à son

application sur plusieurs cas d'utilisation:

 Le générateur de motifs de Basu, déjà présenté dans la deuxième partie, mais cette fois dans

sa version complète incluant les cellules émettrices et réceptrices

 Un XOR réalisé avec un consortium de 3 cellules, chacune effectuant une fonction NOR et

communiquant entre elles via les acyl homosérine lactones (AHL)

 Un système simplifié proie-prédateur (Balagaddé et al. 2008)

 L'étude de la synchronisation d’oscillateurs biologiques (Garcia-Ojalvo, Elowitz et Strogatz

2004)

4.1. Aperçu de notre simulateur

L'outil que nous avons développé est basé sur un simulateur SPICE. La capacité de ce langage à gérer

à la fois les systèmes biologiques (Madec, Lallement, and Haiech 2017) et les problèmes de convection-

diffusion thermique (Garci, Kammerer, and Hebrard 2014) a déjà fait ses preuves. Nous bénéficions

ainsi de près de 50 ans d'expérience et de curation. Deux distributions de SPICE sont utilisées. Spectre

MMSIM, un simulateur commercial intégré dans la suite de conception de circuits intégrés Cadence

(https://www.cadence.com) qui offre différents types d'analyse (point de fonctionnement, transitoire,

analyse CC, analyse AC, analyse de bruit, balayage de paramètres...). De plus, il est parallélisé et peut

ainsi simuler des systèmes à grande échelle (avec des milliers d'équations) dans un temps de calcul

très faible par rapport aux autres logiciels. Par ailleurs, un simulateur open source SPICE, à savoir

NgSpice a également été testé et intégré dans l'outil suivant afin de garder l'outil complet gratuit.

L'outil est composé d'une suite de cinq modules principaux écrits en différents langages (voir Figure

5): un mesher écrit en C ++, un générateur de netlist SPICE écrit en Python, un modèle générique d’une

maille élémentaire décrit en Verilog-A ou directement dans SPICE, un simulateur SPICE et un script

Python pour lire des fichiers de sortie de simulation et afficher les résultats. Le workflow complet est

détaillé dans la thèse.

Chapter 3 – Design Flow of Synthetic Biology

Page 249

Figure 5 Modules principaux de l’outil dévelopé. Les étiquettes indiquent dans quelle langue ont été écrits les modules.

4.2. Validation du simulateur et résultats obtenus

Le chapitre 7 de la thèse fait l’objet de la validation des modèles proposés. A cet effet, deux cas sont

considérés. Le premier est la diffusion transversale d'une frontière (où les molécules sont synthétisées)

à l'autre. C'est un problème 1-D pour lequel une solution analytique peut être trouvée à l'état stable.

Le second cas est la diffusion radiale d'une source ponctuelle au centre du réseau. Encore une fois, il

existe une solution analytique qui servira de référence pour le processus de validation. Ensuite, le

modèle validé est appliqué à de véritables problèmes biologiques.

4.2.1. Comparaison entre le modèle éléments finis et différences finies
Le modèle de différence finie est correct pour chaque configuration du maillage. Le modèle des

éléments finis est plus précis que son homologue car le calcul du flux dans un nœud dépend de tous

ses voisins. Cependant, cette version du modèle n'est stable que pour un ensemble restreint de

configurations. Par conséquent, c’est la version initiale du modèle qui correspond à un modèle de

différence finie qui est utilisée dans la thèse pour produire les résultats présentés. Tous les résultats

ont été générés avec le simulateur Spectre.

4.2.2. Résultats obtenus sur des cas d’utilisation biologiques
Le simulateur est utilisé pour montrer quel type de résultats il peut apporter à des problèmes de la

biologie synthétique. Au préalable, deux problématiques sont abordées: l'ajout de composants

Generates a .cir
file for SPICE

PYTHON

Processes the
output file for
visualization

PYTHON

Model of an
elementary mesh

& biological
system

VERILOG-A

Spectre
simulates the
diffusion of
molecules

SPICE

INPUT PARAMETERS
(biological)

 Position of influencing
cells and their influence
zone

 Total size of the lattice
 Max and min mesh size

Diffusing molecule

Core mesher,
generates a list

of meshes

C++ TOOL’S CORE

Part One – Context and objectives

Page 250

externes (cellule, réaction localisée, membranes...) et la description de réseaux multicouches dans le

cas d'un système composé de plusieurs espèces de diffusions.

Pour le premier point, on a besoin de descriptions de modèles biologiques en SPICE ou en Verilog-A.

Un modèle SPICE peut être généré à partir d'une description SBML ou d'un fichier d'entrée propriétaire

(composé d'une liste de paramètres, d'une liste de réaction et d'une liste de réactions avec équation

de vitesse prédéfinie) avec BB-SPICE. De plus, écrire de A à Z un modèle Verilog-A associé à un

mécanisme biologique n'est pas si difficile. Ceci est fait à l'aide de l'analogie entre l'électronique et la

biologie décrite au chapitre 2. L'écriture d'un modèle biologique en langage VHDL a également été

démontrée dans (Gendrault, Madec, Lallement, et al. 2014). La transposition de la méthodologie à du

Verilog-A est assez simple.

