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Carolyn Penstein Rosé

This chapter discusses the application of genetic programming (GP) to the problem of robust lan-
guage understanding in the context of a large scale multi-lingual speech-to-speech translation sys-
tem. Efficiently and effectively processing sentences outside of the coverage of a system’s linguistic
knowledge sources is still an open problem in computational linguistics, a problem that must be faced
if natural language interfaces will ever be practical. In this chapter, the GP based ROSE approach
to robust language understanding is demonstrated to yield a significantly better time/quality trade-off
than previous non-GP approaches. GP is used to search for the optimal way to assemble fragments
of a meaning representation. The ROSE approach is the first application of a program induction
technique to a problem of this type.

4.1 Introduction

This chapter introduces a new application of genetic programming (GP) to the problem
of robust language interpretation and argues that GP is well suited to solve this problem
efficiently and effectively. Specifically, GP is used for the purpose of allowing a language
understanding system to recover in cases where a parser fails. An empirical evaluation
demonstrates that the GP approach yields a significantly better time/quality trade-off than
previous non-GP approaches. The ROSE system, RObustness with Structural Evolution,
which is described in this chapter, serves as one example of how GP can be used to solve
this problem, opening a new area of application for the GP community.

The theory of language understanding underlying the work described in this chapter has
its roots in Conceptual Dependency Theory [Schank, 1975]. The basic tenets of this theory
state that the purpose of language understanding is for the listener to construct a representa-
tion of the meaning of the input sentence. The representation of the meaning is independent
of the actual words used to communicate that meaning. Meaning representations are built
from a predefined set of primitives where meaning is encoded in the primitives themselves
as well as in the relationships represented between those primitives in the structure result-
ing from the understanding process. However, unlike in Conceptual Dependency Theory,
the work described here does not advocate a specific set of primitives. Instead, it can be
used with whatever set of primitives are deemed useful for a particular domain.

A language understanding process constructs a meaning for a sentence by matching a set
of grammar rules against the sentence that describe possible relationships between words
and how these relationships are encoded in meaning representation structures. The impos-
sibility of exhaustively enumerating the patterns of encoded relationships that are found in
spontaneous spoken language make the problem of robust language interpretation partic-
ularly challenging. Sentences whose structure cannot be completely described by the set
of rules in the system’s parsing grammar are a common occurrence in naturally occurring
language. Since parsing grammars in real systems generally only cover a subset of English
or whatever language it is built for, its parser may fail even on sentences that are techni-
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cally grammatical. These sentences are called extra-grammatical sentences since they are
technically not ungrammatical but are nevertheless outside of the coverage of the system’s
grammar rules. Although the rules that are used to analyze sentences do not cover an entire
extra-grammatical expression, often they are at least sufficient for covering its important
sub-expressions. It is therefore possible to recover the majority of the meaning of the whole
expression if the relationships between the meanings of the analyzed sub-expressions can
be determined. Thus, the problem of robust interpretation can be thought of as the process
of extracting the meaning of the sub-expressions within an extra-grammatical expression
and then determining the relationships between those sub-expressions.

The ROSE approach to the problem of extra-grammaticality is to use a robust parser
[Lavie, 1995] to extract the meaning of sub-expressions inside of an extra-grammatical ex-
pression. It then uses genetic programming to search the space of possible relationships be-
tween the meaning representation structures of those grammatical sub-expressions in order
to build a representation of the whole sentence [Rosé, 1997]. Thus, genetic programming is
used for the purpose of repair. The ROSE system was developed and evaluated in the con-
text of the large-scale JANUS multi-lingual machine translation project [Lavie et al., 1996;
Woszcyna et al., 1993; Woszcyna et al., 1994]. The JANUS project deals with the schedul-
ing domain where two speakers attempt to schedule a meeting together over the phone.
It is evaluated on spoken input that has been transcribed by a human. Thus, it contains
all of the ungrammaticalities and disfluencies of spoken language without the additional
complication of speech recognition errors.

It is ROSE’s application of GP that makes it possible for it to operate efficiently. First,
because the genetic search can do the work of assembling the meaning representation struc-
tures for the analyzed sub-expressions, the ROSE system avoids the overwhelming over-
head of maximally flexible parsing approaches such as the Minimum Distance Parsing
approach [Lehman, 1989; Hipp, 1992] that attempt to perform the whole task of sentence
level interpretation at parse time. ROSE’s two stage approach allows it to use a more re-
strictive, and thus more efficient, partial parser, and to use extra resources (i.e., the GP
based repair stage) only in cases where repair is both necessary and possible. Furthermore,
since the GP based combination algorithm constructs a ranked set of near-optimal or op-
timal hypotheses about the meaning of the sentences by searching the space of possible
combinations of sub-expressions, it avoids the need for hand-coded repair rules that are
featured in otherwise similar approaches [van Noord, 1996; Danieli and Gerbino, 1995].

