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Abstract

In this paper we present two hybrid Particle
Swarm Optimisers combining the idea of the par-
ticle swarm with concepts from Evolutionary Al-
gorithms. The hybrid PSOs combine the tradi-
tional velocity and position update rules with the
ideas of breeding and subpopulations. Both hy-
brid models were tested and compared with the
standard PSO and standard GA models. This is
done to illustrate that PSOs with breeding strate-
gies have the potential to achieve faster conver-
gence and the potential to find a better solution.
The objective of this paper is to describe how to
make the hybrids benefit from genetic methods
and to test their potential and competetiveness on
function optimisation.

1 Introduction

The Particle Swarm Optimisation (PSO) algorithm was
originally introduced in [Kennedy95] as an alternative to
the standard Genetic Algorithm (GA). The PSO was in-
spired by insect swarms and has since proven to be a com-
petitor to the standard GA when it comes to function opti-
misation. Since then several researchers have analysed the
performance of the PSO with different settings, e.g., neigh-
bourhood settings ([Kennedy99, Suganthan99]). Work pre-
sented in [Shi98] describes the complex task of parameter
selection in the PSO model. Comparisons between PSOs
and the standard GA were done analytically in [Eberhart98]
and also with regards to performance in [Angeline98]. An-
geline points out that the PSO performs well in the early
iterations, but has problems reaching a near optimal solu-
tion in several real-valued function optimisation problems.
Both Eberhart and Angeline conclude that hybrid models
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of the standard GA and the PSO, could lead to further ad-
vances.

We present such a hybrid model. The model incorporates
one major aspect of the standard GA into the PSO, the re-
production. In the following we will refer to the used re-
production and recombination of genes only as “breeding”.
Breeding is one of the core elements that makes the stan-
dard GA a powerful algorithm. Hence our hypothesis was
that a PSO hybrid with breeding has the potential to reach
a better optimum than the standard PSO.

In addition to breeding we introduce a hybrid with both
breeding and subpopulations. Subpopulations have pre-
viously been introduced to standard GA models mainly
to prevent premature convergence to suboptimal points
([Spears94]). Our motivation for this extension was that the
PSO models, including the hybrid PSO with breeding, also
reach suboptimal solutions. Breeding between particles in
different subpopulations was also added as an interaction
mechanism between subpopulations.

The introduced hybrids were tested against both standard
PSO and standard GA models.

The next section presents the structures of the hybrid PSO
models. Section 3 describes the experimental settings used
to find the results described in section 4. The experimen-
tal results are discussed in section 5 and finally section 6
summarises the study.

2 Model

The traditional PSO model, described by [Kennedy95],
consists of a number of particles moving around in the
search space, each representing a possible solution to a nu-
merical problem. Each particle has a position vector (z;), a
velocity vector (¥;), the position (p;) and fitness of the best
point encountered by the particle, and the index (g) of the
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best particle in the swarm.

In each iteration the velocity of each particle is updated
according to their best encountered position and the best
position encountered by any particle, in the following way

U = X (0 + $1:(Pi — Ti) + P2 (Py — Ti))
where  is known as the constriction coefficient described
in [Clerc99], w is the inertia weight described in [Shi98B,
Shi98] and p, is the best position known for all particles.
1 and o are random values different for each particle and
for each dimension. If the velocity is higher than a certain
limit, called V.42, this limit will be used as the new ve-

locity for this particle in this dimension, thus keeping the
particles within the search space.

The position of each particle is updated in each iteration.
This is done by adding the velocity vector to the position
vector, i.e.,

T =T+ U
The particles have no neighbourhood restrictions, mean-
ing that each particle can affect all other particles. This
neighbourhood is of type star (fully connected network),

which have been shown to be a good neighbourhood type
in [Kennedy99].

The structure of the hybrid model is illustrated in figure 1.

begin
initialise
while (not terminate-condition) do
begin
evaluate
calculate new velocity vectors
move
breed
end
end

Figure 1: The structure of the hybrid model.

The breeding is done by first determining which of the par-
ticles that should breed. This is done by iterating through
all the particles and, with probability pb (breeding proba-
bility), mark a given particle for breeding. Note that the
fitness is not used when selecting particles for breeding.
From the pool of marked particles we now select two ran-
dom particles for breeding. This is done until the pool of
marked particles is empty. The parent particles are replaced
by their offspring particles, thereby keeping the population
size fixed.

The position of the offspring is found for each dimension
by arithmetic crossover on the position of the parents, i.e.,

childy(x;) = p; x parenty(x;) + (1.0 — p;) * parenta(x;)
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childa(x;) = pi * parents(z;) + (1.0 — p;) * parent; (x;)

where p; is a uniformly distributed random value between
0 and 1. The velocity vectors of the offspring is calculated
as the sum of the velocity vectors of the parents normalised
to the original length of each parent velocity vector.

o parent; (¥) + parents(7)
hildy (V) =
child, (v) |parent; (V) + parents (V)]

|parent, (7)]

hilds(5) parent (V) + parents(7)
childy(0) =
2 |parent, (U) + parents (V)]

|parents (V)]

The arithmetic crossover of positions and velocity vectors
used were empirically tested to be the most promising. The
arithmetic crossover of positions in the search space is one
of the most commonly used crossover methods with stan-
dard real valued GAs, placing the offspring within the hy-
percube spanned by the parent particles. The main motiva-
tion behind the crossover is that offspring particles benefit
from both parents. In theory this allows good examination
of the search space between particles. Having two parti-
cles on different suboptimal peaks breed could result in an
escape from a local optimum, and thus aid in achieving a
better one.

We used the same idea for the crossover of the velocity vec-
tor. Adding the velocity vectors of the parents results in the
velocity vector of the offspring. Thus each parent affects
the direction of each offspring velocity vector equally. In
order to control that the offspring velocity was not getting
too fast or too slow, the offspring velocity vector is nor-
malised to the length of the velocity vector of one of the
parent particles.

Finally, the starting position of a new offspring particle is
used as the initial value for this particle’s best found opti-
mum (p;).

2.1 Subpopulation Model

The motivation for introducing subpopulations is to restrict
the gene flow (keeping the diversity) and thereby attempt
to evade suboptimal convergence.

The subpopulation hybrid PSO model is an extension of
the just described breeding hybrid PSO model. In this new
model the particles are divided into a number of subpopu-
lations. The purpose of the subpopulations is that each sub-
population has its own unique best known optimum. The
velocity vector of a particle is updated as before except that
the best known position (P, in the formula) now refers to
the best known position within the subpopulation that the
particle belongs to. In terms of the neighbourhood topology
suggested by Kennedy in [Kennedy99], each subpopulation
has its own star neighbourhood.
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The only interaction between subpopulations is if parents
from different subpopulations breed. Breeding is now pos-
sible both within a subpopulation but also between differ-
ent subpopulations. An extra parameter called probability
of same subpopulation breeding (psb) determines whether
a given particle selected for breeding is to breed within
the same subpopulation (probability psb), or with a particle
from another subpopulation (probability 1 — psb).

Replacing each parent with an offspring particle ensures a
constant subpopulation size.

3 Experimental Settings

Both the PSOs and the standard GA were tested on four
benchmark problems, all minimisation problems. The first
two functions were unimodal while the last two were multi-
modal with many local minima. All functions are designed
such that their global minimum was at or near the origin of
the search space.

The first test function was the generalised sphere function
given by the equation

n
z) =) af
i=1

where z is a n dimensional real-valued vector and x; is
the ¢th element of that vector. The second function is the
generalised Rosenbrock function given by the equation

n—1

fo(x) = (100(xig1 — a7)* + (2 — 1)%)

i=1

The third function is the generalised Griewank function.

H COS

The fourth and final test function is the generalised Rastri-
gin function which is given by the equation

1 n
- 1
f3(z) 1000 2 00)?

—100
——)+1

n

Z(ch — 10cos(2mx;) 4+ 10)

i=1

fa(z) =

These four functions have been commonly used in other
studies on particle swarm optimisers (e.g. [Kennedy99,
Shi99)).

The initial population is usually uniformly distributed over
the entire search space. According to [Angeline98] this can
give false indications of relative performance - especially
if the search space is symmetric around the origin where
many test functions have their global optimum. To prevent
this, and to ease comparison with other models, the asym-
metric initialisation method used in [Angeline98] was used.
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Table 1: Search space and asymmetric initialisation ranges
for each test function.

Function Search space Initialisation range
f —100 < z; <100 50 < z; <100
fa —100 < z; <100 15 <z; < 30
fs —600 < x; < 600 300 < z; <600
fa -10<2; <10 2.56 < x; <5.12

Search space and initialisation ranges for the experiments
are listed in table 1. The number of generations run for each
test function was set to 1000, 1500 and 2000 correspond-
ing to the dimensions 10, 20 and 30 of the test functions
respectively.

In both the standard PSO model and the hybrid model, the
upper limits for (1 and @9 were set to 2.0, and a linearly
decreasing inertia weight starting at 0.7 and ending at 0.4
was used. The constriction coefficient y was set to 1. The
maximum velocity (V;,4,) of each particle was set to be
half the length of the search space in one dimension (for
instance V4 = 100 for f1 and f>).

Two sets of experiments were conducted; Experiments with
breeding alone and experiments with both breeding and
subpopulations.

Research done in [Shi98] regarding scalability of the stan-
dard PSO have shown that the performance of the standard
algorithm is not sensitive to the population size. Exper-
iments with the hybrid model confirm this result. Based
on these results the population size in the experiments was
fixed to 20 particles in order to keep the computational re-
quirements low.

In the experiments with subpopulations, the population size
for the whole system was also 20. The size of each sub-

population was fixed throughout each run at ———29
. subpopulations
particles.

The probability for breeding (pb) was empirically found to
have its optimal setting at 0.2, which with 20 particles on
average gives a total of two breedings per generation.

In the experiments with subpopulations, the best setting re-
garding the probability for breeding within the same sub-
population (psb) was determined empirically by examining
the results for different settings. The number of subpopu-
lations used in the experiments was 2, 3, 4 and 6. Table 2
shows the relation between the number of populations and
the setting for this probability that appeared to be optimal.

The standard GA that we used was a real-valued GA with
random initialisation, tournament selection with tourna-
ment size two, arithmetic crossover with random weight,
Gaussian mutation with distribution N (0, o) where « is
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Table 2: Probability for breeding within same subpopula-
tion compared to number of populations

Populations | Psb
1 1.0
2 0.6
3 0.3
4 0.0
6 0.0

linearly decreasing from 1 to 0. Crossover and mutation
probabilities for each of the four test functions are listed in
table 3. In order to get a fair comparison between the mod-
els, with regards to the total number of evaluations, a pop-
ulation size of 20 individuals was also selected for the GA.
This was done even though the standard GA often requires
larger population sizes in comparison to the standard PSO
model [Angeline98]. Other studies [Shi99] show that the
standard PSO model with different population sizes have
almost the same performance, so the low population size
seems to be fair when analysing the PSO model.

Table 3: Crossover and mutation probability used in stan-
dard GA.

Function | Crossover prob. | Mutation prob.
f 0.60 0.30
fa 0.50 0.30
f3 0.50 0.40
fa 0.20 0.02

A total of 100 runs for each experiment were conducted.

4 Experimental Results

Tables 4 and 5 list a representative set of results from the
conducted experiments. The tables list the test function, the
dimensionality of the function, the number of generations
the algorithm was run and the average best fitness for the
best particle found for the 100 runs of the four test functions
respectively. Standard error for each value is also listed.
Table 4 shows results for the experiments with the hybrid
PSO without subpopulations. The table also list the corre-
sponding average best fitness of both the standard PSO and
the standard GA with the same settings (where they are ap-
plicable) as described in the previous section. Results for
experiments with subpopulations are listed in table 5. Note
that the hybrid PSO with one subpopulation in table 5 cor-
responds to the hybrid PSO in table 4.

Figures 2 to 7 are graphs corresponding to the reported ex-
periments.
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Figures 2 to 5 show the average best fitness for each genera-
tion for both the standard PSO model, the standard GA and
the hybrid model. The graphs illustrate a representative set
of experiments for functions with a dimensionality of 30.
The hybrid model in these figures are without subpopula-
tions (i.e. one subpopulation). Note that the figure with the
Griewank function only illustrates two experiments, since
the standard GA was unable to achieve a reasonable result
(see table 4).

Figures 6 and 7 show the average best fitness for each
generation for both the standard PSO model and the hy-
brid model. The graphs illustrate experiments with both
a unimodal (Rosenbrock) and a multimodal test function
(Griewank) both of 30 dimensions. The graphs for the hy-
brid model correspond to experiments with a varying num-
ber of subpopulations. The graphs for the standard PSO
model are the same as in the previous figures.

Tables 4 and 5 with corresponding figures 2 to 5 show re-
sults for the standard PSO supporting the results in [Shi99].

In experiments with the Sphere function the standard PSO
achieved better results and had much faster convergence
than both the standard GA and the hybrid model with one
subpopulation. The GA and the hybrid model found similar
values but the hybrid model had a faster convergence speed
than the GA. When the number of subpopulations in the
hybrid model was increased the best fitness got worse. This
happened in all of the experiments.

With the Rosenbrock function, the standard PSO had a bet-
ter performance than both the GA and the hybrid model.
The hybrid model only had a fitness comparable to that
of the standard PSO when the test functions were of low
dimensionality. When the dimensionality of the test func-
tions were higher, the GA accomplished better results than
the hybrid model. The convergence speed of the GA and
the hybrid model was better than that of the standard PSO.

In the experiments with the Griewank function, the GA
failed to achieve a reasonable result compared to the other
models. The hybrid model had a faster convergence than
the standard PSO, but achieved a marginally worse best
value.

In experiments with the Rastrigin function, the hybrid
model was better than both the standard GA and the stan-
dard PSO model with both a faster convergence and also a
better best value found.
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Table 4: Average best fitness of 100 runs for experiments without subpopulations (Average best fitness+standard error).

f | Dim. | Gen. Std. PSO Std. GA Hybrid

f 10 1000 | 2.98E-33+4.21E-33 | 2.43E-04+1.14E-05 | 2.42E-044+2.17E-05
f 20 1500 | 3.03E-20+9.27E-21 | 0.00145+6.22E-05 | 0.00212+2.75E-04
f 30 | 2000 | 6.29E-13+7.64E-14 | 0.00442+1.78E-04 | 0.01203+6.33E-04
fo 10 1000 43.049+11.554 109.810£6.212 43.521£16.047
fo 20 1500 115.143£19.871 146.912£10.951 169.112421.535
fa 30 | 2000 154.519+£24.512 199.730+16.285 187.0334+22.960
f3 10 1000 | 0.08976+0.00498 283.251+1.812 0.09078+0.03306
f3 20 1500 | 0.03601+0.00298 611.2664+3.572 0.0045940.01209
f3 30 | 2000 | 0.01504-£0.00241 889.537+£3.939 0.0991140.00106
fa 10 1000 4.8021+0.2323 3.1667+0.2237 3.0599+0.1535
fa | 20 1500 21.3917+0.7885 16.8732+0.6007 11.659040.3602
fa | 30 | 2000 46.9712+1.3206 49.3212+1.1204 27.8119+0.8059

Table 5: Average best fitness of 100 runs for experiments with subpopulations (Average best fitness+standard error).
(“Hybrid (2)” is the hybrid model with ¢ subpopulations).

-10

Figure 2: Standard PSO versus hybrid model for Sphere
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Generation

function with one population.

f | Dim. | Gen. Hybrid (1) Hybrid (2) Hybrid (4) Hybrid (6)
f 10 1000 | 2.42E-044+2.17E-05 | 3.796E-054+9.22E-05 | 0.00223+£9.13E-04 | 0.02124+0.00641
f 20 1500 | 0.00212+2.75E-04 0.001754+2.28E-04 0.00566+0.00185 | 0.04597+0.00721
f 30 2000 | 0.01203+6.33E-04 0.17396+4.56E-04 0.0202340.00349 | 0.05669+0.00738
fa 10 1000 43.521+16.047 51.701£13.761 63.369+14.006 81.283+14.907
fo 20 1500 169.112+21.535 129.570+14.880 108.391+16.928 137.236+19.619
fo 30 2000 187.033+22.960 196.554+14.733 279.390+19.468 247.724+31.822
fs 10 1000 0.0907840.03306 0.4642340.03700 0.69206+0.02758 | 0.74694+0.01844
f3 20 1500 0.004594+0.01209 0.0223140.02121 0.098854+0.01883 | 0.343064+0.03072
f3 30 2000 0.0991140.00106 0.06316+0.00121 0.163894+0.00913 | 0.375014+0.02842
fa 10 1000 3.0599+0.1535 3.5615+0.1478 3.6840+0.2611 6.8036+0.4657
fa 20 1500 11.6590+0.3602 12.9158+0.3107 11.6379+0.5308 11.7054+0.5992
fa 30 2000 27.811940.8059 38.5897+0.6455 29.5827+1.0649 29.17474+0.9449
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brock function with one population.

Figure 3: Standard PSO versus hybrid model for Rosen-
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Figure 4: Standard PSO versus hybrid model for Griewank
function with one population.
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Figure 5: Standard PSO versus hybrid model for Rastrigin
function with one population.

5 Discussion

Tables 4 and 5 show a comparison of the performances in
the standard PSO model, the standard GA, and the breeding
PSO hybrid with regards to the optimum found.

Looking at the unimodal functions Sphere (f1) and Rosen-
brock (f2) both the hybrid and the standard GA seem to
outperform by the standard PSO. As mentioned in section
2 the offspring are initialised with a clean memory, i.e., the
previously best found solution of a new particle is its start-
ing point in the search space. This should provide a form
of diversity since new particles are unaware of previously
found optima. The purpose of adding diversity to the stan-
dard PSO is to tackle the problem of avoiding sub-optimal
solutions. When we try to avoid sub-optimal solutions we
run the risk of not beeing able to find a close to optimal so-
lution because the particles takes longer to converge. This
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Figure 6: Hybrid model with different number of subpopu-
lations versus standard PSO (Rosenbrock 30 dim.).
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Figure 7: Hybrid model with different number of subpopu-
lations versus standard PSO (Griewank 30 dim.).

could be why the hybrid model suffers in experiments with
unimodal functions.

Looking at the multimodal functions Griewank (f3) and
Rastrigin ( f4) the hybrid model should have a better chance
of outperforming the standard PSO, because of the ex-
tra diversity. Table 4 does not show an improvement for
the Griewank function, but figure 4 shows that the hybrid
model converges faster than the standard PSO model. The
standard GA was not able to reach a reasonable optimum
in any of the experiments with the Griewank function. This
is probably due to the fairly small population size in the
GA. Table 4 along with figure 5 show the improvements
for the Rastrigin function. Here both faster convergence
is achieved and an improvement in the best solution is
found. These results could be because of the design of
the crossover operator that allows offspring particles to es-
cape local optima (see section 2). The results seem to show
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the potential of particle breeding regarding the multimodal
problems.

Table 5 as well as figures 6 and 7 show no further in-
crease in performance when subpopulations were intro-
duced. Comparisons between the approach with one sub-
population (equal to the standard breeding PSO hybrid) and
cases with more than one subpopulation show that the in-
troduction of subpopulations only outperforms the standard
breeding PSO hybrid in the Rosenbrock 20-dimensional
function. In all other experiments the hybrid model with
subpopulations performs worse than the standard PSO
model. This is probably because the particles are dis-
tributed in several subpopulations which yields a subpopu-
lation size that is too low.

The setting of psb, the probability of breeding within the
same subpopulation, could be the cause of the performance
deterioration. When the number of subpopulations is in-
creased, the number of particles in each subpopulation is
decreased. Having only a few particles in a subpopulation
limits the effect of breeding within this subpopulation. Our
experiments confirm that it was better to use a lower psb
when the number of subpopulations increases, as seen in
Table 2. A low psb implies that the probability for breed-
ing between subpopulations is high which of course re-
duces the effect of subpopulations, in that the amount of
gene flow in the total population is kept somewhat constant.
These results suggest that the introduction of this specific
subpopulation construction to the hybrid model does not
generally improve the performance of particle swarms.

6 Conclusions and Future Work

In this paper a hybrid model based on the standard Par-
ticle Swarm Optimiser (PSO) and the standard Genetic
Algorithm (GA) was introduced. The hybrid model
was basically the standard PSO combined with arithmetic
crossover. Furthermore, the notion of subpopulations in the
hybrid model was introduced, also from the genetic algo-
rithm field.

Four models were used in comparison, namely the stan-
dard PSO model, the standard GA and the two hybrid mod-
els. Parameters for each model were empirically tuned for
each model yielding interesting results regarding the hybrid
models. We found that the probability of breeding (pb) for
a given particle had its optimum around 0.2. The optimal
setting for the probability for breeding between subpopu-
lations (psb) was in our case found to depend on the num-
ber of subpopulations. This result indicates that the model
would work better with larger subpopulation sizes or other
interaction constructions between subpopulations

On unimodal test functions (Sphere and Rosenbrock) the
hybrid model was outperformed by the standard PSO and
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GA models regarding a comparison of the best optima
found. Yet, the hybrid model had a marginally faster con-
vergence than both the standard PSO and GA models. On
multimodal test functions (Griewank and Rastrigin) the hy-
brid model performed better. The optima found by the hy-
brid were better or identical to those of the standard PSO
model and the convergence speed was marginally faster.

Future work should cover the grounds of other subpopu-
lation constructions. We chose breeding to model interac-
tion between subpopulations, but other schemes such as mi-
gration should be investigated. Larger subpopulationsizes
should also be investigated and compared to other evolu-
tionary algorithms that uses subpopulations.
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Abstract

The concept of building blocks is reconsid-
ered in the context of set systems. It is ar-
gued that building block semantics can be
captured by imposing two constraints (the
weak heredity and weak augmentation prop-
erties). Building blocks that satisfy these
properties are shown to be closely related
(but not identical) to greedoids, combinato-
rial objects of central importance in the study
of greedy algorithms.

1 Introduction

The aim of this paper is to examine the combinatorial
structure of the building block concept. Two issues
motivate this study: First, the need to clarify the con-
troversial relationship between genetic algorithms and
building blocks. Second, the need to study the (sus-
pected) relationship between greedy algorithms and
genetic algorithms.

The outline of this paper is as follows. In Section 2, the
relationship between greedy algorithms and genetic al-
gorithms (GAs) is considered. Section 3 examines the
conceptual foundations of building blocks. It also in-
troduces a representation to explicate the block inter-
relationships. Section 4 relates greedoids to a certain
type of building blocks. Section 5 closes with a dis-
cussion of the results. Results drawn from external
sources are referred to as “Propositions.”

2 Greed & GAs: Connections

Besides the trivial fact that both greedy algorithms
and genetic algorithms are algorithmic strategies
rather than algorithms per se, they also share several
other similarities:

e Both approaches involve the selection of some dis-

tinguished members from a population. This se-
lection is not arbitrary, but instead is made with
respect to some partial-order imposed on the pop-
ulation (usually, that induced by the cost func-
tion).

Both require solutions to the problem to have cer-
tain structural properties, if optimal solutions are
to be generated. These structural properties are
particularly well understood in the case of greedy
algorithms [7]. For genetic algorithms, the situa-
tion is much less clear. Minimally, one expects
that there should be some correlation between
the representation of a solution and its “good-
ness.” Also, the early introduction of concepts
like building blocks, deception, schemas, Royal
Road functions etc. to the field, indicates the gen-
eral acknowledgment of the importance of prob-
lem structure to GA-efficacy.

Certain idealized versions of GAs can be shown to
be gradient algorithms, which are merely greedy
algorithms operating on cost surfaces. One such
idealization is the GA equipped with propor-
tional selection, no mutation effects, and applica-
tions of point crossover until linkage equilibrium
is achieved in each crossover phase. This ideal-
ization is easily shown to be a gradient algorithm
[13].

Recent mathematical descriptions of the two ap-
proaches also bear strong resemblance to each
other. The theory of greedy algorithms has
been recast in terms of a new majorization op-
erator acting on sequences [14]. Remarkably,
an entirely different set of arguments (replicator
theory, quadratic differential equations) enabled
the interpretation of proportional selection, point
crossover and bit mutation operators as majoriza-
tion operators [11].
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Of course, all this evidence is merely circumstantial,
and some of it, defeasible. It is always harder to prove
the absence of a relationship than the presence of one.
Also, there are distinct differences between the two
strategies. GAs are inherently probabilistic, while the
“classic” applications of greedy algorithms (for exam-
ple, the minimum spanning tree problem, Huffman en-
coding, the knapsack problem with real weights) are
all inherently deterministic. The very notion of a prob-
abilistically greedy algorithm is hard to define or op-
erationalize. For instance, how would an “occasion-
ally greedy” algorithm be different from a “randomly
greedy” algorithm? Is a “non-greedy” algorithm al-
lowed to be occasionally greedy?

There are other differences. GAs operate on a pop-
ulation of solutions, while greedy algorithms usually
reduce to the incremental construction of an optimal
object (for example, the construction of a minimum
spanning tree, one edge at a time). Experimental
studies with the Royal Road functions indicate that
modifications that improve the performance of greedy
algorithms do not necessarily improve the performance
of genetic algorithms [2]. It is also doubtful that the
two approaches are philosophically compatible. It is
hard to see how diversity, that bedrock of evolution,
can be achieved through purely greedy mechanisms.

Clearly, there are similarities as well as differences.
But is there a conceptual core that is common to both
approaches? The next two sections argue that there is
such a core, rooted in the notion of a building block.

3 Reconsidering Building Blocks

The first explicit description of a building block was
given by Goldberg:

“Because highly fit schemata of low defining
lengths and low order play such an impor-
tant role in the action of genetic algorithms,
we have already given them a special name:
building blocks. Just as a child creates mag-
nificent fortresses through the arrangement of
simple blocks of wood, so does a genetic algo-
rithm seek near optimal performance through
the juxtaposition of short, low-order, high
performance schemata, or building blocks.”

(3, pp. 41]

Intuitively, a building block is an allelic combination
which confers upon its inheritor some attractive prop-
erty, typically, an above-average fitness value. Lay ex-
planations of GA dynamics have generally relied upon
the notion of a building block. For example, deceptive
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functions are supposed to mislead the GA about the
“right” building blocks to evolve, and crossover opera-
tors are sometimes ranked on their ability to combine
building blocks. The concept of a building block has
the virtues of being simple, reasonable, and useful in
operator design.

The simplified explanation of how a GA works has
come to be called the “building block hypothesis”
(BBH). The BBH does not make any assertions on
what should happen if low-fitness, low-order, schemas
with low defining lengths are combined, nor does it
concern itself with issues of statistical confounding.
For these and related reasons, the BBH has been crit-
icized [5, 12]. An influential paper showed experimen-
tally that the BBH could not possibly be true in its
lay interpretation [2]. Goldberg had introduced the
concept of deception to encompass situations in which
the BBH was violated; unfortunately, simulations of
GAs optimizing deception-free functions (such as the
Royal Road functions [2]) appeared to show that the
BBH was still being violated. The concept of decep-
tion itself received a telling blow with Grefenstette’s
analysis [4].

However, the BBH and associated ideas can be de-
fended in several ways. Altenberg’s use of Price’s the-
orem [1], or the recent attempt to relate Geiringer’s
theorem to schema analysis [15], shows how careful for-
mulations of the Schema theorem can mitigate some
of the criticisms leveled against it. The generality of
Price’s theorem makes it difficult to see how any evo-
lutionary explanation can completely ignore schema-
theoretic arguments. Besides, the BBH represents a
certain ideal, that the nitty-gritty details of GA im-
plementations may not achieve. This can be given a
normative flavor: Would an optimizer really choose a
GA that violates the BBH over one that preserves it?

Unfortunately, the BBH lends itself to misinterpreta-
tion. The assertion that a GA’s success is due to the fe-
licitous juxtaposition of building blocks is a causal as-
sertion of the form “Y (high fitness schemata) because
of X, (juxtaposition of building blocks)” or simply, “if
X then Y.” Seen this way, it suggests that a build-
ing block is a causal explanation in the sense of the
philosopher John Mackie, namely, an INUS condition
(“Inmsufficient but necessary part of an unnecessary
but sufficient condition'.”) [10]. The BBH does not
assert that highly fit schemata cannot be created in
other ways (for example, random drift, combinato-
rial miracles via mutation, hitchiking mechanisms). It
also says nothing about what would happen if there
are constraints on the population size, that is, if the

Ttalics added.
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growth of one building block is at the expense of an-
other. The case of cohort analysis in demographics
is instructive. A wide variety of anomalous results
may be demonstrated due to the dynamics of hetero-
geneous cohorts subject to different rates of growth
[16]. Yet, mortality curves can still be constructed
based on simple population models. The results of
Forrest and Mitchell [2] appear to be closely related to
the paradoxes observed when aggregation procedures
are applied to heterogeneous collections [6].

Finally, it is important to remember that despite their
common history, the BBH is distinct from the con-
cept of a building block. The BBH may well be too
simplistic for any practical or theoretical use. But the
concept of a building block, or a variant thereof, is still
a fruitful one.

In the next section, building blocks are examined from
a combinatorial perspective. The idea is to represent a
collection of building blocks as a set system, and trans-
late the semantics of building blocks into structural
statements on the set system. The resulting combina-
torial structure will be compared with greedoids, and
the similarities delineated.

3.1 Building Blocks: Representation

The first step is to fix the representational aspect of
building blocks. Let Z; denote the set of integers
{1,2,...,1}. Assume that allelic values are drawn from
the set Z,,,. Let P(Z; x Z,,) denote the power set (=
set of all subsets) of Z; X Z,,,. A building block is a set
of the form,

B ={(i,j):i € Z,j € Zn} € P(Z x Zn). (1)

(i,j) € B indicates that the building block B has
allele j in position i. Hence, it is required that if
(i1,7) € B and (i2,k) € B, then iy # i>. The or-
der of a building block B is its cardinality, that is, the
number of elements in the set B, and is denoted as |B|.
For example, the set B = {(1,1),(3,0),(5,1),(6,1)}
refers to the schema 1 % 0% 11 % ---. Building blocks
By and B, are said to be in conflict if there exists a
(i,j) € By and (i,j') € By and j # j'. Thus, the
schemas 1% 0% 11 and 0 % 0 * 01 have two conflicting
alleles at loci 1 and 5.

Let B(m,1) (or simply, B) denote a set of building
blocks on m alleles and [ positions (loci).

The traditional interpretation of a building block as
a high-fitness, low-order and low defining-length set
of alleles is problematic for three reasons. First, the
defining length of a building block is an artifact of
the “string” representation (unlike its order), and may
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not be meaningful for other representations. Second,
the term “high fitness” can be interpreted in several
non-equivalent ways (“above average fitness”, “above
median-fitness” etc.). Third, it is not clear whether
a building block is a static concept or a dynamic one
(that is, proportion dependent).

The view adopted in this paper is as follows: The defin-
ing length of a building block will be treated as not
being relevant to the concept of a building block. It
is assumed that the building block concept is a static
one, and hence should not depend on the schema pro-
portions in the population. Finally, by “high fitness”
it is meant that for the non-negative, real valued, fit-
ness function F under consideration, there is some
fitness-criteria based, many-to-one indicator function
wr, where:

pr : P(Zix Zm) —  {0,1},
B;eB & up(B) = 1.

For example, the indicator function could be based on
whether the fitness of a block was greater than the
static average of the function. The function up(-) is
deliberately left unspecified, because the choice of a
specific formula is not relevant as long as it is used
consistently (at least for the purposes of this paper).

3.2 Encodons: Encoding Building Blocks

Each building block in B(m,!l) is now encoded as a
subset of Z; where ¢ < [I™|. The encoding will be
represented by the one-to-one partial function n:

n: P(Zl X Zm) — Zlm,
n@) = ¢

¢ is said to be the trivial encodon. The partial function
n is computed by the following procedure, formally
described below in Figure 1.

The algorithm in Figure 1 operates (roughly) like
a variable length encoding procedure. It begins by
renumbering the elements of B so that the first I; (say)
elements are all blocks of order 1, the next [» elements
are of order 2 and so on [step 1]. Encode each order-d
building block in terms of the encodings of blocks of
lowest possible order [step 2].

For example, suppose a block of order-d can be writ-
ten as the union of a collection of order-1 blocks. Its
encoding is then defined to be the union of the encod-
ings of the order-1 blocks in the collection. However,
an order-d building block need not usually decompose
in that manner. The general method for encoding
such a block X is to determine its intersection with



480

1. Rearrange the elements of [ so that the
block orders are non-decreasing. Set
ent = 0.

2. For each successive order-d block B; in
B, do:

(a) Define n(Bj) = ¢.
(b) For each order-r block By (k # j,r <
d) in B do:
i. Compute Cj; = B; N By.
ii. If n(Cjr) is not defined, then:
define n(Cj) = {cnt+1}. cnt = cnt+
1.
iii. Update: n(B;) = n(B;) U n(Cjx).
(c) Compute D; = Bj — U,cy(B,) Br-
(d) If D; # ¢, then:
i. Define n(D;) = {cent+1}. cnt = cnt+
1.
ii. Set n(Bj) = n(B;) U n(Dj).

Figure 1: Computing Block Encodings

every other building block of strictly lower order [step
2(b)i]. If an intersection set has already been encoded,
then its encoding is added to X’s encoding set [step
2(b)iii]. If not, we define the intersection set’s encod-
ing to be a new singleton set consisting of the smallest
unused integer in Z;m [step 2(b)ii]. That encoding is
also added to X’s encoding set [step 2(b)iii]. If X
can be recovered by taking the union of its intersec-
tions with other blocks, then we are done encoding X
[step 2(d)]. Else, X consists of a portion (set) that
does not intersect with any other block. That portion
is encoded as a unique singleton set consisting of the
smallest unused number in Z= [step 2(d)i], and the
encoding also added to that of X [step 2(d)ii]. At the
end of this procedure each building block in B(l,m)
will be represented uniquely as some subset of Z, for
some ¢ < [I™].

For example, using this procedure, one encoding for
the building blocks associated with the Royal Road
function R1 could be: s; — {i} (fori = 1...7)
and sg — {1,2,3,4,5,6,7}. Similarly, the build-
ing blocks in the Royal Road function R2 could be
mapped as s; — {i} (for i = 1,...,8), s —
{1,2},810 — {3,4}, S11 — {5,6}, S12 — {7,8} and
S13 —* {1,2,3,4,5,6, 7,8}

The encoding of a building block (that is, the image
of the building block under 1) will be referred to as its
encodon. The length of an encodon is its cardinality,
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and is not related in an obvious way to the order of
the building blocks. Define the set of encodons C by:

¢ = n(B) = {n(B)) : B; € B). 2)

Two encodons are said to be conflicting if they are
images of conflicting building blocks (section 3.1).

The set of encodons corresponding to a set of blocks
are unique upto permutation (briefly, this is because
the encodons record building block intersections). Re-
ordering the order-k blocks differently, could result in
a different subset assignment. It is possible to modify
the algorithm in Figure 1 to get a unique set of codons,
but the results of this paper only need uniqueness upto
permutation.

In the next section, a subset of building blocks are con-
sidered; one that will clarify the relationship between
greedy algorithms and building blocks.

4 Matroyshka Blocks and Greedoids

What makes encodons something more than schemas
in formal wear, is the definition of a Matroyshka set.

Definition 1 (Matryoshka? Blocks): A set of
building blocks, B is said to be a Matroyshka set, if
its corresponding encodon set C = n(B) satisfies the
following two properties:

(Ground property): ¢ € C.

(Weak Heredity property): An encodon of length
k > 1 must contain at least one non-trivial encodon.
Formally, if C € C and |C] > 1, then there exists a
proper subset C' C C, |C| > |C'| >0 and C" € C.

|

The Ground property is added to ensure that encodons
of size 1 will not trivially violate the Weak Heredity
property. It does no harm, and simplies proofs.

The basic reason why Matryoshka sets are defined with
respect to encodons, and not building blocks, is that
the encodons enable the building blocks to be treated
as blocks. For example, had the building blocks been
required to satisfy Weak Heredity (instead of their en-
codons), then the Royal Road functions would appear
not to satisfy it. But the functions were explicitly de-
signed to have building blocks made up of lower order
blocks. That explicit construction is visible when we
look at the intersections between the building blocks,
that is, their encodons (roughly).

2The name was inspired by the Matroyshka dolls; these
are “nested dolls,” a traditional Russian folkcraft.
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The Weak Heredity property requires that an encodon
must contain at least one other encodon of non-zero
length. Note that just ome such ‘sub-encodon” is re-
quired. The encodons obtained from the Royal Road
functions R1 and R2 do have this property. But it
is easy to construct scenarios where this property is
not achieved. For example, suppose B was specified
by the schemas {* % x,00%,0 % 0,%00}, correspond-
ing to the descriptions, B = {Bi, Ba, B3, B4}, with,
By = ¢, By = {(170)7(270)}v B; = {(170)7(370)}7
B, {(2,0),(3,0)}. One possible encoding of B is
given by, n(B1) = ¢, n(Bs) = {1,2}, n(Bs) = {1,3}
and n(Bg) = {2,3}. B is not a Matroyshka set be-
cause 1(By), n(Bs), and 1(Bg) break the Weak Hered-
ity property.

The first argument for Weak Heredity is that it defines
a certain kind of “consistency.” Suppose a set of al-
leles was defined to be a building block if its static
fitness (averaged over the fitnesses of its instances)
was greater than or equal to the average value of
the function. Suppose further that a schema of or-
der d, say, 1 *x 00% happened to be a building block,
but none of its “sub-schemas” (for example, * % 00%)
was a building block. That is, the fitnesses of each of
the non-conflicting sub-schemas are below the average
fitness. This is a deceptive situation. A lower order
schema gives information conflicting with a higher or-
der schema over the same set of fixed alleles. The idea
behind requiring a set of encodons to possess the Weak
Heredity property is to prevent this kind of occurrence.
When one encodon contains another it indicates that
a subset of alleles consistently manifests in a lower or-
der building block as well as a higher order one. This
scenario is only mildly dependent on characterizing a
building block as having “higher than average fitness.”
Other centralized measures (median, mean, mode et
cetera) could be used, and the thrust of the argument
would not be weakened.

A second argument is that the Weak Heredity prop-
erty models the reasoning behind the construction of
functions like the Royal Road functions. The property
(theoretically) would allow the generation of good so-
lutions from previous ones, with a minimal reliance
on combinatorial miracles. As building blocks are
currently understood, even delta functions could be
said to “possess” building blocks. For example, in
the function defined by f(111) = 100, and otherwise
f(xxx) =0, the block 111 could be said to be a “build-
ing block.” To allow such extreme scenarios is to di-
lute the concept of a building block. If knowing that a
function possesses a set of building blocks includes the
possibility that the blocks are merely a series of dis-
connected “needles in the haystack,”, then such knowl-
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edge is of very limited use. Irrespective of whether or
not GAs (or any other algorithmic strategy) actually
take advantage of such a property, Weak Heredity can
be used to develop a performance ideal, against which
actual performance can be compared.

A third argument is that the Weak Heredity property
is implicit in the notion of “building” from building
blocks. To see this, consider the following property.

(Weak Augmentation): Let C1,C> € C denote
two non-conflicting encodons, such that |Cy| > |Cy].
Then, there exists a non-empty set X C C; — Oy,
such that | X| < |Cy U Cyl and CLUX € C. 1

The Weak Augmentation property says that given two
building blocks, one larger than the other, and not
sharing any conflicting alleles, there must be some al-
leles in the difference of the two pieces, such that the
addition of those alleles to the smaller building block,
produces a new building block. The requirement of
non-conflict is a way of saying that either the building
blocks agree on their common alleles or they are spec-
ified over disjoint sets of alleles. It is a technicality
to prevent meaningless or undefined mixes of encodon
sets.

The idea of “building” in building blocks is thus mod-
eled by requiring that some subset may be transferred
from the larger block to the smaller one without losing
quality. Typically, one visualized the word “building”
as the “putting together” of units. This definition on
the other hand, views “building” in terms of the rela-
tion between the end product and one of its constituent
pieces. The intuitive meaning of the word “building”
is not lost; see for example, Proposition 1.

What makes the Weak Augmentation property partic-
ularly interesting is that encodons that satisfy it also
possess the Weak Heredity property, as is shown by
the following lemma.

Lemma 1 If a set of encodons C satisfies the Ground
and Weak Augmentation properties, then it also sat-
isfies the Weak Heredity property. |

Proof: Satisfaction of the Ground property implies
that ¢ € C. Let C; € C be any encodon such that
|C;] > 2 (If there is not any such encodon then the
Weak Augmentation property is trivially satisfied and
the proof is done). By definition, C; is not in conflict
with the trivial encodon ¢. Applying the Weak Aug-
mentation to the pair (C;, ¢), implies the existence of
a non-empty C; C C; such that C} € C. But C; is
any encodon in C (of non-unit size), and the lemma is
proved. i



482

Weak
Accessibility
Greedy-Matryoshka Blocks

Ground Axiom

Weak Augmentation Matryoshka
Blocks
All Building Blocks

Figure 2: Building Block Categories

If a set of building blocks satisfies both the Weak Aug-
mentation and the Ground properties, then it said to
belong to the family of Greedy-Matryoshka set (the
reason for the name will become clear shortly). From
Lemma 1 it follows that if a set of blocks is Greedy-
Matryoshka then it is also a Matryoshka set

The adjective “weak” is appended to the heredity and
augmentation properties because each of these prop-
erties has a strong form. The “strong” version of the
Weak Augmentation property is given below.

(Augmentation): Let C; and Cs denote two non-
conflicting encodons such that |Cy| > |C2| and |Cy| >
0. Then, there exists an element x € C; — Cs such
that Cy U {z} € C. I

The Augmentation property is much more specific
than the corresponding weak version as to the size of
the exchange required to generate a new encodon from
the original pair. A corresponding “strong” version of
the Heredity property can also be defined.

(Heredity): An encodon of length k£ > 1 must con-
tain at least one non-trivial encodon of length k& — 1.
Formally, if C € C, and |C| > 1, then there exists a
proper subset C' C C, |C] > |C'|>0and C' € C. 1

Lemma 1 derived Weak Heredity from the Ground and
Weak Augmentation properties. In an analogous man-
ner, it can be shown if a set of encodons satisfies the
Augmentation and Ground properties, then it also sat-
isfies the Heredity property. In other words:

Lemma 2: If a set of encodons C satisfies the Ground
and Augmentation properties, then it also satisfies the
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Accessibility
Trivial Axiom
Augmentation Greedoids
All Set Systems

Figure 3: Set Structure of Greedoids

Heredity property. I

In fact, given that the Ground property holds, it can
be shown that if just one of the properties (either aug-
mentation or heredity) is in the “strong” version, then
the resulting system of encodons has the other prop-
erty in the strong form as well. It suffices therefore,
to consider encodon sets with either (a) both proper-
ties in the strong version, (b) both properties in the
weak version, (c) possessing only the Weak Heredity
property (Matryoshka sets) or (d) not possessing even
the Weak Heredity property. The relationship of the
various block sets is shown in Figure 2.

The concept of a Matryoshka block can now be con-
nected to the theory of greedoids [8], and related set
systems [7].

Definition 2 (Greedoids): Let F' be some collection
of subsets of a finite set E, that is, FF C P(E), where
P(E) denotes the power set of E. The tuple G =
(E,F) is said to be a greedoid if the following two
axioms are satisfied:

(Trivial Aziom): ¢ € F,i.e. the empty set belongs to
F.

(Augmentation Aziom): If X,Y € F and |X| > |V|
then there existsan z € X—Y such that YU {z} € F.

E will be called the ground set. i

Results analogous to Lemma 1 exist in the theory of
greedoids as well. For example, it can be shown that
the Trivial axiom and the Augmentation axiom imply
the following property:
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(Accessibility) Forall X € F thereexistsanz € X
such that X — {z} € F. I

The Accessibility property is essentially identical to
the (strong) Heredity property. The latter name is re-
tained on account of its suitability in the evolutionary
context.

Upon comparing Definition 2 with that of a Ma-
troyshka set (Figures 2 and 3 depict the similarities
visually) it is clear that greedoids are a “stronger” ver-
sion of the idea of Matryoshka blocks. From a combi-
natorial perspective, the difference between the two is
one of degree, rather than quality. Since the notion of
a Matryoshka set was motivated by building block se-
mantics, the connection with greedoids is interesting.

This similarity finds reflection in several results in the
greedoids literature. For example, consider the follow-
ing proposition, known (oddly enough) in the greedoid
literature as the recombination lemma [8, Lemma 4.2].

Proposition 1 (Recombination Lemma) Let (E,F)
be a greedoid, and X UY € FandU € F. If |U| =
IX|,then U UY € F. B

Notice the resemblance to the operating philosophy of
the point crossover operators. The existence of such
results in the greedoids literature and the fact that Ma-
tryoshka blocks are (approximately) weakened gree-
doids, implies that many of those results also carry
over in a weakened form. For example, the concept of
rank is fundamental in the study of set systems. It can
be applied to Greedy-Matryoshka sets as follows.

Let B(m, 1) be a set of building blocks, and C = n(B)
be a Greedy-Matryoshka set. Define £ = U;. ¢, ec C;.
The (independence) rank of a set X C E with respect
to C is defined as:

p(X) = max{|A] : A C X, A € C}. (3)

With the definition of rank in hand, Lemma 3 charac-
terizes a Greedy-Matryoshka set in terms of the rank
function.

Lemma 3: A function p : 2P — Z is? the rank
function of a Greedy-Matryoshka set if and only if for
all X, Y € Fand z,y € E:

(R1) p(¢) = 0,

(R2) p(X) = |X],

(R3) If X C Y then p(X) < p(Y),

(R4) If p(X) = p(X U {z}) = p(X U {y}), then
p(X) < p(X U A{z} U {y}).

Furthermore, the rank function determines the greedy-
Matryoshka set uniquely. B

87 is the set of non-negative integers.
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Proof: The proof is almost identical to the one for
Theorem 2.3 in [8] and will not be duplicated.

One course of action is to define the concept of a “base”
(elements of maximal rank in a set of encodons) as
in greedoids, and then define optimization problems
on the set of bases of a greedoid. Many optimization
problems can be so represented. The advantage of
such a specification is that it can be used to derive
time and space complexity results. But rather than
pursue weakened versions of known results in Greedoid
theory, it is more profitable to clarify the relationship
between greedy algorithms and GAs.

5 Discussion

The arguments of the last section do not imply that
GAs are nothing more than variants of greedy algo-
rithms. The previous section argued for a class of
building blocks that are weakened versions of gree-
doids. It does not claim that GAs will be good,
bad or indifferent for optimization functions defined
on these set systems. GA performance cannot be in-
ferred for the simple reason that GA dynamics has not
been taken into account. The analysis is combinatorial
and axiomatic, rather than behavioral and inductive.
GA dynamics can perhaps be studied from a “greedy”
viewpoint using majorization theory, but that is not
the focus of this paper.

The second point is that greedoids do not completely
characterize the class of greedy algorithms. Specifi-
cally, there are greedy algorithms that do not have
underlying greedoids (and hence, greedoids are too re-
strictive), and there are greedy algorithms that do not
return an optimal solution when run on a greedoid
(thus, greedoids are too general). This vexing situa-
tion has been resolved, and the class of functions for
which a “greedy algorithm” produces the optimal so-
lution has now been completely characterized? [7]. In
other words just because a subset of building blocks
happen to formally related to greedoids is not grounds
for concluding that GAs are greedy algorithms. Fi-
nally, algorithmic efficiency (time complexity for find-
ing an optimal solution) differs from algorithmic suffi-
ciency (ability to find an optimal solution)®.

What can be claimed is that both greedy algorithms as

4This class of functions is quite general, non-trivial, and
defined in terms of matroid embeddings, an extension of the
concept of greedoids.

SGreedy 7 “easy.” A greedy algorithm may be guar-
anteed to find an optimal solution for a particular problem,
but may do so very inefficiently. There are also problems
that while solvable by a greedy solution, are also NP-hard
[9, Section 6].
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well as genetic algorithms have a common conceptual
core. This core, consisting of certain kinds of set sys-
tems, is useful for clarifying discussions, characterizing
algorithmic sufficiency, and providing a combinatorial
basis for evolutionary algorithms.

One can also speculate that the connection with greedy
algorithms reveals the need for a theory of “proba-
bilistic greed.” Probabilistic versions of determinis-
tic algorithms often have capabilities not possessed by
the latter (e.g. primality testing, simulated annealing),
even to the extent of belonging to different complexity
classes. If the conceptual difficulties associated with
the notion of probabilistic greed (as briefly discussed
in Section 2) are overcome, then the kind of precise re-
sults obtained for simulated annealing or approximate
exact sampling, may be within reach. In the final anal-
ysis, what counts is the use one makes of these ideas
to build better genetic algorithms. The ideas outlined
here are meant to contribute towards efforts in that
direction.
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Abstract

In this paper, we formulate the design of fuzzy
rule-based  classification  systems as a
three-objective  optimization problem. Three
objectives are to maximize the classification
performance of a fuzzy rule-based system, to
minimize the number of fuzzy rules, and to
minimize the number of features used in the
fuzzy rule-based system (i.e., used in the
antecedent part of fuzzy rules). The second and
third objectives are related to simplicity and
comprehensibility of the fuzzy rule-based system.
We describe and compare two genetic-algorithm-
based approaches for finding non-dominated
solutions (i.e., non-dominated fuzzy rule-based
systems) with respect to the three objectives. One
approach is a rule selection method where a
small number of linguistic rules are selected from
prespecified candidate rules by a genetic
algorithm. The other is a fuzzy partition method,
which designs fuzzy rule-based systems by
simultaneously determining the number and the
shape of the membership function of each fuzzy
set from training patterns. These two approaches
are compared with each other through computer
simulations on some real-world classification
problems such as iris data, wine data, and glass
data.

1 INTRODUCTION

Genetic algorithms have been successfully applied to
various optimization problems (Goldberg 1989). The
extension of GAs to multi-objective optimization was
proposed in several manners (Schaffer 1985, Kursawe
1991, Horn 1994, Fonseca 1995, Murata 1995, Zitzler
1999). The aim of these algorithms is to find a set of
Pareto-optimal solutions of a multi-objective optimization
problem. Another issue in multi-objective optimization is
to select a single final solution from Pareto-optimal
solutions. Many studies on multi-objective GAs did not

Hisao Ishibuchi
Department of Industrial Engineering

Osaka Prefecture University
1-1 Gakuen-cho, Sakai, 599-8531, Japan

address this issue because the selection totally depends on
the decision maker’s preference. In this paper, we also
concentrate our attention on the search for finding a set of
Pareto-optimal solutions. We apply a multi-objective
genetic  algorithm to classification problems for
constructing classification systems.

Our task in this paper is to design comprehensible fuzzy
rule-based systems for high-dimensional pattern
classification problems. Recently, some researchers
(Pedrycz 1996, Setnes 1998a, 1998b, 2000, Yen 1998,
1999, Jin 1999, 2000, and Oliveira 1999) tried to improve
interpretability of fuzzy rule-based systems. For example,
interpretability of membership functions was discussed in
(Pedrycz 1996, Oliveira 1999). The number of fuzzy rules
was decreased in (Setnes 1998a, 1998b, 2000, and Yen
1999). Jin (2000) pointed out the following four factors
closely related to interpretability of fuzzy rule-based
systems.

(a) Distinguishability of a fuzzy partition. Membership
functions should be clearly distinguishable from each
other so that a linguistic term can be assigned to each
membership function.

(b) Consistency of fuzzy rules. Fuzzy rules in a fuzzy
rule-based system should not be strongly
contradictory to each other.

