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Abstract

In this paper we present two hybrid Particle
Swarm Optimisers combining the idea of the par-
ticle swarm with concepts from Evolutionary Al-
gorithms. The hybrid PSOs combine the tradi-
tional velocity and position update rules with the
ideas of breeding and subpopulations. Both hy-
brid models were tested and compared with the
standard PSO and standard GA models. This is
done to illustrate that PSOs with breeding strate-
gies have the potential to achieve faster conver-
gence and the potential to find a better solution.
The objective of this paper is to describe how to
make the hybrids benefit from genetic methods
and to test their potential and competetiveness on
function optimisation.

1 Introduction

The Particle Swarm Optimisation (PSO) algorithm was
originally introduced in [Kennedy95] as an alternative to
the standard Genetic Algorithm (GA). The PSO was in-
spired by insect swarms and has since proven to be a com-
petitor to the standard GA when it comes to function opti-
misation. Since then several researchers have analysed the
performance of the PSO with different settings, e.g., neigh-
bourhood settings ([Kennedy99, Suganthan99]). Work pre-
sented in [Shi98] describes the complex task of parameter
selection in the PSO model. Comparisons between PSOs
and the standard GA were done analytically in [Eberhart98]
and also with regards to performance in [Angeline98]. An-
geline points out that the PSO performs well in the early
iterations, but has problems reaching a near optimal solu-
tion in several real-valued function optimisation problems.
Both Eberhart and Angeline conclude that hybrid models

of the standard GA and the PSO, could lead to further ad-
vances.

We present such a hybrid model. The model incorporates
one major aspect of the standard GA into the PSO, the re-
production. In the following we will refer to the used re-
production and recombination of genes only as “breeding”.
Breeding is one of the core elements that makes the stan-
dard GA a powerful algorithm. Hence our hypothesis was
that a PSO hybrid with breeding has the potential to reach
a better optimum than the standard PSO.

In addition to breeding we introduce a hybrid with both
breeding and subpopulations. Subpopulations have pre-
viously been introduced to standard GA models mainly
to prevent premature convergence to suboptimal points
([Spears94]). Our motivation for this extension was that the
PSO models, including the hybrid PSO with breeding, also
reach suboptimal solutions. Breeding between particles in
different subpopulations was also added as an interaction
mechanism between subpopulations.

The introduced hybrids were tested against both standard
PSO and standard GA models.

The next section presents the structures of the hybrid PSO
models. Section 3 describes the experimental settings used
to find the results described in section 4. The experimen-
tal results are discussed in section 5 and finally section 6
summarises the study.

2 Model

The traditional PSO model, described by [Kennedy95],
consists of a number of particles moving around in the
search space, each representing a possible solution to a nu-
merical problem. Each particle has a position vector (�xi), a
velocity vector (�vi), the position (�pi) and fitness of the best
point encountered by the particle, and the index (g) of the

469GENETIC ALGORITHMS



best particle in the swarm.

In each iteration the velocity of each particle is updated
according to their best encountered position and the best
position encountered by any particle, in the following way

�vi = χ(w�vi + �ϕ1i(�pi − �xi) + �ϕ2i(�pg − �xi))

where χ is known as the constriction coefficient described
in [Clerc99], w is the inertia weight described in [Shi98B,
Shi98] and �pg is the best position known for all particles.
ϕ1 and ϕ2 are random values different for each particle and
for each dimension. If the velocity is higher than a certain
limit, called Vmax, this limit will be used as the new ve-
locity for this particle in this dimension, thus keeping the
particles within the search space.

The position of each particle is updated in each iteration.
This is done by adding the velocity vector to the position
vector, i.e.,

�xi = �xi + �vi

The particles have no neighbourhood restrictions, mean-
ing that each particle can affect all other particles. This
neighbourhood is of type star (fully connected network),
which have been shown to be a good neighbourhood type
in [Kennedy99].

The structure of the hybrid model is illustrated in figure 1.

begin
initialise
while (not terminate-condition) do

begin
evaluate
calculate new velocity vectors
move
breed

end
end

Figure 1: The structure of the hybrid model.

The breeding is done by first determining which of the par-
ticles that should breed. This is done by iterating through
all the particles and, with probability pb (breeding proba-
bility), mark a given particle for breeding. Note that the
fitness is not used when selecting particles for breeding.
From the pool of marked particles we now select two ran-
dom particles for breeding. This is done until the pool of
marked particles is empty. The parent particles are replaced
by their offspring particles, thereby keeping the population
size fixed.

The position of the offspring is found for each dimension
by arithmetic crossover on the position of the parents, i.e.,

child1(xi) = pi ∗ parent1(xi) + (1.0− pi) ∗ parent2(xi)

child2(xi) = pi ∗ parent2(xi) + (1.0− pi) ∗ parent1(xi)

where pi is a uniformly distributed random value between
0 and 1. The velocity vectors of the offspring is calculated
as the sum of the velocity vectors of the parents normalised
to the original length of each parent velocity vector.

child1(�v) =
parent1(�v) + parent2(�v)
|parent1(�v) + parent2(�v)| |parent1(�v)|

child2(�v) =
parent1(�v) + parent2(�v)
|parent1(�v) + parent2(�v)| |parent2(�v)|

The arithmetic crossover of positions and velocity vectors
used were empirically tested to be the most promising. The
arithmetic crossover of positions in the search space is one
of the most commonly used crossover methods with stan-
dard real valued GAs, placing the offspring within the hy-
percube spanned by the parent particles. The main motiva-
tion behind the crossover is that offspring particles benefit
from both parents. In theory this allows good examination
of the search space between particles. Having two parti-
cles on different suboptimal peaks breed could result in an
escape from a local optimum, and thus aid in achieving a
better one.

We used the same idea for the crossover of the velocity vec-
tor. Adding the velocity vectors of the parents results in the
velocity vector of the offspring. Thus each parent affects
the direction of each offspring velocity vector equally. In
order to control that the offspring velocity was not getting
too fast or too slow, the offspring velocity vector is nor-
malised to the length of the velocity vector of one of the
parent particles.

Finally, the starting position of a new offspring particle is
used as the initial value for this particle’s best found opti-
mum (�pi).

2.1 Subpopulation Model

The motivation for introducing subpopulations is to restrict
the gene flow (keeping the diversity) and thereby attempt
to evade suboptimal convergence.

The subpopulation hybrid PSO model is an extension of
the just described breeding hybrid PSO model. In this new
model the particles are divided into a number of subpopu-
lations. The purpose of the subpopulations is that each sub-
population has its own unique best known optimum. The
velocity vector of a particle is updated as before except that
the best known position (�pg in the formula) now refers to
the best known position within the subpopulation that the
particle belongs to. In terms of the neighbourhood topology
suggested by Kennedy in [Kennedy99], each subpopulation
has its own star neighbourhood.
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The only interaction between subpopulations is if parents
from different subpopulations breed. Breeding is now pos-
sible both within a subpopulation but also between differ-
ent subpopulations. An extra parameter called probability
of same subpopulation breeding (psb) determines whether
a given particle selected for breeding is to breed within
the same subpopulation (probability psb), or with a particle
from another subpopulation (probability 1 − psb).

Replacing each parent with an offspring particle ensures a
constant subpopulation size.

3 Experimental Settings

Both the PSOs and the standard GA were tested on four
benchmark problems, all minimisation problems. The first
two functions were unimodal while the last two were multi-
modal with many local minima. All functions are designed
such that their global minimum was at or near the origin of
the search space.

The first test function was the generalised sphere function
given by the equation

f1(x) =
n∑

i=1

x2
i

where x is a n dimensional real-valued vector and xi is
the ith element of that vector. The second function is the
generalised Rosenbrock function given by the equation

f2(x) =
n−1∑

i=1

(100(xi+1 − x2
i )

2 + (xi − 1)2)

The third function is the generalised Griewank function.

f3(x) =
1

4000

n∑

i=1

(xi − 100)2 −
n∏

i=1

cos(
xi − 100√

i
) + 1

The fourth and final test function is the generalised Rastri-
gin function which is given by the equation

f4(x) =
n∑

i=1

(x2
i − 10cos(2πxi) + 10)

These four functions have been commonly used in other
studies on particle swarm optimisers (e.g. [Kennedy99,
Shi99]).

The initial population is usually uniformly distributed over
the entire search space. According to [Angeline98] this can
give false indications of relative performance - especially
if the search space is symmetric around the origin where
many test functions have their global optimum. To prevent
this, and to ease comparison with other models, the asym-
metric initialisation method used in [Angeline98] was used.

Table 1: Search space and asymmetric initialisation ranges
for each test function.

Function Search space Initialisation range
f1 −100 ≤ xi ≤ 100 50 ≤ xi ≤ 100
f2 −100 ≤ xi ≤ 100 15 ≤ xi ≤ 30
f3 −600 ≤ xi ≤ 600 300 ≤ xi ≤ 600
f4 −10 ≤ xi ≤ 10 2.56 ≤ xi ≤ 5.12

Search space and initialisation ranges for the experiments
are listed in table 1. The number of generations run for each
test function was set to 1000, 1500 and 2000 correspond-
ing to the dimensions 10, 20 and 30 of the test functions
respectively.

In both the standard PSO model and the hybrid model, the
upper limits for ϕ1 and ϕ2 were set to 2.0, and a linearly
decreasing inertia weight starting at 0.7 and ending at 0.4
was used. The constriction coefficient χ was set to 1. The
maximum velocity (Vmax) of each particle was set to be
half the length of the search space in one dimension (for
instance Vmax = 100 for f1 and f2).

Two sets of experiments were conducted; Experiments with
breeding alone and experiments with both breeding and
subpopulations.

Research done in [Shi98] regarding scalability of the stan-
dard PSO have shown that the performance of the standard
algorithm is not sensitive to the population size. Exper-
iments with the hybrid model confirm this result. Based
on these results the population size in the experiments was
fixed to 20 particles in order to keep the computational re-
quirements low.

In the experiments with subpopulations, the population size
for the whole system was also 20. The size of each sub-
population was fixed throughout each run at 20

subpopulations
particles.

The probability for breeding (pb) was empirically found to
have its optimal setting at 0.2, which with 20 particles on
average gives a total of two breedings per generation.

In the experiments with subpopulations, the best setting re-
garding the probability for breeding within the same sub-
population (psb) was determined empirically by examining
the results for different settings. The number of subpopu-
lations used in the experiments was 2, 3, 4 and 6. Table 2
shows the relation between the number of populations and
the setting for this probability that appeared to be optimal.

The standard GA that we used was a real-valued GA with
random initialisation, tournament selection with tourna-
ment size two, arithmetic crossover with random weight,
Gaussian mutation with distribution N(0, α) where α is
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Table 2: Probability for breeding within same subpopula-
tion compared to number of populations

Populations Psb
1 1.0
2 0.6
3 0.3
4 0.0
6 0.0

linearly decreasing from 1 to 0. Crossover and mutation
probabilities for each of the four test functions are listed in
table 3. In order to get a fair comparison between the mod-
els, with regards to the total number of evaluations, a pop-
ulation size of 20 individuals was also selected for the GA.
This was done even though the standard GA often requires
larger population sizes in comparison to the standard PSO
model [Angeline98]. Other studies [Shi99] show that the
standard PSO model with different population sizes have
almost the same performance, so the low population size
seems to be fair when analysing the PSO model.

Table 3: Crossover and mutation probability used in stan-
dard GA.

Function Crossover prob. Mutation prob.
f1 0.60 0.30
f2 0.50 0.30
f3 0.50 0.40
f4 0.20 0.02

A total of 100 runs for each experiment were conducted.

4 Experimental Results

Tables 4 and 5 list a representative set of results from the
conducted experiments. The tables list the test function, the
dimensionality of the function, the number of generations
the algorithm was run and the average best fitness for the
best particle found for the 100 runs of the four test functions
respectively. Standard error for each value is also listed.
Table 4 shows results for the experiments with the hybrid
PSO without subpopulations. The table also list the corre-
sponding average best fitness of both the standard PSO and
the standard GA with the same settings (where they are ap-
plicable) as described in the previous section. Results for
experiments with subpopulations are listed in table 5. Note
that the hybrid PSO with one subpopulation in table 5 cor-
responds to the hybrid PSO in table 4.

Figures 2 to 7 are graphs corresponding to the reported ex-
periments.

Figures 2 to 5 show the average best fitness for each genera-
tion for both the standard PSO model, the standard GA and
the hybrid model. The graphs illustrate a representative set
of experiments for functions with a dimensionality of 30.
The hybrid model in these figures are without subpopula-
tions (i.e. one subpopulation). Note that the figure with the
Griewank function only illustrates two experiments, since
the standard GA was unable to achieve a reasonable result
(see table 4).

Figures 6 and 7 show the average best fitness for each
generation for both the standard PSO model and the hy-
brid model. The graphs illustrate experiments with both
a unimodal (Rosenbrock) and a multimodal test function
(Griewank) both of 30 dimensions. The graphs for the hy-
brid model correspond to experiments with a varying num-
ber of subpopulations. The graphs for the standard PSO
model are the same as in the previous figures.

Tables 4 and 5 with corresponding figures 2 to 5 show re-
sults for the standard PSO supporting the results in [Shi99].

In experiments with the Sphere function the standard PSO
achieved better results and had much faster convergence
than both the standard GA and the hybrid model with one
subpopulation. The GA and the hybrid model found similar
values but the hybrid model had a faster convergence speed
than the GA. When the number of subpopulations in the
hybrid model was increased the best fitness got worse. This
happened in all of the experiments.

With the Rosenbrock function, the standard PSO had a bet-
ter performance than both the GA and the hybrid model.
The hybrid model only had a fitness comparable to that
of the standard PSO when the test functions were of low
dimensionality. When the dimensionality of the test func-
tions were higher, the GA accomplished better results than
the hybrid model. The convergence speed of the GA and
the hybrid model was better than that of the standard PSO.

In the experiments with the Griewank function, the GA
failed to achieve a reasonable result compared to the other
models. The hybrid model had a faster convergence than
the standard PSO, but achieved a marginally worse best
value.

In experiments with the Rastrigin function, the hybrid
model was better than both the standard GA and the stan-
dard PSO model with both a faster convergence and also a
better best value found.
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Table 4: Average best fitness of 100 runs for experiments without subpopulations (Average best fitness±standard error).

f Dim. Gen. Std. PSO Std. GA Hybrid
f1 10 1000 2.98E-33±4.21E-33 2.43E-04±1.14E-05 2.42E-04±2.17E-05
f1 20 1500 3.03E-20±9.27E-21 0.00145±6.22E-05 0.00212±2.75E-04
f1 30 2000 6.29E-13±7.64E-14 0.00442±1.78E-04 0.01203±6.33E-04
f2 10 1000 43.049±11.554 109.810±6.212 43.521±16.047
f2 20 1500 115.143±19.871 146.912±10.951 169.112±21.535
f2 30 2000 154.519±24.512 199.730±16.285 187.033±22.960
f3 10 1000 0.08976±0.00498 283.251±1.812 0.09078±0.03306
f3 20 1500 0.03601±0.00298 611.266±3.572 0.00459±0.01209
f3 30 2000 0.01504±0.00241 889.537±3.939 0.09911±0.00106
f4 10 1000 4.8021±0.2323 3.1667±0.2237 3.0599±0.1535
f4 20 1500 21.3917±0.7885 16.8732±0.6007 11.6590±0.3602
f4 30 2000 46.9712±1.3206 49.3212±1.1204 27.8119±0.8059

Table 5: Average best fitness of 100 runs for experiments with subpopulations (Average best fitness±standard error).
(“Hybrid (i)” is the hybrid model with i subpopulations).

f Dim. Gen. Hybrid (1) Hybrid (2) Hybrid (4) Hybrid (6)
f1 10 1000 2.42E-04±2.17E-05 3.796E-05±9.22E-05 0.00223±9.13E-04 0.02124±0.00641
f1 20 1500 0.00212±2.75E-04 0.00175±2.28E-04 0.00566±0.00185 0.04597±0.00721
f1 30 2000 0.01203±6.33E-04 0.17396±4.56E-04 0.02023±0.00349 0.05669±0.00738
f2 10 1000 43.521±16.047 51.701±13.761 63.369±14.006 81.283±14.907
f2 20 1500 169.112±21.535 129.570±14.880 108.391±16.928 137.236±19.619
f2 30 2000 187.033±22.960 196.554±14.733 279.390±19.468 247.724±31.822
f3 10 1000 0.09078±0.03306 0.46423±0.03700 0.69206±0.02758 0.74694±0.01844
f3 20 1500 0.00459±0.01209 0.02231±0.02121 0.09885±0.01883 0.34306±0.03072
f3 30 2000 0.09911±0.00106 0.06316±0.00121 0.16389±0.00913 0.37501±0.02842
f4 10 1000 3.0599±0.1535 3.5615±0.1478 3.6840±0.2611 6.8036±0.4657
f4 20 1500 11.6590±0.3602 12.9158±0.3107 11.6379±0.5308 11.7054±0.5992
f4 30 2000 27.8119±0.8059 38.5897±0.6455 29.5827±1.0649 29.1747±0.9449
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Figure 2: Standard PSO versus hybrid model for Sphere
function with one population.
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Figure 3: Standard PSO versus hybrid model for Rosen-
brock function with one population.
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Figure 5: Standard PSO versus hybrid model for Rastrigin
function with one population.

5 Discussion

Tables 4 and 5 show a comparison of the performances in
the standard PSO model, the standard GA, and the breeding
PSO hybrid with regards to the optimum found.

Looking at the unimodal functions Sphere (f1) and Rosen-
brock (f2) both the hybrid and the standard GA seem to
outperform by the standard PSO. As mentioned in section
2 the offspring are initialised with a clean memory, i.e., the
previously best found solution of a new particle is its start-
ing point in the search space. This should provide a form
of diversity since new particles are unaware of previously
found optima. The purpose of adding diversity to the stan-
dard PSO is to tackle the problem of avoiding sub-optimal
solutions. When we try to avoid sub-optimal solutions we
run the risk of not beeing able to find a close to optimal so-
lution because the particles takes longer to converge. This
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Figure 6: Hybrid model with different number of subpopu-
lations versus standard PSO (Rosenbrock 30 dim.).

0

2

4

6

8

10

0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
itn

es
s

Generation

Hybrid (1 subpopulation)
Hybrid (2 subpopulations)
Hybrid (4 subpopulations)
Hybrid (6 subpopulations)

Std. PSO
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lations versus standard PSO (Griewank 30 dim.).

could be why the hybrid model suffers in experiments with
unimodal functions.

Looking at the multimodal functions Griewank (f3) and
Rastrigin (f4) the hybrid model should have a better chance
of outperforming the standard PSO, because of the ex-
tra diversity. Table 4 does not show an improvement for
the Griewank function, but figure 4 shows that the hybrid
model converges faster than the standard PSO model. The
standard GA was not able to reach a reasonable optimum
in any of the experiments with the Griewank function. This
is probably due to the fairly small population size in the
GA. Table 4 along with figure 5 show the improvements
for the Rastrigin function. Here both faster convergence
is achieved and an improvement in the best solution is
found. These results could be because of the design of
the crossover operator that allows offspring particles to es-
cape local optima (see section 2). The results seem to show
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the potential of particle breeding regarding the multimodal
problems.

Table 5 as well as figures 6 and 7 show no further in-
crease in performance when subpopulations were intro-
duced. Comparisons between the approach with one sub-
population (equal to the standard breeding PSO hybrid) and
cases with more than one subpopulation show that the in-
troduction of subpopulations only outperforms the standard
breeding PSO hybrid in the Rosenbrock 20-dimensional
function. In all other experiments the hybrid model with
subpopulations performs worse than the standard PSO
model. This is probably because the particles are dis-
tributed in several subpopulations which yields a subpopu-
lation size that is too low.

The setting of psb, the probability of breeding within the
same subpopulation, could be the cause of the performance
deterioration. When the number of subpopulations is in-
creased, the number of particles in each subpopulation is
decreased. Having only a few particles in a subpopulation
limits the effect of breeding within this subpopulation. Our
experiments confirm that it was better to use a lower psb
when the number of subpopulations increases, as seen in
Table 2. A low psb implies that the probability for breed-
ing between subpopulations is high which of course re-
duces the effect of subpopulations, in that the amount of
gene flow in the total population is kept somewhat constant.
These results suggest that the introduction of this specific
subpopulation construction to the hybrid model does not
generally improve the performance of particle swarms.

6 Conclusions and Future Work

In this paper a hybrid model based on the standard Par-
ticle Swarm Optimiser (PSO) and the standard Genetic
Algorithm (GA) was introduced. The hybrid model
was basically the standard PSO combined with arithmetic
crossover. Furthermore, the notion of subpopulations in the
hybrid model was introduced, also from the genetic algo-
rithm field.

Four models were used in comparison, namely the stan-
dard PSO model, the standard GA and the two hybrid mod-
els. Parameters for each model were empirically tuned for
each model yielding interesting results regarding the hybrid
models. We found that the probability of breeding (pb) for
a given particle had its optimum around 0.2. The optimal
setting for the probability for breeding between subpopu-
lations (psb) was in our case found to depend on the num-
ber of subpopulations. This result indicates that the model
would work better with larger subpopulation sizes or other
interaction constructions between subpopulations

On unimodal test functions (Sphere and Rosenbrock) the
hybrid model was outperformed by the standard PSO and

GA models regarding a comparison of the best optima
found. Yet, the hybrid model had a marginally faster con-
vergence than both the standard PSO and GA models. On
multimodal test functions (Griewank and Rastrigin) the hy-
brid model performed better. The optima found by the hy-
brid were better or identical to those of the standard PSO
model and the convergence speed was marginally faster.

Future work should cover the grounds of other subpopu-
lation constructions. We chose breeding to model interac-
tion between subpopulations, but other schemes such as mi-
gration should be investigated. Larger subpopulationsizes
should also be investigated and compared to other evolu-
tionary algorithms that uses subpopulations.
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Abstract

The concept of building blocks is reconsid-
ered in the context of set systems. It is ar-
gued that building block semantics can be
captured by imposing two constraints (the
weak heredity and weak augmentation prop-
erties). Building blocks that satisfy these
properties are shown to be closely related
(but not identical) to greedoids, combinato-
rial objects of central importance in the study
of greedy algorithms.

1 Introduction

The aim of this paper is to examine the combinatorial
structure of the building block concept. Two issues
motivate this study: First, the need to clarify the con-
troversial relationship between genetic algorithms and
building blocks. Second, the need to study the (sus-
pected) relationship between greedy algorithms and

genetic algorithms.

The outline of this paper is as follows. In Section 2, the
relationship between greedy algorithms and genetic al-
gorithms (GAs) is considered. Section 3 examines the
conceptual foundations of building blocks. It also in-
troduces a representation to explicate the block inter-
relationships. Section 4 relates greedoids to a certain
type of building blocks. Section 5 closes with a dis-
cussion of the results. Results drawn from external
sources are referred to as \Propositions."

2 Greed & GAs: Connections

Besides the trivial fact that both greedy algorithms
and genetic algorithms are algorithmic strategies

rather than algorithms per se, they also share several
other similarities:

� Both approaches involve the selection of some dis-
tinguished members from a population. This se-
lection is not arbitrary, but instead is made with
respect to some partial-order imposed on the pop-
ulation (usually, that induced by the cost func-
tion).

� Both require solutions to the problem to have cer-
tain structural properties, if optimal solutions are
to be generated. These structural properties are
particularly well understood in the case of greedy
algorithms [7]. For genetic algorithms, the situa-
tion is much less clear. Minimally, one expects
that there should be some correlation between
the representation of a solution and its \good-
ness." Also, the early introduction of concepts
like building blocks, deception, schemas, Royal
Road functions etc. to the �eld, indicates the gen-
eral acknowledgment of the importance of prob-
lem structure to GA-eÆcacy.

� Certain idealized versions of GAs can be shown to
be gradient algorithms, which are merely greedy
algorithms operating on cost surfaces. One such
idealization is the GA equipped with propor-
tional selection, no mutation e�ects, and applica-
tions of point crossover until linkage equilibrium
is achieved in each crossover phase. This ideal-
ization is easily shown to be a gradient algorithm
[13].

� Recent mathematical descriptions of the two ap-
proaches also bear strong resemblance to each
other. The theory of greedy algorithms has
been recast in terms of a new majorization op-
erator acting on sequences [14]. Remarkably,
an entirely di�erent set of arguments (replicator
theory, quadratic di�erential equations) enabled

the interpretation of proportional selection, point
crossover and bit mutation operators as majoriza-
tion operators [11].
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Of course, all this evidence is merely circumstantial,
and some of it, defeasible. It is always harder to prove
the absence of a relationship than the presence of one.
Also, there are distinct di�erences between the two
strategies. GAs are inherently probabilistic, while the
\classic" applications of greedy algorithms (for exam-
ple, the minimum spanning tree problem, Hu�man en-
coding, the knapsack problem with real weights) are
all inherently deterministic. The very notion of a prob-
abilistically greedy algorithm is hard to de�ne or op-
erationalize. For instance, how would an \occasion-
ally greedy" algorithm be di�erent from a \randomly
greedy" algorithm? Is a \non-greedy" algorithm al-
lowed to be occasionally greedy?

There are other di�erences. GAs operate on a pop-

ulation of solutions, while greedy algorithms usually
reduce to the incremental construction of an optimal
object (for example, the construction of a minimum
spanning tree, one edge at a time). Experimental
studies with the Royal Road functions indicate that

modi�cations that improve the performance of greedy
algorithms do not necessarily improve the performance
of genetic algorithms [2]. It is also doubtful that the
two approaches are philosophically compatible. It is
hard to see how diversity, that bedrock of evolution,
can be achieved through purely greedy mechanisms.

Clearly, there are similarities as well as di�erences.
But is there a conceptual core that is common to both
approaches? The next two sections argue that there is
such a core, rooted in the notion of a building block.

3 Reconsidering Building Blocks

The �rst explicit description of a building block was
given by Goldberg:

\Because highly �t schemata of low de�ning
lengths and low order play such an impor-
tant role in the action of genetic algorithms,
we have already given them a special name:
building blocks. Just as a child creates mag-
ni�cent fortresses through the arrangement of
simple blocks of wood, so does a genetic algo-
rithm seek near optimal performance through
the juxtaposition of short, low-order, high
performance schemata, or building blocks."
[3, pp. 41]

Intuitively, a building block is an allelic combination
which confers upon its inheritor some attractive prop-

erty, typically, an above-average �tness value. Lay ex-
planations of GA dynamics have generally relied upon
the notion of a building block. For example, deceptive

functions are supposed to mislead the GA about the
\right" building blocks to evolve, and crossover opera-
tors are sometimes ranked on their ability to combine
building blocks. The concept of a building block has
the virtues of being simple, reasonable, and useful in
operator design.

The simpli�ed explanation of how a GA works has
come to be called the \building block hypothesis"
(BBH). The BBH does not make any assertions on
what should happen if low-�tness, low-order, schemas
with low de�ning lengths are combined, nor does it
concern itself with issues of statistical confounding.
For these and related reasons, the BBH has been crit-
icized [5, 12]. An in
uential paper showed experimen-
tally that the BBH could not possibly be true in its
lay interpretation [2]. Goldberg had introduced the
concept of deception to encompass situations in which
the BBH was violated; unfortunately, simulations of
GAs optimizing deception-free functions (such as the
Royal Road functions [2]) appeared to show that the

BBH was still being violated. The concept of decep-
tion itself received a telling blow with Grefenstette's
analysis [4].

However, the BBH and associated ideas can be de-
fended in several ways. Altenberg's use of Price's the-
orem [1], or the recent attempt to relate Geiringer's
theorem to schema analysis [15], shows how careful for-
mulations of the Schema theorem can mitigate some
of the criticisms leveled against it. The generality of
Price's theorem makes it diÆcult to see how any evo-
lutionary explanation can completely ignore schema-
theoretic arguments. Besides, the BBH represents a
certain ideal, that the nitty-gritty details of GA im-
plementations may not achieve. This can be given a
normative 
avor: Would an optimizer really choose a
GA that violates the BBH over one that preserves it?

Unfortunately, the BBH lends itself to misinterpreta-
tion. The assertion that a GA's success is due to the fe-
licitous juxtaposition of building blocks is a causal as-
sertion of the form \Y (high �tness schemata) because
of X, (juxtaposition of building blocks)" or simply, \if
X then Y." Seen this way, it suggests that a build-
ing block is a causal explanation in the sense of the
philosopher John Mackie, namely, an INUS condition
(\InsuÆcient but necessary part of an unnecessary
but suÆcient condition1.") [10]. The BBH does not
assert that highly �t schemata cannot be created in
other ways (for example, random drift, combinato-
rial miracles via mutation, hitchiking mechanisms). It
also says nothing about what would happen if there
are constraints on the population size, that is, if the

1Italics added.
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growth of one building block is at the expense of an-
other. The case of cohort analysis in demographics
is instructive. A wide variety of anomalous results
may be demonstrated due to the dynamics of hetero-
geneous cohorts subject to di�erent rates of growth
[16]. Yet, mortality curves can still be constructed
based on simple population models. The results of
Forrest and Mitchell [2] appear to be closely related to
the paradoxes observed when aggregation procedures
are applied to heterogeneous collections [6].

Finally, it is important to remember that despite their
common history, the BBH is distinct from the con-
cept of a building block. The BBH may well be too
simplistic for any practical or theoretical use. But the
concept of a building block, or a variant thereof, is still
a fruitful one.

In the next section, building blocks are examined from
a combinatorial perspective. The idea is to represent a
collection of building blocks as a set system, and trans-
late the semantics of building blocks into structural
statements on the set system. The resulting combina-
torial structure will be compared with greedoids, and
the similarities delineated.

3.1 Building Blocks: Representation

The �rst step is to �x the representational aspect of
building blocks. Let Zl denote the set of integers
f1; 2; : : : ; lg. Assume that allelic values are drawn from
the set Zm. Let P (Zl � Zm) denote the power set (=

set of all subsets) of Zl�Zm. A building block is a set
of the form,

B = f(i; j) : i 2 Zl; j 2 Zm g 2 P (Zl � Zm): (1)

(i; j) 2 B indicates that the building block B has
allele j in position i. Hence, it is required that if
(i1; j) 2 B and (i2; k) 2 B, then i1 6= i2. The or-

der of a building block B is its cardinality, that is, the
number of elements in the set B, and is denoted as jBj.
For example, the set B = f(1; 1); (3; 0),(5; 1); (6; 1)g
refers to the schema 1 � 0 � 11 � � � �. Building blocks
B1 and B2 are said to be in con
ict if there exists a
(i; j) 2 B1 and (i; j0) 2 B2 and j 6= j0. Thus, the
schemas 1 � 0 � 11 and 0 � 0 � 01 have two con
icting
alleles at loci 1 and 5.

Let B(m; l) (or simply, B) denote a set of building
blocks on m alleles and l positions (loci).

The traditional interpretation of a building block as
a high-�tness, low-order and low de�ning-length set
of alleles is problematic for three reasons. First, the
de�ning length of a building block is an artifact of
the \string" representation (unlike its order), and may

not be meaningful for other representations. Second,
the term \high �tness" can be interpreted in several
non-equivalent ways (\above average �tness", \above
median-�tness" etc.). Third, it is not clear whether
a building block is a static concept or a dynamic one
(that is, proportion dependent).

The view adopted in this paper is as follows: The de�n-
ing length of a building block will be treated as not
being relevant to the concept of a building block. It
is assumed that the building block concept is a static
one, and hence should not depend on the schema pro-
portions in the population. Finally, by \high �tness"
it is meant that for the non-negative, real valued, �t-
ness function F under consideration, there is some
�tness-criteria based, many-to-one indicator function
�F , where:

�F : P (Zl � Zm) ! f0; 1g;

Bi 2 B , �F (Bi) = 1:

For example, the indicator function could be based on
whether the �tness of a block was greater than the
static average of the function. The function �F (�) is
deliberately left unspeci�ed, because the choice of a
speci�c formula is not relevant as long as it is used
consistently (at least for the purposes of this paper).

3.2 Encodons: Encoding Building Blocks

Each building block in B(m; l) is now encoded as a
subset of Zq where q � jlmj. The encoding will be
represented by the one-to-one partial function �:

� : P (Zl � Zm) ! Zlm ;

�(�) = �:

� is said to be the trivial encodon. The partial function
� is computed by the following procedure, formally
described below in Figure 1.

The algorithm in Figure 1 operates (roughly) like
a variable length encoding procedure. It begins by
renumbering the elements of B so that the �rst l1 (say)
elements are all blocks of order 1, the next l2 elements
are of order 2 and so on [step 1]. Encode each order-d
building block in terms of the encodings of blocks of
lowest possible order [step 2].

For example, suppose a block of order-d can be writ-
ten as the union of a collection of order-1 blocks. Its
encoding is then de�ned to be the union of the encod-
ings of the order-1 blocks in the collection. However,
an order-d building block need not usually decompose
in that manner. The general method for encoding
such a block X is to determine its intersection with
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1. Rearrange the elements of B so that the

block orders are non-decreasing. Set

cnt = 0.

2. For each successive order-d block Bj in

B, do:

(a) Define �(Bj) = �.

(b) For each order-r block Bk (k 6= j,r <

d) in B do:

i. Compute Cjk = Bj \ Bk.

ii. If �(Cjk) is not defined, then:

define �(Cjk) = fcnt+1g. cnt = cnt+
1.

iii. Update: �(Bj) = �(Bj) [ �(Cjk).

(c) Compute Dj = Bj � [r2 �(Bj)Br.

(d) If Dj 6= �, then:

i. Define �(Dj) = fcnt+1g. cnt = cnt+
1.

ii. Set �(Bj) = �(Bj) [ �(Dj).

Figure 1: Computing Block Encodings

every other building block of strictly lower order [step
2(b)i]. If an intersection set has already been encoded,
then its encoding is added to X 's encoding set [step
2(b)iii]. If not, we de�ne the intersection set's encod-
ing to be a new singleton set consisting of the smallest
unused integer in Zlm [step 2(b)ii]. That encoding is
also added to X 's encoding set [step 2(b)iii]. If X
can be recovered by taking the union of its intersec-
tions with other blocks, then we are done encoding X
[step 2(d)]. Else, X consists of a portion (set) that
does not intersect with any other block. That portion
is encoded as a unique singleton set consisting of the
smallest unused number in Zlm [step 2(d)i], and the
encoding also added to that of X [step 2(d)ii]. At the
end of this procedure each building block in B(l;m)
will be represented uniquely as some subset of Zq for
some q � jlmj.

For example, using this procedure, one encoding for
the building blocks associated with the Royal Road
function R1 could be: si ! fig (for i = 1 : : : 7)
and s8 ! f1; 2; 3; 4; 5; 6; 7g. Similarly, the build-
ing blocks in the Royal Road function R2 could be
mapped as si ! fig (for i = 1; : : : ; 8), s9 !

f1; 2g,s10 ! f3; 4g, s11 ! f5; 6g, s12 ! f7; 8g and
s13 ! f1; 2; 3; 4; 5; 6; 7; 8g.

The encoding of a building block (that is, the image
of the building block under �) will be referred to as its
encodon. The length of an encodon is its cardinality,

and is not related in an obvious way to the order of
the building blocks. De�ne the set of encodons C by:

C = �(B) = f�(Bj) : Bj 2 B): (2)

Two encodons are said to be con
icting if they are
images of con
icting building blocks (section 3.1).

The set of encodons corresponding to a set of blocks
are unique upto permutation (brie
y, this is because
the encodons record building block intersections). Re-
ordering the order-k blocks di�erently, could result in
a di�erent subset assignment. It is possible to modify
the algorithm in Figure 1 to get a unique set of codons,
but the results of this paper only need uniqueness upto
permutation.

In the next section, a subset of building blocks are con-
sidered; one that will clarify the relationship between
greedy algorithms and building blocks.

4 Matroyshka Blocks and Greedoids

What makes encodons something more than schemas
in formal wear, is the de�nition of a Matroyshka set.

De�nition 1 (Matryoshka2 Blocks): A set of
building blocks, B is said to be a Matroyshka set, if
its corresponding encodon set C = �(B) satis�es the
following two properties:

(Ground property): � 2 C.

(Weak Heredity property): An encodon of length
k > 1 must contain at least one non-trivial encodon.
Formally, if C 2 C and jCj > 1, then there exists a
proper subset C 0

� C, jCj > jC 0
j > 0 and C 0

2 C.

The Ground property is added to ensure that encodons
of size 1 will not trivially violate the Weak Heredity
property. It does no harm, and simplies proofs.

The basic reason why Matryoshka sets are de�ned with
respect to encodons, and not building blocks, is that
the encodons enable the building blocks to be treated

as blocks . For example, had the building blocks been
required to satisfy Weak Heredity (instead of their en-
codons), then the Royal Road functions would appear
not to satisfy it. But the functions were explicitly de-
signed to have building blocks made up of lower order
blocks. That explicit construction is visible when we
look at the intersections between the building blocks,
that is, their encodons (roughly).

2The name was inspired by the Matroyshka dolls; these
are \nested dolls," a traditional Russian folkcraft.
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The Weak Heredity property requires that an encodon
must contain at least one other encodon of non-zero
length. Note that just one such `sub-encodon" is re-
quired. The encodons obtained from the Royal Road
functions R1 and R2 do have this property. But it
is easy to construct scenarios where this property is
not achieved. For example, suppose B was speci�ed
by the schemas f� � �; 00�; 0 � 0; �00g, correspond-
ing to the descriptions, B = fB1; B2; B3; B4g, with,
B1 = �, B2 = f(1; 0); (2; 0)g, B3 = f(1; 0); (3; 0)g,
B4 = f(2; 0); (3; 0)g. One possible encoding of B is
given by, �(B1) = �, �(B4) = f1; 2g, �(B5) = f1; 3g
and �(B6) = f2; 3g. B is not a Matroyshka set be-
cause �(B4), �(B5), and �(B6) break the Weak Hered-
ity property.

The �rst argument for Weak Heredity is that it de�nes
a certain kind of \consistency." Suppose a set of al-
leles was de�ned to be a building block if its static
�tness (averaged over the �tnesses of its instances)
was greater than or equal to the average value of

the function. Suppose further that a schema of or-
der d, say, 1 � 00� happened to be a building block,
but none of its \sub-schemas" (for example, � � 00�)
was a building block. That is, the �tnesses of each of
the non-con
icting sub-schemas are below the average
�tness. This is a deceptive situation. A lower order
schema gives information con
icting with a higher or-
der schema over the same set of �xed alleles. The idea
behind requiring a set of encodons to possess the Weak
Heredity property is to prevent this kind of occurrence.
When one encodon contains another it indicates that
a subset of alleles consistently manifests in a lower or-
der building block as well as a higher order one. This
scenario is only mildly dependent on characterizing a
building block as having \higher than average �tness."
Other centralized measures (median, mean, mode et
cetera) could be used, and the thrust of the argument
would not be weakened.

A second argument is that the Weak Heredity prop-
erty models the reasoning behind the construction of
functions like the Royal Road functions. The property
(theoretically) would allow the generation of good so-
lutions from previous ones, with a minimal reliance
on combinatorial miracles. As building blocks are
currently understood, even delta functions could be
said to \possess" building blocks. For example, in
the function de�ned by f(111) = 100, and otherwise
f(���) = 0, the block 111 could be said to be a \build-
ing block." To allow such extreme scenarios is to di-
lute the concept of a building block. If knowing that a
function possesses a set of building blocks includes the
possibility that the blocks are merely a series of dis-
connected \needles in the haystack,", then such knowl-

edge is of very limited use. Irrespective of whether or
not GAs (or any other algorithmic strategy) actually
take advantage of such a property, Weak Heredity can
be used to develop a performance ideal, against which
actual performance can be compared.

A third argument is that the Weak Heredity property
is implicit in the notion of \building" from building
blocks. To see this, consider the following property.

(Weak Augmentation): Let C1; C2 2 C denote
two non-con
icting encodons, such that jC1j > jC2j.
Then, there exists a non-empty set X � C1 � C2,
such that jX j < jC1 [ C2j and C2 [X 2 C.

The Weak Augmentation property says that given two
building blocks, one larger than the other, and not
sharing any con
icting alleles, there must be some al-
leles in the di�erence of the two pieces, such that the
addition of those alleles to the smaller building block,
produces a new building block. The requirement of
non-con
ict is a way of saying that either the building

blocks agree on their common alleles or they are spec-
i�ed over disjoint sets of alleles. It is a technicality
to prevent meaningless or unde�ned mixes of encodon
sets.

The idea of \building" in building blocks is thus mod-
eled by requiring that some subset may be transferred
from the larger block to the smaller one without losing
quality. Typically, one visualized the word \building"
as the \putting together" of units. This de�nition on
the other hand, views \building" in terms of the rela-
tion between the end product and one of its constituent
pieces. The intuitive meaning of the word \building"
is not lost; see for example, Proposition 1.

What makes the Weak Augmentation property partic-
ularly interesting is that encodons that satisfy it also
possess the Weak Heredity property, as is shown by
the following lemma.

Lemma 1 If a set of encodons C satis�es the Ground
and Weak Augmentation properties, then it also sat-
is�es the Weak Heredity property.

Proof: Satisfaction of the Ground property implies
that � 2 C. Let Ci 2 C be any encodon such that
jCij � 2 (If there is not any such encodon then the
Weak Augmentation property is trivially satis�ed and
the proof is done). By de�nition, Ci is not in con
ict
with the trivial encodon �. Applying the Weak Aug-
mentation to the pair (Ci; �), implies the existence of
a non-empty C 0

i � Ci such that C 0

i 2 C. But Ci is
any encodon in C (of non-unit size), and the lemma is
proved.
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Weak Augmentation  Matryoshka
Blocks

Weak
Accessibility

Ground Axiom

All Building Blocks

Greedy-Matryoshka Blocks

Figure 2: Building Block Categories

If a set of building blocks satis�es both the Weak Aug-
mentation and the Ground properties, then it said to
belong to the family of Greedy-Matryoshka set (the
reason for the name will become clear shortly). From
Lemma 1 it follows that if a set of blocks is Greedy-
Matryoshka then it is also a Matryoshka set

The adjective \weak" is appended to the heredity and
augmentation properties because each of these prop-
erties has a strong form. The \strong" version of the
Weak Augmentation property is given below.

(Augmentation): Let C1 and C2 denote two non-
con
icting encodons such that jC1j > jC2j and jC1j >

0. Then, there exists an element x 2 C1 � C2 such
that C2 [ fxg 2 C.

The Augmentation property is much more speci�c
than the corresponding weak version as to the size of
the exchange required to generate a new encodon from
the original pair. A corresponding \strong" version of
the Heredity property can also be de�ned.

(Heredity): An encodon of length k > 1 must con-
tain at least one non-trivial encodon of length k � 1.
Formally, if C 2 C, and jCj > 1, then there exists a
proper subset C 0

� C, jCj > jC 0
j > 0 and C 0

2 C.

Lemma 1 derived Weak Heredity from the Ground and
Weak Augmentation properties. In an analogous man-
ner, it can be shown if a set of encodons satis�es the
Augmentation and Ground properties, then it also sat-
is�es the Heredity property. In other words:

Lemma 2: If a set of encodons C satis�es the Ground
and Augmentation properties, then it also satis�es the

Augmentation Greedoids

Accessibility
Trivial Axiom

All Set Systems

Figure 3: Set Structure of Greedoids

Heredity property.

In fact, given that the Ground property holds, it can
be shown that if just one of the properties (either aug-
mentation or heredity) is in the \strong" version, then
the resulting system of encodons has the other prop-
erty in the strong form as well. It suÆces therefore,
to consider encodon sets with either (a) both proper-
ties in the strong version, (b) both properties in the
weak version, (c) possessing only the Weak Heredity
property (Matryoshka sets) or (d) not possessing even
the Weak Heredity property. The relationship of the
various block sets is shown in Figure 2.

The concept of a Matryoshka block can now be con-
nected to the theory of greedoids [8], and related set

systems [7].

De�nition 2 (Greedoids): Let F be some collection
of subsets of a �nite set E, that is, F � P (E), where
P (E) denotes the power set of E. The tuple G =
(E;F ) is said to be a greedoid if the following two
axioms are satis�ed:

(Trivial Axiom): � 2 F , i.e. the empty set belongs to
F .
(Augmentation Axiom): If X;Y 2 F and jX j > jY j

then there exists an x 2 X�Y such that Y [ fxg 2 F .

E will be called the ground set .

Results analogous to Lemma 1 exist in the theory of
greedoids as well. For example, it can be shown that
the Trivial axiom and the Augmentation axiom imply
the following property:
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(Accessibility) For allX 2 F there exists an x 2 X

such that X � fxg 2 F .

The Accessibility property is essentially identical to
the (strong) Heredity property. The latter name is re-
tained on account of its suitability in the evolutionary
context.

Upon comparing De�nition 2 with that of a Ma-
troyshka set (Figures 2 and 3 depict the similarities
visually) it is clear that greedoids are a \stronger" ver-
sion of the idea of Matryoshka blocks. From a combi-
natorial perspective, the di�erence between the two is
one of degree, rather than quality . Since the notion of
a Matryoshka set was motivated by building block se-
mantics, the connection with greedoids is interesting.

This similarity �nds re
ection in several results in the
greedoids literature. For example, consider the follow-
ing proposition, known (oddly enough) in the greedoid
literature as the recombination lemma [8, Lemma 4.2].

Proposition 1 (Recombination Lemma) Let (E;F )
be a greedoid, and X [ Y 2 F and U 2 F . If jU j =

jX j, then U [ Y 2 F .

Notice the resemblance to the operating philosophy of
the point crossover operators. The existence of such
results in the greedoids literature and the fact that Ma-
tryoshka blocks are (approximately) weakened gree-
doids, implies that many of those results also carry
over in a weakened form. For example, the concept of
rank is fundamental in the study of set systems. It can

be applied to Greedy-Matryoshka sets as follows.

Let B(m; l) be a set of building blocks, and C = �(B)
be a Greedy-Matryoshka set. De�ne E = [i:Ci 2C Ci.

The (independence) rank of a set X � E with respect
to C is de�ned as:

�(X) = maxfjAj : A � X; A 2 Cg: (3)

With the de�nition of rank in hand, Lemma 3 charac-
terizes a Greedy-Matryoshka set in terms of the rank
function.

Lemma 3: A function � : 2E ! Z is3 the rank
function of a Greedy-Matryoshka set if and only if for
all X;Y � E and x; y 2 E:

(R1) �(�) = 0,
(R2) �(X) = jX j,
(R3) If X � Y then �(X) � �(Y ),
(R4) If �(X) = �(X [ fxg) = �(X [ fyg), then
�(X) � �(X [ fxg [ fyg).

Furthermore, the rank function determines the greedy-
Matryoshka set uniquely.

3
Z is the set of non-negative integers.

Proof: The proof is almost identical to the one for
Theorem 2.3 in [8] and will not be duplicated.

One course of action is to de�ne the concept of a \base"
(elements of maximal rank in a set of encodons) as
in greedoids, and then de�ne optimization problems
on the set of bases of a greedoid. Many optimization
problems can be so represented. The advantage of
such a speci�cation is that it can be used to derive
time and space complexity results. But rather than
pursue weakened versions of known results in Greedoid
theory, it is more pro�table to clarify the relationship
between greedy algorithms and GAs.

5 Discussion

The arguments of the last section do not imply that
GAs are nothing more than variants of greedy algo-
rithms. The previous section argued for a class of
building blocks that are weakened versions of gree-
doids. It does not claim that GAs will be good,
bad or indi�erent for optimization functions de�ned
on these set systems. GA performance cannot be in-
ferred for the simple reason that GA dynamics has not
been taken into account. The analysis is combinatorial
and axiomatic, rather than behavioral and inductive.
GA dynamics can perhaps be studied from a \greedy"
viewpoint using majorization theory, but that is not
the focus of this paper.

The second point is that greedoids do not completely

characterize the class of greedy algorithms. Speci�-
cally, there are greedy algorithms that do not have
underlying greedoids (and hence, greedoids are too re-
strictive), and there are greedy algorithms that do not
return an optimal solution when run on a greedoid
(thus, greedoids are too general). This vexing situa-

tion has been resolved, and the class of functions for
which a \greedy algorithm" produces the optimal so-
lution has now been completely characterized4 [7]. In

other words just because a subset of building blocks
happen to formally related to greedoids is not grounds
for concluding that GAs are greedy algorithms. Fi-
nally, algorithmic eÆciency (time complexity for �nd-
ing an optimal solution) di�ers from algorithmic suÆ-
ciency (ability to �nd an optimal solution)5.

What can be claimed is that both greedy algorithms as

4This class of functions is quite general, non-trivial, and
de�ned in terms of matroid embeddings, an extension of the
concept of greedoids.

5Greedy 6 ) \easy." A greedy algorithm may be guar-
anteed to �nd an optimal solution for a particular problem,
but may do so very ineÆciently. There are also problems
that while solvable by a greedy solution, are also NP-hard
[9, Section 6].
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well as genetic algorithms have a common conceptual
core. This core, consisting of certain kinds of set sys-
tems, is useful for clarifying discussions, characterizing
algorithmic suÆciency, and providing a combinatorial
basis for evolutionary algorithms.

One can also speculate that the connection with greedy
algorithms reveals the need for a theory of \proba-
bilistic greed." Probabilistic versions of determinis-
tic algorithms often have capabilities not possessed by
the latter (e.g. primality testing, simulated annealing),
even to the extent of belonging to di�erent complexity
classes. If the conceptual diÆculties associated with
the notion of probabilistic greed (as brie
y discussed
in Section 2) are overcome, then the kind of precise re-
sults obtained for simulated annealing or approximate
exact sampling, may be within reach. In the �nal anal-
ysis, what counts is the use one makes of these ideas
to build better genetic algorithms. The ideas outlined
here are meant to contribute towards e�orts in that
direction.
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Abstract 
 

In this paper, we formulate the design of fuzzy 
rule-based classification systems as a 
three-objective optimization problem. Three 
objectives are to maximize the classification 
performance of a fuzzy rule-based system, to 
minimize the number of fuzzy rules, and to 
minimize the number of features used in the 
fuzzy rule-based system (i.e., used in the 
antecedent part of fuzzy rules). The second and 
third objectives are related to simplicity and 
comprehensibility of the fuzzy rule-based system. 
We describe and compare two genetic-algorithm- 
based approaches for finding non-dominated 
solutions (i.e., non-dominated fuzzy rule-based 
systems) with respect to the three objectives. One 
approach is a rule selection method where a 
small number of linguistic rules are selected from 
prespecified candidate rules by a genetic 
algorithm. The other is a fuzzy partition method, 
which designs fuzzy rule-based systems by 
simultaneously determining the number and the 
shape of the membership function of each fuzzy 
set from training patterns. These two approaches 
are compared with each other through computer 
simulations on some real-world classification 
problems such as iris data, wine data, and glass 
data. 