4.2 Abstraction on the Problem of Parse Repair

The goal of ROSE’s genetic search is to construct a meaning representation for an ex-
pression from the meaning representations of its sub-expressions. This approach assumes
that meanings of sentences can largely be represented compositionally. In other words,
the meaning of an expression can be represented in terms of the relationships between the
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meanings of its immediate sub-expressions. For example, consider the sentence “The cat
chases the dog.” This sentence describes an action with two participants, one of whom is
doing the action, and one to whom the action is being done. The meaning of “the cat”
is a representation of the animal that the expression refers to. Likewise, “the dog” has as
its meaning the animal that it refers to. “Chases” refers to the action of an actor running
after the actee. It is not enough to know the meanings of these sub-expressions, however.
In order to understand this sentence, it is necessary to recognize the relationships between
these sub-expressions. In other words, it is necessary to realize that it is the cat that is doing
the action of chasing and the dog to whom the action of chasing is being done. Although
the assumption of compositionality [Gamut, 1991] has some notable exceptions [van den
Berg et al., 1994], it has been demonstrated to be a useful simplifying assumption for the
purpose of robust semantic interpretation in other recent work [Bod and Kaplan, 1998;
Bod, 1998].

This section describes an abstraction of the problem in order to illustrate its scope and
lay the foundation for the application of genetic programming to solve it.

4.2.1 The Basic Problem

Each primitive representing a unit of meaning can be thought of as an object with a hook
at the top and some number of holes at the bottom. These primitives can then be linked by
inserting the hook from the top of one corresponding object in one of the holes at the bottom
of another. Each hole represents a relationship between two units of meaning, i.e., the one
corresponding to the object with the hole and the one corresponding to the object with the
hook. The act of linking these objects together by inserting hooks into holes is analogous
to constructing the meaning of an expression from the meanings of its sub-expressions.

Figure 4.1 illustrates how different ways of linking the same three objects results in
different meanings. Notice that each hole at the bottom of each primitive is labeled with
a role. This role indicates the relationship that is denoted by inserting the hook from one
object into the corresponding hole. For example, if the object corresponding to the CAT
primitive is inserted into the actor hole in the object corresponding to the CHASE primitive,
it denotes that the cat is the one who is doing the chasing. Likewise, if the CAT primitive
is inserted into the actee hole in the CHASE primitive, it denotes that the cat is the one
being chased. Furthermore, if the CHASE primitive is inserted into the behavior hole in
the CAT primitive, it denotes that the chasing is something that the cat in question does.
Thus, searching the space of meanings composed of the same primitives is analogous to
searching the space of configurations of corresponding objects.

The number of possible configurations grows quickly as the number of objects increases.
It is impossible to precisely compute the number of possible configurations for a general
set of � objects since the actual number of holes in an object varies from corresponding
primitive to corresponding primitive. But it can be computed if one makes the simplifying
assumption that holes do not carry meaning so that the effective number of holes per object
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Figure 4.1
Here we see how a number of different meanings can be constructed from the same set of semantic primitives.
The act of linking primitive units of meaning together is analogous to constructing the meaning of an expression
from the meanings of its subexpressions.

Table 4.1
The number of possible configurations grows quickly as the number of objects increases. This table reports a
lower bound on the number of possible configurations per number of objects.

Number of Objects Search Space Size

1 1
2 4
3 18
4 116
5 1120
6 13782
7 212800
8 3801800
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becomes one. Table 4.1 illustrates how the number of possible configurations grows quickly
as the number of objects increases even with this simplifying assumption. The average
number of objects produced by the parser for each example in the evaluation presented in
Section 4.5 was 5.66. Since, as demonstrated in Figure 4.1, one hole is not equivalent to
another hole in meaning, the actual search space size grows much faster than indicated in
Table 4.1. Nevertheless,

���
��� provides a lower bound. It was computed using Equation

4.1.
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The target configuration may be composed of any subset of the original set of � objects.
Thus, the lower bound search space size with � objects is the sum of the number of ways
to construct a configuration from every subset of the full set of � objects. The number of
configurations with exactly

�
objects is the number of ways to select one of those objects

as the root times the number of ways to divide the remaining objects into subsets and then
construct a configuration from each subset. � �

��� ����� � is the number of ways to divide

��� �
objects into

�
subsets and then construct a configuration from each subset. To compute the

actual search space size, instead of the lower bound, T(i-1,j) would be multiplied by the
number of ways to insert the resulting

�
objects into the number of holes in the selected

root object.