(¢) The number of fuzzy rules. It is easy to examine a
small number of fuzzy rules while the examination of
many rules is a cumbersome task.

(d) The number of conditions in the antecedent part (i.e.,
if-part). It is not easy to understand a fuzzy rule with
many antecedent conditions.

Among these four factors, distinguishability was included
in a cost function in regularized learning of Jin (2000).

In this paper, we describe and compare two
genetic-algorithm-based ~ approaches  for  finding
non-dominated solutions (i.e., non-dominated fuzzy
rule-based systems) with respect to the three objectives.
One approach is a rule selection method (Ishibuch et al.
1997) where a small number of linguistic rules are
selected from prespecified candidate rules by a genetic

algorithm. The other approach is a fuzzy partition method,
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which designs fuzzy rule-based systems by simultaneously
determining the number and the shape of the membership
function of each fuzzy set from training patterns. Both the
approaches have been already proposed as
single-objective genetic-algorithm-based approaches. We
apply a multi-objective genetic algorithm to both the
approaches in this paper.

As for the first interpretability factor (a), we do not have
to consider the distinguishability of a fuzzy partition in the
rule selection method, since we use prespecified linguistic
terms with fixed membership functions. On the other hand,
we should carefully examine constructed classification
systems by the fuzzy partition method, since the number
and the shape of membership functions vary during the
execution of the method. The consistency of fuzzy rules
(i.e., the second factor (b)) is resolved by assigning a
certainty grade to each fuzzy rule in the two approaches.

In order to consider the last two factors (c¢) and (d), we
formulate the design of fuzzy rule-based classification
systems as a three-objective optimization problem. Three
objectives are to maximize the classification performance
of a fuzzy rule-based system, to minimize the number of
fuzzy rules, and to minimize the number of features used
in the fuzzy rule-based system (i.e., used in the antecedent
part of fuzzy rules). The second and the third objectives
show that (c¢) and (d) are considered in our optimization
problem.

Since both the approaches are fuzzy rule-based systems,
we firstly explain fuzzy rule-based system employed in
this paper. We show the main difference between the two
genetic-algorithm-based approaches in this section. Then
we show the common architecture in the multi-objective
genetic algorithm employed for both the approaches. Next,
we show genetic operations in them. Finally, these two
approaches are compared with each other through
computer simulations on some real-world classification
problems such as iris data, wine data, and glass data.

2 FUZZY RULE-BASED SYSTEMS

We assume that m training patterns (i.e., labeled patterns)
are given as numerical data for an n-dimensional c-class
pattern classification problem. We denote those training
patterns  as x=(xp1,...,xpn) , p=12,.,m.  For
simplicity of explanation, each attribute value x,; is
assumed to be a real number in the unit interval [0, 1], i.e.,
xp;i € [0, 1]. This means that the pattern space of our
pattern classification problem is the n-dimensional unit
hypercube [0, 1]”. In computer simulations of this paper,
all attribute values are normalized into real numbers in the
unit interval [0, 1]. For an n-dimensional and c-class
pattern classification problem, we try to find fuzzy rules of
the following form:

Rule R;:If x| is 4; and..and x, is A4,
then Class C; with CF}, @)

where R is the label

] of the j-th fuzzy rule,
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X =(xq,...,X,) is an n-dimensional pattern vector, A
is a fuzzy set for the i-th attribute, C; is a consequent
class, and CF; is a certainty grade in the unit interval
[0,1]. Since the consequent class C; and the certainty
grade CF; of each fuzzy rule in (1) can be ecasily
determined by a heuristic rule generation procedure from
the given training patterns (see Ishibuchi 1992 for details
of the rule generation procedure), the design of fuzzy
rule-based systems is to determine the number of fuzzy
rules and the antecedent part of each rule.

The main difference between two approaches employed in
this paper lies in the coding method of fuzzy rules. We
show characteristic features in the coding method of fuzzy
rules and the rule generation method of two approaches in
the following subsections. From the characteristic feature
of the coding scheme, we refer to the first approach as rule
selection method, and the second approach as fuzzy
partition method.

2.1 RULE SELECTION METHOD

In the rule selection method, we use prespecified
membership functions for fuzzy sets A; in (1), each of
those are related to a linguistic term. Fig. 1 shows
examples of such membership functions. Linguistic terms
are denoted as S, MS, M, ML and L, that are related to
membership functions. These linguistic values are used in
our computer simulations for all attributes. Since this is
just for simplicity of explanation, our first approach is
applicable to more general cases where a different set of
linguistic values is given to each attribute. In such a
general case, membership functions are not necessary to
be triangular. They are specified according to domain
knowledge and intuition of human experts.

—
=

Membership

[

1.0

e
o

Input value

Figure 1. Membership functions of five linguistic values (S:
small, MS: medium small, M: medium, ML: medium large, and
L: large).

In the rule selection method (Ishibuchi 1997), all
combinations of antecedent fuzzy sets were examined to
generate candidate rules from which a small number of
fuzzy rules were selected by genetic algorithms. This
method cannot be directly applied to high-dimensional
problems because the number of candidate rules
exponentially increases with the dimensionality of pattern
spaces. In order to reduce the number of fuzzy rules, we
use a prescreening procedure of candidate rules. Our trick
for prescreening candidate rules is based on the length
(i.e., the number of antecedent conditions) of fuzzy rules.
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While the total number of possible combinations of
antecedent fuzzy sets is huge, the number of short fuzzy
rules with only a few antecedent conditions is not large.
Thus we can generate a tractable number of candidate
rules by examining only short fuzzy rules. When we have
five fuzzy sets, the number of fuzzy rules of the length £ is
calculated as ,C; x5 which is the total number of
combinations of selecting & attributes (i.e., ,C; ) and
assigning linguistic values to the & selected attributes (i.e.,
5k). After generating a tractable number of fuzzy rules,
we employ a binary string, where each bit corresponds to
each fuzzy rule. The numeral “1” in each bit shows that
the corresponding fuzzy rule is selected for a fuzzy
rule-based classification system. On the other hand, the
numeral “0” shows the corresponding fuzzy rule is not
selected for a system. The aim of genetic algorithms is to
design a fuzzy rule-based classification system by
selecting appropriate fuzzy rules.

2.2 FUZZY PARTITION METHOD

In the fuzzy partition method, membership functions for
fuzzy sets in (1) are directly coded as binary strings. In
this method, the number and the shape of membership
functions of each fuzzy set are simultaneously determined
from training patterns.

Fig.2 shows an example of the fuzzy partition proposed in
(Murata 1999). Membership functions of antecedent fuzzy
sets are represented by a binary string. Membership
functions of antecedent fuzzy sets on the i-th axis are
denoted by a string L; =/1/2---I; with the length £;. In
Fig. 2, k; is specified as k; =10. The value “1” in a
string L; indicates the existence of a membership
function with the membership wvalue 1.0 at the
corresponding position (see Fig. 2). Neighboring
membership functions always overlap each other at a
membership value of 0.5. It should be noted that the
longer the length k; ofthe string L;, the finer the tuning
of each membership function.

—_
=)

(=)

Membership

=)

6.0 ' 1?0 !
L[1fof1]ofoft]1]1]o]o0]
Figure 2. Membership functions in the fuzzy partition method.

The number of fuzzy if-then rules exponentially increases
as the number of attributes increases. To remedy this
difficulty, Murata et al. (1999) introduced a binary string /
of the length n (the number of attributes) for selecting
attributes by genetic algorithms. In the string /, each bit
corresponds to each attribute. The i-th bit with the value
“1” indicates the i-th attribute is selected for generating
fuzzy if-then rules.

In order to construct fuzzy classification systems with
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multiple fuzzy rule tables, Murata et al. (1999) introduced
a binary string 7 of the length ¢ (the maximum number of
fuzzy rule tables). In the string 7, each bit corresponds to
each table. The A-th bit with the value “1” indicates the
h-th table is employed for the classification system. A
binary string / in the above paragraph is multiplied so that
each table has a different combination of input attributes.
The string [, indicates the selected attributes for the
h-th table.

Since the strings [;’s and the string 7 for rule table
selection are introduced for input selection, we handle the
concatenated string S=7-I1/p---1;-LiLy---L, as an
individual in our genetic-algorithm-based fuzzy partition
method. The concatenated string S specifies the fuzzy
partition L; (i=12,...,n) of each of the selected fuzzy
rule tables by 7 where selected attributes are denoted by
Iy, h=12,..,¢t. Since fuzzy rule tables are generated
from the selected attributes and the specified fuzzy
partition by S, S can be viewed as a rule set or a fuzzy
rule-based classification system.

3 THREE-OBJECTIVE GA

As we have already mentioned, the comprehensibility of
fuzzy rule-based system is impaired by the increase in the
number of fuzzy rules. Thus we try to minimize the
number of fuzzy rules. From the viewpoint of the
comprehensibility of each fuzzy rule, a large number of
antecedent conditions are not desirable. Thus we also try
to minimize the number of antecedent conditions. At the
same time, we want to design fuzzy rule-based systems
with high classification performance. Based on these
considerations, we formulate our task of designing
comprehensible fuzzy rule-based classification systems as
the following three-objective optimization problem:

Maximize f1(S), minimize f>(S) & minimize f3(S), (2)

where f1(S) is the number of correctly classified
training patterns by a rule set S, and f,(S) is the
number of fuzzy rules in S. In the rule selection method,
f3(8) is the total number of antecedent conditions in S.
For example, if we have a system with two fuzzy rules,
where one rule has one antecedent condition and the other
has three antecedent conditions, the total number of
antecedent conditions in S is four. On the other hand,
f3(S) is the total number of attributes used in
constructed rule tables for the fuzzy partition method. If
we obtain two rule tables shown in Fig. 3, the total
number of attributes selected for the rule tables is four. In
this case two fuzzy rules are obtained from Rule Table 1
(see Fig. 3 (a)), and eight fuzzy rules are generated
from three attributes selected for Rule Table 2 (see Fig. 3
(b)), so we have ten fuzzy rules in total for the
classification system designed by the fuzzy partition
method. In order to obtain a compact fuzzy rule-based
classification system, we should reduce the number of
fuzzy rules. We can eliminate fuzzy rules from a
classification system that classify no training patterns in a
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classification problem. That is, we can reduce those fuzzy
rules, because those have no effect on classification. After
this rule reduction process, we can obtain classification
systems with a small number of fuzzy rules.

1.0

0.0 —>
00 05 1.0

1o r]ofo]
X7
(a) Rule Table 1 with a single attribute.

1.0 1.0 1.0

0.0 > 0.0 > 0.0

0.0 05 1.0 0.0 1.0
[1foftfofo]  [tfofofo]1]
X7 X2

(b) Rule Table 2 with three attributes.

00 05 1.0

[1]o]1]ofo]
X3

Figure 3. Two rule tables (the fuzzy partition method).

Let us briefly explain the concept of non-dominated rule
sets for our three-objective optimization problem. A rule
set S is said to be dominated by another rule set S* if all
the following inequalities hold:

HSSAST), /2092 /2(57). & £3(8) 2 £3(57), (3)
and at least one of the following three inequalities holds:

SIS < AT, /2(8)> f2(S7) 01 f3(8)> f3(S7). (4)

The first condition (i.e., all the three inequalities in (3))
means that no objective of S* is worse than S. The
second condition (i.e., one of the three inequalities in (4))
means that at least one objective of S* is better than S.
If there exists no S* that satisfies both the above two
conditions, the rule set S is said to be a non-dominated
rule set.

We employ three-objective genetic algorithms for finding
non-dominated rule sets. Standard single-objective genetic
algorithms are also applicable to our problem if the three
objectives are integrated into a single scalar fitness
function. Before describing three-objective genetic
algorithms, we briefly discuss the handling of our problem
by single-objective genetic algorithms.

A well-known simple trick for handling multi-objective
optimization problems is to combine multiple objectives
into a single scalar fitness function using weight
parameters as

Sitness(S) =wy - fi(S) — wy - f2(S) — w3 f3(5),  (5)

7
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where w;, w, and ws are non-negative real numbers.
In (5), the two objectives f5(S) and f3(S) to be
minimized can be viewed as having negative weights
“—wy” and “—wj3”, respectively. The three weights wy,
wy and wj in (5) should be specified based on the
users’ preference in a particular pattern classification
problem. It is, however, difficult to assign appropriate
values to the three weights.

In this paper, we use a multi-objective genetic algorithm
for finding non-dominate rule sets of our three-objective
optimization problem. Multi-objective genetic algorithms
do not require the specification of the weight parameters
or the desired goals. We use a multi-objective genetic
algorithm (Murata 1995) which is based on the scalar
fitness function in (5) with random weight values. The
weight values wy, w,, and wy are randomly updated
whenever a pair of parent strings are selected. This is one
characteristic feature of our multi-objective genetic
algorithm.  Another characteristic feature is that
non-dominated rule sets are stored in a tentative pool
separately from the current population. The tentative pool
is updated at every generation in order to store only
non-dominated rule sets among examined ones. From the
tentative pool, N rule sets are randomly selected as
elite individuals, which are added to a new population.
The outline of our three-objective genetic algorithm is
written as follows.

[Three-objective genetic algorithm]

Step 1) Initialization: Generate an initial population of
Ngot rule sets where Ny, is the population
size.

Step 2) Evaluation: Calculate the values of the three
objectives for each rule set in the current
population. Then update the tentative pool of
non-dominated rule sets.

Step 3) Selection: Repeat the following procedures to
select ( Ngot — Nejite ) Pairs of rule sets.

a) Randomly specify the three weight values as

w; = random; /(random; + random, + randoms) ,
=123, (6)

where random; is a non-negative random
real number.

b) Calculate the fitness value for each solution by
(5) using the randomly specified weight values.
Then select a pair of rule sets based on the
fitness value of each rule set. We specify the
selection probability of each rule set S in the
current population Y using the roulette
wheel selection with the linear scaling:

Sfitness(S) = finin (V)
> fitness(S) = frnin(¥)}

Se¥

P(S) =

()

where f,;,(P) is the minimum value of the
fitness values in the current population V.
Step 4) Crossover and mutation: Generate a new rule set
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from each pair of selected rule sets by crossover
and mutation operations. These two operations
are used with prespecified probabilities. By the
genetic operations, (Ngy — Ngjite ) Tule sets are
generated.

Step 5) Elitist strategy: Randomly select N
non-dominated rule sets from their tentative pool,
and add them to the generated ( Ngo — Njje ) rule
sets for constructing a new population of the size
NSCt :

Step 6) Termination test: If a prespecified stopping
condition 1is satisfied, end the algorithm.
Otherwise, return to Step 2.

The choice of crossover and mutation operations in Step 4
depends on the coding of rule sets. They are described in
the following sections.

We use this three-objective genetic algorithm because it
can be easily implemented. This algorithm involves no
additional parameters. It uses only standard parameters
such as population size, crossover probability, mutation
probability, and the number of elite solutions. Other
multi-objective genetic algorithms are also applicable to
our three-objective optimization problems. For reviews of
multi-objective genetic algorithms, see Veldhuizen 2000,
Zitzler 1999, 2000.

4 RULE SELECTION METHOD

Let N be the number of generated candidate rules. A
subset S of the NV candidate rules is denoted by a binary
string of the length N as S =5, ---sy . In this coding,
s;=1 and s; =0 mean that the j-th candidate rule R;
is included in § and excluded from S, respectively. The
size of the search space with this coding is 2", which is
the total number of subsets of the N candidate rules. Each
rule set S is evaluated by the fitness function in (5) using
randomly specified three weights whenever a pair of
parent strings is selected. Since each rule set is
represented by a binary string, standard genetic operations
are applicable. In our computer simulations, we used the
uniform crossover and the bit-change mutation.

For efficiently searching for small rule sets with high
classification ability, we use two domain-specific
techniques. One technique is a kind of local search. When
the fitness value of a binary string S (i.e., rule set S) is
calculated, all the given training patterns are classified by
S for calculating the first objective f;(S). From the
classification phase by the constructed classification
system in Ishibuchi et al. (1992), a single winner rule is
responsible for the classification of each training pattern.
If a fuzzy rule in S is responsible for the classification of
no training pattern, we can remove that rule without
causing any deterioration of the first objective because
that rule has no influence on the classification of any
training pattern. At the same time, the elimination of such
a fuzzy rule improves the second objective f5(.S) and the
third objective f3(S). Thus we remove all the fuzzy
rules that are not responsible for the classification of any
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training pattern. This local search technique is applied to
every rule set before its three objectives are evaluated in
Step 2 of our three-objective genetic algorithm.

The other technique is to bias the mutation. A larger
probability was assigned to the mutation from s, =1 to
s ; =0 than the mutation from 8 =0to §;= 1. That is,
the mutation is biased toward the decrease of the number
of fuzzy rules in order to improve the second and third
objectives. The biased mutation plays an important role
especially when the number of candidate rules is large.

These two techniques are added to the three-objective
genetic algorithm in the previous section.

S FUZZY PARTITION METHOD

Since the fuzzy partition method has a concatenated
strings S=T7T-I1Ip---1;-LiLy---L, as an individual
solution, the specially designed genetic operations are
employed for this method in Murata et al. (1999). The
characteristic feature of the genetic algorithm with this
coding method is the following:

1. Crossover  operation:  Selected attributes are
interchanged between the parent strings, and each
substring L; is interchanged as a block.

2. Mutation operation for tuning membership functions:
For the fine tuning of membership functions, the
mutation operation that interchanges neighboring bits
in each substring L; is introduced. The adjustment of
membership functions can be performed as in a local
search procedure by slightly modifying their shapes
and positions.

3. Mutation operation for reducing the number of
membership functions: For decreasing the number of
membership functions (i.e., the number of fuzzy if-then
rules), the mutation probabilities for two directions (i.e.,
150 and 0—1) are not the same. The mutation
probabilities for this mutation are specified as follows:

PI'CVCI'SE! (1 - O) > PI'CVEI'SC (0 4 1) .

4. Mutation operation for reducing the number of
attributes: For decreasing the number of selected
attributes, the mutation probabilities for two directions
(i.e, 150 and 0—1) are not the same. The
mutation probabilities for this mutation are specified as
follows:

Pinput reverse (1 —=0) > Pinput reverse (0 = 1) .

6 COMPUTER SIMULATIONS
6.1 DATA SETS AND PARAMETERS

We applied the rule selection method and the fuzzy
partition method to commonly used data sets in the
literature: iris data, wine data, and glass data. All the data
sets are available from the UC Irvine machine learning
database.

Since we had no domain knowledge on each data set, we
used the five linguistic values with the triangular
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membership functions in Fig. 1 for every attribute of each
data set in the rule selection method. The number and the
shape of membership functions are automatically
determined in the fuzzy partition method. Our two
algorithms (i.e., the rule selection method and the fuzzy
partition method) were executed under the framework of
the three-objective genetic algorithm in Section 3 using
the following parameter values. The population size was
20 rule sets, the number of elite solutions was six, and
each algorithm was terminated at the 500th generation.

For the rule selection method in Section 4, we used the
crossover probability: 0.9 and the biased mutation
probabilities: 0.001 for the mutation from s;=0 to
s;=1 and 0.1 for the mutation from s; =1 to s; =0.
Randomly generated 20 initial rule sets were evolved in
the rule selection method. For the fuzzy partition method,
we employed the resolution k; =5 for each attribute, and
we allowed ten rule tables at most in the fuzzy partition
method. We used the following parameters: the crossover
probability: 1.0, the mutation probability for tuning
membership functions: 0.1, the biased mutation
probabilities for reducing the number of membership
functions:  Preyerse (1 =0) = 0.1 and  Pyere (0—1) =
0.02, and the biased mutation probabilities for reducing
the number of attributes: Pyt reverse (1 =0) = 0.1 and
Prnputreverse (0 —>1) = 0.05. Our three-objective genetic
algorithm searched for non-dominated rule sets by the
evolution from 20 initial rule sets.

Each algorithm was applied to each data set 10 times. A
set of non-dominated solutions stored in their tentative
pool was obtained as final solutions of each trial with
respect to our three objectives: the number of correctly
classified training patterns, the number of fuzzy rules, and
the total length of fuzzy rules in the rule selection method,
or the total number of attributes used in selected rule
tables in the fuzzy partition method. From 10 trials, we
obtained 10 sets of non-dominated solutions. For
concisely summarizing simulation results, we merged
them into a single solution set and compared solutions
with each other. In such comparison, some solutions were

dominated by other solutions obtained from different trials.

All solutions that were dominated by other solutions from
different trials were removed from the enlarged solution
set. The refined solution set is reported as simulation
results by each algorithm for each data set in this section.
Since the classification performance is measured by the
number of correctly classified training patterns in our
three-objective optimization problem, we report the value
of this objective of each non-dominated solution together
with the other two objective values. All the available
training data were used in our computer simulations and
the classification performance on those training data is
reported in this section. Ishibuchi et al. (1999) reported
the simulation results on the tradeoff between
generalization ability of fuzzy rule-based systems and the
number of fuzzy rules, where the classification
performance on test data was evaluated by the
leaving-one-out (LV-1) procedure and the ten-fold
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cross-validation
simulations.

(10-CV) procedure in computer

6.2 SIMULATION RESULTS ON IRIS DATA

The iris data set is a three-class pattern classification
problem with four attributes and 150 patterns. We use the
iris data set for illustrating three-objective rule selection
while it is not actually a high-dimensional pattern
classification problem. Fuzzy rules of the following type
are used for the iris data set with four attributes:

Rule R;: If x is 4; and

then Class C; with CF;. (8)

Since the iris data set includes only four attributes, we can
examine all the (5+1)*=1296 combinations of
antecedent linguistic values for generating candidate fuzzy
rules for the rule selection method. By examining those
combinations, we generated 587 fuzzy rules from the
given 150 training patterns. Some fuzzy rules could not be
generated because no training patterns were compatible
with those rules. All the generated 587 fuzzy rules were
used as candidate rules. In our rule selection method, each
rule set was represented by a binary string of the length
587. For obtaining non-dominated rule sets of the
three-objective optimization problem, we applied the
three-objective rule selection method to the 587 candidate
rules 10 times using different initial populations. From the
10 trials, we found seven non-dominated rule sets in Table
1. Since the iris data set is a three-class pattern
classification problem, at least three fuzzy rules are
necessary for designing fuzzy rule-based systems with
high classification ability. In this sense, Table 1 includes
three rule sets that are not practically useful. In Table 1,
we can observe a tradeoff between the classification
performance and the size of rule sets. We also applied the
fuzzy partition method to the iris data set. Table 2 shows
the obtained non-dominated solutions. Since the shape of
the membership functions are adjusted in the fuzzy
partition method, better rule sets are found with respect to
the number of fuzzy rules and the number of correctly
classified patterns. For example, the following
classification system with three fuzzy rules was found by
the rule selection method:

and x4 is Ajy

RIIIf X3 is S
Ry If x3 isM
Ry If x4 isML

then Class 1 with CF; =1.00,
then Class 2 with CF, =0.79,
then Class 3 with CF3 =0.70.

By the above three fuzzy rules, 142 training patterns are
classified correctly. From Table 2, we can see that a
classification system with three fuzzy rules was also found
by the fuzzy partition method. Fig. 4 shows the
membership functions of the classification system. Since
only a single attribute x, was selected for the rule table,
membership functions can be seen as fuzzy rules. In this
case, the total length of the rule set is three. Therefore the
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fuzzy partition method found a better rule set with three
rules than the rule selection method for the iris data set.

Table 1: Non-dominated rule sets obtained by the rule selection
method for iris data.

Number of Rules
Total length

1 2 3 4 4 5
1 2 3 4 5 8

50 100 142 145 146 147
333 66.7 94.7 96.7 97.3 98.0

Number of Patterns

0
0
0
Rate (%) 0

Table 2: Non-dominated rule sets obtained by the fuzzy
partition method for iris data.

Number of Rules 0 1 2 3 4 5
Number of Attributes 0 1 1 1 2 3
Number of Patterns 0 50 100 144 146 147
Rate (%) 0 333 66.7 96.0 97.3 98.0
1.0
0.0
00 05 1.0
[1foft]o]1]
X4
Figure 4. Rule table with three rules (fuzzy partition method).

6.3 SIMULATION RESULTS ON WINE DATA

The wine data set is a three-class pattern classification
problem with 13 attributes and 178 patterns. It is
impractical to generate candidate rules by examining all
the (5+1)!3 combinations of antecedent linguistic
values (i.e., about 13 billion combinations) in the rule
selection method. Candidate rules were generated by
examining only short fuzzy rules of the length 2 or less.
Using this prescreening procedure, we generated 1834
candidate rules. The three-objective rule selection method
was applied to the 1834 candidate rules 10 times using
different initial populations. We obtained 21
non-dominated rule sets from the 10 trials. In Table 3, we
show 7 non-dominated rule sets with high classification
rates. Simulation results in Table 3 show that compact rule
sets with a small number of short fuzzy rules were found
by the rule selection method. Table 4 shows seven
non-dominated solutions with high classification obtained
by the fuzzy partition method. Fig. 3 shows the obtained
classification system with six rules and 4 attributes. This
system classifies 174 training patterns correctly.

6.4 SIMULATION RESULTS ON GLASS DATA

In the previous computer simulations, we have already
shown that the rule selection method can find a small
number of short fuzzy rules with high classification
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performance for designing comprehensible fuzzy
rule-based systems. In this subsection, we examine the
rule selection method and the fuzzy partition method
through computer simulations on glass data. The glass
data set is a six-class pattern classification problem with
nine attributes and 214 patterns. The glass data set is a
difficult classification problem with large overlaps
between different classes in the pattern space. So it may
be difficult to design compact fuzzy rule-based systems
with high classification performance by a small number of
short fuzzy rules.

From 10 trials, we obtained 22 non-dominated rule sets.
Table 5 shows seven non-dominated rule sets with high
classification rates. From this table, we can see that fuzzy
rule-based systems with high classification rates could not
found. We also applied the fuzzy partition method to the
glass data. We obtained 27 non-dominated solutions and
show seven rule sets with high classification rates in Table
6. We can also see that classification systems with high
classification rates could not found. We employed finer
resolution k; =11 in the fuzzy partition method. Table 7
shows seven rule sets with high classification rates. We
can see that the fuzzy partition method with finer
resolution could find better classification systems with
respect to the classification performance.

Table 3: Non-dominated rule sets obtained by the rule selection
method for wine data.

Number of Rules 6 5 7 6 7 8 10
Total length 7 9 9 10 12 14 18

Number of Patterns 173 173 174 175 176 177 178
Rate (%) 97.2 972 97.8 983 98.9 994 100

Table 4: Non-dominated rule sets obtained by the fuzzy
partition method for wine data.

Number of Rules 4 4 6 4 7 5 6
Number of Attributes 2 3 3 4 3 4 4

Number of Patterns 166 169 170 171 172 172 174
Rate (%) 93.3 949 955 96.1 96.6 96.6 97.8

Table 5: Non-dominated rule sets obtained by the rule selection
method for glass data.

Number of Rules 8 9 10 10 11 12 14

Total length 12 14 16 17 18 20 25
Number of Patterns 150 151 152 153 154 155 156
Rate (%) 70.1 70.6 71.0 71.5 720 724 729

Table 6: Non-dominated rule sets obtained by the fuzzy
partition method for glass data.

Number of Rules 6 9 19 10 24 12 13
Number of Attributes 5 3 3 4 3 4 4

Number of Patterns 144 146 147 148 149 152 153
Rate (%) 67.3 68.2 687 69.2 69.6 71.0 71.5
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Table 7: Non-dominated rule sets obtained by the fuzzy
partition method for glass data (fine resolution).

Number of Rules 20 22 27 29 31 32 69
Number of Attributes 6 3 3 3 3 3 4

Number of Patterns 162 164 165 166 167 169 171
Rate (%) 757 76.6 77.1 77.6 78.0 79.0 79.9

7 CONCLUSION

In this paper, we described and compared two
genetic-algorithm-based ~ approaches  for  finding
non-dominated solutions (i.e., non-dominated fuzzy
rule-based systems) with respect to the three objectives.
We can see that the rule selection method could find
compact classification systems with high performance for
the wine data set. Since the search space of the fuzzy
partition method is larger than that of the rule selection
method, the classification systems with the large number
of rules are found (for example, 28 rules in Table 6). We
may find more compact classification systems by the
fuzzy partition method if we have enough computation
time for the method.

References

C.M.Fonseca and P.J.Fleming (1995). An overview of
evolutionary algorithms in multiobjective optimization,
Evolutionary Computation 3: 1-16.

D.E.Goldberg (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading, MA:
Addison-Wesley.

J.Horn, N.Nafpliotis and D.E.Goldberg (1994). A niched
Pareto genetic algorithm for multi-objective optimization.
Proc. of Ist IEEE International Conference on
Evolutionary Computation: 82-87.

H.Ishibuchi, K.Nozaki and H.Tanaka (1992). Distributed
representation of fuzzy rules and its application to pattern
classification. Fuzzy Sets and Systems 52: 21-32.

H.Ishibuchi, T.Murata, 1.B.Turksen (1997).
Single-objective and two-objective genetic algorithms for
selecting linguistic rules for pattern classification
problems. Fuzzy Sets and Systems 89: 135-149.

H.Ishibuchi, T.Sotani and T.Murata (1999). Tradeoff
between the performance of fuzzy rule-based
classification systems and the number of fuzzy if-then
rules. Proc. of 18th Internaitonal Conference of the North
American Fuzzy Information Processing Society —
NAFIPS ’99: 125-129.

Y.Jin (2000). Fuzzy Modeling of High-Dimensional
Systems: Complexity Reduction and Interpretability
Improvement. /[EEE Transactions on Fuzzy Systems 8:
212-221.

Y.Jin, W.von Seelen, B.Sendhoff (1999). On Generating
FC3 Fuzzy Rule Systems from Data using Evolution
Strategies. [EEE Transactions on Systems, Man and

GENETIC ALGORITHMS

Cybernetics - Part B: Cybernetics 29: 829-845.

F Kursawe (1991). A variant of evolution strategies for
vector optimization. In H.-P.Schwefel and R.Mainner
(Eds.), Parallel Problem Solving from Nature. 193-197.
Berlin: Springer-Verlag.

T.Murata and H.Ishibuchi (1995). MOGA:
Multi-objective genetic algorithms. Proc. of 2nd IEEE
International Conference on Evolutionary Computing:

289-294.

T.Murata, H.Ishibuchi and M.Gen (1999). Construction of
fuzzy classification systems using multiple fuzzy rule
tables. Proc. of 1999 IEEE International Conference on
System, Man and Cybernetics: CD-ROM.

V.de Oliveira (1999). Semantic Constraints for
Membership Function Optimization. [EEE Trans. on

Systems, Man, and Cybernetics - Part A: Systems and
Humans 29: 128-138.

W.Pedrycz, V.de Oliveira (1996). Optimization of Fuzzy
Models. IEEE Trans. on Systems, Man, and Cybernetics -
Part B: Cybernetics 26: 627-637.

J.D.Schaffer (1985). Multi-objective optimization with
vector evaluated genetic algorithms. Proc. of Ist
International Conference on Genetic Algorithms: 93-100.

M.Setnes, R.Babuska, U.Kaymak, H.R.van Nauta Lemke
(1998a). Similarity Measures in Fuzzy Rule Base
Simplification. [EEE Trans. on Systems, Man, and
Cybernetics - Part B: Cybernetics 28: 376-366.

M.Setnes, R.Babuska, B.Verbruggen (1998b). Rule-Based
Modeling: Precision and Transparency. /[EEE Trans. on
Systems, Man, and Cybernetics - Part C: Applications
and Reviews 28: 165-169.

M.Setnes, H.Roubos (2000). GA-Fuzzy Modeling and
Classification: Complexity and Performance. /EEE Trans.
on Fuzzy Systems 8: 509-522.

D.A.van Veldhuizen, G.B. Lamont (2000). Multiobjective
evolutionary algorithms: Analyzing the state-of-the-art.
Evolutionary Computation 8: 125-147.

J.Yen, L.Wang (1999). Simplifying Fuzzy Rule-Based
Models using Orthogonal Transformation Methods. /EEE
Trans. on Systems, Man, and Cybernetics - Part B:
Cybernetics 29: 13-24.

J.Yen, L.Wang, W.Gillespie (1998). Improving the
Interpretability of TSK Fuzzy Models by Combining
Global Learning and Local Learning. /EEE Trans. on
Fuzzy Systems 6: 530-537.

E.Zitzler, K.Deb and L.Thiele (2000). Comparison of
multiobjective evolutionary algorithms: Empirical results.
Evolutionary Computation 8: 173-195.

E.Zitzler ~and L.Thiele (1999). Multiobjective
evolutionary algorithms: A comparative case study and
the strength Pareto Approach. [EEE Trans. on
Evolutionary Computation 3: 257-271.



GENETIC ALGORITHMS

493

Pareto coevolution: Using performance against coevolved opponents
in a game as dimensions for Pareto selection

Jason Noble
Informatics Research Institute
School of Computing, University of Leeds
Leeds LS2 9JT, UK

jasonn@comp.leeds.ac.uk

Abstract

When using an automatic discovery method
to find a good strategy in a game, we hope
to find one that performs well against a
wide variety of opponents. An appealing no-
tion in the use of evolutionary algorithms
to coevolve strategies is that the popula-
tion represents a set of different strategies
against which a player must do well. Im-
plicit here is the idea that different play-
ers represent different “dimensions” of the
domain, and being a robust player means
being good in many (preferably all) dimen-
sions of the game. Pareto coevolution makes
this idea of “players as dimensions” explicit.
By explicitly treating each player as a di-
mension, or objective, we may then use es-
tablished multi-objective optimization tech-
niques to find robust strategies. In this pa-
per, we apply Pareto coevolution to Texas
Hold’em poker, a complex real-world game
of imperfect information. The performance
of our Pareto coevolution algorithm is com-
pared with that of a conventional genetic al-
gorithm and shown to be promising.

1 INTRODUCTION

One of the inherent problems with learning game
strategies through self-play is a tendency for such
strategies to be brittle—to be over-specialised to a
particular area of strategy space—and to fail to find
robust, general strategies (see, e.g., Pollack & Blair,
1998, for discussion). The potential for strategies to
have intransitive superiority relationships is an impor-
tant key for understanding why this might happen.
That is, although some player A might be beaten by
some other player B, and B may in turn be beaten

Richard A. Watson
DEMO Lab, Computer Science Dept.
Brandeis University
Waltham, MA 02454, USA

richardw@cs.brandeis.edu

by C, it may not be the case that C beats A (Clff &
Miller, 1995). The existence of such intransitive supe-
riority relationships can mean that although a search
method persistently finds strategies that are better
than the last strategy, it fails to find a strategy that is
good in general. Intransitive superiority relationships
suggest that a problem domain is multi-dimensional,
in the sense that being good against one strategy does
not necessarily mean that you are good against an-
other (Watson and Pollack, this volume).

An appealing notion in the use of evolutionary algo-
rithms to coevolve strategies is that the population
represents a set of different strategies against which a
player must do well. Implicit here is the idea that
different players represent different “dimensions” of
the domain, and being a robust player means being
good in many (preferably all) dimensions of the game.
However, the idea that players represent dimensions
of the game remains implicit in standard coevolution-
ary algorithms. Pareto coevolution makes the con-
cept of “players as dimensions” explicit. By explic-
itly treating each player as a dimension, or objective,
we may then apply established multi-objective opti-
mization techniques—in particular, principles such as
Pareto dominance—to find robust strategies. This
may help to prevent the effects of intransitive superior-
ity from interfering with the discovery of good general
solutions, because multi-objective optimization pro-
motes a set of players with a different balance of abil-
ities rather than promoting the single best-on-average
strategy. Pareto coevolution was explored by Wat-
son and Pollack (2000), and follows from work relat-
ing coevolution and Pareto dominance (Ficici & Pol-
lack, 2000). Pareto coevolution is also developed in
the domain of the cellular automata majority problem
by Ficici and Pollack (2001). In this paper, we apply
Pareto coevolution to Texas Hold’em poker.
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Figure 1: Solution points for a hypothetical car design
problem, in which we want to maximize speed and
minimize cost. The Pareto-optimal set is indicated.

1.1 PARETO SELECTION AND GAMES

A Pareto-optimal solution is one in which none of the
relevant measurements or dimensions of quality or per-
formance can be improved without reducing perfor-
mance on one or more of the other dimensions. For
example, if we were designing a car, and our goals
were low cost and a high top speed, there might be a
Pareto-optimal solution at $20,000 and 120 mph. This
means that 120 mph is the fastest you can go for that
price, and that $20,000 is the cheapest you can pay for
that speed. An alternative design with the same price
but a top speed of only 110 mph would clearly be infe-
rior. However, there will almost always be more than
one solution in the Pareto-optimal set of best possible
compromises (see Figure 1). Perhaps there are also
Pareto-optimal design possibilities at $25,000 and 130
mph, and at $15,000 and 100 mph. The spirit of the
Pareto approach is not to somehow convert dimensions
like speed and cost into a common currency in order
to come up with the one true optimum, but to find all
members of the Pareto-optimal set so that a human
decision-maker, or some other method, can be allowed
to choose between them.

Within the field of evolutionary computation, various
methods of approximating the Pareto-optimal set have
been proposed as tools for multi-objective optimiza-
tion (for reviews see, e.g., Fonseca & Fleming, 1995;
Horn, 1997). The details differ, but, in essence, Pareto
dominance is used as a selection criterion. Candidate
solution A Pareto-dominates solution B if A is at least
as good as B on all dimensions, and better than B on
one or more. Pareto selection involves choosing the
non-dominated solutions for reproduction.

Pareto selection is typically carried out with respect to
a small number of dimensions, as in the car example
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above. This paper seeks to apply Pareto selection to
the domain of games (von Neumann & Morgenstern,
1953) by using each player in an evolving population
as a dimension, or objective, to be optimized—hence,
Pareto coevolution.

Given a particular game, and a way of representing
strategies in that game, we could list every possible
strategy. We could also observe the performance of
each strategy against every other, and the matrix so
derived would allow us to see that some strategies
Pareto-dominate others, e.g., that A performs as well
as B when playing C, D, and E, and is better than
B when playing F. We could then spell out the mem-
bership of the Pareto-optimal set. It is important to
realize that the set might include surprising members:
perhaps a strategy that does very poorly on average
would nevertheless be included because of its excep-
tional performance against just one opponent.

The brute-force approach of calculating a performance
matrix of all-against-all will work for a sufficiently sim-
ple game with a small number of possible strategies,
but it obviously will not be feasible for games of any
complexity. The size of the performance matrix will
be equal to the number of possible strategies squared,
and reliably calculating each entry in the matrix will
require many trials if the game includes a stochastic
element.

We have utilized a population-based coevolutionary
approach, in which individual strategies from a popu-
lation of modest size are selected at random to com-
pete against each other for a number of trials. The
accumulated data from many of these trials can be
seen as a noisy, partial window onto the true per-
formance matrix. Non-dominated strategies are pre-
served in a Pareto front, and novel strategies are gen-
erated through sexual reproduction of strategies in the
front. In this way we hoped that our population would
come to approximate the true Pareto-optimal set, and
would provide robust general strategies.

1.2 HOLD’EM POKER AS A TEST CASE

To provide a convincing test of the hypothesis that
Pareto coevolution can be used to find robust strate-
gies, we wanted to avoid toy problems in favour of a
real game. We have chosen poker, a card game of some
depth in which a wide range of strategies and skill lev-
els are exhibited by human players.

The specific poker variant we used was limit Texas
Hold’em, one of the most popular versions of poker in
modern casinos. The popularity of Hold’em must be
partly due to the balance between public and private
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information in the game, which leaves a lot of room for
convincing bluffs. A game of Texas Hold’em typically
involves eight to ten players, and each complete hand
has the following four-round structure.

The pre-flop: each player is dealt two cards face
down. These are hole cards, or private cards. The
player to the dealer’s left makes a forced bet called
the small blind, equal to one chip in our case. The
next player must bet the big blind, which is equal
to two chips. The third and subsequent players
must then call (match the bet), raise (increase
the bet) or fold (throw in their cards and forfeit
all interest in the pot). As this is a limit game,
any raises must be exactly two chips at this stage.
In addition, no more than three raises are allowed
in this or any other round of betting, unless there
are only two players left, in which case raising can
continue until someone runs out of chips.

The flop: when the previous round of betting is com-
plete (all players have either called or folded),
three cards are “flopped” face up in the middle
of the table. These are community cards, and are
available to all players. By mentally combining
the community cards with their hole cards, play-
ers can now form a 5-card poker hand, such as two
pair, or a flush. There is another round of betting,
again starting with the player to the dealer’s left.
Players can check (decline to bet if no-one else has
bet), call, raise by two chips only, or fold.

The turn: a fourth community card is turned face
up, and there is another round of betting. Note
that even though six cards are now available, play-
ers can only make five-card poker hands. The
stakes increase now, and all raises must be four
chips.

The river: a fifth community card is dealt face up,
and there is a final round of betting, with four-
chip raises. When the round of betting is com-
plete, all players who still have an interest in the
pot compare their hands, and the player with the
strongest hand! takes the pot.

The art of the game consists of such points as knowing
when your cards are likely to be strongest, knowing
whether it’s worth staying in the pot to improve your
hand with subsequent community cards, reading the
likely strength of your opponents’ hands through their

!Poker hands, from weakest to strongest, are: high card,
a pair, two pair, three of a kind, a straight, a flush, a full
house, four of a kind, and a straight flush.
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patterns of betting, and of course effective bluffing (see
Sklansky, 1999, for a more authoritative discussion).

2 METHODS

2.1 REPRESENTING POKER
STRATEGIES

Our primary goal was to test the effectiveness of our
Pareto coevolution algorithm, not to evolve world-class
poker strategies. We have therefore used an econom-
ical representation scheme that is not able to capture
many of the subtleties of expert-level poker. In decid-
ing whether to fold, call, or raise, our strategies attend
to the strength of their hand at each point in the game.
They do not pay any attention to the behaviour of
other players except insofar as they are aware of what
the current bet is, and may choose to fold because the
stakes have become too high for them.

The strategy representation begins with two proba-
bility values (real numbers between zero and one in-
clusive). The first gives the probability with which
a player will bluff (i.e., pretend to have very strong
cards) on any given hand. The second gives the prob-
ability with which a player will check-raise when given
the opportunity—this is a deceptive play in which a
player bets nothing, indicating weakness, and then
raises when the bet comes around again.

Next there are 24 integers in groups of six, describing
strategy for each of the four betting rounds (see sec-
tion 1.2). Two integers describe the minimum cards
that a player wants at this stage in order to remain in
the hand, e.g., a pair of aces, three sevens, or a king-
high flush. Another two integers describe the cards
that a player would regard as a strong hand. One in-
teger describes the amount that a player would prefer
to bet at this stage, and a final integer gives the maxi-
mum amount a player will bet. If players have less than
their minimum requirements, they will check if possi-
ble or fold if asked to bet. If players have equalled or
exceeded their minimum requirements, they will raise
until the betting reaches their preferred level. If bet-
ting goes higher than their preferred level, they will
call until their maximum bet is exceeded, and then
they will fold. But if their cards qualify as strong,
they will call any bet.

Finally, four groups of four binary values modify the
player’s behaviour on each betting round. One bit
indicates whether or not the player will ignore their
normal preferred and maximum bets, and instead bet
as much as they possibly can, if their cards qualify
as strong. A second bit determines whether or not the
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player is willing to stay in the hand if their cards are no
better than what is showing on the community cards
(for example, if the player holds ace-king, and the flop
is three queens, then the player’s hand is three queens,
but that hand is available to all the other players too).
A third and a fourth bit indicate a willingness to stay
in the hand if one card short of a straight or a flush
respectively. (Note that the second bit does not apply
to the pre-flop round, and the third and fourth bits do
not apply to the pre-flop round or the river round.)

Some of the features that a more sophisticated strat-
egy representation might cover include: whether or not
the two pre-flop cards are the same suit (for possible
flushes) or close in value (for possible straights), the
player’s position in the betting order, whether a player
has paired the top, middle or bottom pair on the flop,
the relative size of the player’s stack of chips, whether
the size of the pot justifies a risky bet, and how often
other players are seen to fold early or to bluff. Never-
theless, as is apparent to us from playing against var-
ious evolved and hand-coded strategies,? the current
strategy representation is adequate to produce poker
strategies ranging from the very bad to the reasonably
good.

2.2 A SIMPLE PARETO COEVOLUTION
ALGORITHM

We began with a population of 100 random poker
strategies. Ten strategies were selected at random to
make up a table, and a game of 50 hands of poker
was played out. Two hundred such games were played
per generation, which meant that each strategy was
assessed over an average of 1000 hands, and had a
chance to play against most of the other strategies in
the population.

Results from each of the 10,000 hands of poker played
in a generation were collated in a matrix showing who
had won or lost chips to whom. Pairwise comparisons
were conducted on this matrix in order to identify
Pareto-dominated strategies. Non-dominated strate-
gies were maintained in a Pareto front, and the re-
maining slots in the population were filled through
sexual reproduction of randomly chosen members of
the Pareto front. Reproduction included multi-point
crossover and mutation as in a standard genetic algo-
rithm (GA).? After the population had been restocked,

2Code (in Q) for playing poker against evolved
and hand-coded strategies is available on the web at
http://www.comp.leeds.ac.uk/jasonn/Research /Pareto/ .
Code for running our Pareto selection algorithm is also
available.

3There were 37 genetic loci, the crossover rate was 0.1

GENETIC ALGORITHMS

the win-lose matrix was wiped clean, and the cycle be-
gan again.

One problem that became apparent in trial runs was
that the entire population, or very close to it, would of-
ten be included in the Pareto front. This was presum-
ably due in part to noise in our evaluation process—
even over 1000 hands, the luck of the deal had a sig-
nificant influence on success, making the true worth of
a strategy hard to discern. Furthermore, each strat-
egy could expect only about 100 hands against each
opponent, and sometimes did not get to play against
a specific opponent at all.

In order to keep exploring new regions in strategy
space, we needed to limit the size of the Pareto front.
We set the maximum size of the front at 50 strategies,
which meant that up to half the population was pre-
serving accumulated wisdom, while the other half was
exploring new possibilities. But in the event that more
than 50 strategies were non-dominated at the end of
a generation’s 10,000 hands, we needed a principled
way of deciding which strategies would be maintained
in the front and which would be discarded. In de-
vising a metric for this purpose, we wanted to stay
as close as possible to the Pareto selection ideal, i.e.,
that one should not assume that the dimensions of
success are equally weighted. Strictly speaking, the
method we devised does violate this—and we suspect
that any method for keeping less than the full Pareto
front must—but it does not use an average or sum
of scores across different dimensions. Instead we have
used a count on the number of dimensions in which a
player excels.

Our method was to eliminate those strategies that
were “nearly dominated,” until our front size was less
than or equal to 50. A strategy is nearly dominated
if the number of opponents that it is superior to, with
respect to its best competitor, is low. The best com-
petitor is defined as the strategy that minimizes this
number of opponents. To elaborate: in determining
whether a strategy A is Pareto-dominated by B, or
vice versa, we look at the scores of A and B against all
other strategies. We count the number of strategies, or
dimensions, for which A scores higher than B. If this
count is zero, then A is dominated by B, and will not
be a member of the Pareto front in any event—there is

per locus, and the mutation rate was 0.02 per locus. For
the genetic parameters that were real or integer values, mu-
tation was implemented as a small gaussian perturbation,
with a mean of zero and a standard deviation of 0.05, 1,
or 2 for probabilities, hand rankings, and betting amounts
respectively (see section 2.1 for details). Ten percent of
mutations were denoted as catastrophic and resulted in a
new random value for that parameter.
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nothing that A can do that B cannot do better. If this
count is greater than zero, then A is not dominated by
B. If we look at these counts for A compared with all
other strategies, the minimum count gives an indica-
tion of how close A came to being dominated. In order
to limit the size of the front, we throw out strategies
for which this count was equal to one, then two, then
three, etc., until the membership of the Pareto front
is less than or equal to 50.

In summary, our implementation of Pareto coevolu-
tion involved selection based on non-dominance, given
the noisy, partial window onto the true payoff ma-
trix that is obtained from the results of a generation’s
10,000 poker hands. We also developed a heuristic
for limiting the size of the Pareto front. However,
there were potential problems with our procedure. Al-
though a strategy that is dominated with respect to
the current population must also be dominated with
respect to all possible strategies, the converse is not
true (Schaffer, 1985). So one strategy might remain
in our Pareto front despite being dominated by an-
other, as yet unseen (or already discarded). Noise
in the evaluation process, combined with our elimina-
tion heuristic, might prevent non-dominated strategies
from being recognized as such in the first place. An-
other possible complication is perhaps specific to the
game of poker: success is measured in the context of
the other players at a table, but this is not explicitly
controlled for. Strategy A might tend to do very well
against strategy B when matched directly, but not at
a table where C and D were present.

2.3 MEASURING EFFECTIVENESS OF
THE ALGORITHM

In order to determine the effectiveness of our Pareto
coevolution procedure, we compared its performance
with that of a regular coevolutionary GA. This merely
provides a baseline performance measure to give us an
indication of whether Pareto coevolution can improve
performance and robustness of evolved strategies, com-
pared to regular coevolution where fitness is based on
an average score over opponents in the population.

The parameters for the GA (i.e., population size, num-
ber of hands played per generation, mutation rate,
crossover rate, etc.) were the same as those used for
the Pareto coevolution algorithm. Strategies were se-
lected for reproduction based on their profit or loss af-
ter 10,000 hands: specifically, the scores were normal-
ized with the minimum set equal to zero, and roulette-
wheel selection applied to the normalized scores.

Both algorithms were run 20 times for 100 generations
each time. We can view the comparison of the two
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algorithms as a test of which one can produce the best
strategies given a million hands (100 generations X
10,000 hands) worth of information.

In deciding which of the two algorithms had produced
better results, we were faced with a somewhat para-
doxical problem of measurement. Precisely because
the fitness of a strategy cannot be given in isolation,
but can only be measured with respect to a particu-
lar opponent or set of opponents, it is difficult for us
to provide a single, general measure of the strength
of the evolved strategies. The familiar Red Queen ef-
fect means that it will not help to look at performance
against the other strategies in the population, as the
zero-sum nature of poker ensures that mean fitness will
always be zero.

We decided to construct two sets of five hand-coded
reference strategies for the purposes of comparison, us-
ing the same representational scheme as the evolving
populations (see section 2.1). These reference strate-
gies are not claimed to be in any way optimal; they
merely represent some typical, more-or-less reasonable
playing styles. For example, we constructed several
conservative strategies, that would not bet unless they
had quite strong cards. Some of the strategies were de-
ceptive, either because of frequent bluffing, or through
“slowplaying,” i.e., hiding the strength of one’s cards
until late in the hand. Other strategies tended to call
all bets as long as they held a reasonable hand.

Assessment of the strategies evolved under our two
different selection regimes was carried out by having
each strategy in the population play alone against a
table stocked with reference strategies, for a fixed se-
quence of 1000 hands. The overall profit or loss of
each evolved strategy was recorded. The same ran-
dom seed was used to deal out the same sequence of
cards in every assessment run, in an attempt to reduce
some of the noise inherent in the process. The refer-
ence strategies were divided into an alpha and a beta
group, and assessment was carried out against each of
these groups. Note that the ten reference strategies
were simply sorted at random into the two assessment,
groups; there was no intention that the alpha group
should be superior to the beta group, for instance. We
wanted to be sure that we had not accidentally con-
structed an unusual or eccentric reference point, and
comparison of results against two distinct groups gave
us some some insurance against this possibility.