 
1 INTRODUCTION     
Genetic algorithms have been successfully applied to 
various optimization problems (Goldberg 1989). The 
extension of GAs to multi-objective optimization was 
proposed in several manners (Schaffer 1985, Kursawe 
1991, Horn 1994, Fonseca 1995, Murata 1995, Zitzler 
1999). The aim of these algorithms is to find a set of 
Pareto-optimal solutions of a multi-objective optimization 
problem. Another issue in multi-objective optimization is 
to select a single final solution from Pareto-optimal 
solutions. Many studies on multi-objective GAs did not 

address this issue because the selection totally depends on 
the decision maker’s preference. In this paper, we also 
concentrate our attention on the search for finding a set of 
Pareto-optimal solutions. We apply a multi-objective 
genetic algorithm to classification problems for 
constructing classification systems.  
Our task in this paper is to design comprehensible fuzzy 
rule-based systems for high-dimensional pattern 
classification problems. Recently, some researchers 
(Pedrycz 1996, Setnes 1998a, 1998b, 2000, Yen 1998, 
1999, Jin 1999, 2000, and Oliveira 1999) tried to improve 
interpretability of fuzzy rule-based systems. For example, 
interpretability of membership functions was discussed in 
(Pedrycz 1996, Oliveira 1999). The number of fuzzy rules 
was decreased in (Setnes 1998a, 1998b, 2000, and Yen 
1999). Jin (2000) pointed out the following four factors 
closely related to interpretability of fuzzy rule-based 
systems.  
(a) Distinguishability of a fuzzy partition. Membership 

functions should be clearly distinguishable from each 
other so that a linguistic term can be assigned to each 
membership function. 

(b) Consistency of fuzzy rules. Fuzzy rules in a fuzzy 
rule-based system should not be strongly 
contradictory to each other. 

(c) The number of fuzzy rules. It is easy to examine a 
small number of fuzzy rules while the examination of 
many rules is a cumbersome task. 

(d) The number of conditions in the antecedent part (i.e., 
if-part). It is not easy to understand a fuzzy rule with 
many antecedent conditions.  

Among these four factors, distinguishability was included 
in a cost function in regularized learning of Jin (2000).  
In this paper, we describe and compare two 
genetic-algorithm-based approaches for finding 
non-dominated solutions (i.e., non-dominated fuzzy 
rule-based systems) with respect to the three objectives. 
One approach is a rule selection method (Ishibuch et al. 
1997) where a small number of linguistic rules are 
selected from prespecified candidate rules by a genetic 
algorithm. The other approach is a fuzzy partition method, 
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which designs fuzzy rule-based systems by simultaneously 
determining the number and the shape of the membership 
function of each fuzzy set from training patterns. Both the 
approaches have been already proposed as 
single-objective genetic-algorithm-based approaches. We 
apply a multi-objective genetic algorithm to both the 
approaches in this paper.  
As for the first interpretability factor (a), we do not have 
to consider the distinguishability of a fuzzy partition in the 
rule selection method, since we use prespecified linguistic 
terms with fixed membership functions. On the other hand, 
we should carefully examine constructed classification 
systems by the fuzzy partition method, since the number 
and the shape of membership functions vary during the 
execution of the method. The consistency of fuzzy rules 
(i.e., the second factor (b)) is resolved by assigning a 
certainty grade to each fuzzy rule in the two approaches.  
In order to consider the last two factors (c) and (d), we 
formulate the design of fuzzy rule-based classification 
systems as a three-objective optimization problem. Three 
objectives are to maximize the classification performance 
of a fuzzy rule-based system, to minimize the number of 
fuzzy rules, and to minimize the number of features used 
in the fuzzy rule-based system (i.e., used in the antecedent 
part of fuzzy rules). The second and the third objectives 
show that (c) and (d) are considered in our optimization 
problem.  
Since both the approaches are fuzzy rule-based systems, 
we firstly explain fuzzy rule-based system employed in 
this paper. We show the main difference between the two 
genetic-algorithm-based approaches in this section. Then 
we show the common architecture in the multi-objective 
genetic algorithm employed for both the approaches. Next, 
we show genetic operations in them. Finally, these two 
approaches are compared with each other through 
computer simulations on some real-world classification 
problems such as iris data, wine data, and glass data. 
 
2 FUZZY RULE-BASED SYSTEMS     
We assume that m training patterns (i.e., labeled patterns) 
are given as numerical data for an n-dimensional c-class 
pattern classification problem. We denote those training 
patterns as ),...,( 1 pnp xx=x , .,...,2,1 mp =  For 
simplicity of explanation, each attribute value pix  is 
assumed to be a real number in the unit interval [0, 1], i.e., 

∈pix [0, 1]. This means that the pattern space of our 
pattern classification problem is the n-dimensional unit 
hypercube n]1,0[ . In computer simulations of this paper, 
all attribute values are normalized into real numbers in the 
unit interval [0, 1]. For an n-dimensional and c-class 
pattern classification problem, we try to find fuzzy rules of 
the following form: 

Rule jR : If 1x  is 1jA  and ... and nx  is jnA  
then Class jC  with jCF ,     (1) 

where jR  is the label of the j-th fuzzy rule, 

),...,( 1 nxx=x  is an n-dimensional pattern vector, jiA  
is a fuzzy set for the i-th attribute, jC  is a consequent 
class, and jCF  is a certainty grade in the unit interval 
[0,1]. Since the consequent class jC  and the certainty 
grade jCF  of  each  fuzzy  rule  in  (1)  can  be  easily 
determined by a heuristic rule generation procedure from 
the given training patterns (see Ishibuchi 1992 for details 
of the rule generation procedure), the design of fuzzy 
rule-based systems is to determine the number of fuzzy 
rules and the antecedent part of each rule.  
The main difference between two approaches employed in 
this paper lies in the coding method of fuzzy rules. We 
show characteristic features in the coding method of fuzzy 
rules and the rule generation method of two approaches in 
the following subsections. From the characteristic feature 
of the coding scheme, we refer to the first approach as rule 
selection method, and the second approach as fuzzy 
partition method. 
 
2.1 RULE SELECTION METHOD  
In the rule selection method, we use prespecified 
membership functions for fuzzy sets jiA  in (1), each of 
those are related to a linguistic term. Fig. 1 shows 
examples of such membership functions. Linguistic terms 
are denoted as S, MS, M, ML and L, that are related to 
membership functions. These linguistic values are used in 
our computer simulations for all attributes. Since this is 
just for simplicity of explanation, our first approach is 
applicable to more general cases where a different set of 
linguistic values is given to each attribute. In such a 
general case, membership functions are not necessary to 
be triangular. They are specified according to domain 
knowledge and intuition of human experts. 

 

0.0 1.0 

1.0 

Input value 

S MS M ML L 

M
em

be
rs
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p 

 
Figure 1. Membership functions of five linguistic values (S: 
small, MS: medium small, M: medium, ML: medium large, and 
L: large). 

In the rule selection method (Ishibuchi 1997), all 
combinations of antecedent fuzzy sets were examined to 
generate candidate rules from which a small number of 
fuzzy rules were selected by genetic algorithms. This 
method cannot be directly applied to high-dimensional 
problems because the number of candidate rules 
exponentially increases with the dimensionality of pattern 
spaces. In order to reduce the number of fuzzy rules, we 
use a prescreening procedure of candidate rules. Our trick 
for prescreening candidate rules is based on the length 
(i.e., the number of antecedent conditions) of fuzzy rules. 
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While the total number of possible combinations of 
antecedent fuzzy sets is huge, the number of short fuzzy 
rules with only a few antecedent conditions is not large. 
Thus we can generate a tractable number of candidate 
rules by examining only short fuzzy rules. When we have 
five fuzzy sets, the number of fuzzy rules of the length k is 
calculated as k

knC 5×  which is the total number of 
combinations of selecting k attributes (i.e., knC ) and 
assigning linguistic values to the k selected attributes (i.e., 

k5 ). After generating a tractable number of fuzzy rules, 
we employ a binary string, where each bit corresponds to 
each fuzzy rule. The numeral “1” in each bit shows that 
the corresponding fuzzy rule is selected for a fuzzy 
rule-based classification system. On the other hand, the 
numeral “0” shows the corresponding fuzzy rule is not 
selected for a system. The aim of genetic algorithms is to 
design a fuzzy rule-based classification system by 
selecting appropriate fuzzy rules. 
 
2.2 FUZZY PARTITION METHOD  
In the fuzzy partition method, membership functions for 
fuzzy sets in (1) are directly coded as binary strings. In 
this method, the number and the shape of membership 
functions of each fuzzy set are simultaneously determined 
from training patterns.  
Fig.2 shows an example of the fuzzy partition proposed in 
(Murata 1999). Membership functions of antecedent fuzzy 
sets are represented by a binary string. Membership 
functions of antecedent fuzzy sets on the i-th axis are 
denoted by a string iki lllL L21=  with the length ik . In 
Fig. 2, ik  is specified as 10=ik . The value “1” in a 
string iL  indicates the existence of a membership 
function with the membership value 1.0 at the 
corresponding position (see Fig. 2). Neighboring 
membership functions always overlap each other at a 
membership value of 0.5. It should be noted that the 
longer the length ik  of the string iL , the finer the tuning 
of each membership function. 
 

1 0 1 0 0 1 1 1 0 0

M
em

be
rs

hi
p

0.0

1.0

0.0 1.0 ix

iL  
Figure 2. Membership functions in the fuzzy partition method. 

 
The number of fuzzy if-then rules exponentially increases 
as the number of attributes increases. To remedy this 
difficulty, Murata et al. (1999) introduced a binary string I 
of the length n (the number of attributes) for selecting 
attributes by genetic algorithms. In the string I, each bit 
corresponds to each attribute. The i-th bit with the value 
“1” indicates the i-th attribute is selected for generating 
fuzzy if-then rules.  
In order to construct fuzzy classification systems with 

multiple fuzzy rule tables, Murata et al. (1999) introduced 
a binary string T of the length t (the maximum number of 
fuzzy rule tables). In the string T, each bit corresponds to 
each table. The h-th bit with the value “1” indicates the 
h-th table is employed for the classification system. A 
binary string I in the above paragraph is multiplied so that 
each table has a different combination of input attributes. 
The string hI  indicates the selected attributes for the 
h-th table.  
Since the strings hI ’s and the string T for rule table 
selection are introduced for input selection, we handle the 
concatenated string nt LLLIIITS LL 2121 ⋅⋅=  as an 
individual in our genetic-algorithm-based fuzzy partition 
method. The concatenated string S specifies the fuzzy 
partition iL  ( ni ...,,2,1= ) of each of the selected fuzzy 
rule tables by T where selected attributes are denoted by 

hI , th ...,,2,1= . Since fuzzy rule tables are generated 
from the selected attributes and the specified fuzzy 
partition by S, S can be viewed as a rule set or a fuzzy 
rule-based classification system. 
 
3 THREE-OBJECTIVE GA     
As we have already mentioned, the comprehensibility of 
fuzzy rule-based system is impaired by the increase in the 
number of fuzzy rules. Thus we try to minimize the 
number of fuzzy rules. From the viewpoint of the 
comprehensibility of each fuzzy rule, a large number of 
antecedent conditions are not desirable. Thus we also try 
to minimize the number of antecedent conditions. At the 
same time, we want to design fuzzy rule-based systems 
with high classification performance. Based on these 
considerations, we formulate our task of designing 
comprehensible fuzzy rule-based classification systems as 
the following three-objective optimization problem:  
Maximize )(1 Sf , minimize )(2 Sf  & minimize )(3 Sf , (2) 
 
where )(1 Sf  is the number of correctly classified 
training patterns by a rule set S, and )(2 Sf  is the 
number of fuzzy rules in S. In the rule selection method, 

)(3 Sf  is the total number of antecedent conditions in S. 
For example, if we have a system with two fuzzy rules, 
where one rule has one antecedent condition and the other 
has three antecedent conditions, the total number of 
antecedent conditions in S is four. On the other hand, 

)(3 Sf  is the total number of attributes used in 
constructed rule tables for the fuzzy partition method. If 
we obtain two rule tables shown in Fig. 3, the total 
number of attributes selected for the rule tables is four. In 
this case two fuzzy rules are obtained from Rule Table 1 
(see Fig. 3 (a)), and eight fuzzy rules are generated 
from three attributes selected for Rule Table 2 (see Fig. 3 
(b)), so we have ten fuzzy rules in total for the 
classification system designed by the fuzzy partition 
method. In order to obtain a compact fuzzy rule-based 
classification system, we should reduce the number of 
fuzzy rules. We can eliminate fuzzy rules from a 
classification system that classify no training patterns in a 
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classification problem. That is, we can reduce those fuzzy 
rules, because those have no effect on classification. After 
this rule reduction process, we can obtain classification 
systems with a small number of fuzzy rules. 
 

7x
1 0 1 0 0

0.0 0.5 1.0
0.0

1.0

 
(a) Rule Table 1 with a single attribute. 

7x
1 0 1 0 0

0.0 0.5 1.0
0.0

1.0

12x
1 0 0 0 1

0.0 1.0
0.0

1.0

13x
1 0 1 0 0

0.0 0.5 1.0
0.0

1.0

 
(b) Rule Table 2 with three attributes. 

Figure 3. Two rule tables (the fuzzy partition method). 
 
Let us briefly explain the concept of non-dominated rule 
sets for our three-objective optimization problem. A rule 
set S is said to be dominated by another rule set *S  if all 
the following inequalities hold:  

)()( *
11 SfSf ≤ , )()( *

22 SfSf ≥ , & )()( *
33 SfSf ≥ ,  (3) 

 

and at least one of the following three inequalities holds:  
)()( *

11 SfSf < , )()( *
22 SfSf > , or )()( *

33 SfSf > .  (4) 
 
The first condition (i.e., all the three inequalities in (3)) 
means that no objective of *S  is worse than S. The 
second condition (i.e., one of the three inequalities in (4)) 
means that at least one objective of *S  is better than S. 
If there exists no *S  that satisfies both the above two 
conditions, the rule set S is said to be a non-dominated 
rule set.  
We employ three-objective genetic algorithms for finding 
non-dominated rule sets. Standard single-objective genetic 
algorithms are also applicable to our problem if the three 
objectives are integrated into a single scalar fitness 
function. Before describing three-objective genetic 
algorithms, we briefly discuss the handling of our problem 
by single-objective genetic algorithms.  
A well-known simple trick for handling multi-objective 
optimization problems is to combine multiple objectives 
into a single scalar fitness function using weight 
parameters as  

)()()()( 332211 SfwSfwSfwSfitness ⋅−⋅−⋅= ,    (5) 
 

where 1w , 2w  and 3w  are non-negative real numbers. 
In (5), the two objectives )(2 Sf  and )(3 Sf  to be 
minimized can be viewed as having negative weights 
“ 2w− ” and “ 3w− ”, respectively. The three weights 1w , 

2w  and 3w  in (5) should be specified based on the 
users’ preference in a particular pattern classification 
problem. It is, however, difficult to assign appropriate 
values to the three weights.  
In this paper, we use a multi-objective genetic algorithm 
for finding non-dominate rule sets of our three-objective 
optimization problem. Multi-objective genetic algorithms 
do not require the specification of the weight parameters 
or the desired goals. We use a multi-objective genetic 
algorithm (Murata 1995) which is based on the scalar 
fitness function in (5) with random weight values. The 
weight values 1w , 2w , and 3w  are randomly updated 
whenever a pair of parent strings are selected. This is one 
characteristic feature of our multi-objective genetic 
algorithm. Another characteristic feature is that 
non-dominated rule sets are stored in a tentative pool 
separately from the current population. The tentative pool 
is updated at every generation in order to store only 
non-dominated rule sets among examined ones. From the 
tentative pool, eliteN  rule sets are randomly selected as 
elite individuals, which are added to a new population. 
The outline of our three-objective genetic algorithm is 
written as follows.  
[Three-objective genetic algorithm] 
Step 1)  Initialization: Generate an initial population of 

setN  rule sets where setN  is the population 
size. 

Step 2)  Evaluation: Calculate the values of the three 
objectives for each rule set in the current 
population. Then update the tentative pool of 
non-dominated rule sets.  

Step 3) Selection: Repeat the following procedures to 
select ( eliteset NN − ) pairs of rule sets. 
a) Randomly specify the three weight values as   

)/( 321 randomrandomrandomrandomw ii ++= , 
1,2,3=i ,   (6) 

 
 where irandom  is a non-negative random 

real number. 
b) Calculate the fitness value for each solution by 

(5) using the randomly specified weight values. 
Then select a pair of rule sets based on the 
fitness value of each rule set. We specify the 
selection probability of each rule set S in the 
current population Ψ  using the roulette 
wheel selection with the linear scaling:  

 
∑

Ψ∈
Ψ−

Ψ−=

S
fSfitness

fSfitnessSP
)}()({

)()()(
min

min ,  (7) 

 
 where )(min Ψf  is the minimum value of the 

fitness values in the current population Ψ . 
Step 4) Crossover and mutation: Generate a new rule set 
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from each pair of selected rule sets by crossover 
and mutation operations. These two operations 
are used with prespecified probabilities. By the 
genetic operations, ( eliteset NN − ) rule sets are 
generated.  

Step 5) Elitist strategy: Randomly select eliteN  
non-dominated rule sets from their tentative pool, 
and add them to the generated ( eliteset NN − ) rule 
sets for constructing a new population of the size 

setN . 
Step 6) Termination test: If a prespecified stopping 

condition is satisfied, end the algorithm. 
Otherwise, return to Step 2.  

The choice of crossover and mutation operations in Step 4 
depends on the coding of rule sets. They are described in 
the following sections.  
We use this three-objective genetic algorithm because it 
can be easily implemented. This algorithm involves no 
additional parameters. It uses only standard parameters 
such as population size, crossover probability, mutation 
probability, and the number of elite solutions. Other 
multi-objective genetic algorithms are also applicable to 
our three-objective optimization problems. For reviews of 
multi-objective genetic algorithms, see Veldhuizen 2000, 
Zitzler 1999, 2000. 
 
4 RULE SELECTION METHOD     
Let N be the number of generated candidate rules. A 
subset S of the N candidate rules is denoted by a binary 
string of the length N as NsssS ⋅⋅⋅= 21 . In this coding, 

1=js  and 0=js  mean that the j-th candidate rule jR  
is included in S and excluded from S, respectively. The 
size of the search space with this coding is N2 , which is 
the total number of subsets of the N candidate rules. Each 
rule set S is evaluated by the fitness function in (5) using 
randomly specified three weights whenever a pair of 
parent strings is selected. Since each rule set is 
represented by a binary string, standard genetic operations 
are applicable. In our computer simulations, we used the 
uniform crossover and the bit-change mutation.  
For efficiently searching for small rule sets with high 
classification ability, we use two domain-specific 
techniques. One technique is a kind of local search. When 
the fitness value of a binary string S (i.e., rule set S) is 
calculated, all the given training patterns are classified by 
S for calculating the first objective )(1 Sf . From the 
classification phase by the constructed classification 
system in Ishibuchi et al. (1992), a single winner rule is 
responsible for the classification of each training pattern. 
If a fuzzy rule in S is responsible for the classification of 
no training pattern, we can remove that rule without 
causing any deterioration of the first objective because 
that rule has no influence on the classification of any 
training pattern. At the same time, the elimination of such 
a fuzzy rule improves the second objective )(2 Sf and the 
third objective )(3 Sf . Thus we remove all the fuzzy 
rules that are not responsible for the classification of any 

training pattern. This local search technique is applied to 
every rule set before its three objectives are evaluated in 
Step 2 of our three-objective genetic algorithm.  
The other technique is to bias the mutation. A larger 
probability was assigned to the mutation from =js 1 to 

=js 0 than the mutation from =js 0 to =js 1. That is, 
the mutation is biased toward the decrease of the number 
of fuzzy rules in order to improve the second and third 
objectives. The biased mutation plays an important role 
especially when the number of candidate rules is large.  
These two techniques are added to the three-objective 
genetic algorithm in the previous section. 
 
5 FUZZY PARTITION METHOD     
Since the fuzzy partition method has a concatenated 
strings nt LLLIIITS LL 2121 ⋅⋅=  as an individual 
solution, the specially designed genetic operations are 
employed for this method in Murata et al. (1999). The 
characteristic feature of the genetic algorithm with this 
coding method is the following:  
1. Crossover operation: Selected attributes are 

interchanged between the parent strings, and each 
substring iL  is interchanged as a block. 

2. Mutation operation for tuning membership functions: 
For the fine tuning of membership functions, the 
mutation operation that interchanges neighboring bits 
in each substring iL  is introduced. The adjustment of 
membership functions can be performed as in a local 
search procedure by slightly modifying their shapes 
and positions. 

3. Mutation operation for reducing the number of 
membership functions: For decreasing the number of 
membership functions (i.e., the number of fuzzy if-then 
rules), the mutation probabilities for two directions (i.e., 

01 →  and 10 → ) are not the same. The mutation 
probabilities for this mutation are specified as follows: 

)01(reverse →P > )10(reverse →P . 
4. Mutation operation for reducing the number of 

attributes: For decreasing the number of selected 
attributes, the mutation probabilities for two directions 
(i.e., 01 →  and 10 → ) are not the same. The 
mutation probabilities for this mutation are specified as 
follows: 

)01(reverseinput →P > )10(reverseinput →P . 

    

6 COMPUTER SIMULATIONS     
6.1 DATA SETS AND PARAMETERS  
We applied the rule selection method and the fuzzy 
partition method to commonly used data sets in the 
literature: iris data, wine data, and glass data. All the data 
sets are available from the UC Irvine machine learning 
database.  
Since we had no domain knowledge on each data set, we 
used the five linguistic values with the triangular 
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membership functions in Fig. 1 for every attribute of each 
data set in the rule selection method. The number and the 
shape of membership functions are automatically 
determined in the fuzzy partition method. Our two 
algorithms (i.e., the rule selection method and the fuzzy 
partition method) were executed under the framework of 
the three-objective genetic algorithm in Section 3 using 
the following parameter values. The population size was 
20 rule sets, the number of elite solutions was six, and 
each algorithm was terminated at the 500th generation.  
For the rule selection method in Section 4, we used the 
crossover probability: 0.9 and the biased mutation 
probabilities: 0.001 for the mutation from =js 0 to 

=js 1 and 0.1 for the mutation from =js 1 to =js 0. 
Randomly generated 20 initial rule sets were evolved in 
the rule selection method. For the fuzzy partition method, 
we employed the resolution 5=ik  for each attribute, and 
we allowed ten rule tables at most in the fuzzy partition 
method. We used the following parameters: the crossover 
probability: 1.0, the mutation probability for tuning 
membership functions: 0.1, the biased mutation 
probabilities for reducing the number of membership 
functions: )01(reverse →P = 0.1 and )10(reverse →P = 
0.02, and the biased mutation probabilities for reducing 
the number of attributes: )01(reverseinput →P  = 0.1 and 

)10(reverseinput →P  = 0.05. Our three-objective genetic 
algorithm searched for non-dominated rule sets by the 
evolution from 20 initial rule sets.  
Each algorithm was applied to each data set 10 times. A 
set of non-dominated solutions stored in their tentative 
pool was obtained as final solutions of each trial with 
respect to our three objectives: the number of correctly 
classified training patterns, the number of fuzzy rules, and 
the total length of fuzzy rules in the rule selection method, 
or the total number of attributes used in selected rule 
tables in the fuzzy partition method. From 10 trials, we 
obtained 10 sets of non-dominated solutions. For 
concisely summarizing simulation results, we merged 
them into a single solution set and compared solutions 
with each other. In such comparison, some solutions were 
dominated by other solutions obtained from different trials. 
All solutions that were dominated by other solutions from 
different trials were removed from the enlarged solution 
set. The refined solution set is reported as simulation 
results by each algorithm for each data set in this section. 
Since the classification performance is measured by the 
number of correctly classified training patterns in our 
three-objective optimization problem, we report the value 
of this objective of each non-dominated solution together 
with the other two objective values. All the available 
training data were used in our computer simulations and 
the classification performance on those training data is 
reported in this section. Ishibuchi et al. (1999) reported 
the simulation results on the tradeoff between 
generalization ability of fuzzy rule-based systems and the 
number of fuzzy rules, where the classification 
performance on test data was evaluated by the 
leaving-one-out (LV-1) procedure and the ten-fold 

cross-validation (10-CV) procedure in computer 
simulations. 
 
6.2 SIMULATION RESULTS ON IRIS DATA 
 
The iris data set is a three-class pattern classification 
problem with four attributes and 150 patterns. We use the 
iris data set for illustrating three-objective rule selection 
while it is not actually a high-dimensional pattern 
classification problem. Fuzzy rules of the following type 
are used for the iris data set with four attributes:  
Rule jR : If 1x  is 1jA  and  ...  and 4x  is 4jA  

then Class jC  with jCF .   (8) 
Since the iris data set includes only four attributes, we can 
examine all the 1296)15( 4 =+  combinations of 
antecedent linguistic values for generating candidate fuzzy 
rules for the rule selection method. By examining those 
combinations, we generated 587 fuzzy rules from the 
given 150 training patterns. Some fuzzy rules could not be 
generated because no training patterns were compatible 
with those rules. All the generated 587 fuzzy rules were 
used as candidate rules. In our rule selection method, each 
rule set was represented by a binary string of the length 
587. For obtaining non-dominated rule sets of the 
three-objective optimization problem, we applied the 
three-objective rule selection method to the 587 candidate 
rules 10 times using different initial populations. From the 
10 trials, we found seven non-dominated rule sets in Table 
1. Since the iris data set is a three-class pattern 
classification problem, at least three fuzzy rules are 
necessary for designing fuzzy rule-based systems with 
high classification ability. In this sense, Table 1 includes 
three rule sets that are not practically useful. In Table 1, 
we can observe a tradeoff between the classification 
performance and the size of rule sets. We also applied the 
fuzzy partition method to the iris data set. Table 2 shows 
the obtained non-dominated solutions. Since the shape of 
the membership functions are adjusted in the fuzzy 
partition method, better rule sets are found with respect to 
the number of fuzzy rules and the number of correctly 
classified patterns. For example, the following 
classification system with three fuzzy rules was found by 
the rule selection method: 

1R : If 3x  is S  then Class 1 with =1CF 1.00, 

2R : If 3x  is M  then Class 2 with =2CF 0.79, 

3R : If 4x  is ML  then Class 3 with =3CF 0.70. 

By the above three fuzzy rules, 142 training patterns are 
classified correctly. From Table 2, we can see that a 
classification system with three fuzzy rules was also found 
by the fuzzy partition method. Fig. 4 shows the 
membership functions of the classification system. Since 
only a single attribute 4x  was selected for the rule table, 
membership functions can be seen as fuzzy rules. In this 
case, the total length of the rule set is three. Therefore the 
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fuzzy partition method found a better rule set with three 
rules than the rule selection method for the iris data set. 

 
Table 1: Non-dominated rule sets obtained by the rule selection 

method for iris data.  
Number of Rules 0 1 2 3 4 4 5 
Total length 0 1 2 3 4 5 8 
Number of Patterns 0 50 100 142 145 146 147 
Rate (%) 0 33.3 66.7 94.7 96.7 97.3 98.0 

 
Table 2: Non-dominated rule sets obtained by the fuzzy 

partition method for iris data.  
Number of Rules 0 1 2 3 4 5 
Number of Attributes 0 1 1 1 2 3 
Number of Patterns 0 50 100 144 146 147 
Rate (%) 0 33.3 66.7 96.0 97.3 98.0 

 

4x
1 0 1 0 1

0.0 1.0
0.0

1.0

0.5

 
 
Figure 4.  Rule table with three rules (fuzzy partition method). 
 
6.3 SIMULATION RESULTS ON WINE DATA 
 
The wine data set is a three-class pattern classification 
problem with 13 attributes and 178 patterns. It is 
impractical to generate candidate rules by examining all 
the 13)15( +  combinations of antecedent linguistic 
values (i.e., about 13 billion combinations) in the rule 
selection method. Candidate rules were generated by 
examining only short fuzzy rules of the length 2 or less. 
Using this prescreening procedure, we generated 1834 
candidate rules. The three-objective rule selection method 
was applied to the 1834 candidate rules 10 times using 
different initial populations. We obtained 21 
non-dominated rule sets from the 10 trials. In Table 3, we 
show 7 non-dominated rule sets with high classification 
rates. Simulation results in Table 3 show that compact rule 
sets with a small number of short fuzzy rules were found 
by the rule selection method. Table 4 shows seven 
non-dominated solutions with high classification obtained 
by the fuzzy partition method. Fig. 3 shows the obtained 
classification system with six rules and 4 attributes. This 
system classifies 174 training patterns correctly. 
 
6.4 SIMULATION RESULTS ON GLASS DATA  
In the previous computer simulations, we have already 
shown that the rule selection method can find a small 
number of short fuzzy rules with high classification 

performance for designing comprehensible fuzzy 
rule-based systems. In this subsection, we examine the 
rule selection method and the fuzzy partition method 
through computer simulations on glass data. The glass 
data set is a six-class pattern classification problem with 
nine attributes and 214 patterns. The glass data set is a 
difficult classification problem with large overlaps 
between different classes in the pattern space. So it may 
be difficult to design compact fuzzy rule-based systems 
with high classification performance by a small number of 
short fuzzy rules.  
From 10 trials, we obtained 22 non-dominated rule sets. 
Table 5 shows seven non-dominated rule sets with high 
classification rates. From this table, we can see that fuzzy 
rule-based systems with high classification rates could not 
found. We also applied the fuzzy partition method to the 
glass data. We obtained 27 non-dominated solutions and 
show seven rule sets with high classification rates in Table 
6. We can also see that classification systems with high 
classification rates could not found. We employed finer 
resolution 11=ik  in the fuzzy partition method. Table 7 
shows seven rule sets with high classification rates. We 
can see that the fuzzy partition method with finer 
resolution could find better classification systems with 
respect to the classification performance. 
 
 
Table 3: Non-dominated rule sets obtained by the rule selection 

method for wine data.  
Number of Rules 6 5 7 6 7 8 10 
Total length 7 9 9 10 12 14 18 
Number of Patterns 173 173 174 175 176 177 178 
Rate (%) 97.2 97.2 97.8 98.3 98.9 99.4 100 

 
Table 4: Non-dominated rule sets obtained by the fuzzy 

partition method for wine data.  
Number of Rules 4 4 6 4 7 5 6 
Number of Attributes 2 3 3 4 3 4 4 
Number of Patterns 166 169 170 171 172 172 174 
Rate (%) 93.3 94.9 95.5 96.1 96.6 96.6 97.8 

 
Table 5: Non-dominated rule sets obtained by the rule selection 

method for glass data.  
Number of Rules 8 9 10 10 11 12 14 
Total length 12 14 16 17 18 20 25 
Number of Patterns 150 151 152 153 154 155 156 
Rate (%) 70.1 70.6 71.0 71.5 72.0 72.4 72.9 

 
Table 6: Non-dominated rule sets obtained by the fuzzy 

partition method for glass data.  
Number of Rules 6 9 19 10 24 12 13 
Number of Attributes 5 3 3 4 3 4 4 
Number of Patterns 144 146 147 148 149 152 153 
Rate (%) 67.3 68.2 68.7 69.2 69.6 71.0 71.5 
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Table 7: Non-dominated rule sets obtained by the fuzzy 
partition method for glass data (fine resolution).  

Number of Rules 20 22 27 29 31 32 69 
Number of Attributes 6 3 3 3 3 3 4 
Number of Patterns 162 164 165 166 167 169 171 
Rate (%) 75.7 76.6 77.1 77.6 78.0 79.0 79.9 

 
 
7 CONCLUSION     
In this paper, we described and compared two 
genetic-algorithm-based approaches for finding 
non-dominated solutions (i.e., non-dominated fuzzy 
rule-based systems) with respect to the three objectives. 
We can see that the rule selection method could find 
compact classification systems with high performance for 
the wine data set. Since the search space of the fuzzy 
partition method is larger than that of the rule selection 
method, the classification systems with the large number 
of rules are found (for example, 28 rules in Table 6). We 
may find more compact classification systems by the 
fuzzy partition method if we have enough computation 
time for the method. 
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Abstract

When using an automatic discovery method

to �nd a good strategy in a game, we hope

to �nd one that performs well against a

wide variety of opponents. An appealing no-

tion in the use of evolutionary algorithms

to coevolve strategies is that the popula-

tion represents a set of di�erent strategies

against which a player must do well. Im-

plicit here is the idea that di�erent play-

ers represent di�erent \dimensions" of the

domain, and being a robust player means

being good in many (preferably all) dimen-

sions of the game. Pareto coevolution makes

this idea of \players as dimensions" explicit.

By explicitly treating each player as a di-

mension, or objective, we may then use es-

tablished multi-objective optimization tech-

niques to �nd robust strategies. In this pa-

per, we apply Pareto coevolution to Texas

Hold'em poker, a complex real-world game

of imperfect information. The performance

of our Pareto coevolution algorithm is com-

pared with that of a conventional genetic al-

gorithm and shown to be promising.

1 INTRODUCTION

One of the inherent problems with learning game

strategies through self-play is a tendency for such

strategies to be brittle|to be over-specialised to a

particular area of strategy space|and to fail to �nd

robust, general strategies (see, e.g., Pollack & Blair,

1998, for discussion). The potential for strategies to

have intransitive superiority relationships is an impor-

tant key for understanding why this might happen.

That is, although some player A might be beaten by

some other player B, and B may in turn be beaten

by C, it may not be the case that C beats A (Cli� &

Miller, 1995). The existence of such intransitive supe-

riority relationships can mean that although a search

method persistently �nds strategies that are better

than the last strategy, it fails to �nd a strategy that is

good in general. Intransitive superiority relationships

suggest that a problem domain is multi-dimensional,

in the sense that being good against one strategy does

not necessarily mean that you are good against an-

other (Watson and Pollack, this volume).

An appealing notion in the use of evolutionary algo-

rithms to coevolve strategies is that the population

represents a set of di�erent strategies against which a

player must do well. Implicit here is the idea that

di�erent players represent di�erent \dimensions" of

the domain, and being a robust player means being

good in many (preferably all) dimensions of the game.

However, the idea that players represent dimensions

of the game remains implicit in standard coevolution-

ary algorithms. Pareto coevolution makes the con-

cept of \players as dimensions" explicit. By explic-

itly treating each player as a dimension, or objective,

we may then apply established multi-objective opti-

mization techniques|in particular, principles such as

Pareto dominance|to �nd robust strategies. This

may help to prevent the e�ects of intransitive superior-

ity from interfering with the discovery of good general

solutions, because multi-objective optimization pro-

motes a set of players with a di�erent balance of abil-

ities rather than promoting the single best-on-average

strategy. Pareto coevolution was explored by Wat-

son and Pollack (2000), and follows from work relat-

ing coevolution and Pareto dominance (Ficici & Pol-

lack, 2000). Pareto coevolution is also developed in

the domain of the cellular automata majority problem

by Ficici and Pollack (2001). In this paper, we apply

Pareto coevolution to Texas Hold'em poker.
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Speed

Cost

optimal set
Pareto

Figure 1: Solution points for a hypothetical car design

problem, in which we want to maximize speed and

minimize cost. The Pareto-optimal set is indicated.

1.1 PARETO SELECTION AND GAMES

A Pareto-optimal solution is one in which none of the

relevant measurements or dimensions of quality or per-

formance can be improved without reducing perfor-

mance on one or more of the other dimensions. For

example, if we were designing a car, and our goals

were low cost and a high top speed, there might be a

Pareto-optimal solution at $20,000 and 120 mph. This

means that 120 mph is the fastest you can go for that

price, and that $20,000 is the cheapest you can pay for

that speed. An alternative design with the same price

but a top speed of only 110 mph would clearly be infe-

rior. However, there will almost always be more than

one solution in the Pareto-optimal set of best possible

compromises (see Figure 1). Perhaps there are also

Pareto-optimal design possibilities at $25,000 and 130

mph, and at $15,000 and 100 mph. The spirit of the

Pareto approach is not to somehow convert dimensions

like speed and cost into a common currency in order

to come up with the one true optimum, but to �nd all

members of the Pareto-optimal set so that a human

decision-maker, or some other method, can be allowed

to choose between them.

Within the �eld of evolutionary computation, various

methods of approximating the Pareto-optimal set have

been proposed as tools for multi-objective optimiza-

tion (for reviews see, e.g., Fonseca & Fleming, 1995;

Horn, 1997). The details di�er, but, in essence, Pareto

dominance is used as a selection criterion. Candidate

solution A Pareto-dominates solution B if A is at least

as good as B on all dimensions, and better than B on

one or more. Pareto selection involves choosing the

non-dominated solutions for reproduction.

Pareto selection is typically carried out with respect to

a small number of dimensions, as in the car example

above. This paper seeks to apply Pareto selection to

the domain of games (von Neumann & Morgenstern,

1953) by using each player in an evolving population

as a dimension, or objective, to be optimized|hence,

Pareto coevolution.

Given a particular game, and a way of representing

strategies in that game, we could list every possible

strategy. We could also observe the performance of

each strategy against every other, and the matrix so

derived would allow us to see that some strategies

Pareto-dominate others, e.g., that A performs as well

as B when playing C, D, and E, and is better than

B when playing F. We could then spell out the mem-

bership of the Pareto-optimal set. It is important to

realize that the set might include surprising members:

perhaps a strategy that does very poorly on average

would nevertheless be included because of its excep-

tional performance against just one opponent.

The brute-force approach of calculating a performance

matrix of all-against-all will work for a suÆciently sim-

ple game with a small number of possible strategies,

but it obviously will not be feasible for games of any

complexity. The size of the performance matrix will

be equal to the number of possible strategies squared,

and reliably calculating each entry in the matrix will

require many trials if the game includes a stochastic

element.

We have utilized a population-based coevolutionary

approach, in which individual strategies from a popu-

lation of modest size are selected at random to com-

pete against each other for a number of trials. The

accumulated data from many of these trials can be

seen as a noisy, partial window onto the true per-

formance matrix. Non-dominated strategies are pre-

served in a Pareto front, and novel strategies are gen-

erated through sexual reproduction of strategies in the

front. In this way we hoped that our population would

come to approximate the true Pareto-optimal set, and

would provide robust general strategies.

1.2 HOLD'EM POKER AS A TEST CASE

To provide a convincing test of the hypothesis that

Pareto coevolution can be used to �nd robust strate-

gies, we wanted to avoid toy problems in favour of a

real game. We have chosen poker, a card game of some

depth in which a wide range of strategies and skill lev-

els are exhibited by human players.

The speci�c poker variant we used was limit Texas

Hold'em, one of the most popular versions of poker in

modern casinos. The popularity of Hold'em must be

partly due to the balance between public and private
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information in the game, which leaves a lot of room for

convincing blu�s. A game of Texas Hold'em typically

involves eight to ten players, and each complete hand

has the following four-round structure.

The pre-
op: each player is dealt two cards face

down. These are hole cards, or private cards. The

player to the dealer's left makes a forced bet called

the small blind, equal to one chip in our case. The

next player must bet the big blind, which is equal

to two chips. The third and subsequent players

must then call (match the bet), raise (increase

the bet) or fold (throw in their cards and forfeit

all interest in the pot). As this is a limit game,

any raises must be exactly two chips at this stage.

In addition, no more than three raises are allowed

in this or any other round of betting, unless there

are only two players left, in which case raising can

continue until someone runs out of chips.

The 
op: when the previous round of betting is com-

plete (all players have either called or folded),

three cards are \
opped" face up in the middle

of the table. These are community cards, and are

available to all players. By mentally combining

the community cards with their hole cards, play-

ers can now form a 5-card poker hand, such as two

pair, or a 
ush. There is another round of betting,

again starting with the player to the dealer's left.

Players can check (decline to bet if no-one else has

bet), call, raise by two chips only, or fold.

The turn: a fourth community card is turned face

up, and there is another round of betting. Note

that even though six cards are now available, play-

ers can only make �ve-card poker hands. The

stakes increase now, and all raises must be four

chips.

The river: a �fth community card is dealt face up,

and there is a �nal round of betting, with four-

chip raises. When the round of betting is com-

plete, all players who still have an interest in the

pot compare their hands, and the player with the

strongest hand1 takes the pot.

The art of the game consists of such points as knowing

when your cards are likely to be strongest, knowing

whether it's worth staying in the pot to improve your

hand with subsequent community cards, reading the

likely strength of your opponents' hands through their

1Poker hands, from weakest to strongest, are: high card,
a pair, two pair, three of a kind, a straight, a 
ush, a full
house, four of a kind, and a straight 
ush.

patterns of betting, and of course e�ective bluÆng (see

Sklansky, 1999, for a more authoritative discussion).

2 METHODS

2.1 REPRESENTING POKER

STRATEGIES

Our primary goal was to test the e�ectiveness of our

Pareto coevolution algorithm, not to evolve world-class

poker strategies. We have therefore used an econom-

ical representation scheme that is not able to capture

many of the subtleties of expert-level poker. In decid-

ing whether to fold, call, or raise, our strategies attend

to the strength of their hand at each point in the game.

They do not pay any attention to the behaviour of

other players except insofar as they are aware of what

the current bet is, and may choose to fold because the

stakes have become too high for them.

The strategy representation begins with two proba-

bility values (real numbers between zero and one in-

clusive). The �rst gives the probability with which

a player will blu� (i.e., pretend to have very strong

cards) on any given hand. The second gives the prob-

ability with which a player will check-raise when given

the opportunity|this is a deceptive play in which a

player bets nothing, indicating weakness, and then

raises when the bet comes around again.

Next there are 24 integers in groups of six, describing

strategy for each of the four betting rounds (see sec-

tion 1.2). Two integers describe the minimum cards

that a player wants at this stage in order to remain in

the hand, e.g., a pair of aces, three sevens, or a king-

high 
ush. Another two integers describe the cards

that a player would regard as a strong hand. One in-

teger describes the amount that a player would prefer

to bet at this stage, and a �nal integer gives the maxi-

mum amount a player will bet. If players have less than

their minimum requirements, they will check if possi-

ble or fold if asked to bet. If players have equalled or

exceeded their minimum requirements, they will raise

until the betting reaches their preferred level. If bet-

ting goes higher than their preferred level, they will

call until their maximum bet is exceeded, and then

they will fold. But if their cards qualify as strong,

they will call any bet.

Finally, four groups of four binary values modify the

player's behaviour on each betting round. One bit

indicates whether or not the player will ignore their

normal preferred and maximum bets, and instead bet

as much as they possibly can, if their cards qualify

as strong. A second bit determines whether or not the
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player is willing to stay in the hand if their cards are no

better than what is showing on the community cards

(for example, if the player holds ace-king, and the 
op

is three queens, then the player's hand is three queens,

but that hand is available to all the other players too).

A third and a fourth bit indicate a willingness to stay

in the hand if one card short of a straight or a 
ush

respectively. (Note that the second bit does not apply

to the pre-
op round, and the third and fourth bits do

not apply to the pre-
op round or the river round.)

Some of the features that a more sophisticated strat-

egy representation might cover include: whether or not

the two pre-
op cards are the same suit (for possible


ushes) or close in value (for possible straights), the

player's position in the betting order, whether a player

has paired the top, middle or bottom pair on the 
op,

the relative size of the player's stack of chips, whether

the size of the pot justi�es a risky bet, and how often

other players are seen to fold early or to blu�. Never-

theless, as is apparent to us from playing against var-

ious evolved and hand-coded strategies,2 the current

strategy representation is adequate to produce poker

strategies ranging from the very bad to the reasonably

good.

2.2 A SIMPLE PARETO COEVOLUTION

ALGORITHM

We began with a population of 100 random poker

strategies. Ten strategies were selected at random to

make up a table, and a game of 50 hands of poker

was played out. Two hundred such games were played

per generation, which meant that each strategy was

assessed over an average of 1000 hands, and had a

chance to play against most of the other strategies in

the population.

Results from each of the 10,000 hands of poker played

in a generation were collated in a matrix showing who

had won or lost chips to whom. Pairwise comparisons

were conducted on this matrix in order to identify

Pareto-dominated strategies. Non-dominated strate-

gies were maintained in a Pareto front, and the re-

maining slots in the population were �lled through

sexual reproduction of randomly chosen members of

the Pareto front. Reproduction included multi-point

crossover and mutation as in a standard genetic algo-

rithm (GA).3 After the population had been restocked,

2Code (in C) for playing poker against evolved
and hand-coded strategies is available on the web at
http://www.comp.leeds.ac.uk/jasonn/Research/Pareto/ .
Code for running our Pareto selection algorithm is also
available.

3There were 37 genetic loci, the crossover rate was 0.1

the win-lose matrix was wiped clean, and the cycle be-

gan again.

One problem that became apparent in trial runs was

that the entire population, or very close to it, would of-

ten be included in the Pareto front. This was presum-

ably due in part to noise in our evaluation process|

even over 1000 hands, the luck of the deal had a sig-

ni�cant in
uence on success, making the true worth of

a strategy hard to discern. Furthermore, each strat-

egy could expect only about 100 hands against each

opponent, and sometimes did not get to play against

a speci�c opponent at all.

In order to keep exploring new regions in strategy

space, we needed to limit the size of the Pareto front.

We set the maximum size of the front at 50 strategies,

which meant that up to half the population was pre-

serving accumulated wisdom, while the other half was

exploring new possibilities. But in the event that more

than 50 strategies were non-dominated at the end of

a generation's 10,000 hands, we needed a principled

way of deciding which strategies would be maintained

in the front and which would be discarded. In de-

vising a metric for this purpose, we wanted to stay

as close as possible to the Pareto selection ideal, i.e.,

that one should not assume that the dimensions of

success are equally weighted. Strictly speaking, the

method we devised does violate this|and we suspect

that any method for keeping less than the full Pareto

front must|but it does not use an average or sum

of scores across di�erent dimensions. Instead we have

used a count on the number of dimensions in which a

player excels.

Our method was to eliminate those strategies that

were \nearly dominated," until our front size was less

than or equal to 50. A strategy is nearly dominated

if the number of opponents that it is superior to, with

respect to its best competitor, is low. The best com-

petitor is de�ned as the strategy that minimizes this

number of opponents. To elaborate: in determining

whether a strategy A is Pareto-dominated by B, or

vice versa, we look at the scores of A and B against all

other strategies. We count the number of strategies, or

dimensions, for which A scores higher than B. If this

count is zero, then A is dominated by B, and will not

be a member of the Pareto front in any event|there is

per locus, and the mutation rate was 0.02 per locus. For
the genetic parameters that were real or integer values, mu-
tation was implemented as a small gaussian perturbation,
with a mean of zero and a standard deviation of 0.05, 1,
or 2 for probabilities, hand rankings, and betting amounts
respectively (see section 2.1 for details). Ten percent of
mutations were denoted as catastrophic and resulted in a
new random value for that parameter.
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nothing that A can do that B cannot do better. If this

count is greater than zero, then A is not dominated by

B. If we look at these counts for A compared with all

other strategies, the minimum count gives an indica-

tion of how close A came to being dominated. In order

to limit the size of the front, we throw out strategies

for which this count was equal to one, then two, then

three, etc., until the membership of the Pareto front

is less than or equal to 50.

In summary, our implementation of Pareto coevolu-

tion involved selection based on non-dominance, given

the noisy, partial window onto the true payo� ma-

trix that is obtained from the results of a generation's

10,000 poker hands. We also developed a heuristic

for limiting the size of the Pareto front. However,

there were potential problems with our procedure. Al-

though a strategy that is dominated with respect to

the current population must also be dominated with

respect to all possible strategies, the converse is not

true (Scha�er, 1985). So one strategy might remain

in our Pareto front despite being dominated by an-

other, as yet unseen (or already discarded). Noise

in the evaluation process, combined with our elimina-

tion heuristic, might prevent non-dominated strategies

from being recognized as such in the �rst place. An-

other possible complication is perhaps speci�c to the

game of poker: success is measured in the context of

the other players at a table, but this is not explicitly

controlled for. Strategy A might tend to do very well

against strategy B when matched directly, but not at

a table where C and D were present.

2.3 MEASURING EFFECTIVENESS OF

THE ALGORITHM

In order to determine the e�ectiveness of our Pareto

coevolution procedure, we compared its performance

with that of a regular coevolutionary GA. This merely

provides a baseline performance measure to give us an

indication of whether Pareto coevolution can improve

performance and robustness of evolved strategies, com-

pared to regular coevolution where �tness is based on

an average score over opponents in the population.

The parameters for the GA (i.e., population size, num-

ber of hands played per generation, mutation rate,

crossover rate, etc.) were the same as those used for

the Pareto coevolution algorithm. Strategies were se-

lected for reproduction based on their pro�t or loss af-

ter 10,000 hands: speci�cally, the scores were normal-

ized with the minimum set equal to zero, and roulette-

wheel selection applied to the normalized scores.

Both algorithms were run 20 times for 100 generations

each time. We can view the comparison of the two

algorithms as a test of which one can produce the best

strategies given a million hands (100 generations �

10,000 hands) worth of information.

In deciding which of the two algorithms had produced

better results, we were faced with a somewhat para-

doxical problem of measurement. Precisely because

the �tness of a strategy cannot be given in isolation,

but can only be measured with respect to a particu-

lar opponent or set of opponents, it is diÆcult for us

to provide a single, general measure of the strength

of the evolved strategies. The familiar Red Queen ef-

fect means that it will not help to look at performance

against the other strategies in the population, as the

zero-sum nature of poker ensures that mean �tness will

always be zero.

We decided to construct two sets of �ve hand-coded

reference strategies for the purposes of comparison, us-

ing the same representational scheme as the evolving

populations (see section 2.1). These reference strate-

gies are not claimed to be in any way optimal; they

merely represent some typical, more-or-less reasonable

playing styles. For example, we constructed several

conservative strategies, that would not bet unless they

had quite strong cards. Some of the strategies were de-

ceptive, either because of frequent bluÆng, or through

\slowplaying," i.e., hiding the strength of one's cards

until late in the hand. Other strategies tended to call

all bets as long as they held a reasonable hand.

Assessment of the strategies evolved under our two

di�erent selection regimes was carried out by having

each strategy in the population play alone against a

table stocked with reference strategies, for a �xed se-

quence of 1000 hands. The overall pro�t or loss of

each evolved strategy was recorded. The same ran-

dom seed was used to deal out the same sequence of

cards in every assessment run, in an attempt to reduce

some of the noise inherent in the process. The refer-

ence strategies were divided into an alpha and a beta

group, and assessment was carried out against each of

these groups. Note that the ten reference strategies

were simply sorted at random into the two assessment

groups; there was no intention that the alpha group

should be superior to the beta group, for instance. We

wanted to be sure that we had not accidentally con-

structed an unusual or eccentric reference point, and

comparison of results against two distinct groups gave

us some some insurance against this possibility.

It is important to be clear about what good perfor-

mance against these two reference groups might mean.

Strategies under both selection regimes never encoun-

tered any of the reference strategies during the course

of evolution. Strategies were selected solely for their
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Figure 2: Mean performance (�1 standard error) of

evolved strategies in 1000 hands of play against the al-

pha and beta reference groups; strategies evolved with

a coevolutionary GA compared with strategies evolved

under Pareto coevolution. Results summarised across

20 runs in each case.

ability to do well against other members of their pop-

ulation, either in the Pareto sense or in the conven-

tional sense of having a high average score. If they

managed to do well against an arbitrary set of hand-

coded strategies, that gives us some indication that

they would do well against a wide range of strategies,

i.e., that they are robust and have not adapted to their

conspeci�cs in an overly brittle manner.