Deuxièmement, la description des réseaux multicouches a déjà été prise en compte dans le générateur

de netlist. La version actuelle du générateur duplique le maillage de base autant de fois que nécessaire

en créant de nouveaux nœuds dont l’ID est incrémenté du nombre total de nœuds dans un maillage.

Ainsi, les noeuds de chaque couche sont uniques et les maillages sont indépendants les uns des autres.

De cette façon, ils sont superposables, ce qui facilite leur interconnexion via des modèles de

composants externes.

Les résultats obtenus prouvent la validité de notre approche. De plus, ils montrent que notre outil peut

être utilisé pour l'étude et l'optimisation de systèmes biologiques simples. L'utilisation de l'outil dans

des cas réels a également mis en lumière certaines limites de l'outil ainsi que certaines améliorations.

Ceux-ci sont discutés ci-après.

4.3. Résumé de la partie 3

Comme mentionné précédemment, il est devenu nécessaire de rendre compte du comportement

spatio-temporel des systèmes biologiques. En effet, avec la croissance et la complexité des systèmes,

de nombreux biologistes divisent maintenant leurs systèmes en sous-systèmes mis en œuvre dans

différentes populations cellulaires. Comme ces populations cellulaires sont souvent dispersées dans

l'espace, elles communiquent en envoyant et en recevant un signal moléculaire, dont la diffusion dans

l'espace et le temps est d'une importance capitale pour le bon fonctionnement du système.

Les outils actuels pour la simulation des systèmes biologiques dans l'espace et le temps comprennent

VirtualCell et COMSOL. Les principales conclusions de notre état de l'art concernant ces outils sont

résumées par la suite.

D'une part, Virtual Cell dispose d'une interface graphique intuitive qui peut être utilisée pour définir la

géométrie du problème et les réactions biologiques impliquées dans le système. Plusieurs solveurs

sont disponibles, y compris des simulations déterministes et stochastiques pour les problèmes 0D à

3D. Il a été testé et a conduit à des résultats comparables à ceux obtenus avec notre outil. Néanmoins,

Virtual Cell n'effectue que des simulations transitoires. Des résultats de simulation statique ont été

obtenus en effectuant une simulation transitoire jusqu'à atteindre l'état stationnaire, ce qui prend du

temps. Les calculs ne sont pas effectués localement sur l'ordinateur mais sont distribués et exécutés

Chapter 3 – Design Flow of Synthetic Biology

Page 251

sur un serveur distant. Ainsi, la comparaison du temps de calcul n'est pas très pertinente. Les résultats

donnés dans le Tableau 2 correspondent à la durée effective de l’opération et sont indépendants de

l'ordinateur sur lequel ils sont effectués. Virtual Cell utilise également un maillage pour résoudre les

équations aux dérivées partielles mais la taille du maillage est fixe. Ainsi, pour obtenir une résolution

spatiale de 1mm au centre, il est nécessaire d'avoir un maillage de 1mm sur toute la surface, ce qui

conduit à 10201 nœuds. C'est entre 3 et 4 fois plus que le nombre de nœuds requis pour obtenir la

même résolution spatiale près de la source et la même précision avec un réseau adaptatif. Enfin, une

autre limitation de Virtual Cell est la difficulté de coupler des modèles biologiques avec des modèles

d'autres domaines de la physique. Sans être impossible, cela nécessite une traduction du problème

physique en un problème biochimique équivalent.

D'autre part, COMSOL est un logiciel dédié à la simulation de systèmes multi-physiques. Il propose des

modules dédiés à la diffusion d'espèces chimiques et à l'ingénierie de réactions pouvant être couplées

entre elles et avec d'autres modules issus d'autres domaines de la physique. Il a déjà été utilisé pour

l'étude des systèmes biochimiques (Dreij et al. 2011; Vollmer, Menshykau, and Iber 2013). Le solveur

d’équations aux dérivées partielles (EDP) ainsi que le mailleur implémenté dans COMSOL sont plus

sophistiqués que celui proposé dans notre approche. Le réseau adaptatif peut être calculé

automatiquement par COMSOL en fonction de la géométrie et du problème lui-même (détection des

points chauds pour déterminer automatiquement les zones de raffinement) alors qu'il doit être défini

par l'utilisateur dans notre cas. La définition de la géométrie et les équations de diffusion sont

simplifiées par une interface graphique. Au contraire, la définition des réactions est moins intuitive.

L'importation de modèles biologiques existants ou l'intégration de modèles de réactions complexes

est douloureuse. Les algorithmes de résolution d’EDP sont variés et optimisés pour une

implémentation multicœur, ce qui conduit à des temps de calcul bas comme le montre le Tableau 2.

Les types de simulation les plus courants (statique, dynamique, paramétrique) sont disponibles et

COMSOL peut être couplé avec MATLAB pour obtenir un banc d'essai amélioré. Malheureusement,

COMSOL est un outil commercial coûteux, ce qui limite sa gamme d'applications, en particulier dans le

domaine académique.