It is important to be clear about what good perfor-
mance against these two reference groups might mean.
Strategies under both selection regimes never encoun-
tered any of the reference strategies during the course
of evolution. Strategies were selected solely for their
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Figure 2: Mean performance (+1 standard error) of
evolved strategies in 1000 hands of play against the al-
pha and beta reference groups; strategies evolved with
a coevolutionary GA compared with strategies evolved
under Pareto coevolution. Results summarised across
20 runs in each case.

ability to do well against other members of their pop-
ulation, either in the Pareto sense or in the conven-
tional sense of having a high average score. If they
managed to do well against an arbitrary set of hand-
coded strategies, that gives us some indication that
they would do well against a wide range of strategies,
i.e., that they are robust and have not adapted to their
conspecifics in an overly brittle manner.

3 RESULTS

Figure 2 shows that after 100 generations of evolution,
strategies evolved under Pareto selection had a higher
mean performance against both of the reference groups
than did the strategies evolved using a conventional
GA. As the standard error bars indicate, this difference
is more pronounced in performance against the alpha
group.

Figure 2 also indicates that the alpha reference group
was significantly harder to beat than the beta group—
both strategies lose to the former and win from the
latter on average. This difference was not intended,
but the fact that there is no evidence of a strong in-
teraction between selection regime and reference group
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performance (i.e., the two lines in Figure 2 are roughly
parallel) is a reassuring indicator that the two refer-
ence groups are measuring something like general abil-
ity.

If we look in detail at the evolved strategies across the
two selection regimes, the most striking difference is
that the Pareto strategies bluffed less often on average
(20% vs. 36%). This fact alone explains a lot of the
difference in success between the two conditions: in
those populations where a high level of bluffing ob-
tained, performance against the reference strategies
was always very poor. This is because the only type
of bluffing available to these strategies was a simple-
minded approach in which they pretended they had a
royal flush right from the beginning of the hand and
never gave up their bluff no matter how determined
the opposition. The Pareto selection process seems to
have made it easier for the population to discover the
folly of this sort of bluffing.

There were other differences: the Pareto strategies had
lower standards for staying in at the preflop and at
the river. They tended to bet more, and were more
likely to bet as much as possible if they had strong
cards (except on the final round of betting). They
were less likely to stay in the hand if they weren’t
beating the community cards, and were more likely
to wait for straights and flushes if they were one card
short. Readers who play poker may be interested in
seeing a complete strategy description. The following
is a high-performing evolved strategy from Pareto run
17, in which the average wins were 2009 and 5267 chips
against the alpha and beta groups respectively.

e Never bluff, and check-raise 11% of the time.

e At the pre-flop stage, bet as much as possible if
you have an ace or a pair—otherwise fold.

e On the flop, stay in as long as you are beating
the community cards. If you are one short of a
straight or a flush, stay in in any event. Try to
bet just two chips, but call bets up to 42 chips. If
you have a straight or better, call any bet.

e On the turn, keep waiting for a straight or a flush,
but otherwise fold if you have less than a pair
of sixes or if you are not beating the community
cards. If you stay in, try to bet 6 but call bets
up to 59 chips. If you have two pair, with the top
pair sixes or better, bet as much as you can.

e On the river, if you have a pair of aces or bet-
ter, then bet as much as possible. Otherwise fold,
and definitely fold if your two aces are community
cards.
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Figure 3: Mean performance of evolving strategies in
1000 hands of play against the alpha and beta refer-
ence groups, for both Pareto and standard coevolu-
tion, over 500 generations. Data taken from runs with
a common random seed value of zero.

Some peculiarities were noted regarding the Pareto
selection condition. The Pareto front, of maximum
size 50, was always full, which means that some non-
dominated strategies were being eliminated in every
generation. The mean age of strategies in the Pareto
front was approximately two generations, and the me-
dian age was always one generation. This suggests a
front made up of mostly very young strategies with a
few older ones, which is not unexpected, but the mean
age of only two generations indicates an extremely
rapid turnover of strategies. When Pareto populations
were examined at the end of a run, they were not as
diverse as we would have hoped. Again, this was not a
complete surprise, as reproduction with crossover was
employed, but it indicates that the Pareto front has
not been completely successful in preserving a range of
very different strategies that are non-dominated with
respect to each other.

We looked briefly at what happened when evolution
continued for more than 100 generations, and found
that in many cases performance against the reference
groups actually worsened. Figure 3 gives an exam-
ple of this, with mean performance data over time for
an extended version of run zero, showing both Pareto
and standard coevolution against the two reference
groups. The Pareto-evolved players are declining in
performance and moving closer to zero profit, while the
GA strategies are making significant losses but with no
clear trend up or down.
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4 CONCLUSIONS

Our Pareto coevolution algorithm was superior to
a GA at finding robust Texas Hold’em strategies
within 100 generations. This fact should not be over-
interpreted: clearly, we worked with only one game,
two small groups of arbitrary reference strategies, and
a particular set of parameter values. Nevertheless, our
finding does show that Pareto coevolution of strategies
in games can work in principle and is an idea worth
exploring.

The algorithms we have presented for selecting non-
dominated strategies and for discarding excess strate-
gies from the Pareto front could probably be improved
upon so as to use the multi-dimensional information
from the games played more efficiently and effectively.
Our current method maintains only a rough approx-
imation to the Pareto front as compared to existing
multi-objective optimization methods, because of the
unusually high number of objectives we are using.
However, in regular coevolution the multidimensional
information is discarded completely, in favor of a single
“performance on average” dimension. To put it an-
other way, fitness evaluation and selection are noisy,
incomplete processes under both selection regimes—
noisy because of the stochastic element, and incom-
plete in the sense that we cannot observe performance
against all possible opponents. But in Pareto coevolu-
tion, we are trying to use the information gained from
10,000 hands of poker more intelligently: instead of
simply taking an average, we use the specifics of who
beat who, and we remove the unwarranted assumption
that every other strategy is equally worth beating.

The long term behaviour shown in Figure 3 is some-
what disturbing. It seems that our Pareto-selected
strategies cannot hold onto their collective wisdom
over time (although the same effect was observed with
the more successful GA-evolved strategies). This ef-
fect may be due to the population chasing its own tail
into eccentric regions of the strategy space; if this is
the case, then we need to refine our coevolution algo-
rithm. But note that we are not selecting for maxi-
mization of scores against the reference strategies—we
are selecting for not being dominated by anyone else
in the population. It is an open question as to whether
the long term reduction in success apparent in Figure 3
is a sign of “population senility.” It may represent a
movement towards careful compromise strategies that
do not make spectacular wins, but instead make mod-
est profits against a wide range of opponents, and are
careful not to lose to anyone.

This paper is the preliminary exploration of an idea,
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and so we have many questions for future work. One
of the most pressing is about the explore-exploit bal-
ance in our algorithm: is 50% of the population a rea-
sonable size for the ongoing Pareto front? Would we
benefit from having a “genetic freezer” for storing past
champion strategies, and then re-inserting them into
the front at regular intervals? How big is the true
Pareto-optimal set likely to be in a game like poker,
and what chance do we have of getting a reasonable
approximation to it with our method?

We also want to look at reproduction of Pareto-
selected strategies. In the current paper we have used
standard sexual reproduction, partly to facilitate com-
parison with the GA. It seems worth exploring asexual
reproduction, or at least much lower levels of crossover,
to see if we can avoid the unfortunate degree of con-
vergence reported in section 3. It would be interesting
to see whether asexual reproduction also resulted in
an increase in the mean age of in the Pareto front.

Once we have refined our Pareto coevolution algo-
rithm, it would be sensible to test it against more than
just a standard GA. If we view the problem as how
to learn the most you can from one million hands of
poker, then we should ultimately be testing Pareto co-
evolution against a range of established evolutionary
computation and machine learning techniques. In the
meantime, our experiments have provided a simple il-
lustration of Pareto coevolution, and begun to explore
some of the issues involved.
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Abstract

To solve hierarchical problems, one must be
able to learn the linkage, represent partial so-
lutions efficiently, and assure effective nich-
ing. We propose the hierarchical Bayesian
optimization algorithm which combines the
Bayesian optimization algorithm, local struc-
tures in Bayesian networks, and a powerful
niching technique. Additionally, we propose
a class of hierarchically decomposable prob-
lems, called hierarchical traps, which are de-
ceptive on each level. The proposed algo-
rithm is shown to scale up subquadratically
on all test problems. Empirical results are in
agreement with recent theory.

1 INTRODUCTION

Genetic algorithms (GAs) (Holland, 1975; Goldberg,
1989) combine short partial solutions to form solu-
tions of higher order. New solutions undergo selection
and the process is repeated until the entire solution
is formed. However, fixed, problem-independent, re-
combination operators have shown to perform quite
poorly on problems with interactions among the vari-
ables spread across the solutions (Thierens & Gold-
berg, 1993; Pelikan, Goldberg, & Canti-Paz, 1998).
Moreover, the hierarchical nature of the optimization
process has earned only little attention and it has been
assumed that genetic algorithms do this automatically.

The purpose of this paper is to show that competent
genetic algorithms which succeeded in solving prob-
lems of bounded difficulty on a single level quickly, ac-
curately, and reliably, can be extended to solve prob-
lems that are hierarchical in their nature. We focus
on the Bayesian optimization algorithm (BOA) (Pe-
likan et al., 1998) using decision graphs to represent
the conditional probabilities of the model used to rep-
resent promising solutions (Pelikan et al., 2000).

David E. Goldberg
Dept. of General Engineering
University of Illinois at Urbana-Champaign
Urbana, IL 61801
deg@uiuc.edu

There are three major issues one must address to suc-
ceed in solving difficult hierarchical problems: linkage
learning, niching, and efficient representation of the
model. Linkage learning ensures powerful recombina-
tion. Niching and efficient representation of the model
ensure preservation of alternative partial solutions that
are assembled to form solutions of higher order. We
propose the hierarchical Bayesian optimization algo-
rithm which addresses the three aforementioned issues
by combining the Bayesian optimization algorithm, lo-
cal structures in Bayesian networks, and a powerful
niching technique. Hierarchical BOA is able to solve
problems that are not only hierarchical, but that also
mislead the algorithm toward some inferior optimum
on each level. Additionally, we design a class of hi-
erarchical test problems which require both efficient
linkage learning and niching, and perform a number of
experiments to show that hierarchical BOA is able to
solve the problems efficiently. Due to their deceptive
nature, the proposed problems are called hierarchical
deceptive traps.

The paper starts by describing BOA, which uses
Bayesian networks to model promising solutions and
generate the new ones. Section 3 discusses the use of
niching in genetic and evolutionary algorithms. Hier-
archical BOA is described in Section 4. Test problems
tackled in our experiments are presented in Section 5.
Section 6 provides and discusses the results of our ex-
periments. Section 7 concludes the paper.

2 BAYESIAN OPTIMIZATION
ALGORITHM

By applying recombination and mutation, GAs are
manipulating a large number of promising partial so-
lutions. However, fixed, problem independent, recom-
bination and mutation operators often result in infe-
rior performance even on simple problems. Without
knowing where the important partial solutions are and
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designing problem specific operators that take this in-
formation into account, the required number of fit-
ness evaluations and population size grow exponen-
tially with the number of decision variables (Thierens
& Goldberg, 1993).

That is why there has been a growing interest in link-
age learning which studies methods that are able to
learn where the important interactions in the prob-
lem are and use this information to combine solutions
more effectively. One of the approaches to linkage
learning is based on using probability distributions to
model promising solutions found so far and generat-
ing new solutions according to the estimated distribu-
tion (Mihlenbein & Paaf}, 1996; Pelikan, Goldberg,
& Lobo, 2000). Probability distributions can cap-
ture variables which are correlated and the ones which
are independent. This can subsequently be used to
combine the solutions in more effective manner. An
overview of methods based on this principle is beyond
the scope of this paper and can be found in Pelikan,
Goldberg, and Lobo (2000) and other related papers.

The Bayesian optimization algorithm (BOA) (Pelikan,
Goldberg, & Canti-Paz, 1998) uses Bayesian networks
to model promising solutions and subsequently guide
the exploration of the search space. In BOA, the first
population of strings is generated randomly with a uni-
form distribution. The initial population can be biased
to the regions that we are interested in. From the cur-
rent population, the better strings are selected. Any
selection method can be used. A Bayesian network
that fits the selected set of strings is constructed. Any
metric as a measure of quality of networks and any
search algorithm can be used to search over the net-
works in order to maximize/minimize the value of the
used metric. Besides the set of good solutions, prior
information about the problem can be used in order to
enhance the estimation and subsequently improve con-
vergence. New strings are generated according to the
joint distribution encoded by the constructed network.
The new strings are added into the old population, re-
placing some of the old ones.

The next subsection describes basic principles of learn-
ing and utilization of Bayesian networks. Subse-
quently, local structures that can be used to make the
representation of the model more efficient are discussed
and a simple greedy algorithm for network construc-
tion is briefly described.

2.1 BAYESIAN NETWORKS

A Bayesian network (Pearl, 1988) is a directed acyclic
graph with the nodes corresponding to the variables in
the modeled data set (in our case, to the positions in
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solution strings). Mathematically, a Bayesian network
encodes a joint probability distribution. A directed
edge relates the variables so that in the encoded dis-
tribution, the variable corresponding to the terminal
node is conditioned on the variable corresponding to
the initial node. More incoming edges into a node re-
sult in a conditional probability of the corresponding
variable with a conjunctional condition containing all
its parents. The network encodes independence as-
sumptions that each variable is independent of any of
its antecedents in ancestral ordering given its parents.

To encode the conditional probabilities corresponding
to the nodes of the network, one can use a simple
probability table listing probabilities of all possible in-
stances of a variable and its parents. However, the size
of such a table grows exponentially with the number of
parents of the variable even though many probabilities
of higher order may be the same. To solve hierarchical
problems, it is essential to be able to represent condi-
tional probabilities by structures that are polynomial
in the order of interactions. While the order of inter-
actions can be as high as the size of the problem, the
number of corresponding alternative partial solutions
must be polynomial in their order to allow efficient and
reliable exploration. The next subsection presents al-
ternative ways to represent conditional probabilities in
the model which allow a more compact representation
of the local densities in the model.

2.2 LOCAL STRUCTURES IN BAYESIAN
NETWORKS

One simple extension of the probability table is a de-
fault table (Friedman & Goldszmidt, 1999). In the de-
fault table, only some instances of the variable and
its parents are listed together with the correspond-
ing probabilities. The remaining probabilities are ob-
tained from the default entry which is simply an aver-
age of the remaining (unlisted) probabilities.

One can use more complex local structures, such as
decision trees (Friedman & Goldszmidt, 1999) or deci-
sion graphs (Chickering, Heckerman, & Meek, 1997).
Each internal node of a decision tree or graph cor-
responds to some variable. Children (successors) of
each internal node correspond to disjoint subsets of
values the variable can obtain. For binary variables,
each non-leaf node can have exactly two children where
each child corresponds to one of the values zero and
one. In case of bigger alphabets, there are more pos-
sibilities. A decision graph allows different parents to
have the same child. This makes the structure both
more general and expressive than decision trees. In
hierarchical BOA we use decision graphs. However,
there is only little difference between the performance
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using decision graphs and trees. Since trees are sim-
pler to interpret we used only decision trees in our
experiments.

Using local structures can reduce the space we need
to represent the model. Additionally, it can refine the
model building by using smaller operators and make
the model more general for some data sets. One can
encode interactions of a high order without having to
consider exponentially many instances and probabili-
ties. Please, see Pelikan et al. (2000) for more details
on using decision graphs in the BOA.

2.3 LEARNING BAYESIAN NETWORKS

To construct the network, a simple greedy algorithm
is usually used. This algorithm performs simple graph
operations that improve the quality of the current net-
work the most, starting from an empty network or a
network from a different source. To measure quality of
each network, various scoring metrics can be used. Re-
cently, we have used the Bayesian-Dirichlet metric, the
minimum description length (MDL) metric, and a met-
ric which is a combination of the Bayesian-Dirichlet
and MDL metric. For more details on the network con-
struction and scoring metrics for simple Bayesian net-
works and for networks with local structures, see Pe-
likan et al. (1998) and Pelikan et al. (2000). The
next section discusses various approaches to niching.
Subsequently, hierarchical BOA is described.

3 NICHING

The purpose of niching in genetic and evolutionary
optimization is twofold: (1) discovery of multiple solu-
tions of the problem and (2) preservation of alternative
solutions until one can decide which solution is better.
In some real-world applications it is important to find
multiple solutions and let the expert or experiment de-
cide which of the solutions is the best after all. The
reason for preserving multiple alternative solutions is
that on some difficult problems one cannot clearly de-
termine which alternative solutions are really on the
right track until the optimization proceeds for a num-
ber of generations. Without niching the population is
a subject to genetic drift which may destroy some al-
ternatives before we find out whether or not they are
the ones we are looking for.

There are three general approaches to niching: fitness-
sharing, selection-based, and island models. The fol-
lowing paragraphs briefly discuss each approach. It
is beyond the scope of this paper to give a complete
overview, and we refer the reader to the extended ver-
sion of this paper (Pelikan & Goldberg, 2001).

513

The first approach modifies the fitness landscape be-
fore the selection is performed. Fitness sharing (Gold-
berg & Richardson, 1987) is based on this idea. In
fitness sharing, the location of each individual is set to
either its genotype or phenotype. The neighborhood
of each individual is defined by the sharing function.
An individual shares a niche with any individual that
is within a certain range from its location. The effect
may decrease with the distance and completely van-
ishes for distances greater than a certain threshold.

The second approach modifies the selection itself to
take into account the fitness as well as the genotype
or the phenotype instead of using the fitness as the
only criterion. In preselection of Cavicchio (1970) the
offspring replaced the inferior parent. This scheme
was later generalized by De Jong (1975) who proposed
crowding. In crowding, for each new individual a sub-
set of the population is first selected. The new indi-
vidual then replaces the most similar individual in this
subset. Harik (1994) proposed the restricted tourna-
ment selection as an extension of De Jong’s crowding.
RTS proceeds just as crowding; however, the individ-
ual replaces the closest individual from the selected
subset only if it is better in terms of fitness. There-
fore, RTS introduces selection pressure and can replace
the selection operator.

The third approach is to isolate several groups of in-
dividuals rather than to keep the entire population in
one location. The location of each individual does not
depend on its genotype or phenotype. The individ-
uals can migrate between different locations (islands
or demes) at certain intervals and allow population at
each location to develop in isolation. There are two
reasons why spatial separation should be desirable in
genetic and evolutionary computation. One reason is
that in nature the populations are actually divided in
a number of subpopulations that (genetically) interact
only rarely or do not interact at all. Another reason
is that separating a number of subpopulations allows
an effective parallel implementation and is therefore
interesting from the point of view of computational
efficiency.

Some related work studies the preservation of diver-
sity from a different point of view. The primary goal
of these techniques is not the preservation of multiple
solutions or alternative search regions, but the avoid-
ance of premature convergence. Various techniques for
niching were also proposed in the area of multiobjec-
tive optimization. These methods are not applicable to
single-criterion optimization and therefore we do not
discuss them in this paper.

The BOA uses the set of selected solutions to learn a
model of promising solutions. Fitness sharing would
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affect the fitness and subsequently also the model con-
struction. That is why it is desirable that we use a
different niching method in the BOA. Spatial separa-
tion can be directly encoded in the probabilistic model
by using mixture distributions or models with hidden
variables. A simple method based on mixture models
to reduce negative effects of symmetry in the problem
on the BOA was proposed in Pelikan and Goldberg
(2000a). However, to solve hierarchical problems, we
must deal with a number of niches that can be expo-
nential in the number of variables. Even though this
implies exponentially sized populations, one can use
the fact that the model itself preserves diversity quite
well by that it makes many independence assumptions
and uses these to generate new solutions. Only little
extra pressure toward diversity preservation is then re-
quired. That is why we used the restricted tournament
selection to incorporate niching into hierarchical BOA.
Since the technique is used as a replacement technique
and not as a primary source of selection pressure, we
called the method restricted tournament replacement.

4 HIERARCHICAL BOA

As it was discussed above, hierarchical BOA uses
Bayesian networks to learn the linkage. To efficiently
represent partial solutions, local structures are used
to represent local densities in the model. The remain-
der of this section describes restricted tournament re-
placement (RTR) used in hierarchical BOA to ensure
effective niching.

RTR localizes the replacement in hierarchical BOA by
selecting a sub-set of the original population for each
new offspring and letting the offspring compete with
the most similar member of this subset. If the new
offspring is better, it replaces the corresponding in-
dividual. The measure of similarity can be based on
either the genotype or the phenotype. In our experi-
ments, we used Hamming distance to measure similar-
ity. Since the generation of a probabilistic model in the
BOA does not encourage using a steady state genetic
algorithm, we incorporate niching in the replacement
step of a traditional BOA.

It is important to set the size of the subsets that are
selected to incorporate each new individual into the
original population. The size of these subsets is called
a window size. A window size should be proportional
to the number of niches. We have tried a number of
settings on various difficult problems. A window size
proportional to the size of the problem yielded the best
performance.

A window size proportional to the size of the problem
can be supported by the following argument. For cor-
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rect decision making on a single level, the population
size must grow proportionally to the problem size (Pe-
likan, Goldberg, & Canti-Paz, 2000). To maintain a
certain number of niches, one must lower-bound the
size of each niche by a certain constant. Therefore, a
population size proportional to the problem size al-
lows for maintenance of the number of niches pro-
portional to the problem size. The number of niches
that RTR can maintain is proportional to the win-
dow size. Therefore, the window size growing linearly
with the size of the problem is the strongest niching
one can afford without increasing population sizing re-
quirements.

5 TEST PROBLEMS

In order to analyze the performance of hierarchi-
cal BOA on difficult hierarchical problems, most test
problems are hierarchical. The remainder of this sec-
tion describes test problems used in our experiments.

5.1 HIERARCHICALLY
DECOMPOSABLE FUNCTIONS

Hierarchically decomposable functions (HDFs) (Wat-
son, Hornby, & Pollack, 1998; Pelikan & Goldberg,
2000b) are a subclass of general additively decom-
posable functions (Pelikan, Goldberg, & Canti-Paz,
1998). HDF's are defined on multiple levels where the
input to each level is based on the solutions found on
lower levels. The fitness contribution of each building
block is separated from its interpretation (meaning)
when it is used as a building block for constructing
the solutions on a higher level. The overall fitness is
computed as the sum of fitness contributions of each
building block.

In spite of bounded difficulty of HDFs on each level, a
hierarchical function can contain interactions of order
equal to the size of the problem. Bounded difficulty
on each level of the hierarchy makes HDFs solvable in
polynomial time even though the problem is very dif-
ficult when viewed on a single level. It is important
to note that hierarchical problems of bounded diffi-
culty are a strictly more difficult class of problems than
problems of bounded difficulty on a single level.

A hierarchically decomposable function is defined by
its structure in the form of a tree with one-to-one map-
ping between the leaves and the variables in a problem,
and two sets of functions: (1) the interpretation func-
tions and (2) the contribution functions. The structure
defines which blocks of interpretations to interpret to
the next level and how, and which blocks contribute
to the overall fitness on this level. The interpretation
functions define how we interpret solutions from lower
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levels to become inputs of the contribution and inter-
pretation functions on a higher level. The contribution
functions define how much do blocks of interpretations
on each level contribute to the overall fitness.

The difficulty of hierarchical functions depends on the
underlying structure as well as the contribution and in-
terpretation functions. The hierarchical if-and-only-if
(HIFF) function (Watson et al., 1998) uses the “if and
only if” function on each level. More difficult functions
have been proposed (Goldberg, 1997; Goldberg, 1998;
Pelikan & Goldberg, 2000b), where functions deceive
the algorithms to a local optimum on each level. Only
at the top level it becomes clear which optimum is the
global one.

In this paper, only simple structures such as balanced
binary and ternary trees are used. The contribution
of each subfunction on each level is scaled so that the
contributions on all levels are of the same magnitude.

5.1.1 Hierarchical If-and-Only-If (HIFF)

The structure of the HIFF is a balanced binary tree.
By height(x) we denote the distance from the node
x in the tree to one of its descendant leaves. Since
the tree is balanced, the height is well-defined. Each
leaf contributes to the fitness by 1. Each parent node
z contributes to the overall fitness by 2"€#ht(*) if and
only if the interpretations of its children are both either
0 or 1. Otherwise, the contribution is 0. The two
symbols are interpreted to their parent on the next
level as 0 in case they are both 0’s, 1 in case they are
both 1’s, and ’-’ otherwise. As input, the leaves of the
tree get the input string with no change.

5.1.2 Hierarchical Trap Functions

Hierarchical traps use a balanced k-ary tree as the un-
derlying structure, where £ > 3. The interpretation
functions interpret blocks of all 0’s and 1’s to 0 and 1,
respectively, similarly to the HIFF. Everything else is
interpreted into ’-’.

Each contribution function is a trap function of order
k. A trap function is a function of unitation, i.e. its
value depends only on the number of ones in the input
string. See Figure 1 for a graph of the trap function of
order k. If there is a ’-” in the input to this function,
it simply returns 0.

The values of frign and fi,. define the heights of the
two peaks. The trap function is fully deceptive when-
ever fpign is greater than fi,,, within some proportion
depending on the order k of the function. See Deb
and Goldberg (1994) for sufficient conditions of decep-
tion. If the function is deceptive or fiow > frign, any
schemata of order lower than k bias the search to the
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Figure 1: Trap function of order k.
string all zeroes.

In both functions used in our experiments, the under-
lying structure is a ternary tree (k = 3) and the leaves
do not directly contribute to the overall fitness. For
all non-leaf nodes = of the first hierarchical trap ex-
cept for the root, the contribution is computed by a
trap with equal peaks frigh = fiow = 1 multiplied by
3height(z) -~ The contribution of the root node is given
by a trap with frign = 1 and fio, = 0.9 multiplied by
3height(root) T this fashion, the function biases the
search to the solution of all zeroes on each but the
top level. However, the optimum is in the string of all
ones. The top level is also deceptive which makes the
problem even harder. The above function is denoted
by H-Trapl in further text.

In the second function the bias toward solutions with
many zeroes is made even stronger by making the peak
fiow higher than the other peak everywhere except for
the root. To keep the global optimum in the string of
all ones, we set frign = 1 and fiow = 1+ 0.1/k for all
non-root levels. This function is denoted by H-Trap2.

The HIFF function does not bias the search toward
either global optimum. Unlike the HIFF, both hier-
archical trap functions H-Trapl and H-Trap2 bias the
search toward the solution with all zeroes on all levels.
However, the actual global optimum is in the string of
all ones. Therefore, the functions are very difficult to
solve and without effective linkage learning required
to preserve the local optima on each level and nich-
ing required to preserve alternative partial solutions
until solving the problem on the highest level, the al-
gorithm cannot reach the global optimum. For a more
detailed description of the test functions, see Pelikan
and Goldberg (2001).

5.2 BIPOLAR FUNCTION

The bipolar deceptive function of order 6 is con-
structed by concatenating a number of bipolar sub-
functions of order 6 (Deb, Horn, & Goldberg, 1992).
See Pelikan and Goldberg (2001) for a full definition of
the function. The bipolar function of size n has 2"/6
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global and 20"/6 local optima. For n = 30, there are
32 global and 3,200,000 local optima.

6 RESULTS

To show how hierarchical BOA scales up on difficult hi-
erarchical problems, we performed tests on each func-
tion with varying problem size. For each problem size,
we required that the algorithm find the global opti-
mum in all 30 independent runs. The performance
was measured by an average number of fitness evalu-
ations until the optimum was found. The population
size was determined empirically to minimize the num-
ber of fitness evaluations until the optimum was found.
A window size was set to the problem size, i.e. w = n.
We used decision trees to represent conditional prob-
abilities in the model and construct the model. Prior
distribution of models was biased toward simpler mod-
els (Pelikan et al., 2000).

The results of our experiments on the HIFF and H-
Trapl functions are shown in Figure 2. In all three
cases the algorithm scales up subquadratically. On
the left-hand side of the figure, the graphs in arith-
metic scale display the growth of the number of fitness
evaluations with respect to the size of the problem for
the HIFF and H-Trapl problems. Results on H-Trap2
were within 8% of the results on H-Trapl and due to
the lack of space we do not present them here (see Pe-
likan and Goldberg (2001)).

Theory of population sizing and time to convergence
for the BOA on separable problems of bounded dif-
ficulty (Pelikan et al., 2000) can be used to estimate
time to convergence of hierarchical BOA on hierarchi-
cal problems. Theory suggests that a single level of the
hierarchical problem can be solved in about O(n!-?) fit-
ness evaluations. The number of levels in all three hi-
erarchical problems grows as O(logn). Thus, the over-
all time to convergence should grow as O(n!'-®logn).
The fit is very good and matches also the slopes in the
log-log scaled graphs very accurately.

On the right-hand side, the log-log scaled graphs in-
cluding the slopes between neighboring points are
shown. A linear function in this scale is a polynomial
of the degree equal to the slope of the curve. To show
that the number of fitness evaluations grows at most
polynomially with the problem size, the points must
lie on a straight line. In our experiments, we see that
the slopes in fact decrease with the problem size. This
is the effect of the logarithm in the expected number
of fitness evaluations.

The simple genetic algorithm with fixed crossover is
not able to optimize hierarchical functions without
making sure that interacting genes are close to each
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Figure 3: Number of copies of different global optima
of the bipolar function. There are 32 optima in this
function and all 32 are multiply represented at the end
of the run.

other. Under the assumption of tight linkage, the sim-
ple genetic algorithm with good niching should work
quite well. The algorithm presented in Watson (2000)
is able to solve the HIFF problem even for interacting
genes spread throughout the strings. However, Wat-
son’s algorithm requires O(n? log n) fitness evaluations
for a problem of size n which is more than is required
by our algorithm.

To show the ability of hierarchical BOA to discover
multiple optima, we also performed a single run on a
bipolar function of size n = 30 with a sufficiently big
population and recorded the number of copies of each
global optimum in the population (see Figure 3). We
have performed a number of experiments with varying
parameters with a very similar result. The algorithm
was able to discover and maintain all global optima
which soon took over the entire population. However,
the optima were not equally distributed, ranging from
about 1.27% to about 5.53% of the population. This
confirmed the intuition that, unlike fitness sharing, the
methods based on crowding are not very sensitive to
the fitness values. They are able to maintain a number
of alternatives but the total space occupied by each
alternative is not proportional to its fitness.

7 CONCLUSIONS

The paper takes another important step toward in-
creasingly competent genetic algorithms by providing
an algorithm that is able to solve problems on a single
level as well as multiple levels. It emphasizes the im-
portance of solving separable problems on a single level
by showing that we need not modify much to success-
fully move from a single level to hierarchies. To solve
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Figure 2: Results on the hierarchical functions.

hierarchically decomposable problems quickly, accu-
rately, and reliably, a combination of niching, linkage
learning, and efficient representation of partial solu-
tions is necessary.

To learn the linkage, hierarchical BOA uses Bayesian
networks to model promising solutions and to generate
the new ones. To efficiently represent partial solutions,
decision graphs are used to represent local densities in
a model. To assure powerful niching, the restricted
tournament replacement is used.

Separable deceptive problems of bounded difficulty are
extended to multiple levels. The designed hierarchical
trap problems that are deceptive on each level are in-
tractable by local search methods and can be used as
a benchmark for other optimization algorithms. Hier-
archical BOA can solve these problems very efficiently
and reliably and it scales up subquadratically with the
problem size. Population sizing and convergence the-
ory can be used to approximate the behavior of the
algorithm both on single-level and hierarchical prob-

lems.

Hierarchical BOA should be applicable to real-world
problems without problem specific knowledge ahead
of time. This takes us closer to the promised land of
robustness, that has long been associated with GAs
but rarely delivered.
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Abstract

This paper discusses the use of various scor-
ing metrics in the Bayesian optimization al-
gorithm (BOA) which uses Bayesian net-
works to model promising solutions and gen-
erate the new ones. The use of decision
graphs in Bayesian networks to improve the
performance of the BOA is proposed. To
favor simple models, a complexity measure
is incorporated into the Bayesian-Dirichlet
metric for Bayesian networks with decision
graphs. The presented modifications are
compared on a number of interesting prob-
lems.

1 INTRODUCTION

Recently, the use of local structures, such as default ta-
bles and decision trees/graphs, in context of learning
the structure of Bayesian networks has been proposed
and discussed (Friedman & Goldszmidt, 1999; Chick-
ering, Heckerman, & Meek, 1997). Using local struc-
tures has shown to improve the performance of learn-
ing in terms of the likelihood of the resulting models
on a number of benchmark data sets. However, none
of these approaches was used to improve model build-
ing in the Bayesian optimization algorithm (Pelikan,
Goldberg, & Cantid-Paz, 1998), which uses Bayesian
networks to model promising solutions and guide the
search. Moreover, the use of various metrics in the
BOA has not been investigated thoroughly.

The purpose of the paper is twofold. First, the use of
decision graphs in the model construction phase of the
BOA is proposed to improve its performance. Second,
to eliminate superfluously complex models, a model
complexity measure is incorporated into the Bayesian-
Dirichlet scoring metric for Bayesian networks with
decision graphs. It is empirically shown that the in-
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troduced pressure is sufficient to eliminate the neces-
sity of binding the complexity of models by the user.
This is a significant contribution. The advantages of
the minimum description length (MDL) metric, which
favors simple models, are attained without having to
sacrifice a possibility of using prior knowledge about
the solved problem introduced by Bayesian metrics.
The performances of the BOA with various scoring
metrics and network construction algorithms, and the
simple genetic algorithm are compared on a number of
problems.

The paper starts by describing the BOA. Section 3 pro-
vides basic theoretical background of learning a struc-
ture of Bayesian networks. Section 4 describes how de-
cision graphs can be used as a core component of learn-
ing the structure of Bayesian networks and provides a
Bayesian scoring metric for computing the marginal
likelihood of Bayesian networks using decision graphs
given the data. The results of our experiments are
described in Section 5. The paper is concluded in Sec-
tion 6.

2 BAYESIAN OPTIMIZATION
ALGORITHM

It has been shown that using recombination and selec-
tion is a very powerful approach for optimizing many
difficult problems. However, fixed, problem indepen-
dent, recombination and mutation operators often re-
sult in inferior performance even on simple problems.
Without knowing where the important interactions in
the problem are and designing problem specific opera-
tors that take this information into account, the num-
ber of fitness evaluations and the required population
sizes grow exponentially with the number of decision
variables (Thierens & Goldberg, 1993).

Much effort was put in the design of methods that
would be able to learn which parts of the solutions
should be combined and which ones should remain
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intact. Omne of the approaches replaces traditional
crossover and mutation by building a probabilistic
model of promising solutions and using this model to
generate offspring. Probability distributions can cap-
ture variables which are correlated and the ones which
are independent. This can subsequently be used to
combine the solutions in more effective manner. Meth-
ods based on this principle are called estimation of
distribution algorithms (Miihlenbein & Paafl, 1996),
probabilistic model-building genetic algorithms (PM-
BGAs) (Pelikan, Goldberg, & Lobo, 2000), or iterated
density estimation algorithms (Bosman & Thierens,
2000).

It is beyond the scope of this paper to give a com-
plete overview of PMBGAs and the interested reader
should refer to Pelikan et al. (2000). In this pa-
per we focus on the Bayesian optimization algorithm
(BOA) (Pelikan, Goldberg, & Canti-Paz, 1998) which
uses Bayesian networks to model promising solutions
and subsequently guide the exploration of the search
space.

In the BOA, the first population of strings is generated
randomly with a uniform distribution. From the cur-
rent population, the better strings are selected. Any
selection method can be used. A Bayesian network
that fits the selected set of strings is constructed. Any
metric as a measure of quality of networks and any
search algorithm can be used to search over the net-
works in order to maximize/minimize the value of the
used metric. Besides the set of good solutions, prior
information about the problem can be used in order to
enhance the estimation and subsequently improve con-
vergence. New strings are generated according to the
joint distribution encoded by the constructed network.
The new strings are added into the old population, re-
placing some of the old ones.

3 BAYESIAN NETWORKS

A Bayesian network (Pearl, 1988) is a directed acyclic
graph with the nodes corresponding to the variables in
the modeled data set (in our case, to the positions in
solution strings). Mathematically, a Bayesian network
encodes a joint probability distribution. A directed
edge relates the variables so that in the encoded distri-
bution, a variable corresponding to the terminal node
is conditioned on a variable corresponding to the ini-
tial node. More incoming edges into a node result in
a conditional probability of the corresponding variable
with conjunctional condition containing all its parents.
The network encodes independence assumptions that
each variable is independent of any of its antecedents
given its parents.
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Various methods can be used to construct the net-
work given the set of selected solutions. Most methods
have two basic components: (1) a scoring metric which
discriminates the networks according to their quality
and (2) a search algorithm which searches over the
networks to find the one with the best scoring metric
value. The BOA can use any scoring metric and any
search algorithm.

In our recent work we used a simple greedy algorithm
to construct the network given the data. In each it-
eration of the algorithm, the graph operation that
improves the network score the most is performed.
The simple operations that can be performed on the
network include edge additions, edge reversals, and
edge removals. Only operations that keep the network
acyclic are allowed and the number of parents of each
node can be bound by a constant in order to avoid su-
perfluously complex models. The construction finishes
when no operations are allowed or no applicable graph
operation improves the score.

The next two sections briefly discuss the Bayesian-
Dirichlet and minimum description length metrics that
can be used to evaluate competing networks.

3.1 BAYESIAN-DIRICHLET METRIC

The Bayesian Dirichlet (BD) metric (Heckerman et al.,
1994) combines the prior knowledge about the problem
and the statistical data from a given data set. The
probability of a Bayesian network B given data D can
be computed by applying Bayes theorem as

p(B)p(D|B)

p(BID) = B=

(1)

The higher the p(B|D), the more likely the network B
is a correct model of the data. Therefore, the value
of p(B|D) can be used to score different networks
and measure their quality. This measure is called a
Bayesian scoring metric, or the posterior probability
of B given data D. Since we are only interested in
comparing different networks (hypotheses) for a fixed
data set D, we can eliminate the denominator p(D) of
the above equation.

The probability p(B) is called the prior probability of
the network B and it can be used to incorporate prior
information about the problem by assigning higher
probability to the networks confirming our intuition
or expert knowledge. By using an empty prior net-
work (with no edges) the metric favors simpler net-
works (see Section 4.2). Under a number of assump-
tions, the following closed expression can be derived
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for p(D|B) (Heckerman et al., 1994):

nt L(m/(m;
poip) =111 7 ) o
H L (m/(z;, m;) + m(x;, 7))
L(m!(zi, m;)) ’

T

where the product over m; runs over all instances m;
of the parents II; of X;, and the product over z; runs
over all instances x; of X;. By m(m;), the number of
instances in D with II; instantiated to m; is denoted.
When the set II; is empty, there is one instance of II;
and the number of instances with II; instantiated to
this instance is set to NV (the size of the data set D).
By m(x;,m;), we denote the number of instances in D
that have both X; set to x; as well as II; set to ;.
The metric computed according to the above equation
is called the Bayesian-Dirichlet metric, since one of
the assumptions made to compute the formula is that
the parameters are distributed according to a Dirichlet
distribution.

Terms m/(z;,m;) and m’'(m;) express our beliefs in fre-
quencies m(z;, m;) and m(n;), respectively, and can be
used as another source of prior information. A simple
prior for the parameters m/(x;,7;) and m'(m;) is to
assume m'(x;, ;) = 1 for all z; and 7;, and compute
m/(r;) according to the above assignment. The metric
using this assignment is called the K2 metric.

3.2 MINIMUM DESCRIPTION LENGTH
METRIC

A minimum description length metric is based on the
philosophical rule called Occam’s razor, claiming that
the simplest of competing theories be preferred to the
more complex ones. The MDL metric favors short
models in terms of their description length. A total
description length of a data set D compressed accord-
ing to a given model is defined as the sum of the space,
measured in bits, required by the model, its parame-
ters (various frequencies), and the data compressed
according to the model. In context of evolutionary op-
timization the minimum description length was first
time used by Harik (1999) in the extended compact
genetic algorithm.

A directed acyclic graph can be encoded by storing
a set of parents of each node. The set of parents of
a particular node can be encoded by the number of
the parents followed by the index of the set of parents
in some agreed-upon enumeration of all possible sub-
sets of variables of the corresponding cardinality. This
results in log, n +log, (lﬁ‘i‘) bits for the parents of Xj.
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To store the conditional probabilities according to the
distribution encoded by the network, we need to store
all combinations of all but one values z; of each vari-
able X; and all possible instances ; of its parents II;.
For each such combination of x; and ; the correspond-
ing conditional probability p(x;|m;) must be stored.
For binary variables, there are 2/™:l possible combi-
nations of values of the variable and its parents (ex-
cluding one value z; for each 7;, e.g. x; = 1, for which
p(z;|m;) can be computed from the remaining condi-
tional probabilities). This is an upper bound and can
be reduced by using more sophisticated data struc-
tures to encode the conditional probability tables. To
accurately encode each conditional probability, we can
use §log, N bits (Friedman & Yakhini, 1996). Thus,
the overall number of bits needed to store the table of
conditional probabilities for X; is log, N2IMil—1.

The number of bits needed to store an instance with
some probability is given by a logarithm of this prob-
ability. We must sum the description lengths over all
individuals in the population. The total length of the
model, its parameters, and the data set compressed
according to this model is then given by the sum of
the above terms (Pelikan, Goldberg, & Sastry, 2000).

A major advantage of the MDL metric is that it favors
simple models so that no upper bound on the model
complexity has to be specified. This bound comes up
naturally. However, when using a greedy algorithm
for model construction, the problem of finding a valid
model can become more difficult. Moreover, the MDL
metric does not easily permit the use of prior infor-
mation about the problem. In many real-world prob-
lems the utilization of expert knowledge (which is of-
ten available in some form) may be unavoidable. Sec-
tion 4.2 presents another way of dealing with the com-
plexity of models by specifying the prior probability of
each model inversely proportionally to its complexity.

A similar metric, called the Bayesian Information Cri-
terion (BIC), was used in the EBNA (Etxeberria &
Larrafiaga, 1999) and the LFDA (Miihlenbein & Mah-
nig, 2000) algorithms.

4 DECISION GRAPHS IN
BAYESIAN NETWORKS

Instead of encoding the conditional probability ta-
bles by a simple but inefficient probability table, one
can use more sophisticated structures such as decision
trees, decision graphs, and default tables (Chickering,
Heckerman, & Meek, 1997; Friedman & Goldszmidt,
1999). In this fashion the number of parameters re-
quired to fully encode the distribution can be signif-
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icantly decreased and the models become more ex-
pressive. This section explains how decision graphs
can be used to improve the expressiveness of Bayesian
networks and the learning of Bayesian network struc-
ture. It provides a metric for computing the likeli-
hood of Bayesian networks with decision graphs and
a method for constructing such structures (Chicker-
ing, Heckerman, & Meek, 1997). The network con-
struction algorithm of Chickering et al. (1997) takes
an advantage of using decision graphs by directly ma-
nipulating the network structure through the graphs.
This is a major difference from the way the decision
trees/graphs are usually used in context of the MDL
metrics to reduce the description length (Friedman &
Goldszmidt, 1999). Additionally, we provide the as-
signment of prior probabilities which takes into ac-
count model complexity.

4.1 DECISION TREES AND GRAPHS

A decision tree is a directed acyclic graph where each
node except for one designated node called the root has
exactly one parent. The root has no parents. Non-leaf
nodes of the tree are labeled by a variable (feature)
on which we want to split. When a node is labeled
by a variable v, we say that this node is a split on
v. Edges from a split on v to its children (successors)
are labeled by non-empty distinct exhaustive subsets
of possible values of v.

To traverse a tree given an assignment of all the vari-
ables, we start in a root and on each split on v we
continue to the child along the edge which contains
the current value of v. Notice that for each instance
(an assignment of all the variables) there exists only
one possible way of traversing the tree to a leaf.

We will have one decision tree for each variable. Each
leaf of this decision tree will contain conditional proba-
bilities of different values of this variable given that the
variables are constrained according to the path from
the root to the leaf. An example adopted from Chick-
ering et al. (1997) of a decision tree that encodes the
conditional probability distribution p(z|z,y) is shown
in Figure 1. All variables in this figure are binary
and thus we can split only to two children, one for
0 and one for 1. Instance (r = 1,y = 1,z = 0)
would traverse the tree to the right-most leaf. Instance
(x =0,y =1,z = 0) would result in the middle leaf.

A decision graph is an extension of a decision tree in
which each non-root node can have multiple parents.
By a decision graph, any set of equality constraints
among conditional probabilities can be encoded. This
can be shown by simply constructing a complete tree
and merging all leaves that are equal. An example
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p(zlx=0,y=0)

p(zlx=0,y=0) p(zlx=0,y=1) plzlx=0,y=1)

p(zlx=D)

Figure 1: An example decision tree and graph encod-
ing p(z|z, y).

of a decision graph is shown in Figure 1. This de-
cision graph can be obtained by merging the leaves
p(zlx = 0,y = 1) and p(z|z = 1) which represents an-
other equality constraint. It is important to note that
the equality constraints, in fact, represent indepen-
dence constraints. Moreover, each leaf in the decision
graph for a variable represents independence assump-
tions of any variable not contained in the path from
the root to this leaf, given the constraints specified by
the corresponding path to this leaf. In fact, we do not
need the Bayesian network anymore once we have the
decision graphs. The network can be reconstructed by
using the graphs.

There are four major advantages of using decision
graphs in learning Bayesian networks. First, many
fewer parameters can be used to represent a model.
This saves memory and time requirements of both
model construction as well as its utilization and
allows representation of high-order relationships by
reasonably-sized models. Second, the use of decision
graphs allows learning a more complex class of models,
because the relationships in a model can be cyclic un-
der the constraint that different parts of the cycle are
inconsistent with each other. It is beyond the scope
of this paper to discuss this issue. Third, the con-
struction of a Bayesian network with decision graphs
performs smaller and more specific steps which may re-
sult in better models with respect to their likelihood.
Finally, the network complexity measure can be eas-
ily incorporated into the scoring metric. The resulting
measure allows the use of prior information unlike the
MDL metric, and is as robust as the MDL metric when
no such information is used. We will discuss this topic
shortly.



GENETIC ALGORITHMS

4.2 BAYESIAN SCORE FOR NETWORKS
WITH DECISION GRAPHS

In this section we briefly discuss the computation of
a Bayesian score for Bayesian networks where condi-
tional probabilities and independence assumptions for
each variable are encoded by decision graphs (Chick-
ering et al., 1997). This computation does not differ
much from traditional Bayesian networks (see Equa-
tion 2). The outer product from Equation 2 remains
the same. The middle product runs over all leaves of
the decision graph G; corresponding to the variable
X;. The inner-most product runs over all possible in-
stances of the variable X;. Thus,

(3,1)

HH DESTIA o
H F(m(azi,i, l) + m’(a:i,i, 1))
C(m/(x;,i,1)) ’

p(D|B) =

T

where L; is the set of leaves in the decision graph G;
for X;, m(i,1) is the number of instances in D which
end up the traversal through the graph G; in the leaf
[, m(i,1) is the number of instances that have X; = z;
and end up the traversal of the graph G; in the leaf [,
the m/(i,1) represents our prior knowledge about the
value of m(i,l), and m'(x;,i,l) represents our prior
knowledge about the value of m(x;,1,1).

To adjust the prior probability of each network accord-
ing to its complexity, we first compute the description
length of the parameters required by the networks. To
encode one frequency in the data set of size IV, it is suf-
ficient to use 0.5log, N bits (Friedman & Goldszmidt,
1999). Therefore, to encode all parameters, we need
0.5logy N ), |L;| bits, where ). |L;| is the total num-
ber of leaves in all decision graphs. To favor simpler
networks to the more complex ones, we can set the
prior probability of a network to decrease exponen-
tially with the description length of the set of param-
eters they require. Thus,

p(B) = 2 03l NIk (4)

where ¢ is a normalization constant required for the
prior probabilities of all networks to sum to 1. The
value of a normalization constant does not affect the
result, since we are only interested in relative com-
parisons of networks and not the absolute value of
their likelihood. A similar assignment of prior prob-
abilities was presented in Friedman and Goldszmidt
(1999). As we will see in the next section, the as-
signment in the last equation is sufficient to bias the
model construction to networks with less parameters
and avoid superfluously complex network structures
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without having to determine the maximal number of
incoming edges in advance. This eliminates another
degree of freedom for setting the parameters of the al-
gorithm and thus makes the algorithm easier to use.
Somewhat weaker pressure toward simpler networks
was introduced in Heckerman et al. (1994) and Chick-
ering et al. (1997). Our experience was that the latter
pressure was not strong enough to result in efficient
learning in our application.

The above assignment can be extended or fully re-
placed by the one that takes into account our prior
knowledge about the problem by favoring models that
are more similar to the prior network.

4.3 LEARNING BAYESIAN NETWORKS
WITH DECISION GRAPHS

To construct a decision graph on binary variables, two
operators are sufficient. The first operator is a split,
which splits a leaf on some variable and creates two
new children of the leaf, connecting each of them with
an edge associated with one possible value of this vari-
able, in our case, 0 or 1. The second operator is a
merge, which merges two leaves into a single leaf. It
does not make sense to split a leaf on a variable that
was encountered on the path from the root to this leaf
and therefore these operators will not be allowed.

For variables that can obtain more than two values,
two versions of the split operator can be considered:
(1) a complete split which creates one child for each
possible value of the variable (as above), and (2) a bi-
nary split, which creates one child corresponding to
one particular value and another child for all the re-
maining values. Other alternatives can also be consid-
ered.

The greedy algorithms for constructing a Bayesian net-
work using decision graphs differs from the one pre-
sented in Section 3 in that it does not manipulate
the constructed network directly but only by modi-
fying the decision graphs corresponding to each vari-
able. The decision graph G; for each variable X; is
initialized to a single-leaf graph, containing only prob-
abilities p(X;).

In each iteration, all operators (e.g., all possible merges
and splits) that can be performed on all decision
graphs GG; are examined. The operator that improves
the score the most is performed on the corresponding
decision graph. Both split and merge operators can be
performed. When making a split, we must make sure
that no cycles appear in the network B. To guarantee
that the final network remains acyclic, we can contin-
uously update the network B each time we perform a
split. Once we split a leaf of the graph G; on a vari-
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able X, we add an edge (X, X;) to the network B. A
more sophisticated algorithm is possible which would
allow a cycle whose different parts would be incompat-
ible and thus not form a true cycle. The pseudocode
of the above algorithm follows.

(1) Initialize a decision graph G; for each node X; to
a graph containing only a single leaf.

(2) Initialize the network B into an empty network.

(3) Choose the best split or merge that does not result

in a cycle in B.

(4) If no improvement is possible, finish.

(5) Execute the chosen operator.

(6) If the operator was a split, update network B.

(7) Go to (3).

It is important to notice the difference between the al-
gorithm that directly modifies the network and the one
which modifies the decision graphs. Adding an edge
into a Bayesian network and using a full conditional
probability table to store the corresponding probabil-
ities corresponds to splitting all leaves of the decision
graph corresponding to the terminal node of the edge
on the variable corresponding to the initial node of the
edge. However, by modifying only the decision graph,
finer steps can be performed which may positively af-
fect the quality of the resulting model.

5 EXPERIMENTS

This section starts by specifying our experiments.
Subsequently, it provides and discusses the obtained
results.