3 RESULTS

Figure 2 shows that after 100 generations of evolution,

strategies evolved under Pareto selection had a higher

mean performance against both of the reference groups

than did the strategies evolved using a conventional

GA. As the standard error bars indicate, this di�erence

is more pronounced in performance against the alpha

group.

Figure 2 also indicates that the alpha reference group

was signi�cantly harder to beat than the beta group|

both strategies lose to the former and win from the

latter on average. This di�erence was not intended,

but the fact that there is no evidence of a strong in-

teraction between selection regime and reference group

performance (i.e., the two lines in Figure 2 are roughly

parallel) is a reassuring indicator that the two refer-

ence groups are measuring something like general abil-

ity.

If we look in detail at the evolved strategies across the

two selection regimes, the most striking di�erence is

that the Pareto strategies blu�ed less often on average

(20% vs. 36%). This fact alone explains a lot of the

di�erence in success between the two conditions: in

those populations where a high level of bluÆng ob-

tained, performance against the reference strategies

was always very poor. This is because the only type

of bluÆng available to these strategies was a simple-

minded approach in which they pretended they had a

royal 
ush right from the beginning of the hand and

never gave up their blu� no matter how determined

the opposition. The Pareto selection process seems to

have made it easier for the population to discover the

folly of this sort of bluÆng.

There were other di�erences: the Pareto strategies had

lower standards for staying in at the pre
op and at

the river. They tended to bet more, and were more

likely to bet as much as possible if they had strong

cards (except on the �nal round of betting). They

were less likely to stay in the hand if they weren't

beating the community cards, and were more likely

to wait for straights and 
ushes if they were one card

short. Readers who play poker may be interested in

seeing a complete strategy description. The following

is a high-performing evolved strategy from Pareto run

17, in which the average wins were 2009 and 5267 chips

against the alpha and beta groups respectively.

� Never blu�, and check-raise 11% of the time.

� At the pre-
op stage, bet as much as possible if

you have an ace or a pair|otherwise fold.

� On the 
op, stay in as long as you are beating

the community cards. If you are one short of a

straight or a 
ush, stay in in any event. Try to

bet just two chips, but call bets up to 42 chips. If

you have a straight or better, call any bet.

� On the turn, keep waiting for a straight or a 
ush,

but otherwise fold if you have less than a pair

of sixes or if you are not beating the community

cards. If you stay in, try to bet 6 but call bets

up to 59 chips. If you have two pair, with the top

pair sixes or better, bet as much as you can.

� On the river, if you have a pair of aces or bet-

ter, then bet as much as possible. Otherwise fold,

and de�nitely fold if your two aces are community

cards.
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Figure 3: Mean performance of evolving strategies in

1000 hands of play against the alpha and beta refer-

ence groups, for both Pareto and standard coevolu-

tion, over 500 generations. Data taken from runs with

a common random seed value of zero.

Some peculiarities were noted regarding the Pareto

selection condition. The Pareto front, of maximum

size 50, was always full, which means that some non-

dominated strategies were being eliminated in every

generation. The mean age of strategies in the Pareto

front was approximately two generations, and the me-

dian age was always one generation. This suggests a

front made up of mostly very young strategies with a

few older ones, which is not unexpected, but the mean

age of only two generations indicates an extremely

rapid turnover of strategies. When Pareto populations

were examined at the end of a run, they were not as

diverse as we would have hoped. Again, this was not a

complete surprise, as reproduction with crossover was

employed, but it indicates that the Pareto front has

not been completely successful in preserving a range of

very di�erent strategies that are non-dominated with

respect to each other.

We looked brie
y at what happened when evolution

continued for more than 100 generations, and found

that in many cases performance against the reference

groups actually worsened. Figure 3 gives an exam-

ple of this, with mean performance data over time for

an extended version of run zero, showing both Pareto

and standard coevolution against the two reference

groups. The Pareto-evolved players are declining in

performance and moving closer to zero pro�t, while the

GA strategies are making signi�cant losses but with no

clear trend up or down.

4 CONCLUSIONS

Our Pareto coevolution algorithm was superior to

a GA at �nding robust Texas Hold'em strategies

within 100 generations. This fact should not be over-

interpreted: clearly, we worked with only one game,

two small groups of arbitrary reference strategies, and

a particular set of parameter values. Nevertheless, our

�nding does show that Pareto coevolution of strategies

in games can work in principle and is an idea worth

exploring.

The algorithms we have presented for selecting non-

dominated strategies and for discarding excess strate-

gies from the Pareto front could probably be improved

upon so as to use the multi-dimensional information

from the games played more eÆciently and e�ectively.

Our current method maintains only a rough approx-

imation to the Pareto front as compared to existing

multi-objective optimization methods, because of the

unusually high number of objectives we are using.

However, in regular coevolution the multidimensional

information is discarded completely, in favor of a single

\performance on average" dimension. To put it an-

other way, �tness evaluation and selection are noisy,

incomplete processes under both selection regimes|

noisy because of the stochastic element, and incom-

plete in the sense that we cannot observe performance

against all possible opponents. But in Pareto coevolu-

tion, we are trying to use the information gained from

10,000 hands of poker more intelligently: instead of

simply taking an average, we use the speci�cs of who

beat who, and we remove the unwarranted assumption

that every other strategy is equally worth beating.

The long term behaviour shown in Figure 3 is some-

what disturbing. It seems that our Pareto-selected

strategies cannot hold onto their collective wisdom

over time (although the same e�ect was observed with

the more successful GA-evolved strategies). This ef-

fect may be due to the population chasing its own tail

into eccentric regions of the strategy space; if this is

the case, then we need to re�ne our coevolution algo-

rithm. But note that we are not selecting for maxi-

mization of scores against the reference strategies|we

are selecting for not being dominated by anyone else

in the population. It is an open question as to whether

the long term reduction in success apparent in Figure 3

is a sign of \population senility." It may represent a

movement towards careful compromise strategies that

do not make spectacular wins, but instead make mod-

est pro�ts against a wide range of opponents, and are

careful not to lose to anyone.

This paper is the preliminary exploration of an idea,
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and so we have many questions for future work. One

of the most pressing is about the explore-exploit bal-

ance in our algorithm: is 50% of the population a rea-

sonable size for the ongoing Pareto front? Would we

bene�t from having a \genetic freezer" for storing past

champion strategies, and then re-inserting them into

the front at regular intervals? How big is the true

Pareto-optimal set likely to be in a game like poker,

and what chance do we have of getting a reasonable

approximation to it with our method?

We also want to look at reproduction of Pareto-

selected strategies. In the current paper we have used

standard sexual reproduction, partly to facilitate com-

parison with the GA. It seems worth exploring asexual

reproduction, or at least much lower levels of crossover,

to see if we can avoid the unfortunate degree of con-

vergence reported in section 3. It would be interesting

to see whether asexual reproduction also resulted in

an increase in the mean age of in the Pareto front.

Once we have re�ned our Pareto coevolution algo-

rithm, it would be sensible to test it against more than

just a standard GA. If we view the problem as how

to learn the most you can from one million hands of

poker, then we should ultimately be testing Pareto co-

evolution against a range of established evolutionary

computation and machine learning techniques. In the

meantime, our experiments have provided a simple il-

lustration of Pareto coevolution, and begun to explore

some of the issues involved.
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Abstract 
 

 

This work considers the cohort genetic 
algorithm, a new type of genetic algorithm 
introduced by Holland. The cohort GA differs in 
several ways from the traditional canonical serial 
GA and island-model distributed GA.  A key 
motivation for its development was to reduce 
“hitchhiking” – premature convergence of 
currently low-significance loci located near loci 
at which good building blocks are found early in 
the search process. This w ork compares one 
version of the cohort GA with canonical serial 
and island-model distributed GA’s on the basis 
of their abilities to reduce hitchhiking. The 
comparison is done using two types of test 
functions:  the “royal road with potholes” 
function and hyperplane-defined functions 
(“HDF’s”). It is experimentally shown that even 
though theoretically the cohort GA can reduce 
hitchhiking, the particular version of the cohort 
GA tested is prone to another form of premature 
convergence, and it performed worse than the 
other GA’s. It is also shown that a small change 
in the placement of offspring among cohorts in 
the cohort GA may dramatically improve its 
performance. This suggests that further work on 
the cohort GA may well be fruitful.  

1   INTRODUCTION  
The genetic algorithm (GA) is a family of search methods 
introduced by Holland [1975].  Much research has been 
done in order to understand how the GA works and how 
to improve its performance.  

The cohort GA is a new type of GA designed more 
recently by Holland [1998] [2000]. It is aimed at reducing 
the “hitchhiking” effect that occurs in the process of a 
GA’s search. Hitchhiking is a form of premature 

convergence that can hinder the GA or even make it 
unlikely for the GA to find a good solution for a given 
problem. Hitchhiking is most severe when the maximum 
reproduction rate is relatively high – for example, if the 
expected number of offspring of the best individual in the 
population is on the order of two or more. Hitchhiking is 
reduced when fitness is scaled s o that the expected 
number of copies of the most fit individual produced in 
the next generation is 1.2 or fewer, but then, as Holland 
points out, other problems arise:  1) exploitation of the 
fitness difference is slowed, and 2) there is higher 
variance in the sampling of the fitness distribution (many 
times, individual with better-than-average fitness will be 
lost from the population).  This higher variance occurs 
because GA’s typically use any fractional fitness excess 
above 1.0 as a probability of creating a second copy of an 
individual in the next generation.   Thus the best 
individual’s gain becomes uncertain. The cohort GA is 
designed to allow a reduction in reproduction rates 
without introducing this stochastic sampling problem. 
Holland conjectured that the cohort GA’s mechanism, 
with relatively low maximum scaled fitnesses, will reduce 
hitchhiking, thus improving the performance of GA on 
classes of problems in which hierarchical assembly of 
building blocks is important to the solution trajectory.   

In this work, we tested the hypothesis that a cohort GA 
can reduce the hitchhiking effect and therefore improve 
the performance of GA’s by comparing it with a 
canonical serial GA and an island-model distributed GA 
on two types of seemingly appropriate test functions.  We 
used a version of Holland’s cohort GA provided by 
Belding [Holland, 1998], a student of Holland.  We note 
that Holland’s most recent publication on the cohort GA 
[Holland, 2000] includes some new mechanisms he has 
introduced to fight the conv ergence issues we (later) 
found in our work with his earlier version of the cohort 
GA; we have not yet experimented with his newer 
formulation. 

Section 1 introduces the hitchhiking effect and the cohort 
GA.  Section 2 presents the experimental design. Results 
are given in Section 3, and conclusions in Section 4. 
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2  HITCHHIKING AND THE COHORT GA  
Hitchhiking is the effect that when a building block 
(short, high-fitness schema) is discovered, the alleles at 
loci near but outside the building block spread through 
the population almost as rapidly as the building block 
itself [Holland, 1998] [Mitchell, et al., 1992] [Forrest & 
Mitchell, 1992]. When the particular alleles at these 
nearby loci make little or no contribution to the fitness, 
their hitchhiking results in reducing exploration in the 
parts next to the building block (due to premature 
convergence at those loci).  This often severely slows 
discovery of building blocks near one already found.   
Holland [1998] argues convincingly that hitchhiking is 
made severe by high maximum reproduction rates.  In 
order to enable the building blocks that are presented in 
the best individuals to spread through the population 
quickly, exploiting the knowledge they bear, fitnesses are 
often scaled to allow the best individual in the population 
to produce 2 or more offspring in each generation. This 
high maximum reproduction rate makes the hitchhiking 
problem severe.  

Of course, increasing the mutation rate while keeping the 
maximum reproduction rate high can reduce hitchhiking.  
However, a high mutation rate can reduce the ability of 
the population to retain information about building blocks 
that have already been discovered. 

If the maximum reproduction rate is set to a low value, 
such as 1.1 or 1.2, the mutation rate can be set  low 
enough to retain building blocks that have already been 
discovered (with few crossovers and mutations in each 
generation, most individuals survive unchanged). But the 
number of generations until the second offspring of the 
best individual occurs becomes uncertain, because the 
second offspring is generated with probability much less 
than 1 in each generation. Such a low reproduction rate 
becomes a source of extreme variance. To control this 
variance and reduce hitchhiking, Holland proposed the 
cohort genetic algorithm.  

The cohort GA is intended to reduce hitchhiking by 
lowering the reproduction rate without using random 
numbers and probabilities to control the number of 
offspring produced [Holland, 1998]. In the cohort GA, the 
population is divided into  an ordered set of 
subpopulations. These subpopulations are called cohorts. 
The initial population is generated randomly, and 
distributed evenly among cohorts. Individuals in cohort 1 
will produce offspring first. Then the individuals in the 
successive cohorts will have chances to produce. When 
the last cohort is reached, the process begins again with 
cohort 1. Reproduction is thus carried out by cycling 
through the cohorts. When it is time for an individual in a 
cohort to reproduce, the individual crosses over with 
another individual in the same cohort, then the offspring 
undergo mutation probabilistically. The fitness of an 
offspring determines the cohort into which the offspring is 
put, which determines when its turn is to produce 

offspring. In this way, a string with high fitness will 
produce offspring sooner than a string with low fitness. 
Over an extended interval, the string with higher fitness 
will produce more offspring than the string with lower 
fitness, and in a deterministic manner.  

All strings in the population can produce a fixed number 
of offspring when it is their turn to reproduce, no matter 
what their fitness values are. This method lowers the 
reproduction rate. Theoretically, this method can reduce 
hitchhiking. In order to verify this idea, we conducted a 
comparison study of a cohort GA with a canonical serial 
GA and an island-model distributed GA, which we will 
describe in Sections 3 and 4. 

3   EXPERIMENTAL DESIGN  
The main purpose of this work is to test whether or not a 
cohort GA can reduc e the hitchhiking effect. By 
comparing a cohort GA with a canonical serial GA and an 
island model distributed GA, we also tested whether a 
cohort GA is more efficient than other GA’s. Another 
objective of this work is to test how some factors affect a 
cohort GA’s performance. 

3.1   TESTBEDS – ROYAL ROAD AND HDF  

3.1.1  Royal Road Function 

The hitchhiking phenomenon was noted by Holland while 
using his original RR functions to test the building block 
hypothesis. Thus it is natural to use the RR function as a 
testbed to compare the cohort GA’s performance with 
other GA’s. The Royal Road (RR) function used in this 
work is Holland’s revised version of the RR function. 1 
We also took Holland’s default setting for the parameters 
of the RR. The characteristics of the RR function, such as 
known building blocks, known fitness and a hierarchical 
structure of building blocks, should enable us to track the 
GA’s performance over time. The revised RR function is 
especially good for testing because it incorporates the idea 
of “deception” or a fitness valley that the GA must cross 
to find a global optimal solution.  

3.1.2  HDF’s 

Hyperplane-defined functions (HDFs) are a set of 
randomly generated functions. They are designed to allow 
a large number of building blocks to be combined in a 
variety of ways. They also incorporate the idea of “pot 
holes”, which refers to the fitness valleys that must be 
crossed in order to reach the global optimum. The 
interactions among the building blocks are more dramatic 
in HDFs than in RR. The HD F used in this work is 
generated by the code provided by Holland in [1998] with 

                                                           
1 Holland presented this version of RR at the Fifth International 

Conference on Genetic Algorithms in 1993, then posted it to the Internet 
“GA Digest” mailing list.  We take Jones’s [1995] desc ription as a 
reference.  
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the following parameter settings: chrl = 80, nelt  = 8, minl 
= 6, maxl = 12, npr = 2 and nocom = 5.  

The advantages of HDFs are they are easy to generate, 
hard to reverse-engineer (so not easy for the GA-designer 
to “cheat” on), and easy to analyze after the fact – i.e., 
very suitable for testing GA’s [Holland, 1998]. 

3.2   PERFORMANCE CRITERIA  

Based on the different nature of the two test functions, we 
chose different criteria to measure the GA’s performance 
on them. The RR function has explicit levels. Therefore, 
for the RR, we measured the number of function 
evaluations required to achieve a certain RR level. For the 
HDF, in order to measure the degree of convergence in 
the in tron part of the chromosome, we generated a 
relatively short chromosome (length 80). For each intron 
locus, we measured the difference between the total 
number of ones and the total number of zeros of all 
chromosomes in the population and used the absolute 
value of their difference as a criterion. We also measured 
the maximum fitness value that the various GA’s 
achieved given a fixed number of function evaluations.  

3.3  COHORT GA IMPLEMENTATION DETAILS  

There are many ways to implement the cohort GA’s 
central idea. We used Holland’s [1998] version as a 
starting point and also made some modifications for some 
of our tests.  

Several factors may affect a cohort GA’s performance, 
such as population size, offspring placement strategy, 
deletion strategy and crossover candidates chosen. These 
factors are considered during the tests, corresponding 
changes are made to the original implementation, and 
repeated tests are done with different settings and 
implementations.  

3.3.1  Population Size 

The cohort GA must be given the relationship between 
the number of cohorts, nocoh, and the size of each 
(lencoh). Holland’s default setting is nocoh = 20 and 
lencoh = 20; thus population size is 400.  We chose 
various values for nocoh and lencoh and different 
combinations of these values to perform the tests in an 
attempt to see how these two parameters affect the cohort 
GA’s performance. 

3.3.2   Offspring Placement Strategy 

The offspring placement strategy specifies which cohort 
an offspring with a certain fitness will be placed in. It will 
affect selection pressure as well as interactions between 
cohorts. In Holland’s original implementation, an 
offspring with fitness u is placed in cohort d, where d is 
determined by the equation:  

      d = mod(t + doub, nocoh),  

where t is the current cohort number and 

doub = 
�
2 × umax / u� ,  

where umax is maximum fitness value found so far.  
(Holland has used more sophisticated strategies in his 
later-reported work.) 

In this way, an individual with fitness umax is placed in 
the cohort next to the current cohort. Another individual is 
placed in a cohort based on the ratio of umax and its 
fitness value. An individual with higher fitness value will 
be put nearer the current cohort, and vice-versa. 

During the experiments in RR, we found out that with this 
implementation, the individuals tend to accumulate in a 
small number of cohorts. In order to spread the 
individuals among all the cohorts and keep the cohort GA 
working as intended, we tried a new placement strategy 
with  

    doub = 
�
(nocoh – 1)  

        + (u – umin) × (2 – nocoh +1) / (umax – umin) �   

and umin is the minimum fitness found so far. In this way, 
a chromosome with the fitness umin will be placed in the 
cohort nocoh –1 from the current cohort (which is the 
farthest cohort from the current cohort) and a 
chromosome with the fitness umax will be placed in the 
cohort next to the current cohort. Other individuals will be 
placed in cohorts between 2 and nocoh – 1 steps removed 
from the current cohort, where the doub value is 
proportional to the individual’s fitness value.  

The above strategy is deterministic. We also tried putting 
the offspring in a randomly selected cohort subject to 
some probability distribution, in order to produce more 
migration effect by providing the opportunity for inter -
cohort mating.  But, of course, this introduces just the sort 
of stochastic variability that Holland is seeking to 
minimize with the cohort GA. 

3.3.3   Deletion Strategy 

Each pair of individuals produces four offspring. To keep 
the population size constant, the parents are deleted and 
two other chromosomes randomly selected from two 
other cohorts are also deleted. The cohorts that are the 
source of chromosomes for deletion are also randomly 
selected. The deletion of random chromosomes from 
random cohorts affects the cohort GA’s ability to keep the 
good individuals found so far; it also affects selection 
pressure.  (In fact, one might look at it as re-introducing 
stochastic variation in effective fitness -proportional 
reproduction that the cohort GA was trying to reduce.)  In 
the original implementation, the source cohorts from 
which to delete chromosomes are randomly selected from 
cohort positions nocoh/2 to nocoh-1 relative to the current 
cohort; that is, the distant half of the cohorts. We also 
tried deleting chromosomes randomly from 2 to nocoh –1 
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relative to the current cohort to lower selection pressure. 

3.3.4   Crossover Candidates 

In the original implementation, both parents are selected 
from the current cohort.  In addition to this, we also tested 
having the one parent selected from the current cohort and 
with some probability, another parent randomly selected 
from another cohort.  This strategy was also an attempt to 
provide inter-cohort mating and avert the “clustering” 
found in the original cohort GA. 

3.4  DETAILS OF CANONICAL SERIAL GA AND 
ISLAND -MODEL DISTRIBUTED GA  

Though the architecture of a typical GA is well known, 
implementation details vary from system to system. Even 
very small differences in implementation may result in 
significant changes. The canonical serial GA and island-
model distributed GA software used was “GALOPPS” 
(The “Genetic Algorithm Optimized for Portability and 
Parallelism” System) [Goodman, 1996].  

3.4.1  Implementation of Canonical Serial GA 

1) Make initial population with uniform random bits.  

2) Evaluate fitness of each new individual in current 
generation, fitness statistics. 

3) Terminate the program if stopping criterion met. 

4) Select survivors and parents for next generation, 
using “stochastic universal sampling” method to 
pick a list of chromosomes that will be the parents 
or the survivors for next generation, sampling with 
replacement; list size = population size.  

5) Reproduce in one of two ways: “standard” 
canonical serial GA, or allowing niching of the 
population by using crowding and incest reduction. 
Niching is used to try to reduce premature 
population convergence. Use of this method helped 
us to see where the cohort GA stands in comparison 
to other ways of reducing premature convergence. 

In a “standard” serial GA, both parents are uniform 
randomly selected from the list generated in step 4. 
One-point crossover and single -bit mutation or 
multi-bit mutation are performed according to the 
crossover rate and mutation rate. The offspring 
then replace the parents.  

The niching technique included two mechanisms: 
DeJong crowding and incest reduction [Goodman, 
1996].  With incest reduction, pairs for crossover 
are picked by choosing the first parent at uniform 
random from the above list, then uniform randomly 
choosing several candidates for the other parent 
(here, 3 candidates). Among these candidates, the 
one with the greatest Hamming distance from the 
first parent is picked as the second parent, helping 

to reduce, for example, crossover between 
individuals which are identical or nearly so. After 
crossover (and any mutations) are done, for each 
child, “crowding-factor” (here, three) members of 
the above list are selected (at uniform random). 
Among the three candidates, the one with smallest 
Hamming distance from the child is replaced.  

The list generated by step 4 is not altered in this 
process. All individuals in this list are used in some 
crossover and/or mutation operation, or else 
survive unaltered into the next generation.  

6) Go to step 2. 

3.4.2  Implementation of Island-Model Distributed GA  

The island -model distributed GA divides the whole 
population into several subpopulations. It provides a 
chance for parallel execution by allowing use of several 
processors or computers. In our experiments, we used one 
workstation to serially simulate parallel execution. In that 
approach, we take advantage only of the distributed GA’s 
ability to reduce premature convergence, but not its 
capability for parallel execution.  

In this case, each subpopulation is simulated for some 
number of generations (a “cycle”).  Each population 
receives one turn per cycle. At the beginning of each 
population’s turn, it reads one or more individuals from 
each of its declared neighboring subpopulations according 
to a migration table. Migrants are duplicated, not removed 
from the so urce population. In addition to defining 
neighbors, the migration table also says how many 
individuals are to migrate in from each neighbor each 
cycle, whether these migrants include the best individual 
and/or some number of randomly selected individuals, 
and which strategy is to be used for replacing existing 
individuals by migrants. The migration incest reduction 
and migration crowding parameters are used to direct the 
donating and receiving process. When a migrant is to be 
selected randomly and migration  incest reduction is 
specified (non-zero), that number of candidates is first 
randomly chosen. The one with the farthest Hamming 
distance from the best individual of the receiving 
subpopulation is selected. Migration crowding means the 
random choice of k c andidates for replacement in the 
receiving subpopulation and picking for replacement the 
one that is closest in Hamming distance to the migrant. 
Then the run of each subpopulation follows the canonical 
serial GA with crowding and incest reduction. 

4   RESULTS 
These experiments investigate the cohort GA by 
comparing it with a canonical serial GA and island-model 
distributed GA, and by studying issues involved in 
implementing the cohort GA. Each of these results on the 
RR function and the HDF was an average of 20 runs. 
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4.1 COMPARISON OF RESULTS ON RR  

4.1.1 Initial Experiments 

The first set of experiments investigated the performance 
of five different GA’s on the RR function. The GA’s 
included: original cohort GA, cohort GA with new 
placement implementation, the island-model distributed 
GA, the canonical serial GA and the canonical serial GA 
with niching. 

  The original cohort GA settings were as follows: 

     Number of cohorts: 20 
     Initial size of each cohort: 20 (population size: 400)  
     Offspring placement strategy:  
         doub = 

�
2 × umax / u�   

         (note that d’s calculation is always the same) 
     Deletion strategy: nocoh/2 to nocoh –1 
     Crossover: within the same cohort 
     Stopping criterion: function evaluations > 300,000 

We also ran the cohort GA with a new offspring 
placement strategy: 

doub = 
�
(nocoh – 1) + (u – umin) × (2 –  

nocoh +1) / (umax – umin) �  

The tests on canonical serial GA’s and island -model 
distributed GA were done with population size 400 and:  

   Canonical serial GA: 

Crossover rate: 0.15 (one point crossover) 
Mutation rate: 0.0002/bit (0.048/chromosome) 
Linear scaling, with best fitness/mean fitness = 1.25 
Stopping criterion: generation when function 

evaluations > 300,000 
 

   When niching was used: 

     Parameters are the same as canonical serial GA, plus: 
     Crowding factor: 3;  Incest reduction: 3 

   Island-model distributed GA: 8 subpopulations, 50 each 

The settings of each subpopulation were the same as for 
the canonical GA with crowding and incest reduction.  

     Number of cycles: 10 
     Neighbors of each subpopulation: 2 adjacent in a ring  
     Number of migrants: 2 (one is the best, one is random) 
     Migration incest reduction: 3  
     Migration crowding factor: 4 

The parameter settings above are the defaults. In the 
following experiments we report only the exceptions. 

Table 1 lists the results on the RR function, of five GA’s 
with population size of 400. (In Tables 1-7, an average 
number shown without a parenthesized number means 
100% of runs achieved that level; blank means that the 
level was never achieved in 300,000 function 
evaluations.)  Surprisingly, the cohort GA performed the 
worst. In a total of 20 runs at this setting, the cohort GA 

achieved only level 1 and only in 5 runs. The results with 
the new placement implementation were much better. All 
runs reached level 1 and 70% of the runs reached level 2. 
The other GA’s achieved levels 1 and 2 with fewer 
function evaluations, but only in a smaller percentage of 
the runs. They usually did not reach level 2 w ithin the 
number of function evaluations allowed.  

Table 1: Function evaluations until a RR level is achieved 
and (% of runs in which GA achieved that level – 100% 

when not specified, unless cell is blank, which means that 
level was not achieved in any run). 

  level 1 level 2 level 3 

average 61326  
(25%) 

  original cohort 
GA 

std. dev 60606   

average 1786 28779  
(7%) 

 cohort GA with 
new placement 
implementation 

std. dev 923 41898  

average 11344 59046  
(65%) 

 Island-model 
distributed GA 

std. dev 8975 24390  

average 1927 5552   
(45%) 

 Canonical Serial 
GA 

std. dev 853 1572  

average 1885 5306   
(35%) 

 Canonical Serial 
GA with niching 

std. dev 720 678  

 

Traditional GA’s have been found to work better on RR 
when the population size is relatively large. In that case, 
the initial population typically contains most or all of the 
basic building blocks needed to get to further levels 
through crossover. Otherwise, it can take a GA a long 
time to make the basic building blocks through mutation, 
especially because of the “potholes” (deception in the 
fitness function). Therefore, larger population sizes were 
used in the rest of the experiments on RR. 

4.1.2  Varying Cohort Numbers and Initial Sizes 

To test the effect of population size on the cohort GA, we 
ran the cohort GA’s with different numbers of cohorts 
(20, 35, and 50) and different initial sizes of each cohort 
(20, 40, and 80). Thus, the population sizes varied from 
400 to 4000. The results are listed in Tables 2 to 5.  

Table 2 shows that with the origin al cohort GA, the 
average number of function evaluations used to achieve 
level 1 was relatively small with the number of cohorts 
equal to 20 and the cohort sizes at 40 or 80. With a cohort 
size of 80 and the number of cohorts at 35 or 50, most of 
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the runs reached level 1, but needed many more function 
evaluations. This could be because the population sizes 
were much bigger in these two cases. The initial 
population is more likely to contain instances of level 1 
building blocks or schemata similar to them. In the latter 
case, after a long period of search, mutation led the RR to 
reach level 1. This confirmed that we need a bigger 
population size for RR. However, even though the 
number of cohorts, the cohort size and their ratio had 
some impact on the original cohort GA, it never achieved 
RR level 2 in any of the runs we tried, due to the rapid 
accumulation of individuals in only few cohorts. 

Table 2. For original cohort GA, average number of 
function evaluations to achieve level 1  

cohort size # cohorts  
20 

# cohorts  
35 

# cohorts  
50 

20 average 61327  
(25%) 

38282  
(40%) 

60356  
(45%) 

 std. dev 60606 33704 49227 

40 average 6093   
(45%) 

9124    
(60%) 

34577  
(60%) 

 std. dev 15062 19969 62927 

80 average 16136   
(50%) 

139569 
(80%) 

151198 

 std. dev 45328 157056 171798 

 

 With the new offspring placement implementation, most 
cohort GA runs reached RR level 2, and some reached RR 
level 3, as shown in Tables 4 and 5. This shows that the 
new offspring placement implementation improved the 
performance of the cohort G A. The new offspring 
placement implementation was used for all remaining 
runs reported. The cohort GA’s performance didn’t 
change linearly with changing of the number of cohorts, 
cohort size or population size. But with number of cohorts 
at 20, the cohort GA performed better, especially with 
initial cohort size of 80. 

Table 3: For cohort GA with new placement 
implementation – function evaluations to reach level 1  

cohort size # cohorts 
20 

# cohorts 
35 

# cohorts 
50 

average 1786 2854 3215 20 

std. dev 923 1063 1970 

average 3352 3697 4392 40 

std. dev 1412 2295 2962 

average 5151 4727 6541 80 

std. dev 2093 3288 4430 

 

Based on this observation, we proceeded with tests with 
the number of cohorts equal to 20 and 35 and the cohort 
size varying from 20 to 200, in an attempt to see whether 
the ratio of the cohort size and the number of cohorts 
really has some effect on the cohort GA’s performance. 
The results of 20 cohorts are listed in Table 6. 

Table 4:  For cohort GA with new placement 
implementation -- function evaluations to reach level 2 

cohort size # cohorts  
20 

# cohorts 
35 

# cohorts 
50 

average 28779  
(70%) 

37431  
(80%) 

44014 
(55%) 

20 

std. dev 41898 17337 27720 

average 49627 
(80%) 

52819 
(75%) 

46973 
(75%) 

40 

std. dev 43897 26108 36142  

average 35433 
(95%) 

59598  
(80%) 

64613 
(85%) 

80 

std. dev 18686 32518 41379  

 

While setting the number of cohorts at 20 still gave 
overall better performance, the performance did not 
improve linearly with an increase in the initial cohort size. 
The ratio of the cohor t size and the number of cohorts 
does not seem to determine the cohort GA’s performance. 

The island-model distributed GA and canonical serial 
GA’s were tested on population sizes of 1600 and 4000. 
These population sizes are those that gave better 
performance using the cohort GA. Table 7 lists the 
comparison results for population size of 4000. 

Table 5: For cohort GA with new placement 
implementation, function evaluations to achieve level 3 

cohort size # cohorts  
20 

# cohorts  
35 

# cohorts 
50 

average  65647   
(15%) 

73216   
(10%) 

20 

std. dev  14330 11677 

average 148545 
(10%) 

165175 
(15%) 

 40 

std. dev 14332 61756  

average 107102 
(30%) 

 316671 
(5%) 

80 

std. dev 7142   

 

The results show that among the four GA’s, the island-
model distributed GA and the two canonical serial GA’s 
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gave significantly better results than the cohort GA. This 
may indicate a defect in the implementation of the cohort 
GA or weaknesses in relation to the RR’s challenges.  

Table 6: Function evaluations to reach each level, with 20 
cohorts.  Stopping criterion =  500,000 evaluations. 

cohort size level 1 level 2 level 3 level 4 

average 1786 28779 
(70%) 

  20 

std. dev 923 41898   

average 3352 49627 
(80%) 

148545 
(10%) 

 40 

std. dev 1412 43897 14332  

average 5151 35433 
(95%) 

107102 
(30%) 

 80 

std. dev 2093 18686 7142  

average 5586 43111 
(85%) 

165575 
(40%) 

 120 

std. dev 2981 20938 61669  

average 7800 56257 
(90%) 

172955 
(35%) 

 160 

std. dev 4351 26904 50264  

average 6577 49952 
(80%) 

193042 
(20%) 

420068 
(5%) 

200 

std. dev 4412 25705 71593  

 

The new offspring placement implementation obviously 
improves the cohort GA performance, but during the 
experiments we can still see that the individuals tend to 
accumulate in a small number of cohorts instead of 
spreading among all the cohorts, after a certain number of 
cycles. Tables 8 and 9 illustrate the degree of 
accumulation using the original and new offspring 
placement implementations, respectively. The number of 
cohorts here is 20 and initial cohort sizes are 20. With the 
original offspring placement, after only 20 cycles and 
about 1000 function evaluations, the population has 
prematurely converged with the maximum fitness 1.86, 
RR level 0. The individuals have accumulated in 10 
cohorts instead of being spread among 20 cohorts. With 
the new offspring placement, after 160 cycles and 8000 
function evaluations, the population has converged with 
the maximum fitness 4.3, RR level 1. 

The result of this accumulating is a kind of premature 
convergence. A large number of individuals tend to gather 
within a few cohorts, indicating that their fitness values 
are similar to the degree that they could not be separated 
by the current offspring placement strategy.  

4.1.3  Varying Crossover Candidate and Offspring   
Placement 

To give a better chance for th e individuals with less 
similar structures to mate, we tried two strategies that will 
enable inter -cohort crossover: choosing different 
crossover candidates and non-deterministic placement of 
the offspring. 

Table 7: Function evaluations to reach a level, with 
population size 4000.  Island models used 8 

subpopulations of 200 each. 

GA type level 1 level 2 level 3 

average 6577 49952 
(80%) 

193042 
(20%) 

cohort GA with 
new placement 
implementation 

std. dev 4412 25705 71593 

average 3353 36117 76048 Island-model 
distributed GA 

std. dev 185 5782 16013 

average 8210 38561 79776 Canonical Serial 
GA 

std. dev 5458 8578 13681 

average 8125 39345 84292 Canonical Serial 
GA with niching 

std. dev 5279 7854 17292 

 

To change the crossover candidate, one candidate is still 
selected from the current cohort, but with probability 0.1, 
the other candidate is chosen from another randomly 
chosen cohort. In another words, one-tenth of the second 
candidates do not come from the current cohort.  

In non -deterministic offspring placement, the offspring 
may be placed in a randomly selected cohort, rather than 
using the calculation of d. The probability of this random 
placement was also set to 0.1. 

The results showed that, with these settings, the cohort 
GA needs more function evaluations to achieve a certain 
level. They showed that employing a form of inter-cohort 
crossover did not improve the cohort GA’s performance. 
This might be due to a potential defect of the 
implementation of inter-cohort crossover. It might also be 
due to the fact that the RR’s saturation effect is too strong 
to be overcome by the cohort GA. 

In an attempt to alleviate the premature convergence, we 
also tried to reduce the selection pressure by changing the 
implementation of deletion from being delete from second 
half of the cohorts to being delete from all cohorts except 
the current cohort.  With this change, the performance of 
the cohort GA went down. This showed that the selection 
pressure alone is not a big factor in causing premature 
convergence of the cohort GA on RR. 

4.1.4 Summary  

The experiments described in this section investigate the 
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cohort GA’s performance on the RR function, Several 
parameters and implementations were changed in order to 
test their effects on the cohort GA’s performance. 

The results of these experiments indicated that the number 
of cohorts and the offspring placement have the most 
effect on cohort GA performance on RR. Twenty cohorts 
gave the best overall performance, especially when the 
initial cohort size was 80. But this ratio of cohort size and 
the number of cohorts was not found to be generalizable. 
A new implementation of offspring placement in an 
attempt to spread all the individuals among all the cohorts 
yielded a great improvement in the cohort GA. But 
compared with an island-model distributed GA and two 
canonical serial GA’s, the best cohort GA’s performance 
remained worse. The RR function’s drawbacks might 
cause this version of the cohort GA to fail. But there 
might be some practical problems that also have the 
characteristics of the RR function. So there is a need to 
find another way to implement the cohort GA’s central 
idea and avoid the problems found here (a candidate 
perhaps being [Holland, 2000]) 

Table 8: Maximum fitness values and cohort sizes 
recorded in a cohort GA at various numbers of cycles -- 

original offspring placement implementation. 

Number 
of 
Cycles 

Max. 
Fitness 
Value 

Cohort Sizes 

0 (Initial cohort   
sizes) 

{all at 20}  

5 1.84 {0, 0, 0, 0, 0, 43, 35, 
42, 53, 45, 44, 30, 22, 
16, 22, 10, 5, 8, 6, 19}  

10 1.84 {1,  0, 0, 0, 0, 0, 0, 0, 
0, 0, 70, 61, 57, 59, 58, 
51, 22, 15, 5, 1}  

20 1.86 {80, 56, 60, 56, 51, 41, 
28, 19, 7, 1, 1, 0, 0, 0, 
0, 0, 0, 0, 0, 0}  

30 1.86 {0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 61, 58, 62, 57, 51, 
44, 44, 17, 3, 3}  

40 1.86 {65, 50, 65, 57, 64, 43, 
34, 14, 8, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0}  

80 1.86 {48, 67, 66, 61, 48, 40, 
28, 20, 15, 6, 1, 0, 0, 
0, 0, 0, 0, 0, 0, 0}  

160 1.86 {45, 53, 63, 56, 64, 44, 
39, 29, 6, 1, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0}  

 

Table 9: Maximum fitness values and cohort sizes, cohort 
GA run, vs. number of cycles through cohort, using new 

offspring placement method. 

Number 
of 
Cycles 

Max. 
Fitness 
Value 

Cohort Sizes 

0 (Initial cohort       
sizes) 

{all at 20}  

5 1.84 {6, 2, 5, 1, 0, 19, 17, 17, 
20, 15, 11, 13, 18, 28, 31, 
29, 39, 41,  52, 35}  

10 1.96 {23, 17, 27, 15, 16, 12, 3, 
3, 2, 0, 8, 12, 15, 27, 30, 
26, 35, 41, 51, 36}  

20 2.02 {14, 9, 23, 6, 35, 10, 18, 
15, 8, 15, 32, 33, 49, 44, 
33, 25, 15, 10, 5, 0}  

30 2.26 {17, 13, 7, 5, 2, 5, 3, 0, 
0, 0, 57, 35, 59, 56, 44, 
34, 21, 17, 14,  10}  

40 2.34 {30, 44, 24, 30, 20, 12, 
46, 27, 43, 39, 42, 8, 10, 
16, 6, 1, 1, 0, 0, 0}  

80 3.52 {1, 39, 52, 57, 30, 54, 69, 
33, 37, 16, 9, 0, 1, 0, 0, 
1, 0, 0, 0, 0}  

160 4.3 {6, 62, 82, 74, 77, 47, 43, 
7, 0, 0, 0, 1, 0, 0, 0, 0, 
0, 0, 0, 0}  

180 4.3 {21,  0, 0, 0, 0, 0, 0, 0, 
0, 119, 111, 78, 48, 20, 2, 
0, 0, 0, 0, 0}  

4.2 COMPARISON RESULTS ON HDF  

To use HDF as a direct tool to verify the cohort GA’s 
effect on hitchhiking, we generated a small HDF with 
chromosome size equal to 80. It is easier to look directly 
at the intron loci when the chromosome size is small. The 
measurement we used was to calculate the total number of 
zeroes and the total number of ones at each intron locus in 
the whole population. Then the sum of their absolute 
differences should indicate the degree of convergence of 
intron loci. 

Because HDF’s do not have an explicit concept of level, 
we measured maximum fitness values that the different 
GA’s achieved with the number of function evaluations at 
2500 and 6000. We chose the maximum number of 6000 
because the GA’s likely either have already found the 
optimum solution or have prematurely converged by that 
time. In these experiments, we only compared cohort GA, 
canonical serial GA and canonical serial GA with niching. 
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4.2.1 Varying population size 

In the initial experiments we used Holland’s original 
implementation for the cohort GA. The population sizes 
were 200, 400 and 800. The number of cohorts was 20 
and the cohort sizes were 10, 20 and 40. Table 10 lists the 
results for population size 200. Since the results were 
quite similar, we did a t -test for significance of the 
differences in the data from the 20 runs of each type. 

The results after 6000 function evaluations are similar to 
those after 2500. This showed that at both times, the 
canonical serial GA with niching yielded better results. 
Especially for the sum of differences of the intron parts, 
the canonical serial GA with niching did significantly 
better than without niching. (when niching was used, the 
convergence of the intron part was greatly reduced). Even 
though the convergence of the intron part of the cohort 
GA was at about the same level as that of the canonical 
serial GA with niching, its maximum fitness level was 
significantly lower than those of the other two GA’s, so 
its lower convergence should not be given much weight.  

The results for population sizes 400 and 800 are similar to 
those for 200, except that they show little difference when 
the number of function evaluations was only 2500, 
because when population sizes are larger, it takes more 
evaluations to initialize the starting populations. But later, 
the same pattern appeared as with population size 200.  

Table 10: Max fitnesses and sum of differences in intron 
parts after 2500 evaluations. Population size = 200. 

Below: t-tests of significance.  (1, 2) compares canonical 
serial GA and canonical serial GA with niching. Bolded 
numbers indicate difference was significant at  p < 0.05. 

 (1) Canonical 
Serial GA  

(2) Canon. Serial 
GA with Niching  

(3) Cohort GA 

 max. 
fitness  

sum of   
diff. 

max. 
fitness 

sum of 
diff.  

max. 
fitness  

sum of 
diff. 

avg. 13.90 3896.60 14.30 2404.80 8.90 1982.50 

std. 
dev 

3.34 759.90 2.74 486.19 1.71 327.59 

 

 t-test on maximum 
fitness 

t-test on  sum of 
differences 

(1,2) 0.597465326 2.02091E-06 

(1,3) 1.59564E-05 4.27796E-08 

(2,3) 3.67275E-07 0.003991985 

 

In these HDF tests, the cohort GA always showed earlier 
convergence, and the phenomenon of individuals 
accumulating in a small number of cohorts existed, as 
with the RR function. Thus, below, we applied the new 
implementation of offspring placement for the HDF.  

4.2.2 Varying Offspring Placement Implementation 

The new offspring placement implementation (as used 
for RR) was tried for HDF.  Thus, for calculation of the 
cohort into which the offspring would be placed, we used  

doub = 
�
(nocoh – 1)  

         + (u – umin) × (2 – nocoh +1) /  (umax – umin) �  

instead of      

doub = 
�
2 × umax / u� . 

Table 11 lists the comparison between the original cohort 
GA and the cohort GA with the new implementation. The 
population size was 400. The t -tests on the two paired 
data sets indicated no significant difference between the 
two implementations. From observing of the experiments 
we found that the new implementation of offspring 
placement in HDF did not alleviate the large amount of 
accumulation of individuals in a small number of cohorts. 
Population size 800 yielded similar results. These results 
indicate that we cannot necessarily generalize the effect of 
the new implementation on RR to other test functions or 
practical problems while using the cohort GA. 

Table 11: Comparison of maximum fitness reached by 
two cohort GA’s after 2500 function evaluations and the 

sum of the differences in intron part. 

 original 
cohort GA 

 cohort GA with 
new placement 

 max. fitness sum of 
the diff. 

max. 
fitness  

sum of 
the diff. 

average 9.05 2974.4 8.45 2847.4 

std. dev 1.57 286.94 1.36 831.20 

 

In addition to the experiments above, we also tested the 
relationship between the number of cohorts and the cohort 
size by conducting paired experiments. The pairs included 
10/20 versus 20/10, 10/40 versus 20/20, and 10/80 versus 
20/40 (x/y, x representing the number of cohorts and y, 
the cohort size). Each pair had the same population size. 
The results of these experiments showed that the ratios 
did not have a significant impact on the performance of 
the cohort GA. 

5   SUMMARY AND DISCUSSION  

The results of the experiments on HDF showed that the 
canonical serial GA with niching could dramatically 
reduce the convergence of the intron part. This means that 
crowding and incest reduction did maintain the population 
diversity and reduce premature convergence. The results 
also indicated that the implementation of the cohort GA 
we used might have some defects in comparison to the 
implementation used by Holland, particularly with the 
improvements discussed in [Holland, 2000]. 

One particular parameter setting (mutation rate) may have 
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had a negative effect on the HDF runs reported here for 
the non-cohort GA runs. In contrast with the cohort GA, 
which did one or more mutations on each individual in the 
current cohort with probability ½, the non -cohort GA 
rates were set lower. We used the same mutation rate per 
bit (0.0002) as we used on RR. It gave a relatively low 
mutation rate (0.016) per chromosome.  Another way of 
viewing the difference is that in the cohort GA, nearly all 
new individuals were generated by crossover, and half 
were also subject to mutation, whereas in these non -
cohort GA runs on RR, about ¾ of the new individuals 
resulted from crossover and ¼ from mutation. However, 
for HDF, about 90% of new individuals resulted from 
crossover and only about 10% from mutation. With an 
increased rate, the non-cohort GA’s might give even 
better performance, and this could be explored further. 

6   CONCLUSIONS 

The cohort genetic algorithm is designed as a means of 
reducing premature convergence -- specifically, 
hitchhiking. In this work, we investigated the 
performance of one version of the cohort GA on the RR 
function and the HDF and compared the cohort GA with a 
canonical serial GA and an island-model distributed GA 
in order to see how well the cohort GA works in 
comparison with other techniques for reducing 
hitchhiking. The experiments showed that even though 
theoretically the cohort GA should work well in dealing 
with hitc hhiking and be more efficient, the 
implementation affects its performance very much. This 
version of the cohort GA didn’t perform better in any of 
the comparison tests due to another form of premature 
convergence, in which the individuals tended to 
accumulate in a few cohorts instead of spreading among 
all the cohorts.  

Besides using the original implementation, we also tested 
different settings and implementations in order to see how 
various factors affect a cohort GA’s performance. The 
factors included po pulation size, offspring placement 
strategy, deletion strategy, and inter-cohort crossover. 
Among these factors, population size, which also includes 
the relationship between the number of cohorts and cohort 
size and the offspring placement strategy, had the most 
significant effect on its performance. In particular, a new 
implementation of offspring placement in an attempt to 
spread all the individuals among all the cohorts yielded a 
great improvement in the cohort GA on RR.    

The experiments also showed that crowding and incest 
reduction performed very well in preventing premature 
convergence. The degree of intron convergence was 
greatly reduced after using these niching techniques.  

The comparison results indicated that there appear to be 
(possibly remediable) defects in this version of the cohort 
GA, and the fact that a small change in placement of 
offspring among cohorts greatly improved the cohort 
GA’s performance also suggests that further work on the 

cohort GA may be fruitful.  

7   FUTURE WORK  
Here are two suggestions for future work: 

1)  Set an upper limit on the cohort size during the run 
according to the initial cohort size, For example, if the 
initial cohort size is 20, the maximum cohort size 
during the run could be set to 35. In this way, the 
individuals are forced to spread among the cohorts. 
The calculation of which cohort an offspring is to be 
placed in could be done as usual, but if its cohort size 
has already reach the upper limit, the offspring could 
be placed in another cohort that has fewer individuals. 
The new receiving cohort could be calculated 
deterministically or probabilistically.   

2)  Use the mean fitness value (umean) in the offspring 
placement strategy. Place the individuals with fitness 
values between umin and umean into the first half of 
the cohorts and place the individuals with fitness value 
between umean and umax into the second half of the 
cohorts. Also follow the principle that the individual 
with higher fitness value should be put nearer the 
current cohort.  

The detailed im plementation issues regarding those 
changes need to be considered carefully.  However, 
further work seems likely to advance the cohort GA.  
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Abstract

To solve hierarchical problems, one must be

able to learn the linkage, represent partial so-

lutions eÆciently, and assure e�ective nich-

ing. We propose the hierarchical Bayesian

optimization algorithm which combines the

Bayesian optimization algorithm, local struc-

tures in Bayesian networks, and a powerful

niching technique. Additionally, we propose

a class of hierarchically decomposable prob-

lems, called hierarchical traps, which are de-

ceptive on each level. The proposed algo-

rithm is shown to scale up subquadratically

on all test problems. Empirical results are in

agreement with recent theory.

1 INTRODUCTION

Genetic algorithms (GAs) (Holland, 1975; Goldberg,

1989) combine short partial solutions to form solu-

tions of higher order. New solutions undergo selection

and the process is repeated until the entire solution

is formed. However, �xed, problem-independent, re-

combination operators have shown to perform quite

poorly on problems with interactions among the vari-

ables spread across the solutions (Thierens & Gold-

berg, 1993; Pelikan, Goldberg, & Cant�u-Paz, 1998).

Moreover, the hierarchical nature of the optimization

process has earned only little attention and it has been

assumed that genetic algorithms do this automatically.

The purpose of this paper is to show that competent

genetic algorithms which succeeded in solving prob-

lems of bounded diÆculty on a single level quickly, ac-

curately, and reliably, can be extended to solve prob-

lems that are hierarchical in their nature. We focus

on the Bayesian optimization algorithm (BOA) (Pe-

likan et al., 1998) using decision graphs to represent

the conditional probabilities of the model used to rep-

resent promising solutions (Pelikan et al., 2000).

There are three major issues one must address to suc-

ceed in solving diÆcult hierarchical problems: linkage

learning, niching, and eÆcient representation of the

model. Linkage learning ensures powerful recombina-

tion. Niching and eÆcient representation of the model

ensure preservation of alternative partial solutions that

are assembled to form solutions of higher order. We

propose the hierarchical Bayesian optimization algo-

rithm which addresses the three aforementioned issues

by combining the Bayesian optimization algorithm, lo-

cal structures in Bayesian networks, and a powerful

niching technique. Hierarchical BOA is able to solve

problems that are not only hierarchical, but that also

mislead the algorithm toward some inferior optimum

on each level. Additionally, we design a class of hi-

erarchical test problems which require both eÆcient

linkage learning and niching, and perform a number of

experiments to show that hierarchical BOA is able to

solve the problems eÆciently. Due to their deceptive

nature, the proposed problems are called hierarchical

deceptive traps.

The paper starts by describing BOA, which uses

Bayesian networks to model promising solutions and

generate the new ones. Section 3 discusses the use of

niching in genetic and evolutionary algorithms. Hier-

archical BOA is described in Section 4. Test problems

tackled in our experiments are presented in Section 5.

Section 6 provides and discusses the results of our ex-

periments. Section 7 concludes the paper.

2 BAYESIAN OPTIMIZATION

ALGORITHM

By applying recombination and mutation, GAs are

manipulating a large number of promising partial so-

lutions. However, �xed, problem independent, recom-

bination and mutation operators often result in infe-

rior performance even on simple problems. Without

knowing where the important partial solutions are and
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designing problem speci�c operators that take this in-

formation into account, the required number of �t-

ness evaluations and population size grow exponen-

tially with the number of decision variables (Thierens

& Goldberg, 1993).