4.2.2 Program Induction as a Solution

The problem of searching for the correct configuration of objects is easily cast as a program
induction problem because of its recursive nature. Composite objects are assembled by
inserting hooks from sub-objects into a root sub-object. These sub-objects may themselves
be composed of other sub-objects, and so on. If one assumes the existence of a function
called COMBINE that can insert the hook from the object that is its second argument into
a hole in another object that is its first argument, one can write a program to construct any
single configuration of objects. Thus, the target configuration can always be constructed
by a program consisting only of instances of the subset of objects needed to construct the
target configuration and instances of the COMBINE function.

Figure 4.2.2 shows how instances of COMBINE can be composed in order to construct a
configuration. Notice how OBJECT3 is first inserted into OBJECT2. Next, OBJECT4 is
inserted into OBJECT2. The composite object with OBJECT2 as its root is then inserted
into OBJECT1. Finally, OBJECT5 is inserted into OBJECT1.

Although every target configuration can be constructed using instances of COMBINE
and instances of the subset of objects needed for that configuration, not every program
consisting only of instances of those objects and instances of COMBINE produces a legal
configuration. In particular, more than one instance of the same object may not legally ap-
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Figure 4.2
Here we see the result of evaluating a program consisting of the COMBINE function and primitive semantic
objects. OBJECT3 is first inserted into OBJECT2. Next OBJECT4 is inserted into OBJECT2. Then the composite
object with OBJECT2 as its root is inserted into OBJECT1. Finally, OBJECT5 is inserted into OBJECT1. The
resulting configuration is displayed on the right.
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Figure 4.3
Here we see an example of how COMBINE avoids inserting multiple instances of the same object within a config-
uration. If the two objects passed in as arguments overlap with one another, the largest of the two is returned as
the result.
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Figure 4.4
If the objects passed into COMBINE can not be combined by inserting the second one into the first one and they
have the same root primitive object, they can be combined by merging. Here we see how merging produces a
more complete resulting configuration.

pear within the same configuration. So with the most straightforward version of COMBINE,
every program that contains more than one instance of the same object produces a result
that is not a legal configuration. In order to ensure that every possible program produces a
legal configuration, COMBINE must be altered in such a way as to prevent more than one
instance of the same object from appearing within the same result. Thus, it inspects its two
arguments to test whether they are composed of instances of any of the same objects. If they
are, rather than inserting the second object into the first object, it returns the one composed
of the largest number of primitive objects. See Figure 4.2.2 for an example of this. The
instance of COMBINE at the top level, once its arguments are evaluated, is presented with
two composite objects as arguments. Its first argument is composed of objects one through
three. Its second argument is composed of objects one through four. Since there is overlap
between the two arguments, they cannot be combined into a single legal configuration by
inserting one into the other. Instead, the one composed of the largest number of primitive
objects is returned. Thus, in this case, the one composed of objects one through four is
returned as the result.

As discussed in Section 4.2, each hole on an object corresponds to a relationship that
may hold between the associated object and another object. To precisely specify how to
construct a configuration, a decision must be made within the COMBINE function of which
hole to insert the second object into on the first object. Each hole has restrictions on it
about what types of objects may be inserted into it. For example, it does not make sense
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for an inanimate object to be the actor of an action. A rock cannot chase a mouse. These
restrictions are specified in a meaning representation specification that lists the full set of
possible primitives, which relationships are associated with each primitive, and what types
of objects can be inserted into holes corresponding to those relationships. The COMBINE
function makes reference to this specification so that it can ensure that every object it inserts
into a hole in another object is appropriate for the specified relationship. In some cases,
there will not be an appropriate hole in one object to insert the other object into. In that
case, as in the case above, the largest of the two objects will be returned as the result.

In some cases, as in Figure 4.2.2, it is not possible to insert the second object into the
first object, but the two objects can be combined by merging instead. Objects that have
the same root can be merged into a single, possibly more complete, object. Merging takes
place by first pruning the programs that generated the two arguments that were input to
COMBINE. This pruning is done such that the only instances of COMBINE in the program
that remain are those that when evaluated made insertions that contributed to the construc-
tion of those arguments. The remaining instances of COMBINE from the two programs are
then combined into a single set. The largest subset of the cumulative set of instances of
COMBINE is then extracted such that when they are composed into a single program, every
COMBINEwill be able to make an insertion when it is evaluated. Whenever it is possible to
merge, it is preferable over simply returning the largest argument since it has the potential
for returning a result that is more complete. Thus, whenever it is not possible to insert, but
it is possible to merge, COMBINE will merge rather than return one or the other argument.
In Figure 4.2.2 we see configurations resulting from two programs that can be merged as
well as the configuration resulting from the merged program.