5.1 SPECIFICATION OF EXPERIMENTS

We have performed experiments on a number of func-
tions. In this paper we only present results of our
experiments on some of the functions. A simple linear
function, called one-max, simply sums all bits. The
3-deceptive function is a sum of subfunctions of order
3, applied to disjoint blocks of 3 consecutive bits in the
input string. Each of these subfunctions is defined as

09 ifu=0
; ) 08 ifu=1
fdec(X) - 0 ifu=2 (5)

1 otherwise

where X is a vector of 3 binary variables, and u is the
sum of the input variables. The 3-deceptive function
has one global optimum in (1,1,...,1) and 2% local
optima in all points where (X3; + X3;41 + X3i42) €
{000,111} for all i € {0,...,%}. The above function
is deceptive in a sense that an average value over all
strings that contain 0’s in two particular positions is
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greater than the corresponding average with the 1’s in
these two positions. This feature makes the function
very difficult unless the algorithm uses a recombination
that respects interactions.

The two dimensional Ising spin-glass function maps
bits onto a regular 2D grid. There are two types of
edges. An edge of the first type contributes to the
overall fitness by 1 if the bits at its ends are the same.
An edge of the second type contributes to the fitness if
the bits at its ends are different. For a more detailed
description of the function and the definition of the
problem instance we used in our experiments, please
see Pelikan et al. (1998).

We have compared the simple GA, the BOA with both
the MDL metric as well as the Bayesian-Dirichlet met-
ric, and the BOA using decision graphs to construct
the model and encode its parameters. The complex-
ity measure was incorporated into the metric for the
use with decision graphs as described in the above sec-
tions. The performance of the BOA does not depend
on how we order the variables in solution strings. On
the other hand, the ordering of the variables strongly
influences the performance of the simple GA. We have
chosen the representation so that interacting variables
are close in the solutions strings. This is the best case
for the simple GA. However, the main purpose of our
experiments was not to compare the BOA to the sim-
ple GA but to give insight in the BOA and the effect
of using local structures on its performance.

The population size in each algorithm was set as the
minimal population size required for the algorithm to
converge in all of 30 independent runs. Binary tourna-
ment selection was used in all experiments. The num-
ber of offspring is equal to a half of the population size
and the generated offspring replace the worst half of
the original population. In this fashion, the runs are
more stable and elitism is introduced. The probability
of crossover in the simple GA was determined accord-
ing to empirical evidence presented elsewhere (Pelikan,
Goldberg, & Cantu-Paz, 1999) as p. = 1. Except
for the one-max function, the mutation was not used,
since it seems to not pay off on the tested problems.
On one-max problem, p,, = 0.01 was used.

5.2 RESULTS

The results on the simple linear one-max function are
shown in Figure 2. One-max is a linear function and
thus it is expectable that all the algorithms perform
very well. The BOA with an optimal £ = 0 (which is
equivalent to the UMDA) performs the best, because
it does not take into account any interactions and in
this problem all the variables are indeed independent.
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Figure 2: Results on the one-max function.

Other algorithms try to model some interactions and
that is why they perform worse. However, all algo-
rithms seem to scale very well. Using decision graphs
does not seem to pay off in this case because of that
the noise misleads the model building which is very
sensitive when the decision graphs are used. Other
modeling techniques make bigger steps and it is harder
to mislead them. Even though this feature is likely to
make the BOA work less efficiently on this simple lin-
ear problem, it can be very useful when solving difficult
problems where making little steps while building the
model pays off.

The results on the 3-deceptive function are shown in
Figure 3. The results suggest that all versions of
the BOA perform similarly and as the problem size
grows, they outperform the simple GA with one-point
crossover. This suggests that they scale up better.
It is important to note that the coding chosen for this
problem is the best one for the simple GA. If the build-
ing blocks (the bits corresponding to each deceptive
subfunction) would be coded more loosely, the perfor-
mance of the simple GA would get worse, and, even-
tually, for a random ordering of the variables in the
strings representing solutions the simple GA would re-
quire exponential time (Thierens & Goldberg, 1993).
However, the BOA is independent of the ordering of
the bits in strings, and thus its performance would
remain the same independently of the ordering we
choose. The BOA with both the decision graphs and
the MDL metric performs very similarly. This behav-
ior is very interesting because the metrics are coming
from two different paradigms.

The results on the spin-glass system are provided in
Table 5.2. The BOA with the MDL metric performs
the best. The BOA with & = 2 performs the worst.
The simple GA does not reach the optimum even with
huge populations and a large number of generations.
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Figure 3: Results on the 3-deceptive function.

This problem is very difficult for the simple GA. It is
interesting that the MDL metric performs the best and
outperforms both the BOA with decision graphs as
well as a bound on the network complexity £ = 2 and
the K2 metric. We have also performed experiments
with higher values of k. As the k increases to 4, the
performance of the BOA with the K2 metric improves.
The BOA with £ = 4 and the K2 metric performs the
best of all compared algorithms. However, with k = 5
the performance again decreases. This suggests that
the value of k = 4 is a good choice for this problem.

Table 1: Results on the 2D spin-glass.

Algorithm Fitness evals | Std. dev.
BOA (k=2, K2) 75833.33 4649.03
BOA (k=3, K2) 42733.33 2993.48
BOA (k=4, K2) 36606.67 2045.04
BOA (k=5, K2) 48960.00 2099.85
BOA (MDL) 38091.67 2317.69
BOA (Dec. trees) 57960.00 3109.62

6 CONCLUSIONS

The use of local structures to represent conditional
probability tables has four major advantages. First,
the number of parameters required to store probabili-
ties with a large conditional part can decrease signifi-
cantly. This makes the method work more efficiently as
we increase the complexity of models. Moreover, high-
order interactions can be represented by using models
of reasonable size. Second, by using decision graphs to
guide the network construction, one can discover more
complicated relationships which may not be evident
when directly modifying the network. Additionally,
models of the same quality can be discovered by using
less effort. Third, the models become more expressive,
since cycles with different parts corresponding to in-
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compatible paths in the decision graphs may appear
in the model.

Finally, the complexity of the models can be automat-
ically controlled by making prior probabilities of com-
peting models be inversely proportional to their com-
plexity. Our experiments suggest that setting the prior
probability of a network to be inversely proportional
to the number of bits required to store the frequencies
in the network works well. By using Bayesian scoring
metric containing a complexity measure as described
above, one can both (1) use prior knowledge about the
problem in network construction and (2) eliminate the
need for a bound on the network complexity. In this
fashion one can get the best of the two approaches.

Our test problems do not benefit from the compact
representation by local structures, such as decision
graphs. They only require covering interactions of a
bounded order. Hot candidates for the use of local
structures are problems that require a hierarchical ap-
proach where we must encode interactions of a very
high order with a quite regular and simple structure.
Such interactions may appear later in the run and re-
quire efficient representation.
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Abstract

Traditional data mining methodologies rely ona
system-based oljedive functionto oltain results
that are cnsidered interesting and accurate. The
focus on computation speed and acairracy has
negleded the domain user, who could contribute
useful input to the dedsion-making of the
mining process In this paper, we outline, IMiN,
adatamining architecure which has two specific
gods. Firstly, an interadive ad iterative
framework based on the evolutionary model is
proposed for the mining process to enable a
domain user to control the flow of the mining
process ad-lib. Sewondly, this hybrid system
maximizes the best from two dfferent
agorithms.  Apriori agorithm and genetic
agorithm. The former one is a proven data
mining technique to zoom in and to construct
interesting rules acording to a predefined fithess
function, whereas the latter one enables the
seach of interesting regions for further
investigation. The results dowed that the
environment we @nstructed allowed the user to
affed the mining diredion during the mining
process as they intended. The results aso
suggested that including Apriori in the process
alowed the user to home in faster to solutions
than namal. Overall IMiN proved itself capable
of suppating the user’s dedsion making during
the mining process

1 INTRODUCTION

In the past fifteen to twenty yeas there have been large
developments in data mining techniques. Originaly the
emergence of simple dgorithms has paved the way for
new and innovative techniques that use smart techniques
to analyze information. Methods proposed in (Bayardo
Jr., 1998) and (Yip et al, 199) take the gproach of
cleverly deriving new useful information from previously
succesgul knowledge. These techniques use dependency
modelling whereby a relationship between two or more
elements is defined by how strongly the grouping of one,
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or more, is a reliable predictor of the others. Ancther
technique that has been used to model such relationships
is genetic dgorithms. The rationale with this approac is
that finding useful information is sgmnonymous to
seaching for aproblem solution. Typical examplesin this
caegory include (Marmelstein, 1998 and (Noda et al,
1999).

The dore-mentioned reseach is lacking in the sense
that knowledge discovery has becme largely autonamous
and hence distant from its origina focus. Many
algorithms leave out the capadty for human input and
attempt to mimic asemantic level of understanding of the
information wsing objedive functions and agorithms.
Current methods that attempt to include the domain user
into the mining process are till limited and have yet to
read their full potential.

The purpose of paper is to propose adata mining
system that will allow user to stee the diredion of the
mining process as it happens. This will be fadlitated by
the complementary strength of the exploration powver of
genetic dgorithm and the dependency analysis of a well-
established data mining techniques. The rationale for
using a mixture of techniques follows the principle that
biases can be removed by combining one paradigm with
another that balances aspeds of the origina paradigm
(Anand and Hughes, 1998). We plan to take those aspeds
that are useful to us from ead method and combine them
in away that makes them compatible. The system is also
equipped with an interface to enable interadion. The
rationale behind ou approach agrees with the statement
(Williams, 1999) that “... data mining is an inherently
interactive and iteractive process ...”, meaning that the
system should ad as a support mechanism to the user’s
intuitions.

In the next sedion, we outline in more detail the
badkground d this paper. In section 3 we propose the
design of, IMIN, an interadive data mining system. The
experiment and results are outlined in sedion 4 Thisis
followed up with final conclusions and future
recommendationsin sedion 5.
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2 RELATED WORK

In this £dion we overview various aress of previous
reseach that are related to the direction of this paper. The
main areas of focus are itemset building agorithms,
genetic dgorithms, and the development in interadive
mining.

Agrawa and Srikant (1994) started the family of
Apriori agorithms. This family of agorithms is
incremental in nature. The agorithm first scans the
dataset and bulds a list of itemsets L,, which lists the
support of al single dement itemsets. In ead subsequent
iteration, the agorithm builds a set C, containing large
itemsets generated by joining fit ones (satisfying a
minimum suppat requirement) from the previous
iteration Ly.4. Then, afunction cdled apriori-gen is cdled
to prune al itemsetsin Cy that are deemed unfit.

Instead of re-chedking the dataset to ascertain the
fitness of itemsets in Cy, apriori-gen uses a smart
heuristic. Anitemset is said to be unfit if not all of itsLy.1
subsets are fit. Oncethese itemsets are pruned, the dataset
is <anned to determine the support of the remaining
itemsets in C¢ and hence the process repeats again. The
entire process kegps running until no more itemsets can
be generated from the airrent ones. To illustrate goriori-
gen in action consider the following example:

LetLsconsistof {{123,{124,{134,{135},
{2 3 4} . After thejoin step the output will be {{ 1 2 34},
{1 3 45}. Pruning thiswith Apriori-gen will result in {12
3 4} because eatr of its subsets {12 3, {12 4, {1 34},
{23 4 existinLas.

To summarise, itemsets are built upon previously
constructed ones that are nsidered fit. Unnecessary
computation is avoided on those itemsets that are
inappropriate. Thesein turn producespedfic asociations.
Since this algorithm was introduced, there has been a
steady advancein the smart generation of itemsets.

More recent work such as the LGen technique (Yip et
al, 199) improves on Apriori by generating variable-
sized itemsets on each passof the dataset. The godl is to
reduce the overal 1/0 passes required to find al large
itemsets. The size of the largest itemset in Apriori
agorithms dictates the number of passes through the data
that are required. LGen, on a best case scenario, can
require & few as two passes irrespedive of dataset size
Ancther |attice-based algorithm Max-Miner (Bayardo Jr.,
1998) uses alook-ahead technique whereby large itemsets
are generated ealier than they would be in Apriori. These
methods, while being at the forefront of their paradigm,
generally ladk the structure for interadion.

Genetic dgorithms are a newer paradigm in data
mining and have proven compatible performance ayainst
other methoddogies. GRaCCE (Marmelstein, 1998) is a
genetic rule induction agorithm that gradually refines
linear boundaries drawn on the data to deduce rules.
GRaCCE was tested against CART, a dedsion tree
induction agorithm, and was foundto generate fewer and
more mncise rules than CART. The results demonstrate
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that the searching capabilities of genetic dgorithms can
be gplied succesfully and efficiently to dataminingin a
rule induction context.

In a different study (Noda et al, 199) a genetic
agorithm is used in a dependencemodelling task to
discover interesting prediction rules. An agorithm was
proposed to combine some charaderistics of the GA-
Nuggets agorithm (Freitas, 1999 and the objedive
evaluation d rule interestingness (Freitas, 1998). A
noteworthy difference between this and rule induction is
the latter requires ome prewmnception d the desired
result wheress the former is more free to discover
surprising information.

The focus of the Evolutionary Hot Spots model
(Williams, 1999 is that: data mining is an inherently
interadive and iterative process The Hot Spots model
uses induction and clustering techniques to identify
potential groups of interesting rules. These groups are
then evaluated for interestingness The Hot Spots process
is worked into an iterative achitedurein order to evolve
the definition of interestingness along with the mining
process

First the Hot Spots method defines interestingness
based on urexpededness or surprising charaderistics.
The database, D, consists of a set of entities, where eat
oneis atuple. Hot Spats generates a set of rules R = {ry,
I ..., Ip} where eat rule holds a group d entities. Each
rule is aso known as a nugget. The problem is that the
number of nuggets that arise in very large databases can
itself be vast, many of which can be epeded to have
little interesting quality. For this reason an evolutionary
approach was adopted to refine the quality of produced
rules. Also meta mndtions are implemented to limit the
number of rulesthat are presented to the user.

Initialy rules are found using some statistica rating,
like asimplified version of the genetic dgorithm fitness
function. A number of nuggets g, ead having
approximately s rules, is discovered and presented to the
user, who will rate the nuggets and fealbad into the
system amodified definition o interestingnessqg. At ead
iteration the user evaluates discovered rules and further
evolves these measures of interestingness

Dataset Ruleset Hot Spots Humen
sampli ) Ranking
Evolve] (g*s)
$=1ooo =3
Evolve |¢— Analysis4—‘
n=1,000000 M easures of
m = Attributes Interestingness
a=5

Figure 1 — The Evolutionary Hot Spots Model

The processis designed to stop at the discretion o
users, not the system. The achitecure (Figure 1) is an
example where the user’'s inpu is taken na only at the
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beginning but also throughou the mining process The
potential for interadion is an important asped with regard
to the am of this paper.

3 IMIN-A HYBRID MODEL

Our proposed solution is an interadive system that both
guides and suppats the user’ s dedsion-making during the
mining process If we look at data mining as a search for
good solutions, then the system shoud alow a user to
seach as broad (exploration) or as dee (exploitation) as
isdesirable.

The proposed hybrid approach combines the genetic
algorithm developed by (Noda et al, 1999) with the
Apriori itemset building agorithm (Agrawa and Srikant,
1994). The interadivity is made available by the
incorporation of the Evolutionary Hot Spots architedure.
This combination (Figure 2) provides us with a basic
framework and technique to enable human interadion in
KDD. It dso provides us with the opportunity to test the
augmentation d genetic dgorithms to the Apriori family.

Dataset 1

2 3
—»| Evolve/ Chedmant Evolve/
; —p | ChedkpointL— |
O%?;tgs P Rule Growth|
d
R';r‘mg | €—— | Idenify
Mining Rules
Control

Figure 2 —Modified system architedure to acoommodate
the hybrid

An initia population o rules is generated and
evolves for a cetain number of generations in Step 1.
Then the system chedks whether it is suppased to further
evolve rules by growing them (Step 2). Note that rule
growth (Step 3) is synonymous with increasing the order
of schema in a chromosome. In Step 4, rules that are fit
acording to the objedive fitnessfunction are displayed to
the user and to be further manipulated (Step 5). The user
seleds which rules will continue subsequent evolution
and then the gycle begins with null aldes which are
marked witha*-1'.

31 THEARCHITECTURE: STEP-BY-STEP
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The genetic dgorithm in this model searches for
asciation between attributes in a dataset where arule
consists of an antecedent and consequent. The user first
seleds a group o attributes that are digible to be goa
atributes. In order to limit the search space a small set of
attributes that interests the user remains, and thus cuts
down onthe total processng time.

Step 1: Evolution of Rules
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Rules in the system are represented by chromosomes.
A chromosome's length corresponds to the number of
atributes in the dataset. Only values of the antecedent are
stored in the cdromosome. This dructure dlows us to
apply the genetic operations easily and take advantage of
the dficient one-passmethod 2. The mnsequent is dored
externally. Specific details on the genetic operators will
be wvered in the following sedions.

The eploration o the seach space in GA is
generaly enabled through the aossover operator. Many
techniques, including GA-Nuggets, use uniform
crossover. However, it is unsuitable for the proposed
system because the number of antecalents (or itemsets)
can orly be incremented at ead rule growth in the
Apriori dgorithm. The onstruction of a (k+1)-order
itemsets reli es on the existence of the k-order, (k-1)-order,
(k-2)-order, ., 2-order, l-order itemsets. Chaotic
fluctuation d antecedents between generations due to the
random nature of genetic operators is not acceptable.
Consider the examplein Figure 3:

[Tl -T-Telolpli] [Tl -T-Tel-T4l-]
CI'OSIS)VET

Figure 3 — Effed onschema order in 1-point crossover
(null alleles are denoted by a“-*)

[}
[olul-Trlp]-T4l.]

In Figure 3 the offspring (right) have a mixture of
feaures from the parents (left), hence the schemas’ order
has changed.

While GA-Nuggets attempts to regulate rule sizeto a
cetain degree using the spedalised insert and remove
operators, they do not guarantee the level of control
necesssary to make scheduled rule growth pcsshle. To
ensure that the rule size remains constant after crossover,
a new crosover method termed Random-Quota
Crossover (RQC) isintroduced which is adapted from the
1-paint crosover. First, a random number between 0 and
the schema order-1 is chosen. This number represents a
guota of the number of aleles that must be cpied from
ead parent. Then, a brute-force passis required to work
through the parents from the heal to the tail to swap the
non-null alelesuntil the quaais reached.

Figure 4 shows an example of RQC. The quotais %t
to ‘3 in this example, which means only 3 aleles needed
to be swapped with the mating partner. First of all, the
first positions of ead o the parents are chedked for non
null values. Since parent-A contains a vaue in this
pasition, the dleleinthispasitionis svapped with parent-
B. After swapping, the number of swapped non-nul
alelesfor parent-A and parent-B are 1 and Orespedively.
Then, the operator moves to the next position and finds
that both parents have valuesin locus 2. The value of ‘H’
and ‘B’ are swapped between the two parents. On
completion of the second locus, the numbers of non-null
aleles svapped for parent-A and parent-B become 2 and
1. Since both parents have null values in their third gene,
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no swapping takes place For the fourth position, parent-A
has a value ‘T' in the aurrent locaion. Swapping occurs
and the numbers of swapped allelesin the two parents are
3 and 1 correspondngly. Note that ‘E* and ‘P are not
swapped between parent-B and parent-A. It is because
when the dgorithm readed that particular position, that
quotafor A has aready been satisfied. As aresult B must
wait until it finds an empty alele in A to swap to. Both
rules begin with the same number of nortnull alleles,
RCQ guarantees that the resulting rules have the same
property as well.

A [plul-Itlpl-Tal-] |
TS

B [LIgl-T-Telolpli] [pIul -Tslel-Tpl.]
Figure 4 —RQC with qudaset to 3

Each feaure of every rule chromosome is given a
percentage probability to mutate after crossover is
performed. The dhance of ead feaure to mutate is the
same within the same generation, however, this may
change in subsequent generations at user’s discretion.

el -T-Telolali |

312 Step 2: The Chedkpoint

At certain periodsin the mining process rules will be
‘grown’. After individuals are evolved for a set number of
generations, the system will procee to rule growth using
the Apriori technique.

3.1.3 RuleGrowth

In this gep, the order of antecedents in every rule is
grown by one. In the subsequent discussion, we trea the
rule antecedents as itemsets, where an itemset is a list of
elements A;;... Ay such that A; istheith attribute and A;j is
the jth value of this attribute. The suppat of an itemset
denotes how often all of its elements occur together.
During the rule growth, we ae wncened with the
support of itemsets, not the asociations derived from
them. The antecalents of associations produced by the
genetic operators are reverted to itemset form. From then
on, the Apriori is applied. After rule growth, new
asciations are then extraded from the grown itemsets.

L1 is obtained by colleding al the atecalents of
asciations that have sufficient support. An example of
Apriori growing itemsets is own in Figure 5. The
guaranteed order alows us to reduce the amourt of
necessary comparisons. In ou system the generation o
L1 neas to be done only during the generation before
rule growth occurs.

Due to genetic operations in ou system, the ordering
of chromosomes in a generation, if any, cannot be
preserved. To ded with an unordered set of rules, the
agorithm is modified to ensure that rules are only
combined with other rules gich that the last non-null
value of the second chromosome occurs after that of the
first. The processis described in Figure 6. Following this
principle, we add 8from A to B to produce D, 4 from C to
B to produce E, and 8 from A to C to produce F.
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Chromosomes D, E and F constitute the unpruned Cy set.
When Cy is creded, al nonlarge rules are then removed
by a pruning step, which is the latter part of apriori-gen.

Lkl Lk-1
1| 3 1| 3
2| 3 2| 3
2 | s 2| s
3| s \ 3| 5

Figure 5— Apriori ordered join

The diff erence between this modified version and the
original Apriori algorithm is that: it is used only oncein
ead rule growth stage, insteal of repetitively until no
more large itemsets are generated.

Alslr]-]-]s s]7[-]-]e]

®L7fole]-] rlofef-]-]

¢ [2]s]-]4] 2f1f-J4]-]
[7lofef-]eP
[7]olef4]-F
[2]s]-[4]ef

Figure 6 — Growth Example with Chromosomes A, B, C
(L,,)- Toensurethat there is no redundancy chromosomes
only grow by adding all eles from other chromosomes that

occur after their own last non-null alele. An alternate
approach would be to order the individuals then compare
them asisdonein Figure 5.
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After a number of generations, the system displays all
rules in the popuation that satisfy the required support
and confidencelevels. This period is cdl ed the generation
increment and represents how often a user interads with
the system. Because of the nature of genetic dgorithms,
certain rules may be dupicated within a population. The
exhibition of rule dominance within a popuation is not
uncommon. Hence, to ease the user’s task of having to
analysetherules, all the dugicates are not displayed.

Step 4: Identifying Rules

3.15 Step 5: Human Ranking and Parameter

Adjustment

Once the system has completed a single o/cle of rule
evolution (Step 1), rules that satisfy minimum support and
confidence ae displayed to the user. Users can
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manipulate the rules andlor mining parameters for
subsequent rule evolution.

A subset of the produced rules cen be seleded to
corntinue the mining process In ather words, the user
seledion represents the subjedive part of defining
interestingness within the system. When the user
preference danges over time, this subjedive fitness
function is refleded in the popdation o rules that is
developed in subsequent generations. Hence the user
complements the objedive fithess function. The
implicaion of seleding a subset of the original population
is to speed up the mnvergence of the population. This
accéeration will be amplified if the seach is further
narrowed dovn when the user becomes more @nfident
about the mining goals.

Alternatively, if the user haslittle diredion, they may
continue to investigate dl the rules the system produces.
Thiswill alow the genetic dgorithm to search through an
untouched and still relatively large seach spacewith a
diversified pooulation. As discussed above, the speed of
convergenceisrelated to diversity within the population.

User can aso customise the mining processin Step 5
by adjusting the mining parameters. Changing the mining
parameters means that the objedive fitness function
places a different emphasis on certain elements (eg
confidence threshold, confidenceweight) over others. The
spedfic changes available to the user can vary depending
on wser preference.

In many situations, potential pointsin a seach space
are crowded and suffocated by other paints that are dosed
to locd optima. When a genetic dgorithm faces this
situation, it tends to converge prematurely, i.e. narrowing
the scope of exploration. While this may represent a
legitimate homing in ongood solutions, it can aso mean
the exclusion of others. Thisis generally dealt within GA
using crowding, fitness $iaring or disabli ng the mating of
similar individuals to escape from the trap of local
optima. Having said that, the locd pe&ksin aseach space
may represent opportunitiesto the formulation o business
strategy for niche groups. To help avoid this anomaly to
occur, we introduce extended parallel exploration, which
alows the user to artificialy increase the fitnessof a set
of rules. Doing this will reduce the aurrent domination of
the population by an elite group of rules and will allow
others a chanceto live and to develop. Exadly how much
the convergence is dowed down depends on hov much
the fitness of certain rules is increased. The greder the
incresse, the longer those rules will remain in the
population. In essence, the increase only extends the life
of certain rules © that they can be explored. What this
function allows is a deviation from the system-controlled
mining path to areas in the seach space deamed
interesting by the user.

4 EXPERIMENT AND RESULTS

This ®dion describes the tests performed on the IMiN
system. The purpose is to test the domain user’s ability to
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control the diredon of the mining process using IMiN.
The system was tested with a dataset (census income)
containing census information on US incomes. This
dataset came from UCI repository. It contains 6
continuaus and 9 categoricd attributes. The dataset has
7% amourt of noise in the form of unknown values.

41 TEST 1: CHANGING THE MINING FOCUS -
USING SELECTION OF RULES

The purpose of thistest isto illustrate the user’s ability to
change the focus of mining during the mining processby
seleding rulesto be evolved.

We first did a control run in which the system had
total control over the mining rocess During this run, al
rules were seleded for evolution. The @ntrol test run was
used as a standard to compare the user-controlled run
with. Parameters st for the wntrol and user runs were:

Parameters: population: 150, sample: 500,
minimum support: 5, minimum
confidence: 60%, crossover:
60%, mutation: 0.01%, support
weight: 1, confidence weight: 2,
small rulefilter: 50

Goal Attributes: age, workclass educaion,
marital status, occupation,
relationship, hours-per-week,

class

Continuous
Attributes (Interval
Size):

age (3), hours-per-week (3)

The initia population was alowed to evolve 15
generations. This was dore ten times to get a generalised
view of which rules were likely to appea. A superset of
al the rules from Eh@e ten runs was prepared and it
contained 86 unque” rules. The sizes of these populations
ranged from 20 to 33uniquerules, with an average size of
26.1 rules from a total of 261 rules over the 10 separate
runs. This meant there was a moderate anourt of overlap
between the ten runs. The superset represented a ommon
set of rules that the system generally converged toward
after 15 generations.

Rules are grown at this dage and developed for
another 10 generations. We ran this five times and nded
the ryles produced at the end. The superset for 2-order
rules” contained 97 unque rules from apossble 122. The
difference between 2-order popuations was much greaer
than that between 1-order populations. This phenomenon
indicaed that the seach diredion spreaded ou more and

L A count of unique rules includes ead rule only once. If arule gpears
several times in the same population its duplicates are not counted. The
‘population’ or ‘population size used in this paper refers to the number
of uniquerulesin apopulation.

2 An n-order rule contains n elements in its antecedent. Similarly an n-
ordered / order n population is a populations that contains only n-order
rules.
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becane increasingly unpredictable. Also, some of the
difference might be caised by hidden itemsets that only
produced fit rules after rule growth. Asaresult, predicting
the diredion of mining was very difficult beyond this
stage. In turn, this limited the extent to which we could
compare the control run results with the user runresults.

For the user-controlled run, the same random seed
was used to generate the initial random popuation. This
guaranteed that all tests began with the same population
of rules. We seleded a set of rulesin theinitial population
and develop them for fifteen generations. The rules we
investigated were those that had values from the age,
education, or hours-per-week attributes as their
antecalent. This was performed ten times and a superset
of al the resulting rules was created.

The popdations of the ten runs ranged from 3 to 16
rulesin size This superset contained 37 unque rules out
of atotal 95 from the ten runs. This set contained ony
rules that had antecedents containing values from the age,
education, or hours-per-week attributes. The results
shown that the focused rules darted to dominate in
subsequent generations. The final superset was a subset of
the results from the 15" generation in the ontrol run.
This dhown that we were @leto focus on ore aeathe GA
originaly considered, and discontinued the rest.

From the ten runs of both the control and user runs,
the number of unique rules (population sizes) at eah
generation were noted and averaged. The result is siown
in Figure 7. Thefigure il lustrates the rates of convergence
between the wntrol run and the user-controlled runs.
From the results we can seethat the user runs converge
faster because there islessvariation within the population
as a @nsequence of seledion. This means there is less
exploration in the user runs.

After the fifteenth generation, athough there was a
sharp increase (the spike) in popuation sizein the control
run, the convergence still carries on. Regarding the user
runs only one out of ten produced any rules after rule
growth, which evidently disappeaed before another five
generations passed. This indicates that the system had
adready converged to amaximum by the 17" generation.

4.2 TEST 2: USING EXTENDED PARALL EL
EXPLORATION

While we may want to focus on cetain areas, we may
aso want to continue investigating others. Normally we
could do this by simply selecting all rules for further
investigation. However, rules of interest may be later
excluded from the population kecause they have alow
objedive fitnessat that stage. The purpose of this test is
to:

¢ Extend the search in an areathat the system normally
would na explore extensively.

* Maintain exploration o other areas whilefocusing on
onein particular.
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Population Size Convergence in Population
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Figure 7 — Popuation sizethroughaut mining

In this test, we planned to track the progresson of
rule discovery more finely than in the previous test. For
this reason, ancther control test is generated. A fixed seed
is used for al randam generation of the initial population
generation, crosover and mutation probabilities. This
guarantees that the control run is completely predictable.
Any changes that occurred in user runs could thus be
easily spotted. We further tried this procedure with
different seals to ensure the results could be generali sed.

In the first user run, we set the random seed to 2 We
doubled the fitness of any rule with age 48.0 in the
antecalent in the initia population. In the second ser
run, the seed was set to 9. In the initial population we
doubled the fitness of all rules with education Doctorate
in the antecedents. In the @ntrol run o baoth cases, no
rule with the spedfic paremter-value survived past the
first generation. Fitnesswas nat altered at any other time.
No rule with this antecedent survived long in the control
run. Parameters <t for the antrol test and wser-controlled
runswere:

Parameters: population: 50, sample: 500,
minimum support: 5, minimum
confidence: 60%, crossover:
60%, mutation: 0.01%, suppat
weight: 1, confidence weight: 2,
small rulefilter: 50

Goal Attributes: age, workclass educdion,
marital status, occupation,
relationship, hours-per-week,

class

Continuous
Attributes (Interval
Size):

age (3), hours-per-week (3)

Rules were evolved for six generations prior to rule
growth then for ancther five generations after it. Figure 8
shown a @mparison of popuation sizes between the
control and user runs. Figure 9 shown the bre&-up of
rulesin the user controlled run. ‘ Different rules’ are those
rules that occur at a particular generation in the user run
but do not appea in the same stage in the @ntrol run.
Rules that appea in the @ntrol and user runs in the same
generation are ‘same rules’. Hence the sum of the two
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series shown in Figure 9 is the equal to paoulation size of
the user runsin Figure 8.

Population Size Over Time

Panulation Size

Control Riin

User Run

Figure 8 — Comparison of population size (seed=2)

Rule Proportions

Panulation Size

40 nI')it‘fr:-nnnr Rilles

20 =]

Same Rilles

3 5 7 9 11 13
Generation

Figure 9 — Comparison of rules proportion (seed=2)

We oud see from Figure 9 that after the 10"
generation, none of the original rules from the wntrol run
remained in the user run. In the first user run, rules with
age 48.0 in their antecadent survived to the last
generation. In the second user run, rules with education
Doctorate in their antecedent persisted to the second last
generation.

4.3 DISCUSSION

The results from Test 1 shows that the user is ableto alter
the focus of mining by seleding a subset of rules in a
population. The dfed of this change is a hastened
convergence due to the loss of diversity in the popuation.
Figure 7 illustrates the rate & which the population
converged after user-intervention. It shows that
exploitationis dominant over exploration. This represents
a situation where the system is homing in on a particular
area The resulting supersets of the antrol and user runs
show that the system changed its sach focus in
acordancewith the user’ s intention.

We can seefrom Test 2 (Figure 9) that the number of
‘different’ rules incressed over time, eventualy
surpassng the number of ‘same’ rules. This demonstrates
the shift of focus from one set of rules to another. As
mentioned ealier, this shift can partially be dtributed to
occurrence of rules at different stages in the mining
process The dfed is gronger in thefirst user run kecaise
alarger propartion of rules had their fitnessenhanced.

However, the number of different rules at ead stage
in the user runisfar greaer than the number of enhanced
rules. This means that the popuation is ®nsitive to the

533

fitness enhancements in subsequent evolution. When a
rule’'s fitnessis increased, the probability that it will be
seleded for crosver aso increases. Thus rules that were
originally seleded in the @ntrol run at a particular stage
were not in the user run. This explains why certain rules
appear at different stages between the two runs. Despite
these changes the system still maintained a focus on the
original rules that were enhanced for most of the process
This hows that the user is able to focus on areas that they
areinterested in.

Our general observation onthe wntrol and user runs
reveded that this change in foci may not be so dramatic.
We discovered that many of the rules that were classfied
as different were simply discovered at a different
generation than in the cntrol run. Rules having partially
different antecedents were dso counted as‘ different’. The
areas explored in the user run were thus smilar to those
explored in the control run and the number of adua
new/underived rules that were discovered in the user run
was negligible.

Having said that, the system is able to change one or
more of its mining foci in resporse to the user's
intervention, and in acordance to the user’s intended
diredion. These results show that the system is able to
home in to the solutions faster with the aid of auser. Test
2 proved that the system allows a user to focus on an area
of interest without having to lose track of other areas.

From the results (esp. Test 1), we see the hybrid
system helped us to find solutions quickly. This is one
advantage offered by the hybridization o Apriori and the
GA. Also, users can now incrementaly zoom into
interesting regions while the system constructs more
complex rules (itemsets) along the way.

5 CONCLUSIONS

In this paper we presented a framework (IMiN) that uses
evolutionary paradigm to augment the Apriori algorithm.
This hybrid approach provides an exploratory tod to a
large seach space &ad enables the incremental
construction of itemsets with proven data mining
technique.

The testing of the system yielded promising results.
We demonstrated the potential of a user interading with,
and steaing, the mining process Theresults of these tests
proved that the system considered input from the user and
changed the diredion of knowledge discovery. The
change also had strong beaing on the diredion that was
the user’ s intention. The &bility to change the diredion of
mining during the mining process meant that the end
results were likely to be more meaningful to the user than
that produced from a purely system-oriented process
From this we can conclude that the interadive
evolutionary architedure is beneficial to the mining
process

One obhservation we made while testing the system
was that dedsionrmaking in this gystem is difficult
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without a cetain degree of retrosped. In our tests, the
dedsions came from analyzing the results of a control
run. However, this does not exist in ared-world situation.
Although the diredion control alows more desirable
results to be found, there is no way of undoing choicesin
the iterative process Since one of the system’s goals was
to fadlitate user-controlled exploration, finding ways to
alow more robust and dverse searching is open for future
work.

Regarding the difficulty of dedsion-making ad-lib,
we propose to increase to seaching capability of the
system using ‘badtrading’. If we look at the mining
process as a series of user interadion stages between
periods of system computation, then mining in the arrent
system is alinea process What we propose is giving the
user the aility to backtradk in this linea sequence to a
previous date of the mining process This would allow
them to then take adifferent diredion at that point. This
aso means that dedsions abou exploration would not
aways need to be mncrete since ations that yielded
undesirable results could be undore.

A ——
]

(8 Linear (b) Non-Linea

Figure 10 — Structure of the mining process

Figure 10a shows the arrent nature of the mining
processas a linea sequence of interadion stages. Idedly
we would like to undo undesirable steps by badtracking
to a previous dage and atering our course to obtain
different results. Figure 10b illustrates this as the
transition from 2 to 3, bactracing bad to 2and dotting
anew course resulting in the discovery of new rules at 4.

Due to the nature of the system, testing has been
quite limited and controlled in order to gather reliable
results. The unpredictable nature of genetic dgorithms
makes large-scde empiricd testing very difficult.
However such tests can provide greaer insights into the
reliability of this sg/stem and are recommended. Also the
determination of suitable mining parameters has long
been an iswe in the field of KDD. By introducing this
new system we lease open the oppatunity to conduct
tests onthe dfeds RQC has ontherest of the system, and
hence the results. However such extensive testing is a
study initself and requires more dtention than is possble
in this paper.
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Abstract

In the search space of variable length strings,
it is possible to define crossover and mutation
operators that are equivalent to those used in
genetic programming on tree structures. We
study the effects of these operators on the
lengths of strings within a population. It is
shown that the distributions by which differ-
ent string lengths are sampled are strongly
biased. To investigate these biases, the ef-
fects of repeated application of the operators
(without regard for fitness) is considered, and
in some cases the fixed-point distributions are
found.

1 Introduction

We analyse the effects of three different operators on a
population of variable length strings. These operators
have previously been studied in [McPhee et al., 2001]
using numerical simulations. In this paper we provide
proofs of some of the observed behaviour.

The operators we are studying are purely syntactic,
making no reference to fitness. Each operator is de-
fined to act on a string in the following manner:

1. truncate the string randomly

2. concatenate another string on to the result

Strings are truncated by throwing away at least one
element. The number of elements thrown away is cho-
sen uniformly at random. The string to be added to
the result of this process depends on which operator is
being used. The three we will discuss are!

Versions of these operators defined for tree structures
can be found in [Koza, 1992].

Nicholas Freitag McPhee
Division of Science and Mathematics
University of Minnesota, Morris
Morris, MN, USA
mcphee@mrs.umn.edu
(+1) 320 589-6300

Crossover Choose another string from the popula-
tion and truncate it (i.e. take a random suffix
from it, including the terminal).

Full mutation Add a randomly generated string of
a fixed length.

Growth mutation Add arandomly generated string
of a random length, determined by a geometric
distribution.?

In this study we shall use a generational model where
the selected operator is applied to each string in the
population in turn to give a new population. Selection
from the population, where required, is done uniformly
at random.

One may think of the first string as being a selected
parent program. By truncating it, we are taking a ran-
dom prefix. If programs are thought of as a sequence
of unary functions which will be applied to the final
string element (the terminal element), then the trunca-
tion throws away the terminal and possibly some of the
functions. The end of the new offspring program (in-
cluding a new terminal) comes from the second string
that is concatenated with this prefix. It should be
noted, however, that because we are not considering
fitness-based selection (or, equivalently, considering a
flat fitness function), that all we are really concerned
about is the number of elements in a string, not their
meaning.

We will analyse the effects of each operator by con-
sidering the truncation and concatenation stages sep-
arately. A population at a given time t will be repre-
sented by a random variable X; representing the dis-
tribution over lengths that exist in the population. We
will let T be the random variable denoting the length

2This is more commonly referred to as the grow muta-
tion method.
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of strings after truncation. Some information regard-
ing the distribution of T" will be given in the following
section.

For each operator we will have another random vari-
able, C representing the lengths of the strings to be
concatenated. The probability distribution for string
lengths resulting from the application of an operator
will be the distribution of the sum of T" and the con-
catenation variable C'. To assist in finding these dis-
tributions, we will use probability generating functions
(pgfs). Given a random integer variable Z, the proba-
bility generating function (pgf) for Z is:

=> Pr[Z

k>0

= k]2*

One of the advantages of using pgfs is that the pgf
of the sum of two random variables is given by the
product of the pgfs of the two random variables, that
is

Gric = GrGe
The product of the two series gives the convolution of
the two distributions [Graham et al., 1994].

For each of the three genetic operators mentioned
above we will look at their effects in one generation on
the mean and variance of the distributions of lengths
represented by X;. These effects can be calculated
exactly. We will also consider the results of repeated
application of the operators (i.e. over many genera-
tions) to gain an idea of how strongly they are biased
towards particular fixed-point distributions. Strictly
speaking, these results apply only in the infinite pop-
ulation limit, in which case the equations presented
here become deterministic. Empirical results suggest,
however, that these biases have a significant impact on
finite populations as well [Poli and McPhee, 2001b].

2 Truncation

Since we are only concerned with the lengths of strings,
we will model a population by recording the proportion
of members it has of each length. Let p;(k) be the
proportion of members with length &£ = 0,1,2,... for
a population at time ¢, so that >, p¢(k) = 1. We will
assume that the initial population contains no strings
of length zero, that is, po(0) = 0, and the operators
which we will consider ensure that p;(0) = 0 for ¢ > 0.

We may take p; to be a probability distribution over
lengths. Let X; be a random variable so distributed
and let 7" be the random variable representing length
after truncation. Note that

= ijt(j)

j>0

GENETIC ALGORITHMS

The probability of truncation producing a prefix string
of length k£ may be calculated by summing over the
probabilities that a string of length j > k is selected
as the parent and that it is then truncated in the right
place. The truncation cut-point is selected uniformly
at random along the string’s length. We allow cuts
before the first element but not after the last, as the
terminal node of the program must be thrown away in
this parent. We then get

Zpt

>k

The expected value of T is

Zkzpt

= Zpt Z’f
_ Zpt (Ji—l)>

E[T] =

Jj>0

J>0
= Zpt G-1
J>0
1
= 3 Z]pt Zpt
7>0 7>0
1
= SEX]-1)

Similarly, the variance is
Var[T] = E[T?]- [T]2

_ Zkgzpt _ 2

E>0 >k
- Z”t Zk2
_ Z”t (a—l)ﬁ(%—l))_E[T]z

§>0

>0
= —Zpt 2] —-3j+1)— E[T]2

7>0
= %prt(j)_%ijt(j)wL%ZPt(j)

j>0 Jj>0 Jj>0
1 2
5B
= 3BIX})-

_ZE[Xt] + EE[Xt] -

_E[Xt]

RNy



GENETIC ALGORITHMS

_ 1 9 1 9 1 2 1
1 1
— gVar[xt] + E(E[Xt]2 -1)

We have assumed here that p;(0) = 0, as discussed
earlier.

The generating function for T' will also be useful:

> Pr[T = k]

k>0

_ Mzk

k>0 >k

Gr(z) =

3 Crossover

Crossover creates the string to be concatenated by se-
lecting randomly from the population, and applying
truncation to the selected string. However, there is
an asymmetry, as now we throw away between 0 and
k — 1 elements from a string of length k. Thus we al-
ways preserve at least one element in the concatenation
string (the terminal of the program). This justifies (for
crossover) the assumption that p,(0) = 0, for ¢t > 0.

Let C' be the length of strings after applying this trun-
cation to a copy of the population. That is, T repre-
sents the length of the contribution of one parent (the
left-hand side, or prefix) and C represents the length
of the contribution of the other parent (the right-hand
side, or suffix). Then

pric =1 =Y 2

ik 7

for kK > 0, with Pr[C = 0] = 0, indicating that we
always add on at least one element. The probability
distribution for string lengths at time ¢ + 1 (resulting
from adding T and C') is then

pria(k) = > Pr[T =n]|Pr[C =k —n]
k—1 . .
_ pi(i) ply)
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(see [McPhee et al., 2001] for an alternative form of
this equation).

Following arguments similar to those above for T', we
have

B[C] = = (B[X,] + 1)

DN =

and

Var[C] = %Var[Xt] + 1—12(E[Xt]2 —1) = Var|[T]

If we let X;41 denote the string length in a population
at time t+1, we can easily calculate the mean and vari-
ance of this random variable following the application
of crossover, since

E[X,.1] = E[T] + E[C]

and
Var[X;41] = Var[T] + Var[C] = 2Var[T]
Thus
BXin] = (B[] - 1)+ 5(BIX] +1)
= E[X{]
and
Var[X,.1] = 2Var(T]

= gVar[Xt] + l(E[Xt]2 —1)
3 6

That is, the mean length is not changed by crossover,
although the variance is [McPhee et al., 2001]. We can
get an idea of how much the variance changes by seeing
what happens if we repeatedly apply crossover to a
population. Since the mean length remains fixed, we
can solve the recurrence for Var[X;] giving

Var[X;] = <§>t <Var[X0] - %(E[XO]Z - 1))

(B 1)

We have here made an infinite population assump-
tion so that we can ignore all stochastic fluctuations
from one generation to the next which would occur
with a finite population. Example curves are plot-
ted in Figure 1. This result tells us that the vari-
ance move exponentially quickly towards a fixed point
(E[X,]” — 1)/2, and that, therefore, crossover has a
strong bias towards this variance. In fact, fixed point
distributions for repeated crossover has been calcu-
lated [McPhee et al., 2001]:
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Theorem 1 Distributions of the form
p(k) = (1 —a)’*ka*

are fized-points for repeated crossover, where 0 < a < 1
is a parameter corresponding to a mean value of p(k)
of
_1+a
H= 1—a

Proof

Assume we have the given distribution. Then the next
distribution is:

pr+1(k)
—  2(0) p(j)
= XX 2
n=01i>n j>k—n
k-1
= Z 2(1 —a)%a’t (1—a)’a/!
n=0i>n j>k—n
k—1 ak—n
— (1 _ (1,)4 ai—l < )
nz::()g% a(l —a)
1 _ 3 k—1
— ( (J,) Z ak—n Z az—l
a n=0 i>n
k— n
_ (-0’ Z bon (0™
a = a(l —a)
k-1
_ (1 _2‘1)2 Z ak+L
a n=0
(1 a)2 k+1
= pe k +
= (1-a)*ka!

a

Examples of this distribution for different values of the
mean are plotted in Figure 2. The exponential conver-
gence of the variance indicates that the application
of crossover is strongly biased towards distributions
of this kind. Experimental results corroborating this
conclusion may be found in [McPhee et al., 2001].

4  Full mutation

With full mutation, the string to be added is always
of a fixed length d > 0. This again justifies the as-
sumption that p;(0) = 0. It is easy to see then that
with this operator E[C] = d and Var[C] = 0. Then

we have

E[X;11] = %(E[Xt] —1)+d
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Evolution of length variance over time, E[x0]=10

100 T
Var{X0]=100 —
Var[X0]=75 -
80 | Var[X0]=50 - ]
Var[X0]=25
Var[X0]=0 ----
_ 60 1
| T
5
40 | ]
20f 7 1
0 ’ L L L L
0 2 4 6 8 10
Time t
Evolution of length variance over time, Var[X0]=10
10000 T T T T T T T
T E[xoj=128
\ -
1000 - E[X0]=64 |
g
< T E[xoj32
>
100 | T Efxoj=16 1
T E[X0]-8
10 -

Figure 1: The variance of the lengths of strings in
an infinite population with repeated application of
crossover, for different starting distributions. In the
top picture, the mean of the initial distribution is fixed
at 10 for all plots, and the initial variance is altered.
In the bottom picture, the initial variance is fixed and
plots are shown for different initial mean lengths (on a
logarithmic scale). The application of crossover does
not affect the mean length from one generation to the
next.

Fixed point distributions of lengths under crossover

Avg length=56 —
Avg length=10 - 9
Avg length=25 -
Avg length=50

Proportion of population

0 20 40 60 80 100
String length

Figure 2: The fixed-point distribution for repeated
application of crossover, for various mean lengths.
The application of crossover does not affect the mean
length.
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Evolution of average length, full mutation, E[X0]=25

d=40

d=30

E[Xt]

d=20

0 5 10 15 20
Time t

Evolutlon of average length, fuII mutatlon d=20

E[xO] 60 — |

E[x0]=10 .

E[Xt]
&

Figure 3: The mean length of an infinite population
with repeated application of full mutation, for various
initial distributions and values of d.

and

+ L@ -

VaI‘[Xt+1] 12

= 1Var[Xt]
3

Thus both the mean and variance change over time.

Again, considering the repeated application of this op-

erator (in the infinite population limit), we find the

mean converges to a limit exponentially:

E[X,] = G)t (E[Xo] —2d+1)+2d—1

Example curves are plotted in Figure 3. Thus full
mutation biases the mean length of strings towards
the fixed-point

lim E[X,]=2d—1

t—o00

The equation for the variance is harder to solve, since
it depends on the mean. However, a recurrence for the
fixed-point distribution can be found using generating
functions (see [Graham et al., 1994] for an introduc-
tion to this technique). The generating function for
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the truncated (prefix) string, calculated above, is

Gr(z

ZP Zp i

7>0 7>0

For full mutation

= Z Pr[C = k]z* = 27

k>0

Adding d to the result of truncation therefore gives us
a distribution with generating function z¢Gr(z). Let
the generating function for the fixed-point distribution
be

Gx(2) Gric(2)
= GT(Z)Gc(Z)
_ P p i

which means

(1=2) 2wyt == | 35 2l Z” 2+

k>0 7>0 >0

We now compare coefficients of z* from both sides of
this equation. Looking at the coefficient of 2° tells us
that p(0) = 0 as expected. For all 0 < k < d we find

p(k) —p(k—1) =0

which tells us that p(k) = 0 for these cases. However,
for k = d we get

p(d) — Z 2l
7>0

and therefore

ZP

j>0
since p(d — 1) = 0. For d < k < 2d we have
p(k —d)
_ —1) = — =
plk) —plk 1) = -2 =D =g
therefore
p(k) = p(k — 1) ri)
i>0 J

for d < k < 2d. Finally for & > 2d we get

plk) — plk 1) = -2E =D
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which gives us a recurrence relation

p(k —d)
= B O 6 S
p(k) =p(k —1) -
To summarise:
0 ifk<d
p(k) = T B2 if d <k <2d
p(k — 1) — 2lk=d) if k> 2d

We see in general that the distribution is zero for
k < d and a constant value for d < k < 2d, after
which it tails off according to the given recurrence
(see [McPhee et al., 2001] for experimental evidence of
this). For d = 1 one can verify that the solution be-
comes

p(k) = [k =1]
that is, a single spike at £k = 1. For d = 2 we have the
following;:

Theorem 2 The fized-point distribution for repeated
application of full mutation with d = 2 is

p(k) = e[(];ci ;])'

That is, the distribution is zero for k = 0,1, it takes
the constant value e~ for k = 2,3 after which it tails
off following an inverse factorial.

Proof

The cases k = 0,1 are obvious. To prove the remain-
der, we will first show that
e
p(k) =

(k—2)!

for some constant a, when k& > 1. Define
p(j)
-yt
>0 J
Now proceed by induction. When k& = 2,3 we have
p(k) = a

which is correct. Now assume we are correct for all
values below some k& > 3. Then

o) = pti-n-HE=D
T k-3 k-2)(k-4)

(k—2)a (k-3

(k—2)!  (k—2)!

(k —2)]
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Fixed point distribution, full mutation, d=2
0.4 T T T T

0.3
0.25

02t

Proportion of population

0.1+

0.05

4 6
String length

Figure 4: The fixed-point distribution of lengths for
repeated application of full mutation with d = 2.

The fact that
> pk)=1
k>0

1

means that we find « = e, since

> pk) = Zi(kf(?)!
k>0 k>2
1
- «Y
k>0

a

Figure 4 shows this distribution for d = 2.

5 Growth mutation

Growth mutation is where the string to be concate-
nated is grown according to a geometric distribution,
where there is a probability ¢ that an extra element
will be added to the string. The probability that a
string of length k will be added is therefore ¢*~!(1—gq).
In this case

1
EC]| = —
€= =
and q
Var[(C] =
] (1-¢q)?
so the mean length of the population of final strings is
B[Xii1] = (B[] - 1) +
1] = 5 t 1—¢

Similarly, the variance is

Var[X;i1] = %Vﬁr[Xt] + I_IQ(E[Xt]z -+ (1—q)?
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Evolution of average length, grow mutation, E[X0]=10

\g=0.85

E[Xt]

\q=0.8

\q=0.7

~g=0.5
~g=0.25

Time t

Figure 5: The mean length of an infinite population
with repeated application of growth mutation, for var-
ious values of g¢.