That is why there has been a growing interest in link-

age learning which studies methods that are able to

learn where the important interactions in the prob-

lem are and use this information to combine solutions

more e�ectively. One of the approaches to linkage

learning is based on using probability distributions to

model promising solutions found so far and generat-

ing new solutions according to the estimated distribu-

tion (M�uhlenbein & Paa�, 1996; Pelikan, Goldberg,

& Lobo, 2000). Probability distributions can cap-

ture variables which are correlated and the ones which

are independent. This can subsequently be used to

combine the solutions in more e�ective manner. An

overview of methods based on this principle is beyond

the scope of this paper and can be found in Pelikan,

Goldberg, and Lobo (2000) and other related papers.

The Bayesian optimization algorithm (BOA) (Pelikan,

Goldberg, & Cant�u-Paz, 1998) uses Bayesian networks

to model promising solutions and subsequently guide

the exploration of the search space. In BOA, the �rst

population of strings is generated randomly with a uni-

form distribution. The initial population can be biased

to the regions that we are interested in. From the cur-

rent population, the better strings are selected. Any

selection method can be used. A Bayesian network

that �ts the selected set of strings is constructed. Any

metric as a measure of quality of networks and any

search algorithm can be used to search over the net-

works in order to maximize/minimize the value of the

used metric. Besides the set of good solutions, prior

information about the problem can be used in order to

enhance the estimation and subsequently improve con-

vergence. New strings are generated according to the

joint distribution encoded by the constructed network.

The new strings are added into the old population, re-

placing some of the old ones.

The next subsection describes basic principles of learn-

ing and utilization of Bayesian networks. Subse-

quently, local structures that can be used to make the

representation of the model more eÆcient are discussed

and a simple greedy algorithm for network construc-

tion is brie
y described.

2.1 BAYESIAN NETWORKS

A Bayesian network (Pearl, 1988) is a directed acyclic

graph with the nodes corresponding to the variables in

the modeled data set (in our case, to the positions in

solution strings). Mathematically, a Bayesian network

encodes a joint probability distribution. A directed

edge relates the variables so that in the encoded dis-

tribution, the variable corresponding to the terminal

node is conditioned on the variable corresponding to

the initial node. More incoming edges into a node re-

sult in a conditional probability of the corresponding

variable with a conjunctional condition containing all

its parents. The network encodes independence as-

sumptions that each variable is independent of any of

its antecedents in ancestral ordering given its parents.

To encode the conditional probabilities corresponding

to the nodes of the network, one can use a simple

probability table listing probabilities of all possible in-

stances of a variable and its parents. However, the size

of such a table grows exponentially with the number of

parents of the variable even though many probabilities

of higher order may be the same. To solve hierarchical

problems, it is essential to be able to represent condi-

tional probabilities by structures that are polynomial

in the order of interactions. While the order of inter-

actions can be as high as the size of the problem, the

number of corresponding alternative partial solutions

must be polynomial in their order to allow eÆcient and

reliable exploration. The next subsection presents al-

ternative ways to represent conditional probabilities in

the model which allow a more compact representation

of the local densities in the model.

2.2 LOCAL STRUCTURES IN BAYESIAN

NETWORKS

One simple extension of the probability table is a de-

fault table (Friedman & Goldszmidt, 1999). In the de-

fault table, only some instances of the variable and

its parents are listed together with the correspond-

ing probabilities. The remaining probabilities are ob-

tained from the default entry which is simply an aver-

age of the remaining (unlisted) probabilities.

One can use more complex local structures, such as

decision trees (Friedman & Goldszmidt, 1999) or deci-

sion graphs (Chickering, Heckerman, & Meek, 1997).

Each internal node of a decision tree or graph cor-

responds to some variable. Children (successors) of

each internal node correspond to disjoint subsets of

values the variable can obtain. For binary variables,

each non-leaf node can have exactly two children where

each child corresponds to one of the values zero and

one. In case of bigger alphabets, there are more pos-

sibilities. A decision graph allows di�erent parents to

have the same child. This makes the structure both

more general and expressive than decision trees. In

hierarchical BOA we use decision graphs. However,

there is only little di�erence between the performance
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using decision graphs and trees. Since trees are sim-

pler to interpret we used only decision trees in our

experiments.

Using local structures can reduce the space we need

to represent the model. Additionally, it can re�ne the

model building by using smaller operators and make

the model more general for some data sets. One can

encode interactions of a high order without having to

consider exponentially many instances and probabili-

ties. Please, see Pelikan et al. (2000) for more details

on using decision graphs in the BOA.

2.3 LEARNING BAYESIAN NETWORKS

To construct the network, a simple greedy algorithm

is usually used. This algorithm performs simple graph

operations that improve the quality of the current net-

work the most, starting from an empty network or a

network from a di�erent source. To measure quality of

each network, various scoring metrics can be used. Re-

cently, we have used the Bayesian-Dirichlet metric, the

minimum description length (MDL) metric, and a met-

ric which is a combination of the Bayesian-Dirichlet

and MDL metric. For more details on the network con-

struction and scoring metrics for simple Bayesian net-

works and for networks with local structures, see Pe-

likan et al. (1998) and Pelikan et al. (2000). The

next section discusses various approaches to niching.

Subsequently, hierarchical BOA is described.

3 NICHING

The purpose of niching in genetic and evolutionary

optimization is twofold: (1) discovery of multiple solu-

tions of the problem and (2) preservation of alternative

solutions until one can decide which solution is better.

In some real-world applications it is important to �nd

multiple solutions and let the expert or experiment de-

cide which of the solutions is the best after all. The

reason for preserving multiple alternative solutions is

that on some diÆcult problems one cannot clearly de-

termine which alternative solutions are really on the

right track until the optimization proceeds for a num-

ber of generations. Without niching the population is

a subject to genetic drift which may destroy some al-

ternatives before we �nd out whether or not they are

the ones we are looking for.

There are three general approaches to niching: �tness-

sharing, selection-based, and island models. The fol-

lowing paragraphs brie
y discuss each approach. It

is beyond the scope of this paper to give a complete

overview, and we refer the reader to the extended ver-

sion of this paper (Pelikan & Goldberg, 2001).

The �rst approach modi�es the �tness landscape be-

fore the selection is performed. Fitness sharing (Gold-

berg & Richardson, 1987) is based on this idea. In

�tness sharing, the location of each individual is set to

either its genotype or phenotype. The neighborhood

of each individual is de�ned by the sharing function.

An individual shares a niche with any individual that

is within a certain range from its location. The e�ect

may decrease with the distance and completely van-

ishes for distances greater than a certain threshold.

The second approach modi�es the selection itself to

take into account the �tness as well as the genotype

or the phenotype instead of using the �tness as the

only criterion. In preselection of Cavicchio (1970) the

o�spring replaced the inferior parent. This scheme

was later generalized by De Jong (1975) who proposed

crowding. In crowding, for each new individual a sub-

set of the population is �rst selected. The new indi-

vidual then replaces the most similar individual in this

subset. Harik (1994) proposed the restricted tourna-

ment selection as an extension of De Jong's crowding.

RTS proceeds just as crowding; however, the individ-

ual replaces the closest individual from the selected

subset only if it is better in terms of �tness. There-

fore, RTS introduces selection pressure and can replace

the selection operator.

The third approach is to isolate several groups of in-

dividuals rather than to keep the entire population in

one location. The location of each individual does not

depend on its genotype or phenotype. The individ-

uals can migrate between di�erent locations (islands

or demes) at certain intervals and allow population at

each location to develop in isolation. There are two

reasons why spatial separation should be desirable in

genetic and evolutionary computation. One reason is

that in nature the populations are actually divided in

a number of subpopulations that (genetically) interact

only rarely or do not interact at all. Another reason

is that separating a number of subpopulations allows

an e�ective parallel implementation and is therefore

interesting from the point of view of computational

eÆciency.

Some related work studies the preservation of diver-

sity from a di�erent point of view. The primary goal

of these techniques is not the preservation of multiple

solutions or alternative search regions, but the avoid-

ance of premature convergence. Various techniques for

niching were also proposed in the area of multiobjec-

tive optimization. These methods are not applicable to

single-criterion optimization and therefore we do not

discuss them in this paper.

The BOA uses the set of selected solutions to learn a

model of promising solutions. Fitness sharing would
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a�ect the �tness and subsequently also the model con-

struction. That is why it is desirable that we use a

di�erent niching method in the BOA. Spatial separa-

tion can be directly encoded in the probabilistic model

by using mixture distributions or models with hidden

variables. A simple method based on mixture models

to reduce negative e�ects of symmetry in the problem

on the BOA was proposed in Pelikan and Goldberg

(2000a). However, to solve hierarchical problems, we

must deal with a number of niches that can be expo-

nential in the number of variables. Even though this

implies exponentially sized populations, one can use

the fact that the model itself preserves diversity quite

well by that it makes many independence assumptions

and uses these to generate new solutions. Only little

extra pressure toward diversity preservation is then re-

quired. That is why we used the restricted tournament

selection to incorporate niching into hierarchical BOA.

Since the technique is used as a replacement technique

and not as a primary source of selection pressure, we

called the method restricted tournament replacement.

4 HIERARCHICAL BOA

As it was discussed above, hierarchical BOA uses

Bayesian networks to learn the linkage. To eÆciently

represent partial solutions, local structures are used

to represent local densities in the model. The remain-

der of this section describes restricted tournament re-

placement (RTR) used in hierarchical BOA to ensure

e�ective niching.

RTR localizes the replacement in hierarchical BOA by

selecting a sub-set of the original population for each

new o�spring and letting the o�spring compete with

the most similar member of this subset. If the new

o�spring is better, it replaces the corresponding in-

dividual. The measure of similarity can be based on

either the genotype or the phenotype. In our experi-

ments, we used Hamming distance to measure similar-

ity. Since the generation of a probabilistic model in the

BOA does not encourage using a steady state genetic

algorithm, we incorporate niching in the replacement

step of a traditional BOA.

It is important to set the size of the subsets that are

selected to incorporate each new individual into the

original population. The size of these subsets is called

a window size. A window size should be proportional

to the number of niches. We have tried a number of

settings on various diÆcult problems. A window size

proportional to the size of the problem yielded the best

performance.

A window size proportional to the size of the problem

can be supported by the following argument. For cor-

rect decision making on a single level, the population

size must grow proportionally to the problem size (Pe-

likan, Goldberg, & Cant�u-Paz, 2000). To maintain a

certain number of niches, one must lower-bound the

size of each niche by a certain constant. Therefore, a

population size proportional to the problem size al-

lows for maintenance of the number of niches pro-

portional to the problem size. The number of niches

that RTR can maintain is proportional to the win-

dow size. Therefore, the window size growing linearly

with the size of the problem is the strongest niching

one can a�ord without increasing population sizing re-

quirements.

5 TEST PROBLEMS

In order to analyze the performance of hierarchi-

cal BOA on diÆcult hierarchical problems, most test

problems are hierarchical. The remainder of this sec-

tion describes test problems used in our experiments.

5.1 HIERARCHICALLY

DECOMPOSABLE FUNCTIONS

Hierarchically decomposable functions (HDFs) (Wat-

son, Hornby, & Pollack, 1998; Pelikan & Goldberg,

2000b) are a subclass of general additively decom-

posable functions (Pelikan, Goldberg, & Cant�u-Paz,

1998). HDFs are de�ned on multiple levels where the

input to each level is based on the solutions found on

lower levels. The �tness contribution of each building

block is separated from its interpretation (meaning)

when it is used as a building block for constructing

the solutions on a higher level. The overall �tness is

computed as the sum of �tness contributions of each

building block.

In spite of bounded diÆculty of HDFs on each level, a

hierarchical function can contain interactions of order

equal to the size of the problem. Bounded diÆculty

on each level of the hierarchy makes HDFs solvable in

polynomial time even though the problem is very dif-

�cult when viewed on a single level. It is important

to note that hierarchical problems of bounded diÆ-

culty are a strictly more diÆcult class of problems than

problems of bounded diÆculty on a single level.

A hierarchically decomposable function is de�ned by

its structure in the form of a tree with one-to-one map-

ping between the leaves and the variables in a problem,

and two sets of functions: (1) the interpretation func-

tions and (2) the contribution functions. The structure

de�nes which blocks of interpretations to interpret to

the next level and how, and which blocks contribute

to the overall �tness on this level. The interpretation

functions de�ne how we interpret solutions from lower
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levels to become inputs of the contribution and inter-

pretation functions on a higher level. The contribution

functions de�ne how much do blocks of interpretations

on each level contribute to the overall �tness.

The diÆculty of hierarchical functions depends on the

underlying structure as well as the contribution and in-

terpretation functions. The hierarchical if-and-only-if

(HIFF) function (Watson et al., 1998) uses the \if and

only if" function on each level. More diÆcult functions

have been proposed (Goldberg, 1997; Goldberg, 1998;

Pelikan & Goldberg, 2000b), where functions deceive

the algorithms to a local optimum on each level. Only

at the top level it becomes clear which optimum is the

global one.

In this paper, only simple structures such as balanced

binary and ternary trees are used. The contribution

of each subfunction on each level is scaled so that the

contributions on all levels are of the same magnitude.

5.1.1 Hierarchical If-and-Only-If (HIFF)

The structure of the HIFF is a balanced binary tree.

By height(x) we denote the distance from the node

x in the tree to one of its descendant leaves. Since

the tree is balanced, the height is well-de�ned. Each

leaf contributes to the �tness by 1. Each parent node

x contributes to the overall �tness by 2height(x) if and

only if the interpretations of its children are both either

0 or 1. Otherwise, the contribution is 0. The two

symbols are interpreted to their parent on the next

level as 0 in case they are both 0's, 1 in case they are

both 1's, and '-' otherwise. As input, the leaves of the

tree get the input string with no change.

5.1.2 Hierarchical Trap Functions

Hierarchical traps use a balanced k-ary tree as the un-

derlying structure, where k � 3. The interpretation

functions interpret blocks of all 0's and 1's to 0 and 1,

respectively, similarly to the HIFF. Everything else is

interpreted into '-'.

Each contribution function is a trap function of order

k. A trap function is a function of unitation, i.e. its

value depends only on the number of ones in the input

string. See Figure 1 for a graph of the trap function of

order k. If there is a '-' in the input to this function,

it simply returns 0.

The values of fhigh and flow de�ne the heights of the

two peaks. The trap function is fully deceptive when-

ever fhigh is greater than flow within some proportion

depending on the order k of the function. See Deb

and Goldberg (1994) for suÆcient conditions of decep-

tion. If the function is deceptive or flow > fhigh, any

schemata of order lower than k bias the search to the

-1k k0

f
low

fhigh

u

f

Figure 1: Trap function of order k.

string all zeroes.

In both functions used in our experiments, the under-

lying structure is a ternary tree (k = 3) and the leaves

do not directly contribute to the overall �tness. For

all non-leaf nodes x of the �rst hierarchical trap ex-

cept for the root, the contribution is computed by a

trap with equal peaks fhigh = flow = 1 multiplied by

3height(x). The contribution of the root node is given

by a trap with fhigh = 1 and flow = 0:9 multiplied by

3height(root). In this fashion, the function biases the

search to the solution of all zeroes on each but the

top level. However, the optimum is in the string of all

ones. The top level is also deceptive which makes the

problem even harder. The above function is denoted

by H-Trap1 in further text.

In the second function the bias toward solutions with

many zeroes is made even stronger by making the peak

flow higher than the other peak everywhere except for

the root. To keep the global optimum in the string of

all ones, we set fhigh = 1 and flow = 1 + 0:1=k for all

non-root levels. This function is denoted by H-Trap2.

The HIFF function does not bias the search toward

either global optimum. Unlike the HIFF, both hier-

archical trap functions H-Trap1 and H-Trap2 bias the

search toward the solution with all zeroes on all levels.

However, the actual global optimum is in the string of

all ones. Therefore, the functions are very diÆcult to

solve and without e�ective linkage learning required

to preserve the local optima on each level and nich-

ing required to preserve alternative partial solutions

until solving the problem on the highest level, the al-

gorithm cannot reach the global optimum. For a more

detailed description of the test functions, see Pelikan

and Goldberg (2001).

5.2 BIPOLAR FUNCTION

The bipolar deceptive function of order 6 is con-

structed by concatenating a number of bipolar sub-

functions of order 6 (Deb, Horn, & Goldberg, 1992).

See Pelikan and Goldberg (2001) for a full de�nition of

the function. The bipolar function of size n has 2n=6
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global and 20n=6 local optima. For n = 30, there are

32 global and 3; 200; 000 local optima.

6 RESULTS

To show how hierarchical BOA scales up on diÆcult hi-

erarchical problems, we performed tests on each func-

tion with varying problem size. For each problem size,

we required that the algorithm �nd the global opti-

mum in all 30 independent runs. The performance

was measured by an average number of �tness evalu-

ations until the optimum was found. The population

size was determined empirically to minimize the num-

ber of �tness evaluations until the optimum was found.

A window size was set to the problem size, i.e. w = n.

We used decision trees to represent conditional prob-

abilities in the model and construct the model. Prior

distribution of models was biased toward simpler mod-

els (Pelikan et al., 2000).

The results of our experiments on the HIFF and H-

Trap1 functions are shown in Figure 2. In all three

cases the algorithm scales up subquadratically. On

the left-hand side of the �gure, the graphs in arith-

metic scale display the growth of the number of �tness

evaluations with respect to the size of the problem for

the HIFF and H-Trap1 problems. Results on H-Trap2

were within 8% of the results on H-Trap1 and due to

the lack of space we do not present them here (see Pe-

likan and Goldberg (2001)).

Theory of population sizing and time to convergence

for the BOA on separable problems of bounded dif-

�culty (Pelikan et al., 2000) can be used to estimate

time to convergence of hierarchical BOA on hierarchi-

cal problems. Theory suggests that a single level of the

hierarchical problem can be solved in aboutO(n1:5) �t-

ness evaluations. The number of levels in all three hi-

erarchical problems grows as O(log n). Thus, the over-

all time to convergence should grow as O(n1:5 logn).

The �t is very good and matches also the slopes in the

log-log scaled graphs very accurately.

On the right-hand side, the log-log scaled graphs in-

cluding the slopes between neighboring points are

shown. A linear function in this scale is a polynomial

of the degree equal to the slope of the curve. To show

that the number of �tness evaluations grows at most

polynomially with the problem size, the points must

lie on a straight line. In our experiments, we see that

the slopes in fact decrease with the problem size. This

is the e�ect of the logarithm in the expected number

of �tness evaluations.

The simple genetic algorithm with �xed crossover is

not able to optimize hierarchical functions without

making sure that interacting genes are close to each
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Figure 3: Number of copies of di�erent global optima

of the bipolar function. There are 32 optima in this

function and all 32 are multiply represented at the end

of the run.

other. Under the assumption of tight linkage, the sim-

ple genetic algorithm with good niching should work

quite well. The algorithm presented in Watson (2000)

is able to solve the HIFF problem even for interacting

genes spread throughout the strings. However, Wat-

son's algorithm requires O(n2 logn) �tness evaluations

for a problem of size n which is more than is required

by our algorithm.

To show the ability of hierarchical BOA to discover

multiple optima, we also performed a single run on a

bipolar function of size n = 30 with a suÆciently big

population and recorded the number of copies of each

global optimum in the population (see Figure 3). We

have performed a number of experiments with varying

parameters with a very similar result. The algorithm

was able to discover and maintain all global optima

which soon took over the entire population. However,

the optima were not equally distributed, ranging from

about 1:27% to about 5:53% of the population. This

con�rmed the intuition that, unlike �tness sharing, the

methods based on crowding are not very sensitive to

the �tness values. They are able to maintain a number

of alternatives but the total space occupied by each

alternative is not proportional to its �tness.

7 CONCLUSIONS

The paper takes another important step toward in-

creasingly competent genetic algorithms by providing

an algorithm that is able to solve problems on a single

level as well as multiple levels. It emphasizes the im-

portance of solving separable problems on a single level

by showing that we need not modify much to success-

fully move from a single level to hierarchies. To solve
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Figure 2: Results on the hierarchical functions.

hierarchically decomposable problems quickly, accu-

rately, and reliably, a combination of niching, linkage

learning, and eÆcient representation of partial solu-

tions is necessary.

To learn the linkage, hierarchical BOA uses Bayesian

networks to model promising solutions and to generate

the new ones. To eÆciently represent partial solutions,

decision graphs are used to represent local densities in

a model. To assure powerful niching, the restricted

tournament replacement is used.

Separable deceptive problems of bounded diÆculty are

extended to multiple levels. The designed hierarchical

trap problems that are deceptive on each level are in-

tractable by local search methods and can be used as

a benchmark for other optimization algorithms. Hier-

archical BOA can solve these problems very eÆciently

and reliably and it scales up subquadratically with the

problem size. Population sizing and convergence the-

ory can be used to approximate the behavior of the

algorithm both on single-level and hierarchical prob-

lems.

Hierarchical BOA should be applicable to real-world

problems without problem speci�c knowledge ahead

of time. This takes us closer to the promised land of

robustness, that has long been associated with GAs

but rarely delivered.
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Abstract

This paper discusses the use of various scor-

ing metrics in the Bayesian optimization al-

gorithm (BOA) which uses Bayesian net-

works to model promising solutions and gen-

erate the new ones. The use of decision

graphs in Bayesian networks to improve the

performance of the BOA is proposed. To

favor simple models, a complexity measure

is incorporated into the Bayesian-Dirichlet

metric for Bayesian networks with decision

graphs. The presented modi�cations are

compared on a number of interesting prob-

lems.

1 INTRODUCTION

Recently, the use of local structures, such as default ta-

bles and decision trees/graphs, in context of learning

the structure of Bayesian networks has been proposed

and discussed (Friedman & Goldszmidt, 1999; Chick-

ering, Heckerman, & Meek, 1997). Using local struc-

tures has shown to improve the performance of learn-

ing in terms of the likelihood of the resulting models

on a number of benchmark data sets. However, none

of these approaches was used to improve model build-

ing in the Bayesian optimization algorithm (Pelikan,

Goldberg, & Cant�u-Paz, 1998), which uses Bayesian

networks to model promising solutions and guide the

search. Moreover, the use of various metrics in the

BOA has not been investigated thoroughly.

The purpose of the paper is twofold. First, the use of

decision graphs in the model construction phase of the

BOA is proposed to improve its performance. Second,

to eliminate super
uously complex models, a model

complexity measure is incorporated into the Bayesian-

Dirichlet scoring metric for Bayesian networks with

decision graphs. It is empirically shown that the in-

troduced pressure is suÆcient to eliminate the neces-

sity of binding the complexity of models by the user.

This is a signi�cant contribution. The advantages of

the minimum description length (MDL) metric, which

favors simple models, are attained without having to

sacri�ce a possibility of using prior knowledge about

the solved problem introduced by Bayesian metrics.

The performances of the BOA with various scoring

metrics and network construction algorithms, and the

simple genetic algorithm are compared on a number of

problems.

The paper starts by describing the BOA. Section 3 pro-

vides basic theoretical background of learning a struc-

ture of Bayesian networks. Section 4 describes how de-

cision graphs can be used as a core component of learn-

ing the structure of Bayesian networks and provides a

Bayesian scoring metric for computing the marginal

likelihood of Bayesian networks using decision graphs

given the data. The results of our experiments are

described in Section 5. The paper is concluded in Sec-

tion 6.

2 BAYESIAN OPTIMIZATION

ALGORITHM

It has been shown that using recombination and selec-

tion is a very powerful approach for optimizing many

diÆcult problems. However, �xed, problem indepen-

dent, recombination and mutation operators often re-

sult in inferior performance even on simple problems.

Without knowing where the important interactions in

the problem are and designing problem speci�c opera-

tors that take this information into account, the num-

ber of �tness evaluations and the required population

sizes grow exponentially with the number of decision

variables (Thierens & Goldberg, 1993).

Much e�ort was put in the design of methods that

would be able to learn which parts of the solutions

should be combined and which ones should remain
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intact. One of the approaches replaces traditional

crossover and mutation by building a probabilistic

model of promising solutions and using this model to

generate o�spring. Probability distributions can cap-

ture variables which are correlated and the ones which

are independent. This can subsequently be used to

combine the solutions in more e�ective manner. Meth-

ods based on this principle are called estimation of

distribution algorithms (M�uhlenbein & Paa�, 1996),

probabilistic model-building genetic algorithms (PM-

BGAs) (Pelikan, Goldberg, & Lobo, 2000), or iterated

density estimation algorithms (Bosman & Thierens,

2000).

It is beyond the scope of this paper to give a com-

plete overview of PMBGAs and the interested reader

should refer to Pelikan et al. (2000). In this pa-

per we focus on the Bayesian optimization algorithm

(BOA) (Pelikan, Goldberg, & Cant�u-Paz, 1998) which

uses Bayesian networks to model promising solutions

and subsequently guide the exploration of the search

space.

In the BOA, the �rst population of strings is generated

randomly with a uniform distribution. From the cur-

rent population, the better strings are selected. Any

selection method can be used. A Bayesian network

that �ts the selected set of strings is constructed. Any

metric as a measure of quality of networks and any

search algorithm can be used to search over the net-

works in order to maximize/minimize the value of the

used metric. Besides the set of good solutions, prior

information about the problem can be used in order to

enhance the estimation and subsequently improve con-

vergence. New strings are generated according to the

joint distribution encoded by the constructed network.

The new strings are added into the old population, re-

placing some of the old ones.

3 BAYESIAN NETWORKS

A Bayesian network (Pearl, 1988) is a directed acyclic

graph with the nodes corresponding to the variables in

the modeled data set (in our case, to the positions in

solution strings). Mathematically, a Bayesian network

encodes a joint probability distribution. A directed

edge relates the variables so that in the encoded distri-

bution, a variable corresponding to the terminal node

is conditioned on a variable corresponding to the ini-

tial node. More incoming edges into a node result in

a conditional probability of the corresponding variable

with conjunctional condition containing all its parents.

The network encodes independence assumptions that

each variable is independent of any of its antecedents

given its parents.

Various methods can be used to construct the net-

work given the set of selected solutions. Most methods

have two basic components: (1) a scoring metric which

discriminates the networks according to their quality

and (2) a search algorithm which searches over the

networks to �nd the one with the best scoring metric

value. The BOA can use any scoring metric and any

search algorithm.

In our recent work we used a simple greedy algorithm

to construct the network given the data. In each it-

eration of the algorithm, the graph operation that

improves the network score the most is performed.

The simple operations that can be performed on the

network include edge additions, edge reversals, and

edge removals. Only operations that keep the network

acyclic are allowed and the number of parents of each

node can be bound by a constant in order to avoid su-

per
uously complex models. The construction �nishes

when no operations are allowed or no applicable graph

operation improves the score.

The next two sections brie
y discuss the Bayesian-

Dirichlet and minimum description length metrics that

can be used to evaluate competing networks.

3.1 BAYESIAN-DIRICHLET METRIC

The Bayesian Dirichlet (BD) metric (Heckerman et al.,

1994) combines the prior knowledge about the problem

and the statistical data from a given data set. The

probability of a Bayesian network B given data D can

be computed by applying Bayes theorem as

p(BjD) =
p(B)p(DjB)

p(D)
� (1)

The higher the p(BjD), the more likely the network B

is a correct model of the data. Therefore, the value

of p(BjD) can be used to score di�erent networks

and measure their quality. This measure is called a

Bayesian scoring metric, or the posterior probability

of B given data D. Since we are only interested in

comparing di�erent networks (hypotheses) for a �xed

data set D, we can eliminate the denominator p(D) of

the above equation.

The probability p(B) is called the prior probability of

the network B and it can be used to incorporate prior

information about the problem by assigning higher

probability to the networks con�rming our intuition

or expert knowledge. By using an empty prior net-

work (with no edges) the metric favors simpler net-

works (see Section 4.2). Under a number of assump-

tions, the following closed expression can be derived

520 GENETIC ALGORITHMS



for p(DjB) (Heckerman et al., 1994):

p(DjB) =

n�1Y
i=0

Y
�i

�(m0(�i))

� (m0(�i) +m(�i))

Y
xi

� (m0(xi; �i) +m(xi; �i))

�(m0(xi; �i))
;

(2)

where the product over �i runs over all instances �i
of the parents �i of Xi, and the product over xi runs

over all instances xi of Xi. By m(�i), the number of

instances in D with �i instantiated to �i is denoted.

When the set �i is empty, there is one instance of �i

and the number of instances with �i instantiated to

this instance is set to N (the size of the data set D).

By m(xi; �i), we denote the number of instances in D

that have both Xi set to xi as well as �i set to �i.

The metric computed according to the above equation

is called the Bayesian-Dirichlet metric, since one of

the assumptions made to compute the formula is that

the parameters are distributed according to a Dirichlet

distribution.

Terms m0(xi; �i) and m0(�i) express our beliefs in fre-

quencies m(xi; �i) and m(�i), respectively, and can be

used as another source of prior information. A simple

prior for the parameters m0(xi; �i) and m0(�i) is to

assume m0(xi; �i) = 1 for all xi and �i, and compute

m0(�i) according to the above assignment. The metric

using this assignment is called the K2 metric.

3.2 MINIMUM DESCRIPTION LENGTH

METRIC

A minimum description length metric is based on the

philosophical rule called Occam's razor, claiming that

the simplest of competing theories be preferred to the

more complex ones. The MDL metric favors short

models in terms of their description length. A total

description length of a data set D compressed accord-

ing to a given model is de�ned as the sum of the space,

measured in bits, required by the model, its parame-

ters (various frequencies), and the data compressed

according to the model. In context of evolutionary op-

timization the minimum description length was �rst

time used by Harik (1999) in the extended compact

genetic algorithm.

A directed acyclic graph can be encoded by storing

a set of parents of each node. The set of parents of

a particular node can be encoded by the number of

the parents followed by the index of the set of parents

in some agreed-upon enumeration of all possible sub-

sets of variables of the corresponding cardinality. This

results in log2 n+log2
�

n

j�ij

�
bits for the parents of Xi.

To store the conditional probabilities according to the

distribution encoded by the network, we need to store

all combinations of all but one values xi of each vari-

able Xi and all possible instances �i of its parents �i.

For each such combination of xi and �i the correspond-

ing conditional probability p(xij�i) must be stored.

For binary variables, there are 2j�ij possible combi-

nations of values of the variable and its parents (ex-

cluding one value xi for each �i, e.g. xi = 1, for which

p(xij�i) can be computed from the remaining condi-

tional probabilities). This is an upper bound and can

be reduced by using more sophisticated data struc-

tures to encode the conditional probability tables. To

accurately encode each conditional probability, we can

use 1
2
log2N bits (Friedman & Yakhini, 1996). Thus,

the overall number of bits needed to store the table of

conditional probabilities for Xi is log2N2j�ij�1.

The number of bits needed to store an instance with

some probability is given by a logarithm of this prob-

ability. We must sum the description lengths over all

individuals in the population. The total length of the

model, its parameters, and the data set compressed

according to this model is then given by the sum of

the above terms (Pelikan, Goldberg, & Sastry, 2000).

A major advantage of the MDL metric is that it favors

simple models so that no upper bound on the model

complexity has to be speci�ed. This bound comes up

naturally. However, when using a greedy algorithm

for model construction, the problem of �nding a valid

model can become more diÆcult. Moreover, the MDL

metric does not easily permit the use of prior infor-

mation about the problem. In many real-world prob-

lems the utilization of expert knowledge (which is of-

ten available in some form) may be unavoidable. Sec-

tion 4.2 presents another way of dealing with the com-

plexity of models by specifying the prior probability of

each model inversely proportionally to its complexity.

A similar metric, called the Bayesian Information Cri-

terion (BIC), was used in the EBNA (Etxeberria &

Larra~naga, 1999) and the LFDA (M�uhlenbein & Mah-

nig, 2000) algorithms.

4 DECISION GRAPHS IN

BAYESIAN NETWORKS

Instead of encoding the conditional probability ta-

bles by a simple but ineÆcient probability table, one

can use more sophisticated structures such as decision

trees, decision graphs, and default tables (Chickering,

Heckerman, & Meek, 1997; Friedman & Goldszmidt,

1999). In this fashion the number of parameters re-

quired to fully encode the distribution can be signif-
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icantly decreased and the models become more ex-

pressive. This section explains how decision graphs

can be used to improve the expressiveness of Bayesian

networks and the learning of Bayesian network struc-

ture. It provides a metric for computing the likeli-

hood of Bayesian networks with decision graphs and

a method for constructing such structures (Chicker-

ing, Heckerman, & Meek, 1997). The network con-

struction algorithm of Chickering et al. (1997) takes

an advantage of using decision graphs by directly ma-

nipulating the network structure through the graphs.

This is a major di�erence from the way the decision

trees/graphs are usually used in context of the MDL

metrics to reduce the description length (Friedman &

Goldszmidt, 1999). Additionally, we provide the as-

signment of prior probabilities which takes into ac-

count model complexity.

4.1 DECISION TREES AND GRAPHS

A decision tree is a directed acyclic graph where each

node except for one designated node called the root has

exactly one parent. The root has no parents. Non-leaf

nodes of the tree are labeled by a variable (feature)

on which we want to split. When a node is labeled

by a variable v, we say that this node is a split on

v. Edges from a split on v to its children (successors)

are labeled by non-empty distinct exhaustive subsets

of possible values of v.

To traverse a tree given an assignment of all the vari-

ables, we start in a root and on each split on v we

continue to the child along the edge which contains

the current value of v. Notice that for each instance

(an assignment of all the variables) there exists only

one possible way of traversing the tree to a leaf.

We will have one decision tree for each variable. Each

leaf of this decision tree will contain conditional proba-

bilities of di�erent values of this variable given that the

variables are constrained according to the path from

the root to the leaf. An example adopted from Chick-

ering et al. (1997) of a decision tree that encodes the

conditional probability distribution p(zjx; y) is shown
in Figure 1. All variables in this �gure are binary

and thus we can split only to two children, one for

0 and one for 1. Instance (x = 1; y = 1; z = 0)

would traverse the tree to the right-most leaf. Instance

(x = 0; y = 1; z = 0) would result in the middle leaf.

A decision graph is an extension of a decision tree in

which each non-root node can have multiple parents.

By a decision graph, any set of equality constraints

among conditional probabilities can be encoded. This

can be shown by simply constructing a complete tree

and merging all leaves that are equal. An example

y

10

0 1

p(z x=0, y=0) p(z x= , y=0 1)

p(z x=1)

x

y

0

0

1

1

=
p(z x=0, y=0 p(z x= , y=0 1

x

p(z x=1

) )

)

  

Figure 1: An example decision tree and graph encod-

ing p(zjx; y).

of a decision graph is shown in Figure 1. This de-

cision graph can be obtained by merging the leaves

p(zjx = 0; y = 1) and p(zjx = 1) which represents an-

other equality constraint. It is important to note that

the equality constraints, in fact, represent indepen-

dence constraints. Moreover, each leaf in the decision

graph for a variable represents independence assump-

tions of any variable not contained in the path from

the root to this leaf, given the constraints speci�ed by

the corresponding path to this leaf. In fact, we do not

need the Bayesian network anymore once we have the

decision graphs. The network can be reconstructed by

using the graphs.

There are four major advantages of using decision

graphs in learning Bayesian networks. First, many

fewer parameters can be used to represent a model.

This saves memory and time requirements of both

model construction as well as its utilization and

allows representation of high-order relationships by

reasonably-sized models. Second, the use of decision

graphs allows learning a more complex class of models,

because the relationships in a model can be cyclic un-

der the constraint that di�erent parts of the cycle are

inconsistent with each other. It is beyond the scope

of this paper to discuss this issue. Third, the con-

struction of a Bayesian network with decision graphs

performs smaller and more speci�c steps which may re-

sult in better models with respect to their likelihood.

Finally, the network complexity measure can be eas-

ily incorporated into the scoring metric. The resulting

measure allows the use of prior information unlike the

MDL metric, and is as robust as the MDL metric when

no such information is used. We will discuss this topic

shortly.
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4.2 BAYESIAN SCORE FOR NETWORKS

WITH DECISION GRAPHS

In this section we brie
y discuss the computation of

a Bayesian score for Bayesian networks where condi-

tional probabilities and independence assumptions for

each variable are encoded by decision graphs (Chick-

ering et al., 1997). This computation does not di�er

much from traditional Bayesian networks (see Equa-

tion 2). The outer product from Equation 2 remains

the same. The middle product runs over all leaves of

the decision graph Gi corresponding to the variable

Xi. The inner-most product runs over all possible in-

stances of the variable Xi. Thus,

p(DjB) =

n�1Y
i=0

Y
l2Li

�(m0(i; l))

�(m(i; l) +m0(i; l))

Y
xi

�(m(xi; i; l) +m0(xi; i; l))

�(m0(xi; i; l))
;

(3)

where Li is the set of leaves in the decision graph Gi

for Xi, m(i; l) is the number of instances in D which

end up the traversal through the graph Gi in the leaf

l, m(i; l) is the number of instances that have Xi = xi
and end up the traversal of the graph Gi in the leaf l,

the m0(i; l) represents our prior knowledge about the

value of m(i; l), and m0(xi; i; l) represents our prior

knowledge about the value of m(xi; i; l).

To adjust the prior probability of each network accord-

ing to its complexity, we �rst compute the description

length of the parameters required by the networks. To

encode one frequency in the data set of sizeN , it is suf-

�cient to use 0:5 log2N bits (Friedman & Goldszmidt,

1999). Therefore, to encode all parameters, we need

0:5 log2N
P

i
jLij bits, where

P
i
jLij is the total num-

ber of leaves in all decision graphs. To favor simpler

networks to the more complex ones, we can set the

prior probability of a network to decrease exponen-

tially with the description length of the set of param-

eters they require. Thus,

p(B) = c2�0:5 log2 N
P

i
jLij; (4)

where c is a normalization constant required for the

prior probabilities of all networks to sum to 1. The

value of a normalization constant does not a�ect the

result, since we are only interested in relative com-

parisons of networks and not the absolute value of

their likelihood. A similar assignment of prior prob-

abilities was presented in Friedman and Goldszmidt

(1999). As we will see in the next section, the as-

signment in the last equation is suÆcient to bias the

model construction to networks with less parameters

and avoid super
uously complex network structures

without having to determine the maximal number of

incoming edges in advance. This eliminates another

degree of freedom for setting the parameters of the al-

gorithm and thus makes the algorithm easier to use.

Somewhat weaker pressure toward simpler networks

was introduced in Heckerman et al. (1994) and Chick-

ering et al. (1997). Our experience was that the latter

pressure was not strong enough to result in eÆcient

learning in our application.

The above assignment can be extended or fully re-

placed by the one that takes into account our prior

knowledge about the problem by favoring models that

are more similar to the prior network.

4.3 LEARNING BAYESIAN NETWORKS

WITH DECISION GRAPHS

To construct a decision graph on binary variables, two

operators are suÆcient. The �rst operator is a split,

which splits a leaf on some variable and creates two

new children of the leaf, connecting each of them with

an edge associated with one possible value of this vari-

able, in our case, 0 or 1. The second operator is a

merge, which merges two leaves into a single leaf. It

does not make sense to split a leaf on a variable that

was encountered on the path from the root to this leaf

and therefore these operators will not be allowed.

For variables that can obtain more than two values,

two versions of the split operator can be considered:

(1) a complete split which creates one child for each

possible value of the variable (as above), and (2) a bi-

nary split, which creates one child corresponding to

one particular value and another child for all the re-

maining values. Other alternatives can also be consid-

ered.

The greedy algorithms for constructing a Bayesian net-

work using decision graphs di�ers from the one pre-

sented in Section 3 in that it does not manipulate

the constructed network directly but only by modi-

fying the decision graphs corresponding to each vari-

able. The decision graph Gi for each variable Xi is

initialized to a single-leaf graph, containing only prob-

abilities p(Xi).

In each iteration, all operators (e.g., all possible merges

and splits) that can be performed on all decision

graphs Gi are examined. The operator that improves

the score the most is performed on the corresponding

decision graph. Both split and merge operators can be

performed. When making a split, we must make sure

that no cycles appear in the network B. To guarantee

that the �nal network remains acyclic, we can contin-

uously update the network B each time we perform a

split. Once we split a leaf of the graph Gi on a vari-
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able Xj , we add an edge (Xj ; Xi) to the network B. A

more sophisticated algorithm is possible which would

allow a cycle whose di�erent parts would be incompat-

ible and thus not form a true cycle. The pseudocode

of the above algorithm follows.

(1) Initialize a decision graph Gi for each node Xi to

a graph containing only a single leaf.

(2) Initialize the network B into an empty network.

(3) Choose the best split or merge that does not result

in a cycle in B.

(4) If no improvement is possible, �nish.

(5) Execute the chosen operator.

(6) If the operator was a split, update network B.

(7) Go to (3).

It is important to notice the di�erence between the al-

gorithm that directly modi�es the network and the one

which modi�es the decision graphs. Adding an edge

into a Bayesian network and using a full conditional

probability table to store the corresponding probabil-

ities corresponds to splitting all leaves of the decision

graph corresponding to the terminal node of the edge

on the variable corresponding to the initial node of the

edge. However, by modifying only the decision graph,

�ner steps can be performed which may positively af-

fect the quality of the resulting model.

5 EXPERIMENTS

This section starts by specifying our experiments.

Subsequently, it provides and discusses the obtained

results.

5.1 SPECIFICATION OF EXPERIMENTS

We have performed experiments on a number of func-

tions. In this paper we only present results of our

experiments on some of the functions. A simple linear

function, called one-max, simply sums all bits. The

3-deceptive function is a sum of subfunctions of order

3, applied to disjoint blocks of 3 consecutive bits in the

input string. Each of these subfunctions is de�ned as

f3
dec

(X) =

8>><
>>:

0:9 if u = 0

0:8 if u = 1

0 if u = 2

1 otherwise

(5)

where X is a vector of 3 binary variables, and u is the

sum of the input variables. The 3-deceptive function

has one global optimum in (1; 1; : : : ; 1) and 2
n

3 local

optima in all points where (X3i + X3i+1 + X3i+2) 2
f000; 111g for all i 2 f0; : : : ; n

3
g. The above function

is deceptive in a sense that an average value over all

strings that contain 0's in two particular positions is

greater than the corresponding average with the 1's in

these two positions. This feature makes the function

very diÆcult unless the algorithm uses a recombination

that respects interactions.

The two dimensional Ising spin-glass function maps

bits onto a regular 2D grid. There are two types of

edges. An edge of the �rst type contributes to the

overall �tness by 1 if the bits at its ends are the same.

An edge of the second type contributes to the �tness if

the bits at its ends are di�erent. For a more detailed

description of the function and the de�nition of the

problem instance we used in our experiments, please

see Pelikan et al. (1998).

We have compared the simple GA, the BOA with both

the MDL metric as well as the Bayesian-Dirichlet met-

ric, and the BOA using decision graphs to construct

the model and encode its parameters. The complex-

ity measure was incorporated into the metric for the

use with decision graphs as described in the above sec-

tions. The performance of the BOA does not depend

on how we order the variables in solution strings. On

the other hand, the ordering of the variables strongly

in
uences the performance of the simple GA. We have

chosen the representation so that interacting variables

are close in the solutions strings. This is the best case

for the simple GA. However, the main purpose of our

experiments was not to compare the BOA to the sim-

ple GA but to give insight in the BOA and the e�ect

of using local structures on its performance.

The population size in each algorithm was set as the

minimal population size required for the algorithm to

converge in all of 30 independent runs. Binary tourna-

ment selection was used in all experiments. The num-

ber of o�spring is equal to a half of the population size

and the generated o�spring replace the worst half of

the original population. In this fashion, the runs are

more stable and elitism is introduced. The probability

of crossover in the simple GA was determined accord-

ing to empirical evidence presented elsewhere (Pelikan,

Goldberg, & Cant�u-Paz, 1999) as pc = 1. Except

for the one-max function, the mutation was not used,

since it seems to not pay o� on the tested problems.

On one-max problem, pm = 0:01 was used.

5.2 RESULTS

The results on the simple linear one-max function are

shown in Figure 2. One-max is a linear function and

thus it is expectable that all the algorithms perform

very well. The BOA with an optimal k = 0 (which is

equivalent to the UMDA) performs the best, because

it does not take into account any interactions and in

this problem all the variables are indeed independent.
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Figure 2: Results on the one-max function.

Other algorithms try to model some interactions and

that is why they perform worse. However, all algo-

rithms seem to scale very well. Using decision graphs

does not seem to pay o� in this case because of that

the noise misleads the model building which is very

sensitive when the decision graphs are used. Other

modeling techniques make bigger steps and it is harder

to mislead them. Even though this feature is likely to

make the BOA work less eÆciently on this simple lin-

ear problem, it can be very useful when solving diÆcult

problems where making little steps while building the

model pays o�.

The results on the 3-deceptive function are shown in

Figure 3. The results suggest that all versions of

the BOA perform similarly and as the problem size

grows, they outperform the simple GA with one-point

crossover. This suggests that they scale up better.

It is important to note that the coding chosen for this

problem is the best one for the simple GA. If the build-

ing blocks (the bits corresponding to each deceptive

subfunction) would be coded more loosely, the perfor-

mance of the simple GA would get worse, and, even-

tually, for a random ordering of the variables in the

strings representing solutions the simple GA would re-

quire exponential time (Thierens & Goldberg, 1993).

However, the BOA is independent of the ordering of

the bits in strings, and thus its performance would

remain the same independently of the ordering we

choose. The BOA with both the decision graphs and

the MDL metric performs very similarly. This behav-

ior is very interesting because the metrics are coming

from two di�erent paradigms.

The results on the spin-glass system are provided in

Table 5.2. The BOA with the MDL metric performs

the best. The BOA with k = 2 performs the worst.

The simple GA does not reach the optimum even with

huge populations and a large number of generations.
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Figure 3: Results on the 3-deceptive function.

This problem is very diÆcult for the simple GA. It is

interesting that the MDL metric performs the best and

outperforms both the BOA with decision graphs as

well as a bound on the network complexity k = 2 and

the K2 metric. We have also performed experiments

with higher values of k. As the k increases to 4, the

performance of the BOA with the K2 metric improves.

The BOA with k = 4 and the K2 metric performs the

best of all compared algorithms. However, with k = 5

the performance again decreases. This suggests that

the value of k = 4 is a good choice for this problem.

Table 1: Results on the 2D spin-glass.

Algorithm Fitness evals Std. dev.

BOA (k=2, K2) 75833.33 4649.03

BOA (k=3, K2) 42733.33 2993.48

BOA (k=4, K2) 36606.67 2045.04

BOA (k=5, K2) 48960.00 2099.85

BOA (MDL) 38091.67 2317.69

BOA (Dec. trees) 57960.00 3109.62

6 CONCLUSIONS

The use of local structures to represent conditional

probability tables has four major advantages. First,

the number of parameters required to store probabili-

ties with a large conditional part can decrease signi�-

cantly. This makes the method work more eÆciently as

we increase the complexity of models. Moreover, high-

order interactions can be represented by using models

of reasonable size. Second, by using decision graphs to

guide the network construction, one can discover more

complicated relationships which may not be evident

when directly modifying the network. Additionally,

models of the same quality can be discovered by using

less e�ort. Third, the models become more expressive,

since cycles with di�erent parts corresponding to in-
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compatible paths in the decision graphs may appear

in the model.

Finally, the complexity of the models can be automat-

ically controlled by making prior probabilities of com-

peting models be inversely proportional to their com-

plexity. Our experiments suggest that setting the prior

probability of a network to be inversely proportional

to the number of bits required to store the frequencies

in the network works well. By using Bayesian scoring

metric containing a complexity measure as described

above, one can both (1) use prior knowledge about the

problem in network construction and (2) eliminate the

need for a bound on the network complexity. In this

fashion one can get the best of the two approaches.

Our test problems do not bene�t from the compact

representation by local structures, such as decision

graphs. They only require covering interactions of a

bounded order. Hot candidates for the use of local

structures are problems that require a hierarchical ap-

proach where we must encode interactions of a very

high order with a quite regular and simple structure.

Such interactions may appear later in the run and re-

quire eÆcient representation.
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Abstract 
Traditional data mining methodologies rely on a 
system-based objective function to obtain results 
that are considered interesting and accurate. The 
focus on computation speed and accuracy has 
neglected the domain user, who could contribute 
useful input to the decision-making of the 
mining process. In this paper, we outline, IMiN, 
a data mining architecture which has two specific 
goals. Firstly, an interactive and iterative 
framework based on the evolutionary model is 
proposed for the mining process to enable a 
domain user to control the flow of the mining 
process ad-lib. Secondly, this hybrid system 
maximizes the best from two different 
algorithms: Apriori algorithm and genetic 
algorithm. The former one is a proven data 
mining technique to zoom in and to construct 
interesting rules according to a predefined fitness 
function, whereas the latter one enables the 
search of interesting regions for further 
investigation. The results showed that the 
environment we constructed allowed the user to 
affect the mining direction during the mining 
process as they intended. The results also 
suggested that including Apriori in the process 
allowed the user to home in faster to solutions 
than normal. Overall IMiN proved itself capable 
of supporting the user’s decision making during 
the mining process. 

1 INTRODUCTION 

In the past fifteen to twenty years there have been large 
developments in data mining techniques. Originally the 
emergence of simple algorithms has paved the way for 
new and innovative techniques that use smart techniques 
to analyze information. Methods proposed in (Bayardo 
Jr., 1998) and (Yip et al, 1999) take the approach of 
cleverly deriving new useful information from previously 
successful knowledge. These techniques use dependency 
modell ing whereby a relationship between two or more 
elements is defined by how strongly the grouping of one, 

or more, is a reliable predictor of the others. Another 
technique that has been used to model such relationships 
is genetic algorithms. The rationale with this approach is 
that finding useful information is synonymous to 
searching for a problem solution. Typical examples in this 
category include (Marmelstein, 1998) and (Noda et al, 
1999). 

The afore-mentioned research is lacking in the sense 
that knowledge discovery has become largely autonomous 
and hence distant from its original focus. Many 
algorithms leave out the capacity for human input and 
attempt to mimic a semantic level of understanding of the 
information using objective functions and algorithms. 
Current methods that attempt to include the domain user 
into the mining process are stil l limited and have yet to 
reach their full potential. 

The purpose of paper is to propose a data mining 
system that will allow user to steer the direction of the 
mining process as it happens. This will be facil itated by 
the complementary strength of the exploration power of 
genetic algorithm and the dependency analysis of a well-
established data mining techniques. The rationale for 
using a mixture of techniques follows the principle that 
biases can be removed by combining one paradigm with 
another that balances aspects of the original paradigm 
(Anand and Hughes, 1998). We plan to take those aspects 
that are useful to us from each method and combine them 
in a way that makes them compatible. The system is also 
equipped with an interface to enable interaction. The 
rationale behind our approach agrees with the statement 
(Williams, 1999) that “… data mining is an inherently 
interactive and iteractive process …”, meaning that the 
system should act as a support mechanism to the user’s 
intuitions. 