Par rapport à eux, notre approche offre une solution qui se positionne comme un bon compromis entre

précision et rapidité de calcul, s'appuie sur des outils qui ont prouvé leur efficacité depuis des années

(pour simuler des microprocesseur composés de 1 milliard de transistors) et offre un couplage avec

d'autres domaines de la physique à travers les lois généralisées de Kirchhoff. La comparaison de

plusieurs caractéristiques de notre approche, COMSOL et Virtual Cell, est présentée dans le Tableau 2.

La comparaison entre les résultats de simulation et le temps de calcul n'est pas simple en raison des

différentes implémentations des simulateurs et des différents ordinateurs sur lesquels les résultats ont

été générés. Le point de référence utilisé pour la comparaison est celui décrit dans le chapitre 7, section

1, tableau 2, à savoir un carré de 100 x 100 mm² avec une source à (50, 50) et des conditions aux limites

sans flux. La résolution spatiale près de la source doit être d'au moins 1 mm. Comme Virtual Cell ne

possède pas de mailleur adaptatif, un réseau de 100x100 est utilisé pour discrétiser toute la surface.

Avec COMSOL, un maillage adaptatif de 1858 nœuds est généré afin que les éléments les plus petits

Part One – Context and objectives

Page 252

soient inférieurs à 1 mm au centre. Enfin, avec nos outils, différents maillages ont été testés. La

réduction du nombre de nœuds dégrade évidemment la qualité des résultats mais, en contrepartie,

réduit drastiquement le temps de calcul. Les résultats retenus pour la comparaison sont ceux du

maillage n°7 (un maillage régulier 100x100) et maillage n°9 (un maillage adaptatif 25x25 affiné une fois

dans un cercle centré de 30mm et deux fois dans un cercle centré de 5mm) qui peuvent être considérés

comme ayant un bon compromis entre temps de calcul et précision. De plus, nous avons comparé les

performances de Spectre et NGSPICE pour notre approche. Le simulateur commercial a de meilleures

performances que celui open-source lorsque le nombre de nœuds dépasse 2000. Ceci est encore plus

marqué en simulation transitoire. Ceci est probablement dû à la fonctionnalité multi-thread proposée

par Spectre et qui n'est pas encore supportée par NGSpice.

Tableau 2 Comparaison des fonctionnalités et des performances de COMSOL, Virtual Cell et de notre approche (à la fois
avec Spectre et NGSpice).

 COMSOL Virtual Cell Spectre NGSPICE

Mesher
Triangle

Adaptive mesh
Driven by physics

Rectangular
Fixed

Rectangular
Adaptive

Defined by user

Discretization
sheme

Finite element
(various scheme)

Finite
Differences

Finite Differences
Finite Element (still under dev.)

Multiphysic
interface

Yes
Coupling with other

COMSOL module

Not
straightforward

Yes, using Kirchhoff-based equivalent circuits
and HDL

Simulation type

Deterministic
Steady State,

Transient,
Parametric

Deterministic or
Stochastic
Transient

Deterministic
Steady State, Transient, Parametric, Frequency

analysis, Noise analysis

Scripting for the
development of
complex
testbenchs

Yes, with MATLAB No Yes, with SPICE simulation control directives

Software type Commercial Freeware

Open-source model
generator

Commercial
simulator

Fully open-source

Computation
time at the
steady state

< 1 sec for a
1858-nodes model

14.5 sec for the Mesh
#7 (regular, 10201

nodes)
1.29 sec for Mesh #9

(adaptive, 1969
nodes).

20.5 sec for the Mesh #7
(regular, 10201 nodes)

.
2.19 sec Mesh #9

(adaptive, 1969 nodes).

Computation
time in transient

19 sec for a
1858-nodes model
and 20 time steps

140sec for a
10201-nodes
model and 20

time steps

18.7 sec for the Mesh
#7 and 20 time steps

3.44 sec for The
Mesh #9and 20 time

steps

80.8 sec for the Mesh #7
and 20 time steps

13.18 sec for the Mesh
#9 and 20 time steps

En résumé, notre simulateur présente quatre avantages principaux par rapport aux outils existants:

Chapter 3 – Design Flow of Synthetic Biology

Page 253

 il est basé sur un algorithme très simple pour la discrétisation de l'espace, ce qui facilite la

description des phénomènes de diffusion avec des modèles compacts simples

 il fournit un couplage direct entre le modèle de diffusion des molécules, les modèles de

systèmes biologiques jouant un rôle dans le milieu de diffusion et les modèles issus d'autres

domaines de la physique

 il utilise un cœur de simulation SPICE, qui a prouvé son efficacité depuis des années,

notamment pour les systèmes avec un nombre élevé d'équations différentielles et qui sera

amélioré dans un futur proche pour faire face aux nouveaux défis de la microélectronique

 il est open-source.

Avec ces caractéristiques, c'est un outil très puissant pour la simulation et le prototypage virtuel de

systèmes biologiques à l'intérieur des cellules ou impliquant divers types de cellules qui communiquent

entre elles par l'intermédiaire de messagers chimiques. Par exemple, il peut être couplé avec des

algorithmes évolutifs pour explorer de nouvelles solutions qui exploitent des consortiums de cellules

en biologie synthétique ou pour acquérir un niveau de complexité dans la modélisation de systèmes

biologiques.