Iterating the equation for the mean length gives us

B[X,] = (%) (brxo) - 144+

which indicates that the average length is biased to-
wards (14 ¢)/(1 — ¢). Example curves are plotted in
Figure 5.

1+gq
1—-gq

Again, the equation for the variance is hard to solve,
but we can find an expression for the fixed-point dis-
tribution. Remarkably, it is identical in form to that
given for crossover.

Theorem 3 The fized-point distribution for repeated
application of growth mutation (with growth probability
q) is

p(k) = (1 —q)*kq"

Proof

Let G¢(z) be the generating function for the concate-
nating string length:

Go(z) = Y ¢F'(1—-g2*
k>0
D i S
k>0 k>0
k>0 k>0
= (z—l)quzk—l—l
k>0
z—1
= 1
1—gqz +
z—qz

1—gqz
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Then the generating function for the result of growth
mutation is

Gx(2) = Gric(z) = Gr(2)Ge(2)

where G7(z) is the generating function for the trun-
cated string lengths defined previously. That is:

ZP Zp i

7>0 7>0

z(1—q)

Gx(2) = (1-2)(1-gz)

So at the fixed-point:

(1-2)(1—qz2) > plk)z*

k>0

= z(1-9) Zp 7

'] j>0

Jj>0

Again, comparing coefficients on either side of the
equation gives us

and
) = (1+a= 3 =4) = 1)~ anll ~2

for k > 1. Setting

we first prove by induction that
p(k) = a(l — q)k¢"

This is correct for k = 0,1. Now assume it is correct
below some value k > 1. Then

o) = (140 1=2) ok =1 - apth-2)

= <1 +q- H) a(l—q)(k —1)¢*>

—qa(1 - q)(k —2)¢"?

= al-@)" (A +q)(k-1) = (1-q)
—(k—2))

= a(l—-qke" !

as required. The fact that

Za(l —qQ)k¢* =1

k>0
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allows us to deduce that a = (1 — ¢) and the result
follows.

a

Since the fixed-point for growth mutation is also a
fixed-point for crossover, it must also be a fixed-point
for the application of both operators applied sequen-
tially.

6 Discussion

In [Poli and McPhee, 2001b, McPhee et al., 2001,
Poli and McPhee, 2001a] GP schema theory is used
to analyze the size biases induced by crossover and
mutation when using linear representations and flat
fitness landscapes. This paper extends several of those
results, and provides proofs for others. While we
have closed forms for many of the quantities explored
here, we do not yet have closed forms for others (e.g.,
the variances for the two mutation operators); filling
these gaps would be an obvious extension of this
work. Another extension would be to try to apply the
techniques used here to the study of more complex
systems (e.g., non-flat fitnesses or non-linear tree
structures).

Taken as a group, the results presented here help build
at least the beginnings of a picture of the size biases
of some of the most commonly used operators in GP.
In all three cases, for example, the average length of
strings either remains constant or quickly approaches
some limit. This implies, for example, that none of
these operators induce unbounded bloat on a flat fit-
ness landscape; in fact something like the reverse is
true in the sense that all three operators heavily over-
sample shorter strings (see [Poli and McPhee, 2001b,
McPhee et al., 2001, McPhee and Poli, 2001] for de-
tails). These results also make it clear that the average
and the variance of the length of the (infinite) popu-
lations move towards their limit values very quickly,
often reaching near convergence in less than 10 genera-
tions. This suggests that these operators induce quite
strong biases, and these biases may have an impact
even in problems with non-flat fitness landscapes.

Acknowledgement

The second author would like to extend special thanks
to The University of Birmingham School of Computer
Science for graciously hosting him during his sabbati-
cal, and various offices and individuals at the Univer-
sity of Minnesota, Morris, for making that sabbatical
possible.

GENETIC ALGORITHMS

References

[Graham et al., 1994] Graham, R. L., Knuth, D. E,,
and Patashnik, O. (1994). Concrete Mathematics.
Addison-Wesley, second edition.

[Koza, 1992] Koza, J. R. (1992). Genetic Program-
ming: On the Programming of Computers by Natu-
ral Selection. MIT Press, Cambridge, MA, USA.

[McPhee and Poli, 2001] McPhee, N. F. and Poli, R.
(2001). A schema theory analysis of the evolution
of size in genetic programming with linear repre-

sentations. In Genetic Programming, Proceedings of
EuroGP 2001, LNCS, Milan. Springer-Verlag.

[McPhee et al., 2001] McPhee, N. F., Poli, R., and
Rowe, J. E. (2001). A schema theory analysis of
mutation size biases in genetic programming with
linear representations. In Proceedings of the 2001
Congress on Evolutionary Computation CEC 2001,
Seoul, Korea.

[Poli and McPhee, 2001a] Poli, R. and McPhee, N. F.
(2001a). Exact GP schema theory for headless
chicken crossover and subtree mutation. In Proceed-
ings of the 2001 Congress on Evolutionary Compu-
tation CEC 2001, Seoul, Korea.

[Poli and McPhee, 2001b] Poli, R. and McPhee, N. F.
(2001b). Exact schema theorems for GP with one-
point and standard crossover operating on linear
structures and their application to the study of the
evolution of size. In Genetic Programming, Pro-
ceedings of EuroGP 2001, LNCS, Milan. Springer-
Verlag.



GENETIC ALGORITHMS

543

The Mixture of Trees Factorized Distribution Algorithm

Roberto Santana, Alberto Ochoa-Rodriguez, Marta R. Soto
Center of Mathematics and Theoretical Physics.
ICIMAF. Calle 15, e/ C y D, Vedado CP 10400. C-Habana. Cuba
{rsantana,ochoa,mrosa}@cidet.icmf.inf.cu

Abstract

This paper introduces a Factorized Distribu-
tion Algorithm based on a mixture of trees
distribution. The probabilistic model and
the learning algorithm used differs to previ-
ous uses of probabilistic modeling in the con-
text of Evolutionary Computation. Prelimi-
nary results show the algorithm is competi-
tive, and some times superior to other Fac-
torized Distribution Algorithms. We also il-
lustrate how particular features of the search
space can be employed during the search by
conveniently selecting the mixture of trees
parameters.

1 INTRODUCTION

Factorized Distribution Algorithms (FDAs) (Miihlen-
bein, Mahnig, & Ochoa, 1999) are population based
search methods that combine results from Graphi-
cal Models and Evolutionary Computation research,
and are considered as a tractable subclass of Esti-
mation Distribution Algorithms (Miihlenbein & Paaf,
1996). In order to optimize a given function they
begin by generating an initial random population of
points which are evaluated using the objective func-
tion. Some of the points are selected based on their
values, and a factorized probabilistic model of their un-
derlying distribution is constructed. This probabilistic
model is used to sample the points that will be part of
the next population.

A number of FDAs that use probabilistic models based
on dependency trees have shown up in the literature.
In (Baluja & Davies, 1997) a tree factorization com-
puted using the Chow and Liu algorithm (Chow &

Liu, 1968) is employed to approximate the underly-
ing distribution of the selected points. The Bivariate
Marginal Distribution Algorithm (BMDA) (Pelikan &
Miihlenbein, 1999) uses a forest instead of a tree based
factorization. Only second order statistics are com-
puted.

The Polytree Approximation Distribution Algorithm
(PADA) has been designed to deal with the class of
single connected Bayesian Networks (BNs) (Soto et
al., 1999). A revised version of this algorithm has
been presented in (Ochoa, Muehlenbein, & Soto, 2000)
where the previous introduced algorithms based on
trees and forest distributions are covered.

Modeling by finite mixture of distributions (Everitt &
Hand, 1981) concerns modeling a statistical distribu-
tion by a mixture (or weighted sum) of other distrib-
utions. Recently, the research on mixture models has
begun to receive a particular attention by the EDAs
community. In (Thierens & Bosman, 2001) the au-
thors use a mixture of Gaussian probabilistic density
functions for the solution of continuous multi-objective
functions. In (Pefia, Lozano, & Larranaga, 2001) au-
thors employ mixture models as the basis for data clus-
tering in multimodal continuous and discrete function
optimization via EDAs. In the case of discrete opti-
mization a framework for learning mixture of BNs that
share the same structure is presented.

Mixture of distributions have been used also in
the framework of evolutionary optimization that use
flexible probability estimators (Gallagher, Frean, &
Downs, 1999) (an approach very close to FDAs) where
the adaptive mixture model of Priebe is used to esti-
mate probability distributions in an evolutionary op-
timization context.
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2 TREES AND MIXTURE OF
TREES MODELS

Mixtures of trees belong to the class of finite mix-
ture distributions. They were introduced in (Meila,
1999) and are the core of the optimization algorithm
we present in this paper. Now the probabilistic mod-
els are formally introduced. We will utilize the same
notation used in (Meila, 1999).

Let V' denote the set of variables of our problem. Ac-
cording to the graphical model paradigm, each vari-
able is viewed as a vertex of an (undirected) graph
G = (V, E) which is called a tree if it has no cycles.
Now we define a probability distribution 7" that is con-
formal with a tree.

T(z) = [ Totpate (@ ol2pace) (1)
veV

The distribution T itself will be called a tree when no
confusion is possible. The graph (V| F) represents the
structure of the distribution 7.

A mixture of trees is defined to be a distribution of the
form:

Qx) =Y NT*(x) (2)
k=1

with Ay >0, k=1,..,m, Y " Ay =1.

The tree distributions are the mixture components,
and the A\, are called mixture coefficients. A mixture
of trees can be viewed as containing an unobserved
choice variable z, which takes values k € {1,...,m}
with probability A;. Conditioned on the value of z
the distribution of the visible variables V' is a tree.
The m trees may have different structures and different
parameters.

3 THE LEARNING ALGORITHM
IN THE CONTEXT OF THE
MT-FDA

We present first an algorithm for fitting a mixture of
trees to an observed data set in the Maximum Like-
lihood paradigm via the Expectation-Maximization
(EM) algorithm (Dempster, Laird, & Rubin, 1977).
The mixtures of trees learning algorithm constitutes
a building block for the FDA presented here, this al-
gorithm can be found in (Meila, 1999) where it was
introduced. We resume some of its features:
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The learning problem is: Given a set of observations
D = {z',22,,2~}, we are required to find the mixture
of trees () that satisfies

N
Q = argmax} log Q") (3)

i=1

The EM algorithm introduces a likelihood function
called the complete log — likelihood which is the
log-likelihood of both, the observed and the unob-
served data, given the current model estimate M =
{m, Tk,)\k,k = 17 m}

N m
le(a' N, 2N IM) = " 8y i (log A + log T (%))

i=1 k=1 (4)

where 6y, .+ is equal to one if Z' is equal to the kth
value of the choice variable, and zero otherwise.

The idea underlying the EM algorithm is to compute
and optimize the expected value of [c. In the context of
population based evolutionary optimization our objec-
tive is to find a factorization of the probability distri-
bution of the selected set of points using a mixture of
trees. We have called our algorithm Mixture of Trees
FDA (MT-FDA).

In figure 1 the pseudo-code of the MT-FDA is pre-
sented. The first population is randomly generated by
the algorithm. From the current population, a subset
of points is selected. A mixture of trees () that fits the
selected set is found using the mixture of trees learn-
ing algorithm that takes as parameters the number of
trees, and a schedule with the number of learning steps
in each generation. New points are generated by sam-
pling from (. The best elitism scheme is used, where
all the individuals selected in the current population
pass to the next one. Different replacing strategies can
be used to combine points from the current population
and new generated points in the next population.

Mixture of trees FDA (MT — FDA)

e STEP 0: Set t <= 0. Generate N > 0 points
randomly.

o STEP 1: Select aset S of k < N points according
to a selection method.

e STEP 2: Calculate a mixture of trees () that ap-
proximates S using the mixture of trees learning
algorithm.
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e STEP 3: Generate N — k new points sampling
from Q.

e STEP 4: Combine in the new population the &
selected points with the NV — k new points. Set ¢
=t+1

e STEP 5: If the termination criteria are not met,
go to STEP 1

Figure 1: MT-FDA

The determination of the extent of learning to be al-
lowed is a sensitive issue for the MT-FDA. When sam-
pling from the learned model, the two traditional goals
of an efficient search, exploitation and exploration,
have to be accomplished. A model that best approx-
imates the data can less likely generate, during the
sampling step, points that belong to unexplored areas
of the search space. So, it is advisable to stop the
learning algorithm before the improvement in the like-
lihood ceases. The number of trees also influence the
likelihood. The design of strategies that set the appro-
priate schedule for the learning steps, and of criteria to
determine the number of trees for a given optimization
problem, are topics where further research is required.

We test two methods for selecting a convenient starting
mixture of trees. Both methods begin by initializing
each component of the mixture using the Chow and Li-
u’s algorithm. They differ in the second step. The first
method makes perturbations to the structure of each
tree. The parent of one of the leaf nodes is replaced
by another randomly selected node. By making this
change on a leaf node the procedures guarantees no
cycle will be formed in the tree after the perturbation.

The second method keeps intact the tree structure and
makes a perturbation to the initial probability values
Pk(2%), in order to let the learning algorithm change
the structure when fitting the perturbed probabilities.
Recall that, independently of the selected root, Chow
and Liu’s algorithm guarantees that all trees are equiv-
alent in their representation of the data. By applying
a small perturbation on P¥(z?) values, identicalness
among the trees is broken. Both methods guarantee
solutions superior to random initialization.

Mixture distributions have a number of distinctive at-
tributes that make them particularly appealing for
their use in the framework of FDAs. Maybe the most
important is the possibility of representing, condensed
in just one model, different patterns of interactions
among the variables of the problem. In Bayesian Net-
works the change in one variable’s value can determine
changes only in the parameters of other variables, not
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in their structural relation. In mixture of finite dis-
tributions the structure of dependencies among a set
of variables can change depending on the values of
the choice variable they depend on. This fact can be
used in a flexible way for incorporating diverse search
strategies into the MT-FDA.

Now we present some alternative ways the choice vari-
able can be incorporated by an FDA whose model is
a mixture of trees. The analysis is divided in two sce-
narios, when the choice variable is hidden, and when
it is known.

3.1 The choice variable z is hidden.

Two cases can be distinguished in this scenario. The
first is when, although the choice variable is unknown,
it is in fact one (or a small subset) of the variables of
the problem. In this case a fitter approximation of the
selected points by means of a mixture of trees could
be found by identifying the set of variables. There
exist methods for identifying these variables from the
analysis of data (Meila, 1999). Although we do not
explore this trend in the present work, we hypothe-
size that this identification task can be inserted in the
evolutionary process.

The second case, and the one extensively considered
in our experiments, is when there is no previous infor-
mation about the choice variable, but we try to fit the
target distribution with a mixture that has m trees,
based on an unknown variable that could help to clus-
ter the space of solutions. As the existence of a mixture
of trees based on such a kind of choice variable is an
assumption, there could be cases where the mixture of
trees does not lead to an appropriate factorization.

3.2 The choice variable z is known

Again we analyze two particular cases: When the
choice variable is in fact a variable, (or the subset of
the variables) of the problem. And, when the choice
variable z does not belong to the set of variables of
the problem but we can decide its values based on a
predefined criterium. We mention two cases:

a) z is related to a genotype clustering of the set of
points

b) z is related to a phenotype clustering of the set of
points.

It has been shown (Pelikan & Goldberg, 2000) that for
certain type of problems a genotype clustering of the
population can contribute to an efficient search. The
mixture of trees model can be used not only to cluster
the space of solutions but also to exchange informa-
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tion among the clusters during the evolution. When
solutions could be classified in regions based on their
structural similarities, and a mapping between solu-
tions that belong to the same class and their fitness
evaluation exists, it is expected that a mixture of trees
based on a choice variable describing the classes could
lead to a good approximation.

4 EXPERIMENTS

The experiments were designed to illustrate the be-
havior of the proposed algorithm and compare its per-
formance with other FDAs. First we introduce the
functions that were employed. Then we present a com-
parison between the MT-FDA and a tree based FDA.
Some experiments are presented to illustrate the dif-
ference in the performance of the Bayesian FDAs and
the MT-FDA. Finally an example is shown on the con-
venience of using one of the variables of the problem
as the choice variable.

Let u be the number of bits turned on in the string
. A function of unitation is a function whose value
depends only on the number of ones on an input string.
The values of the strings with the same number of ones
are equal. Deceptive functions are defined as a sum of
more elementary deceptive functions fj of k variables.

f(z) = ka(sj), (5)

where s; are non-overlapping substrings of x contain-
ing k elements.

Function OneMax:

OneMax(zx) = Z X5 (6)
i=1

Function f 3ec:

09 for uw=0

3 ) 08 for
Jaee = 0.0 for
1.0 for u=3

Function f3geceptive:

=2

3
Fadeceptive(X) = Y [3oe(Xai 2, Xi 1, X3:)  (8)

i=1
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Function Isotorus:

U 0O [1]2]3]|4]5
Isoly | m 0100 m—1 (9)
Isol, [0 [oloJo]o]m?

FIson"us - (10)
Zi:z IsoT (xupa Liefty iy Tright, xdown)(l]-)

+  Is0T1(Z1—mans T1—mtn, T1, T2, Tigm) (12)

where x,,, etc., are defined as the appropriate neigh-
bors, wrapping around.

Function BigJump:

U for 0<u<n-—-m
BigJump = 0 for n—m<u<m (13)
k-n for u=m

Function N fgec:

= n—1

3
> f3 (X1, Xsi, Xs + 1), if aq =1
Nf3 — i=1
dec :

i= n.fl

3
> (1= fio(X3im1, Xzi, X3 + 1), oth.
=
(14)

4.1 Comparison between a tree based FDA
and the MT-FDA

First we make a comparison between a tree based FDA
and the MT-FDA. The tree based FDA has the same
pseudo-code as the MT-FDA presented in section 4,
but only one tree found using the Chow and Liu’s algo-
rithm is employed. The main difference between Balu-
ja’s algorithm and our tree based FDA is that we do
not update the bivariate probabilities multiplying by
a decay factor, instead in every generation, bivariate
probabilities are calculated from the selected set. We
study the difference in the behavior of the tree based
FDA and the MT-FDA for diverse truncation values
and functions.

Common parameters for the experiments were: Popu-
lation size = 1000, Best elitism, Maxgen =20. Stop-
ping criteria were: the maximum number of genera-
tions, and a total homogeneity in the selected popula-
tion (i.e. all the individuals were identical).
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Tree MT-FDA
S | Gen. | S | Gen.
30 1005|37] 492 | 9 | 6.33
f3deceptive | 30 | 0.1 | 60 | 5.73 | 63 | 6.66
301015 | 72| 684 | 75| 7.8
30| 0.2 | 65| 828 | 75 | 9.28
3010258 | 88 |95 | 9.56
Isotorus | 36 | 0.05 | 80 | 3.49 | 75 | 4.05
36| 0.1 |84 | 44 (93| 4.9
36 | 0.15 | 8 | 5.19 | 92 | 5.78
36 | 0.2 | 8 | 6.14 | 90 | 6.5
36 | 025 | 71| 6.86 | 91 | 7.38

Function n T

Table 1: Numerical results for MT-FDA and tree
based FDA

The schedule for learning was the following: In the first
population there were 10 learning steps to learn the
mixture, in the following generations 5 learning steps.
Recall that for the MT-FDA the trees from which the
learning algorithm is started are also found using the
Chow and Liu’s algorithm. So this initialization can
be seen as the best we could achieve with just one tree
(what the tree based FDA actually does), but in the
following learning steps the likelihood of data given by
the initial trees is improved.

In Table 1 are presented results for two different func-
tions. m is the number of variables, 7 the truncation
parameter, S the number of times the optimum was
found in 100 runs and Gen. the average number of
generations needed to find the optimum. Initial exper-
iments were made for f3geceptive With 7 = 0.05. Results
were not particularly heart warming. In the table it
can be appreciated that for this truncation value the
tree based FDA finds the optimum four more times
than when MT-FDA is used. However, for, 7 = 0.25
the MT-FDA clearly surpasses the tree with an im-
pressive 95 percent of success. Similar results were
achieved for the Isotorus function.

4.2 Comparison between Bayesian FDAs and
the MT-FDA

In the general class of BNs the conditional probabil-
ity of a variable x can depend on a subset of variables
and not on only one like in the subclass of trees. All
these variables are called parents. The complexity of
the network is related to the maximum number of par-
ents any variable x can have. BNs learning algorithms
allow to incorporate constraints related with a maxi-
mum number of parents or the network complexity.

In (Etxeberria & Larrafiaga, 1999) BNs were intro-
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duced in the framework of Evolutionary Optimization
to learn, in every generation, a factorization of the se-
lected points. In this paper we compare our algorithm
with other two Bayesian FDAs. The Bayesian Op-
timization Algorithm (BOA) introduced in (Pelikan,
Goldberg, & Cantid-Paz, 1999) and the Learning Fac-
torized Distribution Algorithm (LFDA) (Miihlenbein
& Mahnig, 1999b). Both algorithms use a Bayesian
metric to measure the goodness of every Bayesian
structure found, and a search procedure to search in
the space of possible structures. In the BOA it is pos-
sible to set the maximum number of parents in the
learnt network. For the LEDA we will refer to results
appeared in (Miihlenbein & Mahnig, 1999a). Contrary
to the BOA, the LFDA uses the BIC score to find the
Bayesian structure and it uses a parameter « that al-
lows to control the network complexity.

Function n | FDA af Trees | S
OneMax 30 | LFDA 0.75 80
30 | LFDA 0.5 38
30 | LFDA 0.25 2
30 | Tree 89
30 | MT-FDA | 2 7
30 | MT-FDA | 5 19
30 | MT-FDA | 10 0
BigJump(30,3,1) | 30 | LFDA 0.75 100
30 | LFDA 0.5 96
30 | LFDA 0.25 58
30 | Tree 99
30 | MT-FDA | 2 97
30 | MT-FDA | 4 91
30 | MT-FDA | 6 7
Table 2: Numerical results for MT-FDA and the
LFDA

A number of experiments were conducted to compare
the behavior of the MT-FDA with the LFDA. In this
case we used an elitism parameter of 1 (i.e. only the
best individual is passed to the next population), trun-
cation selection and Maxgen =20. Stopping criteria for
MT-FDA were the same that in the previous experi-
ments. In Table 2 column 4 refers to the number of
trees and the network density for the MT-FDA and the
LFDA respectively. Later, it is explained how these
values were chosen.

A number of interesting features can be noticed from
the analysis of the results shown in Table 2. For these
functions the number of trees in the MT-FDA and the
density of the BN in the LFDA play a similar role.
This analogy is evident for function BigJump, when
the number of trees or the density of the BN are in-
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creased results are poorer. In the table, values used for
the number of trees were selected trying to emulate the
values for the density of the BN used in experiments
published in (Miihlenbein & Mahnig, 2000), but we do
not claim we have attained a perfect correspondence
between the number of trees shown in Table 2 and the
« values shown for the same functions. The analogy
is related only to the progression of values for both
parameters.

Results for function Bigjump are an example too that
when structural learning is done, simpler models can
be better than more complex ones. Regarding differ-
ences between the MT-FDA and the LFDA, and be-
yond the analogy between the number of trees and the
network density, results were very similar.

It has been acknowledged that Bayesian FDAs are very
sensitive to the selection method used (Pelikan, Gold-
berg, & Sastry, 2000). Thus, when we claim here that
one algorithm is superior to the other for the analyzed
functions, the assertion is only valid for the particu-
lar selection strategy employed. We have specified the
selection methods and parameters used in every com-

parison between Bayesian FDAs and the MT-FDA.

4.3 Comparison between BOA and the
MT-FDA

We also compare our algorithm with the Bayesian Op-
timization Algorithm (BOA) introduced in (Pelikan,
Goldberg, & Canti-Paz, 1999). BOA uses a Bayesian
metric to measure the goodness of every Bayesian
structure found, and a search procedure to search in
the space of possible structures. The implementation
of BOA used in this paper rests on the BOA platform
available at (Pelikan, Goldberg, & Sastry, 2000). It
employs the Bayesian Dirichlet equivalent (BDe) met-
ric, a greedy search procedure, and decision graphs for
making the search more efficient.

Table 3 shows the experimental results of the compar-
ison between the BOA and the MT-FDA for 2 func-
tions. The parameters of the algorithm were: Pop-
ulation size = 600, Tournament selection with tour-
nament size = 4, the worst 85 percent of the current
population is replaced by the new generated individ-
uals. The BOA was set to stop when the optimum
was found, or an early convergence occurred (univari-
ate marginals higher than 0.95). The stop criteria for
MT-FDA were the same as in previous experiments,
but note that in general this setting is very different
from the one used in the previous experiments.

In the table the fourth column represents the max-
imum number of parents and the number of trees
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Function | n | FDA | P/ T | S | Gen.

Isotorus | 36 | BOA 2 86 | 7.29
36 | BOA 4 81 | 7.23
36 | BOA 6 78| 74
36 | Tree 72 | 7.96
36 | MT 2 87 | 8.22
30 | MT 4 89 | 7.83
36 | MT 6 93 | 7.38

fadeceptive | 30 | BOA 2 78 | 7.47
30 | BOA 4 77| 8.12
30 | BOA 6 77 | 8.49
30 | Tree 37 | 10.46
30 | MT 2 54 | 11.26
30 [ MT 4 60 | 11.3
30 | MT 6 69 | 10.87

Table 3: Numerical results for MT-FDA and the BOA

for the BOA and the MT-FDA respectively. Col-
umn five represents the number of times the algorithm
has converged in 100 runs. In the experiments for
the fsgeceprive function BOA clearly overperformed the
MT-FDA. For this function two issues are worth to
point out. The poor performance of the tree based
FDA, and the observation that when the number of
trees is increased the gap in the behavior between the
MT-FDA and the BOA is reduced. Nevertheless, by
further increasing the number of trees the MT-FDA
does not achieve better results than BOA.

This situation is completely reversed for function Iso-
torus. For this function, as the number of trees is in-
creased MT-FDA overperforms BOA, when the num-
ber of trees is 6 this difference is evident. The general
conclusion from these experiments is that for certain
kind of functions MT-FDA can overperform Bayesian-
FDAs. One question remains open: which are the cri-
teria that allow to decide whether it is more convenient
to apply one FDA or another? We hypothesize MT-
FDA can be more suitable for functions with general
and scattered overlapping between the variables, that
could be ”covered” by a set of relatively dependent
probabilistic models. This seems to be the case for the
Isotorus function.

4.4 The role of the choice variable in the
MT-FDA.

As it was briefly discussed in previous sections the use
of the choice variable by the MT-FDA allows differ-
ent and flexible ways of conducting the search. We
conducted experiments to evaluate the convenience of
using one of the variables of the problem as the choice
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Function | n [ N Z T S Gen.

Nf3. 31 | 2500 | unknown | 0.15 | 24 | 8.96
46 | 3000 | unknown | 0.15 | 21 | 11.57
61 | 3000 | unknown | 0.25 | 12 | 19.8
31 | 1500 | 0.15] 30 | 3.1
46 | 1500 | x4 0.15 | 28 | 6.25
61 | 2500 | x 0.25 | 23 | 10.48

Table 4: Numerical results for the N f(‘;’ec function.

variable. These experiments are very preliminary but
help to illustrate how the parameters of the mixture
model can be conveniently used in the FDA frame-
work. Table 4 shows the results for function N fgec.
This function has many global optimal that are trig-
gered by variable ;. When x; = 1 there is just one
optimum (all variables are set to 1), when 3 = 0
there 3% optima (all possible combinations of 2 ones
in every partition). For every setting 30 experiments
were run using truncation selection and a maximum of
25 generations.

In the table it is shown a comparison between two
MT-FDA with mixtures models composed of two trees.
The mixture model of the first MT-FDA uses z; as its
choice variable, for the second the choice variable is
unknown as was the case in the previous experiments.
When z; is treated as the choice variable the indi-
viduals that fulfill (z; = 0) are approximated by one
tree, and those that satisfy (v; = 1) by the other.
In this case there is not learning of the tree struc-
tures, only the mixture coefficients are calculated as
Ao = %17 A = %J-, where Ny and N; are respectively
the number of individuals that satisfy (x; = 0) and
(z1 = 1). Nevertheless such a mixture allows the MT-
FDA to focus on the region of the space of solutions
defined by the x; value. Eventually, as evolution ad-
vances, one of the coeflicients becomes 0, and a tree
based FDA is run from then on.

In Table 4 the improvements achieved by considering
x1 as the choice variable can be seen. This is a simple
example of how the choice variable can be incorpo-
rated also as a tool for influencing the exploration and
exploitation purposes of the search.

5 CONCLUSIONS AND FURTHER
WORK

In this paper we have introduced a FDA based on mix-
ture distributions. The MT-FDA is different to other
simple connected based FDAs, and to Bayesian FDAs
too. Contrary to Bayesian FDAs the MT model allows
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that the structure of dependencies among a set of vari-
ables changes. Compared to simple connected FDAs,
in the MT-FDA, dependencies between the parents of
a given node can be represented.

The algorithm exhibits a number of characteristics
that places it far apart from Gallagher’s algorithm
(Gallagher, Frean, & Downs, 1999). It is appropriate
for problems with integer representation that can have
many variables. The performance of Gallagher’s algo-
rithm is more sensitive to the number of variables. The
type of mixture model both algorithms employ is dif-
ferent, the adaptive mixture model of Priebe (Priebe,
1994) is used in Gallagher’s algorithm.

Compared to the Estimation of Mixture of Distribu-
tion Algorithm (EMDA) introduced in (Pefia, Lozano,
& Larranaga, 2001) the algorithm exhibits also sev-
eral differences. MT-FDA is not focused on the op-
timization of multiobjective functions although it can
be employed in multiobjective optimization too. An-
other difference is that our mixture model allows com-
ponents with different structures. The version of the
EM algorithm we use in this paper is different to the
one presented in (Pefia, Lozano, & Larranaga, 2001).

In this paper we have shown that the MT-FDA can
overperform the tree based FDA for the functions con-
sidered. The algorithm is also better than Bayesian
FDAs for some functions like Isotorus.  Another
achievement of this paper is to have presented different
ways to influence the search by manipulating parame-
ters related to the mixture of trees.

The computational complexity of the MT-FDA is
mainly given by the Estimation and Maximization
steps of the (EM) algorithm. In each iteration of the
mixture of trees learning algorithm the running time of
the estimation step is ©(mnN), and for the maximiza-
tion step is O(mnr?, ) where r . is the maximum
cardinality of the variables. Both steps are computa-
tionally expensive. We have not treated this question
in the present work. Currently we are investigating
how to reduce the computational burden associated
to the EM algorithm in the context of the MT-FDA.

Promising lines of research and further work are:
1. To design efficient learning schedules that help to
diminish the number of evaluations.

2. To extend the use of mixtures to deal with more
complex probabilistic models.

3. The use of MT-FDA as a method to implement
parallel and distributed population based search.
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Abstract

This paper studies fitness inheritance as an
efficiency enhancement technique for genetic
and evolutionary algorithms. Convergence
and population-sizing models are derived and
compared with experimental results. These
models are optimized for greatest speed-up
and the optimal inheritance proportion to
obtain such a speed-up is derived. Re-
sults on OneMax problems show that when
the inheritance effects are considered in the
population-sizing model, the number of func-
tion evaluations are reduced by 20% with the
use of fitness inheritance. Results indicate
that for a fixed population size, the number of
function evaluations can be reduced by 70%
using a simple fitness inheritance technique.

1 Introduction

A key challenge in genetic and evolutionary compu-
tation (GEC) research is the design of competent ge-
netic algorithms (GAs). By competent we mean GAs
that can solve hard problems, quickly, reliably, and
accurately, and much progress has been made along
these lines (Goldberg, 1999). In essence competent
GA design takes problems that were intractable with
first generation GAs and renders them tractable, of-
tentimes requiring only a subquadratic number of fit-
ness evaluations. But in large-scale problems, the task
of computing even a subquadratic number of function
evaluations can be daunting. This is especially the case
if the fitness evaluation is a complex simulation, model,
or computation. This places a premium on a variety
of efficiency enhancement techniques. In this paper,
one such efficiency enhancement technique called fit-
ness inheritance is modeled and optimized for greatest
speedup. In fitness inheritance, an offspring inherits

a fitness value from its parents rather than through
function evaluation.

The objective of this study therefore is to model fitness
inheritance and to employ this model in predicting the
convergence time and population size required for the
successful design of a GA. We start by modeling fit-
ness inheritance and deriving convergence time and
population-sizing models. Subsequently, we derive an
optimal proportion of inheritance and comment on the
actual speed-up obtained. The speed-up that could be
obtained under the practitioner’s usual assumption of
a fixed population sizing is also discussed.

2 Literature Review

Smith, Dike, and Stegmann (1995) proposed fitness
inheritance in GAs. They proposed two ways of in-
heriting fitness, one by taking the average fitness and
the other by taking a weighted average of the fitness
of the two parents. They showed some theoretical jus-
tification for their approach. Their results indicated
that GAs with fitness inheritance outperformed those
without inheritance in both the OneMax and an air-
craft routing problem. However, they did not inves-
tigate the effect of fitness inheritance on convergence
time and population sizing. Also, the questions as to
how many children should have inherited fitness, and
how much speed-up one can get remained unanswered.
Though the original study showed very encouraging re-
sults, unfortunately there have been very few follow up
studies on fitness inheritance. Zheng, Julstrom, and
Cheng (1997) used fitness inheritance for the design of
vector quantization codebooks.

3 Modeling Fitness Inheritance

In the proposed approach, a proportion, p;, of ran-
domly selected individuals, receive inherited fitness
and the rest are assigned the true (evaluated) fitness.
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In the remainder of this paper, actual fitness refers to
the fitness that a individual would have had if it was
evaluated — that is, if its fitness was not inherited.
In this section, we assume that the inherited fitness
is taken to be the average of the building-block (BB)
fitness. We assume this to develop a theory behind
fitness inheritance and in the implementation the in-
herited fitness is taken to be the average fitness of the
two parents. The building-block fitness is taken to be
the average fitness of all the individuals in the popu-
lation that possess the schemata under consideration.
Also, in the remainder of the paper, unless otherwise
mentioned, all the experimental results are obtained
with crossover probability of 1.0.

The model derived is applicable to uniformly scaled
problems of fixed string length and known BB size.
Specifically OneMax (counting of bits) is employed
but the model can be extended to other problems in a
straightforward manner. We further assume that the
actual fitness distribution, F, is Gaussian with mean
fif,c and variance o7 ,.

F=N (:“fytvU‘JZ‘,t) )

and that the distribution of fitness with inheritance,
F' is Gaussian with mean pp ¢ and variance U‘]Zc/,t.

F'=N (ufr7t,a]2c,7t) .

The above assumptions are justified since crossover has
a normalizing effect. We can write

ppre = ppe(l—pi) + piepi, (1)
U?',t = (1_pi)012‘,t +pi‘7i2,t: (2)

where p1;,;, and o7, are the mean and variance of fitness
respectively, of individuals whose fitness is inherited.
Since the inherited fitness, f;, is equal to the average
of BB fitness we can write

1
ZZyzw (3)

where, / is the string length, and f(BBj) is the esti-
mated BB fitness which can be written

+ (6= 1)p, (4)

where, f (BB;j) is the actual BB fitness, p is the pro-
portion of correct BBs, and the term (¢ — 1)p incor-
porates the noise arising from other BBs. Using the
above relation, f; for uniformly scaled problems can
be written as f

fi= %+ (= 1p. )

f(BB;) = f (BB;)
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The mean inherited fitness, ;¢ is given by

1 n
Ezfm';
_ _gjﬂ 5_1]

MHit =

+(-1)p

= Zf]

= Ip=pyy, (6)

where n is the population size. Using the above rela-
tion in equation 1, we get

Bpre = K- (7)

The inherited fitness variance, o7, can be derived as
,
follows,

‘ 1 e ..
Uiz,t R fo] — (fp 2
2
(1 —p)
= —=, 8
- )
Using the above relation in equation 2 we get,
p(l—p
U?’rﬂ: = (]_ - pi)o'?"t + p@ ( —g )
~ (1-pi)ot, (9)

Using the notion of selection intensity, I (Bulmer,
1980), we can write the expected average fitness with
inheritance after selection as

ppretAog g,
= ppetI1—piogs. (10)

Since both the actual fitness and inherited fitness dis-
tributions are normally distributed, a bivariate normal
distribution can be used to obtain the expected actual
fitness value of F at generation t+1, given pf 441,

Bprtt1

E(F/pp. t41) = pgir1 = ,Uft+ ~ B (s 1 — g 0).-

fl
It can be easily seen that the covariance, op pr is (1 —
pi)afc. Using this relation and equation 10,

ppi+ (g + I/ 1= piogs — ppe),
= pre+I/1=pioys. (11)

We now proceed to derive the convergence and
population-sizing models.

Hfit+1
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Figure 1: Verification of proportion of correct BBs pre-
dicted by equation 13 with empirical results plotted as
a function of generation number for different values of
inheritance proportion. The experimental results are
averaged over 50 runs. The discrepancy between the
theoretical and experimental results are due to hitch-
hiking and can be eliminated by ensuring a better mix-
ing of BBs through repeated crossover or population-
wise crossover.

3.1 Time to Convergence

In this section we derive convergence model for the
OneMax problem with fitness inheritance. For One-
Max domain, we can write

pre = Ipg, U?,t = lp:(1 — py),

where, £ is the string length, and p; is the proportion of
correct alleles in the population at generation ¢. Since
the initial population is generated with uniform distri-
bution, pg = 0.5. Using the above relation in equation

11,
_ (1—1%')
P+1 = pet+ 1 Tvpt(l—pt),
1—pi
Pir1—pr = I %\/]ﬂt(l—pt)-

Approximating the above equation as a differential
equation yields

= . (12)

Integrating the above equation and using the initial
condition p|i—¢ = 0.5 we get,

1—pi)t

—p) ) )

I
p; = sin’ T 4+ -
4 2/0
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Figure 2: Convergence time for a 100-bit OneMax
problem for different proportion of inheritance pre-
dicted by equation 14 compared to experimental re-
sults. The empirical results are averaged over 50 runs.

The above equation is compared to the experimental
results in figure 1 at different inheritance proportions
pi. The proposed convergence model slightly overesti-
mates the proportion of correct BBs for GAs with tour-
nament selection and uniform crossover. This discrep-
ancy between the theoretical and empirical results can
be eliminated by employing recombination procedures
than ensure that the BBs are well mixed (Thierens,
1995).

We can derive an equation for convergence time, tconvy,
by equating p; = 1, and inverting equation 13,

P S
conv — 2[ (1 _pl)

If p; is taken as O then the above relation reduces to
7€/ (2I) which agrees with existing convergence time
models (Muhlenbein & Schlierkamp-Voosen, 1993;
Miller & Goldberg, 1996a; Miller & Goldberg, 1996b).
The convergence time observed experimentally is com-
pared to the above prediction for a 100-bit OneMax
problem in figure 2. Again the discrepancy between
the empirical and analytical results occurs due to
hitch-hiking and can be reduced by ensuring a good
mixing of building blocks.

(14)

3.2 Population Sizing

It is well known that population size is a major deter-
minant of the quality of the solution obtained. There-
fore it is essential to appropriately size the population
to incorporate the effects of fitness inheritance. Gold-
berg, Deb, and Clark (1992) proposed population-
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sizing models for different selection schemes. Their
model is based on deciding correctly between the best
and the second best BBs in the same partition. They
incorporated noise arising from other partitions into
their model. However, they assumed that if wrong BBs
were chosen in the first generation, the GAs would be
unable to recover from the error. Harik, Cantu-Paz,
Goldberg, and Miller (1997) refined the above model
by incorporating cumulative effects of decision mak-
ing over time rather than in first generation only. They
modeled the decision making between the best and sec-
ond best BBs in a partition as a gambler’s ruin prob-
lem. This model is based on the assumption that the
selection process used is tournament selection with-
out replacement. Miller (Miller, 1997) extended this
model to predict population sizing in the presence of
external noise. The population-sizing model derived
by Miller is reproduced below.

_ 2" 'og(¥) v/

N dmln f’ ’
where n is the population size, k is the BB length, v is
the failure rate, dp,;, is the distance between the best
BB and the second best BB (Goldberg, Deb, & Clark,
1992), and 0]20, is the variance of the noisy fitness func-
tion. Not only J'ch,, but also d,;, depends on p;. For
OneMax problems d,;;,, was empirically determined to

be
dmin = (]- _pz3) V 1 — Di- (15)

The population-sizing equation can now be written as

2" Mog ()T
= 1
n T V7 (16)

The above population sizing is compared to the results
obtained for a 100-bit OneMax problem in figure 3.
From the plot we can easily see that our population-
sizing model fits the experimental result accurately.
Using the convergence time and population-sizing
model derived in this section, we evaluate the inher-
itance proportion that requires least number of func-
tion evaluations (or equivalently, yields greatest speed-
up) in the next section.

4 Optimal Inheritance Proportion

We can intuit that given a problem there should be
a value (or a range) of inheritance proportions that
are more efficient than the others. Too low a p; or
too high a p; would not reduce the number of function
evaluations. Our aim is to determine the inheritance
proportion such that the total number of function eval-
uation required is minimized. Here we assume that the
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Figure 3: Verification of the population-sizing model
(equation 16) for various inheritance proportions with
empirical results. Experimental results display the
population size required for optimal convergence with
failure rate of 0.001 and are averaged over 50 runs.

cost of inheritance is insignificant. This is justified by
the fact that inherited fitness is just an average of the
fitness values of the two parents, a computationally
trivial task when compared to the usual function eval-
uation. We reiterate that fitness inheritance is needed
in cases where function evaluation takes a long time
(eg., a large real-world problem), or when only some
individuals can be evaluated (for example, interactive
GAs). Total number of function evaluations required
is given by

Nfe = n[(tconv _1)(]—_pi)+]—]7
= n [tconv(]- _pi) +pi] . (17)

From previous sections, for a given problem,

C2
C3
n =
1- p?;

where ¢, and c3 are m/¢/(2I) and —2F 1 log (1)), [mo%
respectively. Using the above equations, the total
number of function evaluations is given by,

1 igps [02\/1 o —f—pi] . (18)
i

The optimal proportion of inheritance is then given by
solving,

Ny =

ONy.
Opi

3p; [62(1 —pi) +piv/1 —pi] +
(1-p?) [—0.5C2 + \/1——])4 = 0. (19
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Figure 4: Optimal inheritance proportion, p} as a
function of string length ¢ obtained by numerical solu-
tion of equation 19. pj is independent of ¢ for moderate
to large values of /.

The above equation can be solved for two asymptotic
cases: (1) the string length, £ = 0, then ¢» = 0, and the
optimal evaluates to p} = 0, and (2) the string length
is very long, then ¢; — oco. For this case equation 19
reduces to

. 1
i (1=p) -5 (1-p}) = 0, (20)
. 1 1

The above quadratic equation can be easily solved, and
the optimal proportion for this case comes out to be
p; = 0.558. For other values of string length, equation
19 cannot be solved analytically, and hence it has been
solved numerically for different problem sizes. The op-
timal proportion of inheritance obtained by solving the
above equation numerically is plotted as a function of
string length is shown in figure 4. We can see that for
moderate to large sized problems the optimal propor-
tion of inheritance, p} lies between 0.54-0.558, that
is,

0.54 < pf < 0.558 (22)

The above result (equation 22) suggests that p; is in-
dependent of problem size for problems of moderate
to large size. The predicted number of function eval-
uations is compared with experimental results for a
100-bit OneMax in figure 5, for a 40-bit trap function
with BB size 4 with a crossover probability of 0.9 in
figure 6(a), and for a 40-bit trap function with BB size
4 with tournament size of 8 and crossover probability
of 1 in figure 6(b). Even though our model was de-
rived for OneMax problems, it holds even for other
problems with different parameter settings as shown
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Figure 5: Total number of function evaluations pre-
dicted by equation 17 is compared to empirical results
as a function of inheritance proportion. The exper-
imental results display the total number of function
evaluations required for optimal convergence of a 100-
bit OneMax problem with a failure rate of 0.0001. The
empirical results are averaged over 50 runs.

by the plots. This exemplifies the robustness and use-
fulness of the proposed model. Another point to be
noted is that the optimal inheritance proportion is be-
tween 0.54-0.558 in all cases.

Another interesting fact to note is that the number of
function evaluations with inheritance is only around
20% less than that without inheritance. In other words
the speed-up defined as the ratio of number of function
evaluations with p; = 0 to the number of function eval-
uations at optimal p; is around 1.2. This implies that
we get a moderate advantage by using fitness inheri-
tance. The existence of an optimal p; and the moder-
ate value of speed-up are in contrast with the earlier
studies on inheritance. A detailed discussion of this
discrepancy is presented in the next section.

5 Apparent Speed-up

In the previous section we presented the speed-up that
can be obtained if the population size is chosen appro-
priately. This is the speed-up that theoreticians can
obtain when they adjust conditions appropriately to
hold the solution quality constant. A GA practitioner,
unlike a GA theoretician, views GAs as means to reach
an end. He usually fixes the population size and then
opts for fitness inheritance. From a GA practitioner’s
point of view, the speed-up obtained through fitness
inheritance can be much higher. We call this speed-
up, that is obtained through a fixed population size as
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Figure 6: Total number of function evaluations predicted by equation 17 is compared to empirical results as a
function of inheritance proportion. The experimental results display the total number of function evaluations
required for optimal convergence of a 40-bit trap function with a BB size of 4, and a failure rate of 0.0001. The
empirical results are averaged over 50 runs. Crossover probability is (a) 1.0, and (b) 0.8. The results indicate
that the optimal proportion of inheritance given by equation 22 is in fact approximately valid for other uniformly
scaled problems with BB size greater than one and different GA parameter values.

apparent speed-up.

Function evaluations taken for different population
sizes plotted as a function of p; for a 100-bit OneMax
problem is shown in figure 7. The plot indicates only
those points for which the population converged to the
optimal solution in all 50 runs. The apparent optimal
inheritance proportion, p;PP, is given by the inverse of
the population-sizing model, equation 16.

/ K
p?}"p: 31_57

where  is a constant dependent on the problem type,
and the solution quality desired, and is related by
k = —2F=1log()y/m. There are two asymptotic cases
for the above result. One, when the population size is
less than &, then fitness inheritance does not yield any
speed-up and in fact can result in premature conver-
gence. The other case is when the population size is
very large when compared to k. In this case a very high
inheritance proportion can be used and high speedup
values can be obtained.

(23)

The apparent optimal inheritance proportion pre-
dicted by equation 23 is compared to experimental
results for a 100-bit OneMax in figure 8. The value
& for this problem is 81.63. The experimental results
indicate the inheritance proportion that required low-
est number of average function evaluations to converge
to optimal solution in all 50 runs. From figure 7, it can
be seen that if we choose an arbitrarily high popula-
tion size, say 300, then fitness inheritance can yield a
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Figure 7: Total number of function evaluations for var-
ious proportions of inheritance at different population
sizes. The experimental results are averaged over 50
runs and are compared to the results predicted using
equation 17. Experimental results include only those
points for which all 50 runs converged to the optimal
solutions.
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Figure 8: Apparent optimal inheritance proportion,
p;PP, predicted by equation 23 compared to empirical
results. The empirical results display the inheritance
proportion that requires minimum number of function
evaluations to converge to the optimal solution for a
100-bit OneMax problem. The experimental results
are averaged over 50 runs. The value of « is 81.63.

speed-up of around 3.3. If we have a still higher pop-
ulation size, then the speed-up will be higher. This
result agrees with that obtained by Smith, Dike, and
Stegmann (1995), in which they had considered a 64-
bit OneMax problem and had taken a population size
of 500. A 100-bit OneMax without inheritance re-
quires a population size of about 80 which implies
that a 64-bit problem would need a still lower popula-
tion size. The reason why Smith, Dike, and Stegmann
(1995) did not get an optimal proportion of inheritance
was due to the fact that they took a very high popula-
tion size and did not compare the minimum population
size required for different proportions of inheritance.
In other words, they did not consider the effect of fit-
ness inheritance on population sizing. Of course, GA
practitioners are likely to do so, and our theories are
able to explain the large apparent speed-up they shall
achieve.

6 Future Work

In the present study we have analyzed fitness inheri-
tance for OneMax problems and the proposed model
can be extended to other problems (eg., non-uniformly
scaled problems). Further investigation is required for
determining analytically the signal to noise-ratio used
in the population-sizing model. The inheritance pro-
cedure used in the present study is a simple one, and
a study on more complex inheritance techniques still
remains to be done. The present analysis is developed
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for the OneMax problem, which is a GA easy prob-
lem. Therefore, the speed-up obtained in the current
study is an upper bound and we recognize that a lower
speed-up could be obtained for more complex or GA
hard problems. The greatest speed-ups obtained for
such cases have to be investigated.

7 Conclusions

In this paper, we have developed a theoretical basis for
fitness inheritance and have derived models for conver-
gence time and population sizing. These results have
been integrated into a model that predicts solution
quality and cost, and this model has been analyzed and
optimized for greatest speed-up. Under careful condi-
tions of adjusting GA parameters for constant solution
quality, the optimum inheritance yields savings of 20%
in the number of function evaluations. Though by it-
self this speed-up value seems to be modest, it can be
coupled with parallelism, time continuation, and other
evaluation relaxation schemes. In such a scenario the
effective speed-up obtained will be a product of all in-
dividual speed-ups and even a speed up of 1.2 can be
important. We have been careful to include the ef-
fects of fitness inheritance on quality-duration theory
in predicting the above results. However, GA practi-
tioners usually fix the population size and then try in-
heritance. Under these conditions the apparent speed-
up can be much greater, a result that agrees with the
earlier empirical study of Smith, Dike, and Stegmann
(1995).
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Abstract

Genetic algorithms are sometimes disparag-
ingly denoted as just a fancier form of a plain,
stupid heuristic. One of the main reasons for
this kind of critique is that users believed a
GA could not guarantee global convergence
in a certain amount of time.

Because the proof of global convergence of
GAs using elitism has been performed else-
where (13), in this work we want to extend
previous work by J. Suzuki (15) and focus on
the identification of the determinants that in-
fluence the convergence rate of genetic algo-
rithms. The convergence rate of genetic algo-
rithms is addressed using Markov chain anal-
ysis. Therefore, we could describe an elitist
GA using mutation, recombination and selec-
tion as a discrete stochastic process. Evalu-
ating the eigenvalues of the transition matrix
of the Markov chain we can prove that the
convergence rate of a GA is determined by
the second largest eigenvalue of the transition
matrix. The proof is first performed for diag-
onalizable transition matrices and then trans-
ferred to matrices in Jordan normal form.

The presented proof allows a more detailed
and deeper understanding of the principles
of evolutionary search. As an extension to
this work we want to encourage researchers
to work on proper estimations of the second
largest eigenvalue of the transition matrix.
With a good approximation, the convergence
behavior of GAs could be described more ex-
actly and GAs would be one step ahead on
the road to a fast, reliable and widely ac-
cepted optimization method.

*Also with Illinois Laboratory of Genetic Algorithms,
University of Illinois at Urbana-Champaign, USA.