In the next section, we outline in more detail the 
background of this paper. In section 3, we propose the 
design of, IMiN, an interactive data mining system. The 
experiment and results are outlined in section 4. This is 
followed up with final conclusions and future 
recommendations in section 5. 
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2 RELATED WORK 

In this section we overview various areas of previous 
research that are related to the direction of this paper. The 
main areas of focus are itemset building algorithms, 
genetic algorithms, and the development in interactive 
mining. 

Agrawal and Srikant (1994) started the family of 
Apriori algorithms. This family of algorithms is 
incremental in nature. The algorithm first scans the 
dataset and builds a list of itemsets L1, which li sts the 
support of all single element itemsets. In each subsequent 
iteration, the algorithm builds a set Ck containing large 
itemsets generated by joining fit ones (satisfying a 
minimum support requirement) from the previous 
iteration Lk-1. Then, a function called apriori-gen is called 
to prune all itemsets in Ck that are deemed unfit. 

Instead of re-checking the dataset to ascertain the 
fitness of itemsets in Ck, apriori-gen uses a smart 
heuristic. An itemset is said to be unfit if not all of its Lk-1 
subsets are fit. Once these itemsets are pruned, the dataset 
is scanned to determine the support of the remaining 
itemsets in Ck and hence the process repeats again. The 
entire process keeps running until no more itemsets can 
be generated from the current ones. To illustrate apriori-
gen in action consider the following example: 

Let L3 consist of {{ 1 2 3} , { 1 2 4} , { 1 3 4} , { 1 3 5} , 
{ 2 3 4}} . After the join step the output wil l be {{ 1 2 3 4} , 
{ 1 3 4 5} . Pruning this with Apriori-gen will result in { 1 2 
3 4} because each of its subsets { 1 2 3} , { 1 2 4} , { 1 3 4} , 
{ 2 3 4} exist in L3. 

To summarise, itemsets are built upon previously 
constructed ones that are considered fit. Unnecessary 
computation is avoided on those itemsets that are 
inappropriate. These in turn produce specific associations. 
Since this algorithm was introduced, there has been a 
steady advance in the smart generation of itemsets.  

More recent work such as the LGen technique (Yip et 
al, 1999) improves on Apriori by generating variable-
sized itemsets on each pass of the dataset. The goal is to 
reduce the overall I/O passes required to find all large 
itemsets. The size of the largest itemset in Apriori 
algorithms dictates the number of passes through the data 
that are required. LGen, on a best case scenario, can 
require as few as two passes irrespective of dataset size. 
Another lattice-based algorithm Max-Miner (Bayardo Jr., 
1998) uses a look-ahead technique whereby large itemsets 
are generated earlier than they would be in Apriori. These 
methods, while being at the forefront of their paradigm, 
generally lack the structure for interaction.  

Genetic algorithms are a newer paradigm in data 
mining and have proven compatible performance against 
other methodologies. GRaCCE (Marmelstein, 1998) is a 
genetic rule induction algorithm that gradually refines 
linear boundaries drawn on the data to deduce rules. 
GRaCCE was tested against CART, a decision tree 
induction algorithm, and was found to generate fewer and 
more concise rules than CART. The results demonstrate 

that the searching capabilities of genetic algorithms can 
be applied successfully and eff iciently to data mining in a 
rule induction context. 

In a different study (Noda et al, 1999) a genetic 
algorithm is used in a dependence-modell ing task to 
discover interesting prediction rules. An algorithm was 
proposed to combine some characteristics of the GA-
Nuggets algorithm (Freitas, 1999) and the objective 
evaluation of  rule interestingness (Freitas, 1998). A 
noteworthy difference between this and rule induction is 
the latter requires some preconception of the desired 
result whereas the former is more free to discover 
surprising information. 

The focus of the Evolutionary Hot Spots model 
(Williams, 1999) is that: data mining is an inherently 
interactive and iterative process. The Hot Spots model 
uses induction and clustering techniques to identify 
potential groups of interesting rules. These groups are 
then evaluated for interestingness. The Hot Spots process 
is worked into an iterative architecture in order to evolve 
the definition of interestingness along with the mining 
process. 

First the Hot Spots method defines interestingness 
based on unexpectedness or surprising characteristics. 
The database, D, consists of a set of entities, where each 
one is a tuple. Hot Spots generates a set of rules R = { r1, 
r2, …, rp} where each rule holds a group of entities. Each 
rule is also known as a nugget. The problem is that the 
number of nuggets that arise in very large databases can 
itself be vast, many of which can be expected to have 
little interesting quality. For this reason an evolutionary 
approach was adopted to refine the quali ty of produced 
rules. Also meta conditions are implemented to limit the 
number of rules that are presented to the user. 

Initially rules are found using some statistical rating, 
like a simplified version of the genetic algorithm fitness 
function. A number of nuggets q, each having 
approximately s rules, is discovered and presented to the 
user, who will rate the nuggets and feedback into the 
system a modified definition of interestingness q. At each 
iteration the user evaluates discovered rules and further 
evolves these measures of interestingness.  

Figure 1 – The Evolutionary Hot Spots Model 

The process is designed to stop at the discretion of 
users, not the system. The architecture (Figure 1) is an 
example where the user’s input is taken not only at the 
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beginning but also throughout the mining process. The 
potential for interaction is an important aspect with regard 
to the aim of this paper. 

3 IMiN – A HYBRID MODEL 

Our proposed solution is an interactive system that both 
guides and supports the user’s decision-making during the 
mining process. If we look at data mining as a search for 
good solutions, then the system should allow a user to 
search as broad (exploration) or as deep (exploitation) as 
is desirable.  

The proposed hybrid approach combines the genetic 
algorithm developed by (Noda et al, 1999) with the 
Apriori itemset building algorithm (Agrawal and Srikant, 
1994). The interactivity is made available by the 
incorporation of the Evolutionary Hot Spots architecture. 
This combination (Figure 2) provides us with a basic 
framework and technique to enable human interaction in 
KDD. It also provides us with the opportunity to test the 
augmentation of genetic algorithms to the Apriori family.  

Figure 2 – Modified system architecture to accommodate 
the hybrid 

An initial population of rules is generated and 
evolves for a certain number of generations in Step 1. 
Then the system checks whether it is supposed to further 
evolve rules by growing them (Step 2). Note that rule 
growth (Step 3) is synonymous with increasing the order 
of schema in a chromosome. In Step 4, rules that are fit 
according to the objective fitness function are displayed to 
the user and to be further manipulated (Step 5). The user 
selects which rules will continue subsequent evolution 
and then the cycle begins with null alleles which are 
marked with a ‘ -1’ . 

3.1 THE ARCHITECTURE: STEP-BY-STEP 

3.1.1 Step 1: Evolution of Rules 

The genetic algorithm in this model searches for 
association between attributes in a dataset where a rule 
consists of an antecedent and consequent. The user first 
selects a group of attributes that are eligible to be goal 
attributes. In order to limit the search space, a small set of 
attributes that interests the user remains, and thus cuts 
down on the total processing time. 

Rules in the system are represented by chromosomes. 
A chromosome’s length corresponds to the number of 
attributes in the dataset. Only values of the antecedent are 
stored in the chromosome. This structure allows us to 
apply the genetic operations easily and take advantage of 
the efficient one-pass method 2.  The consequent is stored 
externally. Specific details on the genetic operators wil l 
be covered in the following sections. 

The exploration of the search space in GA is 
generally enabled through the crossover operator. Many 
techniques, including GA-Nuggets, use uniform 
crossover. However, it is unsuitable for the proposed 
system because the number of antecedents (or itemsets) 
can only be incremented at each rule growth in the 
Apriori algorithm. The construction of a (k+1)-order 
itemsets relies on the existence of the k-order, (k-1)-order, 
(k-2)-order, .., 2-order, 1-order itemsets. Chaotic 
fluctuation of antecedents between generations due to the 
random nature of genetic operators is not acceptable. 
Consider the example in Figure 3: 

Figure 3 – Effect on schema order in 1-point crossover 
(null alleles are denoted by a ‘ -‘)  

In Figure 3 the offspring (right) have a mixture of 
features from the parents (left), hence the schemas’ order 
has changed. 

While GA-Nuggets attempts to regulate rule size to a 
certain degree using the speciali sed insert and remove 
operators, they do not guarantee the level of control 
necessary to make scheduled rule growth possible. To 
ensure that the rule size remains constant after crossover, 
a new crossover method termed Random-Quota 
Crossover (RQC) is introduced which is adapted from the 
1-point crossover. First, a random number between 0 and 
the schema order-1 is chosen. This number represents a 
quota of the number of alleles that must be copied from 
each parent. Then, a brute-force pass is required to work 
through the parents from the head to the tail to swap the 
non-null alleles until the quota is reached.  

Figure 4 shows an example of RQC. The quota is set 
to ‘3’ in this example, which means only 3 alleles needed 
to be swapped with the mating partner. First of all , the 
first positions of each of the parents are checked for non-
null values. Since parent-A contains a value in this 
position, the allele in this position is swapped with parent-
B. After swapping, the number of swapped non-null 
alleles for parent-A and parent-B are 1 and 0 respectively. 
Then, the operator moves to the next position and finds 
that both parents have values in locus 2. The value of ‘H’ 
and ‘B’ are swapped between the two parents. On 
completion of the second locus, the numbers of non-null 
alleles swapped for parent-A and parent-B become 2 and 
1. Since both parents have null values in their third gene, 
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no swapping takes place. For the fourth position, parent-A 
has a value ‘T’ in the current location. Swapping occurs 
and the numbers of swapped alleles in the two parents are 
3 and 1 correspondingly. Note that ‘E’ and ‘P’ are not 
swapped between parent-B and parent-A. It is because 
when the algorithm reached that particular position, that 
quota for A has already been satisfied. As a result B must 
wait until it finds an empty allele in A to swap to. Both 
rules begin with the same number of non-null alleles, 
RCQ guarantees that the resulting rules have the same 
property as well. 

Figure 4 – RQC with quota set to 3  

Each feature of every rule chromosome is given a 
percentage probabili ty to mutate after crossover is 
performed. The chance of each feature to mutate is the 
same within the same generation, however, this may 
change in subsequent generations at user’s discretion.  

3.1.2 Step 2: The Checkpoint 

At certain periods in the mining process, rules wil l be 
‘grown’ . After individuals are evolved for a set number of 
generations, the system will proceed to rule growth using 
the Apriori technique.  

3.1.3 Rule Growth 

In this step, the order of antecedents in every rule is 
grown by one. In the subsequent discussion, we treat the 
rule antecedents as itemsets, where an itemset is a list of 
elements A ij…Anj such that A i is the ith attribute and A ij is 
the jth value of this attribute. The support of an itemset 
denotes how often all of its elements occur together. 
During the rule growth, we are concerned with the 
support of itemsets, not the associations derived from 
them. The antecedents of associations produced by the 
genetic operators are reverted to itemset form. From then 
on, the Apriori is applied. After rule growth, new 
associations are then extracted from the grown itemsets.  

Lk-1 is obtained by collecting all the antecedents of 
associations that have suff icient support. An example of 
Apriori growing itemsets is shown in Figure 5. The 
guaranteed order allows us to reduce the amount of 
necessary comparisons. In our system the generation of 
Lk-1 needs to be done only during the generation before 
rule growth occurs. 

Due to genetic operations in our system, the ordering 
of chromosomes in a generation, if any, cannot be 
preserved. To deal with an unordered set of rules, the 
algorithm is modified to ensure that rules are only 
combined with other rules such that the last non-null 
value of the second chromosome occurs after that of the 
first. The process is described in Figure 6. Following this 
principle, we add 8 from A to B to produce D, 4 from C to 
B to produce E, and 8 from A to C to produce F. 

Chromosomes D, E and F constitute the unpruned Ck set. 
When Ck is created, all non-large rules are then removed 
by a pruning step, which is the latter part of apriori-gen.  

Figure 5 – Apriori ordered join 

The difference between this modified version and the 
original Apriori algorithm is that: it is used only once in 
each rule growth stage, instead of repetitively until no 
more large itemsets are generated. 

Figure 6 – Growth Example with Chromosomes A, B, C 
(Lk-1). To ensure that there is no redundancy chromosomes 
only grow by adding alleles from other chromosomes that 

occur after their own last non-null allele. An alternate 
approach would be to order the individuals then compare 

them as is done in Figure 5. 

3.1.4 Step 4: Identifying Rules 

After a number of generations, the system displays all 
rules in the population that satisfy the required support 
and confidence levels. This period is called the generation 
increment and represents how often a user interacts with 
the system. Because of the nature of genetic algorithms, 
certain rules may be duplicated within a population. The 
exhibition of rule dominance within a population is not 
uncommon. Hence, to ease the user’s task of having to 
analyse the rules, all the duplicates are not displayed.  

3.1.5 Step 5: Human Ranking and Parameter 
Adjustment  

Once the system has completed a single cycle of rule 
evolution (Step 1), rules that satisfy minimum support and 
confidence are displayed to the user. Users can 
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manipulate the rules and/or mining parameters for 
subsequent rule evolution. 

A subset of the produced rules can be selected to 
continue the mining process. In other words, the user 
selection represents the subjective part of defining 
interestingness within the system. When the user 
preference changes over time, this subjective fitness 
function is reflected in the population of rules that is 
developed in subsequent generations. Hence, the user 
complements the objective fitness function. The 
implication of selecting a subset of the original population 
is to speed up the convergence of the population. This 
acceleration will be ampli fied if the search is further 
narrowed down when the user becomes more confident 
about the mining goals. 

Alternatively, if the user has little direction, they may 
continue to investigate all the rules the system produces. 
This will allow the genetic algorithm to search through an 
untouched and stil l relatively large search space with a 
diversified population. As discussed above, the speed of 
convergence is related to diversity within the population.  

User can also customise the mining process in Step 5 
by adjusting the mining parameters. Changing the mining 
parameters means that the objective fitness function 
places a different emphasis on certain elements (eg 
confidence threshold, confidence weight) over others. The 
specific changes available to the user can vary depending 
on user preference.  

In many situations, potential points in a search space 
are crowded and suffocated by other points that are closed 
to local optima. When a genetic algorithm faces this 
situation, it tends to converge prematurely, i.e. narrowing 
the scope of exploration. While this may represent a 
legitimate homing in on good solutions, it can also mean 
the exclusion of others. This is generally dealt with in GA 
using crowding, fitness sharing or disabling the mating of 
similar individuals to escape from the trap of local 
optima. Having said that, the local peaks in a search space 
may represent opportunities to the formulation of business 
strategy for niche groups. To help avoid this anomaly to 
occur, we introduce extended parallel exploration, which 
allows the user to artificially increase the fitness of a set 
of rules. Doing this will reduce the current domination of 
the population by an eli te group of rules and wil l allow 
others a chance to live and to develop. Exactly how much 
the convergence is slowed down depends on how much 
the fitness of certain rules is increased. The greater the 
increase, the longer those rules will remain in the 
population. In essence, the increase only extends the life 
of certain rules so that they can be explored. What this 
function allows is a deviation from the system-controlled 
mining path to areas in the search space deemed 
interesting by the user. 

4 EXPERIMENT AND RESULTS  

This section describes the tests performed on the IMiN 
system. The purpose is to test the domain user’s ability to 

control the directon of the mining process using IMiN. 
The system was tested with a dataset (census income) 
containing census information on US incomes. This 
dataset came from UCI repository. It contains 6 
continuous and 9 categorical attributes. The dataset has 
7% amount of noise in the form of unknown values. 

4.1 TEST 1: CHANGING THE MINING FOCUS -
USING SELECTION OF RULES 

The purpose of this test is to il lustrate the user’s ability to 
change the focus of mining during the mining process by 
selecting rules to be evolved. 

We first did a control run in which the system had 
total control over the mining process. During this run, all 
rules were selected for evolution. The control test run was 
used as a standard to compare the user-controlled run 
with. Parameters set for the control and user runs were: 

Parameters: population: 150, sample: 500, 
minimum support: 5, minimum 
confidence: 60%, crossover: 
60%, mutation: 0.01%, support 
weight: 1, confidence weight: 2, 
small rule filter: 50 

Goal Att r ibutes: age, workclass, education, 
marital status, occupation, 
relationship, hours-per-week, 
class 

Continuous 
Attr ibutes (Interval 
Size): 

age (3), hours-per-week (3) 

    

 The initial population was allowed to evolve 15 
generations. This was done ten times to get a generalised 
view of which rules were likely to appear. A superset of 
all the rules from these ten runs was prepared and it 
contained 86 unique

1
 rules. The sizes of these populations 

ranged from 20 to 33 unique rules, with an average size of 
26.1 rules from a total of 261 rules over the 10 separate 
runs. This meant there was a moderate amount of overlap 
between the ten runs. The superset represented a common 
set of rules that the system generally converged toward 
after 15 generations. 

Rules are grown at this stage and developed for 
another 10 generations. We ran this five times and noted 
the rules produced at the end. The superset for 2-order 
rules

2
 contained 97 unique rules from a possible 122. The 

difference between 2-order populations was much greater 
than that between 1-order populations. This phenomenon 
indicated that the search direction spreaded out more and 

                                                           
1 A count of unique rules includes each rule only once. If a rule appears 
several times in the same population its duplicates are not counted. The 
‘population’ or ‘population size’ used in this paper refers to the number 
of unique rules in a population. 
2 An n-order rule contains n elements in its antecedent. Similarly an n-
ordered / order n population is a populations that contains only n-order 
rules. 
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became increasingly unpredictable. Also, some of the 
difference might be caused by hidden itemsets that only 
produced fit rules after rule growth. As a result, predicting 
the direction of mining was very difficult beyond this 
stage. In turn, this limited the extent to which we could 
compare the control run results with the user run results. 

For the user-controlled run, the same random seed 
was used to generate the initial random population. This 
guaranteed that all tests began with the same population 
of rules. We selected a set of rules in the initial population 
and develop them for fifteen generations. The rules we 
investigated were those that had values from the age, 
education, or hours-per-week attributes as their 
antecedent. This was performed ten times and a superset 
of all the resulting rules was created.  

The populations of the ten runs ranged from 3 to 16 
rules in size. This superset contained 37 unique rules out 
of a total 95 from the ten runs. This set contained only 
rules that had antecedents containing values from the age, 
education, or hours-per-week attributes. The results 
shown that the focused rules started to dominate in 
subsequent generations. The final superset was a subset of 
the results from the 15th generation in the control run. 
This shown that we were able to focus on one area the GA 
originally considered, and discontinued the rest.  

From the ten runs of both the control and user runs, 
the number of unique rules (population sizes) at each 
generation were noted and averaged. The result is shown 
in Figure 7. The figure il lustrates the rates of convergence 
between the control run and the user-controlled runs. 
From the results we can see that the user runs converge 
faster because there is less variation within the population 
as a consequence of selection. This means there is less 
exploration in the user runs.  

 After the fifteenth generation, although there was a 
sharp increase (the spike) in population size in the control 
run, the convergence stil l carries on. Regarding the user 
runs only one out of ten produced any rules after rule 
growth, which evidently disappeared before another five 
generations passed. This indicates that the system had 
already converged to a maximum by the 17th generation.   

4.2 TEST 2: USING EXTENDED PARALL EL 
EXPLORATION 

 
While we may want to focus on certain areas, we may 
also want to continue investigating others. Normally we 
could do this by simply selecting all rules for further 
investigation. However, rules of interest may be later 
excluded from the population because they have a low 
objective fitness at that stage. The purpose of this test is 
to: 

• Extend the search in an area that the system normally 
would not explore extensively. 

• Maintain exploration of other areas while focusing on 
one in particular.  

Figure 7 – Population size throughout mining  

In this test, we planned to track the progression of 
rule discovery more finely than in the previous test. For 
this reason, another control test is generated. A fixed seed 
is used for all random generation of the initial population 
generation, crossover and mutation probabili ties. This 
guarantees that the control run is completely predictable. 
Any changes that occurred in user runs could thus be 
easily spotted. We further tried this procedure with 
different seeds to ensure the results could be generalised. 

In the first user run, we set the random seed to 2. We 
doubled the fitness of any rule with age 48.0 in the 
antecedent in the initial population. In the second user 
run, the seed was set to 9. In the initial population we 
doubled the fitness of all rules with education Doctorate 
in the antecedents. In the control run of both cases, no 
rule with the specific paremter-value survived past the 
first generation. Fitness was not altered at any other time. 
No rule with this antecedent survived long in the control 
run. Parameters set for the control test and user-controlled 
runs were: 

Parameters: population: 50, sample: 500, 
minimum support: 5, minimum 
confidence: 60%, crossover: 
60%, mutation: 0.01%, support 
weight: 1, confidence weight: 2, 
small rule filter: 50 

Goal Att r ibutes: age, workclass, education, 
marital status, occupation, 
relationship, hours-per-week, 
class 

Continuous 
Attr ibutes (Interval 
Size): 

age (3), hours-per-week (3) 

 
Rules were evolved for six generations prior to rule 

growth then for another five generations after it. Figure 8 
shown a comparison of population sizes between the 
control and user runs. Figure 9 shown the break-up of 
rules in the user controlled run. ‘Different rules’ are those 
rules that occur at a particular generation in the user run 
but do not appear in the same stage in the control run. 
Rules that appear in the control and user runs in the same 
generation are ‘same rules’ . Hence the sum of the two 
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series shown in Figure 9 is the equal to population size of 
the user runs in Figure 8. 

Figure 8 – Comparison of population size (seed=2) 

Figure 9 – Comparison of rules proportion (seed=2) 

We could see from Figure 9 that after the 10th 
generation, none of the original rules from the control run 
remained in the user run. In the first user run, rules with 
age 48.0 in their antecedent survived to the last 
generation. In the second user run, rules with education 
Doctorate in their antecedent persisted to the second last 
generation.  

4.3 DISCUSSION  
 
The results from Test 1 shows that the user is able to alter 
the focus of mining by selecting a subset of rules in a 
population. The effect of this change is a hastened 
convergence due to the loss of diversity in the population. 
Figure 7 il lustrates the rate at which the population 
converged after user-intervention. It shows that 
exploitation is dominant over exploration. This represents 
a situation where the system is homing in on a particular 
area. The resulting supersets of the control and user runs 
show that the system changed its search focus in 
accordance with the user’s intention. 

We can see from Test 2 (Figure 9) that the number of 
‘different’ rules increased over time, eventually 
surpassing the number of ‘ same’ rules. This demonstrates 
the shift of focus from one set of rules to another. As 
mentioned earlier, this shift can partially be attributed to 
occurrence of rules at different stages in the mining 
process. The effect is stronger in the first user run because 
a larger proportion of rules had their fitness enhanced. 

However, the number of different rules at each stage 
in the user run is far greater than the number of enhanced 
rules. This means that the population is sensitive to the 

fitness enhancements in subsequent evolution. When a 
rule’s fitness is increased, the probability that it will be 
selected for crossover also increases. Thus rules that were 
originally selected in the control run at a particular stage 
were not in the user run. This explains why certain rules 
appear at different stages between the two runs. Despite 
these changes the system still maintained a focus on the 
original rules that were enhanced for most of the process. 
This shows that the user is able to focus on areas that they 
are interested in.  

Our general observation on the control and user runs 
revealed that this change in foci may not be so dramatic. 
We discovered that many of the rules that were classified 
as different were simply discovered at a different 
generation than in the control run. Rules having partially 
different antecedents were also counted as ‘different’ . The 
areas explored in the user run were thus similar to those 
explored in the control run and the number of actual 
new/underived rules that were discovered in the user run 
was negligible.  

Having said that, the system is able to change one or 
more of its mining foci in response to the user’s 
intervention, and in accordance to the user’s intended 
direction.  These results show that the system is able to 
home in to the solutions faster with the aid of a user. Test 
2 proved that the system allows a user to focus on an area 
of interest without having to lose track of other areas.  

From the results (esp. Test 1), we see the hybrid 
system helped us to find solutions quickly. This is one 
advantage offered by the hybridization of Apriori and the 
GA. Also, users can now incrementally zoom into 
interesting regions while the system constructs more 
complex rules (itemsets) along the way. 

5 CONCLUSIONS 

In this paper we presented a framework (IMiN) that uses 
evolutionary paradigm to augment the Apriori algorithm. 
This hybrid approach provides an exploratory tool to a 
large search space and enables the incremental 
construction of itemsets with proven data mining 
technique. 

The testing of the system yielded promising results. 
We demonstrated the potential of a user interacting with, 
and steering, the mining process. The results of these tests 
proved that the system considered input from the user and 
changed the direction of knowledge discovery. The 
change also had strong bearing on the direction that was 
the user’s intention. The abil ity to change the direction of 
mining during the mining process meant that the end 
results were li kely to be more meaningful to the user than 
that produced from a purely system-oriented process. 
From this we can conclude that the interactive 
evolutionary architecture is beneficial to the mining 
process.  

One observation we made while testing the system 
was that decision-making in this system is diff icult 

Population Size Over Time 

0 
10 
20 
30 
40 
50 
60 
70 

3 5 7 9 11 13 
Generation 

Population Size 

Control Run 
User Run 

Rule Proportions 

0 
10 
20 
30 
40 
50 
60 
70 

3 5 7 9 11 13 
Generation 

Population Size 

Different Rules 
Same Rules 

533GENETIC ALGORITHMS



 

without a certain degree of retrospect. In our tests, the 
decisions came from analyzing the results of a control 
run. However, this does not exist in a real-world situation. 
Although the direction control allows more desirable 
results to be found, there is no way of undoing choices in 
the iterative process. Since one of the system’s goals was 
to facili tate user-controlled exploration, finding ways to 
allow more robust and diverse searching is open for future 
work. 

Regarding the difficulty of decision-making ad-lib, 
we propose to increase to searching capability of the 
system using ‘backtracking’ . If we look at the mining 
process as a series of user interaction stages between 
periods of system computation, then mining in the current 
system is a linear process. What we propose is giving the 
user the ability to backtrack in this linear sequence to a 
previous state of the mining process. This would allow 
them to then take a different direction at that point. This 
also means that decisions about exploration would not 
always need to be concrete since actions that yielded 
undesirable results could be undone. 

Figure 10 – Structure of the mining process 

Figure 10a shows the current nature of the mining 
process as a linear sequence of interaction stages. Ideally 
we would li ke to undo undesirable steps by backtracking 
to a previous stage and altering our course to obtain 
different results. Figure 10b il lustrates this as the 
transition from 2 to 3, backtracking back to 2 and plotting 
a new course resulting in the discovery of new rules at 4. 

Due to the nature of the system, testing has been 
quite limited and controlled in order to gather reliable 
results. The unpredictable nature of genetic algorithms 
makes large-scale empirical testing very diff icult. 
However such tests can provide greater insights into the 
reliabil ity of this system and are recommended. Also the 
determination of suitable mining parameters has long 
been an issue in the field of KDD. By introducing this 
new system we leave open the opportunity to conduct 
tests on the effects RQC has on the rest of the system, and 
hence the results. However such extensive testing is a 
study in itself and requires more attention than is possible 
in this paper. 
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Abstract

In the search space of variable length strings,
it is possible to de�ne crossover and mutation
operators that are equivalent to those used in
genetic programming on tree structures. We
study the e�ects of these operators on the
lengths of strings within a population. It is
shown that the distributions by which di�er-
ent string lengths are sampled are strongly
biased. To investigate these biases, the ef-
fects of repeated application of the operators
(without regard for �tness) is considered, and
in some cases the �xed-point distributions are
found.

1 Introduction

We analyse the e�ects of three di�erent operators on a
population of variable length strings. These operators
have previously been studied in [McPhee et al., 2001]
using numerical simulations. In this paper we provide
proofs of some of the observed behaviour.

The operators we are studying are purely syntactic,
making no reference to �tness. Each operator is de-
�ned to act on a string in the following manner:

1. truncate the string randomly

2. concatenate another string on to the result

Strings are truncated by throwing away at least one
element. The number of elements thrown away is cho-
sen uniformly at random. The string to be added to
the result of this process depends on which operator is
being used. The three we will discuss are1

1Versions of these operators de�ned for tree structures
can be found in [Koza, 1992].

Crossover Choose another string from the popula-
tion and truncate it (i.e. take a random suÆx
from it, including the terminal).

Full mutation Add a randomly generated string of
a �xed length.

Growth mutation Add a randomly generated string
of a random length, determined by a geometric
distribution.2

In this study we shall use a generational model where
the selected operator is applied to each string in the
population in turn to give a new population. Selection
from the population, where required, is done uniformly
at random.

One may think of the �rst string as being a selected
parent program. By truncating it, we are taking a ran-
dom pre�x. If programs are thought of as a sequence
of unary functions which will be applied to the �nal
string element (the terminal element), then the trunca-
tion throws away the terminal and possibly some of the
functions. The end of the new o�spring program (in-
cluding a new terminal) comes from the second string
that is concatenated with this pre�x. It should be
noted, however, that because we are not considering
�tness-based selection (or, equivalently, considering a

at �tness function), that all we are really concerned
about is the number of elements in a string, not their
meaning.

We will analyse the e�ects of each operator by con-
sidering the truncation and concatenation stages sep-
arately. A population at a given time t will be repre-
sented by a random variable Xt representing the dis-
tribution over lengths that exist in the population. We
will let T be the random variable denoting the length

2This is more commonly referred to as the grow muta-

tion method.
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of strings after truncation. Some information regard-
ing the distribution of T will be given in the following
section.

For each operator we will have another random vari-
able, C representing the lengths of the strings to be
concatenated. The probability distribution for string
lengths resulting from the application of an operator
will be the distribution of the sum of T and the con-

catenation variable C. To assist in �nding these dis-
tributions, we will use probability generating functions

(pgfs). Given a random integer variable Z, the proba-
bility generating function (pgf) for Z is:

GZ(z) =
X
k�0

Pr[Z = k]zk

One of the advantages of using pgfs is that the pgf
of the sum of two random variables is given by the
product of the pgfs of the two random variables, that
is

GT+C = GTGC

The product of the two series gives the convolution of
the two distributions [Graham et al., 1994].

For each of the three genetic operators mentioned
above we will look at their e�ects in one generation on
the mean and variance of the distributions of lengths
represented by Xt. These e�ects can be calculated
exactly. We will also consider the results of repeated
application of the operators (i.e. over many genera-
tions) to gain an idea of how strongly they are biased
towards particular �xed-point distributions. Strictly
speaking, these results apply only in the in�nite pop-
ulation limit, in which case the equations presented
here become deterministic. Empirical results suggest,
however, that these biases have a signi�cant impact on
�nite populations as well [Poli and McPhee, 2001b].

2 Truncation

Since we are only concerned with the lengths of strings,
we will model a population by recording the proportion
of members it has of each length. Let pt(k) be the
proportion of members with length k = 0; 1; 2; : : : for
a population at time t, so that

P
k
pt(k) = 1. We will

assume that the initial population contains no strings
of length zero, that is, p0(0) = 0, and the operators
which we will consider ensure that pt(0) = 0 for t > 0.

We may take pt to be a probability distribution over
lengths. Let Xt be a random variable so distributed
and let T be the random variable representing length
after truncation. Note that

E[Xt] =
X
j>0

jpt(j)

The probability of truncation producing a pre�x string
of length k may be calculated by summing over the
probabilities that a string of length j > k is selected

as the parent and that it is then truncated in the right
place. The truncation cut-point is selected uniformly
at random along the string's length. We allow cuts
before the �rst element but not after the last, as the
terminal node of the program must be thrown away in

this parent. We then get

Pr[T = k] =
X
j>k

pt(j)

j

The expected value of T is

E[T ] =
X
k�0

k
X
j>k

pt(j)

j

=
X
j>0

pt(j)

j

j�1X
k=0

k

=
X
j>0

pt(j)

j

�
j(j � 1)

2

�

=
1

2

X
j>0

pt(j)(j � 1)

=
1

2

0
@X
j>0

jpt(j)�
X
j>0

pt(j)

1
A

=
1

2
(E[Xt]� 1)

Similarly, the variance is

Var[T ] = E[T 2]�E[T ]
2

=
X
k�0

k2
X
j>k

pt(j)

j
�E[T ]

2

=
X
j>0

pt(j)

j

j�1X
k=0

k2 �E[T ]
2

=
X
j>0

pt(j)

j

�
(j � 1)j(2j � 1)

6

�
�E[T ]

2

=
1

6

X
j>0

pt(j)(2j
2
� 3j + 1)�E[T ]

2

=
1

3

X
j>0

j2pt(j)�
1

2

X
j>0

jpt(j) +
1

6

X
j>0

pt(j)

�

1

4
(E[Xt]� 1)2

=
1

3
E[X2

t ]�
1

2
E[Xt] +

1

6

�

1

4
E[Xt]

2
+

1

2
E[Xt]�

1

4
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=
1

3
E[X2

t ]�
1

3
E[Xt]

2
+

1

12
E[Xt]

2
�

1

12

=
1

3
Var[Xt] +

1

12
(E[Xt]

2
� 1)

We have assumed here that pt(0) = 0, as discussed
earlier.

The generating function for T will also be useful:

GT (z) =
X
k�0

Pr[T = k]zk

=
X
k�0

X
j>k

pt(j)

j
zk

=
X
j>0

pt(j)

j

j�1X
k=0

zk

=
X
j>0

pt(j)

j

�
1� zj

1� z

�

=
1

1� z

0
@X
j>0

pt(j)

j
�

X
j>0

pt(j)

j
zj

1
A

3 Crossover

Crossover creates the string to be concatenated by se-
lecting randomly from the population, and applying
truncation to the selected string. However, there is
an asymmetry, as now we throw away between 0 and
k � 1 elements from a string of length k. Thus we al-
ways preserve at least one element in the concatenation
string (the terminal of the program). This justi�es (for
crossover) the assumption that pt(0) = 0, for t > 0.

Let C be the length of strings after applying this trun-
cation to a copy of the population. That is, T repre-
sents the length of the contribution of one parent (the
left-hand side, or pre�x) and C represents the length
of the contribution of the other parent (the right-hand
side, or suÆx). Then

Pr[C = k] =
X
j�k

pt(j)

j

for k > 0, with Pr[C = 0] = 0, indicating that we
always add on at least one element. The probability
distribution for string lengths at time t+ 1 (resulting
from adding T and C) is then

pt+1(k) =
X
n

Pr[T = n]Pr[C = k � n]

=

k�1X
n=0

X
i>n

pt(i)

i

X
j�k�n

pt(j)

j

(see [McPhee et al., 2001] for an alternative form of
this equation).

Following arguments similar to those above for T , we
have

E[C] =
1

2
(E[Xt] + 1)

and

Var[C] =
1

3
Var[Xt] +

1

12
(E[Xt]

2
� 1) = Var[T ]

If we let Xt+1 denote the string length in a population
at time t+1, we can easily calculate the mean and vari-
ance of this random variable following the application
of crossover, since

E[Xt+1] = E[T ] +E[C]

and

Var[Xt+1] = Var[T ] +Var[C] = 2Var[T ]

Thus

E[Xt+1] =
1

2
(E[Xt]� 1) +

1

2
(E[Xt] + 1)

= E[Xt]

and

Var[Xt+1] = 2Var[T ]

=
2

3
Var[Xt] +

1

6
(E[Xt]

2
� 1)

That is, the mean length is not changed by crossover,
although the variance is [McPhee et al., 2001]. We can
get an idea of how much the variance changes by seeing
what happens if we repeatedly apply crossover to a
population. Since the mean length remains �xed, we
can solve the recurrence for Var[Xt] giving

Var[Xt] =

�
2

3

�t�
Var[X0]�

1

2
(E[X0]

2
� 1)

�

+
1

2
(E[X0]

2
� 1)

We have here made an in�nite population assump-
tion so that we can ignore all stochastic 
uctuations
from one generation to the next which would occur
with a �nite population. Example curves are plot-
ted in Figure 1. This result tells us that the vari-
ance move exponentially quickly towards a �xed point
(E[X0]

2
� 1)=2, and that, therefore, crossover has a

strong bias towards this variance. In fact, �xed point
distributions for repeated crossover has been calcu-
lated [McPhee et al., 2001]:
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Theorem 1 Distributions of the form

p(k) = (1� a)2kak�1

are �xed-points for repeated crossover, where 0 < a < 1
is a parameter corresponding to a mean value of p(k)
of

� =
1 + a

1� a

Proof

Assume we have the given distribution. Then the next
distribution is:

pt+1(k)

=

k�1X
n=0

X
i>n

p(i)

i

X
j�k�n

p(j)

j

=

k�1X
n=0

X
i>n

(1� a)2ai�1
X

j�k�n

(1� a)2aj�1

= (1� a)4
k�1X
n=0

X
i>n

ai�1
�

ak�n

a(1� a)

�

=
(1� a)3

a

k�1X
n=0

ak�n
X
i>n

ai�1

=
(1� a)3

a

k�1X
n=0

ak�n
�

an+1

a(1� a)

�

=
(1� a)2

a2

k�1X
n=0

ak+1

=
(1� a)2

a2
kak+1

= (1� a)2kak�1

2

Examples of this distribution for di�erent values of the
mean are plotted in Figure 2. The exponential conver-
gence of the variance indicates that the application
of crossover is strongly biased towards distributions
of this kind. Experimental results corroborating this
conclusion may be found in [McPhee et al., 2001].

4 Full mutation

With full mutation, the string to be added is always
of a �xed length d > 0. This again justi�es the as-
sumption that pt(0) = 0. It is easy to see then that
with this operator E[C] = d and Var[C] = 0. Then
we have

E[Xt+1] =
1

2
(E[Xt]� 1) + d
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and

Var[Xt+1] =
1

3
Var[Xt] +

1

12
(E[Xt]

2
� 1)

Thus both the mean and variance change over time.
Again, considering the repeated application of this op-
erator (in the in�nite population limit), we �nd the
mean converges to a limit exponentially:

E[Xt] =

�
1

2

�t
(E[X0]� 2d+ 1) + 2d� 1

Example curves are plotted in Figure 3. Thus full
mutation biases the mean length of strings towards
the �xed-point

lim
t!1

E[Xt] = 2d� 1

The equation for the variance is harder to solve, since
it depends on the mean. However, a recurrence for the
�xed-point distribution can be found using generating
functions (see [Graham et al., 1994] for an introduc-
tion to this technique). The generating function for

the truncated (pre�x) string, calculated above, is

GT (z) =
1

1� z

0
@X
j>0

p(j)

j
�

X
j>0

p(j)

j
zj

1
A

For full mutation

GC(z) =
X
k�0

Pr[C = k]zk = zd

Adding d to the result of truncation therefore gives us
a distribution with generating function zdGT (z). Let
the generating function for the �xed-point distribution
be

GX(z) = GT+C(z)

= GT (z)GC(z)

=
zd

1� z

0
@X
j>0

p(j)

j
�

X
j>0

p(j)

j
zj

1
A

which means

(1� z)
X
k�0

p(k)zk = zd

0
@X
j>0

p(j)

j

1
A�X

j>0

p(j)

j
zj+d

We now compare coeÆcients of zk from both sides of
this equation. Looking at the coeÆcient of z0 tells us
that p(0) = 0 as expected. For all 0 < k < d we �nd

p(k)� p(k � 1) = 0

which tells us that p(k) = 0 for these cases. However,
for k = d we get

p(d)� p(d� 1) =
X
j>0

p(j)

j

and therefore

p(d) =
X
j>0

p(j)

j

since p(d� 1) = 0. For d < k < 2d we have

p(k)� p(k � 1) = �
p(k � d)

k � d
= 0

therefore

p(k) = p(k � 1) =
X
j>0

p(j)

j

for d < k < 2d. Finally for k > 2d we get

p(k)� p(k � 1) = �
p(k � d)

k � d
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which gives us a recurrence relation

p(k) = p(k � 1)�
p(k � d)

k � d

To summarise:

p(k) =

8><
>:

0 if k < dP
j>0

p(j)

j
if d � k < 2d

p(k � 1)� p(k�d)

k�d
if k � 2d

We see in general that the distribution is zero for
k < d and a constant value for d � k < 2d, after
which it tails o� according to the given recurrence
(see [McPhee et al., 2001] for experimental evidence of
this). For d = 1 one can verify that the solution be-
comes

p(k) = [k = 1]

that is, a single spike at k = 1. For d = 2 we have the
following:

Theorem 2 The �xed-point distribution for repeated

application of full mutation with d = 2 is

p(k) =
[k > 1]

e(k � 2)!

That is, the distribution is zero for k = 0; 1, it takes
the constant value e�1 for k = 2; 3 after which it tails

o� following an inverse factorial.

Proof

The cases k = 0; 1 are obvious. To prove the remain-
der, we will �rst show that

p(k) =
�

(k � 2)!

for some constant �, when k > 1. De�ne

� =
X
j>0

p(j)

j

Now proceed by induction. When k = 2; 3 we have

p(k) = �

which is correct. Now assume we are correct for all
values below some k > 3. Then

p(k) = p(k � 1)�
p(k � 2)

k � 2

=
�

(k � 3)!
�

�

(k � 2)(k � 4)!

=
(k � 2)�

(k � 2)!
�

(k � 3)�

(k � 2)!

=
�

(k � 2)!
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Figure 4: The �xed-point distribution of lengths for
repeated application of full mutation with d = 2.

The fact that X
k�0

p(k) = 1

means that we �nd � = e�1, since

X
k�0

p(k) =
X
k�2

�

(k � 2)!

= �
X
k�0

1

k!

= �e

2

Figure 4 shows this distribution for d = 2.

5 Growth mutation

Growth mutation is where the string to be concate-
nated is grown according to a geometric distribution,
where there is a probability q that an extra element
will be added to the string. The probability that a
string of length k will be added is therefore qk�1(1�q).
In this case

E[C] =
1

1� q

and

Var[C] =
q

(1� q)2

so the mean length of the population of �nal strings is

E[Xt+1] =
1

2
(E[Xt]� 1) +

1

1� q

Similarly, the variance is

Var[Xt+1] =
1

3
Var[Xt] +

1

12
(E[Xt]

2
� 1) +

q

(1� q)2
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Figure 5: The mean length of an in�nite population
with repeated application of growth mutation, for var-
ious values of q.

Iterating the equation for the mean length gives us

E[Xt] =

�
1

2

�t�
E[X0]�

1 + q

1� q

�
+

1 + q

1� q

which indicates that the average length is biased to-
wards (1 + q)=(1 � q). Example curves are plotted in
Figure 5.

Again, the equation for the variance is hard to solve,
but we can �nd an expression for the �xed-point dis-
tribution. Remarkably, it is identical in form to that
given for crossover.

Theorem 3 The �xed-point distribution for repeated

application of growth mutation (with growth probability

q) is

p(k) = (1� q)2kqk�1

Proof

Let GC(z) be the generating function for the concate-
nating string length:

GC(z) =
X
k>0

qk�1(1� q)zk

=
X
k>0

qk�1zk �
X
k>0

qkzk

= z
X
k�0

qkzk �

0
@X
k�0

qkzk � 1

1
A

= (z � 1)
X
k�0

qkzk + 1

=
z � 1

1� qz
+ 1

=
z � qz

1� qz

Then the generating function for the result of growth
mutation is

GX(z) = GT+C(z) = GT (z)GC(Z)

where GT (z) is the generating function for the trun-
cated string lengths de�ned previously. That is:

GX (z) =
z(1� q)

(1� z)(1� qz)

0
@X
j>0

p(j)

j
�

X
j>0

p(j)

j
zj

1
A

So at the �xed-point:

(1� z)(1� qz)
X
k�0

p(k)zk

= z(1� q)

0
@X
j>0

p(j)

j
�

X
j>0

p(j)

j
zj

1
A

Again, comparing coeÆcients on either side of the
equation gives us

p(0) = 0

p(1) = (1� q)
X
j>0

p(j)

j

and

p(k) =

�
1 + q �

1� q

k � 1

�
p(k � 1)� qp(k � 2)

for k > 1. Setting

� =
X
j>0

p(j)

j

we �rst prove by induction that

p(k) = �(1� q)kqk�1

This is correct for k = 0; 1. Now assume it is correct
below some value k > 1. Then

p(k) =

�
1 + q �

1� q

k � 1

�
p(k � 1)� qp(k � 2)

=

�
1 + q �

1� q

k � 1

�
�(1� q)(k � 1)qk�2

�q�(1� q)(k � 2)qk�3

= �(1� q)qk�2((1 + q)(k � 1)� (1� q)

�(k � 2))

= �(1� q)kqk�1

as required. The fact that

X
k�0

�(1� q)kqk�1 = 1
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allows us to deduce that � = (1 � q) and the result
follows.

2

Since the �xed-point for growth mutation is also a
�xed-point for crossover, it must also be a �xed-point
for the application of both operators applied sequen-
tially.

6 Discussion

In [Poli and McPhee, 2001b, McPhee et al., 2001,
Poli and McPhee, 2001a] GP schema theory is used
to analyze the size biases induced by crossover and
mutation when using linear representations and 
at
�tness landscapes. This paper extends several of those
results, and provides proofs for others. While we
have closed forms for many of the quantities explored
here, we do not yet have closed forms for others (e.g.,
the variances for the two mutation operators); �lling
these gaps would be an obvious extension of this
work. Another extension would be to try to apply the
techniques used here to the study of more complex
systems (e.g., non-
at �tnesses or non-linear tree
structures).

Taken as a group, the results presented here help build
at least the beginnings of a picture of the size biases
of some of the most commonly used operators in GP.
In all three cases, for example, the average length of
strings either remains constant or quickly approaches
some limit. This implies, for example, that none of
these operators induce unbounded bloat on a 
at �t-
ness landscape; in fact something like the reverse is
true in the sense that all three operators heavily over-
sample shorter strings (see [Poli and McPhee, 2001b,
McPhee et al., 2001, McPhee and Poli, 2001] for de-
tails). These results also make it clear that the average
and the variance of the length of the (in�nite) popu-
lations move towards their limit values very quickly,
often reaching near convergence in less than 10 genera-

tions. This suggests that these operators induce quite
strong biases, and these biases may have an impact
even in problems with non-
at �tness landscapes.
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Urehuwr Vdqwdqd/ Doehuwr Rfkrd0Urguljxh}/ Pduwd U1 Vrwr

Fhqwhu ri Pdwkhpdwlfv dqg Wkhruhwlfdo Sk|vlfv1
LFLPDI1 Fdooh 48/ h2 F | G/ Yhgdgr FS 437331 F0Kdedqd1 Fxed

~uvdqwdqd/rfkrd/purvd�Cflghw1lfpi1lqi1fx

����	���

Wklv sdshu lqwurgxfhv d Idfwrul}hg Glvwulex0

wlrq Dojrulwkp edvhg rq d pl{wxuh ri wuhhv

glvwulexwlrq1 Wkh suredelolvwlf prgho dqg
wkh ohduqlqj dojrulwkp xvhg gl�huv wr suhyl0

rxv xvhv ri suredelolvwlf prgholqj lq wkh frq0

wh{w ri Hyroxwlrqdu| Frpsxwdwlrq1 Suholpl0
qdu| uhvxowv vkrz wkh dojrulwkp lv frpshwl0

wlyh/ dqg vrph wlphv vxshulru wr rwkhu Idf0
wrul}hg Glvwulexwlrq Dojrulwkpv1 Zh dovr lo0

oxvwudwh krz sduwlfxodu ihdwxuhv ri wkh vhdufk

vsdfh fdq eh hpsor|hg gxulqj wkh vhdufk e|
frqyhqlhqwo| vhohfwlqj wkh pl{wxuh ri wuhhv

sdudphwhuv1

� ������������

Idfwrul}hg Glvwulexwlrq Dojrulwkpv +IGDv, +Pÿkohq0

ehlq/ Pdkqlj/ ) Rfkrd/ 4<<<, duh srsxodwlrq edvhg

vhdufk phwkrgv wkdw frpelqh uhvxowv iurp Judskl0
fdo Prghov dqg Hyroxwlrqdu| Frpsxwdwlrq uhvhdufk/

dqg duh frqvlghuhg dv d wudfwdeoh vxefodvv ri Hvwl0

pdwlrq Glvwulexwlrq Dojrulwkpv +Pÿkohqehlq ) Sdd�/
4<<9,1 Lq rughu wr rswlpl}h d jlyhq ixqfwlrq wkh|

ehjlq e| jhqhudwlqj dq lqlwldo udqgrp srsxodwlrq ri
srlqwv zklfk duh hydoxdwhg xvlqj wkh remhfwlyh ixqf0

wlrq1 Vrph ri wkh srlqwv duh vhohfwhg edvhg rq wkhlu

ydoxhv/ dqg d idfwrul}hg suredelolvwlf prgho ri wkhlu xq0
ghuo|lqj glvwulexwlrq lv frqvwuxfwhg1 Wklv suredelolvwlf

prgho lv xvhg wr vdpsoh wkh srlqwv wkdw zloo eh sduw ri

wkh qh{w srsxodwlrq1

D qxpehu ri IGDv wkdw xvh suredelolvwlf prghov edvhg

rq ghshqghqf| wuhhv kdyh vkrzq xs lq wkh olwhudwxuh1
Lq +Edoxmd ) Gdylhv/ 4<<:, d wuhh idfwrul}dwlrq frp0

sxwhg xvlqj wkh Fkrz dqg Olx dojrulwkp +Fkrz )

Olx/ 4<9;, lv hpsor|hg wr dssur{lpdwh wkh xqghuo|0
lqj glvwulexwlrq ri wkh vhohfwhg srlqwv1 Wkh Elyduldwh

Pdujlqdo Glvwulexwlrq Dojrulwkp +EPGD, +Sholndq )

Pÿkohqehlq/ 4<<<, xvhv d iruhvw lqvwhdg ri d wuhh edvhg
idfwrul}dwlrq1 Rqo| vhfrqg rughu vwdwlvwlfv duh frp0

sxwhg1

Wkh Sro|wuhh Dssur{lpdwlrq Glvwulexwlrq Dojrulwkp

+SDGD, kdv ehhq ghvljqhg wr ghdo zlwk wkh fodvv ri

vlqjoh frqqhfwhg Ed|hvldq Qhwzrunv +EQv, +Vrwr hw

do1/ 4<<<,1 D uhylvhg yhuvlrq ri wklv dojrulwkp kdv

ehhq suhvhqwhg lq +Rfkrd/ Pxhkohqehlq/ ) Vrwr/ 5333,

zkhuh wkh suhylrxv lqwurgxfhg dojrulwkpv edvhg rq
wuhhv dqg iruhvw glvwulexwlrqv duh fryhuhg1

Prgholqj e| �qlwh pl{wxuh ri glvwulexwlrqv +Hyhulww )
Kdqg/ 4<;4, frqfhuqv prgholqj d vwdwlvwlfdo glvwulex0

wlrq e| d pl{wxuh +ru zhljkwhg vxp, ri rwkhu glvwule0

xwlrqv1 Uhfhqwo|/ wkh uhvhdufk rq pl{wxuh prghov kdv
ehjxq wr uhfhlyh d sduwlfxodu dwwhqwlrq e| wkh HGDv

frppxqlw|1 Lq +Wklhuhqv ) Ervpdq/ 5334, wkh dx0
wkruv xvh d pl{wxuh ri Jdxvvldq suredelolvwlf ghqvlw|

ixqfwlrqv iru wkh vroxwlrq ri frqwlqxrxv pxowl0remhfwlyh

ixqfwlrqv1 Lq +Shôd/ Or}dqr/ ) Oduudôdjd/ 5334, dx0
wkruv hpsor| pl{wxuh prghov dv wkh edvlv iru gdwd foxv0

whulqj lq pxowlprgdo frqwlqxrxv dqg glvfuhwh ixqfwlrq

rswlpl}dwlrq yld HGDv1 Lq wkh fdvh ri glvfuhwh rswl0
pl}dwlrq d iudphzrun iru ohduqlqj pl{wxuh ri EQv wkdw

vkduh wkh vdph vwuxfwxuh lv suhvhqwhg1

Pl{wxuh ri glvwulexwlrqv kdyh ehhq xvhg dovr lq

wkh iudphzrun ri hyroxwlrqdu| rswlpl}dwlrq wkdw xvh
 h{leoh suredelolw| hvwlpdwruv +Jdoodjkhu/ Iuhdq/ )

Grzqv/ 4<<<, +dq dssurdfk yhu| forvh wr IGDv, zkhuh

wkh dgdswlyh pl{wxuh prgho ri Sulheh lv xvhg wr hvwl0
pdwh suredelolw| glvwulexwlrqv lq dq hyroxwlrqdu| rs0

wlpl}dwlrq frqwh{w1
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Pl{wxuhv ri wuhhv ehorqj wr wkh fodvv ri �qlwh pl{0

wxuh glvwulexwlrqv1 Wkh| zhuh lqwurgxfhg lq +Phlod/

4<<<, dqg duh wkh fruh ri wkh rswlpl}dwlrq dojrulwkp

zh suhvhqw lq wklv sdshu1 Qrz wkh suredelolvwlf prg0

hov duh irupdoo| lqwurgxfhg1 Zh zloo xwlol}h wkh vdph

qrwdwlrq xvhg lq +Phlod/ 4<<<,1

Ohw Y ghqrwh wkh vhw ri yduldeohv ri rxu sureohp1 Df0

fruglqj wr wkh judsklfdo prgho sdudgljp/ hdfk ydul0

deoh lv ylhzhg dv d yhuwh{ ri dq +xqgluhfwhg, judsk

J @ +Y>H, zklfk lv fdoohg d wuhh li lw kdv qr f|fohv1

Qrz zh gh�qh d suredelolw| glvwulexwlrq W wkdw lv frq0

irupdo zlwk d wuhh1

W +{, @
\

y5Y

Wymsd+y,+{ym{sd+y,, +4,

Wkh glvwulexwlrq W lwvhoi zloo eh fdoohg d wuhh zkhq qr

frqixvlrq lv srvvleoh1 Wkh judsk +Y>H, uhsuhvhqwv wkh

vwuxfwxuh ri wkh glvwulexwlrq W 1

D pl{wxuh ri wuhhv lv gh�qhg wr eh d glvwulexwlrq ri wkh

irup=

T+{, @

p[

n@4

�nW
n
+{, +5,

zlwk �n � 3/ n @ 4> ==>p/
S

p

n@4 �n @ 41

Wkh wuhh glvwulexwlrqv duh wkh pl{wxuh frpsrqhqwv/

dqg wkh �n duh fdoohg pl{wxuh frh!flhqwv1 D pl{wxuh

ri wuhhv fdq eh ylhzhg dv frqwdlqlqj dq xqrevhuyhg

fkrlfh yduldeoh }/ zklfk wdnhv ydoxhv n 5 i4> ===>pj
zlwk suredelolw| �n1 Frqglwlrqhg rq wkh ydoxh ri }

wkh glvwulexwlrq ri wkh ylvleoh yduldeohv Y lv d wuhh1

Wkhp wuhhv pd| kdyh gl�huhqw vwuxfwxuhv dqg gl�huhqw

sdudphwhuv1

% �&! $!�����' �$'����&�

�� �&! ����!#� �
 �&!