It would be possible to have a separate MERGE function in the function set, but it makes
sense to keep both actions within the same function. The cases in which it is possible to
insert and when it is possible to merge are almost always mutually exclusive in practice, and
where they are not, inserting is almost always preferable to merging. Thus, it is possible
to get by with a single function that can accommodate each of the three possible cases.
This is preferable to having two separate functions since it avoids the case where one or
the other function is assigned inappropriately. Note that this is also a reason why GP
is more appropriate for this application than GA with configurations as its data structure
[Michalewicz, 1994]. Although it would be possible to do almost the equivalent of ROSE’s
application of GP by using GA with a configuration data structure, typed crossover, and
a merge operator, the algorithm would lose control over which specific cases the merge
operator is applied to.

Figure 4.2.2 contains the definition of the COMBINE function as it is used in ROSE. It
takes two possible composite objects as arguments. If it can insert the second object into
a hole in the first object, it selects a hole and then does the insertion. If it is not possible
to do an insertion, it tests whether it is possible to merge the two chunks. If this is not
possible either, it returns the object composed of the largest number of primitive objects.
With this COMBINE function it is true both that every target configuration can be built by a
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COMBINE takes as input two objects
If the two objects do no overlap with one another
and there is a hole in the first object in which to
insert the second object

Select a hole
Insert the second object into the selected hole in the first object

Otherwise if both objects have the same primitive root object
Merge the two objects

Otherwise return the most comprehensive object

Figure 4.5
Working definition of COMBINE

program with only COMBINE in its function set and that every possible program consisting
of instances of primitive objects and instances of COMBINE produces a legal configuration.

4.3 ROSE’s Application of GP

ROSE operates in two stages: partial parsing and combination, each of which are described
in this section. The focus of this chapter is the GP based combination stage. However,
since the output of the partial parsing stage provides the input to the combination stage, it
is necessary to describe both.

4.3.1 The Partial Parsing Stage

The robust parser used in ROSE is Lavie’s GLR* parser [Lavie, 1995] modified to produce
analyses for contiguous portions of a sentence. The partial parsing stage is described in
depth in [Rosé, 1997]. In this chapter it is described only briefly.

The goal of the partial parsing stage is to obtain an analysis for islands of the speaker’s
sentence if it is not possible to obtain an analysis for the whole sentence. In Figure 4.6
we see an abstract representation of the parser output for “What did you say about what
was your schedule for Thursday?” The parser produced seven partial analyses covering
different parts of the sentence. The details of the underlying representation are not shown,
but note that it is such that partial analyses can be assembled into configurations in the same
way that primitive objects were in Section 4.2. The one difference between the objects
constructed by the parser and those described in Section 4.2 is that some of these objects
could be said to overlap with one another because they cover overlapping parts of the same
sentence. For example, the object corresponding to “have scheduled for Thursday” and
the object corresponding to “have scheduled” both cover the word “schedule” from the
original sentence. Therefore, these two objects can not both appear together in a legal
configuration. Likewise, the “you” object overlaps with the “what was your” and “was
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Sentence: What did you say about what was your schedule for Thursday?
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was your
• object • time • location • ...

have scheduled

• who • when • where • event • ...

Thursday

• month • day • hour • ...
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Partial Parse:

Ideal Configuration:

have scheduled for Thursday
• who • where • event • ...

whatyou

Figure 4.6
Here we see a representation of the objects produced by the partial parser for the sentence “What did you say
about what was your schedule for Thursday.” The ideal configuration is displayed at the bottom.
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Table 4.2
This tableau describes how GP is set up for the Combination problem.

Objective: Find the program that generates the target configuration
Terminal Set: Objects produced by the partial parser
Function Set: COMBINE
Raw Fitness: Evaluated by an indirect measure. See section 4.3.2.2.
Standardized Fitness: Same as raw fitness
Hits: None. Since the target configuration is not known, it is impossible to have absolute

certainty that you have a hit
Wrapper: None.
Parameters: Population Size = 32, Generations = 4
Success Predicate: None.

your” objects. Thus, the test for overlap in COMBINE must ensure not only that the same
parser object appear at most once in the resulting configuration, but also that the same part
of the sentence only be represented once in a resulting configuration.

Because in the parser’s output “schedule” is misanalyzed as an action rather than as
an object, there is no way to assemble a configuration to represent the exact meaning of
this sentence with the available objects. The configuration with the closest meaning to the
original sentence that can be constructed from the available objects represents the meaning
“What do you have scheduled for Thursday?”

Notice that the ideal configuration does not include both of the objects covering the
largest portions of the sentence. Instead, it includes one of them along with the two smallest
objects. Thus, the task of selecting the ideal subset of objects produced by the parser
to include in the output configuration is not a trivial task. It cannot be predicted with a
straightforward metric such as picking the subset that includes the largest non-overlapping
objects.

4.3.2 The Combination Stage

The combination stage takes as input the objects returned by the parser. The goal is to
evolve a program that builds the ideal configuration out of these objects.