1 Introduction

Sometimes researchers speak disparagingly about ge-
netic algorithms and label them to be just fancier form
of a plain, simple heuristic. One main reason for this
is that genetic algorithms (GA) stick to the prejudice
that they are not able to guarantee convergence to the
global optimum. The users do not know if the GA con-
verges for a specific problem to the global optimum,
and how much time the GA needs to converge. A closer
look at genetic algorithms, however, reveals that there
exists not only proof of the global convergence for ge-
netic algorithms using elitism (13), but also some work
about the convergence rate of GAs (15). The more
complicated analysis of the convergence rate is impor-
tant because a genetic algorithm which can be proven
to converge, but needs infinite time for it, is not help-
ful for a effective use of genetic algorithms and would
confirm the prejudices against GAs.

In this work we want to perform a more detailed anal-
ysis of the convergence rate using Markov chains. The
Markov chain model is used for modeling a simple
GA with the genetic operators selection, mutation and
crossover. We investigate the determinants which the
convergence rate depends on. With using some results
from G. Rudolph (13) and J. Suzuki (15) we can prove
that the convergence rate depends mainly on the value
of the second largest eigenvalue of the transition ma-
trix of the Markov chain. Furthermore, we transfer the
results we get for diagonalizable transition matrices to
the more general class of matrices in Jordan normal
form. We illustrate that the proof for the convergence
rate holds true for matrices in Jordan normal form,
too.

The paper is structured as follows. In the following
section we review some of the previous work about
convergence behavior of genetic algorithms. This is
followed in section 3 by presenting the requisites we
want to use for our mathematical proof. We illustrate
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the assumptions for the genetic algorithm, present
some fundamentals about the used Markov chain mod-
els, and review some properties of stochastic matri-
ces. The section ends with a lemma about stochastic
matrices from M. Iosifescu (10) and the global con-
vergence statement from G. Rudolph (13). In section
4 we present the proof that the convergence rate is
mainly determined by the second largest eigenvalue of
the Markov chain describing a GA. First, the proof is
performed for diagonalizable matrices and then trans-
ferred to matrices in Jordan normal form. The paper
ends with concluding remarks.

2 Previous work

In this section we give a short review about the two
main approaches that are used for investigating the
convergence behavior of genetic algorithms.

In the field of genetic algorithms and convergence be-
havior we could distinguish two large areas of research.
The first line of research results from the theoretical
investigations by J. Holland (9) and D. E. Goldberg
(6) and are based on the schema theorem and the ex-
istence of building blocks for selectorecombinative ge-
netic algorithms. In depth work in this line of research
was done by H. Miihlenbein (2), D. Thierens (17), or
D.E. Goldberg (7). A comprehensive overview of con-
vergence time complexity can be found in D. Thierens
thesis (16). All these models use the notion of building
blocks, and are able to describe how building blocks
grow and how long it takes to overtake a population
accurately.

The second line of research treats GAs as a stochas-
tic process with special properties. Starting with D.E.
Goldberg (8) using Markov chains for modeling a GA,
further work was done by T.E. Davis (3), A.E. Nix
(11), and M.D. Vose (18) showing that a GA using se-
lection, mutation and crossover can be fully described
by the transition matrix of a Markov chain. Markov
chains were also used by A.E. Eiben et al., G. Rudolph,
and A. Agapie for the proof of the global convergence
of evolutionary algorithms (4; 13; 1). The proof was
an important step towards a better theoretical under-
standing of GAs . Based on the global convergence
proof, J. Suzuki (15) identified the influence of the
eigenvalues of the transition matrix of the Markov
chain on the convergence rate of a GA. Although he
gave upper and lower bounds for the convergence rate,
he was not able to specify the important eigenvalue for
the convergence rate exactly.

GENETIC ALGORITHMS

3 Preliminaries

This section provides the background that is neces-
sary for understanding the investigations concerning
the convergence analysis. We start by defining some
basic properties of the used GA. This is followed by
a description of the basic concepts of Markov chains
and a review of the properties of stochastic matrices.
The section ends with the proof of GA convergence as
provided in (13).

3.1 Properties of the Genetic Algorithm

This paper deals with a kind of simple Genetic Al-
gorithm (GA) in which the genetic operators are re-
stricted to crossover, mutation and selection. Further-
more, the GA uses a binary representation of fixed
length. The population size of the GA is determined
a priori, and the probabilities for the three operators
are not equal to zero.

For our investigation we use elitism in a way that the
best parent survives if it is better than the best off-
spring. The individual with the highest fitness among
all possible individuals is denoted as super individual.
It represents the global optimum of the problem.

Further assumptions concerning the fundamental
structure of the GA are not necessary in this context.
Different types of crossover and mutation operators
should have no influence on the convergence behavior
of GAs and the proof shown in section 4 should still
hold.

3.2 Markov chain analysis

The principal behavior of a GA can be described by
using the Markov chain model. Using this concept we
are able to develop a convergence model for the GA.

A Markov chain is a discrete stochastic process. The
behavior of the stochastic process in future states de-
pends only on the present states, but not on the past
ones. Therefore, the probabilistic motion of a Markov
chain could be described by using a transition matrix
P.

For homogeneous Markov chains the t-th step tran-
sition matrix P! can be determined iteratively.
The Chapman-Kolmogorov equations (compare M.
Tosifescu, p.65 (10)) yield

Pt :HP.
t

Let p! denote the probability that the Markov chain
is in state i at step t. The p} can be gathered in a row
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vector pt = (pf,pl,...,pt). The initial distribution
0

p" is similarly defined. Then
pt=p°. Pt

for t > 0. Therefore, a homogeneous Markov chain is
completely determined by the tuple (p°, P).

The distribution p on the states of the Markov chain

is called a stationary distribution, if p P = p, and is

called a limit distribution, if the limit p = p° tlim pt
—00

exists.

Every transition matrix of a Markov chain is stochas-
tic. A non-negative matrix is said to be stochastic if
all its row sums are equal to one. Further matrix clas-
sifications occurring in the following are given by G.
Rudolph, p.55 (13). Stochastic matrices possess spe-
cial properties:

e The eigenvalues of a stochastic matrix have mod-
ulus less or equal to 1.

e An irreducible stochastic matrix possess a simple
unit eigenvalue.

e The right-hand eigenvector corresponding to a
unit eigenvalue of a stochastic matrix is given by
e=(1,...,1)7.

e The vector p is a stationary probability vector
of a stochastic matrix, if a left-hand eigenvalue
corresponds to a unit eigenvalue.

The source of these statements can be found in W.
Stewart, p. 28-30 (14).

3.3 Proof of global convergence

A qualitative Markov chain model of GAs is sufficient
for the global convergence proof. The following lemma
is necessary for the convergence proof presented by G.
Rudolph (13). We use this lemma later for the analysis
of the convergence rate.

Lemma 1
Let P be a reducible stochastic matrix, where C' €

IR™*™ is a primitive stochastic matrix and R,T # 0.
Then

lim P!

t—o00

P> =

= lim
t—o00

ct 0
t—1 )
S TIRCt Tt
i=0

1=

c>® 0
R> 0
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is a stable stochastic matrix with P>° = ep®, where
p>® = p® P> is unique regardless of the initial distri-
bution, and the limit distribution p°° satisfies

p >0 forl<i<m and p/° =0

form < i <mn.

Matrix C is associated with the absorbing states of
the Markov chain. For the proof see M. losifescu,
p.126 (10). Using this lemma we can finally present
the global convergence statement:

A genetic algorithm with an arbitrary initial distribu-
tion converges to the global optimum if the following
assumptions are fulfilled:

e Selection chooses the best individual from parents
and offspring (elitism).

e Every state is reachable from any other state.

For a detailed proof the reader is referred to G.
Rudolph, chapter 5 (13).

4 Analysis of the convergence rate

For an analysis of the convergence rate, the proof of
convergence, illustrated in the previous section, is a
necessary condition. If we can not prove that the GA
converges an investigation into convergence rate is use-
less. Using the convergence proof we prove in this sec-
tion that the convergence rate is mainly determined
by the second largest eigenvalue of the Markov chain
describing a GA.

The theoretical identification of the second largest
eigenvalue as the fundamental parameter influencing
the convergence rate is first obtained for diagonaliz-
able matrices. This result is then transferred to ma-
trices in Jordan normal form, which represents a more
general class of matrices.

4.1 Diagonalizable matrices

We want to start by identifying a measurement for
the convergence rate of a GA. This should allow us to
determine the progress of the GA’s convergence.

J. Suzuki (15) measures the convergence rate as the
degree in which the individual with the highest fitness
in a population coincides with the super individual.
Therefore, he investigates how closely the probability
Y kex- Diconverges to Y, o x. pp<, where X denotes
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the amount of populations containing the super indi-
vidual. We want to use the same convergence mea-
surement for the following analysis of the convergence
rate.

Due to the necessary assumption that the GA is glob-
ally convergent, the probability >, - . pg® converges
to one (Lemma 1). Based on Suzuki’s measurement of
convergence and Lemma 1 we analyze how fast the
probability >, . pf' converges to one for a finite
number of generations.

Furthermore, we use for the analysis of the conver-
gence rate of transition matrices the classical Perron
Formula (compare V. Romanovsky, chapter 1 (12)).
This formula allows us to compute the powers of a
square matrix P. In the case of diagonalizable matri-
ces, the Perron Formula can be reduced to

n
P = Z)\{U{LL?, (].)
i=1

where J; is an eigenvalue of matrix P, v; and u; are the
corresponding right and left eigenvectors. Equation 1
is called the spectral representation of a matrix. As a
relevant consequence it follows

N
P, =Y wl A, 2)
=1

Using the previous statements we could finally formu-
late the theorem that the convergence rate depends
on the second largest eigenvalue of the diagonalizable
transition matrix:

Theorem 1
Let C' > 0 be constant.
A constant C' exists which satisfies

Sopp =10l (3)

ke X~

where |\y| is the second largest eigenvalue of a diag-
onalizable transition matrix P describing the Markov
chain of a global convergent GA.

Proof of Theorem 1

If £ € X*, then can be followed:
Py, = 0
Py, =1

v # k,
v = k.

Using equation (2) the following equation holds for
k¢ X*

N
P, = wl, A
=1
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P is a stochastic matrix. Therefore, the largest eigen-
value of P is equal to unity. The simple unit eigenvalue
is identified as the absorbing state of the corresponding
Markov chain. Furthermore,

pi“) .. pj.vo
1 T . .
w) = (), = e p® = | :
pr e ¥

holds because of the properties implied by a stochastic
matrix (compare subsection 3.2). As P describes a
Markov chain, we get

N
Py >rer,
k=1

N N )
Do Do wil, A
k=1 i=1

Therefore, > po' =
vg X

N0 X )
= > X Xw, A\
vgEX* k=1 i=1

X oo m , &
= X Y| Nw, + X w, A\
=2

vgX* k=1
S N I (i)
= 2 2 |Prwy, T PE D W, A}
vEX* k=1 ' i=2
Al 0 ,,00 Al 0 N (%) n
= 2 2op | X X mR s wi | A2
vEX* k=1 vEX* k=1
N
< Y X mpR 4 C-x|”
vgEX* k=1
N
= X pX YXpp+ C-x|”
vEX* k=1
= g}:{ pgo-]. + C|)\2|n
:C'|/\2|n7

where C' > 0 and p)° = 0 for v ¢ X*(Lemma 1). Us-
ing the complementary probability the proof is com-
pleted.

q.e.d.

As a result, the convergence rate of the correspond-
ing Markov chain is mainly determined by the second
largest eigenvalue of the diagonalizable transition ma-
trix.

4.2 Matrices in Jordan normal form

In the previous subsection we used diagonalizable ma-
trices for our proof, because they have properties that
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can be used advantageously. However, in general the
fundamental assumptions for the class of diagonaliz-
able matrices are very restrictive. An arbitrary matrix
is often not diagonalizable. Hence, we analyze in this
subsection the more general class of matrices in Jor-
dan normal form! and illustrate how the proof from
the previous subsection can be transferred to matrices
in Jordan normal form.

The transition matrix P in Jordan normal form de-
scribing the Markov chain of a global convergent GA
can be written as (see F. Gantmacher (5))

1 0
J2
0 I
where the J; are called Jordan Blocks with the follow-
ing shape

Ai 0
1 N

Ji = .
0 1 N\

The \; are the eigenvalues of P (compare M. Iosifescu,
p. 50-51 (10)). The Jordan Blocks have the important

property

—_
o

NG

where matrix U is called nilpotent. A non-negative
square matrix U is defined to be nilpotent , if Ik € IN
holds U* = 0.

n

1 0
J2
P n = =
0 Tom
1 0
g
0 Jn

reveals that the unit eigenvalue does not affect the
convergence rate. Therefore, J ;7 = 2...m, are the

L All matrices above €' have a Jordan normal form.
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remaining parameters that have to be analyzed. With
using

0 0
10

U= _
0 10

the Jordan blocks become
o= B+
= N'E+na)\N"'VE-U
+ .+ nN-E-UT UM

As mentioned before, matrix ¢/ is nilpotent. This
yields
J* = A E+n\"'E-U
nn—1)...(n—k) , 4y k—1
... A -E -
+ + 7o) ; u
< C-A\'E because |A;| < 1,

for C > 0 and k € IN. Hence we obtain the final result:

for C >0 and k € IN.

Interpreting the results, reveals that the J;” are upper
bounded by A* for i = 2...m, where ); is the corre-
sponding eigenvalue to J;. The behavior of P™ mainly
depends on the size of the second largest eigenvalue Az,
because in comparison to A* the powers of the other
eigenvalues can be neglected.

The obtained result extends the proof for diagonaliz-
able transition matrices and confirms that the second
largest eigenvalue is also the important parameter for
the long term behavior of matrices in Jordan normal
form.

Finally, we want to note that in general the transition
matrix of a Markov chain is not in Jordan normal form,
but using standard matrix transformations it always
can be transformed into it. Although, we assume that
the transformation of an arbitrary transition matrix
into a matrix in Jordan normal form does not mod-
ify the statements about convergence rate, the formal
proof for this is still open.

5 Conclusion

After a short review of two different approaches to the
analysis of the convergence behavior of genetic algo-
rithms (building block oriented versus Markov chain
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models) we present some requisites we need for our
investigation into the convergence rate of genetic al-
gorithms. In section 3 we present some principles of
Markov chain models, and review some properties of
stochastic matrices. As an investigation into the con-
vergence rate of genetic algorithms only makes sense,
if it can be proven that a GA converges to the global
optimum, we review the convergence proof from G.
Rudolph (13). Using this proof and some of the work
by J. Suzuki (15) we can extend the existing con-
vergence models and prove in the following section
that the convergence rate of genetic algorithms, mod-
eled with Markov chains is determined by the second
largest eigenvalue of the characteristic transition ma-
trix of the Markov chain. Finally, we transfer the re-
sults we get for diagonalizable matrices to matrices in
Jordan normal form.

This paper extends existing models about convergence
rate of GAs (15) and proves that the convergence rate
depends on the second largest eigenvalue of the di-
agonalizable transition matrix. The theoretical anal-
ysis of the convergence rate is based on the existing
evidence of global convergence, which are based on
Markov chains. The obtained results allow a more
detailed and deeper theoretical understanding of the
principles of evolutionary search. We hope that the
results could inspire researchers to put the focus of
research more on the underlying theoretical principles
and not to focus only on practical applications of GAs.

As a straightforward extension of this work we want to
encourage researchers to work on the estimation of the
second largest eigenvalue of the transition matrix. A
proper approximation can give us information about
the optimal choice of GA parameters like mutation
and crossover probability or selection pressure. With
that knowledge we could use a GA more efficiently,
and we would be one step ahead on our long road to
the development of competent GAs that are able to
solve problems of bounded complexity autonomously,
fast and reliably.
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Abstract

The No Free Lunch theorem is reviewed and
cast within a simple framework for black-
box search. A duality result which relates
functions being optimized to algorithms op-
timizing them is obtained and is used to
sharpen the No Free Lunch theorem. Ob-
servations are made concerning problem de-
scription length within the context provided
by the results of this paper. It is seen that
No Free Lunch results are independent from
whether or not the set of functions (over
which a No Free Lunch result holds) is com-
pressible.

1 Introduction

Roughly put, the No Free Lunch theorem formalizes
the intuitive idea that all blackbox search algorithms
have identical behavior over the set of all possible dis-
crete functions. Thus, on average, no algorithm is bet-
ter than random enumeration in locating a global opti-
mum. If algorithms are executed any given number of
steps, every algorithm finds the same set of best so-far
solutions over all functions [9] [5] [1].

One of the criticisms of the No Free Lunch theorem
is that it applies to large sets of functions and it is
unclear if No Free Lunch applies to small sets or to
real world problems of practical interest. A variant
form of this criticism is that many practical problem
classes have compact descriptions, whereas elements in
the set of all functions from a finite domain to a finite
codomain do not have (on average) compact descrip-
tions. This criticism has previously been addressed by
various researchers [5] [2], where it was observed that
a No Free Lunch result holds over classes of functions
much smaller than the set of all functions. This paper

M. D. Vose and L. D. Whitley
Department of Computer Science
Colorado State University
Fort Collins, Colorado 80523 USA
{vose,whitley }@Qcs.colostate.edu

strengthens those observations, obtaining a sharpened
version of the No Free Lunch theorem, and also makes
more explicit a type of duality involving functions be-
ing optimized and algorithms being used to optimize
them. The paper closes with observations regarding
the No Free Lunch theorem and problem description
length.

2 Search Algorithm Framework

This section sets forth a framework for the analysis
of deterministic non-repeating blackbox search algo-
rithms. To streamline exposition, such search algo-
rithms will be referred to simply as algorithms. This
framework makes it possible to precisely model all pos-
sible algorithms as they apply to all functions of a
given finite domain and range.

2.1 Definitions

Let X and Y be finite sets, let f : X — ) be a function,
and define y; as f(z;). Define a trace of size m (m > 0)
to be a sequence of pairs

T = ((®0,%0),(T1,¥1)s- - (Tm—1,Ym-1))

Note that a trace is just an ordered sequence of ele-
ments from f (regarding f as a set of ordered pairs).
At times the subscript of a trace will be omitted to
refer to traces of arbitrary size. Let 7,, be the set of
all traces of size m, and let 7 be the set of all traces.
Adopt the following notation:

Ty = ()
Y = (%o, T1,.-.,Tm—1)
TV = (Yo,¥Y1s--+>Ym—1)
Twli] = (%5,9:)
o] = =
T = v
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A concatenation operator || will be used to extend the
size of a trace in the following way:

T || (2,y) = (T[0], Tu[1], ..., Tin[m — 1], (2,9))

Define a non-repeating trace T to be a trace with
unique x components, i.e. T%[i] = T*[j] =i = j.! A
complete trace T is defined to be a trace that covers the
domain, i.e. for all z € A" there exists an ¢ such that
T*[i] = z. Because a trace is a sequence of ordered
pairs, a non-repeating trace corresponds to a function;
when it is complete, the corresponding function is f.

Consider a “search” operator g : 7 — X which when
given a trace as an argument returns the next point
in the search space to be examined. A deterministic
blackbox search algorithm A corresponds to a search
operator g, and takes as arguments a trace 7}, and a
function f € V¥ and returns the trace

Tm+1 = Af(Tm) =Ty “ (g(Tm)vf og(Tm))

For example, the first two steps of deterministic black-
box search algorithm A would proceed as follows:

To || (9(To), f o g(Tv))
Ty || (9(T1), f 0 9(T1))

Such algorithms therefore operate in discrete steps
where each step generates a new pair that is concate-
nated into the trace. Note that the search operator
g is used to generate the x components of the trace,
and that function f is used to evaluate the utility
of those points; this reflects the separation between
“exploration” (choosing the next point in the search
space) and “fitness evaluation” (evaluating the utility
of that new point). Multiple applications of these al-
gorithms will be abbreviated in the natural way, i.e.
AP (Ty) = T)p, and in particular, A}(Ty) = To.

Ty =A(Ty) =
T, =Ap(Th) =

A non-repeating blackbox search algorithm—referred
to simply as algorithm—is defined to be a black-
box search algorithm whose range contains only non-
repeating traces. The largest trace an algorithm could
generate is clearly a complete trace which has size | X|.

After m steps, algorithm A and function f will gen-
erate trace T}, from initial trace Ty. In this paper al-
gorithms always start from the empty trace T, which
may seem a limitation. However, algorithms with an
arbitrary initial trace size are actually special cases
of algorithms that start from the empty trace, as the
following illustrates: Consider algorithm A and initial
trace Tp,. A corresponds to another algorithm A’ that

!This paper will follow the convention that free vari-
ables are universally quantified.
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given initial trace Ty will generate T, after m steps,
and will behave exactly as A afterwards. Designating
an initial trace is thus simulated by using a slightly
modified algorithm that starts at Tp. In other words,
algorithms that can set all points in their traces are
powerful enough to encompass algorithms that can-
not.

Two algorithms A and B will be considered identical
if and only if they both generate the same complete
trace for all f € Y%, ie.:

Alfx‘ = B}X‘ for all f € A

2.2 No Free Lunch

Define a performance vector of length m to be a se-
quence of m values from ). The performance vector
associated with trace T, is T)Y,. A performance vec-
tor can thus be said to be derived from a trace, and
a function and an algorithm together can be said to
generate a performance vector from Tj.

The length m trace A} (Ty) generated by algorithm
A and function f will be abbreviated by T,,(A4, f).
Let Vi, (4, f) denote the length m performance vector
generated by A and f. The size subscripts may be
omitted when not needed. Note that the performance
vector V,, (A4, f) is closely related to Ty, (A4, f),

Vin(4, ) = (Tm(4, ))?

Define an overall measure of algorithm A and set of
functions F' to be a function that maps the set of per-
formance vectors generated by A and F' to a real num-
ber. An overall measure can be used to compare the
overall performance of two algorithms on a set of func-
tions, and if the two algorithms have identical overall
measures, it can be said that they perform equally
well over F. An example of an overall measure would
be to take a performance vector measure M (which
maps a performance vector to a real number), ap-
ply it to every element in F' and then combine the
results in some symmetric way, such as the average

2 rer M(V(A, ))/IF].

Define an No Free Lunch result over F' to be a situa-
tion where any two algorithms will have equal overall
performance with respect to the set of functions F.
Four equivalent statements of the No Free Lunch the-
orem are given below. Where ambiguous, the set of
functions involved is Y.

NFL1: For any overall measure, each algorithm per-
forms equally well.

The following is the pivotal idea contained in the proof
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by Radcliffe and Surry [5], phrased more directly in the
language of the current framework.

NFL2: For any two algorithms A and B, and for
any function f, there exists a function g such that
V(A f) =V(B,g).

The following is the basis of the No Free Lunch proof
given by Schumacher[6].

NFL3: Every algorithm generates precisely the same
collection of performance vectors when all functions
are considered.

Schumacher has proved in addition that V(A4,f) =
V(A,g) = [ =g, i.e., the collections referred to in
NFL3 are actually sets [6]. This fact is a key observa-
tion in demonstrating the equivalence of NFL1, NFL2,
NFL3, and NFL4.

As defined above, an overall measure is a function
of a set of performance vectors. Consider instead
a weighted overall measure in which a performance
vector measure M applied to each performance vec-
tor is weighted according to the function that gener-
ates it, i.e. W(f)M(V (4, f)), and summed over f. A
weighted overall measure is not generally subject to
the No Free Lunch theorem except in the case where
the functions are equally weighted, i.e. certain func-
tions are not deemed more important than others. The
statement below is essentially the No Free Lunch result
given in Wolpert and Macready [8].

NFL4: For any equally weighted overall measure, each
algorithm will perform equally well.

A corollary of the No Free Lunch theorem is that if an
algorithm performs better than average on one set of
functions, it must perform worse on the complemen-
tary set. This is essentially an argument for special-
ization: an algorithm will perform well on a small set
of functions at the expense of poor performance on the
complementary set.

An even stronger consequence which seems not to have
been properly appreciated is that all algorithms are
equally specialized. This contradicts commonly stated
beliefs (e.g. [4]) about how there can be robust gen-
eral purpose algorithms, meaning that they perform
reasonably well on a broad class of functions at the
expense of not performing extremely well on any set
of functions. Since every algorithm has precisely the
same collection of performance vectors when all func-
tions are considered (NFL3), it follows that if any al-
gorithm is robust, then every algorithm is, and if some
algorithm is not robust, then no algorithm can be!
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3 Sharpening No Free Lunch

Let f : X — Y be a function and let 0 : ¥ — X be a
permutation (i.e. o is one-to-one and onto). The per-
mutation o f of f is the function of : X — ) defined

by of(z) = f(o7! ().

Define a set F' of functions to be closed under permu-
tation if for every f € F, every permutation of f is
also in F'.

Let A be an algorithm with search operator g and let
o be a permutation (of X). The permutation cA of
A is the algorithm with search operator og defined by

o09(¢) = 01 (g(0.(¢))) where o, (¢) operates on the z
values of trace ¢ by applying o to each of them, while
leaving the y values untouched.

THEOREM: If

Tn(Aa Jf) = ((x[)ayﬂ)) R (mnflaynfl»

then

To(oA, f) = {(e7 (®0),0), -, (07" (Tn=1),Yn—1))

Proof: By induction on the length of the traces. The
base case is true since all traces of length O are the
same; To(cA, f) = To(A,of) = (). Assume the induc-
tive hypothesis (i.e., the equalities in the statement of
the theorem). By definition,

og(Tu(cA, f)) = o to g(ox(Th(c4A, £))
= o og(Tu(A,0f)) =0~ (2a)

Moreover, f(o= (zy,)) = o f(zn) = yn. Accordingly:

Tnt1(A,of) = Tu(A,0f) |l (Tnsyn)
Tnt1(cA, f) = Tu(cA, f) | (Uﬁl(wn)ayn)
Which completes the proof. |

COROLLARY (“Duality”): V(cA, f) =V(A,0f)

This Corollary is true since, by the previous theorem,
the y values are the same in both traces. This corollary
is striking in the way that it shows a correspondence
between a permutation of an algorithm and a permu-
tation of a function. The following Lemma is an easy
consequence of NFL2.

LEMMAZ1L: If the set of functions F' is closed under
permutation, then there is a No Free Lunch result over
F.

Proof: Let A and B be arbitrary algorithms. If
one can show the sets S; = {V(A,f) : f € F} and
Sy = {V(B,h) : h € F}, are equal, then any two
algorithms will provide the same data for computing
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their combined performance measures, and therefore
the same result will be obtained. By NFL2, there ex-
ists a function h such that V(A4, f) = V(B,h). Be-
cause these two performance vectors are equal, h must
be a permutation of f, and thus f € F = h € F.
Hence S; C S5. The reverse containment follows by
symmetry. a

The previous lemma was an intermediate result in
Radcliffe and Surry’s proof of the No Free Lunch the-
orem [5]. The converse of this lemma is also true.

LEMMAZ2: If a No Free Lunch result holds over the set
of functions F', then F is closed under permutation.

Proof: Assume by way of contradiction that a No
Free Lunch result holds over the set F, but that F
is not closed under permutation, i.e., the function
f € F has a permutation g which is not in F. Con-
sider an arbitrary algorithm A. Let M (V (A4, f)) = 1,
and let M equal zero for all other performance vec-
tors generated by A. By NFL3 and the paragraph
following it, for every algorithm B there exists a func-
tion hp (the subscript on h indicates dependence on
B) such that M(V(B,k)) = 1 < k = hp. Let
the overall measure be the sum ), . M(V(B,k)).
Note that this sum is 1 when B = A, and since a
No Free Lunch result is assumed over F', the sum is
1 for every algorithm B. As f and g are permuta-
tions, let f = og. By duality, V(A4, f) = V(4,09) =
V(cA,g), and thus M(V(cA,g)) = 1. Accordingly,
Yorer M(V(cA,k)) = 0 (since M(V(cA,k)) is non
zero only for k = hy,4 = g ¢ F'), a contradiction. O

Combining the previous lemmas yields the following
sharpened version of the No Free Lunch theorem:

NFL: A No Free Lunch result holds over the set of
functions F' if and only if F' is closed under permuta-
tion.

4 NFL and Permutation Closure

In this section, some consequences of the previous re-
sults are illustrated.

Define the permutation closure P(F') of a set of func-
tions F C ¥ by

P(F)={of:f €F, and o is a permutation (of X)}
Note that for any sets F, F' of functions (from Y?%),
P(FUF') = P(F)UP(F')

By construction, P(F') is closed under permutation
and therefore a No Free Lunch result holds over P(F)
for any set ' C Y% (and hence over unions of such
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sets). It bears mentioning that in particular NFL1,
NFL2, NFL3, and NFL4 are valid with respect to
P(F). Not only do all algorithms display equal behav-
ior over P(F') for some overall measure of performance
(NFL1), they also generate exactly the same set of per-
formance vectors (NFL3) and therefore have identical
collections of objective function values at every time
step.

An equivalence relation = may be defined with respect
to permutations. Functions f and g are said to be
equivalent, denoted by f = ¢ if and only if there exists
a permutation o (of X) for which f = og. Similarly,
algorithms A and B are said to be equivalent, denoted
by A = B if and only if there exists a permutation o
(of X) for which A =¢B.

Let the equivalence class of function f be denoted by
[f], and let the equivalence class of algorithm A be
denoted by [A]. To simplify notation, let A denote a
set of algorithms, let F denote a set of functions, and
define V(4, F) and V (A, f) as follows

V(A ) : feF}
{(V(A,f) : Ae A}

V(A,F) =
V(A f) =

Since [f] = P({f}), NFL applies; therefore, for any
given algorithms A and B,

V(A [f) =V(B,[f])

It follows immediately from the definitions that if F’
is closed under permutation and f € F' then [f] C F.
Therefore the case above (i.e., F' = [f]) is the finest
level of granularity at which a No Free Lunch result can
hold. Moreover, any set F' of functions closed under
permutation is a disjoint union of equivalence classes,
thus No Free Lunch results hold only over unions of
equivalence classes.

By definition and duality,

V([A],f) = {V(cA,f) : o isa permutation}
= {V(A,of) : o is a permutation}
= V(4 I[f])

Bringing NFL into the picture yields the result that
for any given algorithms A and B,

V(AL f) = V(A [f]) = V(B,[f]) = V([B], f)

It follows that for any given algorithm A and any given
function f, the following are identical:

e The average performance over all algorithms using
function f.
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e The average performance over an arbitrary equiv-
alence class of algorithms using function f.

e The average performance over all functions in the
equivalence class [f] using algorithm A.

Moreover, the phrase “average performance” can be
replaced with “set of performance vectors” in the list
above. Whereas most No Free Lunch results have been
expressed in terms of some measure of performance, all
algorithms in fact display exactly the same behavior
over any set of functions closed under permutation in
the sense that the performance vectors are identical.

5 NFL Equivalence Class Examples

In this section, some extreme examples of permutation
closure are presented. These examples not only illus-
trate applications of NFL, but also set the stage for
discussing the notion of problem description length.

For conciseness, a function will be represented by a
list of its output values (i.e., as a sequence; the points
of the domain are implicitly the indices into the se-
quence).

The smallest permutation closures correspond to func-
tions that return a single value. For example,

[f1=A1f}

Such problems are in some sense uninteresting from
a search point of view, since a single evaluation auto-
matically determines the maximum and minimum of
the evaluation function.

f:<0707070) :>

The smallest sets corresponding to a permutation clo-
sure where the evaluation functions display variability
are needle-in-a-haystack functions. Such a function f
has the same evaluation (call it 0) everywhere except
at one point in the domain, where a better evaluation
is found (call it 1). Since there is exactly one point in
the space with a different evaluation, the size of [f] is
| X'|. For example

f o=
[/l =

(07 0)07 1> =
{(0707 07 1)3 (0705 170>v (07 13 070>v (1705 03 0>}

An interesting class of functions is the set of decision
problems which return Boolean values (Y = {0,1}).
Note that NP-Complete problems are frequently de-
fined as particular decision problems. This class is
in one-to-one correspondence with the set of length
N =] X | binary strings, and is therefore equal to its
permutation closure. It is moreover a disjoint union of
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equivalence classes [f1],...,[fn] where
fi = (1...1,0,...,0)
itimes

|[£:]1

I
7~
= 2
~—

As a final example, consider functions that are one-
to-one and onto. This class of functions also equals
its permutation closure. Without loss of generality,
X = Y and such functions are permutations. There
is a single equivalence class, namely [I] where I is the
identity function, and its size is N! (where N =|X’|).

6 Problem Description Length

The average description length for functions that are
members of a permutation closure is discussed in this
section. Although this is only done for select cases,
the cases illustrate the extremes in average description
length.

Whitley [7] has previously made (a variation on) the
observation that given any permutation o (on X'), the
permutation closure [o] is the set of all N! permuta-
tions, and the average description length for its mem-
bers is Q(N In N) bits, where N =|X|.

A more general observation is that given any set F' of
functions, the average description length of members
in P(F) is Q(In k) bits, where k = | P(F)]|.

An interesting question is: when is the the average
description length over the members of some permu-
tation closure polynomial and when it it exponential?
A correct, but somewhat circular answer, is that the
average description length is polynomial when In % is
polynomial. Nevertheless, we can still use this idea to
examine average description length for examples which
provide bounding cases.

It has already been noted above that the average de-
scription length for permutations is Q(N In N) bits.
Note, moreover, that an explicit definition of a per-
mutation (as a sequence, as described in the previous
section) would take O(N In N) bits; there are N im-
ages (positions in the sequence) to define, and each
takes O(In N) bits (since there are N points in the
range). Therefore, on average, the permutation clo-
sure [o] contains incompressible functions; the average
description length of a member is the same order of
magnitude as the size of an explicit definition (as a
sequence).

At the other extreme is the permutation closure [f] of
a needle-in-a-haystack function f (described above).
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Explicit definition of a member (of [f]) requires Q(N)
bits, whereas the average description length is O(In N)
bits. Therefore members of this permutation closure
are highly compressible.

These two extreme cases illustrate that No Free Lunch
results are independent from whether or not the set of
functions (over which a No Free Lunch result holds) is
compressible.

7 Conclusions

No Free Lunch theorems in various equivalent forms
are reviewed. A duality result is proven and used to
obtain a sharpened No Free Lunch theorem, in the
sense that both necessary and sufficient conditions are
obtained.

It is proven that the permutation closure of a single
function is the finest level of granularity at which a
No Free Lunch result can hold. The average descrip-
tion length of members of permutation closures is com-
puted (for select cases) and is related to compressibil-
ity. It is seen that No Free Lunch results are inde-
pendent from whether or not the set of functions (over
which a No Free Lunch result holds) is compressible.
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Abstract

This work proposes an algorithm to speed-
up convergence of genetic algorithms that is
based on the investigation of neighbouring
gene values of the successful individuals of
the chromosome pool. By performing some
statistical inference on neighbour gene val-
ues, coherent behaving genes are detected. It
is claimed that those coherent acting genes
are belonging to the same building block that
leads to the solution. It is desirable to keep
genes of the same building block together to
let them —probabilistically— live together in
next generations. Therefore, a reordering of
the gene positions is performed, periodically.
The proposed algorithm is implemented for
a minimum area non-overlapping rectangle
placement problem and results are compared
to a classical GA implementation.

1 Introduction

n-point crossover is known to favor the formation of
the so called building blocks. Building blocks are those
relatively short gene subsequences which, when com-
bined, form better solutions. The mechanism of ge-
netic algorithm (GA) implicitly assigns higher chances
to building blocks to exist over generations. In other
words, to survive.

The idea in this work is based on the fact that building
blocks mainly consist of those group of genes which are
closely located to each other. Now, consider two genes,
which due to the nature of the problem would tend to
form a building block, and are separated by some other
genes in the chromosome in the default gene ordering
of the chromosome representation. These two will not
easily be able to form a building block, when subject

Goktiirk Ucoluk
Dept. of Computer Engineering
Middle East Technical University, Ankara
ucoluk@ceng.metu.edu.tr

to n-point crossover; because the probability of hit-
ting some intermediate point as the cut-point of the
crossover is high. Therefore the order of genes in the
chromosome encoding plays an important role in the
convergence of the GA.

We propose a method in which permutations of the
gene ordering are considered dynamically. In Section
2 the proposed method is described. The method is
implemented for a minimum non-overlapping rectan-
gle placement problem and the implementation is de-
scribed in Section 3. In Section 4 results are compared
with the classical GA’s results.

2 Proposed Method

In each generation a single global permutation is con-
sidered. This permutation maps a gene number to
a position value in the chromosome encoding. The
crossover operation is based on this mapping instead
of the original gene order in the representation. Dur-
ing the evolution of the genetic algorithm, this global
permutation is readjusted by means of statistical anal-
ysis on neighbouring genes, calculated for the bests of
the pool.

e Consider that the solution to a subject problem
requires the determination of a set of parameters
X. As the first step GA requires the determi-
nation of a one-to-one mapping from the set of
parameters to the set of binary strings I', this is
called the encoding of the parameters.

Ei: Xy~ T; where X;eX, I el

We name I'; as genes. I';’s, each of which are bi-
nary strings, are concatenated into a one dimen-
sional binary array I' so that I'; is followed by
I'it1. An instance of T is called a chromosome.

o We define a permutation of genes as an ordering
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relation of the genes in a chromosome. If P, rep-
resents such a permutation operator on a chromo-
some, it is defined by means of its gene elements
as:

A
[PPF]‘L = Fp(i)

Here p is a permutation function:

p:{1,2,....,n}— {1,2,...,n} where

n=T| '

and p~ exists.

As a part of the proposed method we define for
each gene position 7 of the chromosome a function
fi that admits a gene value as arguments and is

defined as:
F;:T;j—» R where T;€T

Please also note that, in the most general case, IT';
can be a tuple representation of various features.
Therefore F; may be defined over the correspond-
ing allele tuple domain.

For denotational simplicity, we will define

A
fi = Fi(Ty)

so f; is a real value which is calculated from a T;

by means of F;.

When the building blocks of a GA is reverse
mapped to the actual problem domain, it is usu-
ally observed that the formation of blocks corre-
sponds to some patternal, structural, mathemat-
ical invariance or covariances.

The functions F; will serve to express features as
real values which will be used to discover some
invariance or covariances. So, in a way, we are
defining a handle, where the GA user has a chance
to hook-in his hint for defining the features which
may lead to building blocks.

At each generation we calculate a neighbour-
affinity-function A; that is defined for each neigh-
bour gene pair position in the current permuta-
tion over the whole pool. We propose it to be of
the most general form:

A {fo16)s fo=1(i41)) Ipoor = [0,1]  where

Of course if the chromosome composition is a vec-
tor of genes (due to the nature of the problem)
then all f;’s will reduce to a single f and hence
A; will reduce to a single function A4.
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A; is a problem specific function and should be
coded according to the characteristics of the prob-
lem encoding. Since the aim is to construct good
building blocks, the result of .A? should be closer
to 1 for gene values acting coherently and con-
tributing for better solutions. Correlation and
standard deviation analysis can be used as alter-
natives for A;.

The next step is to modify the permutation map-
ping by looking at the results of neighbour-affinity
value calculations which are calculated from the
instances of the current generation of the pool.
We will be calling these values A?.

To do this, every gene position in the permutation
will be considered, and based on the right and left
neighbour-affinity values of each gene a decision
will be made for ots position. If this value is found
to be less then a threshold value 7, these two genes
will be considered as unrelated to each other and
the permutation will be changed to separate them.
Actually there exists 4 possible affinity cases for
a gene:

1. Affinity value is greater then T for both neigh-
bours so there is no problem with the current
ordering. The gene position is kept in the
permutation unaltered.

2. Affinity value with left gene is greater than T
but it is less than T for the right gene. This
means left neighbour is okay but we should
separate it from the right. So, gene exchanges
position with the left neighbour. In this way
the good affinity with the left neighbour is
preserved.

3. Affinity value with left gene is less than T but
it is greater than T for the right gene. Sim-
ilarly gene exchanges its position with the
right neighbour.

4. Both affinity values are less than 7. Gene is
moved to a random position in the permuta-
tion.

| 1] 2[3] 4[s][6[7]8]9fto1] #

LT LT JTeJToJToTTeIT T T Neighbour
) ]

affinity
s

o : Affinity value lessthant

[2]1]3]7]5]4]6 8 ]r0][0 1x] newe®

Figure 1: Modification of order according to affinity
values

Modifications in the permutation map-
pings are kept to be as local as possi-
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ble. The algorithm to do this is as follows:
fori+—2...ndo
{
if p[i — 1] is not modified in prev. iter.
ifA;,_1>7 NA<T
pli — 1] + p[i]
elseif A;_1 <7 NA;>T
pli] & pli +1]
elseif 4,1 <7 NA; <71
Mowe pli] to a random location

2.1 GA Engine

e Initialize the global permutation P to [1,2,...,n]

e Generate a random population, evaluate it and store it also
as the former generation.
Pool size = 100 chromosomes

Repeat :

e Mutate.
Mutation Rate = Once each 10 generation one random
chromosome
Changes per Chromosome = Flip one randomly selected
gene

e Mate all the pool by forming random pairs.
Determine the crossover points.
Perform crossovers among the chromosomes according to
the permutation. Crossover point is taken in permutation
mapping.
Cross Over = At 10 random chosen random length gene
intervals

e Evaluate the new generation.
Keep Ratio = At most 10%

o If reorder period is reached:

- Calculate A? values for the selected-kept chromo-
somes according to current permutation mapping.

- Modify the ordering of each gene position according
to A; values and find the new permutation.

e Display/Record performance result.
e If it was not the last generation the user demanded, goto

Repeat.

3 Implementation

For testing and implementation of the proposed sys-
tem, a minimum area rectangle placement problem is
chosen. In this problem a set of rectangles is given as
input. The aim is to find a placement of all rectangles
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such that all rectangles are in a bounding box which is
minimized in the area and no two rectangles intersect.
The input is the width and height information of n
rectangles.

3.1 Problem encoding

o I, = (w;, h;) is the width & height input of the it"
rectangle.

o I'; = (x;,y;,0;) where z; and y; are offsets from
the origin and o; € {0,1} is the orientation (not
rotated, rotated 90°) in the placement. Each gene
I'; defines a placement for I;. T'; in combination
with I; describes a rectangle positioning with ab-
solute coordinates.

e The fitness function for a chromosome is defined
as:
V=c¢Z+dO,+eB j=1,...,poolsize
where ¢, d, e are positive constant weights and Z is
the total area of the rectangles placed out of the
placement area, O is the total overlapping area
among all rectangle pairs, B is the area of the
minimum bounding box covering all rectangles in
the placement. The aim of the genetic algorithm
is to find a chromosome that minimizes V.

e One point crossover for crossover point k is
defined by means of the permutation mapping P

as:
s _ [ T4 itp() <k
CEUTE i) >
LTt ifp() >k

where I'* and T'P are crossedover to produce two
offsprings: I'4B and T'B4,

e Since the gene values are three-tuples of numeric
values, there is no need to define an auxilary func-
tion f; which will map them to [0,1]. Their nu-
merical values are directly used in the formula.

e The neighbour affinity function is defined to
be the total standart deviation of offset values
describing the placement:

AP =1 — (t\/04 (i) + u\/oy (i) + v4/0,(7))

where o, (7) is defined as the variance of the differ-
ences of the a features of the (T'p-1(;), Tp-1(i41))
tuples in the population. ¢, u,v are positive
constant weights:
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Due to the proposed algorithm, when A? is small
then two neighbour genes should be placed in rel-
atively arbitrary positions in the population. This
is so, a small A value means that they are sta-
tistically found not to cooperate well towards the
solution. When A? values become close to 1, the
relative placement of neighbour genes is almost
fixed in the population which means a building
block is established by these neighbours.

e Reorder frequency is chosen as 5. That means,
analysis of A; values and permutation modifica-
tion is done once in 5 generations.

3.2 Test results

The resulsts of the implementation of the proposed
algorithm to the resulst of the classical GA implemen-
tation where all other paramaters like crossover oper-
ations, mutation frequency, keep ratio' are the same
but no permutation shuffling is done. In the implemen-
tation of the proposed method, crossovers are carried
out by using the permutation information, and permu-
tation mapping is modified once in 5 generation. Tests
are repeated 20 times with different random seeds.
In Figure 2 the evolution of the best individual fit-
ness value is indicated. The proposed gene reordering
method converges significantly faster. It reaches the
mimimum in 150 generations compared to 550 to 600
generations of the classical GA version.

Keep=10 Run=1
6000 T T T

Classical GA' ——
% Proposed GA ------

5000 B
4000

3000 F

Best fitness

2000 |-}

1000 |

N N N N ’
500 600 700 800 900 1000
Generation

0 L L L L
0 100 200 300 400

Figure 2: Evolution of the best individual for a sample
execution

'Ratio of the best members of current generation to be
kept in the next generation

GENETIC ALGORITHMS

Distributions of the best individuals for all 20 execu-
tion cases through the generations is given in Figure 3.
The gene reordering version is consistently converging
to a solution in less number of generations for all cases.
furthermore, the classical version exhibits a slow con-
vergence behaviour which is also likely to get trapped
into a local minima more frequently.

Keep=10, normal execution of 20
7000 T T T

T T
Classical GA

6000 —
5000 [+ 1

4000 [,

Best fitness.

3000

2000

1000

. . . . . .
0 100 200 300 400 00 600 700 800 900 1000
Iteration

Keep=10, gene moved execution of 20
7000 T T T T T

T T
Proposed GA

6000 - B
5000 - R

4
4000 |5 4

Best fitness.

3000 f5:
x
2000

1000

L L L L L L ! !
0 100 200 300 400 600 700 800 900 1000

Figure 3: Distribution of the best fitness values for 20
executions where Keep ratio is 10

When the fitness values of the best individuals after
1000 iterations are compared it is observed that though
the proposed algorithm converges significantly faster it
does not find a worse solution than the original algo-
rithm (Figure 4). In contrary, since it gets caught in lo-
cal minima, the classical algorithm requires more than
1000 generations to achive the quality of the solution
which the proposed GA reaches in 150 generations.

Considering the reordering cost, it is also observed that
after a small number of generations neighbour affinity
values gets under the specified threshold and the sys-
tem does not require a permutation change. In most
of the cases a fixed permutation was converged to in
50 to 100 generations.
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Keep=10, Best value after 1000

‘Proposed GA
Classical GA -------
=l Difference =««++«=+ 4

Fitness value
=
19
8

Test case

Figure 4: Best individuals fitness value after 1000 gen-
eration. (Small numerical value on fitness axis means
a better solution.

4 Conclusion

The proposed method achieved a high improvement
in the convergence speed without causing any genetic
drift problem leading to a local minima. On the con-
trary the quality of the solution is usually better after
a fixed number of iterations. Since the method con-
verges faster, it is also much more suitable for time

critical problems where a suboptimal solution is use-
ful.
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Abstract

In order to maintain the diversity of structures in the
population and prevent premature convergence, I have
developed a new genetic algorithm called DCGA. In the
experiments on many standard benchmark problems,
DCGA showed good performances, whereas with harder
problems, in some cases, the phenomena were observed
that the search was stagnated at a local optimum despite
that the diversity of the population is maintained. In this
paper, I propose methods for escaping such phenomena
and improving the performance by reinitializing the
population, that is, a method called each-structure-based
reinitializing method with a deterministic structure
diverging procedure as a method for producing new
structures and an adaptive improvement probability
bound as a search termination criterion. The results of
experiments demonstrate that DCGA becomes robust in
harder problems by employing these proposed methods
and presents markedly superior performances to the
previous leading GA in some problems.

1 INTRODUCTION

Genetic algorithms (GAs) are a promising means for function
optimization. One problem plaguing traditional genetic algorithms
is convergence to a local optimum. The genetic search process
converges when the structures in the population are identical, or
nearly so. Once this occurs, the crossover operator ceases to
produce new structures, and the population stops evolving.
Unfortunately, this often occurs before the true global optimum
has been found. This behavior is called premature convergence.
The cause of premature convergence is that the structures in the
population are too alike. Therefore, one method for preventing
premature convergence is to ensure that the different members of
the population are different, that is, to maintain the diversity of
structures in the population [1]. In order to achieve this goal, I
have developed a new genetic algorithm called DCGA (Diversity-
Control-oriented Genetic Algorithm) [2, 3,4, 5, 6, 7].

In DCGA, the structures in the next generation are selected from
the merged population of parents and their offspring with
duplicates eliminated on the basis of a particular selection
probability. The major feature of DCGA is that the distance
between a structure and the best performance structure is used as
the primary selection criterion and it is applied on the basis of a
probabilistic function that produces a larger selection probability
for a structure with a larger distance. The diversity of structures in

shimo-hi(@hi-ho.ne.jp)

the population can be extemally controlled by adjusting the
coeficients of the probability finction so as to be in an appropriate
condition according to the given problem.

Within the range of some experiments described in the previous
papers [2, 3, 4, 5, 6], DCGA outperformed the simple GA and
seems to be a promising competitor of the previously proposed
algorithms such as Genitor [8] and CHC [9]. However, with
harder problems, in some cases, the phenomena were observed
that the search was stagnated at a local optimum despite that the
diversity of the population is maintained. This paper proposes
methods for escaping such phenomena and improving the
performance by the reinitialization of the population.

The reinitialization (also often called restart) is that whenever the
search cycle of the GA achieves its termination criteria, the
structures in the population are reinitialized with or without the
structures obtained so far to repeat the cycle. Relatively little work
has been done in this area. Goldberg [10] proposed to generate a
new population by transferring the best structures of the
converged population to the new population and then generating
the remaining structures randomly. Eshelman [9] employed in
CHC a method of generating a new population by adding the best
structure found so far to the new population and then generating
the remaining structures by flipping a fixed portion of the bits of
the best structure found so far that is chosen at random without
replacement. Maresky [11] proposed a method of generating a
new structure by reinitializing each bit of each structure with the
probability of bit reinitialization. In evolutionary programming,
Mathias [12] proposed a method of generating a new population
by seeding one structure with the parameters of the best structure
and then by initializing the parameter values for the remaining
structures  with values randomly chosen from a mnormal
distribution centered around the corresponding parameter of the
best structure. Fukunaga [13] proposed the use of a restart
scheduling strategy which generates a static restart strategy with
optimal expected utility, based on a database of past performance
of the algorithm on a class of problem instances.

Common termination criteria used in practice include (1) cost
bound: stop when a solution with lower than or equal to a given
cost value is found, (2) time bound: stop after a given run time, (3)
improvement probability bound (IPB): stop after no improvement
had been found after some threshold number of generations, and
(4) convergence bound: stop after the population seems to have
converged [9, 11, 12].

In this paper, I propose a method called each-structure-based
reinitializing method (ERM) with a deterministic structure
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diverging procedure in which each structure in the new population
is produced by flipping a fixed portion of the bits of each structure
obtained so far. The flipping bits are chosen at random without
replacement. Also, I propose an adaptive improvement probability
bound (AIPB) in which the threshold number of generations is
adaptively changed according to the diversity of the population
measured by fitness values. Using harder benchmark problems,
the performances of the following three kinds of reinitializing
methods were tested: (1) new-structure-based reinitializing
method (NRM), (2) best-structure-based reinitializing method
(BRM) and (3) each-structure-based reinitializing method (ERM).
In the former two methods, two cases where the best structure
found so far is transferred or is not transferred to the new
population are included. As the termination criterion, the IPB or
the AIPB was used. The results showed that the performance of
the ERM is superior to those of the other two methods and that
AIPB is very effective in a function having local optima on the
plateaus. As the results, the robustness of DCGA with the ERM
and the IPB or the AIPB in harder problems was demonstrated.