��(
��

Zh suhvhqw �uvw dq dojrulwkp iru �wwlqj d pl{wxuh ri

wuhhv wr dq revhuyhg gdwd vhw lq wkh Pd{lpxp Olnh0

olkrrg sdudgljp yld wkh H{shfwdwlrq0Pd{lpl}dwlrq

+HP, dojrulwkp +Ghpsvwhu/ Odlug/ ) Uxelq/ 4<::,1

Wkh pl{wxuhv ri wuhhv ohduqlqj dojrulwkp frqvwlwxwhv

d exloglqj eorfn iru wkh IGD suhvhqwhg khuh/ wklv do0

jrulwkp fdq eh irxqg lq +Phlod/ 4<<<, zkhuh lw zdv

lqwurgxfhg1 Zh uhvxph vrph ri lwv ihdwxuhv=

Wkh ohduqlqj sureohp lv= Jlyhq d vhw ri revhuydwlrqv

G @ i{4 > {5 > > {Q j/ zh duh uhtxluhg wr �qg wkh pl{wxuh

ri wuhhv T wkdw vdwlv�hv

T @ dujpd{
T

Q[

l@4

orjT+{l, +6,

Wkh HP dojrulwkp lqwurgxfhv d olnholkrrg ixqfwlrq

fdoohg wkh frpsohwh orj � olnholkrrg zklfk lv wkh

orj0olnholkrrg ri erwk/ wkh revhuyhg dqg wkh xqre0

vhuyhg gdwd/ jlyhq wkh fxuuhqw prgho hvwlpdwh P @

ip>W n> �n> n @ 4> ===pj

of+{4===Q > }4===Q mP, @

Q[

l@4

p[

n@4

�n>}l+orj �n . orjW n
+{l,,

+7,

zkhuh �n>}l lv htxdo wr rqh li }l lv htxdo wr wkh nwk

ydoxh ri wkh fkrlfh yduldeoh/ dqg }hur rwkhuzlvh1

Wkh lghd xqghuo|lqj wkh HP dojrulwkp lv wr frpsxwh

dqg rswlpl}h wkh h{shfwhg ydoxh ri of1 Lq wkh frqwh{w ri

srsxodwlrq edvhg hyroxwlrqdu| rswlpl}dwlrq rxu remhf0

wlyh lv wr �qg d idfwrul}dwlrq ri wkh suredelolw| glvwul0

exwlrq ri wkh vhohfwhg vhw ri srlqwv xvlqj d pl{wxuh ri

wuhhv1 Zh kdyh fdoohg rxu dojrulwkp Pl{wxuh ri Wuhhv

IGD +PW0IGD,1

Lq �jxuh 4 wkh svhxgr0frgh ri wkh PW0IGD lv suh0

vhqwhg1 Wkh �uvw srsxodwlrq lv udqgrpo| jhqhudwhg e|

wkh dojrulwkp1 Iurp wkh fxuuhqw srsxodwlrq/ d vxevhw

ri srlqwv lv vhohfwhg1 D pl{wxuh ri wuhhv T wkdw �wv wkh

vhohfwhg vhw lv irxqg xvlqj wkh pl{wxuh ri wuhhv ohduq0

lqj dojrulwkp wkdw wdnhv dv sdudphwhuv wkh qxpehu ri

wuhhv/ dqg d vfkhgxoh zlwk wkh qxpehu ri ohduqlqj vwhsv

lq hdfk jhqhudwlrq1 Qhz srlqwv duh jhqhudwhg e| vdp0

solqj iurp T1 Wkh ehvw holwlvp vfkhph lv xvhg/ zkhuh

doo wkh lqglylgxdov vhohfwhg lq wkh fxuuhqw srsxodwlrq

sdvv wr wkh qh{w rqh1 Gl�huhqw uhsodflqj vwudwhjlhv fdq

eh xvhg wr frpelqh srlqwv iurp wkh fxuuhqw srsxodwlrq

dqg qhz jhqhudwhg srlqwv lq wkh qh{w srsxodwlrq1

Pl{wxuh ri wuhhv IGD +PW�IGD,

� VWHS 3= Vhw w + 31 Jhqhudwh Q  3 srlqwv

udqgrpo|1

� VWHS 4= Vhohfw d vhw V ri n ? Q srlqwv dffruglqj

wr d vhohfwlrq phwkrg1

� VWHS 5= Fdofxodwh d pl{wxuh ri wuhhv T wkdw ds0

sur{lpdwhv V xvlqj wkh pl{wxuh ri wuhhv ohduqlqj

dojrulwkp1
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� VWHS 6= Jhqhudwh Q � n qhz srlqwv vdpsolqj
iurp T1

� VWHS 7= Frpelqh lq wkh qhz srsxodwlrq wkh n

vhohfwhg srlqwv zlwk wkh Q � n qhz srlqwv1 Vhw w
+ w. 4

� VWHS 8= Li wkh whuplqdwlrq fulwhuld duh qrw phw/

jr wr VWHS 4

Iljxuh 4= PW0IGD

Wkh ghwhuplqdwlrq ri wkh h{whqw ri ohduqlqj wr eh do0

orzhg lv d vhqvlwlyh lvvxh iru wkh PW0IGD1 Zkhq vdp0

solqj iurp wkh ohduqhg prgho/ wkh wzr wudglwlrqdo jrdov
ri dq h!flhqw vhdufk/ h{sorlwdwlrq dqg h{sorudwlrq/

kdyh wr eh dffrpsolvkhg1 D prgho wkdw ehvw dssur{0
lpdwhv wkh gdwd fdq ohvv olnho| jhqhudwh/ gxulqj wkh

vdpsolqj vwhs/ srlqwv wkdw ehorqj wr xqh{soruhg duhdv

ri wkh vhdufk vsdfh1 Vr/ lw lv dgylvdeoh wr vwrs wkh
ohduqlqj dojrulwkp ehiruh wkh lpsuryhphqw lq wkh olnh0

olkrrg fhdvhv1 Wkh qxpehu ri wuhhv dovr lq xhqfh wkh

olnholkrrg1 Wkh ghvljq ri vwudwhjlhv wkdw vhw wkh dssur0
suldwh vfkhgxoh iru wkh ohduqlqj vwhsv/ dqg ri fulwhuld wr

ghwhuplqh wkh qxpehu ri wuhhv iru d jlyhq rswlpl}dwlrq
sureohp/ duh wrslfv zkhuh ixuwkhu uhvhdufk lv uhtxluhg1

Zh whvw wzr phwkrgv iru vhohfwlqj d frqyhqlhqw vwduwlqj

pl{wxuh ri wuhhv1 Erwk phwkrgv ehjlq e| lqlwldol}lqj
hdfk frpsrqhqw ri wkh pl{wxuh xvlqj wkh Fkrz dqg Ol0

x*v dojrulwkp1 Wkh| gl�hu lq wkh vhfrqg vwhs1 Wkh �uvw
phwkrg pdnhv shuwxuedwlrqv wr wkh vwuxfwxuh ri hdfk

wuhh1 Wkh sduhqw ri rqh ri wkh ohdi qrghv lv uhsodfhg

e| dqrwkhu udqgrpo| vhohfwhg qrgh1 E| pdnlqj wklv
fkdqjh rq d ohdi qrgh wkh surfhgxuhv jxdudqwhhv qr

f|foh zloo eh iruphg lq wkh wuhh diwhu wkh shuwxuedwlrq1

Wkh vhfrqg phwkrg nhhsv lqwdfw wkh wuhh vwuxfwxuh dqg

pdnhv d shuwxuedwlrq wr wkh lqlwldo suredelolw| ydoxhv

S n+{l,/ lq rughu wr ohw wkh ohduqlqj dojrulwkp fkdqjh
wkh vwuxfwxuh zkhq �wwlqj wkh shuwxuehg suredelolwlhv1

Uhfdoo wkdw/ lqghshqghqwo| ri wkh vhohfwhg urrw/ Fkrz

dqg Olx*v dojrulwkp jxdudqwhhv wkdw doo wuhhv duh htxly0
dohqw lq wkhlu uhsuhvhqwdwlrq ri wkh gdwd1 E| dsso|lqj

d vpdoo shuwxuedwlrq rq S n+{l, ydoxhv/ lghqwlfdoqhvv
dprqj wkh wuhhv lv eurnhq1 Erwk phwkrgv jxdudqwhh

vroxwlrqv vxshulru wr udqgrp lqlwldol}dwlrq1

Pl{wxuh glvwulexwlrqv kdyh d qxpehu ri glvwlqfwlyh dw0

wulexwhv wkdw pdnh wkhp sduwlfxoduo| dsshdolqj iru

wkhlu xvh lq wkh iudphzrun ri IGDv1 Pd|eh wkh prvw
lpsruwdqw lv wkh srvvlelolw| ri uhsuhvhqwlqj/ frqghqvhg

lq mxvw rqh prgho/ gl�huhqw sdwwhuqv ri lqwhudfwlrqv

dprqj wkh yduldeohv ri wkh sureohp1 Lq Ed|hvldq Qhw0
zrunv wkh fkdqjh lq rqh yduldeoh*v ydoxh fdq ghwhuplqh

fkdqjhv rqo| lq wkh sdudphwhuv ri rwkhu yduldeohv/ qrw

lq wkhlu vwuxfwxudo uhodwlrq1 Lq pl{wxuh ri �qlwh glv0
wulexwlrqv wkh vwuxfwxuh ri ghshqghqflhv dprqj d vhw

ri yduldeohv fdq fkdqjh ghshqglqj rq wkh ydoxhv ri

wkh fkrlfh yduldeoh wkh| ghshqg rq1 Wklv idfw fdq eh
xvhg lq d  h{leoh zd| iru lqfrusrudwlqj glyhuvh vhdufk

vwudwhjlhv lqwr wkh PW0IGD1

Qrz zh suhvhqw vrph dowhuqdwlyh zd|v wkh fkrlfh ydul0

deoh fdq eh lqfrusrudwhg e| dq IGD zkrvh prgho lv

d pl{wxuh ri wuhhv1 Wkh dqdo|vlv lv glylghg lq wzr vfh0
qdulrv/ zkhq wkh fkrlfh yduldeoh lv klgghq/ dqg zkhq

lw lv nqrzq1

614 Wkh fkrlfh yduldeoh } lv klgghq1

Wzr fdvhv fdq eh glvwlqjxlvkhg lq wklv vfhqdulr1 Wkh

�uvw lv zkhq/ dowkrxjk wkh fkrlfh yduldeoh lv xqnqrzq/
lw lv lq idfw rqh +ru d vpdoo vxevhw, ri wkh yduldeohv ri

wkh sureohp1 Lq wklv fdvh d �wwhu dssur{lpdwlrq ri wkh
vhohfwhg srlqwv e| phdqv ri d pl{wxuh ri wuhhv frxog

eh irxqg e| lghqwli|lqj wkh vhw ri yduldeohv1 Wkhuh

h{lvw phwkrgv iru lghqwli|lqj wkhvh yduldeohv iurp wkh
dqdo|vlv ri gdwd +Phlod/ 4<<<,1 Dowkrxjk zh gr qrw

h{soruh wklv wuhqg lq wkh suhvhqw zrun/ zh k|srwkh0

vl}h wkdw wklv lghqwl�fdwlrq wdvn fdq eh lqvhuwhg lq wkh
hyroxwlrqdu| surfhvv1

Wkh vhfrqg fdvh/ dqg wkh rqh h{whqvlyho| frqvlghuhg
lq rxu h{shulphqwv/ lv zkhq wkhuh lv qr suhylrxv lqiru0

pdwlrq derxw wkh fkrlfh yduldeoh/ exw zh wu| wr �w wkh

wdujhw glvwulexwlrq zlwk d pl{wxuh wkdw kdv p wuhhv/
edvhg rq dq xqnqrzq yduldeoh wkdw frxog khos wr foxv0

whu wkh vsdfh ri vroxwlrqv1 Dv wkh h{lvwhqfh ri d pl{wxuh
ri wuhhv edvhg rq vxfk d nlqg ri fkrlfh yduldeoh lv dq

dvvxpswlrq/ wkhuh frxog eh fdvhv zkhuh wkh pl{wxuh ri

wuhhv grhv qrw ohdg wr dq dssursuldwh idfwrul}dwlrq1

615 Wkh fkrlfh yduldeoh } lv nqrzq

Djdlq zh dqdo|}h wzr sduwlfxodu fdvhv= Zkhq wkh
fkrlfh yduldeoh lv lq idfw d yduldeoh/ +ru wkh vxevhw ri

wkh yduldeohv, ri wkh sureohp1 Dqg/ zkhq wkh fkrlfh

yduldeoh } grhv qrw ehorqj wr wkh vhw ri yduldeohv ri
wkh sureohp exw zh fdq ghflgh lwv ydoxhv edvhg rq d

suhgh�qhg fulwhulxp1 Zh phqwlrq wzr fdvhv=

d, } lv uhodwhg wr d jhqrw|sh foxvwhulqj ri wkh vhw ri

srlqwv

e, } lv uhodwhg wr d skhqrw|sh foxvwhulqj ri wkh vhw ri

srlqwv1

Lw kdv ehhq vkrzq +Sholndq ) Jrogehuj/ 5333, wkdw iru

fhuwdlq w|sh ri sureohpv d jhqrw|sh foxvwhulqj ri wkh

srsxodwlrq fdq frqwulexwh wr dq h!flhqw vhdufk1 Wkh
pl{wxuh ri wuhhv prgho fdq eh xvhg qrw rqo| wr foxvwhu

wkh vsdfh ri vroxwlrqv exw dovr wr h{fkdqjh lqirupd0
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wlrq dprqj wkh foxvwhuv gxulqj wkh hyroxwlrq1 Zkhq

vroxwlrqv frxog eh fodvvl�hg lq uhjlrqv edvhg rq wkhlu

vwuxfwxudo vlplodulwlhv/ dqg d pdsslqj ehwzhhq vrox0

wlrqv wkdw ehorqj wr wkh vdph fodvv dqg wkhlu �wqhvv

hydoxdwlrq h{lvwv/ lw lv h{shfwhg wkdw d pl{wxuh ri wuhhv

edvhg rq d fkrlfh yduldeoh ghvfulelqj wkh fodvvhv frxog

ohdg wr d jrrg dssur{lpdwlrq1

) !#*!���!��"

Wkh h{shulphqwv zhuh ghvljqhg wr looxvwudwh wkh eh0

kdylru ri wkh sursrvhg dojrulwkp dqg frpsduh lwv shu0

irupdqfh zlwk rwkhu IGDv1 Iluvw zh lqwurgxfh wkh

ixqfwlrqv wkdw zhuh hpsor|hg1 Wkhq zh suhvhqw d frp0

sdulvrq ehwzhhq wkh PW0IGD dqg d wuhh edvhg IGD1

Vrph h{shulphqwv duh suhvhqwhg wr looxvwudwh wkh gli0

ihuhqfh lq wkh shuirupdqfh ri wkh Ed|hvldq IGDv dqg

wkh PW0IGD1 Ilqdoo| dq h{dpsoh lv vkrzq rq wkh frq0

yhqlhqfh ri xvlqj rqh ri wkh yduldeohv ri wkh sureohp

dv wkh fkrlfh yduldeoh1

Ohw x eh wkh qxpehu ri elwv wxuqhg rq lq wkh vwulqj

{1 D ixqfwlrq ri xqlwdwlrq lv d ixqfwlrq zkrvh ydoxh

ghshqgv rqo| rq wkh qxpehu ri rqhv rq dq lqsxw vwulqj1

Wkh ydoxhv ri wkh vwulqjv zlwk wkh vdph qxpehu ri rqhv

duh htxdo1 Ghfhswlyh ixqfwlrqv duh gh�qhg dv d vxp ri

pruh hohphqwdu| ghfhswlyh ixqfwlrqv in ri n yduldeohv1

i+{, @
o[

m@4

in+vm,/ +8,

zkhuh vm duh qrq0ryhuodsslqj vxevwulqjv ri { frqwdlq0

lqj n hohphqwv1

Ixqfwlrq RqhPd{=

RqhPd{+{, @
q[
l@4

{l +9,

Ixqfwlrq i
6

ghf=

i
6

ghf @

;AA?
AA=

3=< iru x @ 3
3=; iru x @ 4
3=3 iru x @ 5
4=3 iru x @ 6

+:,

Ixqfwlrq i6ghfhswlyh=

i6ghfhswlyh+[, @

l@q

6[
l@4

i
6

ghf+[6l�5> [6l�4> [6l, +;,

Ixqfwlrq Lvrwruxv=

x 3 4 5 6 7 8
LvrW4 p 3 3 3 3 p� 4
LvrW5 3 3 3 3 3 p

5

+<,

ILvrWruxv @ +43,[q

l@5
LvrW5+{xs> {ohiw> {l> {uljkw> {grzq,+44,

. LvrW4+{4�p.q> {4�p.q> {4> {5> {4.p, +45,

zkhuh {xs/ hwf1/ duh gh�qhg dv wkh dssursuldwh qhljk0

eruv/ zudsslqj durxqg1

Ixqfwlrq EljMxps=

EljMxps @

;?
=

x iru 3 � x � q�p

3 iru q�p � x � p

n � q iru x @ p

+46,

Ixqfwlrq Qi
6

ghf=

Qi
6

ghf @

;AAA?
AAA=

l@
q�4

6S
l@4

i
6

ghf+[6l�4> [6l> [6l . 4,> li {4 @ 4

l@
q�4

6S
l@4

+4� i
6

ghf+[6l�4> [6l> [6l . 4,> rwk=

/

+47,

714 Frpsdulvrq ehwzhhq d wuhh edvhg IGD

dqg wkh PW0IGD

Iluvw zh pdnh d frpsdulvrq ehwzhhq d wuhh edvhg IGD

dqg wkh PW0IGD1 Wkh wuhh edvhg IGD kdv wkh vdph

svhxgr0frgh dv wkh PW0IGD suhvhqwhg lq vhfwlrq 7/

exw rqo| rqh wuhh irxqg xvlqj wkh Fkrz dqg Olx*v dojr0

ulwkp lv hpsor|hg1 Wkh pdlq gl�huhqfh ehwzhhq Edox0

md*v dojrulwkp dqg rxu wuhh edvhg IGD lv wkdw zh gr

qrw xsgdwh wkh elyduldwh suredelolwlhv pxowlso|lqj e|

d ghfd| idfwru/ lqvwhdg lq hyhu| jhqhudwlrq/ elyduldwh

suredelolwlhv duh fdofxodwhg iurp wkh vhohfwhg vhw1 Zh

vwxg| wkh gl�huhqfh lq wkh ehkdylru ri wkh wuhh edvhg

IGD dqg wkh PW0IGD iru glyhuvh wuxqfdwlrq ydoxhv

dqg ixqfwlrqv1

Frpprq sdudphwhuv iru wkh h{shulphqwv zhuh= Srsx0

odwlrq vl}h @ 4333/ Ehvw holwlvp/ Pd{jhq @531 Vwrs0

slqj fulwhuld zhuh= wkh pd{lpxp qxpehu ri jhqhud0

wlrqv/ dqg d wrwdo krprjhqhlw| lq wkh vhohfwhg srsxod0

wlrq +l1h1 doo wkh lqglylgxdov zhuh lghqwlfdo,1
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Ixqfwlrq q � Wuhh PW0IGD

V Jhq1 V Jhq1

63 3=38 6: 7=<5 < 9=66

i6ghfhswlyh 63 3=4 93 8=:6 96 9=99

63 3=48 :5 9=;7 :8 :=;

63 3=5 98 ;=5; :8 <=5;

63 3=58 ;8 ;=; <8 <=89

Lvrwruxv 69 3=38 ;3 6=7< :8 7=38

69 3=4 ;7 7=7 <6 7=<

69 3=48 ;8 8=4< <5 8=:;

69 3=5 ;7 9=47 <3 9=8

69 3=58 :4 9=;9 <4 :=6;

Wdeoh 4= Qxphulfdo uhvxowv iru PW0IGD dqg wuhh

edvhg IGD

Wkh vfkhgxoh iru ohduqlqj zdv wkh iroorzlqj= Lq wkh �uvw

srsxodwlrq wkhuh zhuh 43 ohduqlqj vwhsv wr ohduq wkh

pl{wxuh/ lq wkh iroorzlqj jhqhudwlrqv 8 ohduqlqj vwhsv1

Uhfdoo wkdw iru wkh PW0IGD wkh wuhhv iurp zklfk wkh

ohduqlqj dojrulwkp lv vwduwhg duh dovr irxqg xvlqj wkh

Fkrz dqg Olx*v dojrulwkp1 Vr wklv lqlwldol}dwlrq fdq

eh vhhq dv wkh ehvw zh frxog dfklhyh zlwk mxvw rqh wuhh

+zkdw wkh wuhh edvhg IGD dfwxdoo| grhv,/ exw lq wkh

iroorzlqj ohduqlqj vwhsv wkh olnholkrrg ri gdwd jlyhq e|

wkh lqlwldo wuhhv lv lpsuryhg1

Lq Wdeoh 4 duh suhvhqwhg uhvxowv iru wzr gl�huhqw ixqf0

wlrqv1 q lv wkh qxpehu ri yduldeohv/ � wkh wuxqfdwlrq

sdudphwhu/ V wkh qxpehu ri wlphv wkh rswlpxp zdv

irxqg lq 433 uxqv dqg Jhq1 wkh dyhudjh qxpehu ri

jhqhudwlrqv qhhghg wr �qg wkh rswlpxp1 Lqlwldo h{shu0

lphqwv zhuh pdgh iru i6ghfhswlyh zlwk � @ 3=381 Uhvxowv

zhuh qrw sduwlfxoduo| khduw zduplqj1 Lq wkh wdeoh lw

fdq eh dssuhfldwhg wkdw iru wklv wuxqfdwlrq ydoxh wkh

wuhh edvhg IGD �qgv wkh rswlpxp irxu pruh wlphv

wkdq zkhq PW0IGD lv xvhg1 Krzhyhu/ iru/ � @ 3=58

wkh PW0IGD fohduo| vxusdvvhv wkh wuhh zlwk dq lp0

suhvvlyh <8 shufhqw ri vxffhvv1 Vlplodu uhvxowv zhuh

dfklhyhg iru wkh Lvrwruxv ixqfwlrq1

715 Frpsdulvrq ehwzhhq Ed|hvldq IGDv dqg

wkh PW0IGD

Lq wkh jhqhudo fodvv ri EQv wkh frqglwlrqdo suredelo0

lw| ri d yduldeoh { fdq ghshqg rq d vxevhw ri yduldeohv

dqg qrw rq rqo| rqh olnh lq wkh vxefodvv ri wuhhv1 Doo

wkhvh yduldeohv duh fdoohg sduhqwv1 Wkh frpsoh{lw| ri

wkh qhwzrun lv uhodwhg wr wkh pd{lpxp qxpehu ri sdu0

hqwv dq| yduldeoh { fdq kdyh1 EQv ohduqlqj dojrulwkpv

doorz wr lqfrusrudwh frqvwudlqwv uhodwhg zlwk d pd{l0

pxp qxpehu ri sduhqwv ru wkh qhwzrun frpsoh{lw|1

Lq +Hw{hehuuld ) Oduudôdjd/ 4<<<, EQv zhuh lqwur0

gxfhg lq wkh iudphzrun ri Hyroxwlrqdu| Rswlpl}dwlrq

wr ohduq/ lq hyhu| jhqhudwlrq/ d idfwrul}dwlrq ri wkh vh0

ohfwhg srlqwv1 Lq wklv sdshu zh frpsduh rxu dojrulwkp

zlwk rwkhu wzr Ed|hvldq IGDv1 Wkh Ed|hvldq Rs0

wlpl}dwlrq Dojrulwkp +ERD, lqwurgxfhg lq +Sholndq/

Jrogehuj/ ) Fdqwý0Sd}/ 4<<<, dqg wkh Ohduqlqj Idf0

wrul}hg Glvwulexwlrq Dojrulwkp +OIGD, +Pÿkohqehlq

) Pdkqlj/ 4<<<e,1 Erwk dojrulwkpv xvh d Ed|hvldq

phwulf wr phdvxuh wkh jrrgqhvv ri hyhu| Ed|hvldq

vwuxfwxuh irxqg/ dqg d vhdufk surfhgxuh wr vhdufk lq

wkh vsdfh ri srvvleoh vwuxfwxuhv1 Lq wkh ERD lw lv srv0

vleoh wr vhw wkh pd{lpxp qxpehu ri sduhqwv lq wkh

ohduqw qhwzrun1 Iru wkh OIGD zh zloo uhihu wr uhvxowv

dsshduhg lq +Pÿkohqehlq ) Pdkqlj/ 4<<<d,1 Frqwudu|

wr wkh ERD/ wkh OIGD xvhv wkh ELF vfruh wr �qg wkh

Ed|hvldq vwuxfwxuh dqg lw xvhv d sdudphwhu � wkdw do0

orzv wr frqwuro wkh qhwzrun frpsoh{lw|1

Ixqfwlrq q IGD �2 Wuhhv V

RqhPd{ 63 OIGD 3=:8 ;3

63 OIGD 3=8 6;

63 OIGD 3=58 5

63 Wuhh ;<

63 PW0IGD 5 ::

63 PW0IGD 8 4<

63 PW0IGD 43 3

EljMxps+63> 6> 4, 63 OIGD 3=:8 433

63 OIGD 3=8 <9

63 OIGD 3=58 8;

63 Wuhh <<

63 PW0IGD 5 <:

63 PW0IGD 7 <4

63 PW0IGD 9 ::

Wdeoh 5= Qxphulfdo uhvxowv iru PW0IGD dqg wkh

OIGD

D qxpehu ri h{shulphqwv zhuh frqgxfwhg wr frpsduh

wkh ehkdylru ri wkh PW0IGD zlwk wkh OIGD1 Lq wklv

fdvh zh xvhg dq holwlvp sdudphwhu ri 4 +l1h1 rqo| wkh

ehvw lqglylgxdo lv sdvvhg wr wkh qh{w srsxodwlrq,/ wuxq0

fdwlrq vhohfwlrq dqg Pd{jhq @531 Vwrsslqj fulwhuld iru

PW0IGD zhuh wkh vdph wkdw lq wkh suhylrxv h{shul0

phqwv1 Lq Wdeoh 5 froxpq 7 uhihuv wr wkh qxpehu ri

wuhhv dqg wkh qhwzrun ghqvlw| iru wkh PW0IGD dqg wkh

OIGD uhvshfwlyho|1 Odwhu/ lw lv h{sodlqhg krz wkhvh

ydoxhv zhuh fkrvhq1

D qxpehu ri lqwhuhvwlqj ihdwxuhv fdq eh qrwlfhg iurp

wkh dqdo|vlv ri wkh uhvxowv vkrzq lq Wdeoh 51 Iru wkhvh

ixqfwlrqv wkh qxpehu ri wuhhv lq wkh PW0IGD dqg wkh

ghqvlw| ri wkh EQ lq wkh OIGD sod| d vlplodu uroh1

Wklv dqdorj| lv hylghqw iru ixqfwlrq EljMxps/ zkhq

wkh qxpehu ri wuhhv ru wkh ghqvlw| ri wkh EQ duh lq0
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fuhdvhg uhvxowv duh srruhu1 Lq wkh wdeoh/ ydoxhv xvhg iru

wkh qxpehu ri wuhhv zhuh vhohfwhg wu|lqj wr hpxodwh wkh

ydoxhv iru wkh ghqvlw| ri wkh EQ xvhg lq h{shulphqwv

sxeolvkhg lq +Pÿkohqehlq ) Pdkqlj/ 5333,/ exw zh gr

qrw fodlp zh kdyh dwwdlqhg d shuihfw fruuhvsrqghqfh

ehwzhhq wkh qxpehu ri wuhhv vkrzq lq Wdeoh 5 dqg wkh

� ydoxhv vkrzq iru wkh vdph ixqfwlrqv1 Wkh dqdorj|

lv uhodwhg rqo| wr wkh surjuhvvlrq ri ydoxhv iru erwk

sdudphwhuv1

Uhvxowv iru ixqfwlrq Eljmxps duh dq h{dpsoh wrr wkdw

zkhq vwuxfwxudo ohduqlqj lv grqh/ vlpsohu prghov fdq

eh ehwwhu wkdq pruh frpsoh{ rqhv1 Uhjduglqj gl�hu0

hqfhv ehwzhhq wkh PW0IGD dqg wkh OIGD/ dqg eh0

|rqg wkh dqdorj| ehwzhhq wkh qxpehu ri wuhhv dqg wkh

qhwzrun ghqvlw|/ uhvxowv zhuh yhu| vlplodu1

Lw kdv ehhq dfnqrzohgjhg wkdw Ed|hvldq IGDv duh yhu|

vhqvlwlyh wr wkh vhohfwlrq phwkrg xvhg +Sholndq/ Jrog0

ehuj/ ) Vdvwu|/ 5333,1 Wkxv/ zkhq zh fodlp khuh wkdw

rqh dojrulwkp lv vxshulru wr wkh rwkhu iru wkh dqdo|}hg

ixqfwlrqv/ wkh dvvhuwlrq lv rqo| ydolg iru wkh sduwlfx0

odu vhohfwlrq vwudwhj| hpsor|hg1 Zh kdyh vshfl�hg wkh

vhohfwlrq phwkrgv dqg sdudphwhuv xvhg lq hyhu| frp0

sdulvrq ehwzhhq Ed|hvldq IGDv dqg wkh PW0IGD1

716 Frpsdulvrq ehwzhhq ERD dqg wkh

PW0IGD

Zh dovr frpsduh rxu dojrulwkp zlwk wkh Ed|hvldq Rs0

wlpl}dwlrq Dojrulwkp +ERD, lqwurgxfhg lq +Sholndq/

Jrogehuj/ ) Fdqwý0Sd}/ 4<<<,1 ERD xvhv d Ed|hvldq

phwulf wr phdvxuh wkh jrrgqhvv ri hyhu| Ed|hvldq

vwuxfwxuh irxqg/ dqg d vhdufk surfhgxuh wr vhdufk lq

wkh vsdfh ri srvvleoh vwuxfwxuhv1 Wkh lpsohphqwdwlrq

ri ERD xvhg lq wklv sdshu uhvwv rq wkh ERD sodwirup

dydlodeoh dw +Sholndq/ Jrogehuj/ ) Vdvwu|/ 5333,1 Lw

hpsor|v wkh Ed|hvldq Glulfkohw htxlydohqw +EGh, phw0

ulf/ d juhhg| vhdufk surfhgxuh/ dqg ghflvlrq judskv iru

pdnlqj wkh vhdufk pruh h!flhqw1

Wdeoh 6 vkrzv wkh h{shulphqwdo uhvxowv ri wkh frpsdu0

lvrq ehwzhhq wkh ERD dqg wkh PW0IGD iru 5 ixqf0

wlrqv1 Wkh sdudphwhuv ri wkh dojrulwkp zhuh= Srs0

xodwlrq vl}h @ 933/ Wrxuqdphqw vhohfwlrq zlwk wrxu0

qdphqw vl}h @ 7/ wkh zruvw ;8 shufhqw ri wkh fxuuhqw

srsxodwlrq lv uhsodfhg e| wkh qhz jhqhudwhg lqglylg0

xdov1 Wkh ERD zdv vhw wr vwrs zkhq wkh rswlpxp

zdv irxqg/ ru dq hduo| frqyhujhqfh rffxuuhg +xqlydul0

dwh pdujlqdov kljkhu wkdq 31<8,1 Wkh vwrs fulwhuld iru

PW0IGD zhuh wkh vdph dv lq suhylrxv h{shulphqwv/

exw qrwh wkdw lq jhqhudo wklv vhwwlqj lv yhu| gl�huhqw

iurp wkh rqh xvhg lq wkh suhylrxv h{shulphqwv1

Lq wkh wdeoh wkh irxuwk froxpq uhsuhvhqwv wkh pd{0

lpxp qxpehu ri sduhqwv dqg wkh qxpehu ri wuhhv

Ixqfwlrq q IGD S2 W V Jhq1

Lvrwruxv 69 ERD 5 ;9 :=5<

69 ERD 7 ;4 :=56

69 ERD 9 :; :=7

69 Wuhh :5 :=<9

69 PW 5 ;: ;=55

63 PW 7 ;< :=;6

69 PW 9 <6 :=6;

i6ghfhswlyh 63 ERD 5 :; :=7:

63 ERD 7 :: ;=45

63 ERD 9 :: ;=7<

63 Wuhh 6: 43=79

63 PW 5 87 44=59

63 PW 7 93 44=6

63 PW 9 9< 43=;:

Wdeoh 6= Qxphulfdo uhvxowv iru PW0IGD dqg wkh ERD

iru wkh ERD dqg wkh PW0IGD uhvshfwlyho|1 Fro0

xpq �yh uhsuhvhqwv wkh qxpehu ri wlphv wkh dojrulwkp

kdv frqyhujhg lq 433 uxqv1 Lq wkh h{shulphqwv iru

wkh i6ghfhswlyh ixqfwlrq ERD fohduo| ryhushuiruphg wkh

PW0IGD1 Iru wklv ixqfwlrq wzr lvvxhv duh zruwk wr

srlqw rxw1 Wkh srru shuirupdqfh ri wkh wuhh edvhg

IGD/ dqg wkh revhuydwlrq wkdw zkhq wkh qxpehu ri

wuhhv lv lqfuhdvhg wkh jds lq wkh ehkdylru ehwzhhq wkh

PW0IGD dqg wkh ERD lv uhgxfhg1 Qhyhuwkhohvv/ e|

ixuwkhu lqfuhdvlqj wkh qxpehu ri wuhhv wkh PW0IGD

grhv qrw dfklhyh ehwwhu uhvxowv wkdq ERD1

Wklv vlwxdwlrq lv frpsohwho| uhyhuvhg iru ixqfwlrq Lvr0

wruxv1 Iru wklv ixqfwlrq/ dv wkh qxpehu ri wuhhv lv lq0

fuhdvhg PW0IGD ryhushuirupv ERD/ zkhq wkh qxp0

ehu ri wuhhv lv 9 wklv gl�huhqfh lv hylghqw1 Wkh jhqhudo

frqfoxvlrq iurp wkhvh h{shulphqwv lv wkdw iru fhuwdlq

nlqg ri ixqfwlrqv PW0IGD fdq ryhushuirup Ed|hvldq0

IGDv1 Rqh txhvwlrq uhpdlqv rshq= zklfk duh wkh ful0

whuld wkdw doorz wr ghflgh zkhwkhu lw lv pruh frqyhqlhqw

wr dsso| rqh IGD ru dqrwkhuB Zh k|srwkhvl}h PW0

IGD fdq eh pruh vxlwdeoh iru ixqfwlrqv zlwk jhqhudo

dqg vfdwwhuhg ryhuodsslqj ehwzhhq wkh yduldeohv/ wkdw

frxog eh �fryhuhg� e| d vhw ri uhodwlyho| ghshqghqw

suredelolvwlf prghov1 Wklv vhhpv wr eh wkh fdvh iru wkh

Lvrwruxv ixqfwlrq1

717 Wkh uroh ri wkh fkrlfh yduldeoh lq wkh

PW0IGD1

Dv lw zdv eulh | glvfxvvhg lq suhylrxv vhfwlrqv wkh xvh

ri wkh fkrlfh yduldeoh e| wkh PW0IGD doorzv gl�hu0

hqw dqg  h{leoh zd|v ri frqgxfwlqj wkh vhdufk1 Zh

frqgxfwhg h{shulphqwv wr hydoxdwh wkh frqyhqlhqfh ri

xvlqj rqh ri wkh yduldeohv ri wkh sureohp dv wkh fkrlfh
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Ixqfwlrq q Q } W V Jhq1

Qi6
ghf

64 5833 xqnqrzq 3=48 57 ;=<9

79 6333 xqnqrzq 3=48 54 44=8:

94 6333 xqnqrzq 3=58 45 4<=;

64 4833 {4 3=48 63 6=4

79 4833 {4 3=48 5; 9=58

94 5833 {4 3=58 56 43=7;

Wdeoh 7= Qxphulfdo uhvxowv iru wkh Qi6
ghf

ixqfwlrq1

yduldeoh1 Wkhvh h{shulphqwv duh yhu| suholplqdu| exw

khos wr looxvwudwh krz wkh sdudphwhuv ri wkh pl{wxuh

prgho fdq eh frqyhqlhqwo| xvhg lq wkh IGD iudph0

zrun1 Wdeoh 7 vkrzv wkh uhvxowv iru ixqfwlrq Qi6
ghf

1

Wklv ixqfwlrq kdv pdq| joredo rswlpdo wkdw duh wulj0

jhuhg e| yduldeoh {41 Zkhq {4 @ 4 wkhuh lv mxvw rqh

rswlpxp +doo yduldeohv duh vhw wr 4,/ zkhq {4 @ 3

wkhuh 6
q

6 rswlpd +doo srvvleoh frpelqdwlrqv ri 5 rqhv

lq hyhu| sduwlwlrq,1 Iru hyhu| vhwwlqj 63 h{shulphqwv

zhuh uxq xvlqj wuxqfdwlrq vhohfwlrq dqg d pd{lpxp ri

58 jhqhudwlrqv1

Lq wkh wdeoh lw lv vkrzq d frpsdulvrq ehwzhhq wzr

PW0IGD zlwk pl{wxuhv prghov frpsrvhg ri wzr wuhhv1

Wkh pl{wxuh prgho ri wkh �uvw PW0IGD xvhv {4 dv lwv

fkrlfh yduldeoh/ iru wkh vhfrqg wkh fkrlfh yduldeoh lv

xqnqrzq dv zdv wkh fdvh lq wkh suhylrxv h{shulphqwv1

Zkhq {4 lv wuhdwhg dv wkh fkrlfh yduldeoh wkh lqgl0

ylgxdov wkdw ixo�oo +{4 @ 3, duh dssur{lpdwhg e| rqh

wuhh/ dqg wkrvh wkdw vdwlvi| +{4 @ 4, e| wkh rwkhu1

Lq wklv fdvh wkhuh lv qrw ohduqlqj ri wkh wuhh vwuxf0

wxuhv/ rqo| wkh pl{wxuh frh!flhqwv duh fdofxodwhg dv

�3 @ Q3

Q
> �4 @

Q4

Q
/ zkhuh Q3 dqg Q4 duh uhvshfwlyho|

wkh qxpehu ri lqglylgxdov wkdw vdwlvi| +{4 @ 3, dqg

+{4 @ 4,1 Qhyhuwkhohvv vxfk d pl{wxuh doorzv wkh PW0

IGD wr irfxv rq wkh uhjlrq ri wkh vsdfh ri vroxwlrqv

gh�qhg e| wkh {4 ydoxh1 Hyhqwxdoo|/ dv hyroxwlrq dg0

ydqfhv/ rqh ri wkh frh!flhqwv ehfrphv 3> dqg d wuhh

edvhg IGD lv uxq iurp wkhq rq1

Lq Wdeoh 7 wkh lpsuryhphqwv dfklhyhg e| frqvlghulqj

{4 dv wkh fkrlfh yduldeoh fdq eh vhhq1 Wklv lv d vlpsoh

h{dpsoh ri krz wkh fkrlfh yduldeoh fdq eh lqfrusr0

udwhg dovr dv d wrro iru lq xhqflqj wkh h{sorudwlrq dqg

h{sorlwdwlrq sxusrvhv ri wkh vhdufk1

+ ����$�"���" ��� 
���&!�

,��-

Lq wklv sdshu zh kdyh lqwurgxfhg d IGD edvhg rq pl{0

wxuh glvwulexwlrqv1 Wkh PW0IGD lv gl�huhqw wr rwkhu

vlpsoh frqqhfwhg edvhg IGDv/ dqg wr Ed|hvldq IGDv

wrr1 Frqwudu| wr Ed|hvldq IGDv wkh PW prgho doorzv

wkdw wkh vwuxfwxuh ri ghshqghqflhv dprqj d vhw ri ydul0

deohv fkdqjhv1 Frpsduhg wr vlpsoh frqqhfwhg IGDv/

lq wkh PW0IGD/ ghshqghqflhv ehwzhhq wkh sduhqwv ri

d jlyhq qrgh fdq eh uhsuhvhqwhg1

Wkh dojrulwkp h{klelwv d qxpehu ri fkdudfwhulvwlfv

wkdw sodfhv lw idu dsduw iurp Jdoodjkhu*v dojrulwkp

+Jdoodjkhu/ Iuhdq/ ) Grzqv/ 4<<<,1 Lw lv dssursuldwh

iru sureohpv zlwk lqwhjhu uhsuhvhqwdwlrq wkdw fdq kdyh

pdq| yduldeohv1 Wkh shuirupdqfh ri Jdoodjkhu*v dojr0

ulwkp lv pruh vhqvlwlyh wr wkh qxpehu ri yduldeohv1 Wkh

w|sh ri pl{wxuh prgho erwk dojrulwkpv hpsor| lv gli0

ihuhqw/ wkh dgdswlyh pl{wxuh prgho ri Sulheh +Sulheh/

4<<7, lv xvhg lq Jdoodjkhu*v dojrulwkp1

Frpsduhg wr wkh Hvwlpdwlrq ri Pl{wxuh ri Glvwulex0

wlrq Dojrulwkp +HPGD, lqwurgxfhg lq +Shôd/ Or}dqr/

) Oduudôdjd/ 5334, wkh dojrulwkp h{klelwv dovr vhy0

hudo gl�huhqfhv1 PW0IGD lv qrw irfxvhg rq wkh rs0

wlpl}dwlrq ri pxowlremhfwlyh ixqfwlrqv dowkrxjk lw fdq

eh hpsor|hg lq pxowlremhfwlyh rswlpl}dwlrq wrr1 Dq0

rwkhu gl�huhqfh lv wkdw rxu pl{wxuh prgho doorzv frp0

srqhqwv zlwk gl�huhqw vwuxfwxuhv1 Wkh yhuvlrq ri wkh

HP dojrulwkp zh xvh lq wklv sdshu lv gl�huhqw wr wkh

rqh suhvhqwhg lq +Shôd/ Or}dqr/ ) Oduudôdjd/ 5334,1

Lq wklv sdshu zh kdyh vkrzq wkdw wkh PW0IGD fdq

ryhushuirup wkh wuhh edvhg IGD iru wkh ixqfwlrqv frq0

vlghuhg1 Wkh dojrulwkp lv dovr ehwwhu wkdq Ed|hvldq

IGDv iru vrph ixqfwlrqv olnh Lvrwruxv1 Dqrwkhu

dfklhyhphqw ri wklv sdshu lv wr kdyh suhvhqwhg gl�huhqw

zd|v wr lq xhqfh wkh vhdufk e| pdqlsxodwlqj sdudph0

whuv uhodwhg wr wkh pl{wxuh ri wuhhv1

Wkh frpsxwdwlrqdo frpsoh{lw| ri wkh PW0IGD lv

pdlqo| jlyhq e| wkh Hvwlpdwlrq dqg Pd{lpl}dwlrq

vwhsv ri wkh +HP, dojrulwkp1 Lq hdfk lwhudwlrq ri wkh

pl{wxuh ri wuhhv ohduqlqj dojrulwkp wkh uxqqlqj wlph ri

wkh hvwlpdwlrq vwhs lv �+pqQ,/ dqg iru wkh pd{lpl}d0

wlrq vwhs lv �+pqu5
pd{

, zkhuh u
pd{

lv wkh pd{lpxp

fduglqdolw| ri wkh yduldeohv1 Erwk vwhsv duh frpsxwd0

wlrqdoo| h{shqvlyh1 Zh kdyh qrw wuhdwhg wklv txhvwlrq

lq wkh suhvhqw zrun1 Fxuuhqwo| zh duh lqyhvwljdwlqj

krz wr uhgxfh wkh frpsxwdwlrqdo exughq dvvrfldwhg

wr wkh HP dojrulwkp lq wkh frqwh{w ri wkh PW0IGD1

Surplvlqj olqhv ri uhvhdufk dqg ixuwkhu zrun duh=

41 Wr ghvljq h!flhqw ohduqlqj vfkhgxohv wkdw khos wr

glplqlvk wkh qxpehu ri hydoxdwlrqv1

51 Wr h{whqg wkh xvh ri pl{wxuhv wr ghdo zlwk pruh

frpsoh{ suredelolvwlf prghov1

61 Wkh xvh ri PW0IGD dv d phwkrg wr lpsohphqw

sdudooho dqg glvwulexwhg srsxodwlrq edvhg vhdufk1
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Dfnqrzohgjphqwv

Zh duh judwhixo iru frqvwuxfwlyh frpphqwv ri dqrq|0

prxv uhylhzhuv1 Wklv zrun zdv ixqghg e| wkh Fxedq

Plqlvwu| ri Vflhqfh/ Whfkqrorj| dqg Hqylurqphqw/ xq0

ghu wkh surmhfw Orz Frvw Hyroxwlrqdu| Dojrulwkpv1

����	�����

Edoxmd/ V1/ dqg Gdylhv/ V1 4<<:1 Xvlqj rswlpdo

ghshqghqf|0wuhhv iru frpelqdwruldo rswlpl}dwlrq=

Ohduqlqj wkh vwuxfwxuh ri wkh vhdufk vsdfh1 Lq Sur0

fhhglqjv ri wkh 47wk Lqwhuqdwlrqdo Frqihuhqfh rq

Pdfklqh Ohduqlqj/ 63�6;1 Prujdq Ndxipdqq1

Fkrz/ F1 N1/ dqg Olx/ F1 Q1 4<9;1 Dssur{lpdwlqj

glvfuhwh suredelolw| glvwulexwlrqv zlwk ghshqghqfh

wuhhv1 yroxph LW47/ 795�79:1

Ghpsvwhu/ D1 S1> Odlug/ Q1 P1> dqg Uxelq/ G1 E1 4<::1

Pd{lpxp olnholkrrg iurp lqfrpsohwh gdwd yld wkh

HP dojrulwkp1 Mrxuqdo ri wkh Ur|do Vwdwlvwlfdo Vr0

flhw| E+6<,=4�6;1

Hw{hehuuld/ U1/ dqg Oduudôdjd/ S1 4<<<1 Joredo rs0

wlpl}dwlrq xvlqj Ed|hvldq qhwzrunv1 Lq Surfhhglqjv

ri wkh Vhfrqg V|psrvlxp rq Duwl�fldo Lqwhooljhqfh

+FLPDI0<<,/ 665�66<1

Hyhulww/ E1/ dqg Kdqg/ G1 4<;41Pl{wxuh Prghov= Lqihu0

hqfh dqg Dssolfdwlrqv wr Foxvwhulqj1 Orqgrq= Fkds0

pdq dqg Kdoo1

Jdoodjkhu/ P1> Iuhdq/ P1> dqg Grzqv/ W1 4<<<1 Uhdo0

ydoxhg hyroxwlrqdu| rswlpl}dwlrq xvlqj d  h{leoh

suredelolw| ghqvlw| hvwlpdwru1 Lq Surfhhglqjv ri wkh

Jhqhwlf dqg Hyroxwlrqdu| Frpsxwdwlrq Frqihuhqfh

JHFFR0<</ yroxph L/ ;73�;791 Ruodqgr/ IO= Pru0

jdq Ndxipdqq Sxeolvkhuv/ Vdq Iudqflvfr/ FD1

Phlod/ P1 4<<<1 Ohduqlqj Pl{wxuhv ri Wuhhv1 Sk1G1

Glvvhuwdwlrq/ Pdvvdfkxvhwwv Lqvwlwxwh ri Whfkqrorj|1

Pÿkohqehlq/ K1/ dqg Pdkqlj/ W1 4<<<d1 Hyroxwlrq0

du| v|qwkhvlv ri Ed|hvldq qhwzrunv iru rswlpl}dwlrq1

Hyroxwlrqdu| Frpsxwdwlrq :+4,1

Pÿkohqehlq/ K1/ dqg Pdkqlj/ W1 4<<<e1 IGD � d

vfdodeoh hyroxwlrqdu| dojrulwkp iru wkh rswlpl}dwlrq

ri dgglwlyho| ghfrpsrvhg ixqfwlrqv1 Hyroxwlrqdu|

Frpsxwdwlrq :+7,=686�6:91

Pÿkohqehlq/ K1/ dqg Pdkqlj/ W1 53331 Hyroxwlrqdu|

v|qwkhvlv ri Ed|hvldq qhwzrunv iru rswlpl}dwlrq1 Dg0

ydqfhv lq Hyroxwlrqdu| V|qwkhvlv ri Qhxudo V|vwhpv/

PLW Suhvv1 wr eh sxeolvkhg1

Pÿkohqehlq/ K1/ dqg Sdd�/ J1 4<<91 Iurp uhfrpel0

qdwlrq ri jhqhv wr wkh hvwlpdwlrq ri glvwulexwlrqv L1

Elqdu| sdudphwhuv1 Lq Hlehq/ D1> Eçfn/ W1> Vkrh0

qdxhu/ P1> dqg Vfkzhiho/ K1/ hgv1/ Sdudooho Sureohp

Vroylqj iurp Qdwxuh 0 SSVQ LY/ 4:;�4;:1 Ehuolq=

Vsulqjhu Yhuodj1

Pÿkohqehlq/ K1> Pdkqlj/ W1> dqg Rfkrd/ D1 4<<<1

Vfkhpdwd/ glvwulexwlrqv dqg judsklfdo prghov lq

hyroxwlrqdu| rswlpl}dwlrq1 Mrxuqdo ri Khxulvwlfv

8+5,=546�57:1

Rfkrd/ D1> Pxhkohqehlq/ K1> dqg Vrwr/ P1 U1 53331 D

Idfwrul}hg Glvwulexwlrq Dojrulwkp xvlqj vlqjoh frq0

qhfwhg Ed|hvldq qhwzrunv1 Lq Sdudooho Sureohp Vroy0

lqj iurp Qdwxuh 0 SSVQ YL 9wk Lqwhuqdwlrqdo Frq0

ihuhqfh1 Sdulv/ Iudqfh= Vsulqjhu Yhuodj1 OQFV 4<4:1

Shôd/ M1> Or}dqr/ M1 D1> dqg Oduudôdjd/ S1 53341 Hvwl0

pdwlrq Glvwulexwlrq Dojrulwkpv1 D qhz wrro iru Hyr0

oxwlrqdu| Rswlpl}dwlrq1 Ervwrq2Gruguhfkw2Orqgrq=

Noxzhu Dfdghplf Sxeolvkhuv1 fkdswhu Ehqh�wv ri

Gdwd Foxvwhulqj lq Pxowlprgdo Ixqfwlrq Rswlpl}d0

wlrq yld HGDv/ <<�4571 Wr dsshdu1

Sholndq/ P1/ dqg Jrogehuj/ G1 H1 53331 Jhqhwlf do0

jrulwkpv/ foxvwhulqj/ dqg wkh euhdnlqj ri v|pphwu|1

LoolJDO Uhsruw Qr1 5333346/ Xqlyhuvlw| ri Loolqrlv

dw Xuedqd0Fkdpsdljq/Loolqrlv Jhqhwlf Dojrulwkpv

Oderudwru|/ Xuedqd/ LO1

Sholndq/ P1/ dqg Pÿkohqehlq/ K1 4<<<1 Wkh Elydul0

dwh Pdujlqdo Glvwulexwlrq Dojrulwkp1 Lq Ur|/ U1>

Ixuxkdvkl/ W1> dqg Fkdzgku|/ S1/ hgv1/ Dgydqfhv lq

Vriw Frpsxwlqj 0 Hqjlqhhulqj Ghvljq dqg Pdqxidf0

wxulqj/ 854�8681 Orqgrq= Vsulqjhu0Yhuodj1

Sholndq/ P1> Jrogehuj/ G1 H1> dqg Fdqwý0Sd}/ H1 4<<<1

ERD= Wkh Ed|hvldq Rswlpl}dwlrq Dojrulwkp1 Lq

Surfhhglqjv ri wkh Jhqhwlf dqg Hyroxwlrqdu| Frp0

sxwdwlrq Frqihuhqfh JHFFR0<</ yroxph L/ 858�8651

Ruodqgr/ IO= Prujdq Ndxipdqq Sxeolvkhuv/ Vdq

Iudqflvfr/ FD1

Sholndq/ P1> Jrogehuj/ G1 H1> dqg Vdvwu|/ N1 53331

Ed|hvldq Rswlpl}dwlrq Dojrulwkp/ ghflvlrq judskv/

dqg Rffdp*v ud}ru1 LoolJDO Uhsruw Qr1 5333353/

Xqlyhuvlw| ri Loolqrlv dw Xuedqd0Fkdpsdljq/ Loolqrlv

Jhqhwlf Dojrulwkpv Oderudwru|/ Xuedqd/ LO1

Sulheh/ F1 H1 4<<71 Dgdswlyh pl{wxuhv1 Mrxuqdo ri wkh

Dphulfdq Vwdwlvwlfdo Dvvrfldwlrq ;<+75:,=:<9�;391

Vrwr/ P1 U1> Rfkrd/ D1> Dflg/ V1> dqg Fdpsrv/ O1 P1

4<<<1 Ed|hvldq hyroxwlrqdu| dojrulwkpv edvhg rq

vlpsol�hg prghov1 Lq Surfhhglqjv ri wkh Vhfrqg V|p0

srvlxp rq Duwl�fldo Lqwhooljhqfh +FLPDI0<<,/ 693�

69:1

Wklhuhqv/ G1/ dqg Ervpdq/ S1 53341 Pxowl0remhfwlyh

rswlpl}dwlrq zlwk lwhudwhg ghqvlw| hvwlpdwlrq hyr0

oxwlrqdu| dojrulwkpv xvlqj pl{wxuhv prghov1 Lq

Hyroxwlrqdu| Frpsxwdwlrq dqg Suredelolvwlf Judsk0

lfdo Prghov1 Surfhhglqjv ri wkh Wklug V|psrvlxp rq

Dgdswlyh V|vwhpv +LVDV05334,/ Fxed/ 45<�4691
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Abstract

This paper studies �tness inheritance as an

eÆciency enhancement technique for genetic

and evolutionary algorithms. Convergence

and population-sizing models are derived and

compared with experimental results. These

models are optimized for greatest speed-up

and the optimal inheritance proportion to

obtain such a speed-up is derived. Re-

sults on OneMax problems show that when

the inheritance e�ects are considered in the

population-sizing model, the number of func-

tion evaluations are reduced by 20% with the

use of �tness inheritance. Results indicate

that for a �xed population size, the number of

function evaluations can be reduced by 70%

using a simple �tness inheritance technique.