Bien que le modèle soit simplifié en raison de l'algorithme de discrétisation mis en œuvre (en

comparaison de modèles COMSOL par exemple), la simulation d'un modèle complet peut prendre

beaucoup de temps, surtout lorsque le nombre d'espèces augmente. Compte tenu des propriétés des

équations à résoudre, le déploiement sur GPU pourrait fournir une solution pour accélérer le calcul.

Des versions récentes du simulateur SPICE open-source optimisé par GPU ont été publiées (Keiter et

al. 2014; Lannutti 2014) et leur couplage avec notre outil est actuellement à l'étude. Une autre

perspective de ce travail est d'améliorer la façon dont plusieurs couches de maillage peuvent être

interconnectées pour des systèmes avec plusieurs espèces diffusantes. Lorsque plusieurs couches de

maillage sont implémentées (par exemple dans l'exemple de proie-prédateur simplifié), le même

raffinement est appliqué sur chaque couche pour faciliter l'interconnexion entre elles (les maillages de

chaque couche se chevauchent et les coordonnées des nœuds sont identiques sur chaque couche).

Appliquer un raffinement spécifique sur chaque couche rendrait la génération de la netlist plus

complexe mais, d'un autre côté, réduirait le nombre de nœuds dans le modèle et accélèrerait le calcul.

Jusqu'à maintenant, notre simulateur n'était utilisé que dans notre équipe. L'expertise sur l'outil était

donc à proximité et aucune interface graphique n'était requise pour exécuter correctement une

simulation. Cependant, une interface graphique aurait facilité la mise en place et le fonctionnement

de notre outil.

De plus, pour élargir le champ d'application, une validation sur un cas d'utilisation à une échelle

différente serait la prochaine étape. En effet, dans nos exemples, les cellules (et donc leurs

compartiments) sont ponctuelles. Dans certains systèmes biologiques, une simulation au niveau

cellulaire des flux de molécules est nécessaire. Un exemple notable est l'étude des oscillations de

calcium dans une cellule. Ces oscillations sont impliquées dans de nombreux processus cellulaires et

sont donc largement étudiées par la communauté de la biologie. Le calcium est stocké dans différents

Part One – Context and objectives

Page 254

compartiments de la cellule (par exemple le cytoplasme, le réticulum endoplasmique, les

mitochondries...) et les flux de calcium entre ces compartiments (les motifs d’oscillations calciques)

déterminent le comportement d'une cellule en réaction à un signal externe. Être capable de simuler

ces échanges de calcium au niveau d'une cellule apporterait sûrement un nouveau savoir dans le vaste

monde des motifs d'oscillation du calcium. De plus, cela ouvrirait la porte à la prédiction de modèles

calcium encore non observés. Avec cette possibilité à portée de main, les concepteurs disposeraient

d'un outil dédié pour moduler le comportement d'une cellule. Comme les dérèglements dans les

oscillations du calcium sont d'une importance capitale dans plusieurs maladies, une application

évidente est la thérapeutique. Une extension utile à une utilisation à plus petite échelle de notre outil

serait la mise en œuvre d'un modèle 3D.

En outre, comme mentionné ci-dessus, l'outil a déjà été utilisé dans un autre projet qui n'est pas

directement lié à la biologie synthétique. L'objectif était de simuler le transport de diffusion entre

gouttelettes dans une puce microfluidique. Dans un tel dispositif, chaque gouttelette peut être vue

comme un seul bioréacteur indépendant. Cependant, la fuite de produits chimiques d'une gouttelette

à l'autre modifie la composition chimique à l'intérieur du réacteur et introduit des interactions

parasites entre chaque réaction. Notre simulateur a été utilisé pour simuler le phénomène de

diffusion. Plus précisément, les gouttelettes sont décrites comme deux disques 2D à fort coefficient de

diffusion séparés par de l'huile qui est modélisée par un faible coefficient de diffusion. Les résultats de

la simulation sont prometteurs et peuvent être utilisés pour optimiser le dispositif dans le futur.

Pour conclure, nous avons développé un outil open-source qui peut être utilisé pour la modélisation

et la simulation de systèmes biologiques qui dépendent de l'espace et du temps. Les applications sont

nombreuses en biologie des systèmes, en biologie synthétique en l’associant à notre environnement

de conception de prototypage virtuel et/ou automatique et pour des applications à l'interface avec

d'autres domaines de la physique dont les phénomènes peuvent être modélisés par des réseaux de

diffusion et/ou de Kirchhoff, soit des dispositifs électroniques, des phénomènes thermiques, de la

microfluidique en laboratoire sur puce et biocapteurs.