4.3.2.1 Applying Genetic Programming
The GP based combination algorithm used in ROSE is Koza’s lisp kernel [Koza, 1992]. The
goal of this combination algorithm is to evolve a program that when executed constructs
the ideal configuration from the objects returned by the parser. Notice that in Figure 4.6,
the ideal configuration is composed of a subset of the full set of objects returned by the
parser. Thus, two things are accomplished in parallel by this application of GP. The correct
subset of objects is selected, and at the same time, the correct way to assemble them is
determined.

The terminal set for the combination problem is the set of objects returned by the parser.
The function set contains only the COMBINE function. The initial random population of
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programs is generated with the ramped half and half method with a maximum depth of 5.
Rather than selecting terminal symbols with a uniform distribution, each object is selected
with a frequency proportionate to the percentage of the sentence it covers. These large
objects are not guaranteed to be the more appropriate objects in the set for building the cor-
rect configuration, but in practice they tend to be better than the other smaller objects. By
selecting objects as terminal symbols in this way, the most comprehensive objects appear
more frequently in the population. Thus, it is more likely for a larger object to appear in
a configuration produced by an individual, but it is not impossible for a smaller object to
appear.

Once a population of individuals is generated, the fitness of each individual program
is computed. The fitness of each individual is calculated using the function described in
Section 4.3.2.2 that combines multiple goodness indicators. Each instance of COMBINE
has a static local variable that keeps track of which hole in the parent object was selected
for inserting the child object. In this way, it can be ensured that each time the program is
evaluated, the same result will be produced. The fitness function is trained in such a way
that the fitness score assigned to each individual program is indicative of the goodness of
the resulting configuration.

Once the fitness for each individual is computed, subsequent generations are computed
using fitness proportionate reproduction. The fitness proportionate reproduction fraction
was set to 10%, mutation 10%, and crossover 80%, with 75% of crossovers constrained to
occur at function points. Since every program composed of instances of the objects pro-
duced by the parser and instances of COMBINE is guaranteed to produce a legal configura-
tion, straightforward versions of crossover and mutation can be used. Crossover in ROSE’s
combination algorithm simply selects a sub-program from each parent program and swaps
them. The maximum depth for individuals after crossover is set to 15. Generally, a depth of
15 is far larger than necessary for including the steps necessary for constructing the target
configuration. However, since it is common for portions of the evolved program to have no
effect on the resulting configuration as discussed in Section 4.2.2, it is necessary to allow
larger programs to be evolved. With a larger population and larger number of generations,
programs with a smaller depth and equivalent performance could be evolved. However, in
order to force the combination algorithm to perform as efficiently as possible, it is allowed
here to produce sloppier programs.

When the resulting programs are evaluated, wherever configurations resulting from the
execution of sub-programs are no longer appropriate for inserting into the hole where they
were previously inserted, a new hole is selected. Similarly, mutation takes place by con-
structing a random subprogram in the same way that the initial population was generated
and inserting it in place of a randomly selected sub-program in the parent program. The
maximum depth for randomly generated sub-programs is 4.
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4.3.2.2 Fitness Evaluation for the Combination Problem
The programs created by the GP based combination algorithm can be thought of as repair
hypotheses. Once a population of hypotheses is generated, each individual in the population
is evaluated for its fitness. Evaluating the fitness of repair hypotheses is the most difficult
part of applying genetic programming to repair. The ROSE approach to fitness evaluation of
repair hypotheses is one of the aspects that makes this application of genetic programming
unique. An ideal fitness function for repair would rank hypotheses that generate structures
closer to the target structure better than those that are more different. In comparing relative
goodness of alternative repair hypotheses, the repair module must consider not only which
subset of objects returned by the parser to include in the final result, but also how to put
them together. However, it does not know what the ideal configuration is. Since the repair
module does not have access to this information, it must rely upon indirect evidence for
determining which hypotheses are better than others. A fitness function is trained to use
this indirect evidence for the purpose of ranking repair hypotheses in a useful manner.

Four pieces of indirect evidence about the relative goodness of repair hypotheses can be
computed for each repair hypothesis: the number of primitive objects in the resulting struc-
ture (NUM CONCEPTS), the number of insertions involved (NUM STEPS), a statistical
score reflecting the goodness of insertions (STAT SCORE), and the percentage of the sen-
tence that is covered by the resulting configuration (PERCENT COV). These parameters
are generally useful in ranking hypotheses. Both NUM CONCEPTS and PERCENT COV
provide an estimate of the completeness of solutions. NUM STEPS provides an estimate of
the simplicity of the program. And as much as the statistical goodness score gives a reliable
indication of goodness of fit between objects and relationships and quality of parser pro-
duced objects, repair hypotheses with better than average statistical score are more likely
to be better hypotheses. The statistical score of a hypothesis is calculated by averaging the
statistical scores for each repair action, where the statistical score of each included object
is the statistical score assigned by the parser to the analysis of that object, and the statisti-
cal score of inserting an object into a hole in another object is defined by the information
gain between the hole and the type of the inserted object. The information gain between
the hole and the type of the inserted object is a measure of how strongly the hole predicts
which type of object will fill it.