1 Introduction

A key challenge in genetic and evolutionary compu-

tation (GEC) research is the design of competent ge-

netic algorithms (GAs). By competent we mean GAs

that can solve hard problems, quickly, reliably, and

accurately, and much progress has been made along

these lines (Goldberg, 1999). In essence competent

GA design takes problems that were intractable with

�rst generation GAs and renders them tractable, of-

tentimes requiring only a subquadratic number of �t-

ness evaluations. But in large-scale problems, the task

of computing even a subquadratic number of function

evaluations can be daunting. This is especially the case

if the �tness evaluation is a complex simulation, model,

or computation. This places a premium on a variety

of eÆciency enhancement techniques. In this paper,

one such eÆciency enhancement technique called �t-

ness inheritance is modeled and optimized for greatest

speedup. In �tness inheritance, an o�spring inherits

a �tness value from its parents rather than through

function evaluation.

The objective of this study therefore is to model �tness

inheritance and to employ this model in predicting the

convergence time and population size required for the

successful design of a GA. We start by modeling �t-

ness inheritance and deriving convergence time and

population-sizing models. Subsequently, we derive an

optimal proportion of inheritance and comment on the

actual speed-up obtained. The speed-up that could be

obtained under the practitioner's usual assumption of

a �xed population sizing is also discussed.

2 Literature Review

Smith, Dike, and Stegmann (1995) proposed �tness

inheritance in GAs. They proposed two ways of in-

heriting �tness, one by taking the average �tness and

the other by taking a weighted average of the �tness

of the two parents. They showed some theoretical jus-

ti�cation for their approach. Their results indicated

that GAs with �tness inheritance outperformed those

without inheritance in both the OneMax and an air-

craft routing problem. However, they did not inves-

tigate the e�ect of �tness inheritance on convergence

time and population sizing. Also, the questions as to

how many children should have inherited �tness, and

how much speed-up one can get remained unanswered.

Though the original study showed very encouraging re-

sults, unfortunately there have been very few follow up

studies on �tness inheritance. Zheng, Julstrom, and

Cheng (1997) used �tness inheritance for the design of

vector quantization codebooks.

3 Modeling Fitness Inheritance

In the proposed approach, a proportion, pi, of ran-

domly selected individuals, receive inherited �tness

and the rest are assigned the true (evaluated) �tness.
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In the remainder of this paper, actual �tness refers to

the �tness that a individual would have had if it was

evaluated | that is, if its �tness was not inherited.

In this section, we assume that the inherited �tness

is taken to be the average of the building-block (BB)

�tness. We assume this to develop a theory behind

�tness inheritance and in the implementation the in-

herited �tness is taken to be the average �tness of the

two parents. The building-block �tness is taken to be

the average �tness of all the individuals in the popu-

lation that possess the schemata under consideration.

Also, in the remainder of the paper, unless otherwise

mentioned, all the experimental results are obtained

with crossover probability of 1.0.

The model derived is applicable to uniformly scaled

problems of �xed string length and known BB size.

Speci�cally OneMax (counting of bits) is employed

but the model can be extended to other problems in a

straightforward manner. We further assume that the

actual �tness distribution, F, is Gaussian with mean

�f;t and variance �2f;t.

F = N
�
�f;t; �

2
f;t

�
;

and that the distribution of �tness with inheritance,

F0 is Gaussian with mean �f 0;t and variance �2f 0;t.

F
0 = N

�
�f 0;t; �

2
f 0;t

�
:

The above assumptions are justi�ed since crossover has

a normalizing e�ect. We can write

�f 0;t = �f;t(1� pi) + �i;tpi; (1)

�
2
f 0;t = (1� pi)�

2
f;t + pi�

2
i;t; (2)

where �i;t, and �
2
i;t are the mean and variance of �tness

respectively, of individuals whose �tness is inherited.

Since the inherited �tness, fi, is equal to the average

of BB �tness we can write

fi =
1

`

X̀
j=1

f̂ (BBj) ; (3)

where, ` is the string length, and f̂ (BBj) is the esti-

mated BB �tness which can be written

f̂ (BBj) = f (BBj) + (`� 1)p; (4)

where, f (BBj) is the actual BB �tness, p is the pro-

portion of correct BBs, and the term (` � 1)p incor-

porates the noise arising from other BBs. Using the

above relation, fi for uniformly scaled problems can

be written as

fi =
f

`
+ (`� 1)p: (5)

The mean inherited �tness, �i;t is given by

�i;t =
1

n

nX
j=1

fi;j ;

=
1

n

nX
j=1

�
fj

`
+ (`� 1)p

�
;

=
1

`

2
4 1
n

nX
j=1

fj

3
5+ (`� 1)p;

= `p = �f;t; (6)

where n is the population size. Using the above rela-

tion in equation 1, we get

�f 0;t = �f;t: (7)

The inherited �tness variance, �2i;t can be derived as

follows,

�
2
i;t =

1

n

nX
j=1

f
2
i;j � (`p)2;

=
1

n

nX
j=1

�
fj

`
+ (`� 1)p

�2
� (`p)2;

=
p(1� p)

`
: (8)

Using the above relation in equation 2 we get,

�
2
f 0;t = (1� pi)�

2
f;t + pi

p(1� p)

`

� (1� pi)�
2
f;t (9)

Using the notion of selection intensity, I (Bulmer,

1980), we can write the expected average �tness with

inheritance after selection as

�f 0;t+1 = �f 0;t + I�f 0;t;

= �f 0;t + I

p
1� pi�f;t: (10)

Since both the actual �tness and inherited �tness dis-

tributions are normally distributed, a bivariate normal

distribution can be used to obtain the expected actual

�tness value of F at generation t+1, given �f 0;t+1,

E(F=�f 0;;t+1) = �f;t+1 = �f;t+
�F;F 0

�2f 0;t

(�f 0;t+1��f 0;t):

It can be easily seen that the covariance, �F;F 0 is (1�
pi)�

2
f . Using this relation and equation 10,

�f;t+1 = �f;t + (�f 0;t + I

p
1� pi�f;t � �f 0;t);

= �f;t + I

p
1� pi�f;t: (11)

We now proceed to derive the convergence and

population-sizing models.
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Figure 1: Veri�cation of proportion of correct BBs pre-

dicted by equation 13 with empirical results plotted as

a function of generation number for di�erent values of

inheritance proportion. The experimental results are

averaged over 50 runs. The discrepancy between the

theoretical and experimental results are due to hitch-

hiking and can be eliminated by ensuring a better mix-

ing of BBs through repeated crossover or population-

wise crossover.

3.1 Time to Convergence

In this section we derive convergence model for the

OneMax problem with �tness inheritance. For One-

Max domain, we can write

�f;t = `pt; �
2
f;t = `pt(1� pt);

where, ` is the string length, and pt is the proportion of

correct alleles in the population at generation t. Since

the initial population is generated with uniform distri-

bution, p0 = 0:5. Using the above relation in equation

11,

pt+1 = pt + I

r
(1� pi)

`

p
pt(1� pt);

pt+1 � pt = I

r
(1� pi)

`

p
pt(1� pt):

Approximating the above equation as a di�erential

equation yields

dp

dt
=
I
p
1� pip
`

p
p(1� p): (12)

Integrating the above equation and using the initial

condition pjt=0 = 0:5 we get,

pt = sin2

 
�

4
+
I
p
(1� pi)t

2
p
`

!
: (13)
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Figure 2: Convergence time for a 100-bit OneMax

problem for di�erent proportion of inheritance pre-

dicted by equation 14 compared to experimental re-

sults. The empirical results are averaged over 50 runs.

The above equation is compared to the experimental

results in �gure 1 at di�erent inheritance proportions

pi. The proposed convergence model slightly overesti-

mates the proportion of correct BBs for GAs with tour-

nament selection and uniform crossover. This discrep-

ancy between the theoretical and empirical results can

be eliminated by employing recombination procedures

than ensure that the BBs are well mixed (Thierens,

1995).

We can derive an equation for convergence time, tconv,

by equating pt = 1, and inverting equation 13,

tconv =
�

2I

s
`

(1� pi)
: (14)

If pi is taken as 0 then the above relation reduces to

�
p
`=(2I) which agrees with existing convergence time

models (Muhlenbein & Schlierkamp-Voosen, 1993;

Miller & Goldberg, 1996a; Miller & Goldberg, 1996b).

The convergence time observed experimentally is com-

pared to the above prediction for a 100-bit OneMax

problem in �gure 2. Again the discrepancy between

the empirical and analytical results occurs due to

hitch-hiking and can be reduced by ensuring a good

mixing of building blocks.

3.2 Population Sizing

It is well known that population size is a major deter-

minant of the quality of the solution obtained. There-

fore it is essential to appropriately size the population

to incorporate the e�ects of �tness inheritance. Gold-

berg, Deb, and Clark (1992) proposed population-
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sizing models for di�erent selection schemes. Their

model is based on deciding correctly between the best

and the second best BBs in the same partition. They

incorporated noise arising from other partitions into

their model. However, they assumed that if wrong BBs

were chosen in the �rst generation, the GAs would be

unable to recover from the error. Harik, Cantu-Paz,

Goldberg, and Miller (1997) re�ned the above model

by incorporating cumulative e�ects of decision mak-

ing over time rather than in �rst generation only. They

modeled the decision making between the best and sec-

ond best BBs in a partition as a gambler's ruin prob-

lem. This model is based on the assumption that the

selection process used is tournament selection with-

out replacement. Miller (Miller, 1997) extended this

model to predict population sizing in the presence of

external noise. The population-sizing model derived

by Miller is reproduced below.

n = �2k�1 log( )
p
�

dmin

q
�2f 0 ;

where n is the population size, k is the BB length,  is

the failure rate, dmin is the distance between the best

BB and the second best BB (Goldberg, Deb, & Clark,

1992), and �2f 0 is the variance of the noisy �tness func-

tion. Not only �2f 0 , but also dmin depends on pi. For

OneMax problems dmin was empirically determined to

be

dmin = (1� p
3
i )
p
1� pi: (15)

The population-sizing equation can now be written as

n = �2k�1 log( )
p
�

(1� p3i )

q
�2f : (16)

The above population sizing is compared to the results

obtained for a 100-bit OneMax problem in �gure 3.

From the plot we can easily see that our population-

sizing model �ts the experimental result accurately.

Using the convergence time and population-sizing

model derived in this section, we evaluate the inher-

itance proportion that requires least number of func-

tion evaluations (or equivalently, yields greatest speed-

up) in the next section.

4 Optimal Inheritance Proportion

We can intuit that given a problem there should be

a value (or a range) of inheritance proportions that

are more eÆcient than the others. Too low a pi or

too high a pi would not reduce the number of function

evaluations. Our aim is to determine the inheritance

proportion such that the total number of function eval-

uation required is minimized. Here we assume that the
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Figure 3: Veri�cation of the population-sizing model

(equation 16) for various inheritance proportions with

empirical results. Experimental results display the

population size required for optimal convergence with

failure rate of 0.001 and are averaged over 50 runs.

cost of inheritance is insigni�cant. This is justi�ed by

the fact that inherited �tness is just an average of the

�tness values of the two parents, a computationally

trivial task when compared to the usual function eval-

uation. We reiterate that �tness inheritance is needed

in cases where function evaluation takes a long time

(eg., a large real-world problem), or when only some

individuals can be evaluated (for example, interactive

GAs). Total number of function evaluations required

is given by

Nfe = n [(tconv � 1)(1� pi) + 1] ;

= n [tconv(1� pi) + pi] : (17)

From previous sections, for a given problem,

tconv =
c2p

1� pi;

n =
c3

1� p3i ;

where c2 and c3 are �
p
`=(2I) and �2k�1 log( )

q
��2f

respectively. Using the above equations, the total

number of function evaluations is given by,

Nfe =
c3

1� p3i

h
c2

p
1� pi + pi

i
: (18)

The optimal proportion of inheritance is then given by

solving,

@Nfe

@pi
= 0;

3p2i

h
c2(1� pi) + pi

p
1� pi

i
+

(1� p
3
i )
h
�0:5c2 +

p
1� pi

i
= 0: (19)
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Figure 4: Optimal inheritance proportion, p�i as a

function of string length ` obtained by numerical solu-

tion of equation 19. p�i is independent of ` for moderate

to large values of `.

The above equation can be solved for two asymptotic

cases: (1) the string length, ` = 0, then c2 = 0, and the

optimal evaluates to p�i = 0, and (2) the string length

is very long, then c2 ! 1. For this case equation 19

reduces to

3p2i (1� pi)� 1

2

�
1� p

3
i

�
= 0; (20)

p
2
i �

1

5
pi � 1

5
= 0: (21)

The above quadratic equation can be easily solved, and

the optimal proportion for this case comes out to be

p
�

i = 0:558. For other values of string length, equation

19 cannot be solved analytically, and hence it has been

solved numerically for di�erent problem sizes. The op-

timal proportion of inheritance obtained by solving the

above equation numerically is plotted as a function of

string length is shown in �gure 4. We can see that for

moderate to large sized problems the optimal propor-

tion of inheritance, p�i lies between 0.54{0.558, that

is,

0:54 � p
�

i < 0:558 (22)

The above result (equation 22) suggests that pi is in-

dependent of problem size for problems of moderate

to large size. The predicted number of function eval-

uations is compared with experimental results for a

100-bit OneMax in �gure 5, for a 40-bit trap function

with BB size 4 with a crossover probability of 0.9 in

�gure 6(a), and for a 40-bit trap function with BB size

4 with tournament size of 8 and crossover probability

of 1 in �gure 6(b). Even though our model was de-

rived for OneMax problems, it holds even for other

problems with di�erent parameter settings as shown
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Figure 5: Total number of function evaluations pre-

dicted by equation 17 is compared to empirical results

as a function of inheritance proportion. The exper-

imental results display the total number of function

evaluations required for optimal convergence of a 100-

bit OneMax problem with a failure rate of 0.0001. The

empirical results are averaged over 50 runs.

by the plots. This exempli�es the robustness and use-

fulness of the proposed model. Another point to be

noted is that the optimal inheritance proportion is be-

tween 0.54{0.558 in all cases.

Another interesting fact to note is that the number of

function evaluations with inheritance is only around

20% less than that without inheritance. In other words

the speed-up de�ned as the ratio of number of function

evaluations with pi = 0 to the number of function eval-

uations at optimal pi is around 1.2. This implies that

we get a moderate advantage by using �tness inheri-

tance. The existence of an optimal pi and the moder-

ate value of speed-up are in contrast with the earlier

studies on inheritance. A detailed discussion of this

discrepancy is presented in the next section.

5 Apparent Speed-up

In the previous section we presented the speed-up that

can be obtained if the population size is chosen appro-

priately. This is the speed-up that theoreticians can

obtain when they adjust conditions appropriately to

hold the solution quality constant. A GA practitioner,

unlike a GA theoretician, views GAs as means to reach

an end. He usually �xes the population size and then

opts for �tness inheritance. From a GA practitioner's

point of view, the speed-up obtained through �tness

inheritance can be much higher. We call this speed-

up, that is obtained through a �xed population size as
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Figure 6: Total number of function evaluations predicted by equation 17 is compared to empirical results as a

function of inheritance proportion. The experimental results display the total number of function evaluations

required for optimal convergence of a 40-bit trap function with a BB size of 4, and a failure rate of 0.0001. The

empirical results are averaged over 50 runs. Crossover probability is (a) 1.0, and (b) 0.8. The results indicate

that the optimal proportion of inheritance given by equation 22 is in fact approximately valid for other uniformly

scaled problems with BB size greater than one and di�erent GA parameter values.

apparent speed-up.

Function evaluations taken for di�erent population

sizes plotted as a function of pi for a 100-bit OneMax

problem is shown in �gure 7. The plot indicates only

those points for which the population converged to the

optimal solution in all 50 runs. The apparent optimal

inheritance proportion, p
app

i , is given by the inverse of

the population-sizing model, equation 16.

p
app

i = 3

r
1� �

n
; (23)

where � is a constant dependent on the problem type,

and the solution quality desired, and is related by

� = �2k�1 log( )p�. There are two asymptotic cases
for the above result. One, when the population size is

less than �, then �tness inheritance does not yield any

speed-up and in fact can result in premature conver-

gence. The other case is when the population size is

very large when compared to �. In this case a very high

inheritance proportion can be used and high speedup

values can be obtained.

The apparent optimal inheritance proportion pre-

dicted by equation 23 is compared to experimental

results for a 100-bit OneMax in �gure 8. The value

� for this problem is 81:63. The experimental results

indicate the inheritance proportion that required low-

est number of average function evaluations to converge

to optimal solution in all 50 runs. From �gure 7, it can

be seen that if we choose an arbitrarily high popula-

tion size, say 300, then �tness inheritance can yield a
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Figure 7: Total number of function evaluations for var-

ious proportions of inheritance at di�erent population

sizes. The experimental results are averaged over 50

runs and are compared to the results predicted using

equation 17. Experimental results include only those

points for which all 50 runs converged to the optimal

solutions.
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Figure 8: Apparent optimal inheritance proportion,

p
app

i , predicted by equation 23 compared to empirical

results. The empirical results display the inheritance

proportion that requires minimum number of function

evaluations to converge to the optimal solution for a

100-bit OneMax problem. The experimental results

are averaged over 50 runs. The value of � is 81:63.

speed-up of around 3.3. If we have a still higher pop-

ulation size, then the speed-up will be higher. This

result agrees with that obtained by Smith, Dike, and

Stegmann (1995), in which they had considered a 64-

bit OneMax problem and had taken a population size

of 500. A 100-bit OneMax without inheritance re-

quires a population size of about 80 which implies

that a 64-bit problem would need a still lower popula-

tion size. The reason why Smith, Dike, and Stegmann

(1995) did not get an optimal proportion of inheritance

was due to the fact that they took a very high popula-

tion size and did not compare the minimum population

size required for di�erent proportions of inheritance.

In other words, they did not consider the e�ect of �t-

ness inheritance on population sizing. Of course, GA

practitioners are likely to do so, and our theories are

able to explain the large apparent speed-up they shall

achieve.

6 Future Work

In the present study we have analyzed �tness inheri-

tance for OneMax problems and the proposed model

can be extended to other problems (eg., non-uniformly

scaled problems). Further investigation is required for

determining analytically the signal to noise-ratio used

in the population-sizing model. The inheritance pro-

cedure used in the present study is a simple one, and

a study on more complex inheritance techniques still

remains to be done. The present analysis is developed

for the OneMax problem, which is a GA easy prob-

lem. Therefore, the speed-up obtained in the current

study is an upper bound and we recognize that a lower

speed-up could be obtained for more complex or GA

hard problems. The greatest speed-ups obtained for

such cases have to be investigated.

7 Conclusions

In this paper, we have developed a theoretical basis for

�tness inheritance and have derived models for conver-

gence time and population sizing. These results have

been integrated into a model that predicts solution

quality and cost, and this model has been analyzed and

optimized for greatest speed-up. Under careful condi-

tions of adjusting GA parameters for constant solution

quality, the optimum inheritance yields savings of 20%

in the number of function evaluations. Though by it-

self this speed-up value seems to be modest, it can be

coupled with parallelism, time continuation, and other

evaluation relaxation schemes. In such a scenario the

e�ective speed-up obtained will be a product of all in-

dividual speed-ups and even a speed up of 1.2 can be

important. We have been careful to include the ef-

fects of �tness inheritance on quality-duration theory

in predicting the above results. However, GA practi-

tioners usually �x the population size and then try in-

heritance. Under these conditions the apparent speed-

up can be much greater, a result that agrees with the

earlier empirical study of Smith, Dike, and Stegmann

(1995).
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Abstract

Genetic algorithms are sometimes disparag-

ingly denoted as just a fancier form of a plain,

stupid heuristic. One of the main reasons for

this kind of critique is that users believed a

GA could not guarantee global convergence

in a certain amount of time.

Because the proof of global convergence of

GAs using elitism has been performed else-

where (13), in this work we want to extend

previous work by J. Suzuki (15) and focus on

the identi�cation of the determinants that in-


uence the convergence rate of genetic algo-

rithms. The convergence rate of genetic algo-

rithms is addressed using Markov chain anal-

ysis. Therefore, we could describe an elitist

GA using mutation, recombination and selec-

tion as a discrete stochastic process. Evalu-

ating the eigenvalues of the transition matrix

of the Markov chain we can prove that the

convergence rate of a GA is determined by

the second largest eigenvalue of the transition

matrix. The proof is �rst performed for diag-

onalizable transition matrices and then trans-

ferred to matrices in Jordan normal form.

The presented proof allows a more detailed

and deeper understanding of the principles

of evolutionary search. As an extension to

this work we want to encourage researchers

to work on proper estimations of the second

largest eigenvalue of the transition matrix.

With a good approximation, the convergence

behavior of GAs could be described more ex-

actly and GAs would be one step ahead on

the road to a fast, reliable and widely ac-

cepted optimization method.
�Also with Illinois Laboratory of Genetic Algorithms,

University of Illinois at Urbana-Champaign, USA.

1 Introduction

Sometimes researchers speak disparagingly about ge-

netic algorithms and label them to be just fancier form

of a plain, simple heuristic. One main reason for this

is that genetic algorithms (GA) stick to the prejudice

that they are not able to guarantee convergence to the

global optimum. The users do not know if the GA con-

verges for a speci�c problem to the global optimum,

and howmuch time the GA needs to converge. A closer

look at genetic algorithms, however, reveals that there

exists not only proof of the global convergence for ge-

netic algorithms using elitism (13), but also some work

about the convergence rate of GAs (15). The more

complicated analysis of the convergence rate is impor-

tant because a genetic algorithm which can be proven

to converge, but needs in�nite time for it, is not help-

ful for a e�ective use of genetic algorithms and would

con�rm the prejudices against GAs.

In this work we want to perform a more detailed anal-

ysis of the convergence rate using Markov chains. The

Markov chain model is used for modeling a simple

GA with the genetic operators selection, mutation and

crossover. We investigate the determinants which the

convergence rate depends on. With using some results

from G. Rudolph (13) and J. Suzuki (15) we can prove

that the convergence rate depends mainly on the value

of the second largest eigenvalue of the transition ma-

trix of the Markov chain. Furthermore, we transfer the

results we get for diagonalizable transition matrices to

the more general class of matrices in Jordan normal

form. We illustrate that the proof for the convergence

rate holds true for matrices in Jordan normal form,

too.

The paper is structured as follows. In the following

section we review some of the previous work about

convergence behavior of genetic algorithms. This is

followed in section 3 by presenting the requisites we

want to use for our mathematical proof. We illustrate
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the assumptions for the genetic algorithm, present

some fundamentals about the used Markov chain mod-

els, and review some properties of stochastic matri-

ces. The section ends with a lemma about stochastic

matrices from M. Iosifescu (10) and the global con-

vergence statement from G. Rudolph (13). In section

4 we present the proof that the convergence rate is

mainly determined by the second largest eigenvalue of

the Markov chain describing a GA. First, the proof is

performed for diagonalizable matrices and then trans-

ferred to matrices in Jordan normal form. The paper

ends with concluding remarks.

2 Previous work

In this section we give a short review about the two

main approaches that are used for investigating the

convergence behavior of genetic algorithms.

In the �eld of genetic algorithms and convergence be-

havior we could distinguish two large areas of research.

The �rst line of research results from the theoretical

investigations by J. Holland (9) and D. E. Goldberg

(6) and are based on the schema theorem and the ex-

istence of building blocks for selectorecombinative ge-

netic algorithms. In depth work in this line of research

was done by H. M�uhlenbein (2), D. Thierens (17), or

D.E. Goldberg (7). A comprehensive overview of con-

vergence time complexity can be found in D. Thierens

thesis (16). All these models use the notion of building

blocks, and are able to describe how building blocks

grow and how long it takes to overtake a population

accurately.

The second line of research treats GAs as a stochas-

tic process with special properties. Starting with D.E.

Goldberg (8) using Markov chains for modeling a GA,

further work was done by T.E. Davis (3), A.E. Nix

(11), and M.D. Vose (18) showing that a GA using se-

lection, mutation and crossover can be fully described

by the transition matrix of a Markov chain. Markov

chains were also used by A.E. Eiben et al., G. Rudolph,

and A. Agapie for the proof of the global convergence

of evolutionary algorithms (4; 13; 1). The proof was

an important step towards a better theoretical under-

standing of GAs . Based on the global convergence

proof, J. Suzuki (15) identi�ed the in
uence of the

eigenvalues of the transition matrix of the Markov

chain on the convergence rate of a GA. Although he

gave upper and lower bounds for the convergence rate,

he was not able to specify the important eigenvalue for

the convergence rate exactly.

3 Preliminaries

This section provides the background that is neces-

sary for understanding the investigations concerning

the convergence analysis. We start by de�ning some

basic properties of the used GA. This is followed by

a description of the basic concepts of Markov chains

and a review of the properties of stochastic matrices.

The section ends with the proof of GA convergence as

provided in (13).

3.1 Properties of the Genetic Algorithm

This paper deals with a kind of simple Genetic Al-

gorithm (GA) in which the genetic operators are re-

stricted to crossover, mutation and selection. Further-

more, the GA uses a binary representation of �xed

length. The population size of the GA is determined

a priori, and the probabilities for the three operators

are not equal to zero.

For our investigation we use elitism in a way that the

best parent survives if it is better than the best o�-

spring. The individual with the highest �tness among

all possible individuals is denoted as super individual.

It represents the global optimum of the problem.

Further assumptions concerning the fundamental

structure of the GA are not necessary in this context.

Di�erent types of crossover and mutation operators

should have no in
uence on the convergence behavior

of GAs and the proof shown in section 4 should still

hold.

3.2 Markov chain analysis

The principal behavior of a GA can be described by

using the Markov chain model. Using this concept we

are able to develop a convergence model for the GA.

A Markov chain is a discrete stochastic process. The

behavior of the stochastic process in future states de-

pends only on the present states, but not on the past

ones. Therefore, the probabilistic motion of a Markov

chain could be described by using a transition matrix

P .

For homogeneous Markov chains the t-th step tran-

sition matrix P t can be determined iteratively.

The Chapman-Kolmogorov equations (compare M.

Iosifescu, p.65 (10)) yield

P t =
Y
t

P:

Let p ti denote the probability that the Markov chain

is in state i at step t. The p ti can be gathered in a row
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vector p t = (p t1 ; p
t
2 ; : : : ; p

t
n). The initial distribution

p 0 is similarly de�ned. Then

p t = p 0 � P t

for t � 0. Therefore, a homogeneous Markov chain is

completely determined by the tuple (p 0; P ).

The distribution p on the states of the Markov chain

is called a stationary distribution, if pP = p, and is

called a limit distribution, if the limit p = p 0 lim
t!1

P t

exists.

Every transition matrix of a Markov chain is stochas-

tic. A non-negative matrix is said to be stochastic if

all its row sums are equal to one. Further matrix clas-

si�cations occurring in the following are given by G.

Rudolph, p.55 (13). Stochastic matrices possess spe-

cial properties:

� The eigenvalues of a stochastic matrix have mod-

ulus less or equal to 1.

� An irreducible stochastic matrix possess a simple

unit eigenvalue.

� The right-hand eigenvector corresponding to a

unit eigenvalue of a stochastic matrix is given by

e = (1; : : : ; 1)T .

� The vector p is a stationary probability vector

of a stochastic matrix, if a left-hand eigenvalue

corresponds to a unit eigenvalue.

The source of these statements can be found in W.

Stewart, p. 28-30 (14).

3.3 Proof of global convergence

A qualitative Markov chain model of GAs is suÆcient

for the global convergence proof. The following lemma

is necessary for the convergence proof presented by G.

Rudolph (13). We use this lemma later for the analysis

of the convergence rate.

Lemma 1

Let P be a reducible stochastic matrix, where C 2

IRm�m is a primitive stochastic matrix and R; T 6= 0.

Then

P 1 = lim
t!1

P t

= lim
t!1

0
@ C t 0

t�1P
i=0

T iRC t�i T t

1
A

=

�
C1 0

R1 0

�

is a stable stochastic matrix with P 1 = e p1, where

p1 = p 0 P 1 is unique regardless of the initial distri-

bution, and the limit distribution p1 satis�es

p1i > 0 for 1 � i � m and p1i = 0

for m < i � n.

Matrix C is associated with the absorbing states of

the Markov chain. For the proof see M. Iosifescu,

p.126 (10). Using this lemma we can �nally present

the global convergence statement:

A genetic algorithm with an arbitrary initial distribu-

tion converges to the global optimum if the following

assumptions are ful�lled:

� Selection chooses the best individual from parents

and o�spring (elitism).

� Every state is reachable from any other state.

For a detailed proof the reader is referred to G.

Rudolph, chapter 5 (13).

4 Analysis of the convergence rate

For an analysis of the convergence rate, the proof of

convergence, illustrated in the previous section, is a

necessary condition. If we can not prove that the GA

converges an investigation into convergence rate is use-

less. Using the convergence proof we prove in this sec-

tion that the convergence rate is mainly determined

by the second largest eigenvalue of the Markov chain

describing a GA.

The theoretical identi�cation of the second largest

eigenvalue as the fundamental parameter in
uencing

the convergence rate is �rst obtained for diagonaliz-

able matrices. This result is then transferred to ma-

trices in Jordan normal form, which represents a more

general class of matrices.

4.1 Diagonalizable matrices

We want to start by identifying a measurement for

the convergence rate of a GA. This should allow us to

determine the progress of the GA's convergence.

J. Suzuki (15) measures the convergence rate as the

degree in which the individual with the highest �tness

in a population coincides with the super individual.

Therefore, he investigates how closely the probabilityP
k2X� pnk converges to

P
k2X� p1k , whereX� denotes
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the amount of populations containing the super indi-

vidual. We want to use the same convergence mea-

surement for the following analysis of the convergence

rate.

Due to the necessary assumption that the GA is glob-

ally convergent, the probability
P

k2X� p1k converges

to one (Lemma 1). Based on Suzuki's measurement of

convergence and Lemma 1 we analyze how fast the

probability
P

k2X� pnk converges to one for a �nite

number of generations.

Furthermore, we use for the analysis of the conver-

gence rate of transition matrices the classical Perron

Formula (compare V. Romanovsky, chapter 1 (12)).

This formula allows us to compute the powers of a

square matrix P . In the case of diagonalizable matri-

ces, the Perron Formula can be reduced to

P =

nX
i=1

�iviu
T
i ; (1)

where �i is an eigenvalue of matrix P , vi and ui are the

corresponding right and left eigenvectors. Equation 1

is called the spectral representation of a matrix. As a

relevant consequence it follows

Pn
k; � =

NX
i=1

w
(i)

k; � �
n
i : (2)

Using the previous statements we could �nally formu-

late the theorem that the convergence rate depends

on the second largest eigenvalue of the diagonalizable

transition matrix:

Theorem 1

Let C > 0 be constant.

A constant C exists which satis�esX
k2X�

pnk � 1 � C � j�2j
n; (3)

where j�2j is the second largest eigenvalue of a diag-

onalizable transition matrix P describing the Markov

chain of a global convergent GA.

Proof of Theorem 1

If k 2 X�, then can be followed:

Pn
k; � = 0 � 6= k;

Pn
k; � = 1 � = k:

Using equation (2) the following equation holds for

k =2 X�

Pn
k; � =

NX
i=1

w
(i)

k; � �
n
i :

P is a stochastic matrix. Therefore, the largest eigen-

value of P is equal to unity. The simple unit eigenvalue

is identi�ed as the absorbing state of the corresponding

Markov chain. Furthermore,

w
(1)

k; � = (v1 u
T
1 )k; � = e � p1

T

=

0
B@

p11 � � � p1N
...

...

p11 � � � p1N

1
CA

holds because of the properties implied by a stochastic

matrix (compare subsection 3.2). As P describes a

Markov chain, we get

pn� =

NX
k=1

p0k P
n
k; �

=

NX
k=1

p0k

NX
i=1

w
(i)

k; � �
n
i :

Therefore,
P

� =2X�

pn� =

=
P

� =2X�

NP
k=1

p0k

NP
i=1

w
(i)

k; � �
n
i

=
P

� =2X�

NP
k=1

p0k

�
�n1 w

(1)

k; � +
NP
i=2

w
(i)

k; � �
n
i

�

=
P

� =2X�

NP
k=1

�
p0k w

(1)

k; � + p0k

NP
i=2

w
(i)

k; � �
n
i

�

=
P

� =2X�

NP
k=1

p0k p
1

� +

" P
� =2X�

NP
k=1

p0k
PN

i=2 w
(i)

k; �

#
j�2j

n

�

P
� =2X�

NP
k=1

p0k p
1

� + C � j�2j
n

=
P

� =2X�

p1�

NP
k=1

p0k + C � j�2j
n

=
P

� =2X�

p1� � 1 + C � j�2j
n

= C � j�2j
n,

where C > 0 and p1� = 0 for � =2 X�(Lemma 1). Us-

ing the complementary probability the proof is com-

pleted.

q.e.d.

As a result, the convergence rate of the correspond-

ing Markov chain is mainly determined by the second

largest eigenvalue of the diagonalizable transition ma-

trix.

4.2 Matrices in Jordan normal form

In the previous subsection we used diagonalizable ma-

trices for our proof, because they have properties that
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can be used advantageously. However, in general the

fundamental assumptions for the class of diagonaliz-

able matrices are very restrictive. An arbitrary matrix

is often not diagonalizable. Hence, we analyze in this

subsection the more general class of matrices in Jor-

dan normal form1 and illustrate how the proof from

the previous subsection can be transferred to matrices

in Jordan normal form.

The transition matrix P in Jordan normal form de-

scribing the Markov chain of a global convergent GA

can be written as (see F. Gantmacher (5))

P =

0
BBB@

1 0

J2
. . .

0 Jm

1
CCCA ;

where the Ji are called Jordan Blocks with the follow-

ing shape

Ji =

0
BBB@

�i 0

1 �i
. . .

. . .

0 1 �i

1
CCCA �

The �i are the eigenvalues of P (compare M. Iosifescu,

p. 50-51 (10)). The Jordan Blocks have the important

property

Ji = �i �E +

0
BBB@

0 0

1 0
. . .

. . .

0 1 0

1
CCCA

| {z }
U

;

where matrix U is called nilpotent. A non-negative

square matrix U is de�ned to be nilpotent , if 9k 2 IN

holds Uk = 0.

P n =

0
BBB@

1 0

J2
. . .

0 Jm

1
CCCA
n

=

=

0
BBB@

1 0

J n
2

. . .

0 J n
m

1
CCCA

reveals that the unit eigenvalue does not a�ect the

convergence rate. Therefore, J n
i ; i = 2 : : :m; are the

1All matrices above Cj have a Jordan normal form.

remaining parameters that have to be analyzed. With

using

U =

0
BBB@

0 0

1 0
. . .

. . .

0 1 0

1
CCCA

the Jordan blocks become

J n
i = [�i �E + U ]

n

= �ni � E + n�n�1i � E � U

+ : : :+ n�i �E � U
n�1 + U

n:

As mentioned before, matrix U is nilpotent. This

yields

J n
i = �ni �E + n�n�1i � E � U

+ : : : +
n (n� 1) : : : (n� k)

(k � 1)!
�n�k�1i � E � U

k�1

� C � �ni �E because j�ij < 1;

for C > 0 and k 2 IN. Hence we obtain the �nal result:

J n
i � C � �ni � E

for C > 0 and k 2 IN.

Interpreting the results, reveals that the J n
i are upper

bounded by �ni for i = 2 : : :m, where �i is the corre-

sponding eigenvalue to Ji. The behavior of P
n mainly

depends on the size of the second largest eigenvalue �2,

because in comparison to �n2 the powers of the other

eigenvalues can be neglected.

The obtained result extends the proof for diagonaliz-

able transition matrices and con�rms that the second

largest eigenvalue is also the important parameter for

the long term behavior of matrices in Jordan normal

form.

Finally, we want to note that in general the transition

matrix of a Markov chain is not in Jordan normal form,

but using standard matrix transformations it always

can be transformed into it. Although, we assume that

the transformation of an arbitrary transition matrix

into a matrix in Jordan normal form does not mod-

ify the statements about convergence rate, the formal

proof for this is still open.

5 Conclusion

After a short review of two di�erent approaches to the

analysis of the convergence behavior of genetic algo-

rithms (building block oriented versus Markov chain
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models) we present some requisites we need for our

investigation into the convergence rate of genetic al-

gorithms. In section 3 we present some principles of

Markov chain models, and review some properties of

stochastic matrices. As an investigation into the con-

vergence rate of genetic algorithms only makes sense,

if it can be proven that a GA converges to the global

optimum, we review the convergence proof from G.

Rudolph (13). Using this proof and some of the work

by J. Suzuki (15) we can extend the existing con-

vergence models and prove in the following section

that the convergence rate of genetic algorithms, mod-

eled with Markov chains is determined by the second

largest eigenvalue of the characteristic transition ma-

trix of the Markov chain. Finally, we transfer the re-

sults we get for diagonalizable matrices to matrices in

Jordan normal form.

This paper extends existing models about convergence

rate of GAs (15) and proves that the convergence rate

depends on the second largest eigenvalue of the di-

agonalizable transition matrix. The theoretical anal-

ysis of the convergence rate is based on the existing

evidence of global convergence, which are based on

Markov chains. The obtained results allow a more

detailed and deeper theoretical understanding of the

principles of evolutionary search. We hope that the

results could inspire researchers to put the focus of

research more on the underlying theoretical principles

and not to focus only on practical applications of GAs.

As a straightforward extension of this work we want to

encourage researchers to work on the estimation of the

second largest eigenvalue of the transition matrix. A

proper approximation can give us information about

the optimal choice of GA parameters like mutation

and crossover probability or selection pressure. With

that knowledge we could use a GA more eÆciently,

and we would be one step ahead on our long road to

the development of competent GAs that are able to

solve problems of bounded complexity autonomously,

fast and reliably.
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Abstract

The No Free Lunch theorem is reviewed and
cast within a simple framework for black-
box search. A duality result which relates
functions being optimized to algorithms op-
timizing them is obtained and is used to
sharpen the No Free Lunch theorem. Ob-
servations are made concerning problem de-
scription length within the context provided
by the results of this paper. It is seen that
No Free Lunch results are independent from
whether or not the set of functions (over
which a No Free Lunch result holds) is com-
pressible.

1 Introduction

Roughly put, the No Free Lunch theorem formalizes
the intuitive idea that all blackbox search algorithms
have identical behavior over the set of all possible dis-
crete functions. Thus, on average, no algorithm is bet-
ter than random enumeration in locating a global opti-
mum. If algorithms are executed any given number of
steps, every algorithm �nds the same set of best so-far
solutions over all functions [9] [5] [1].

One of the criticisms of the No Free Lunch theorem
is that it applies to large sets of functions and it is
unclear if No Free Lunch applies to small sets or to
real world problems of practical interest. A variant
form of this criticism is that many practical problem
classes have compact descriptions, whereas elements in
the set of all functions from a �nite domain to a �nite
codomain do not have (on average) compact descrip-
tions. This criticism has previously been addressed by
various researchers [5] [2], where it was observed that
a No Free Lunch result holds over classes of functions
much smaller than the set of all functions. This paper

strengthens those observations, obtaining a sharpened
version of the No Free Lunch theorem, and also makes
more explicit a type of duality involving functions be-
ing optimized and algorithms being used to optimize
them. The paper closes with observations regarding
the No Free Lunch theorem and problem description
length.

2 Search Algorithm Framework

This section sets forth a framework for the analysis
of deterministic non-repeating blackbox search algo-
rithms. To streamline exposition, such search algo-
rithms will be referred to simply as algorithms. This
framework makes it possible to precisely model all pos-
sible algorithms as they apply to all functions of a
given �nite domain and range.

2.1 De�nitions

Let X and Y be �nite sets, let f : X ! Y be a function,
and de�ne yi as f(xi). De�ne a trace of sizem (m � 0)
to be a sequence of pairs

Tm � h(x0; y0); (x1; y1); : : : ; (xm�1; ym�1)i

Note that a trace is just an ordered sequence of ele-
ments from f (regarding f as a set of ordered pairs).
At times the subscript of a trace will be omitted to
refer to traces of arbitrary size. Let T m be the set of
all traces of size m, and let T be the set of all traces.
Adopt the following notation:

T0 = hi

T xm � hx0; x1; : : : ; xm�1i

T ym � hy0; y1; : : : ; ym�1i

Tm[i] � (xi; yi)

T xm[i] � xi

T ym[i] � yi
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A concatenation operator k will be used to extend the
size of a trace in the following way:

Tm k (x; y) � hTm[0]; Tm[1]; : : : ; Tm[m� 1]; (x; y)i

De�ne a non-repeating trace T to be a trace with
unique x components, i.e. T x[i] = T x[j] ) i = j.1 A
complete trace T is de�ned to be a trace that covers the
domain, i.e. for all z 2 X there exists an i such that
T x[i] = z. Because a trace is a sequence of ordered
pairs, a non-repeating trace corresponds to a function;
when it is complete, the corresponding function is f .

Consider a \search" operator g : T ! X which when
given a trace as an argument returns the next point
in the search space to be examined. A deterministic

blackbox search algorithm A corresponds to a search
operator g, and takes as arguments a trace Tm and a
function f 2 YX and returns the trace

Tm+1 = Af (Tm) = Tm k (g(Tm); f � g(Tm))

For example, the �rst two steps of deterministic black-
box search algorithm A would proceed as follows:

T1 = Af (T0) = T0 k (g(T0); f � g(T0))

T2 = Af (T1) = T1 k (g(T1); f � g(T1))

Such algorithms therefore operate in discrete steps
where each step generates a new pair that is concate-
nated into the trace. Note that the search operator
g is used to generate the x components of the trace,
and that function f is used to evaluate the utility
of those points; this re
ects the separation between
\exploration" (choosing the next point in the search
space) and \�tness evaluation" (evaluating the utility
of that new point). Multiple applications of these al-
gorithms will be abbreviated in the natural way, i.e.
Amf (T0) = Tm, and in particular, A0

f (T0) = T0.

A non-repeating blackbox search algorithm|referred
to simply as algorithm|is de�ned to be a black-
box search algorithm whose range contains only non-
repeating traces. The largest trace an algorithm could
generate is clearly a complete trace which has size jX j.

After m steps, algorithm A and function f will gen-
erate trace Tm from initial trace T0. In this paper al-
gorithms always start from the empty trace T0, which
may seem a limitation. However, algorithms with an
arbitrary initial trace size are actually special cases
of algorithms that start from the empty trace, as the
following illustrates: Consider algorithm A and initial
trace Tm. A corresponds to another algorithm A0 that

1This paper will follow the convention that free vari-
ables are universally quanti�ed.

given initial trace T0 will generate Tm after m steps,
and will behave exactly as A afterwards. Designating
an initial trace is thus simulated by using a slightly
modi�ed algorithm that starts at T0. In other words,
algorithms that can set all points in their traces are
powerful enough to encompass algorithms that can-
not.

Two algorithms A and B will be considered identical
if and only if they both generate the same complete
trace for all f 2 YX , i.e.:

A
jX j
f = B

jX j
f for all f 2 YX :

2.2 No Free Lunch

De�ne a performance vector of length m to be a se-
quence of m values from Y . The performance vector
associated with trace Tm is T ym. A performance vec-
tor can thus be said to be derived from a trace, and
a function and an algorithm together can be said to
generate a performance vector from T0.

The length m trace Amf (T0) generated by algorithm
A and function f will be abbreviated by Tm(A; f).
Let Vm(A; f) denote the length m performance vector
generated by A and f . The size subscripts may be
omitted when not needed. Note that the performance
vector Vm(A; f) is closely related to Tm(A; f),

Vm(A; f) = (Tm(A; f))
y

De�ne an overall measure of algorithm A and set of
functions F to be a function that maps the set of per-
formance vectors generated by A and F to a real num-
ber. An overall measure can be used to compare the
overall performance of two algorithms on a set of func-
tions, and if the two algorithms have identical overall
measures, it can be said that they perform equally
well over F . An example of an overall measure would
be to take a performance vector measure M (which
maps a performance vector to a real number), ap-
ply it to every element in F and then combine the
results in some symmetric way, such as the averageP

f2F M(V (A; f))=jF j.