 Conclusion générale

5.1. Notre contribution au monde merveilleux de la biologie synthétique

Dans la partie 1 de lathèse, nous présentons un design flow pour la biologie. Notre travail pallie aux

deux éléments manquants identifiés en fournissant une solution pour la conception automatique de

systèmes biologiques et un simulateur spatio-temporel open-source (presque) prêt à l'emploi. Comme

nos outils ne sont pas encapsulés par une interface graphique limitative ou par une licence

commerciale dissimulée (parfois vous ne savez pas vraiment ce que ces logiciels font vraiment...), notre

environnement est ouvert à l'extension. Par notre choix du langage de description, simuler des

systèmes mixtes comprenant des éléments d'autres domaines que la biologie est plus facile avec notre

outil qu'avec les outils dédiés à la biologie. De plus, notre traducteur de manipulation SBML, BB-SPICE,

permet de spécifier facilement de nouveaux systèmes biologiques dans le format Verilog. La plate-

Chapter 3 – Design Flow of Synthetic Biology

Page 255

forme EASEA, comme son nom l'indique, facilite également l'adaptation des algorithmes

évolutionnaires à tout problème biologique, même pour les padawan de la programmation.

5.2. Faciliter le développement de systèmes innovants

Notre flux de conception est maintenant presque complet et permet la manipulation de systèmes

biologiques complexes, de la conception à la simulation. Un exemple récent (Müller et al. 2017)

possède toutes les caractéristiques pour illustrer la contribution potentielle de notre outil. Müller et

al. ont conçu un convertisseur biologique analogique-numérique. Leur système comporte une partie

analogique, le biocapteur et une partie numérique composée d'un circuit booléen. Ils divisent

également leur système sur différentes populations cellulaires séparées par une interface liquide où la

diffusion se produit. Avec notre outil, ils auraient pu réaliser le prototypage virtuel du GRN pour

l'implémenter dans ces différentes populations cellulaires. Différentes solutions auraient

probablement été trouvées par l'algorithme, leur donnant des alternatives entre lesquelles choisir.

Avoir un choix permet d’ordonner les solutions suggérées par des critères qui n'auraient autrement

pas été pris en compte. En plus d'élargir l'horizon des designers, notre environnement leur aurait

probablement permis de gagner du temps à la paillasse, en faisant des simulations spatiotemporelles

des systèmes à tester.

5.3. Connexions manquantes

Comme le passage d'une simulation in silico à l’expérience à la paillasse nécessite une mise en œuvre

effective du système conçu, nous devons mentionner ici les limites de l'environnement actuel. En effet,

plusieurs connexions manquent, notamment une libraire de parts. Comme mentionné dans la partie

1, il n'y a pas de base de données standard mature pour la biologie synthétique. La bibliothèque la plus

avancée est actuellement le référentiel BioBrick, même si une description standard d'une BrioBrick

n'est pas encore implémentée. Comme cette base de données idéale n'existe pas, nous n'avons pas eu

la possibilité de connecter l'outil de conception à un tel référentiel. Une première perspective

consisterait à gérer manuellement une telle bibliothèque et à y connecter notre outil. De plus, une

implémentation réelle d'un GRN nécessite plus que de pouvoir fournir à l'utilisateur les séquences

d'ADN correspondant aux parties du système. Les contraintes expérimentales liées à la réalisation in

vivo des systèmes conçus devraient probablement être prises en compte. Comme le côté expérimental

de cette thèse était plutôt rare, je suis progressivement passée du côté obscur de la biologie

synthétique, qui correspond au travail en amont (à savoir le développement d'outils) qui doit être

réalisé pour que les expérimentateurs et les concepteurs aient à leur disposition des outils aptes à les

aider.

5.4. L’outil idéal

Au-delà de ces liens manquants, d'autres améliorations ont été envisagées pour le flux de conception.

Les connexions entre les différents outils pourraient être renforcées. En effet, l'outil de conception

repose sur la capacité à simuler le système biologique à réaliser. Comme montré dans le chapitre 5 de

la thèse, une simulation est nécessaire pour évaluer le score de fitness utilisé pour évaluer les

Part One – Context and objectives

Page 256

différentes solutions à un problème biologique. Jusqu'à présent, seuls les EDO étaient utilisées pour

simuler les RRGs dans l'outil de conception. Lors de la conception d'un système ayant un

comportement spatio-temporel à prendre en compte, l'outil de simulation que nous avons développé

devrait être connecté à l'outil de conception. Une première perspective consisterait à créer une faible

interaction entre ces outils: l'outil de conception ne pourrait exécuter des simulations SPICE que sur

un maillage donné. Une seconde perspective nécessiterait d'apporter de l'intelligence dans le choix du

maillage. Une première étape consisterait à faire en sorte que l'algorithme choisisse des maillages de

plus en plus fins pour simuler les systèmes au cours de la convergence (l'affinement du maillage

augmente avec les itérations de l'algorithme évolutionnaire). Dans un deuxième temps, on pourrait

imaginer que l'algorithme serait aussi capable d'optimiser le maillage en ce qui concerne le rapport de

la précision sur le nombre de nœuds (comme mentionné au chapitre 7, plus le réseau est fin, plus les

résultats sont précis). Ces sentiers sont laissés ouverts aux nouveaux venus en biologie synthétique.