2 OUTLINE OF DCGA

The skeleton of DCGA is shown in Fig. 1. The number of
structures in the population P(?) is constant and denoted by N,
where ¢ is the generation number. The population is initialized by
using uniform random numbers. In the selection for reproduction,
all the structures in P(#-1) are paired by selecting randomly two
structures without replacement to form P’(#1). That is, P’(+1)
consists of N/2 pairs. By applying mutation with probability p,,
and always applying crossover to the structures of each pair in
P’(#1), two offspring are produced and C(#) is formed. The
mutation rate p,, is constant for all the structures. The structures in
C(#) and P(#1) are merged and sorted in order of their fitness
values to form M(?). In the selection for survival, those structures
that include the structure with the best fitness value are selected
from M(¥) and the population in the next generation P(#) is formed.

The details of the selection for survival, are as follows:

0 Duplicate structures in M(f) are eliminated and M’(f) is
formed. Duplicate structures mean that they have identical
entire structures.

O Structures are selected by using the Cross-generational
Probabilistic Survival Selection (CPSS) method, and P(?) is
formed from the structure with the best fitness value in M’(¢)
and the selected structures. In the CPSS method, structures
are selected by using uniform random numbers on the basis
of a selection probability defined by the following equation:

ps={(1—c)%+c} , (1)

where £ is the hamming distance between a candidate
structure and the structure with the best fitness value, L is the
length of the entire string representing the structure, ¢ is the
shape coefficient whose value is in the range of [0.0, 1.0],
and « is the exponent. In the selection process, a uniform
random number in the range of [0.0, 1.0] is generated for
each structure. If the generated random number is smaller
than p, that is calculated by Eq.(1) for the structure, then the
structure is selected; otherwise, it is deleted. The selection
process is performed in order of the fitness values of all the
structures in M(?), without considering the fitness value of a
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begin;
0 =0;
U initialize population P(?);
U evaluate structures in P(7);
U while (termination condition not satisfied) do;
U begin;
0O &=,
0 O select P'(z-1) from P(#-1) by randomly pairing all
structures without replacement;
U O apply mutation with p,, and crossover to each pair of
P'(#-1) and produce two offspring to form C(7);
0 O evaluate structures in C(?);
U U merge structures in C(7) and P(#-1) and sort them in
order of their fitness values to form M(f);
select N structures including the structure with the
best fitness value from M(?) to form the next pop-
ulation P(¢) according to the following procedure:
(1) eliminate duplicate structures in M(?) to form
M(@);
(2) select structures from M'(¢) with CPSS method
in order of their fitness values;
0 (3) if the number of selected structures is smaller
than A, introduce new structures by the

difference of the numbers;
end,;
end,;
Fig. 1 The skeleton of DCGA
1 >
ps ‘,4’
08 f el
f"
06/ »°
4
— (a)
04}
== (b)
02
0 1 1 1 1
0 02 04 06 08 1

h/L

Fig. 2. Example curves of Eq. (1). (a) =0.19,
¢=0.01;(b) =0.5,c=0.234.

structure itself, except the structure with the best fitness value.

0  If the number of the structures selected in the process [J is
smaller than A, then new structures randomly generated as in
the initial population are introduced by the difference of the
numbers.

If the structure is represented as a bit string, the hamming distance
between two structures can be calculated by the usual way. With a
combinatorial optimization problem such as the traveling
salesman problem, also, the extended hamming distance can be
calculated as a minimum value of numbers of pairs that have
different cities, when the cities of the two tours are paired each
other in order of their path representations [2, 3, 4, 5]. DCGA is
applicable to all sorts of optimization problems by using the
definition of a proper distance measure between two structures.
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The reasons for employing the above methods in DCGA are as
follows.

As long as the structure with the best fitness value does not reach
the global optimum, it is a local optimum. If the selective pressure
for better-performing structures is too high, structures similar to
the best-performing structure will increase in number and
eventually take over the population. This situation is premature
convergence, if it is a local optimum. Therefore, we need to
reduce appropriately the selective pressure in the neighborhood of
the best-performing structure to thin out structures similar to it. Eq.
(1) can work to do such processing. Example curves of Eq. (1) are
shown in Fig. 2. The selection of structures on the basis of Eq. (1)
is biased toward thinning out structures with smaller hamming
distance from the best-performing structure and selecting
structures with larger hamming distances from the best-
performing structure. As a result, the population is composed of
various structures as demonstrated in Section 3. The larger bias
produces the greater diversity of structures in the population. The
degree of this bias is "externally" adjusted by the values of ¢ and &
in Eq. (1). Their appropriate values need to be explored by trial
and error according to the given problem. As demonstrated in the
experiments described later, Eq. (1) is very suitable for controlling
the diversity of the structures in the population so as to be in an
appropriate condition by adjusting the values of ¢ and .

In the selection for survival, the fitness values of the structures
themselves are not considered. However, this does not mean to
neglect the selective pressure. Because the selection process is
performed in order of the fitness values of the structures and
better-performing structures can have an appropriate chance to be
selected, as a result, there exists an appropriate selective pressure
determined by the value of the selection probability.

We can produce an appropriate selective pressure according to the
given problem. That is, for a simple function with few local
optima, higher selective pressure can be produced with a larger
value of ¢ and / or a smaller value of ¢ For a complicated function
with many local optima, lower selective pressure can be produced
with a smaller value of ¢ and / or a larger value of ¢ The selection
with ¢ = 1.0 in DCGA is the same as (N + N)-selection in the
evolution strategies and the population-elitist selection in CHC
[

In DCGA, structures that survived and the structure with the best
fitness value obtained so far can always become parents and
produce their offspring. Crossovers are always applied to diverse
structures maintained in the population. When a pair of structures
with a small distance are mated, their neighborhood can be
examined to result in the local search. When a pair of structures
with a large distance are mated, a region not yet explored can be
examined to result in the global search. In such a way, local as
well as global searches can be performed in parallel.

A shortcoming of DCGA is that the number of parameters to be
tuned is three (mutation rate, and & and ¢ in Eq. (1)) and they must
be tuned trial and error according to the given problem. However,
this is not a peculiar problem to DCGA, because Hart [14] has
demonstrated theoretically that no single robust parameter set
exists that is suitable for a wide rang of functions.
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3 PERFORMANCE AND ISSUES OF DCGA
IN HARDER PROBLEMS

The performance of DCGA for 13 standard benchmark functions
were tested [6]. For 11 functions among them, the global
optimums were obtained successfully in all runs, whereas for the
Griewank and expanded Rosenbrock functions, the rates of
successful runs were not 1.0. The expanded Rosenbrock function
is as follows:

By =S (1000 )+ (1- )°)
i=1
+100(x2 — x;)? +(1-x,)° )

In this paper, therefore, I investigated the results for these two
functions that are known as hard problems for GA to solve. The
binary string representing a structure was transformed to real
numbers in the phenotype so that for each coordinate, the
corresponding real number matches exactly the coordinate value
which gives the global optimum of the function. Exact global
optimums in these functions were explored with the optimality
threshold considering only round-off errors. The dimension of the
problem () and the maximum number of function evaluation
(MXFE) were set according to the previous studies [15]. Gray
coding was used. Bit-flip mutation and uniform crossover HUX
[9] were used. I performed 30 runs per parameter set, changing
seed values for the random number generator to initialize the
population. The run was continued until the global optimum was
attained by at least one structure (I call this the success) or until
MXFE was reached. The combination of best-performing
parameter values including the population size was examined by
changing their values little by little.

The performance was evaluated by the rate of successful runs out
of the total runs (SCR) and the average value of function
evaluation numbers in the successful runs (AVFE). Table 1 shows
the definitions of major symbols used in the subsequent Tables.
The best results of the experiments are summarized in Table 2.

In order to understand how DCGA succeeds or fails in attaining
the global optimum during the search process, we need to
examine how DCGA works and of what structures the population
is composed. Thus, in some cases where DCGA succeeded or
failed in attaining the global optimum, I examined the
relationships between minimum (best), average, and maximum
fitness values and generation number, and relationships between
minimum, average, and maximum values of the ratio /#/ L and
generation number.

Fig. 3 and Fig. 4, respectively, show the case where DCGA
succeeded or failed in attaining the global optimum for the
Griewank function (F,, » = 10) under the condition shown in
Table 2. In both cases, the diversity of the population in both
genotypes and fitness values is maintained during the search. At
the final stage, the best structures were trapped at local minimums.
In the case of success, the solution could escape from the local
minimum (0.0498) and reach the global minimum (0.0), whereas
in the case of failure, the solution kept trapped at a local minimum
(0.0488) until MXFE.
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Table 2. Best results for the Griewank and expanded Rosenbrock functions without using reinitializing method.

E. n MXFE N a c Do SCR AVFE SDFE AVBF
F, |10 500000 46 | 021 0.01 0.006 0.87 160298 122713 | 7.14-10°
20 | 1000000 50 | 021 0.0096 0.0021 0.67 306324 202106 1.93-102
F, 6 500000 28 |02 0.008 0.012 0.53 77723 24167 | 2.77
8 | 1000000 34 10204 | 0.0005 0.01 0.5 238829 116860 | 3.96
10 | 5000000 42 102 0.002 0.011 047 | 2286790 812327 | 528

Table 1. Definitions of symbols in the subsequent Tables.
Symbol Definition
F, Griewank function.
F, Expanded Rosenbrock function.
N Population size.
n Number of dimension.
o Exponent for probability function, Eqg. (1).
c Shape coefficient for probability function, Eq. (1).
STC Search termination criterion.
IPB: Improvement probability bound,
AIPB: Adaptive improvement probability bound.
PRM  [Population reinitializing method
SDP Structure diverging procedure.
D: deterministic, P: probabilistic.
2, Fixed threshold number of generations for
reinitializing population in Eq. (3).
k Coefficient to adjust increasing rate in Eq. (3).
\DVR  |Divergence rate for generating new individuals.
ISCR Success rate (rate of successful runs).
AVFE  |Average value of function evaluation numbers in
the successful runs.
SDFE  |Standard deviation of function evaluation
numbers in the successful runs.
AVBE  |Average value of best fitness values in all runs.
MXFE Maximum value of function evaluation numbers.

Fig. 5 and Fig. 6, respectively, show the case where DCGA
succeeded or failed in attaining the global optimum for the
expanded Rosenbrock function (F,, » = 6) under the condition
shown in Table 2. In the case of success, the diversity of the
population in both genotypes and fitness values is maintained
during the search. Although at the final stage, the best structures
were trapped at a local minimum, the solution could escape from
the local minimum (5.01-10*) and reach the global minimum
(0.0). In the case of failure, the diversity of the population in
genotypes is maintained during the search, whereas that in fitness
values is lost at the early stage. This means that all the structures of
the population lie on a plateau and the best structure could not
escape from a local minimum (5.94) on it.

The cases of failure in both functions indicate that it is vain
attempting to escape from some kind of local minimum by
extensive search, because crossover and bit-flip mutation
operators can not produce a structure that can escape from it
despite that the diversity of the population in genotype is
maintained.

4 METHODS FOR REINITIALIZING
POPULATION

The reinitialization (also often called restart) is that whenever the
search cycle achieves its termination criteria, the population are
reinitialized with or without the structures obtained so far to repeat
the cycle. This is based on the experience that rather than
attempting to escape from a local optimum by extensive search, it
is better to terminate the search and restart from a new initial state
in order to attain the global optimum within limited computation
time.

In this paper, I examined the following three methods for
reinitializing the old population and producing a new population.
(1) New-structure-based reinitializing method: In this method, a
new population is produced by generating all the structures
randomly (NRM), or, a new population is produced by
transferring the best structure found so far to the new
population (elitist strategy) and then generating the remaining
structures randomly (NRM_E) as suggested by Goldberg
[10].

Best-structure-based reinitializing method: The basic strategy
of this method is using the best structure found so far as a
template to generate a structure in the new population. In the
deterministic structure diverging procedure, each structure is
produced by flipping a fixed portion of the bits of the best
structure as in CHC [9]. The fixed portion is chosen at
random without replacement. The rate of the fixed portion to
the length of the string is called divergence rate (DVR). In the
probabilistic structure diverging procedure, each bit of each
structure is produced by transferring the bit of the best
structure or generating it randomly with the divergence rate.
That is, when the value of a random number calculated for
the bit is smaller than the value of the divergence rate, the
value of the bit is generated by using uniform random
number; otherwise, the bit of the best structure is transferred
to that of the structure. A new population is produced by
generating all the structures by these procedure (BRM), or, a
new population is produced by transferring the best structure
to the new population and then generating the remaining
structures by these procedure (BRM_E).
Each-structure-based reinitializing method (ERM): This
method is based on the hypothesis that it is better to use all
the structures in the old population in order to explore regions
not yet explored, because all the structures contain some
information on the search space. Thus, the basic strategy of
this method is using each structure in the old population as a
template to generate each structure in the new population. In
the deterministic structure diverging procedure that I propose
in this paper, each structure is produced by flipping a fixed
portion of each structure in the old population in the same
way as described in (2). The fixed portion is chosen at
random without replacement. In the probabilistic structure
diverging procedure proposed by Maresky [11], each bit of
each structure is produced by transferring the bit of each
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Fig.3 (a) Function value vs. generation number and (b) /2 / L vs.
generation number in a successful run for Griewank function (F)).
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Fig.4 (a) Function value vs. generation number and (b) /2/ L vs.
generation number in a failure run for Griewank function (F)).
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structure or generating it randomly with the divergence rate in
the same way as described in (2). The elitist strategy is not
adopted in this method.

Table 3 shows the acronyms of the population reinitializing
methods.

The optimum point to terminate search and restart is determined
empirically over a range of problem size and complexities. The
most often used method that is called improvement probability
bound (IPB) [13] is to terminate the search if after a certain
number of generations no better solutions have been found (that is,
the best fitness value has not changed). I propose an adaptive
improvement probability bound (AIPB). In this method, the
threshold number of generations is adaptively changed according
to the diversity of the population measured by fitness values on the
basis of the following equation:

f max fmin
= 1 + kb 0, 3
g=8o0 | I; | 3

Table3. Acronyms of population reinitializing methods.

Acronym Method

NRM New-structure-based reinitializing method
without elitist strategy

NRM E | New-structure-based reinitializing method
with elitist strategy

BRM Best-structure-based reinitializing method
without elitist strategy

BRM E Best-structure-based reinitializing method
with elitist strategy

ERM Each-structure-based reinitializing method
without elitist strategy
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where g is the adaptively changed threshold number of
generations; g, is the fixed threshold number of generations; k is
the coefficient to adjust the increasing rate; f£,,,. is the maximum
fitness value of the structures; f,,, is the minimum fitness value of
the structures; and | f'| is the larger value of | £,,,. | and | f,;, |- In this
equation, (f,.. - f..) represents the diversity of the population
measured by fitness values and is divided by | f | in order to
normalizing it. With this equation, the threshold number of
generations is adaptively adjusted within the range between g, and
g, (1 +k) according to the diversity of the population measured by
fitness values. The search is continued longer, when the diversity
of the population measured by fitness values is larger.

S EXPERIMENTS AND THE RESULTS

The performances of the population initializing methods above
mentioned were tested using the Griewank function and extended
Rosenbrock functions. The computation condition including all
the values of the control parameters (N, ¢, ¢, p,,) are the same as in
the experiments described in Section 3. The combination of best-
performing values of g,, k and DVR were examined by changing
their values little by little.

Table 4 shows the best results for the Griewank function. For the
case n = 10 and STC = IPB, the performances of all the
population initializing methods were examined. According to the
results, the performances of the deterministic and probabilistic
structure diverging procedures are almost the same. Among those
methods, the ERM with deterministic structure diverging
procedure shows the best performance that SCR = 1.0 and the
performance is improved slightly by using AIPB as STC. With
the case n = 20 and STC = IPB, the ERM with deterministic
structure diverging procedure also shows the good performance

Table 4. Bestresults for the Griewank (F,) and expanded Rosenbrock (F,) functions using each reinitializing method

F. n STC PRM SDP I k | DVR | SCR AVFE SDFE AVBF
F, 10 IPB NRM — 1500 —_ | — 097 179697 121161 3.29-10°
NRM E | — 2000 — | — 0.83 124710 62407 8.1810°
BRM D 1000 — [ 045 | 097 183175 122181 9.16-10°
BRM_E D 2000 — |06 0.83 132859 78971 8.74-10°
ERM D 1250 — | 033 1.00 157312 94668 0.0
BRM P 1000 — | 055 097 173253 120117 1.66:10°
BRM E P 1000 — 055 |08 141399 93730 1.00-102
ERM P 1000 — | 025 1.00 160743 101743 0.0
AIPB | ERM D 740 0.7 1033 1.00 147553 87345 0.0
20 IPB ERM D 1800 — |03 1.00 | 419769 236028 0.0
F, 6 IPB NRM — 1200 | — | — 093 171927 109847 9.70-10*
NRM E | — 1100 | — | — 097 177490 125987 1.98-10"
BRM D 1400 | — | 0.74 1.00 120519 77350 0.0
BRM E D 1400 | — | 080 1.00 149064 99641 0.0
ERM D 1400 | — | 081 1.00 118365 72187 0.0
BRM P 1200 | — 1.00 | 093 166721 118755 1.98-10"
BRM_E P 1100 | — 1.00 | 0.87 152495 107923 3.96-10"
ERM P 1200 | — 1.00 | 093 161627 117855 1.98-10"
AIPB ERM D 500 |20 |0.80 1.00 94850 40070 0.0
8 IPB ERM D 4000 | — | 0.80 1.00 443861 261869 0.0
AIPB | ERM D 1900 |24 | 080 1.00 323627 143343 0.0
10 IPB ERM D 35000 | — | 080 | 083 3129242 1257473 6.60-10"
AIPB ERM D 10000 | 40 | 0.85 1.00 | 2547265 743240 0.0
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Fig. 7. (a) Function value vs. generation number and (b) /2/ L vs.
generation number for the Griewank function (F,) with ERM and IPB.
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that SCR=1.0.

Table 4 also shows the best results for the expanded Rosenbrock
function. For the case n = 6 and STC =IPB, the performances of
all the population initializing methods were examined. According
to the results, the performances with the deterministic structure
diverging procedure are markedly better than those with the
probabilistic structure diverging procedure. Among those methods,
the ERM with deterministic structure diverging procedure shows
the best performance that SCR = 1.0 and the performance is
improved greatly by using the AIPB as the STC. With the cases 7
= 8 and n = 10 using the ERM with the deterministic structure
diverging procedure, the performances with the AIPB shows the
good performance that SCR = 1.0 and are markedly superior to
those with the IPB.

In order to demonstrate the effect of the population reinitializing
method, I examined the change of diversity of the population in
genotypes and fitness values during the search, for the case where
DCGA without the population reinitializing method failed in
attaining the global optimum, whereas DCGA with the population
reinitializing method succeeded in attaining the global optimum
using the same initial condition. For the Griewank function with
PRM = ERM, STC =IPB and SDP = D, Fig. 7 demonstrates the
result in the same case as shown in Fig. 4, where the solution can
escape from the local minimum (0.0488) by initializing the
population to reach the global optimum. For the expanded
Rosenbrock function with PRM = ERM, STC = IPB and SDP =
D, Fig. 8 demonstrates the result in the same case as shown in Fig.
6, where the solution can escape from the local minimum (5.94)
on the plateau by initializing the population to reach the global
optimum. Fig. 9 shows that in this case, by using the AIPB instead
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of the IPB as the search termination criterion, the period of the
search of the local optimum on the plateau is shortened to result in
improving the performance.

6 DISCUSSIONS

The results of the above experiments are summarized as follows:

(1) As for the SDP, as a rule, the deterministic structure diverging
procedure is superior to the probabilistic structure diverging
procedure.

(2) Asarule, the performances with elitist strategy are inferior to
those without elitist strategy. This is partly because the best
structure is apt to take over the population again, before the
remaining structures evolve to still better structures.

(3) With the deterministic structure diverging procedure, the
performances of the ERM are better than those of the NRM.
Additionally, the performances of the ERM are better than
those of the BRM. For both the functions, the ERM with
deterministic structure diverging procedure proposed in this
paper shows the best performance. Also, the optimum values
of the divergence rate are relatively large. These justify the
hypothesis for this method that it is better to use all the
structures in the old population in order to explore regions not
yet explored, because all the structures contain some
information on the search space. The ERM can produce the
initial search points to escape from the local optimum at which
the population was trapped with relatively large divergence
rates.

(4) In the expanded Rosenbrock function, the performance is
improved greatly by using the AIPB proposed in this paper
instead of the IPB as the STC. This demonstrates that the
AIPB is effective for a function with local minimums on
plateaus.

(5) For both the functions with different dimensions, the ERM
with deterministic structure diverging procedure using the IPB
or the AIPB shows the performance that SCR = 1.0. The
performances of DCGA with these methods are markedly
superior to those of DCGA without the population
reinitializing method.

In conclusion, DCGA becomes robust in harder problems by
employing these proposed methods and presents markedly
superior performances to the previous leading GA in some
problems. For example, this is true of CHC for the expanded
Rosenbrock function with MXFE = 5000000, because its success
rates are 0.0, 0.067 and 0.033 forn=6, 8, 10, respectively [15].

7 CONCLUSIONS

Within the range of the above experiments, the following

conclusions can be drawn.

(1) The ERM with deterministic structure diverging procedure
proposed in this paper shows the best performance and the
optimum values of the divergence rate are relatively large.
Therefore, The ERM can produce the initial search points to
escape from the local optimum at which the population was
trapped with relatively large divergence rates.

(2) The AIPB proposed in this paper is effective for a function
with local minimums on plateaus and the performance is
improved greatly by using the AIPB instead of the IPB as the
search termination criterion.
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(3) The performances of DCGA with the proposed methods are
markedly superior to those of DCGA without the population
reinitializing method.

(4) DCGA becomes robust in harder problems by employing
these proposed methods and presents markedly superior
performances to the previous leading GA in some problems.
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Abstract

In this paper, we introduce a biologically
inspired recombination operator that occurs in
the colonies of bacteria. The mechanism is called
transformation and is responsible for the genetic
varigtion and consequently the advantageous
characteristics that some bacteria possess. We
present an implementation of the transformation
mechanism in the standard GA (SGA) and we
compare its performance solving two different
classes of problems using either transformation
or the traditional crossover operators. The results
show that the GA using transformation is aways
superior to the SGA. The good results obtained
by transformation seem to be related to the great
degree of diversty that the mechanism
introduces in population.

1 INTRODUCTION

For a population to survive changes in its environment it
must have sufficient genetic variety to adapt to the new
conditions: less genetically diverse populations may be at
greater risk. Known as genetic diversity, this great
variation within species is what alows populations to
adapt to changes in climate and other loca environmental
conditions.

Genetic Algorithms (GAS) are inspired by genetics and
natural selection: a population evolves through a number
of generations, where the fittest individuas are more
likely to be selected to reproduce in each generation. This
process allows the evolution of the population to the best
solution (Holland, 1992; Goldberg, 1989). The
population’ s diversity is introduced by the application of
two main genetic operators. mutation and crossover.
These operators produce changes in the individuals,
cresting evolutionary advantages in some of them.

Nature maintains genetic diversity by several mechanisms
besides crossover and mutation. Some of those

Ernesto Costa®
“Centro de Informética e Sistemas da Universidade de
Coimbra, Polo Il - Pinha de Marrocos
3030 Coimbra - Portugal
ernesto@dei.uc.pt

mechanisms are: inversion, transduction, transformation,
conjugation, transposition and trandocation (Gould and
Keeton, 1996).

Some researcchers in the fiedld of Evolutionary
Computation (EC) highlighted the importance of studying
different biologically inspired genetic operators. (Mitchell
and Forrest, 1994) and (Banzhaf et d., 1998) stress that it
would be important to analyze if some of the mechanisms
of rearranging genetic material present in the biologica
systems, when implemented and used in the Evolutionary
Algorithms (EA), improve their performance.

Several authors have dready used some biologically
inspired mechanisms besides crossover and mutation in
EA. For instance, inversion (Holland, 1992), conjugation
(Harvey, 1996), trandocation (De Falco et al., 2000),
transduction (Nawa et al., 1999) and transposition
(Simdes and Costa, 1999; 20014) were aready used asthe
main genetic operators in the EA. Asfar as we know none
implementation of the transformation mechanism was
tested in EA.

Bacteria sometimes take up and incorporate fragments of
DNA from the environment. This is called transformation
(Clark and Russdll, 1997).

In this paper, we propose a computational implementation
of the transformation mechanism and we study the GA
performance solving two different problems. The
empiricd analysis will focus the application of the
traditional crossover operators and transformation, for
different population’ s size. The two classes of problems
used to study the GA performance were function
optimization (Rastrigin, Griewangk, Schwefdl and Ackley
test functions) and a combinatorial optimization problem
(0/1 knapsack problem).

This paper is organized in the following manner. Firgt, in
section 2, we describe the biological functioning of the
transformation mechanisn and we introduce our
computationa  implementation for the proposed
recombination mechanism. Section 3, details the
characteristics of the experimental environment, including
the selected problems to test the GA performance and the
GA parameters. In section 4, we make an exhaustive
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comparison of the results obtained with the proposed
recombination operator and with the standard crossover
operators (1-point, 2-point and uniform crossover).
Finally, we present the relevant conclusions of the work.

2 TRANSFORMATION

In our work, we will propose a modified GA with the
introduction of a new biologicaly inspired operator,
caled transformation. Next sections will describe this
mechanism.

2.1 BIOLOGICAL TRANSFORMATION

Some bacteria readily take up outside DNA. If they have
this ability, they are said to be competent. Competent
bacteria can absorb fragments of DNA proceeding from
dead bacteria and present in their environment.

Usudly, transformation consists in the transfer of small
pieces of extra cellular DNA between organisms. These
strains of DNA, or gene segments, are extracted from the
environment and added to recipient cells (Russell, 1998).

After that, there are two possibilities, failure or success,
known technically as redtriction and recombination.
Redtriction is the destruction of the incoming foreign
DNA, since those bacteria assume that foreign DNA is
more likely to come from an enemy, such as a virus. In
this case, transformation fails. Recombination is the
physical incorporation of some of the incoming DNA into
the bacterial chromosome. If this happens, genes from the
assimilated segment replace some of the host cdl’s
genetic information and bacteria are permanently
transformed. Once integrated in the chromosome, the
DNA segment is ableto survive.

2.2 COMPUTATIONAL TRANSFORMATION

The DNA fragments to incorporate in the individuals of
the population are generated at the beginning of the
process. This DNA fragments consist in binary strings of
different lengths and will form the gene segment pool.

We will use the transformation mechanism as the main
genetic operator in the GA. Therefore, transformation is
applied every generation instead of the standard crossover
operator. First, we select the individuals to be transformed
using the roulette-wheel selection method and these
individuals are changed with a fixed probability. Part of
the gene segment pooal is changed every generation, using
genetic information of theindividuals of the population.

This modified GA will be referred as Transformation-
based GA (TGA) and is described in Figure 1.

The main aspects to consider in the implementation of
transformation are the origin of the gene segments that
will transform each individua and how the process of
transformation will occur. These aspects will be detailed
in the next sections.
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1. Generate Initia Population
Generate Initia Gene Segment Pool
2.DO
2.1. Evaluate Population
2.2. Select Individuals
2.3. Transform Individuals
2.4. Replace Population with New Individuals
2.5. Create New Gene Segment Pool
WHILE (NOT Stop_Condition)

Figure 1: The GA Modified with Transformation

2.2.1  The Basic Functioning of the Transformation
Mechanism

The GA darts with an initia population of individuals
and an initial pool of gene segments, both created at
random. In each generation, we select individuas to be
transformed and we modify them using the gene segments
in the segment pool. After that, the segment pool is
changed, using the old population to create part of the
new segments with the remaining being created at random

(see Figure 2).
pool

Select individuals

Oold
population

Select gene segs.

Transform Individuals

New Gene New
Segment Pool population

Figure 2: Computational Transformation

2.2.2  Origin of the Gene Segments

The segments that each individual will take up from the
"surrounding environment" will proceed, mostly, from the
individuals existing in the previous generation. In the
used experimental setup, we changed the segment pool
every generation. The modifications were made replacing
70% of the segments with new ones, created from the
individuals of the old population. The remaining 30%
were created at random. The size of the gene segmentsiis
also chosen in arandom manner.
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2.2.3  Transforming the Genetic Information of an
Individual

After selecting individuas to a mating pool, we use the
transformation mechanism to produce new individuals. In
this case, there is no sexud reproduction among the
individuals of the population. Each individua will
generate a new one through the process of transformation.
We can consider this process a form of asexud
reproduction. Each individua will be transformed using a
transformation probability.

The proposed mechanism can be described as follows: we
select a segment from the segment pool and we randomly
choose a point of transformation in the selected
individual. The segment is incorporated in the genome of
the individud, replacing the genes after the
transformation point, previoudy selected. Obvioudly, the
chromosome is seen as a circle. Proceeding this way the
chromosome length is kept constant. This corresponds to
the biological process where the gene segments, when
integrated in the recipient's cell DNA, replace some genes
in its chromosome. Figure 3 illustrates the process of
transforming an individual.

Mating Gene segment
Pool pool

Select Individual

Select Gene Seg.

v v
| | |
v

Transformation point

Transform Selected
Individual

1 I |

Figure 3: Transforming an Individual

3 EXPERIMENTAL SETTINGS

In order to investigate the performance of the TGA, we
slected two different classes of problems a
combinatorial optimization problem (the 0/1 Knapsack
problem (KP)) and the function optimization domain.

We selected these problems, since that, they are well
known benchmarks to EA (Goldberg, 1989).

3.1 THE 0/1 KNAPSACK PROBLEM

The knapsack problem is a NP-complete problem, where
we have to find the feasible combination of objects so that
the total vaue of the objects put in the knapsack is
maximized, subject to acapacity or weight constraint.
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Formally, let C be the weight limitation (maximum
permissible weight of the knapsack), let the integers
1,2,... n denote n available types of objects, p and w, the
value (or profit) and the weight of the'ith object,
respectively. A solution for the problem is represented by
the binary vector x of length n. Each element of x can be
zero or one: if x=1 then the item i was sdlected for the
knapsack. l

The knapsack problem can be expressed as
max@ [, p.x, (1)

i.e, maximizing the profits subject to the weight
constraint

a _x,w £C, @

wherex. isthe selected object.

3.1.1 The Implemented Knapsack

We used several knapsack types (with 50, 100, 250 and
500 items). The evaluation of the solutions used a penalty
function; the weights and profits vectors were created
without any correlation and we used average capacity for
the knapsack, as suggested in (Michalewicz, 1999).

Thefitness f{x) for each binary string is determined as:

Sf(x)= é.['-’:]xi Pi - Pen(x) ®)
with Pen(x) the penalty function.

The pendty function is zero to dl feasible solutions
(those that don’'t exceed the knapsack capacity) and
greater than zero otherwise. There are many possibilities
for assigning the penaty value to the infeasible solutions.
In our case, we considered a logarithmic penalty function
defined by expression (4).

Pen(x)=log,1+7 & " x.w- C) (4)

withr =max_ {p/w/

The generation of the vectors of profits (Fi]) and weights
(WI[i]) was made using the uncorrelated method, i.e,

WIi]=(uniformly) random ([1..v])
Pli]=(uniformly) random ([1..v])
The value used for the parameter v was 10.

The capacity of the knapsack (average capacity) was
cdculated by:

c=058" wli] ©)
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3.2 TEST FUNCTIONS

We dso evaluate the transformation mechanism by
comparing its performance with the performance of the
SGA (using three standard crossover operators) on several
function optimization problems. To assess the quality of
the algorithms we used the minimum function value
found after a fixed number of function evauations
(50000, 100000 and 200000 in this case). The selected
functions selected to analyze the GA performance were
Rastrigin, Schwefel, Griewangk, and Ackley functions. All
those functions are highly multimodal and have been used
in other experimental comparisons of EA (Potter and De
Jong, 1994; Gordon and Whitley, 1993).

The Rastrigin function is defined as:

()= A*n+ & x2- A*cos(2Px,) )

i=1

where n=20, A=10 and -5.12 £ x; £ 5.12. The main
characterigtic of this function is the existence of many
sub-optimal pesks whose values increase as the distance
of the globa optimum point increases

The Schwefel function is defined as:

f(x)=V*n+éx[Sin( |x[|) )

where n=10, V=418.9829 and —-500 £ x; £ 500. The global
minimum of the function is zero. The interesting aspect of
this function is the existence of a second-best minimum
far away from the global minimum, which can trgp the
optimization algorithms on alocal optimum.

The Griewangk function is defined as:

2 .
d Xx. 3 a&x. 0
F=1+4 5 - O oo 2 ®
A 2000 O %%

where n=10 and —600 £ x; £ 600. This function has a
product term, which introduces interdependency among
the variables.

The Ackley function is defined as:
F(x)=20+e- 20exp§ 0218 x22- expBcos(2px)? (9)
nn ] en 7]

where n=30 and —30 £ x; £ 30. At alow dimension the
landscape of this function is unimodal, however, the
second exponential term covers the landscape with many
small pesksand valeys.

3.3 THE PARAMETERS OF THE GENETIC
ALGORITHM

The GA was first implemented with crossover (1-point. 2-
point and uniform) and then with transformation. In the
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first problem, the 0/1 knapsack, we executed experiments
to study the effect of the population size in the GA
efficiency. Therefore, the population size varied between
20, 50, 100 and 200 individuals. In this problem, the GA
evolved through 1000 generations.

For the function optimization domain, we fixed the
maximum number of function evauations equd to
200000.

In both classes of problems, we used binary
representation to encode the problem, the roulette wheel
sedlection and an €ite size of two individuals. The
mutation and crossover/transformation rate were 0.1%
and 70%, respectively. The results reported in the next
sections are the average computed over twenty-five runs.

3.4 EVALUATION MEASURE

We used the De Jong's off-line measure to compare GA
efficiency when applied crossover or transformation (De
Jong 1975). This measure is defined by:

Xue)=7+A 10 (10)

where [ o © = best {fo(1), fo(2), ..., fo(N)} and T is the
number of runs. This means that off-line measure is the
average of the best individuals in each generation. Due to
the 25 trids, the average of the 25 runs was eval uated.

4 EXPERIMENTAL RESULTS

Next sections show the averaged results obtained in the
knapsack problem and in the selected test functions.

4.1 RESULTS OBTAINED IN THE KNAPSACK
PROBLEM

The proposed mechanism alowed the GA to achieve
better solutions than the SGA using one-point, two-point
or uniform crossover. This observation can be generalized
to al the tested instances of the KP, i.e., with 50, 100, 250
and 500 items. Table 1 summarizes al the results for the
0/1 KP using the SGA and the TGA with different
population’ s sizes. The best solutions found for n=50,
100, 250 and 500 are marked in bold.

As we can see, the population size is an important
parameter when using crossover. In fact, increasing the
population size from 50 to 100 or 200 individuals,
crossover's performance shows some improvements.
Using transformation with smaller populations, the GA
obtained better results than the SGA with larger
populations. As we can see in the table, with only 20
individuals in the population the TGA achieves solutions
superior to the ones achieved by the SGA with 200
individuals.
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Table 1: Summary of the Obtained Results using the SGA and the TGA with Different Population's Size
Genetic Operator
One-point Crossover Two-point Crossover Uniform Crossover Transformation
P. Size® | 50 100 200 50 100 200 50 100 200 20 50 100 200
%) 50 438.63| 482.18| 465.20| 461.41| 494.41 496.37| 488.74| 533.54| 507.24| 562.99 568.62| 574.76| 590.40
§ 100 358.71| 454.66| 466.24| 439.65| 491.63] 514.46| 490.97| 511.70 520.96| 528.21| 551.28| 576.93| 590.40
;5 250 950.08{1074.39/1089.54| 923.92/1120.51/1036.18/{1037.94{1211.10{1173.67|1330.68| 1361.94{1375.79|1410.28
Z| 500 |1734.66|1985.96|1959.66|1845.88|1972.49|1996.18/2001.11|2303.35|2183.51| 2548.29| 2630.82(2633.53(2656.17

In order to understand these results, it is important to see
how the GA evolved through the 1000 generations. In
Figure 4, we show a representative example for the KP
with 100 items. The figure compares the GA
performance using uniform crossover with 200
individuals and transformation with a population of 50
binary strings.

600

550 1

500 1

Fitness

450 A

400 - *===SGA (Uniform Cx.)

TGA
350
— ~ ~ ~ ~ ~ ~ ~ ~ ~
o =} o =} o o o o =}
— « ™ < 3} © ~ © >

Generations

Figure 4: Comparing the SGA (200 inds.) and the TGA
(50 inds.) Performances

As Figure 4 shows, uniform crossover only alow the
SGA to improve in the first generations and &fter that the
evolution stops. The TGA evolved during a long period,
and was able to reach better results than crossover, even
with a smaller population.

To analyze the influence of the population size in the
GA's performance when using transformation we show, in
Figure 5, the results obtained for the KP with 100 items.
To the other instances, the results are quite similar. We
can see that when using larger populations the maximum
result obtained is superior.

Comparing the execution times spent by the four genetic
operators solving the KP, we can see that transformation
is the mechanism that consumes more time. Nevertheless,

the differences are relatively small compared with the
crossover operators. The time spent by the TGA is
approximately 7% superior to the time spent by the
operator that obtains the worst results (one-point
crossover) and 3% superior to the best crossover operator
(uniform crossover).

Fitness

101
201
301
401
0
601
701
801
901

Generations

Figure 5: The TGA's Performance using Different
Population's Size

Table 2 reports the results (in seconds) obtained running
25 trials of the SGA and the TGA with a population of
200 individuals, in a Pentium Il with a 300 MHz
processor.

Table 2: Time Spent to Solve the 0/1 Knapsack Problem

N items| Cx1 | Cx2 | CxU | TGA
50 2610 2758| 2887 2901
100 6642 6757 6807 7095
250 |15736|15842|16005| 16656
500 |30870|31761|32356|33382




GENETIC ALGORITHMS

589

Table 3: Function Optimization: Summary of the Results (minimization)

Genetic Operator

One-point Crossover

Two-point Crossover

Uniform Crossover Transformation

N° evals | 50000 |100000|200000| 50000 |100000 (200000 50000 (100000|200000| 50000 (100000{200000

Reastrigin

88.170| 88.170| 88.170, 67.639| 67.639| 67.639| 63.739| 63.739| 63.739 73.272/52.518(36.682

Griewangk | 0.323| 0.323] 0.323

0.259| 0.259

0.259 0.244| 0.244] 0.244) 0.074] 0.026| 0.010

Schwefel

Function

665.406|665.406|665.406/557.770|557.770557.770 456.273|456.273456.273220.878/62.404( 8.695

Ackley

16.248| 16.248| 16.248 15.102| 15.102| 15.102| 14.181| 14.181| 14.181| 11.617| 8.645| 5.941

4.2 RESULTS OBTAINED IN THE FUNCTION
OPTIMIZATION DOMAIN

The TGA obtained, in the entire set of test functions, the
best solutions after 200000 function evaluations. Table 3
reports the achieved results. The results presented are
those obtained after 50000, 100000 and 200000 function
evaluations using the SGA and the TGA. The best
solutions are marked in bold.

In this case, the GA using the transformation mechanism
evolves very dowly to the achieved result. On the other
hand, the SGA converges very rapidly to the obtained
value, but is unable to continue evolving. Besides, just
like in the KP, in the function optimization domain, TGA
obtained better results than SGA with fewer number of
function evaluations.

The graphical representation shown in Figure 6 illustrates
the SGA and TGA performances minimizing the Ackley
function, but we observed a similar behavior in all the test
functions. Once the population converges to a certain
value, SGA isincapable of continue exploring other zones
of the search space. The TGA evolves sower, but can
continue improving during the 2000 generations.

25

==SGA (Uniform Cx)
20 \ TGA
15

10 1

Fitness

100

15100
30100
45100
60100 -
75100
90100

105100 |

120100 -

135100 |

150100 -

165100 |

180100

195100 |

Function Evaluations

Figure 6: SGA and TGA evolution in 200000 function
evaluations

Once again, these results appear to be a consequence of
the loss of diversity in the population when using the

crossover operators. TGA evolves during the entire
simulation because the genetic variation of the individuals
is kept in high levels. In the next section, we will focus
the population's diversity measured in both problem
domains.

Concerning the computational times, once again, TGA
was the dower algorithm, but the differences to the times
used by the crossover operators are quite small. TGA was
approximately 7% slower than one-point crossover (the
operator which obtained the worst results) and 4% dower
than uniform crossover (which obtained the best
performance among the crossover operators). Table 4
shows the times (in seconds) spent in the execution of the
25 trias for the minimization of the test functions.

Table 4: Time Spent to Minimize the Test Functions

Function | cx1 | Cx2 | CxU | TGA
Restrigin | 7039] 7059 7298 7698
Griewangk | 5338 5360 5478 5686
Schwefdl | 4683 4722| 4832 4989
Ackley 111320|11588|11667|12152

43 POPULATION'S DIVERSITY

The main reason for the good results obtained by the TGA
seems to be the great diversity that the proposed
mechanism introduces in the population. This can be the
explanation for the fact of the TGA with 20 individuals
outperforms the SGA with 200. To compare the diversity
in the population we used a standard measure, which is
the sum of the Hamming distances between al possible
pairs in the population. This measure, when normalized,
isdefined as:

a a HD(p,.p,) (11)

1
Div(Pop) =—————
LP(P' l) i=1 j=1

where L is the chromosome length, P is the population
size; p isthe i™individual in the population and HD is the
Hamming distance function.

Figure 7 shows the variation of the population's diversity
for the KP. The results were obtained by the GA solving
the KP problem with 100 items and compare the diversity
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maintained by uniform crossover and transformation. To
the other instances of the KP, the results were very
similar.

0,6 .
====SGA (Uniform Cx)
o 05 TGA
5
8 04
s
> 0,3
I
o 02
=
O 01
0
i — — — — — — — — —
o o o o o o o o o
i N (32 < T2 © ~ [¢°) (<2}
Generations

Figure 7: Population's Diversity in the KP

As we can see, the diversity of the population is higher
when using transformation, indicating that the individuals
are covering more aress of the search space. When
applying uniform crossover, the population's diversity
decreases to values near to zero avoiding the GA to
continue evolving. In the Figure 4 we observed that the
SGA stops evolving about generation 130. As Figure 7
indicates, the diversity of the population achieves the
lower levels about generation 130.

In the domain of function optimization, the results were
very similar. Figure 8 shows the diversity measure in the
minimization of the Ackley function. Once again, there is
a correspondence between the point where the diversity
reaches low values and the point where the SGA stops
evolving (20000 function evaluationsin Figure 6).

0,6 J
0,5
0,4

0,3 1

0.2 ==SGA (Uniform Cx)
0,11 TGA

Function Evaluations

Diversity Measure

o

100
15100
30100 -
45100
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75100
90100 -

105100
120100 +
135100
150100 ~
165100
180100 ~
195100

Figure 8: Population's Diversity minimizing Ackley
Function
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S CONCLUSIONS

In this paper, we introduced a new genetic operator
inspired in bacterid genetics, called transformation. We
used this operator as an dternative to crossover and we
studied the GA performance solving two different classes
of problems. The results showed that the transformation
mechanism is clearly superior to the SGA. Besides, with
few individuals in population (or fewer function
evaluations) transformation can achieve better solutions
than crossover with larger populations.

Observing the population’ s diversity, we can see thet
transformation preserves a high degree of genetic
variation among the individuals of the population.

We are currently using this genetic operator in a classica
dynamic optimization problem and the preliminary results
show that the TGA is able to adapt to the new solution
when a change occurs (Simdes and Costa, 2001b).

In order to enhance the GA performance when using this
mechanism we are aso implementing some modifications
concerning some issues, namely, the assessment of the
best transformation rate, the influence of the gene
segment length and the generation of the gene segment
pool.
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Abstract

This work is an extension of the framework
for optimizing global-local hybrids. The ex-
isting theory idealizes the search problem
as a search by a global searcher for accept-
able targets or for basins of attractions which
lead to acceptable target by invoking a local
searcher. The two key parameters of this the-
ory are—the probabilities of successfully hit-
ting targets and basins and time-to-criterion
values for different basins. First the exist-
ing theory is tested with variation in time-to-
criterion values for the local searcher across
several basins and is then extended to handle
variations within individual basins. As a first
step towards applying this theory to genetic
algorithms (as the global searcher), selection
dominated performance has also been studied
in the context of this theory. The results are
promising and make a strong case for further
work in this direction.

1 INTRODUCTION

Past work has indicated that hybridization is a key fac-
tor for achieving superior performance with a genetic
algorithm (GA) in many application domains. A pure
GA can seldom match the performance of a method
tailored to the problem at hand. A hybrid combines
the global searcher (the GA) with other methods which
exploit problem specific knowledge to generate better
solutions than either could have come up with on its
own. One of the issues central to hybridization is the
efficient allocation of time between the global and local
search. Most often the goals sought are to (a) max-
imize the reliability of reaching a solution of desired
quality in a given amount of time or (b) minimize the
time required to reach a solution of desired quality

with given reliability. This study is towards develop-
ing efficient combines of global and local searchers to
meet these goals.

The next section reviews some of the past work on hy-
brids and discusses the motivation for this work. This
is followed by some theoretical background for tackling
the problem at hand. Thereafter, some experiments
to test the existing theory for variations in local time-
to-criterion values across basins and then variations
within the same basin are considered. The paper con-
tinues with the development of a model for selection
(as a global searcher) and shows its significance in de-
ciding between global and local searchers at different
times. This is followed by suggestion of possible ex-
tensions. The study concludes with a brief summary
and some comments on its significance.

2 PREVIOUS WORK

The applications literature of GA-local hybrids is too
numerous to cite here, but the EnGENEous system
(Powell, Tong, & Skolnick, 1989) was an early sys-
tematic hybrid of a GA and local search in a com-
mercial setting. Davis (1991) was an early exponent
of hybrids and his book gives a good rationale for so
doing. Ibaraki (1997) describes the combination of op-
timization methods such as local search, dynamic pro-
gramming and simulated annealing. with genetic al-
gorithms for several combinatorial optimization prob-
lems.

Less has been said on the theory of global-local hy-
brids, but an important distinction between Bald-
winian and Lamarckian learning was made by Hinton
and Nowlan (1987). This issue of substituting the indi-
vidual from the termination point of the local searcher
into the population for further genetic search has been
a much debated one. The study by Orvosh and Davis
(1993) has interesting empirical results.
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A majority of the work has been focused on narrow ap-
plication domains (combinatorial optimization, Trav-
eling Salesman Problem, etc.). A generic theoretical
framework for combining GAs with other methods has
been lacking.

The study by Goldberg and Voessner (1999) made a
start towards addressing this issue by developing a
framework for optimizing global-local hybrids. Prelim-
inary results with random search as the global searcher
and a quasi-Newton method as the local searcher were
also published. This study builds on the above work.
It verifies some of the extant theory and extends it for
handling variation in time-to-criterion within a basin
and of developed therein for application to GAs by
tackling the first stage of a GA: selection.

In the next section we review necessary theory for this
work.

3 BACKGROUND THEORY

This section is mainly drawn from other works (Gold-
berg & Voessner, 1999; Goldberg, 1991) and the inter-
ested reader is urged to refer to these papers for fur-
ther details. A typical hybrid, H, consists of a global
method G and a local method L. An iteration of H
consists of one iteration of the G to generate a can-
didate solution which serves as the starting point for
L which is invoked multiple times each consuming no
more than an allowable time A, : 0 > Ay < Ajpaz. This
process continues until we exceed an allowable time T},
or the desired solution quality is obtained. The solu-
tion quality is the solution accuracy target ¢ < ¢-.
In Figure 1, §; (depicted as tessellated polygons) are
the basins of attraction within which L can lead to the
target solution which are depicted as islands ;.

The solution sought is better than some target value
or (= ¢* + A¢, where ¢* is the globally optimal max-
ima/minima and A¢ is the amount by which the
sought solution quality differs from the ¢*). Now we
consider the possible ways in which we can get to the
target islands, 7;. The union of the targets, the global
region, Rg = Ul. 7;. The probability of hitting Rg in
a single invocation of the global searcher is denoted as
Pg. For a random search with uniform distribution,
Pg may be calculated by summing the areas of the
targets and dividing by the total area of the search
space.

The local time-to-criterion values \; are defined as the
average number of time units required to get to the
target starting from within the basin of attraction f;.
Although the time taken to reach the local optimum
would depend on the exact point in the basin where
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Figure 1: A 2-D sketch of the search space showing
the target islands, 7;, basin of attraction under local
method L to those targets, 8;, and dead zones.

we start from, here we consider a single \; over the
whole basin for the sake of simplicity. The probability
of hitting the basin §; (exclusive of the target ;) with
an invocation of GG is denoted by P;. Suppose G lands
in a basin where the local search does not reach a so-
lution of desired quality or in a basin where L fails to
converge in A < A4, time units. These regions are
called dead zones. The probability of hitting the dead
zone is denoted by Pp and can be calculated as follows

PD:1—P(;—ZP,-. (1)
i

The global search is assumed to take one unit time
and the local search times are calculated relative to
that. Calling the allowable local time constant A, and
the average local time constant X, the solution time 7'
consumed in n global-local iterations is:

T =(1+Mn. (2)

Some of the basins may have a local time-to-criterion
higher than the allowable time for local search, A,.
Hence the probability of hitting the global zone can
be found by summing the probability of hitting global
region initially (by the global searcher) and the proba-
bility of hitting the basins with a time-to-criterion less
than the allowable, A\,. This can be stated as

P\, =F; + Z P;. (3)
0T 70, <Aq
Next, we have the formulation for minimizing time for

certain reliability.

3.1 MINIMUM TIME FORMULATION

The probabilistic error, a,, is defined as the probabil-
ity of not reaching a solution of desired quality. For
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a specified allowable error ¢, the reliability condition
can be written as

a, = (1—P\,)", (4)

where n is the number of iterations. By eliminating n
and minimizing, we get:

In

min()\a + ].)m

()
This gives us the minimum time required to reach a
solution with a specified allowable error a,. Next, we
show formulation for maximum reliability in a given
time.

3.2 MAXIMUM RELIABILITY
FORMULATION

We have n = )\Tjrl. The maximum allowable time

Amaz < Ty — 1. Minimizing the error and substituting
for n gives

min(1l — PAG)%. (6)

We should go with G alone when (1 — Pg)e < [1 —
(1—Pp)]T=/*« (Goldberg & Voessner, 1999) which can
be reduced to

Pp > (1 - Pg)™, (7)

where X, = A, + 1.

Next, we report some experiments which verify differ-
ent aspects of the theory on two different test func-
tions.

4 EXPERIMENTS

This theory has been verified using random search a
G and a quasi-Newton, the Broyden Fletcher Goldfarb
Shanno (BFGS) method (Press, Teukolsky, Saul, Vet-
terling, & Flannery, 1992) as L for uniform A across
several basins (Goldberg & Voessner, 1999). The
BFGS method has a useful property of having nearly
equal convergence times across geometrically similar
basins and the time taken is nearly the same irrespec-
tive of the starting point of the search within the basin.
The test function used in that work was:

=2

L) —d; for 7 <r}

x,Y) = r

fy) { 0 otherwise
where T =& —cr;, Y=y —cy;, 7> = > + 7>, and ¢; =
{(2.0,8.0), (3.0,4.0), (5.0,7.0),(7.0,8.5),(7.0,4.0) },

r; = {1.5,2.0,0.5,1.0,2.5}, d; = {2.0, 3.0,2.0,4.0,2.0}.
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Figure 2: The inverted test function (-f(x,y)) with five
quasi concave basins.

The global minima is —4.0 and is located at (7.0, 8.5).
Figure 2 shows the function. This function has been
used for all of the following experiments except where
mentioned otherwise. Similarly G is a random search
with uniform distribution except where mentioned
otherwise. L is the BFGS method throughout.