Intuitively, one would prefer more complete hypotheses over less complete ones. And
following the principle of Occam’s razor, other things being equal, one would prefer sim-
pler solutions over more complex ones. Since simpler solutions may be less complete, and
more complete hypotheses might be more complex, the trained fitness function must learn
how to balance these two competing qualities. A fitness function trained with GP was used
to combine these four pieces of information in order to rank alternative repair hypotheses.

The fitness function was trained over a corpus of 48 randomly selected sentences from a
separate corpus from that used in the evaluation discussed in Section 4.5. Each of these 48
sentences were such that repair was required for constructing a reasonable interpretation.
In this corpus each sentence was coupled with its corresponding ideal meaning representa-
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tion structure. To generate training data for training the repair fitness function, the repair
module was run using an ideal fitness function that evaluated the goodness of hypotheses
by comparing the meaning representation structure produced by the hypothesis with the
ideal structure. It assigned a fitness score to the hypothesis equal to the number of primi-
tive objects in the largest substructure shared by the produced configuration and the ideal
configuration. The four scores that serve as input to the trained fitness function were ex-
tracted from each of the hypotheses constructed in each generation after the programs were
ranked by the ideal fitness function. The resulting ranked lists of sets of scores were used
to train a fitness function that can order the sets of scores the same way that the ideal fitness
function ranked the associated hypotheses. Thus, although there were only 48 sentences
in the training set, there were four times that many training cases. While this is still a
relatively small number of training cases, no over fitting effects were observed.

The genetic programming algorithm used to train the repair fitness function took as ter-
minals the four scores plus a random real number function. The function set included
addition, subtraction, multiplication, and division. The fitness of alternative proposed fit-
ness functions generated during the genetic search was computed by first ordering the set
of scores in each training example using the hypothesized function. The length of the great-
est common subsequence between the ideal ordering and the generated ordering was then
computed. The greatest common subsequence was computed using Dijkstra’s well known
algorithm [Cormen et al., 1989]. The fitness of each hypothesized repair fitness function
was the average greatest common subsequence score over the entire training corpus of 48
sentences. A single run with a population size of 1000 was used, and the training process
continued for approximately 2000 generations, until subsequent generations didn’t produce
a function with performance better than the previous generation.

4.4 Why GP?

Repairing extra-grammatical sentences is an unusual application for GP in that it requires a
relatively small population size and number of generations. In practice, a population size of
32 and 4 generations has been determined to be adequate for repairing extra-grammatical
sentences in the scheduling domain.

Although it may appear on the surface that a simpler control structure such as a priority
queue would suffice, such an approach would require the system to decide which set of
repairs to start with and then which alternative hypotheses logically follow in an ordered
manner. However, since the goodness of hypotheses is determined by factors that make
competing predictions (completeness versus simplicity), no such prioritization can effec-
tively be determined a priori. Likewise, what distinguishes hypotheses from one another is
both which subset of objects is included in the hypotheses and how the objects are com-
posed. It is not clear what principle should be used in generating successive hypotheses
to test - whether it is better to change the subset of objects included in the hypothesis or
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Sentence: What did you say about what was your schedule for Thursday?

Ideal Configuration:

have scheduled for Thursday

• who • where • event • ...

whatyou

Locally Optimal:

Less  Complete but More Correct:

have scheduled for Thursday

• who • where • event • ...

What was your?

• object • time • event • ...

have scheduled for Thursday

• who • where • event • ...

Figure 4.7
Here we see an example of a locally optimal solution for the example in Figure 4.6. It contains the two largest
objects returned by the parser. No single operation on this configuration can improve the quality of the solution
since removing the suboptimal object results in a solution that is more correct, but less complete.
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simply to change the way they are assembled. Finally, it is not clear what stopping criteria
one would use for an application of the priority queue method, or how one would avoid
locally optimal solutions.

The problem of locally optimal solutions is a big one in this application. A locally op-
timal solution from the example in Figure 4.6 is found in Figure 4.4. The locally optimal
solution is composed of the two largest objects produced by the parser. It can not be made
to cover any more of the sentence by inserting any additional objects since every other ob-
ject in the set returned by the parser overlaps with one of the objects already included in
the configuration. However, the object covering “what” and “you” included in that solution
corresponds to a suboptimal analysis of that portion of the sentence. Before the best con-
figuration can be built, the object corresponding to “What was your?” must be removed,
resulting in a configuration that covers less of the sentence than the suboptimal solution, but
not containing the suboptimal analysis. The optimal configuration can then be constructed
by inserting the objects corresponding to “what” and “you” separately into the object cor-
responding to “have scheduled for Thursday”. Thus, the result must temporarily be made
less complete in order to be made both correct and complete.