Chapter 3 – Design Flow of Synthetic Biology

Page 257

 References

Anderson, J Christopher, Christopher A Voigt, and Adam P Arkin. 2007. “Environmental Signal
Integration by a Modular AND Gate.” Molecular Systems Biology 3. European Molecular Biology
Organization: 133. doi:10.1038/msb4100173.

Balagaddé, Frederick K, Hao Song, Jun Ozaki, Cynthia H Collins, Matthew Barnet, Frances H Arnold,
Stephen R Quake, and Lingchong You. 2008. “A Synthetic Escherichia Coli Predator-Prey
Ecosystem.” Molecular Systems Biology 4 (1): 187. doi:10.1038/msb.2008.24.

Basu, Subhayu, Yoram Gerchman, CH Collins, FH Arnold, and R Weiss. 2005. “A Synthetic Multicellular
System for Programmed Pattern Formation.” Nature 434 (April).
http://www.nature.com/nature/journal/v434/n7037/abs/nature03461.html.

Beal, Jacob, Ting Lu, and Ron Weiss. 2011. “Automatic Compilation from High-Level Biologically-
Oriented Programming Language to Genetic Regulatory Networks.” Edited by Eshel Ben-Jacob.
PLoS ONE 6 (8). Public Library of Science: e22490. doi:10.1371/journal.pone.0022490.

Beal, Jacob, Ron Weiss, Douglas Densmore, Aaron Adler, Evan Appleton, Jonathan Babb, Swapnil
Bhatia, et al. 2012. “An End-to-End Workflow for Engineering of Biological Networks from High-
Level Specifications.” ACS Synthetic Biology 1 (8). American Chemical Society: 317–31.
doi:10.1021/sb300030d.

Bernot, Gilles, Jean-Paul Comet, Adrien Richard, and Janine Guespin. 2004. “Application of Formal
Methods to Biological Regulatory Networks: Extending Thomas’ Asynchronous Logical Approach
with Temporal Logic.” Journal of Theoretical Biology 229 (3). Academic Press: 339–47.
doi:10.1016/J.JTBI.2004.04.003.

Bilitchenko, Lesia, Adam Liu, Sherine Cheung, Emma Weeding, Bing Xia, Mariana Leguia, J Christopher
Anderson, and Douglas Densmore. 2011. “Eugene-a Domain Specific Language for Specifying and
Constraining Synthetic Biological Parts, Devices, and Systems.” PloS One 6 (4). Public Library of
Science.

Brenner, Katie, Lingchong You, and Frances H Arnold. 2008. “Engineering Microbial Consortia: A New
Frontier in Synthetic Biology.” Trends in Biotechnology 26 (9): 483–89.
doi:10.1016/j.tibtech.2008.05.004.

Chandran, Deepak, Frank T Bergmann, and Herbert M Sauro. 2009. “TinkerCell: Modular CAD Tool for
Synthetic Biology.” Journal of Biological Engineering 3 (1): 19. doi:10.1186/1754-1611-3-19.

Czar, Michael J, Yizhi Cai, and Jean Peccoud. 2009. “Writing DNA with GenoCAD.” Nucleic Acids
Research 37 (Web Server issue). Oxford University Press: W40-7. doi:10.1093/nar/gkp361.

Densmore, Douglas, Joshua T. Kittleson, Lesia Bilitchenko, Adam Liu, and J. Christopher Anderson.
2010. “Rule Based Constraints for the Construction of Genetic Devices.” In Proceedings of 2010
IEEE International Symposium on Circuits and Systems, 557–60. IEEE.
doi:10.1109/ISCAS.2010.5537540.

Doboli, Alex, and Ranga Vemuri. 2003. “Exploration-Based High-Level Synthesis of Linear Analog
Systems Operating at Low/medium Frequencies.” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on 22 (11). IEEE: 1556–68.

Dreij, Kristian, Qasim Ali Chaudhry, Bengt Jernström, Ralf Morgenstern, and Michael Hanke. 2011. “A
Method for Efficient Calculation of Diffusion and Reactions of Lipophilic Compounds in Complex
Cell Geometry.” PloS One 6 (8). Public Library of Science: e23128.
doi:10.1371/journal.pone.0023128.

Part One – Context and objectives

Page 258

Funahashi, Akira, Mineo Morohashi, Hiroaki Kitano, and Naoki Tanimura. 2003. “CellDesigner: A
Process Diagram Editor for Gene-Regulatory and Biochemical Networks.” BIOSILICO 1 (5): 159–
62. doi:10.1016/S1478-5382(03)02370-9.

Garci, Maroua, Jean-Baptiste Kammerer, and Luc Hebrard. 2014. “Compact Modeling and Electro-
Thermal Simulation of Hot Carriers Effect in Analog Circuits.” In 2014 IEEE 12th International New
Circuits and Systems Conference (NEWCAS), 125–28. IEEE. doi:10.1109/NEWCAS.2014.6933999.

Gendrault, Yves, Morgan Madec, Christophe Lallement, and Jacques Haiech. 2014. “Modeling Biology
with HDL Languages: A First Step toward a Genetic Design Automation Tool Inspired from
Microelectronics.” IEEE Transactions on Biomedical Engineering 61 (4). IEEE Computer Society:
1231–40.