The termination criterion for all simulations was a
maximum error of 0.01%. For random search Pg is
calculated by summing the areas of the targets and
dividing by the total area of the space. A Baldwinian
approach is followed wherein the result from the local
searcher is not substituted back into the original pop-
ulation, but the value found by local search is used to
evaluate the starting point.

There are two possible ways to measure time in
these experiments. One is clock or execution time
of the block of code representing the global and lo-
cal searchers. One problem with this approach is
the lack of high resolution timers for most platforms.
Also keeping track of actual execution time at different
points is cumbersome. Another way is to assign appro-
priate weights to function and derivative evaluations
and use this computation as a measure of time. In real-
world applications function evaluations tend to be the
bottleneck. Also it is much easier and convenient to
track these rather than the exact time. Keeping this
in mind, the latter approach has been pursued in this
work.

4.1 CASE I: VARIATION IN J\;

With different \; for different basins choosing an ap-
propriate value for A\, becomes critical. The possi-
ble choices for A, are the different \;. A higher A,
is appropriate if the cumulative probability of suc-
cess increases sufficiently. The following procedure is
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Figure 3: The probabilistic error « is shown as a func-
tion of the allowable time T, with different A\ values
for the local searcher L. The lowest error is obtained
for A\, = 8.0, as suggested by the theory.

adopted for choosing an optimal value of A,. First,
the basins are arranged in ascending order of A values.
Locally optimal choices are obtained by comparing the
A values of the ith basin and the (i + 1)th basin on the
basis of probabilistic error. The error is given by equa-
tion 4 with n =T, /(A, + 1):

Qq = (]— — P )Ta/()\a+1)7
_ pla/Out),

The locally optimal choice with the least error gives
the globally optimal choice of A,. Pp is calculated
theoretically. This procedure yields A, = 8.0 as the
optimum value for the aforementioned function.

For this experiment we assign different \; values
to different basins.  The assignment was \; =
{6.0,12.0,4.0,10.0, 8.0}. Whenever the global searcher
lands in a basin, it is assumed that the local searcher
takes the assigned amount of time to reach a target.
The desired solution quality was ¢, = —1.0. Figure 3
shows the results for this case. The least error is with
A, = 8, which was predicted by the theory. For sake
of clarity , only three of the five possible choices of A,
have been plotted. The other choices of A\, (which are
not shown) also led to inferior performance.

4.2 CASE II: VARIATION OF A WITHIN
A BASIN

For most real-world functions the time-to-criterion
values depend upon the starting point of the local
searcher. This case is illustrated by the Griewank func-
tion (Torn & Zilinskas, 1989) (for the two-dimensional
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Figure 4: The probabilistic error « is shown as a func-
tion of the allowable time T, for ¢, = 0.02, P =
0.002. In this case G + L yields lower error.

case)

mlz + $2Z

000 cos(x1) cos(ﬂ) (8)

V2
x1,x26[—512,511]. This is a differentiable, multi-
modal function with the global minima as 0.0 located
at ;1 = 0.0 and x> = 0.0.

f(il?l,ilfz) =1 +

For a solution quality of ¢, = 1.5 A varied from 3.0 to
24 for each of the basins. For the sake of convenience
in calculating the probabilities only a portion (with
4 basins including the one with the global minima)
of the space was considered. The area of each basin
was approximated by a circle. To calculating P;, A
was chosen so that 90% of the observed \ were below
this value. The above procedure reduced the effective
area of the basin by 10%. This was factored into the
calculation of P;. Since the behavior was similar across
basins, A; were taken to be uniform. Figure 4 shows
the results for a desired solution quality ¢, = 0.02.
The results are according to the theory. Here Py =
0.002, Pp = 0.6237,\, = 17.0. The global searcher
cannot succeed without the help of L. Figure 5 shows
the results for a desired solution quality ¢, = 1.5. For
this case, P = 0.356, Pp = 0.55,\, = 3.0. With a
higher Pg here we see that G alone performs better
than G + L combined. According to the theory one
should proceed with G only if Pp > (1 — Pg)* which
is the case here. The theory holds for this case.

In the foregoing experiments, G has been taken as uni-
form random search, making the correspondence be-
tween theory and experiment quite close. As we move
away from random search and toward genetic and evo-
lutionary algorithms as our choice of GG, we consider
the changes necessary in the theory to accommodate
the more complex global search. The next section
takes our first steps in these directions by consider-
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Figure 5: The probabilistic error « is shown as a func-
tion of the allowable time T, for ¢, = 1.5, Po = 0.356.
In this case G alone performs better.

ing selection dominated performance. This will result
in modifications to the basin probabilities P; as the
generations progress.

5 TOWARDS G =GA: THE
ASSUMPTION OF SELECTION
DOMINATED PERFORMANCE

A typical GA can be decomposed into the follow-
ing steps: (a) random initialization, (b) selection, (c)
crossover and (d) mutation. So the next logical step
is to incorporate selection into the theory. Selection
tends to dominate early GA performance and proceed-
ing with selection alone as a choice for G would be a
positive step toward having GAs as the global searcher.
Some of the ideas in this section are drawn from (Gold-
berg, 1991).

First we develop a model for selection which enables
the prediction of the population fitness level in succes-
sive generations. This model also enables the calcula-
tion of probabilities of reaching a solution of desired
quality using G alone. This information can then be
used for choosing between G and G + L. We verify
these ideas with some experiments.

Truncation selection was used for modeling selection as
it lends itself to easier modeling. Figure 6 shows the
proportion of individuals above various fitness levels
at different generations under selection. Using trun-
cation selection we can approximate the proportion of
individuals below a certain fitness level in successive
generations with a power law as follows:

= (f - fmzn)/(fmaa: - fmzn); (9)

fnorm

p=1/5)" = frorm: (10)
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Figure 6: Proportion of population above different fit-
ness levels is shown for different generations with trun-
cation selection.

frnorm 18 the normalized fitness, p is the proportion
of the population above a certain fitness level, f, ¢
is the generation number, s is the selection pressure
and b is a constant. Figure 7 shows the approximated
curve with b = 5.376 and the proportion curve for the
random initialization of the population (i.e. t = 0).

Solving for fporm and substituting s = 2, we have

fnorm = (1/2)t/b7 (]-]-)

f = fnorm(fmaa: - fmm) + fmm (12)

This gives us the fitness level above which all the in-
dividuals in the population lie for any generation ¢.
This may be used to obtain a closed form solution for
the proportion of population above a certain fitness
level as it is shown. After the initialization the indi-
viduals are randomly distributed over the whole search
space. During selection s copies are given to each of
top 1/s proportion of the population. This leads to
multiple copies of the fitter individuals, but their dis-
tribution remains random in space. So the probability
P of reaching a point better than the current level of
the population, f, may be calculated by summing the
areas for the desired fitness across all basins and divid-
ing by the summation of the areas at current fitness
level over all the basins. If the current fitness level, f,
happens to be better than the desired fitness then all
the individuals in the population meet the criteria and
P; =1.

Since selection alone does not provide any new points,
if we set a very high solution quality criterion selec-
tion fails to reach the criterion all together because
the probability of having such a point after a random
initialization would be very low. But if the criterion is
within reach (i.e. already present in the initial popu-
lation) of the selection process the convergence is very
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Figure 7: The proportion of individuals above certain
fitness levels modeled by a power law with b = 5.376.

" GiL - Experiment  +
- Experiment -------
G - Theory

Bt "
"Wﬁ"r m&wﬁ* #‘gw’%ﬁ‘*xﬁ:ﬂ e

alpha

o e
R Pt

L S L L L L L L
0 2 4 6 8 10 12 14 16 18 20

Figure 8: The probabilistic error « is shown as a func-
tion of the allowable time T, for ¢, = —1.0 with se-
lection as the global searcher. G alone yields lower
error.

fast. In this case selection alone fairs better than a
combination of selection and local search. The high
relative cost of the local search proves to be an over-
head. But when none of the initial points meet the
criteria, the local searcher plays a key role in leading
to an acceptable solution.

5.1 EXPERIMENT

Here selection was used as the global searcher in con-
junction with BFGS. A population of 50 individuals
was generated randomly. At each iteration of G one
truncation selection (s = 2) was carried out and one
randomly chosen individual from the resulting popu-
lation was returned. The local search then took over
with this individual as the starting point. This was
a single iteration of G + L. The output of the local
search was not substituted back into the population.
The results from the aforementioned model were used
to calculate theoretical Py values. These values were
no longer constant after each iteration (as was the case
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with random search). Figure 8 shows the results. The
experimental results for G are in close agreement with
the one derived from the model. The difference can
be attributed to approximation errors in the model.
G alone performs better for this case. The theory for
G + L requires more work and will be addressed in a
later study.

6 EXTENSIONS

This work has initiated a first step towards applying
global-local hybrid theory to GAs. A number of ex-
tensions suggest themselves:

1. Consider selection dominated performance theory
with real GAs with crossover and mutation.

2. Currently, the theory uses stationary calculation
of probabilities. Modify theory to handle non-
stationary probabilities.

3. Test the theory on a rigorous test suite.

4. Consider off-line and online methods to determine
theory parameters for real problems.

5. Consider extension to more than 2 methods.

The above steps can provide answers to some impor-
tant questions: When should theory be expected to be
good? What are the dimensions of hybrid difficulty?
How should one estimate theory parameters in the ab-
sence of complete knowledge of the fitness landscape?
As practitioners seek answers to these questions, re-
searchers will soon direct their efforts to explore these
directions.

7 SUMMARY & CONCLUSIONS

Global-local hybrid theory is increasingly being shown
to be a useful tool for dividing labor between multi-
ple solution techniques to obtain quality solutions effi-
ciently. When @ is random search, the theory may be
used to choose efficient combines with local searcher,
L, resulting in A variation both between and within
basins of attraction. When G is not a random search,
it appears that modifications can be made to design
efficient combinations. By considering selection domi-
nated performance, a preliminary extension of the the-
ory towards GAs was proposed. More work is needed,
but these results and extensions promise a practical
design capability for efficient hybridization.
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Abstract

This paper introduces a dynamical systems
model of a generational Genetic Algorithm
with Self-Adaptation of mutation rates. This
model is used to predict the mean fitness of
an evolving population as a function of time.
The accuracy of these predictions are then
tested by running a series of experiments us-
ing Genetic Algorithms with different popu-
lation sizes. It is shown that although there
is a threshold below which the “real” popula-
tions do not closely follow the predictions, the
model is still able to give us useful informa-
tion about the behaviour of the “real” GAs,
since the populations tend to get “stuck” at
points close to certain eigenvectors of the infi-
nite population model. Arguments are given
which allow the prediction of which eigenvec-
tors will be important.

The dynamics of the population evolving on
a non-stationary environment are then con-
sidered, and some conclusions drawn about
the nature of environmental change to which
the algorithm will be able to respond.

1. Introduction

This paper applies the dynamical systems models of
Genetic Algorithms (GAs) developed by Vose [9], to a
simple model of a genetic algorithm with self adaptive
mutation rates. In particular the behaviour of the al-
gorithm is considered on problems of unitation, where
the approaches of [8] [5] can be taken to reduce the
dimensionality of the dynamical systems to be solved.
Although these are infinite population models, it has
been shown that provided the population size is suffi-
ciently greater than the number of equivalence classes

considered, then the models can accurately predict the
behaviour of “real” GAs.

The Self Adaptation of mutation rates within a GA
was first proposed by Béck in [1], who used a binary
encoding for the mutation rate within a generational
GA. This idea was expanded by Smith and Fogarty [6]
who examined a number of different encodings within
the context of a Steady State GA, and Hinterding [3]
who used a real number encoding for mutation step
sizes to act on (effectively) real-valued genes.

In this model a generational model is used similar to
that of [1]: an individual is deemed to have a single
mutation rate, m attached to it, which takes one of a
fixed number, ¢, of values. Mutation is a two phase
process, where first the value of m is varied to yield a
new value m/, then the problem representation is mu-
tated with this new bit-wise mutation probability. For
the purposes of clarity, we will restrict ourselves here
to the situation where in the first process a new value
m € {1,...,q} is chosen at random with probability z,
and the value is left unchanged with probability (1—z).
We will refer to z as the Innovation Rate. Note that by
setting ¢ = 1, we can use this model for fixed mutation
rates as well. In[4] the results are given of experiments
which demonstrate that the mechanism described here
is sufficient to permit adaptation of the mutation rates
to optimal values on a range on NK landscapes with
N =40 and K € {0,15} .

This model represents a simplification of the algo-
rithms described in [1, 6], in two aspects. The first of
these is that rather than using a binary (or Gray code)
encoding for the mutation rate,(which is itself subject
to bitwise mutation) the mutation rate is represented
by a single allele of alphabet ¢. In this work ¢ is taken
to have a much smaller value (10) than the number of
values considered by Béck and Smith, so as to render
the resultant matrices more tractable, although this
is not a necessary restriction. However there remain
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implications for the inheritance of mutation “genes”,
since these were subject to recombination in the works
mentioned above and are not in this system.

The second simplification concerns the way in which
the mutation rates are themselves subject to change.
In [1, 6] the binary strings representing the mu-
tation rates are first decoded, then are themselves
subject to bit-wise mutation at the decoded rate.
This has the effect that (subject to decoding effects
such as“Hamming cliffs”) mutation rates are likely to
change to similar values. By contrast, in this model
rates are changed to a randomly selected value with
probability z, and in fact the value is altered with prob-
ability z(g—1)/q since the same value may be chosen.
This decision was made so as to simplify the derivation
and explanation of the mixing matrix, and (more im-
portantly) because experimental results showed better
ability to adapt to changing environments than sys-
tems where the rate was more likely to change to a
similar value. However it is a fairly trivial matter to
change the mixing matrix to a “similarity” based adap-
tation, once a set of suitable probability distributions
has been chosen. The main factor would be the ex-
plicit choice of what probability distribution to use for
each value, as opposed to the implicit choices made
when a bit string (whether binary or gray coded) is
used.

In this paper we will consider problems of unitation,
i.e. where the fitness of an individual solution depends
solely on the number of 1’s in its binary representation.
For such a problem with a representation of length [
there are [+ 1 equivalence classes of solutions with
different representations but equal fitnesses i.e. for a
three bit representation the four classes are:

{000%, {100, 010, 001}, {011, 101, 110} , {111}.

In order to deal with the different mutation rates we
will extend this model so that each of the fitness equiv-
alence classes is subdivided into ¢ further classes ac-
cording to the mutation rate attached to the individual
solutions, giving a total of N = ¢« (I + 1) states. For
an individual state i the fitness is f'(i) = f(i/q) and
the mutation rate is indexed by m = i%gq, where the
% symbol has its usual modulus meaning, and the di-
vision i/q is taken to be rounded down to an integer
value.

We can therefore define a population vector p =
(p1, - - -,pn) such that the components p; represent the
proportions of the population in class i, subject to the
restriction X;p; = 1.

Following Vose’s model, we can model the effect of the
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GA on this population vector as
P =Gp=MFp (1)

where the functions M and F represent the mixing
(mutation and crossover) and selection operators re-
spectively. The outcome, p' represents the probability
distribution from which the next population will be
sampled, which is equivalent to the next generation in
the Infinite Population Model (the reader is referred
to [9] for a more detailed discussion).

For fitness proportional selection, the selection opera-
tor can be modelled by using a diagonal matrix S with

elements fifa) i=i
_ t/q) 1=
Sij = { 0 i#j (2)

and the operation of the selection operator is given by

Fp= 2P 3)

where

2

() =>_pifile) (4)

=0

Crutchfield et al have shown that this can be turned
into a linear form, and derived equations for the calcu-
lation of the mean fitness as a function of time without
the need for iterated matrix multiplication [8]. Al-
though both methods were used ( for the purposes
of testing), in practice it was found that the “brute
force” method could be executed in reasonable time
on a 500MHz Pentium III, using code developed in C
using the “meschach” libraries [7]. As an indication
of the roundoff errors, the eigenvector corresponding
to the maximum eigenvalue for the One-Max problem,
which should be positive, was computed to have a sin-
gle negative component of size < 1.1—717.

The Mixing matrix, M can be further decomposed into
two functions representing crossover and mutation, a
derivation in this case will be given in the next sec-
tion. Given a form for M and F we can revisit (1)
and consider the case for fixed points (if they exist) of
the algorithm. If v is a fixed point of the system (i.e.
GV =) then we have:

MSv = (f)(v)v ()

i.e. v is an eigenvector of MS with eigenvalue equal to
its average fitness. Theory tells us that there will only
be one eigenvector of the system corresponding to a
“real population” (i.e. which lies within the simplex),
and that this corresponds to the population whose
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mean fitness is equal to the biggest eigenvalue. How-
ever, other authors have shown eigenvectors of the sys-
tem which are close to the simplex, (i.e. which are al-
most attainable by real populations) can act as attrac-
tors for evolving populations in “real” GAs [5]. Given
the increased number of states of the system studied
here, it can be expected that more eigenstates with
similar eigenvalues will be present. The hypothesis is
that analysis of the composition of the eigenvectors
will inform our understanding of the adaptive process.

2. Derivation of Mutation Matrix

In the derivations below we will use the following no-
tation:

P;(i) = Sp; denotes the probability of selecting an in-
dividual of class .

P.(ijk) denotes the probability of generating a mem-
ber of class ¢ by recombination between a member of
class j and one of class k.

P,,(ij) denotes the probability of creating a member
of class ¢ by mutation from one of class j

Assuming the regular order of selection-crossover-
mutation, we know that the i*" component of the prob-
ability distribution vector for the next generation, is
simply the sum over all classes j, of the probability
of generating a member of class j from the selection-
crossover process, multiplied by the probability of mu-
tating that individual from class j to class i, i.e.

N
Gpi =Y _ Pmij* Y > P(jkl) = Py(k) * Ps(1) (6)
j=1 kol

Initially we will restrict ourselves to the case where
there is no crossover, and the first parent is simply
copied, i.e.

R ={ o0 1] g

and only one of the P; terms is used. We can fur-
ther simplify (6) by noting that we can separate the
summation into two parts. In the first of these, the
member selected to be copied has the same attached
mutation probability as i (i.e. i%q = j%q) , and this
is unchanged. In the second, the attached mutation
rate is different, but with probability z this is changed,
achieving the correct rate with probability 1/q.

Common to both of these is the fact that the problem
representation must then be mutated to contain the
same number of 1’s. If we use the notation that a
mutation rate of m; is attached to the class i, a of the
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j/q ones get mutated to zero and b zeroes get mutated
to one, this happens with probability :

Jla1=j/q

Z Z 5]/!1 a+b,i/q * (8)

a=0 b=0
<l—bj/q> (jéq) me+ (1 = m

where d,,, is the Kronecker delta function:

1 z=y
sw={ 5 i )
Taking the two parts together gives us:

(1—2)*5%q3%qu
J

—*E:P ) * P! (if) (10)

P! (ij)

Gpi = ) * Py, (i7)

N
= ZPS % Pl ) (2 + 6i%q,j%q(1 — Z))

j=0

from which we can see by inspection and comparison
with (1) that the elements of the mixing matrix M are:

z ..
My = (24 bonagna1=2)) 2Pt (1)
where P! (ij) is defined as per (8).

3. An Example: One-Max

In order to compare the predictions of this model
with the performance of “real” GAs - that is to say
ones with finite populations- a series of experiments
were made using the “One-Max” function. A prob-
lem length (L) of fifty bits was used, along with ten
different mutation rates ( i.e. ¢ = 10), yielding a sys-
tem with 510 equivalence classes. The mutation rates
used were from the set {0.0005, 0.001,0.0025, 0.005,
0.0075, 0.01,0.025, 0.05, 0.075, 0.1}, and the rate at-
tached to an individual was changed to a new random
value with probability z = 0.01. In practice it was
found that because of the number of classes with selec-
tion probability 0.0, a singular matrix was generated,
and so the fitness function was modified by adding 1.0
to each (scaled) value, giving fitness values in the range
1—101. The model was used to predict the mean pop-
ulation fitness as a function of time, the eigenvectors
of the system, their corresponding eigenvalues, and a
number of metrics relating to the distance of those
eigenvectors from the simplex. A series of experiments
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Figure 1: Evolution of Mean Fitness: Predicted vs. Empirical Results

were then run using a Self Adaptive GA with the same
mutation values, no crossover, and a range of different
population sizes. Baker’s SUS selection algorithm [2]
was used rather than “Roulette wheel” as it has been
shown to exhibit less noise, a factor which becomes
more important as we move from an infinite popula-
tion model to the vagaries of stochastic effects with
finite populations. Figure 1 shows the predicted tra-
jectory of the population’s mean fitness against time,
along with empirical results for different population
sizes, averaged over twenty runs of the GA.

As can be seen, the experimental curves deviate from
the predicted values, by an amount that decreases as
the population size increases. Allowing the GA to run
for longer periods showed that the mean fitness did
converge onto the predicted value, regardless of popu-
lation size.

In [5] results are reported for a GA on this problem
with L = 20 and a population of 500, i.e. at least an
order of magnitude larger than the number of equiva-
lence classes, and in [8] a ratio of population size ()
to number of classes > 2V is used in order to ob-
tain results that match the predictions. For the self-
adaptive GA, this presents a problem, since the num-
ber of equivalence classes in our model is increased by
a factor q.

As can be seen from Figure 1, population sizes of
greater than 1000 are needed to obtain a close match
with predictions, although for all population sizes
there is a good match in the first stages of the evo-
lution. The need for large population sizes can be
easily understood by the fact that in a “real” GA, the
population vector is effectively discretised with a scale
factor of 1/popsize.

In the model, the population is able to sustain initially

small proportions of individuals falling into the highest
fitness classes, which are created either through ran-
dom initialisation, or ( with very low probability) via
the mutation of less fit individuals. These will then in-
crease exponentially according to their fitness relative
to the population mean.

With finite populations, the discretisation effect is
such that very few, if any, of these individuals are
created, and the population is consigned to a more
gradual evolution of fitness.

However, the deviations from the predictions caused
by stochastic effects do not mean that the model is of
no use. In Figure 2 the mean fitness for a single run
with a population size of 2000 is shown, along with the
Euclidean distance (multiplied by 1000) to the nearest
eigenvector, and the fitness of that eigenvector ( i.e.
it’s eigenvalue). The epochal nature of the search can
clearly be seen, with the population being attracted
to a succession of increasingly fit eigenstates of the
system, before converging around the stable eigenvec-
tor. Note that convergence in this case is in terms of
phenotypic fitness rather than genotypes, since many
genotypes will belong to the same equivalence class as
discussed above.

In [8] the systems studied contain a small number of
equivalence classes, and the empirical results show that
the populations do spend “epochs” at the mean fit-
ness levels corresponding to the eigenvectors of the sys-
tem. Arguments are developed to explain the differing
amounts of time typically spent at each fitness level.
However for the systems studied here, there are much
larger numbers of eigenvectors of the system, and the
problem becomes one of predicting which of these will
become attractors for the population as it evolves.

Figure 3 shows the eigenvalues (mean population fit-
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Figure 2: Population Dynamics for a single run with population size 2000. The population mean fitness, distance
of population from current nearest eigenvector (x1000), and value of corresponding eigenvalue are shown.
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nesses) of the first fifty eigenvectors of the system,
along with the number of negative components, their
sum, and the mean mutation rate of a population at
the eigenvector. Also marked by vertical dashed lines
are the epochs noted in Figure 2. As can be seen these
correspond to eigenvectors of the system which are a)
close to the simplex, b) have few negative components
and c¢) have a range of mutation classes present. Note
that the first two points above although related are not
linearly related. Point c) is indicated by the fact that
the mutation rate fluctuates between extremes, but the
epochs occur between these fluctuations, and this has
been confirmed by closer analysis of the experimental
log files. Analysis of subsequent runs with different
population sizes showed that epochs always occurred
close to eigenvectors with the properties listed above.

4 Adaption in Dynamic Environments

In order to begin to understand the ability of the al-
gorithm to adapt to dynamic environments, it is first
necessary to compare the predicted and observed be-
haviour of the algorithm in response to transitions in
dynamic environments. This was achieved by running
experiments as above, but extended to 2000 genera-
tions, with a change after 1000 generations from One-
Max to Zero-Max.

For the GAs, this change was trivial to implement. For
the model, this could have been achieved by changing
the values in the selection matrix, and the recalculat-
ing G and its eigensystems. In practice it was easier
to utilise the symmetry of the two problems, and leave
the matrices as above, and assume that prior to the
change the population vector would have converged
onto the stable eigenvector for the One-Max problem.
This vector was then translated into the equivalent for
the Zero-Max problem according to:

p? :p%(L*i/q)*qH%tI) (12)

where the superscripts indicate the problem( Zero-
Max or One-Max).

Figure 4 illustrates the results of these experiments,
concentrating on the period immediately after the
transition. As can be seen there is a good match be-
tween the prediction and the observed behaviours, es-
pecially in the first thirty or so generations.

The patterns of (predicted and observed) evolved be-
haviour starting from a converged population are very
different to those with the initial random population.
This can be explained by examining the proportions
of the population falling into the different mutation
classes as shown in Figures 5 (predicted) and 6 (ob-
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served). Initially after the transition, mutations are
on average beneficial, and so once re-introduced by
chance, individuals with the highest mutation rates
attached start to take over the population. However
once the mean fitness has passed 50%, then on aver-
age mutations will be deleterious, and so there is a
phase transition, and individuals with lower mutation
rates attached have a selective advantage. Inspection
of Figures 5 and 4 shows that this happens around
25 - 50 generations after the change. It is notable
that the empirical and theoretical results are virtually
identical up to this point for all population sizes over
100. From Figures 5 and 6 it can be seen that with
a finite population the lowest mutation class does not
takeover the population as much as is predicted af-
ter the phase transition. It has been suggested above
that this is because the model predicts the early gen-
eration of individuals with high fitness, for which low
mutation rates are selective advantageous, whereas the
effects of a finite population mean that a more grad-
ual evolution of fitness occurs, with correspondingly
higher mutation rates.

These results suggests that there is a limit to the rate
of environmental change which the self adaptive algo-
rithm can respond to , this limit being related to the
time needed for this phase transition to occur. This
time will depend on the selection pressure, but also
on the Innovation Rate since this determines both the
background proportions of (initially) sub-optimal high
mutation rates in the population prior to the change,
and also the rate at which lower mutation rates are
re-introduced into the population.

Finally it can be seen that Figure 5 explains another
feature of the predicted behaviour of Figure 4, namely
that the mean fitness of the population surpasses that
of the stable eigenvector, before dropping to that level.
This happens because during the second phase individ-
uals with the lowest attached mutation rate dominate,
and so the selection pressure is able to keep the popula-
tion at a state with fewer “errors”. This effect persists
until the population is largely converged, and the other
mutation rates are re-introduced by mutation, moving
the population towards the stable state.

Conclusions

In this paper a model of a particular form of self-
adaptation of mutation rates has been presented, along
with empirical studies to investigate its applicability
with finite populations. In this model, the mutation
rate attached to an individual solution comes from one
of a finite set of values, and at every time step can be
changed to a randomly selected member of the set with
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a fixed probability z. Although simpler than many
of the models used by previous authors, this form of
Self-Adaptation is shown to demonstrate the ability to
adapt in both static and dynamic environments.

The empirical results presented show that the pre-
dicted fitness of the evolving population is over-
estimated, and reasons are given for this in terms of
the discretisation of real populations with a granular-
ity of 1/popsize, and the greater number of equiva-
lence classes in this model compared to that for a GA
with a fixed mutation rate. Note that this presents an-
other argument in favour of the particular form of self-
adaptation used since it introduces a far fewer number
of classes into the system than binary or Gray coded
rates. However it is shown that the model does have
predictive value, since the fitness levels at which evo-
lutionary “epochs” occur correspond to the finite pop-
ulation spending time near eigenvectors of the system
which lie close to the simplex and have a range of mu-
tation rates present. Further work remainsto be done
on predicting exactly which eigenstates will act as at-
tractors.

When the behaviour of the system was studied after an
environmental change, it was found that for a period
of time there is a strikingly close match between the
predicted and observed mean fitnesses over a range of
population sizes. This has immediate benefits since it
provides us with a means of predicting the ability of
“real” algorithms to react to dynamic environments,
and of tuning the range of mutation rates available,
and the meta-mutation rate z so as to achieve desirable
performance. This work is ongoing.

The problem studied here, the simplest example of a
“function of unitation”, was taken to illustrate a gen-
eral approach. It would be perfectly possible to apply
the techniques here to other such functions (see [5] for
further examples of problems of this type), by making
appropriate changes to the selection matrix. In [8] an
example is given of how appropriate mixing matrices
can be constructed for problems where blocks of genes
ned to be considered together. This will be done in
future work.

It would be possible to extend this approach to con-
sider any problem type by considering the proportions
of the population with particular genotypes, rather
than using the aggregating approach. However there
are two impediments. Firstly the size of the matri-
ces induced has rendered this approach impractical for
standard GAs, so with the number of states increased
by a factor ¢, the size of problems that could be manip-
ulated would be very small. Secondly, as has been seen
above, the predictive power of the models depends on
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the closeness of the match between the actual samples
of the problem space ( i.e. successive finite sized pop-
ulations) and the model. In practice this meant that
population sizes of the order of the number of states
were needed before the empirical results matched the
predictions. This suggests that some form of aggre-
gating approach, such as the one used in this paper, is
required if the model is to have predictive value.
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Abstract

Graph partitioning divides a graph into several
pieces by cutting edges. Very effective heuris-
tic partitioning algorithms have been developed
which run in real-time, but it is unknown how
good the partitions are since the problem is, in
general, NP-complete. This paper reports an evo-
lutionary search algorithm for finding benchmark
partitions.  Distinctive features are the trans-
mission and modification of whole subdomains
(the partitioned units) that act as genes, and the
use of a multilevel heuristic algorithm to effect
the crossover and mutations. Its effectiveness is
demonstrated by improvements on previously es-
tablished benchmarks.

1 INTRODUCTION

The graph partitioning problem can be stated as: partition
the vertices of a graph into a given number of sets so that
each set is of (approximately) equal size and so that the
number of edges cut by the partition is minimised. The
need for graph partitioning arises naturally in many appli-
cations such as distributing a finite element mesh across the
nodes of a parallel computer in order to minimise commu-
nication overhead. It is well known that this problem is
NP-complete (i.e. it is unlikely that an optimal solution can
be found in polynomial time), so in recent years much at-
tention has been focused on developing suitable heuristics,
and a range of powerful methods have been devised, e.g.

[8].

Here we report on a technique, combining an evolution-
ary search algorithm together with a multilevel graph par-
titioner, which has enabled us to find partitions consider-
ably better than those that can be found by any of the pub-
lic domain graph partitioning packages such as JOSTLE,
METIS, etc. We do not claim this evolutionary technique
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as a possible substitute for the aforementioned packages;
the very long run times preclude such a possibility for the
typical applications in which they are used. However we do
consider it of interest to find the best possible partitions for
benchmarking purposes and for certain applications such
as circuit partitioning, where the quality of the partition is
paramount, the computational resources required may be
completely justified by the very high quality partitions that
the technique is able to find.

The main focus of this paper is to describe a strategy for
combining evolutionary search techniques with a standard
graph partitioning method. In Section 2 we outline the mul-
tilevel graph partitioning method used and establish nota-
tion & definitions. In Section 3 we then describe the ge-
netic framework by defining the crossover and mutation
operators and discuss how they are combined with the mul-
tilevel partitioner. Related work is also discussed here. We
have conducted many experiments to test the technique and
in Section 4 present some of the results including tests on
unstructured meshes (§4.1). We also compare our results
against a recent benchmark of Kang & Moon, [10]. Some
of these graphs have similar structure to meshes, but some
less structured examples are included.

The principal innovation described in this paper is the
construction of crossover and mutation operators with an
heuristic bias suitable for partitioning certain types of
graphs which include meshes. These operators rely on the
use of a multilevel graph partitioner, which is used to par-
tition carefully chosen subgraphs of the original graph.

2 MULTILEVEL GRAPH
PARTITIONING

Let G = G(V, E) be an undirected graph of vertices V,
with edges E. Given that the graph needs to be distributed
to P processors, define a partition 7 to be a mapping of V'
into P disjoint subdomains S, such that | J, S, = V. The
partition 7 induces a subdomain graph on G which we shall
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referto as G, = G, (S, L); there is an edge or link (Sy, Sy)
in L if there are vertices vy,vy € V with (v1,v2) € E
and v; € S, and vo € S,. We denote the set of inter-
subdomain or cut edges (i.e. edges cut by the partition) by
E.. Vertices which have an edge in E. (i.e. those which
are adjacent to vertices in another subdomain) are referred
to as border vertices. Finally, note that we use the words
subdomain and processor more or less interchangeably: the
mesh is partitioned into P subdomains; each subdomain S,
is assigned to a processor p and each processor p owns a
subdomain S,.

In the context of partitioning a mesh for a parallel appli-
cation, the definition of the graph partitioning problem is
to find a partition which evenly balances the load or ver-
tex weight in each subdomain whilst minimising the com-
munications cost. To evenly balance the load, the optimal
subdomain weight is given by S := [|V|/P]' and the im-
balance is then defined as the maximum subdomain weight
divided by the optimal (since the computational speed of
the underlying application is determined by the most heav-
ily weighted processor). There is some discussion about
the most appropriate metric for partitioning, e.g. [7], and
indeed it is unlikely that any one metric is appropriate,
however, it is common practice in graph partitioning to ap-
proximate the communications cost by |E,|, the weight of
cut edges or cut-weight. The usual (although not universal)
definition of the graph partitioning problem is therefore to
find 7 such that |S,| < S and such that |E.| is (approxi-
mately) minimised.

In fact it has been noted for some time that partition qual-
ity can often be improved if a certain amount of imbal-
ance is allowed, [15]. If we allow 8% imbalance then the
partitioning problem becomes ‘find a partition 7 such that
|S,| < S x (100+6)/100 and that | E.| is (approximately)
minimised’.

2.1 The multilevel paradigm

In recent years it has been recognised that an effective way
of both speeding up graph partitioning techniques and/or,
perhaps more importantly, giving them a global perspec-
tive is to use multilevel techniques. The idea is to match
pairs of vertices to form clusters, use the clusters to de-
fine a new graph and recursively iterate this procedure un-
til the graph size falls below some threshold. The coars-
est graph is then partitioned (possibly with a crude algo-
rithm) and the partition is successively optimised on all the
graphs starting with the coarsest and ending with the orig-
inal. This sequence of contraction followed by repeated
expansion/optimisation loops is known as the multilevel
paradigm and has been successfully developed as a strategy

'where the ceiling function [z] returns the smallest integer
greater than x
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for overcoming the localised nature of the Kernighan-Lin
(KL), [12], and other optimisation algorithms. The multi-
level idea was first proposed by Barnard & Simon, [2], as a
method of speeding up spectral bisection and improved by
both Hendrickson & Leland, [8] and Bui & Jones, [4], who
generalised it to encompass local refinement algorithms.
Several algorithms for carrying out the matching of vertices
have been devised by Karypis & Kumar, [11], while Wal-
shaw & Cross describe a method for utilising imbalance in
the coarsest graphs to enhance the final partition quality,
[18].

3 THE GENETIC ALGORITHM

Genetic algorithms produce new search points by one of
two operations: crossover which combines information
from two or more randomly selected individuals in the cur-
rent generation, and mutation which modifies a single, ran-
domly selected, individual. The construction of success-
ful crossover and mutation operators is problem specific
and often complex, especially where individuals are sub-
ject to constraints (as are the partitions) so that information
from different individuals cannot be arbitrarily combined
or modified. Further, the information needs to be effec-
tively exploited so that new individuals result that are fitter
than the current best individuals with sufficient probability
even when the current generation is already very good, [1].

A number of genetic algorithms for graph partitioning (e.g.
[10]) have been constructed using a ‘linear’ chromosomal
representation consisting of a list of subdomain member-
ships of a graph’s vertices, each list item representing the
subdomain in which the vertex appears. Crossover com-
bines information from two chromosomes using standard
operations (one-point crossover etc) to produce a child
chromosome. In this case the linkage is determined by dis-
tance apart in the list and given that the ordering of vertices
is arbitrary for most graphs, so is the linkage. The linkage
has been improved by defining orderings of the list items
which place nearby vertices in the graph (separated by few
edges) close together in the list, and by ‘normalising’ the
chromosomes before mating by relabeling the subdomains
in one parent so that it has more vertices with the same
subdomain membership as when they appear in the second,
[10].

Genetic algorithms using this representation usually apply
a local optimisation procedure to the resulting offspring,
which improves and repairs them so that they are again bal-
anced partitions. A novel and more powerful such proce-
dure, termed Cyclic Partitioning, has recently been used by
Kang & Moon with a GA of this type. Their procedure pro-
vides a more comprehensive search for local improvements
than previous Kernighan-Lin based schemes by investigat-
ing the possible improvements available by transferring
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Figure 1: An illustration of the crossover operator

vertices across a set of partition boundaries (one vertex
at each), such that the subdomains the vertices belong to
form a cycle in the subdomain graph. They have run exten-
sive tests comparing their genetic algorithm with recursive
Kernighan Lin, pairwise Kernighan Lin and Cyclic Parti-
tioning, using many repeated applications of the optimi-
sation algorithm on different, initial, randomly-generated
partitions. The authors have used the results to establish
a set of high quality, benchmark partitions documented in
[5]; 8-way & 32-way partitioning were performed.

Soper et al. have recently constructed a genetic algorithm
which uses neither a linear chromosomal representation nor
a traditional crossover operator, [16]. The crossover is im-
plemented by modifying the graph to record where the par-
ents had cut-edges by weighting them, and then applying
a local optimisation procedure JOSTLE to the new graph
so that cut edges of the parents are more likely candidates
to be cut again due to the weighting. The mutation op-
erator has an heuristic bias which exploits the local trans-
lational invariance possessed by many graphs of interest.
This work produced benchmark partitions for evaluating
public domain packages, and especially on graphs repre-
senting unstructured meshes. The current work is based
on similar operators but further exploits the properties of
the graphs being partitioned. The major difference is that
the local optimisation procedure used during crossover and
mutation needs only to be applied to a fraction — almost al-
ways less than half — of the graph to be partitioned. Much
more information is transferred into the offspring from the
parent(s) and the optimisation algorithm is more effectively
focussed on one part of the problem at a time.

3.1 Recombining and mutating subdomains

Both crossover and mutations act on subdomains (or the set
of of cut edges containing a subdomain). Crossover selects
sets of complete subdomains from two individuals, and
combines them in the child by partitioning the remainder
of the graph as illustrated in Figure 1 ; Figures 1(a) & 1(b)
show two parent partitions which have been selected for
crossover. Sets of adjacent subdomains which do not in-

tersect are selected (shown shaded) and the remainder of
the graph — the unshaded part of Figure 1(c) — is reparti-
tioned. Crossover seeks to exploit locality - the fact that
graphs needing to be partitioned often only have vertices
with low degree, showing local connectivity. This property
holds for unstructured meshes which in their spatial embed-
ding of physical origin only have short range connections,
reflecting the locality of the physical systems they model.
Locality allows subdomains from one individual to be suc-
cessfully recombined with those from another when they
are well separated.

Mutation takes a set of subdomains from an individual that
constitute a cycle in the subdomain graph. The subgraph
defined by this cycle is then repartitioned so as to exploit
local translational symmetry; new partition boundaries are
sought close to existing boundaries where they should have
similar and so sometimes less cut edges. Another desirable
property of mutations is that they are compatible or com-
mute [14], i.e. their result does not depend on the order of
their application. Our mutations will tend to have this prop-
erty, either because their defining cycles don’t intersect, or
when they do because local translational symmetry, pro-
vides sufficient variations of common, partition boundaries
to accommodate the balance constraint with a very similar
number of cut edges.

In summary crossovers are constructed by producing cuts
in the subdomain graphs of two individuals and mutations
by constructing cycles in the subdomain graph of one indi-
vidual. Figure 2 shows a case where a partially translated
boundary has exactly the same number of cut edges.

Selection of subdomains for crossover: The number of
subdomains selected from the first parent was chosen ran-
domly and uniformly from the range (P/4) — 1 to (P/2) —
1, which choice prevented a parent from producing an off-
spring mostly identical to itself. The first subdomain was
chosen randomly, then the second from its neighbours, the
third from neighbours of both these subdomains, with prob-
ability proportional to the number of chosen neighbours (1
or 2), and so on. Thus there is a bias to choosing sets of sub-
domains with more internal or common partition bound-
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Figure 2: A translated boundary fragment with the same number of cut edges

aries. The choice of a more compact structure increases
the chances of successful recombination; the extreme op-
posite a collection of scattered non-neighbouring subdo-
mains would effectively prevent any substantial change in
the parent.

Subdomains are selected from the second parent by a pro-
cess of elimination. First delete subdomains from this par-
ent which have any vertices in common with the subdo-
mains selected from the first. Then delete those that have
more than two fifths of their vertices in common with the
neighbours of the subdomains selected from the first par-
ent. The remaining subdomains are included in the off-
spring. The heuristic provides a balance between the com-
peting demands of information transfer, i.e. copy more sub-
domains and their bordering cut edges into the offspring,
and the need to allow successful recombination, i.e. is the
remainder of the graph capable of being partitioned with a
small enough number of cut edges?

In general, the crossover offspring partition will not be of
sufficiently high quality to be accepted into the succeeding
generation of the genetic algorithm, therefore it is immedi-
ately subject to a hill-climbing sequence of mutations.

In some cases during crossover, it is possible for the sub-
domains selected from the two parents to be such that the
remaining subgraph cannot be partitioned within the imbal-
ance constraint since it contains too many vertices. Such
situations turn out to be rare however and the crossover is
abandoned.

Selection of cycles of subdomains for mutations: Rather
than selecting a cycle independently for each mutation, sets
of mutations are carried out together in a hill-climbing se-
quence, the result of a mutation being the starting point of
the next if it produces a better or equally good partition
with respect to the number of cut edges. If the partition is
worse, the mutation is ignored.

A random spanning tree of the subdomain graph is gener-
ated, and then the fundamental cycles with respect to this
are recorded. Of these, cycles with lengths less than 4 and
greater than 8 are discarded; small cycles because they al-
low little variation and larger cycles since it is more difficult

for the partitioner to simultaneously improve more bound-
aries. When a cycle of subdomains is selected borders be-
tween subdomains are also targets for improvement, so that
very small cycles tend to be included in the optimisation
process already. Variations over longer cycles are provided
by the joint effect of crossover and mutation - they will tend
to be cut on crossover, and the resulting parts improved as
part of other smaller cycles.

Thus a hill-climbing sequence is the set of mutations as-
sociated with the remaining fundamental cycles. These se-
quences are used since they are more efficient to implement
than producing the mutations individually and their cycles
will include most subdomain boundaries.

3.2 Partitioning Subgraphs

The implementation of the new partitions of subgraphs
needed for both crossover and mutation are based on pre-
vious work, [16]. We use a multilevel technique as an ef-
ficient and effective partitioner. In fact the multilevel par-
titioner used is known as JOSTLE and we shall henceforth
refer to it as such, although any graph partitioning heuristic
which can deal with real (non-integer) edge weights could
be used. JOSTLE is fully described in [18].

Both crossover and mutation require that some edges of
the graph be made more likely to appear as cut edges un-
der the action of JOSTLE. This is achieved by biasing the
costs of the edges: the cost of an edge becomes unity plus
a positive number and JOSTLE takes account of these ad-
ditional costs when seeking low cost partitions. Mutations
are implemented by making existing cut edges and their
neighbours much less costly and crossover by making the
cut edges of both parents occurring in the subgraph being
repartitioned slightly less costly. New biases are explicitly
and partially randomly constructed from the parent(s) for
each operation.

3.3 The CHC adaptive search algorithm

The genetic algorithm framework chosen was Eshelman’s
CHC adaptive search algorithm, [6]. It has been shown
to work successfully on a wide range of problems (e.g.
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[13, 17]) with the same parameter settings and, importantly
for partitioning large graphs, it uses a small population of
50 individuals. This allowed the simulations to run in a
computer’s memory. Its main features are: an elitist selec-
tion strategy, a highly explorative crossover operator, incest
prevention and partial randomisations or restarts.

We adapted CHC as follows: Since the crossover provides
less variation than that used in the original version of CHC,
we also allow mutations. When a pair of parents are se-
lected for mating and pass the incest test, they crossover
with probability 0.3 and suffer mutation the rest of the time.
When mutation only is applied, a separate offspring is not
produced, rather, provided an improved partition or one of
equal quality results (compared to the parent), it is over-
written. This procedure helps maintain diversity within the
population.

When preventing incest, the distance between any two in-
dividual partitions was defined to be the number of vertices
in the graph minus the number of edge vertices that they
have in common. This measure clearly takes common cut
edges into account, but also any nearby borders. The dis-
tance threshold is initialised, both when starting the genetic
algorithm and on restarts, to the average distance apart of
some randomly sampled pairs in the population. Clearly
the distance between individuals is never zero, so that a
distance threshold to initiate restarts has to be set. This is
taken to be the distance of the best individual from itself,
the expected distance apart of individuals in the population
when it has converged. The distance threshold was decre-
mented by 10 whenever no new offspring were accepted.
This number need not be tuned to any great accuracy, since
a small value will produce earlier subsequent decrements
and vice-versa. However the value should be large enough
to allow more parents to mate on average; a decrement of
10 allowed this.

At a restart the best individual is randomised by mutating
the whole partition as described above, but with a heavier
bias supplied to non-border vertices in order to retain ap-
proximately 65% of the border vertices. Three restarts are
allowed after which the genetic algorithm is reinitialised.

The fitness of an individual was defined to be minus
the product of the number of cut edges times the imbal-
ance. JOSTLE occasionally produces partitions violating
the balance constraint which are strongly penalised by this
scheme.

The initial population was produced by repeatedly parti-
tioning the graph with JOSTLE using random but small bi-
ases, of the order of 0.1.
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4 EXPERIMENTAL RESULTS AND
DISCUSSION

‘We have implemented the algorithms described here within
the framework of JOSTLE, a mesh partitioning software
tool developed at the University of Greenwich and freely
available for academic and research purposes under a li-
censing agreement’. The experiments were carried out on
a variety of different machines; with its very long runtimes
(of several days in the case of the larger graphs), the evo-
lutionary search approach can soak up CPU cycles and the
tests were run so as to use up any spare capacity in the sys-
tem. As a result we have not measured runtimes.

4.1 Results on unstructured meshes

Table 1: A summary of the test graphs

size degree
graph |4 E | < > avg | type
data 2851 15093 | 17 3 10.6 | 3D nodal
3elt 4720 13722 9 3 5.8 | 2D nodal
uk 4824 6837 31 2.8 | 2D dual
ukerbel 5981 7852 8 2 2.6 | 2D nodal
add32 4960 9462 | 31 1 3.8 | circuit
crack 10240 30380 9 3 5.9 | 2D nodal
4elt 15606 45878 | 10 3 5.9 | 2D nodal

The test graphs have been chosen to be a representative
sample of small to medium scale real-life problems and in-
clude mostly 2D (and one small 3D) examples of nodal
graphs (where the mesh nodes are partitioned) and dual
graphs (where the mesh elements are partitioned). The test
suite also includes one non mesh-based graph, add32.

Table 1 gives a list of the graphs, their sizes, the maximum,
minimum & average degree of the vertices and a short de-
scription. The degree information (the degree of a vertex
is the number of vertices adjacent to it) gives some idea of
the character of the graphs. These range from the relatively
homogeneous dual graphs, where every vertex represents a
mesh element, in these cases a triangle and so every vertex
has at most 3 or 4 neighbours respectively, to the non mesh-
based graph such as add32 which has vertices of degree 31.
As the graphs are not weighted, the number of vertices in
V is the same as the total vertex weight |V| and similarly
for the edges E.

Graph partitioning algorithms can usually find higher qual-
ity partitions if the balancing constraint is relaxed slightly.
Indeed some of the public domain graph partitioning pack-
ages such as JOSTLE & METIS have an in-built, although
adjustable, imbalance tolerance of 3% (i.e. the largest sub-
domain is allowed to be up 1.03 times the size of the maxi-

2available from http://www.gre.ac.uk/jostle
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mum allowed for perfect balance). We therefore tested the
evolutionary algorithm with various tolerances and Table 2
shows a comparison of the cut-weight results with 0% and
3% imbalance tolerances, C’% and C’% respectively, for four
values of P (the number of processors/subdomains). For
each value of P, the first & second columns show the cut-
weight with the allowed imbalance, while the third column
shows the ratio of cut-weight for 3% imbalance scaled by
that for 0% imbalance, C%,/C%,. Thus the figure of 0.98
for the data graph and P = 8 means that the algorithm was
able to find a partition 2% better if allowed a 3% imbalance
tolerance. As can be seen, the improvement in quality for
these tests is up to 7% and on average is around 3%.

To demonstrate the quality of the partitions, we have com-
pared the results in Table 2 with those produced by a pub-
lic domain partitioning package JOSTLE (JOSTLE 2.2,
March 2000), [18]. Firstly Table 3 shows a comparison of
the cut-weight results for the public domain version of JOS-
TLE compared to the evolutionary search algorithm. These
results are an improvement on our previous evolutionary
search implementation, [16]. The average difference in the
quality ranges from 23% to 20% as P increases and can be
as bad as 75%. Note that differences in quality tend to di-
minish as P increases. It is tempting to speculate that this
is because the margins for difference decrease as the num-
ber of vertices per subdomain (& V/P) decreases. Indeed
in the limit where V' = P the only balanced partition (for
an unweighted graph at least) is to put one vertex in each
subdomain and so the differences vanish altogether.

4.2 Comparison with the results of Kang & Moon

In this section we compare our results against a recent
benchmark of Kang & Moon, [10]. Some of these graphs
have similar structure to meshes, but some less structured
examples are included, [5, 9].

Three types of graph were tested: Un.d, random geometric
graphs of n vertices that lie in the unit square and whose
co-ordinates are chosen uniformly from the unit interval,
Gridn.b, a grid graph of n vertices whose optimal bisec-
tion size is known to be b and W-gridn.b, the same graph
with wrapped boundaries; Bregn.b, a random regular graph
of n vertices each of which has degree 3, and the optimal
bisection size is b with probability 1 — o(1), [3].

We expect the random geometric graphs and grid graphs
to be suitable for the crossover and mutation operators
because of their geometric origin — they both arise from
the embedding of graph vertices in a low dimensional Eu-
clidean space, with only local connections between points
giving rise to edges. The randomly generated Bregn.b
graphs, with edges possible between any pairs of vertices
do not exhibit the structure required by the heuristic bias
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of the genetic algorithm. Caterpillar graphs were not used
since they have a very different structure altogether.

Kang & Moon’s benchmarks were produced by running
their genetic algorithm 50 times on each problem graph,
with each run given an allotted CPU time and keeping
the best. The objectives of our experiments were twofold.
Firstly to test whether our genetic algorithm was robust —
could it find partitions as good as those of Kang & Moon
without requiring repeated runs (or equivalently the re-
peated full reinitialisations after 3 restarts) within broadly
similar total time budgets. This is a good test of the heuris-
tic bias given to the crossover and mutation operators, since
if insufficient very fit offspring are produced, the popula-
tion will converge and the quota of 3 restarts soon used
up. Secondly to support, improve and extend their bench-
marks. For 32-way partitioning the number of vertices in
the graphs did not divide exactly by 32, so that some parti-
tions will have more vertices than others. We use a less re-
strictive constraint than theirs, which requires that the par-
titions differ by no more than one vertex, since we only
constrain the maximum allowed number of vertices, so for
32-way partitioning we are extending the benchmark. 