Thus, GP’s opportunistic search method is very sensible in this case, although the appro-
priateness of GP-like approaches such as SIHC [O’Reilly and Oppacher, 1995] have yet
to be tested as alternatives for this application. GP first samples its search space widely
and shallowly and then narrows in on the regions surrounding the most promising looking
points. It has the ability to search a large space efficiently. As described in Section 4.2.1,
the number of alternative configurations grows quickly as the number of objects produced
by the parser increases. The number of alternative individuals evaluated by the genetic
programming algorithm can be fixed ahead of time by setting the population size and the
maximum number of generations. By limiting the population size to 32 and the number
of generations to 4, the repair module is constrained to search only 128 alternatives. Thus,
if the number of objects produced by the parser is any more than four, the GP approach
searches only 11% or less of the lower bound estimate on the number of alternative hy-
potheses. If the number of objects produced by the parser is exactly four, the number of
alternatives explored is similar. The average number of objects produced by the parser in
the evaluation presented in Section 4.5 was 5.66. In 55.7% of the cases, the parser pro-
duced more than four objects. Thus, the GP approach yields a significant savings in time in
more than half of the cases where repair is used. The great success with examining such a
small portion of the search space is perhaps due to the statistical bias within the COMBINE
function.

4.5 Evaluation

ROSE’s performance was evaluated in terms of efficiency and effectiveness in comparison
with the two main competing approaches to robust interpretation, namely the maximally



83 ’Advances in Genetic Programming III, Research and Educational use only’

Table 4.3
This table reports the percentage of sentences for the alternative interpretation strategies that either produced a nil
result or were assigned a grade of Bad, Partial, Okay, or Perfect by an impartial human judge.

NIL Bad Partial Okay Perfect Total Acceptable

MDP 1 21.4% 3.4% 3.4% 18.4% 53.4% 71.8%
MDP 3 16.2% 4.2% 5.0% 19.6% 55.0% 74.6%
MDP 5 8.4% 8.2% 6.0% 21.0% 56.4% 77.4%
GLR with Restarts 9.2% 6.4% 12.8% 19.4% 52.2% 71.6%
GLR with Restarts + Repair 0.4% 9.6% 11.8% 23.4% 54.8% 78.2%
GLR* 2.2% 8.8% 11.6% 21.4% 56.0% 77.4%
GLR* + Repair 0.6% 8.8% 10.6% 23.6% 56.4% 80.0%

flexible parsing approach [Lehman, 1989; Hipp, 1992] and the restrictive partial parsing
approach [Lavie, 1995; Abney, 1996; Ehrlich and Hanrieder, 1996; Srinivas et al., 1996;
Federici et al., 1996; Jensen and Heidorn, 1993; Hayes and Mouradain, 1981; Kwasny and
Sondheimer, 1981; Lang, 1989]. The purpose of this evaluation was to demonstrate the ap-
propriateness of employing GP for the purpose of repairing extra-grammatical sentences.
ROSE’s two stage approach, employing a GP based combination algorithm, is demon-
strated here to achieve a better effectiveness/efficiency trade-off than either of the above
mentioned single stage approaches.

In order to compare the alternative approaches keeping as many factors constant as pos-
sible, the same parser was used in each case, parameterized to control the flexibility of the
algorithm. The GLR* parser [Lavie, 1995; Lavie and Tomita, 1993] is used in five dif-
ferent parameter settings described in depth in [Rosé, 1997], Chapter 10, Section 3. The
most restrictive version, GLR w/restarts, constructs analyses for contiguous portions
of the input text. The less restrictive GLR* setting allows the parser to skip over words
in order to construct analyses for non-contiguous portions of the input. The more flexible
MDP 1, MDP 3, and MDP 5 settings allow the parser to either insert or delete up to 1,
3, or 5 words respectively in order to search for an analysis for each extra-grammatical
sentence. GLR w/restarts and GLR* serve as representatives of the restrictive partial
parsing approach. MDP 1, MDP 3, and MDP 5 serve as representatives of the maximally
flexible parser approach. ROSE is evaluated using each of the restrictive partial parsers, re-
ferred to as GLR w/restarts + repair and GLR* + repair respectively. Thus,
seven different specific approaches are evaluated in the experiments described here. Each
approach was evaluated using the same semantic grammar with approximately 1000 rules,
with the same lexicon of approximately 3000 lexical items, on the same previously unseen
test corpus of 500 sentences.
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This diagram displays mean run times for six alternative interpretation strategies as it varies for different sentence
lengths. Notice that the three MDP approaches are far slower than the other approaches with or without the GP
based repair stage.
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Here we see mean processing time for two alternative partial parsers, namely GLR w/restarts and GLR*, with
and without repair. Notice that the GP based repair stage does not dramatically increase the practical run time of
the parsers.
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For each sentence, the meaning representation structure returned by the alternative in-
terpretation processes was passed to a generation component that generates a sentence in
English. This text was then graded by a human judge as Bad, Partial, Okay, or Perfect in
terms of interpretation quality. The human judge was a staff person on the JANUS project
experienced in grading interpretation quality but not having been involved in the develop-
ment of any portion of the system being evaluated. The judge was not aware of which
approach produced each result. A grade of “Partial” indicates that the result communicated
part of the content of the original sentence while not containing any incorrect information.
“Okay” indicates that the generated sentence communicated all of the relevant information
in the original sentence but not in a perfectly fluent way. “Perfect” indicates both that the
result communicated the relevant information and that it did so in a smooth, high quality
manner.