Gendrault, Yves, Morgan Madec, Martin Lemaire, Christophe Lallement, and Jacques Haiech. 2014.
“Automated Design of Artificial Biological Functions Based on Fuzzy Logic.” In Biomedical Circuits
and Systems Conference (BioCAS), 2014 IEEE, 85–88.

Goler, Jonathan Ari. 2004. “BioJADE: A Design and Simulation Tool for Synthetic Biological Systems.”
https://dspace.mit.edu/handle/1721.1/30475.

Hoteit, Imad, Nawwaf Kharma, and Luc Varin. 2012. “Computational Simulation of a Gene Regulatory
Network Implementing an Extendable Synchronous Single-Input Delay Flip-Flop.” Bio Systems
109 (1). Elsevier Ireland Ltd: 57–71. doi:10.1016/j.biosystems.2012.01.004.

Hucka, M., A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin, et al. 2003. “The Systems
Biology Markup Language (SBML): A Medium for Representation and Exchange of Biochemical
Network Models.” Bioinformatics 19 (4): 524–31. doi:10.1093/bioinformatics/btg015.

Juty, N, R Ali, M Glont, S Keating, N Rodriguez, MJ Swat, SM Wimalaratne, et al. 2015. “BioModels:
Content, Features, Functionality, and Use.” CPT: Pharmacometrics & Systems Pharmacology 4
(2): 55–68. doi:10.1002/psp4.3.

Keiter, ER, T Mei, TV Russo, and RL Schiek. 2014. “Xyce Parallel Electronic Simulator Users Guide,
Version 6.1.”

Koza, John R., and Gheorghe. Stancalie. 2003. Genetic Programming IV : Routine Human-Competitive
Machine Intelligence. Kluwer Academic Publishers.

Koza, John R, Forrest H Bennett, David Andre, Martin A Keane, and Frank Dunlap. 1997. “Automated
Synthesis of Analog Electrical Circuits by Means of Genetic Programming.” Evolutionary
Computation, IEEE Transactions on 1 (2). IEEE: 109–28.

Krencker, Jean-Christophe, Jean-baptiste Kammerer, Yannick Hervé, and Luc Hébrard. 2010. “Direct
Electro-Thermal Simulation of Integrated Circuits Using Standard CAD Tools.” IEEE, 1–4.
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5636296.

Lannutti, Francesco. 2014. “CUSPICE (NGSPICE on CUDA Platform) User Guide.”

Le Duc, Stéphane. 1910. Théorie Physico-Chimique de La Vie et Générations Spontanées. Paris: A.
Poinat. doi:10.5962/bhl.title.32591.

Lohn, Jason D, and Silvano P Colombano. 1998. “Automated Analog Circuit Synthesis Using a Linear
Representation.” In Evolvable Systems: From Biology to Hardware, 125–33. Springer.

Madec, Morgan, Christophe Lallement, and Jacques Haiech. 2017. “Modeling and Simulation of
Biological Systems Using SPICE Language.” PloS One 12 (8). Public Library of Science: e0182385.
doi:10.1371/journal.pone.0182385.

Chapter 3 – Design Flow of Synthetic Biology

Page 259

Madec, Morgan, Francois Pecheux, Yves Gendrault, Loïc Bauer, Jacques Haiech, and Christophe
Lallement. 2013. “EDA Inspired Open-Source Framework for Synthetic Biology.” In 2013 IEEE
Biomedical Circuits and Systems Conference, BioCAS 2013, 374–77.
doi:10.1109/BioCAS.2013.6679717.

Marchisio, Mario A., and Jörg Stelling. 2011. “Automatic Design of Digital Synthetic Gene Circuits.”
Edited by Jason A. Papin. PLoS Comput. Biol 7 (2): e1001083. doi:10.1371/journal.pcbi.1001083.

Mirschel, Sebastian, Katrin Steinmetz, Michael Rempel, Martin Ginkel, and Ernst Dieter Gilles. 2009.
“ProMoT: Modular Modeling for Systems Biology.” Bioinformatics 25 (5): 687–89.
doi:10.1093/bioinformatics/btp029.

Müller, Marius, Simon Ausländer, Andrea Spinnler, David Ausländer, Julian Sikorski, Marc Folcher, and
Martin Fussenegger. 2017. “Designed Cell Consortia as Fragrance-Programmable Analog-to-
Digital Converters.” Nature Chemical Biology 13 (3). Nature Publishing Group: 309–16.
doi:10.1038/nchembio.2281.

“Registry of Standard Biological Parts.” 2015. Accessed November 6.
http://parts.igem.org/Main_Page.

Tamsir, Alvin, Jeffrey J Tabor, and Christopher A Voigt. 2011. “Robust Multicellular Computing Using
Genetically Encoded NOR Gates and Chemical ‘Wires’.” Nature 469 (7329): 212–15.
doi:10.1038/nature09565.

Thomas, René, Denis Thieffry, and Marcelle Kaufman. 1995. “Dynamical Behaviour of Biological
Regulatory networks—I. Biological Role of Feedback Loops and Practical Use of the Concept of
the Loop-Characteristic State.” Bulletin of Mathematical Biology 57 (2). Springer: 247–76.

Vollmer, Jannik, Denis Menshykau, and Dagmar Iber. 2013. “Simulating Organogenesis in COMSOL:
Cell-Based Signaling Models.” In Proceedings of COMSOL Conference.

“What Is Synthetic Biology? - Synthetic Biology Project.” 2017. Accessed October 6.
http://www.synbioproject.org/topics/synbio101/definition/.

Xie, Zhen, Liliana Wroblewska, Laura Prochazka, Ron Weiss, and Yaakov Benenson. 2011. “Multi-Input
RNAi-Based Logic Circuit for Identification of Specific Cancer Cells.” Science (New York, N.Y.) 333
(6047). American Association for the Advancement of Science: 1307–11.
doi:10.1126/science.1205527.

Yaman, Fusun, Swapnil Bhatia, Aaron Adler, Douglas Densmore, and Jacob Beal. 2012. “Automated
Selection of Synthetic Biology Parts for Genetic Regulatory Networks.” ACS Synthetic Biology, July.
American Chemical Society, 120706084748008. doi:10.1021/sb300032y.

Elise ROSATI

Outils d’aide à la conception pour
l’ingénierie de systèmes biologiques

Résumé
En biologie synthétique, il existe plusieurs manières d’adresser les problèmes soulevés dans
plusieurs domaines comme la thérapeutique, les biofuels, les biomatériaux ou encore les
biocapteurs. Nous avons choisi de nous concentrer sur l’une d’entre elles : les réseaux de régulation
génétique (RRG). Un constat peut être fait : la diversité des problèmes résolus grâce aux RRGs est
bridée par la complexité de ces RRGs, qui a atteint une limite. Quelles solutions s’offrent aux
biologistes, pour repousser cette limite et continuer d’augmenter la complexité de leur système ?
Cette thèse a pour but de fournir aux biologistes les outils nécessaires à la conception et à la
simulation de RRGs complexes. Un examen de l’état de l’art en la matière nous a mené à adapter
les outils de la micro-électronique à la biologie ainsi qu’à créer un algorithme de programmation
génétique pour la conception des RRGs. D’une part, nous avons élaboré les modèles Verilog A de
différents systèmes biologiques (passe-bande, proie-prédateur, repressilator, XOR) ainsi que de la
diffusion spatiotemporelle d’une molécule. Ces modèles fonctionnent très bien avec plusieurs
simulateurs électroniques (Spectre et NgSpice). D’autre part, les premières marches vers
l’automatisation de la conception de RRGs ont été gravies. En effet, nous avons développé un
algorithme capable d’optimiser les paramètres d’un RRG pour remplir un cahier des charges donné.
De plus, la programmation génétique a été utilisée pour optimiser non seulement les paramètres
d’un RRG mais aussi sa topologie. Ces outils ont su prouver leur utilité en apportant des réponses
pertinentes à des problèmes soulevés lors du développement de systèmes biologiques. Ce travail a
permis de montrer que notre approche, à savoir adapter les outils de la micro-électronique et utiliser
des algorithmes de programmation génétique, est valide dans le contexte de la biologie synthétique.
L’assistance que notre environnement de développement fournit au biologiste devrait encourager
l’émergence de systèmes plus complexes.

Mots-clefs: biologie synthétique; automatisation de la conception; conception assistée par
ordinateur; modélisation et simulations; réseaux de régulation génétiques; microélectronique.

Résumé en anglais
In synthetic biology, Gene Regulatory Networks (GRN) are one of the main ways to create new
biological functions to solve problems in various areas (therapeutics, biofuels, biomaterials,
biosensing). However, the complexity of the designed networks has reached a limit, thereby
restraining the variety of problems they can address. How can biologists overcome this limit and
further increase the complexity of their systems? The goal of this thesis is to provide the biologists
with tools to assist them in the design and simulation of complex GRNs. To this aim, the current state
of the art was examined and it was decided to adapt tools from the micro-electronic field to biology,
as well as to create a Genetic Programming algorithm for GRN design. On the one hand, models of
diffusion and of other various systems (band-pass, prey-predator, repressilator, XOR) were created
and written in Verilog A. They are already implemented and well-functioning on the Spectre solver as
well as a free solver, namely NgSpice. On the other hand, the first steps of automatic GRN design
were achieved. Indeed, an algorithm able to optimize the parameters of a given GRN according to a
specification was developed. Moreover, Genetic Programming was applied to GRN design, allowing
the optimization of both the topology and the parameters of a GRN. These tools proved their
usefulness for the biologists’ community by efficiently answering relevant biological questions arising
in the development of a system. With this work, we were able to show that adapting micro-
electronics and Genetic Programming tools to biology is doable and useful. By assisting design and
simulation, such tools should promote the emergence of more complex systems.

Keywords: synthetic biology; design automation; computer-aided design; modelling and simulations;
gene regulatory networks; microelectronics.