Run times for all seven approaches are found in figures 4.8 and 4.9. Notice that all of the
MDP approaches are significantly slower than the other approaches. Also notice that the
partial parsing approaches with repair are not significantly slower than their corresponding
partial parsing approaches without repair. In particular, in Figure 4.9 we see that run times
for GLR* and GLR* + repair are barely distinguishable. This small difference in run
times between the versions with repair and without are accounted for by the fact that the
repair stage is not time consuming (taking 30 seconds on average) and is only used when
both necessary and possible.

By comparing the run times for the alternative conditions in Figures 4.8 and 4.9 with the
interpretation quality scores found in Table 4.3, it becomes evident that the two-stage ROSE
approach achieves a better effectiveness/efficiency trade-off than either the maximally flexi-
ble parsing approach or the restrictive partial parsing approach. Predictably, MDP 5 shows
an improvement over MDP 1, with an associated significant cost in run time. Also, not
surprisingly, the very restrictive GLR w/restarts, while it is fastest, has a correspond-
ingly lower associated interpretation quality. However, GLR w/restarts + repair
outperforms all of the single stage approaches, second only to GLR* + repair, which is
slightly slower although still faster than MDP 1. Though these results demonstrate certain
trends in the performance of the alternative approaches, the differences in interpretation
quality overall are very small. Nevertheless, the very significant difference in runtime per-
formance demonstrates that the two-stage ROSE approach is a clear winner.

The contribution made by ROSE’s GP based Combination stage is more evident when
considering the maximum potential repair that is possible using chunks produced by the
parser. For example, with GLR w/restarts + repair, the percentage of sentences
in the test corpus where it was true both that repair was necessary and that the parser pro-
duced sufficient chunks for actually constructing an acceptable hypothesis was only 8.6%.
Therefore, the 6.6% of additional acceptable hypotheses produced by ROSE constitutes
76.7% of the maximum potential improvement. Though this still leaves room for further
work, it demonstrates that a significant percentage of the maximum improvement that is
possible to achieve with repair was indeed realized by ROSE’s application of GP.
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4.6 Challenges

This chapter describes ROSE, RObustness with Structural Evolution, an application of GP
to the problem of robust interpretation of extra-grammatical sentences. The genetic pro-
gramming algorithm searches for the near-optimal or optimal ways to assemble analyses
for fragments of an extra-grammatical sentence into a single meaning representation struc-
ture. ROSE is demonstrated here to achieve a better effectiveness/efficiency trade-off than
either the restrictive partial parsing approach or the maximally flexible parsing approach.

These promising results point the way towards a number of avenues for future explo-
ration of GP applied to the problem of robust interpretation. For example, since each
individual generated by ROSE is a program that constructs a single meaning representation
structure, it works best only in cases where an utterance contains a single sentence. For
processing multi-sentence utterances, the GP algorithm would have to be able to construct
individuals composed of multiple programs each assembling a subset of the chunks pro-
duced by the parser. Not only would the genetic search be responsible for determining
which chunks to include in the final analysis, but it would also have to decide how to parti-
tion this set into subsets each representing a single sentence, and then how to compose the
chunks for each sentence into a single meaning representation structure.

Secondly, since ROSE works by assembling the chunks returned by the parser, the re-
sulting meaning representation structure can only represent the portions of the sentence that
the parser is able to construct a partial analysis for. One can imagine that something similar
to the Random Constant used in many numerical GP applications could be used to make
guesses about the missing portions (perhaps statistically). The genetic search would then
be responsible for determining when it was the case that an essential part of the analysis
was missing and what was likely to be missing.

Finally, just as ROSE is used for determining how sub-sentence units of meaning relate to
one another, one can imagine GP being used to determine how the meanings for individual
sentences fit together into a larger discourse structure. [Mason and Rosé, 1998] reports
on some preliminary work in this area, specifically in evolving constraint functions for
operators to function within a plan-based discourse processor [Rosé et al., 1995].
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