De�ne an No Free Lunch result over F to be a situa-
tion where any two algorithms will have equal overall
performance with respect to the set of functions F .
Four equivalent statements of the No Free Lunch the-
orem are given below. Where ambiguous, the set of

functions involved is YX .

NFL1: For any overall measure, each algorithm per-
forms equally well.

The following is the pivotal idea contained in the proof
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by Radcli�e and Surry [5], phrased more directly in the
language of the current framework.

NFL2: For any two algorithms A and B, and for
any function f , there exists a function g such that
V (A; f) = V (B; g).

The following is the basis of the No Free Lunch proof
given by Schumacher[6].

NFL3: Every algorithm generates precisely the same
collection of performance vectors when all functions
are considered.

Schumacher has proved in addition that V (A; f) =
V (A; g) =) f = g, i.e., the collections referred to in
NFL3 are actually sets [6]. This fact is a key observa-
tion in demonstrating the equivalence of NFL1, NFL2,
NFL3, and NFL4.

As de�ned above, an overall measure is a function
of a set of performance vectors. Consider instead
a weighted overall measure in which a performance
vector measure M applied to each performance vec-
tor is weighted according to the function that gener-
ates it, i.e. W (f)M(V (A; f)), and summed over f . A
weighted overall measure is not generally subject to
the No Free Lunch theorem except in the case where
the functions are equally weighted, i.e. certain func-
tions are not deemed more important than others. The
statement below is essentially the No Free Lunch result
given in Wolpert and Macready [8].

NFL4: For any equally weighted overall measure, each
algorithm will perform equally well.

A corollary of the No Free Lunch theorem is that if an
algorithm performs better than average on one set of
functions, it must perform worse on the complemen-
tary set. This is essentially an argument for special-
ization: an algorithm will perform well on a small set
of functions at the expense of poor performance on the
complementary set.

An even stronger consequence which seems not to have
been properly appreciated is that all algorithms are
equally specialized. This contradicts commonly stated
beliefs (e.g. [4]) about how there can be robust gen-
eral purpose algorithms, meaning that they perform
reasonably well on a broad class of functions at the
expense of not performing extremely well on any set
of functions. Since every algorithm has precisely the
same collection of performance vectors when all func-
tions are considered (NFL3), it follows that if any al-

gorithm is robust, then every algorithm is, and if some

algorithm is not robust, then no algorithm can be!

3 Sharpening No Free Lunch

Let f : X ! Y be a function and let � : X ! X be a
permutation (i.e. � is one-to-one and onto). The per-
mutation �f of f is the function �f : X ! Y de�ned
by �f(x) = f(��1(x)).

De�ne a set F of functions to be closed under permu-

tation if for every f 2 F , every permutation of f is
also in F .

Let A be an algorithm with search operator g and let
� be a permutation (of X ). The permutation �A of
A is the algorithm with search operator �g de�ned by
�g(�) = ��1(g(�x(�))) where �x(�) operates on the x
values of trace � by applying � to each of them, while
leaving the y values untouched.

THEOREM: If

Tn(A; �f) = h(x0; y0); : : : ; (xn�1; yn�1)i

then

Tn(�A; f) = h(��1(x0); y0); : : : ; (�
�1(xn�1); yn�1)i

Proof: By induction on the length of the traces. The
base case is true since all traces of length 0 are the
same; T0(�A; f) = T0(A; �f) = hi. Assume the induc-
tive hypothesis (i.e., the equalities in the statement of
the theorem). By de�nition,

�g(Tn(�A; f)) = ��1 � g(�x(Tn(�A; f))

= ��1 � g(Tn(A; �f)) = ��1(xn)

Moreover, f(��1(xn)) = �f(xn) = yn. Accordingly:

Tn+1(A; �f) = Tn(A; �f) jj (xn; yn)

Tn+1(�A; f) = Tn(�A; f) jj (�
�1(xn); yn)

Which completes the proof. 2

COROLLARY (\Duality"): V (�A; f) = V (A; �f)

This Corollary is true since, by the previous theorem,
the y values are the same in both traces. This corollary
is striking in the way that it shows a correspondence
between a permutation of an algorithm and a permu-
tation of a function. The following Lemma is an easy
consequence of NFL2.

LEMMA1: If the set of functions F is closed under
permutation, then there is a No Free Lunch result over
F .

Proof: Let A and B be arbitrary algorithms. If
one can show the sets S1 = fV (A; f) : f 2 Fg and
S2 = fV (B; h) : h 2 Fg, are equal, then any two
algorithms will provide the same data for computing
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their combined performance measures, and therefore
the same result will be obtained. By NFL2, there ex-
ists a function h such that V (A; f) = V (B; h). Be-
cause these two performance vectors are equal, h must
be a permutation of f , and thus f 2 F =) h 2 F .
Hence S1 � S2. The reverse containment follows by
symmetry. 2

The previous lemma was an intermediate result in
Radcli�e and Surry's proof of the No Free Lunch the-
orem [5]. The converse of this lemma is also true.

LEMMA2: If a No Free Lunch result holds over the set
of functions F , then F is closed under permutation.

Proof: Assume by way of contradiction that a No
Free Lunch result holds over the set F , but that F
is not closed under permutation, i.e., the function
f 2 F has a permutation g which is not in F . Con-
sider an arbitrary algorithm A. Let M(V (A; f)) = 1,
and let M equal zero for all other performance vec-
tors generated by A. By NFL3 and the paragraph
following it, for every algorithm B there exists a func-
tion hB (the subscript on h indicates dependence on
B) such that M(V (B; k)) = 1 () k = hB . Let
the overall measure be the sum

P
k2F M(V (B; k)).

Note that this sum is 1 when B = A, and since a
No Free Lunch result is assumed over F , the sum is
1 for every algorithm B. As f and g are permuta-
tions, let f = �g. By duality, V (A; f) = V (A; �g) =
V (�A; g), and thus M(V (�A; g)) = 1. Accordingly,P

k2F M(V (�A; k)) = 0 (since M(V (�A; k)) is non
zero only for k = h�A = g =2 F ), a contradiction. 2

Combining the previous lemmas yields the following
sharpened version of the No Free Lunch theorem:

NFL: A No Free Lunch result holds over the set of
functions F if and only if F is closed under permuta-
tion.

4 NFL and Permutation Closure

In this section, some consequences of the previous re-
sults are illustrated.

De�ne the permutation closure P (F ) of a set of func-
tions F � YX by

P (F ) = f�f : f 2 F; and � is a permutation (of X )g

Note that for any sets F; F 0 of functions (from YX ),

P (F [ F 0) = P (F ) [ P (F 0)

By construction, P (F ) is closed under permutation
and therefore a No Free Lunch result holds over P (F )
for any set F � YX (and hence over unions of such

sets). It bears mentioning that in particular NFL1,
NFL2, NFL3, and NFL4 are valid with respect to
P (F ). Not only do all algorithms display equal behav-
ior over P (F ) for some overall measure of performance
(NFL1), they also generate exactly the same set of per-
formance vectors (NFL3) and therefore have identical
collections of objective function values at every time
step.

An equivalence relation � may be de�ned with respect
to permutations. Functions f and g are said to be
equivalent, denoted by f � g if and only if there exists
a permutation � (of X ) for which f = �g. Similarly,
algorithms A and B are said to be equivalent, denoted
by A � B if and only if there exists a permutation �
(of X ) for which A = �B.

Let the equivalence class of function f be denoted by
[f ], and let the equivalence class of algorithm A be
denoted by [A]. To simplify notation, let A denote a
set of algorithms, let F denote a set of functions, and
de�ne V (A;F) and V (A; f) as follows

V (A;F) = fV (A; f) : f 2 Fg

V (A; f) = fV (A; f) : A 2 Ag

Since [f ] = P (ffg), NFL applies; therefore, for any
given algorithms A and B,

V (A; [f ]) = V (B; [f ])

It follows immediately from the de�nitions that if F
is closed under permutation and f 2 F then [f ] � F .
Therefore the case above (i.e., F = [f ]) is the �nest
level of granularity at which a No Free Lunch result can
hold. Moreover, any set F of functions closed under
permutation is a disjoint union of equivalence classes,
thus No Free Lunch results hold only over unions of
equivalence classes.

By de�nition and duality,

V ([A]; f) = fV (�A; f) : � is a permutationg

= fV (A; �f) : � is a permutationg

= V (A; [f ])

Bringing NFL into the picture yields the result that
for any given algorithms A and B,

V ([A]; f) = V (A; [f ]) = V (B; [f ]) = V ([B]; f)

It follows that for any given algorithm A and any given
function f , the following are identical:

� The average performance over all algorithms using
function f .
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� The average performance over an arbitrary equiv-
alence class of algorithms using function f .

� The average performance over all functions in the
equivalence class [f ] using algorithm A.

Moreover, the phrase \average performance" can be
replaced with \set of performance vectors" in the list
above. Whereas most No Free Lunch results have been
expressed in terms of some measure of performance, all
algorithms in fact display exactly the same behavior
over any set of functions closed under permutation in
the sense that the performance vectors are identical.

5 NFL Equivalence Class Examples

In this section, some extreme examples of permutation
closure are presented. These examples not only illus-
trate applications of NFL, but also set the stage for
discussing the notion of problem description length.

For conciseness, a function will be represented by a
list of its output values (i.e., as a sequence; the points
of the domain are implicitly the indices into the se-
quence).

The smallest permutation closures correspond to func-
tions that return a single value. For example,

f = h0; 0; 0; 0i =) [f ] = ffg

Such problems are in some sense uninteresting from
a search point of view, since a single evaluation auto-
matically determines the maximum and minimum of
the evaluation function.

The smallest sets corresponding to a permutation clo-
sure where the evaluation functions display variability
are needle-in-a-haystack functions. Such a function f
has the same evaluation (call it 0) everywhere except
at one point in the domain, where a better evaluation
is found (call it 1). Since there is exactly one point in
the space with a di�erent evaluation, the size of [f ] is
jX j. For example

f = h0; 0; 0; 1i =)

[f ] = fh0; 0; 0; 1i; h0; 0; 1; 0i; h0; 1; 0; 0i; h1; 0; 0; 0ig

An interesting class of functions is the set of decision
problems which return Boolean values (Y = f0; 1g).
Note that NP-Complete problems are frequently de-
�ned as particular decision problems. This class is
in one-to-one correspondence with the set of length
N = j X j binary strings, and is therefore equal to its
permutation closure. It is moreover a disjoint union of

equivalence classes [f1]; : : : ; [fN ] where

fi = h 1 : : : 1| {z }
i times

; 0; : : : ; 0i

j [fi] j =

�
N

i

�

As a �nal example, consider functions that are one-
to-one and onto. This class of functions also equals
its permutation closure. Without loss of generality,
X = Y and such functions are permutations. There
is a single equivalence class, namely [I ] where I is the
identity function, and its size is N ! (where N =jX j).

6 Problem Description Length

The average description length for functions that are
members of a permutation closure is discussed in this
section. Although this is only done for select cases,
the cases illustrate the extremes in average description
length.

Whitley [7] has previously made (a variation on) the
observation that given any permutation � (on X ), the
permutation closure [�] is the set of all N! permuta-
tions, and the average description length for its mem-
bers is 
(N lnN) bits, where N = jX j.

A more general observation is that given any set F of
functions, the average description length of members
in P (F ) is 
(ln k) bits, where k = jP (F ) j.

An interesting question is: when is the the average
description length over the members of some permu-
tation closure polynomial and when it it exponential?
A correct, but somewhat circular answer, is that the
average description length is polynomial when ln k is
polynomial. Nevertheless, we can still use this idea to
examine average description length for examples which
provide bounding cases.

It has already been noted above that the average de-
scription length for permutations is 
(N lnN) bits.
Note, moreover, that an explicit de�nition of a per-
mutation (as a sequence, as described in the previous
section) would take O(N lnN) bits; there are N im-
ages (positions in the sequence) to de�ne, and each
takes O(lnN) bits (since there are N points in the
range). Therefore, on average, the permutation clo-
sure [�] contains incompressible functions; the average

description length of a member is the same order of
magnitude as the size of an explicit de�nition (as a
sequence).

At the other extreme is the permutation closure [f ] of
a needle-in-a-haystack function f (described above).
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Explicit de�nition of a member (of [f ]) requires 
(N)
bits, whereas the average description length is O(lnN)
bits. Therefore members of this permutation closure
are highly compressible.

These two extreme cases illustrate that No Free Lunch
results are independent from whether or not the set of
functions (over which a No Free Lunch result holds) is
compressible.

7 Conclusions

No Free Lunch theorems in various equivalent forms
are reviewed. A duality result is proven and used to
obtain a sharpened No Free Lunch theorem, in the
sense that both necessary and su�cient conditions are
obtained.

It is proven that the permutation closure of a single
function is the �nest level of granularity at which a
No Free Lunch result can hold. The average descrip-
tion length of members of permutation closures is com-
puted (for select cases) and is related to compressibil-
ity. It is seen that No Free Lunch results are inde-
pendent from whether or not the set of functions (over
which a No Free Lunch result holds) is compressible.
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|'~^Z¹\^kq`b\W`fzjZ�s¿xbupnf`bkqo�]q~^e8ovz�ove�\hupZ�e�Z�m�]jZ�sÀaV`bk
x¥e­ovm^ope.g^eÁx-kqZ�xÂm^`bm^°¶`��fZ�kquvxb\^\^ovm^nÀkqZ�}	]qx-mhnbuvZ
\^utxb}�Z�e­Z�m�]H\^kj` ² uvZ�eÃx-mhs­kqZ�zjg^up]qzyxbkjZ[}	`be­\hxbkjZ¡s
]q`�x�}�uvxfzjzjot}�x-uQÄ±�Åove­\^upZ�e­Z�m�]qx-]jov`bmQ_

Æ ÇfÈ ¨i©^É�Ê$Ë$«W¨^Ì�É È

Í °»\J`fopm�].}�kj`�zjzj`��bZ�k§otz.��mh`�¬�mO]j`�aXx��f`bk¾]q~^Z@aV`bkqe@x�]qop`fm�`-a
]j~hZHzj`[}�x-uvupZ¡s�ÎiÏ-ÐvÑXÒfÐpÓiÔ­Î�ÑVÕiÖ{×iØ�_D·Hg^ovuvs^opm^n ² uv`S};�iz5x-kqZ#]j~h`fzjZ
kqZ�utx�]jov�bZ�up�
zj~^`fk�]¾nbZ�m^Z@z�g ² z�Z¡Ù�g^Z�mh}�Z�z±¬�~^ot};~Q�D¬�~^Z�m�}	`fe�°
² ovm^Z�sQ��aV`bkqe ² Z	]�]qZ�k@zj`buvgi]jov`bmhz�_À|'~^Z¹e­Z�};~hxbm^otz�e¯`ba$nbZ�°
m^Z�]jot}�x-uvnb`bkqop]j~^e�Ú¶Ä±�[Û5ove­\^upot}	op]juv�­xbzqz�ovnbmhz5~^ovnb~hZ�k�};~hxbmh}	Z¡z
]j` ² g^ovutsiopmhn ² uv`i};�iz"]q`FZ�½Sotz�]§`��fZ�k$nfZ�m^Z�kqx-]jov`bmhz�_±ºÜm¸`b]j~^Z�k
¬H`bk;s^z���]q`�z�g^kq�Sop�fZb_
|'~^ZHovs^Z�x[opm.]j~^otz5¬d`fkj�±otz ² xbzjZ�s�`bmw]q~^ZHaXxb}	]D]q~hx�] ² g^ovutsiopmhn
² uv`i};�SzDe@x-ovm^uv�w}	`bmJz�otz{]5`-a^]q~^`fzjZynfkj`fg^\w`ba^nbZ�mhZ�zD¬�~^ov};~�x-kqZ
}	uv`fzjZ�uv�§up`i}�x-]jZ¡s¾]j`[Z�xf};~¾`-]j~hZ�k¡_DÝ"`�¬¾�-}�`bmhzjotsiZ�kÞ]{¬d`[nbZ�mhZ�z��
¬�~^ot};~FsighZ$]q`�]q~^Z[mJx�]jghkjZ[`-aQ]q~^Z[\hkj` ² upZ�eÃ¬d`fg^uvs�]jZ�mhs@]q`
aV`bkqeßx ² g^ovutsiopmhn ² uv`i};�W��xbmhswx-kqZyzjZ�\hxbkqx-]jZ¡s ² �±zj`be­Zy`b]j~^Z�k
nbZ�m^Z�z"opm¹]j~hZ�};~^kq`be­`fzj`be­Z§opm�]q~^Z�siZ�aXx-g^up]$nbZ�m^Z¾`bk;siZ�kjovm^n
`-aÞ]j~^Z±};~^kq`be­`fzj`be­Z"kqZ�\^kqZ�zjZ�m�];x�]jov`bmÞ_5|'~^Z¡z�Z[]{¬H`�¬�ovupuàm^`b]
Z�xfz�ovuv� ² Z�x ² uvZw]j`*aV`bkqeáx ² g^ovuvs^opm^n ² uv`S};�à�à¬�~^Z�m¸z�g ²iâ Z�}	]

]j` Í °»\W`bovmf]*}�kj`�zjzj`��bZ�k�ã ² Z�}�xbghzjZF]q~^Z
\^kq` ² x ² ovupop]{�¿`ba§~^op]�°
]jovm^n�z�`fe�Z*opm�]jZ�kje­Z¡siovx-]jZF\J`fopm�]�xfz¾]q~^ZF}�gi]�°»\J`fopm�]�`-a�]j~hZ
}	kq`fzqzj`��bZ�k�otz[~^opnf~Q_±|'~^Z�kqZ	aV`fkjZ¾]q~^Z�`bk;siZ�k[`-a�nbZ�m^Z�z[ovm
]j~hZ
};~^kq`be­`fzj`be­Z.Z�mh}�`Ss^opm^n�\^utx��iz¾x-m�ope­\W`bkj]qxbmf]¾kq`buvZ­opm�]j~hZ
}	`fmS�bZ�kqnbZ�mh}	Z[`-a5]j~^Z�Ä±��_
ä�Z¹\hkj`f\J`�z�Z�x�e�Z�]j~^`isÂovmå¬�~^ot};~Â\JZ�kje.gi]qx-]jov`bmhz­`ba$]j~hZ
nbZ�m^Z�`bk;siZ�kqopmhnFx-kqZ.}�`bmhzjotsiZ�kqZ�s
s^��mJx-e­ov}�x-uvup�f_wºÜm�æiZ�}6]qop`fm
ç ]q~^Z*\^kq`b\W`fzjZ�sOe­Z�]j~^`is�otz.s^Z�zq}	kqo ² Z�sB_
|'~hZ*e­Z	]q~^`is�ovz
ove�\hupZ�e�Z�m�]jZ�s�aV`fk.x�e­ovm^ope.g^e8m^`bmi°»`��bZ�kjutx-\h\^opmhnFkqZ�}	]qx-m^°
nbuvZw\^utxb}�Z�e­Z�m�]$\hkj` ² upZ�eáxbmhs¹]j~hZ�ove�\hupZ�e�Z�m�]qx�]qop`fm�ovz[siZ	°
zq}	kqo ² Z�s�ovm@æiZ�}6]qop`fm�èh_DºÜm�æSZ¡}6]qop`fm�é±kqZ�zjg^up]qz#x-kqZ�}	`fe�\Jx-kqZ�s
¬�op]j~¹]j~^Zw}�uvxfzjzjot}�x-uQÄ±��ê z�kqZ�zjg^up]qz�_

ë ì ©^É�í¾Éd¦fîDÊ!ï¯îB¨^ð"É�Ê

ºÜm¹Z�xb};~¹nbZ�m^Z�k;x�]qop`fmFx­zjopm^nfupZ§nbuv` ² x-uB\WZ�kqe�gi];x�]jov`bm¹otz�}	`bm^°
zjovsiZ�kjZ¡sB_ñ|'~^otzF\WZ�kqe�g^]qx�]qop`fmòe@x-\hz�xÀnbZ�mhZµmSg^e ² Z�k*]q`
x¿\W`fzjop]jov`bmò��x-uvg^Zµopm®]q~^ZO};~^kj`fe­`fzj`be­Z�Z�mh}�`isiopmhnh_ó|'~hZ
}	kq`fzqzj`��bZ�k[`b\WZ�k;x�]qop`fm¸otz ² xbzjZ�sµ`bmµ]j~^otz±e@x-\^\hopm^n�ovmhz�]jZ�xfs
`-a#]q~^Z�`fkjovnbovmhxbuQnbZ�m^Zw`bk;siZ�k$ovm�]j~^Z.kjZ�\^kqZ�zjZ�m�]qx-]jov`bmQ_�Y[g^k�°
ovm^n@]j~hZwZ��f`buvgi]jov`bm�`-a5]j~hZ�nbZ�m^Z	]qov}¾xbupnf`bkqo�]q~^e��i]j~hovz$nbuv` ² xbu
\WZ�kqe�gi];x�]jov`bm�otz)kjZ¡xbs â ghz�]jZ¡s ² ��e�Z¡x-mhz)`baWz�]qx-]jotz{]qov}�x-u^x-mJx-up°
�iz�otzH`bmFm^Z�ovnb~ ² `bg^kqopmhn�nbZ�m^Z�z��^}�xbuv}�g^utx�]jZ¡s@aV`fkd]q~^Z ² Z¡z{];z'`-a
]j~hZ¾\J`S`bu¶_

ô cd`fmhz�otsiZ�k¾]j~hx-]�]q~^Z*zj`buvgi]jov`bmO]q`¸x�z�g ²iâ Z�}	].\^kq` ² uvZ�e
kqZ�Ù�g^ovkjZ¡zH]j~^Zws^Z	]jZ�kje­ovmhx�]qop`fm�`-a#x@z�Z�]"`-a)\hx-k;x-e­Z	]qZ�k;z
õ�_Ã�$z*]j~hZ¸öhk;z�]Fz{]qZ�\ÅÄ±�÷kqZ�Ù�g^ovkjZ¡z@]j~hZµsiZ�]jZ�kqe­o�°
mhx-]jov`bmÂ`-a¾x�`bm^Z�°L]q`-°»`bm^ZFe­xb\^\^ovm^nOaVkq`be¯]q~^Z
z�Z�]@`-a
\hxbkqxbe­Z	]jZ�kqz"]j`F]j~^Z­zjZ	]±`-a ² ovmhxbkj��z�]jkqopm^n�z[ø$�à]j~^otz§ovz
}�x-uvupZ¡s�]q~^Z.ù;ÓBÖ	Õ^ÒbÐpÓ^Ô­`baD]q~^Z¾\hxbkqxbe�Z�]jZ�kqz�_

úiû#ü õ ûDýþ2ÿDû ¬�~^Z�kqZ õ û � õ�� ÿDû � ø
ä�Zwmhxbe�Z ÿ û xfz'Ôiù6ÓWù6Ø�_ ÿ û ê z��hZ�xf};~�`-a)¬�~^ot};~
x-kqZ ² o�°
mhxbkj��z�]jkqopmhnfz��WxbkjZ�}�`bmh}�x�]qZ�mhx-]jZ�s
opm�]j`¹x�`fm^Z.siove­Z�mi°
zjop`fmhx-u ² opmJx-kq�Âxbkjk;x��Àø zj`�]j~Jx�] ÿDû otz@aV`buvuv`�¬dZ¡s ² �
ÿDû���� _��"m�ovmhz�]qx-mJ}	Z±`-a#ø¥ovz�}�x-uvupZ¡sFx¹Ö	��
6Õ
��Õ-Ø;Õ
�*ù�_

ô ä�Z�s^Z	öhm^Z­x��)ù�
��*Ï������LÐ Õ�Ó�Õ��)Ô^ù;ÓWù	Ø[xfz[xbm
`bk;siZ�kjovm^n
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kqZ�utx�]qop`fm*`-a5]j~hZ¾nbZ�mhZ�zHopm�x­};~^kq`be­`fzj`be­Zf_Þº»a����.kqZ�\^°
kqZ�zjZ�m�]qz#zjgh};~­x§\JZ�kje.gi]qx-]jov`bm�`b\WZ�k;x�]j`fk)`bm­x§};~hkj`fe�`b°
zj`be­Zb�Wop][otz[siZ�öhm^Z¡s ² �Fe­Z�xbmhz"`ba�o�];z$nfZ�m^Z�Z�uvZ�e­Z�m�]qz
xfz ü

� � � ÿ�� û �! ÿ ��" û�#
$$Z�kqZ&%�otz�x�\JZ�kje.gi]qx-]jov`bm¹aVg^mh}	]jov`bm ü

% ü�')( � ç �+*,*+*-� Í/. ýþ0')( � ç �,*,*+*-� Í/. ¬�~^Z�kjZ

Í !21 ø 1 x-mJs3%54 � Z�½Sotz�]qz�_

ô �[z�x�\hxbk�]w`ba']j~^Z�\hkj`f\J`�z�Z¡sµe­Z�]j~^`is�¬HZ�siZ	öJm^Z�aV`fk
Z¡xb};~�nbZ�mhZd\W`fzjo�]qop`fm�6Þ`-aW]j~^Z�};~^kq`be­`fzj`be­Z'x[aVg^mh}6]qop`fm7 û ]q~hx�]�xfsie­o�];z¾x*nfZ�m^Z­��x-uvg^Z­xbz¾x-kqnbghe�Z�m�]qz§x-mhsµovz
siZ�öhm^Z¡s¹xfz ü

8 û#übÿÞû5ýþ:9 ¬�~hZ�kqZ ÿÞû � ø
;yupZ¡xbzjZ'xbuvzj`¾m^`b]jZ�]q~hx�]¡�fovm­]j~^Z$e�`�z{]�nfZ�m^Z�kqxbuh}�xfz�Zf� ÿ û
}�x-m ² Z�x�]jg^\hupZwkqZ�\hkjZ¡z�Z�mf];x�]qop`fmF`ba)��xbkjov`bghz�aVZ�x�]qg^kqZ�z�_
|'~^Z�kjZ�aV`bkqZ<8 û e@x�� ² Z$siZ�öhm^Z�s�`��bZ�k)]q~^Z[}�`bkqkjZ¡z�\W`bmJsS°
ovm^n@x-uvupZ�upZ±]qg^\^uvZwsi`be@xbopmQ_
=h`bk"siZ�m^`-];x�]jov`bmJx-uQzjope­\^uvov}�o�]{�f�^¬HZ§¬�ovuvuÞsiZ	öJm^Z

7�û �! 8 û Ú ÿÞû Û
zj` 7 û ovz�x�kqZ�xbuB��xbupghZ§¬�~hov};~�otz�}�x-ut}	ghuvx-]jZ�s*aVkq`be�x ÿ û
² ��e­Z�xbmhz'`-a 8 û _
ä®~^Z�mñ]j~hZ ÎiÏ-ÐvÑXÒfÐpÓiÔáÎ�Ñ Õ^Ö{×iØ¿`ba
x Ä±��otz¿kqZ��bZ�kqzjZ
e@x-\h\JZ¡s�]j`@]q~^Z.xf}6]qghx-uQ\hkj` ² upZ�eás^`be@x-ovmQ�hop][otz"gJz�gi°
xbupuv��` ² zjZ�kq�bZ¡s¹]j~hx-]±]j~^Z.aV`bkqe@x�]jov`bmµ`-a ² up`i};�iz[}�`bkqkjZ�°
zj\J`fmhs^z$]j`*zj`be­Z.\hx�]j]jZ�kqmhxbuL�àz{]qkjgJ}6]jghkqxbuL�Je­x-]j~^Z�e@x�]�°
ot}�xbuBopmS��x-kqovxbmh}	Z±`fk'}�`���x-kqovxbmh}	Z¡z�_
|'~^Z±aVghmh}6]qop`fmhz>8 û ¬�ovupuÞzjZ�kq�bZ§]q`@Z	½i\^kqZ�zqzHaVZ�x�]qg^kqZ�z"xfz
kqZ�xbu���xbupghZ�z­¬�~^ot};~å¬�ovuvu ² Z�gJz�Z¡sÀ]q`�siovzq}	`��fZ�k@zj`be­Z
ovmS��xbkjotx-mJ}	Z¹`bk@}	`���x-kqotx-mh}�Z�z�_ÂæS`J�yovm¥x�¬'x��b��¬HZ�x-kqZ
siZ�öhm^ovm^n±x"~hxbmhsiuvZb��¬�~^Z�kqZ�]q~^Z�Ä±�ÀghzjZ�k5~hxfzDx[};~hx-mh}�Z
]q`w~^`S`b��°»opm@~^otz�~hopm�]yaV`fkdsiZ�öhm^ovm^n¾]q~^Z"aVZ¡x�]jghkjZ¡z�¬�~^ot};~
e@x���uvZ�xfs�]q` ² g^ovuvsiovm^n ² uv`i};�iz�_

ô �H]®Z�xf};~�nfZ�m^Z�kqx-]jov`bm�¬HZß}�xbuv}�g^uvx-]jZÅx Óàù;ÐpÔ)�BÎSÕiÏ?
-@�?A�ÓhÐB�DCE@F�ÜÏ-ÓBÖ+�LÐ Õ�ÓHG û ]q~hx�]yotz�siZ�öhm^Z¡s�aV`bk�Z¡xb};~­m^Z�ovnb~^°
² `bg^k�nbZ�m^Z�\hxbopk.\J`�z�op]jov`bmÀopm�]q~^ZF}�g^kqkjZ�mf].\JZ�kje.gi]qx-°
]qop`fm
`��bZ�k�]j~^Z.¬�~^`buvZw\W`S`bu¶_$ä�Z�\^kq`b\W`fzjZ¾o�][]j` ² Z.`-a
]q~^Z¾e­`fz�]'nfZ�m^Z�kqxbuàaV`bkqe ü

G � û ü�'JIB7 �
KML�" û�# � 7 �
KML�" ûD���N#	O . �,P�PNQ ýþ � R � (S� ¬�~hZ�kqZ

6 ! ( � ç �+*,*+*-� ÍUT (
V aB}	`fg^kqzjZHo�aW]j~^Z"};~hkj`fe�`�z�`fe­Zd}	`fe­\J`�z�op]jov`bm�ovzyx[�fZ�}	°
]q`bk�`-a$nfZ�m^Z¡z*ÚXs^g^Z*]q`¸]q~^Z¹mhx�]qg^kjZF`-a�]q~^ZF\hkj` ² upZ�e�Û
]q~^Z�mÀxbupu 7 û ê zw¬�ovuvuykqZ�sigh}�Z­]j`¸x¸z�ovm^nbuvZ 7 x-mhsO~hZ�mh}�ZG û ¬�opuvuBkjZ¡sigh}�Z±]j`@x­z�ovm^nbuvZ§aVg^mh}	]jov`bmWG@_

G û otz�x¸\^kq` ² uvZ�e¯zj\JZ¡}	opöJ}@aVg^mJ}6]jov`bmÂx-mhsÀz�~^`fg^uts ² Z
}�`Ss^Z�s�xf}�}�`bk;siopmhn�]j`[]j~^Z'};~hxbkqxf}6]jZ�kjotz�]jot}�zQ`ba^]j~hZd\^kq` ² °
uvZ�e�Z�mh}�`Ss^opm^nJ_�æSopmJ}	Z±]j~hZwx-ove�otzH]j`�}	`fmhz�]jkqgh}6]�nb`S`is
² ghoputsiovm^n ² uv`i};�Sz��S]j~hZwkjZ¡z�ghu�]"`ba/G � û z�~h`bg^uts ² Zw}�up`�z�Z�k
]q` ( aV`bk�nfZ�m^Z���x-uvg^Z¡z�xb}	]jovm^n�}	`b~hZ�kqZ�m�]juv�åxbmhs¥}	`bm^°
]qkjo ² gi]qopm^n¥aV`fk ² Z	]�]qZ�k¸zj`buvgi]qop`fmhz�_0cd`fkjkqZ�utx�]qop`fm3xbmhs
z�]qxbmhs^x-k;s�siZ��Sotx�]qop`fm
x-mhxbup�izjovz"}�x-m ² Z�ghzjZ�s�xfz$xbu�]qZ�kj°
mhx-]jov�bZ¡zHaV`bk<G û _

ô |'~^Z§m^Z�½�]'z{]qZ�\Fovzd]j`.e­`Ss^o�aV�­]q~^Z[\WZ�kqe�g^]qx�]qop`fm*e@x-\^°
\^ovm^n ² �±uv`S`b�Sopmhn[x�]D]j~^ZHkqZ�zjg^u�];zQ`bahm^Z�ovnb~ ² `bg^kj°Üx
X@m^op]{�
��x-uvg^Z*}�x-ut}	g^utx�]qop`fmhz±¬�~^ot};~¿x-kqZ�}�xbuv}�g^uvx-]jZ¡s¸aVkq`be0]j~hZ
ovmhz�]qx-mJ}	Z�z�`-a±]j~^Zµ}	g^kqkjZ�m�]�nbZ�mhZ�k;x�]jov`bmÂ`-a±]q~^Z
\W`�`fuL_
ä�Z¾¬�opuvu ² Zw}�xbupuvopmhn.]q~^Z�zjZ±��x-uvg^Z�z<Y � û _
|D`§s^`$]q~^ovz���Z��fZ�kq�±nbZ�mhZd\W`fzjo�]qop`fm�ovmw]q~^Zd\WZ�kqe�g^]qx�]qop`fm
¬�ovupu ² Z�}	`fmhzjovsiZ�kjZ¡sB�bxbmhs ² xbzjZ�s.`bm.]j~^Z�kqopnf~�])xbmhs�uvZ	a ]
m^Z�opnf~ ² `fg^k�°Üx
X@m^op]{�¸��xbupg^Z¡zw`ba"Z�xb};~OnfZ�m^Z*xµsiZ�}�ovzjov`bm
¬�ovupu ² Zde@xfsiZ�aV`fkD`b]qz5\J`�z�op]jov`bmÞ_Þº»a^]q~^ovz5��x-uvg^ZdovzDaV`bghmhs
]q` ² ZdupZ¡zjzQ]j~^Z�mwx']j~hkjZ¡z�~^`fuvs±��xbupg^Z�ZB��]j~^Z¡z�Z#]{¬H`"nfZ�m^Z¡z
¬�ovupu ² Z¾}	`fmhzjovsiZ�kjZ¡s*xfz'g^m^kqZ�utx�]jZ¡s�]q`­Z�xb};~¹`-]q~^Z�k�xbmhs
]q~^Z�\WZ�kqe�gi];x�]jov`bm¾¬�ovuvu ² Zy};~hx-mhnbZ�s$]j`[z�Z�\hx-k;x�]qZD]q~^Z�e�_
�[}6]jgJx-uvup�¸]j~^Z�kjZ­Z	½iotz{];z±é�\J`�zjzjo ² upZ@x?X­mho�]{�¸}�xbzjZ�z§aV`fk
x�nbZ�m^Z ü
( _<[]\_^E`baBced
f
gih�jk`ml n?o�j�f?apj,o&abq�jS^rZtsSu
o<v�u
awq�^xj,`ynzq�{v�u?h�o�l�zj`§]j~^Z�kjZ�otz#m^`¾\hkj` ² upZ�e ¬�op]j~�]j~hZ$}	g^kqkqZ�m�]
`fkqs^Z�kqopm^nJ_3|'~^Z¸nbZ�mhZ�\J`�z�op]jov`bm®otz��fZ�\i]*ovm¥]j~hZ
\WZ�kqe�g^]qx�]qop`fmFghmhx-up]jZ�kjZ¡sB_

ç _<[]\_^E`baBc|d
f
gih�j~} `babq�g�jBs�a�nMj,^xjt`ml�n?o�j�f?apj,o�awq�f?^HZv,h�ak`ba�`ml�g�jSl�l�awq�f
^�ZUsSu
o|abq�j|o-`ynzq�a�n)j,^xjf_§|'~^ovz
e­Z¡x-mhz�upZ�a ].m^Z�opnf~ ² `bghkwovz�`b��x�� ² gi].¬HZ�z�~h`bg^uts
zjZ�\Jx-k;x�]jZ#op]QaVkq`be³]j~^Zdkjovnb~�]�_5æS`h�¡nbZ�m^Z�Z	½^};~hxbm^nbZ¡z
\W`fzjop]jov`bm¹¬�o�]q~F]q~^Z¾uvZ	a ]"m^Z�opnf~ ² `bghk�_5ºÜm¹]j~^otz'¬Hx��
]q~^Z�nb`S`isÂx
X@m^op]{�¿¬�o�]q~Â]j~^Z�uvZ	a ]*mhZ�ovnb~ ² `fg^k­ovz
\hkjZ¡z�Z�kj�fZ�sB_

èh_<[]\_^E`baBc�d�f?gih�j�} `babq�g�jBs�a�n)j,^xj�`ml<g�jSl�l<abq�f
^|Z�v,h�a`ba�`mlrn�o�j�f
a�j,o�awq�f?^WZ�sSu
oHawq�jHo-`yn�qJakn)j,^xjf_@æSove.°
ovutx-kqup�ònfZ�m^ZOZ�½i};~Jx-m^nfZ�z¹o�];z�\J`�z�op]jov`bmÅ¬�op]j~´]j~hZ
kqovnb~�]�m^Z�ovnb~ ² `bg^k¡_

éJ_<��u
awq�f	\�^�`ba�c�d
f
gyh�j-lHf
o�j|g�jSl�l�awq�f
^�ZB_¾Ä§Z�m^Z.ovz
e­`��fZ�s@]q`�x�k;x-mhs^`beÃ\J`�z�op]jov`bm¹ovm*]q~^Z±\JZ�kje.gi]qx-°
]qop`fmQ_

32 1 1110 987 65 4

3 118 1096 74 521

● ● ●● ● Neighbour
affinity

�

new
�

●: Affinity value less than τ

=5opnfg^kqZ (bü r
`Ss^o�öJ}�x�]qop`fm�`-a$`fkqsiZ�k.xf}�}	`fkqs^opm^n�]q`µx?X­mho�]{�
��x-uvg^Z�z

r�`isiopöJ}�x�]jov`bmJz ovm ]j~^Z \JZ�kje.gi]qx-]jov`bm e@x-\^°
\^ovm^n�z xbkjZ,�bZ�\^]=]j` ² Z xbz uv`S}�x-u2xbz \J`�zjzjop°
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² uvZb_ |'~^Z´xbupnf`bkqo�]q~^e ]j`Ãsi`ó]j~^otzÂovz¥xfzÀaV`fupuv`�¬"z ü���M� 6�� ç *,*+* Í�� �'>� � % � 6 T (,� 6	� Í����&���
� 6 7 6�� � 6 Í %��
�z�E*�6 � �z�
*� � Y û 4 �e� Z �¡Y û ¢ Z% � 6 T (S�x£ % � 6 �
¤J¥ ¦-¤

� � Y û 4 �t¢ Z§�¨Y û � Z% � 6 �©£ % � 6�ª (,�
¤J¥ ¦-¤

� � Y û 4 � ¢ Z§�¨Y û ¢ Z« � �J�<% � 6 � �	��¬ � ¬�Í��M���:­B�
®S¬M� 6 ��Í.
¯�°F± �U²´³§?5KJTL?DP
µ·¶i¸z¹ ºN¹ »
¼ ¹ ½�¾]º�¿,¾&À)¼ Á�Â,»?¼)Ã�¾,ÄFÅ<Æ-ºp»Sº	¹ Á)¸<Ç º�ÁÉÈËÊzÌ�Í?Ì�Î�Î�Î-Ì�Ï�Ð
µÒÑ�¾,¸,¾+Ä�»Sºp¾�»�Ä�»
¸,Ó�Á)Å Ã+Á)Ã
Æ
¼ »Sº	¹ Á)¸?Ôz¾�Õ,»?¼ Æ,»Sºp¾&¹ º5»?¸,Ó<Ö�ºpÁ
Ä�¾�¹ º5»?¼ Ö�Á»,Ö�º�¿,¾&×mÁ
ÄwÅ�¾+Ä©Àz¾+¸,¾+Ä�»Sº	¹ Á)¸?ØÙ�Ú
Ú�Û?Ü�Ý Þ,ß�àâá+ãzãeä�å
æbÚ�çkÚ,Ü	Ú�ç>ß�Ü
èré?ê�é�ë)ì|í
µ î~Æ-ºp»Sºp¾zØï�ð
ñbò
ñFÝ Ú
óõôEò�ñBßöàø÷/ó
ä�ßöß�òzä�å�á+ãHùMß�ó
ß�æmò�ñBÝ Ú�óWÚ�ó
ß�æmòzó
úzÚ
çä�å
æmÚ
çkÚ,Ü	Ú�ç<ßû åzò�ó-ù)ß	Ürü�ß�æ û å
æbÚ�çkÚ,Ü	Ú�ç>ß�àþýMÛ Ý üõÚ�ó
ßHæmò�ó
úzÚ�ç>Û ÿ�ÜNß�Û ß�ä-ñFß�úùMß�ó
ß
µ î�»-º�¾k»
¼ ¼+º�¿,¾�Ã+Á
Á)¼�Â��>×DÁ
ÄFÅk¹i¸SÀ�Ä�»?¸,Ó�Á�ÅâÃ,»z¹iÄyÖ�Ø� ¾Nº�¾+ÄwÅk¹i¸,¾�º�¿,¾��+ÄyÁzÖ�ÖpÁ+Õ,¾+Ä Ã+Á?¹Ë¸-ºpÖ�Ø� ¾+Äi×DÁ?ÄwÅ��+ÄyÁzÖpÖpÁ,Õ,¾+ÄyÖt»
Å�Á)¸SÀÉº�¿,¾��,¿
Ä�Á�Å�ÁzÖpÁ�Å&¾�Öe»��	��Á
Ä�Ó�¹i¸SÀ|º�Áº�¿,¾rÃ�¾+ÄwÅ<Æ-º�»-ºN¹ Á)¸?Ø�
�ÄyÁzÖ�ÖpÁ+Õ,¾+Ä�ÃzÁ
¹i¸-ºk¹ Ö�ºp»
��¾+¸~¹i¸|Ãz¾+ÄwÅ<Æ-º�»-ºN¹ Á�¸Å&»
Ã
Ãz¹i¸SÀ)Øû æmÚ,ÜpÜ|÷���ß�æ�à��/ñ<ázãöæmò�ó
úzÚ�ç ä�åzÚSÜ�ß�óUæmòzó
úzÚ
ç Û ß�ó-ùJñFå�ù)ß�ó
ßÝ ó?ñBß�æ��NòzÛ Ü
µ��?Õ,»
¼ Æ,»-º�¾]º�¿,¾�¸,¾���À�¾+¸,¾,ÄD»-ºN¹ Á)¸?Ø��ß�ß	üHôEò�ñBÝ Úeà��/ñ�çkÚSÜ�ñ/ázã��
µ·¶ ×�ÄD¾�Á?Ä�Ó
¾+Ä�Ã�¾,Äb¹ Á?Ó�¹ Ö&Ä�¾�»��+¿,¾�Ó��� 
�»?¼ �,Æ
¼ »Sºp¾�� �!�Õ,»
¼ Æ,¾�Ö�×DÁ
Ä�º�¿,¾õÖp¾+¼ ¾	��ºp¾�Ó � ��¾+Ã-º"�+¿
ÄyÁ)Å�Á �Ö�Á)Å�¾�Ö�»#�$��Á
ÄDÓ�¹Ë¸SÀ�ºpÁ%�+Æ
ÄwÄD¾,¸-º&Ãz¾+ÄwÅ>Æ-ºp»Sº	¹ Á)¸eÅ&»
Ã
Ãz¹i¸SÀ)Ø� î<Á?Ó�¹ ×&��º�¿,¾tÁ
ÄDÓ
¾,Äb¹Ë¸SÀÉÁ+×�¾�»��+¿�À�¾,¸,¾HÃ+ÁzÖ	¹ ºN¹ Á�¸�»#�$��Á
ÄDÓ�¹Ë¸SÀº�Á%� ! Õ,»
¼ Æ,¾�Ö »
¸,Ó('�¸,Óeº�¿,¾�¸,¾)�·Ãz¾+ÄwÅ>Æ-ºp»Sº	¹ Á)¸?Ø
µ � ¹ Ö�Ã
¼ »$�#*,+�¾$��Á
ÄDÓ�Ã�¾+Äi×DÁ?ÄwÅ�»
¸���¾tÄD¾�Ö�Æ
¼ º�Ø
µ·¶ ×/¹ º-�5»,Ö<¸SÁ+º º�¿,¾r¼ »,Ö�º]Àz¾+¸,¾+Ä�»-ºN¹ Á�¸�º�¿,¾eÆSÖ�¾+Ä�Ó
¾+Å�»
¸,Ó
¾�ÓJÔ/./0 ì 0è~é?ê�é?ëMì Ø
1 Ç�2 í�3�î 2 î È ¨Sª5¨^Ì{É È
=^`fkw]qZ�z�]jovm^n¸x-mJsOope­\^uvZ�e­Z�m�];x�]jov`bm�`ba']j~^ZF\^kj`f\J`�z�Z¡sOz��iz�°
]jZ�e��Wx@e­ovm^ove�g^e!x-kqZ�x­kqZ�}	]qxbm^nbuvZ¾\^utxb}	Z�e­Z�m�]"\^kq` ² uvZ�eáovz
};~^`�z�Z�mQ_�ºÜm¹]j~^otz"\hkj` ² upZ�e�x@zjZ	]"`-a#kqZ�}	]qx-mhnbuvZ�zHovz"nbov�bZ�m�xfz
ovm^\^gi]¡_�|'~^Z[xbopeñotz�]q`wöhmJs*xw\huvxf}	Z�e­Z�mf]H`-aÞxbupuàkqZ�}6];x-m^nfupZ¡z

zjgh};~�]j~hx-]yx-uvu^kjZ¡}6];x-m^nfupZ¡z#x-kqZHovm@x ² `fg^mhsiovm^n ² `�½.¬�~^ot};~­ovz
e­opmhope­o54�Z�s�opm@]q~^Z[xbkjZ¡xwx-mJs­m^`¾]{¬H`wkjZ¡}6];x-m^nfupZ¡z�ovmf]qZ�k;z�Z¡}6]¡_
|'~^Z�ovm^\^gi]�otz�]j~hZ�¬�ovsS]q~®x-mhsÂ~^Z�opnf~f]@ovmiaV`bkqe@x�]qop`fmå`ba Í
kqZ�}6];x-m^nfupZ¡z�_

65°F± 7 C�G985ILP�:=PS? � G<;5TX?5K
ô>= û ! I@? û �$A û O ovz5]q~^Z"¬�otsS]j~CBò~hZ�ovnb~�]�opmh\^gi]�`-aW]j~hZ�6ED@F
kqZ�}	]qx-mhnbuvZb_

ô ÿDû ! IHGWû ��I û � � û O ¬�~hZ�kqZ GJû xbmhsJI û x-kqZ­`
KBz�Z�]qz§aVkq`be
]q~^Z­`bkqopnfopm�x-mhs � û � ' R � ( . otz[]j~^Z­`fkjovZ�m�]qx-]jov`bmÂÚVm^`b]
kq`-];x�]jZ¡sB��kq`-]qx-]jZ¡sML R/N ÛDovm�]q~^Z'\^uvxf}	Z�e�Z�m�]�_)lyxb};~.nbZ�m^Z
ÿ û s^Z	öhm^Z¡z¾x*\huvxf}	Z�e­Z�mf]±aV`fk = û _ ÿ û opmO}	`fe ² ovmhx-]jov`bm
¬�op]j~ = û siZ¡zj}�kjo ² Z¡z'x�kqZ�}	]qx-mhnbuvZ$\W`fzjo�]qop`fm^opmhn�¬�op]j~�x ² °
zj`buvgi]jZ¾}�`�`fkqs^opmhx-]jZ¡z�_

ô |'~^Z.ö^]qm^Z�zqz[aVg^mh}6]qop`fm
aV`fk§xF};~^kj`fe­`fzj`be­Zwotz§s^Z	öhm^Z¡s
xfz üO ! ®#P ª �/Q �-ªe�SR T ! ( �+*,*,*,�F% �
�
­ �+6VUM�
¬�~^Z�kjZ ® � � ���'xbkjZ�\W`fzjop]jov�bZd}�`bmhz�]qxbm�]Þ¬dZ�opnf~�]qzÞxbmhs P ovz
]q~^Zw]q`-]qxbu5xbkjZ¡x@`-a)]q~^Z.kqZ�}	]qxbm^nbuvZ�z�\huvxf}	Z�s
`bgi]§`-a#]j~hZ
\^utxb}�Z�e­Z�m�]�x-kqZ�xh� Q ovz�]q~^Z¹]j`b]qx-u$`��bZ�kqutx-\^\^ovm^n�x-kqZ�x
xbe�`fm^n¿x-uvu$kqZ�}	]qxbm^nbuvZ�\hx-ovk;z��WR otz@]q~^ZµxbkjZ¡x�`-a¾]j~hZ
e­ovm^ope.g^e ² `bg^mhs^opm^n ² `�½*}	`��bZ�kjovm^nwxbupuàkqZ�}6];x-m^nfupZ¡z�ovm
]q~^Zw\^utxb}�Z�e­Z�m�]�_�|'~^Z.x-ove�`ba5]q~^ZwnfZ�m^Z�]jot}wx-uvnb`fkjop]j~^e
otz']j`�öhmJs¹x­};~^kq`be­`�z�`fe�Z[]j~Jx�]YX|`b^�`ZX|`&[+jSlMO@_

ô V m^ZÃ\W`bovm�] }	kq`fzqz�`��fZ�kòaV`fk }	kq`fzqzj`��bZ�k3\J`fopm�]]\:ovz
siZ�öhm^Z¡s ² �¹e­Z�xbmhz"`ba5]q~^Zw\WZ�kqe�gi];x�]qop`fm�e­xb\^\^ovm^nÉ�
xfz ü

ÿ_^a`û !cb ÿ ^û opax%5Úw6{Û ¢ \
ÿ `û opax%5Úw6{Ûedf\

ÿ_`_^û !cb ÿ `û opax%5Úw6{Û ¢ \
ÿ ^û opax%5Úw6{Ûedf\

¬�~^Z�kjZ ÿ ^ xbmhs ÿ ` x-kqZ[}	kq`fzqzjZ�si`��fZ�k#]q`.\^kq`isigh}�Z$]{¬H`
`,Kàzj\^kqopm^n�z ü#ÿ ^a` xbmhs ÿ `-^ _

ô æSovmh}�Z¾]j~^Z�nbZ�mhZw��x-uvg^Z�z"xbkjZ±]q~^kqZ�Z	°¶]jgh\^upZ¡z"`ba)mSg^e­Z�kjot}
��x-uvg^Z¡z���]q~^Z�kqZ'ovz5m^`±m^Z�Z�s¾]q`¾siZ	öhmhZHxbm�xbgi½ioputx-kq�§aVg^mh}6°
]qop`fm 7-û ¬�~^ov};~�¬�ovupu�e@xb\µ]q~^Z�e:]j` � R � (,� _@|'~^Z�opk¾mSgi°
e­Z�kqot}�x-uB��xbupg^Z¡z�x-kqZ¾siopkqZ�}	]juv��ghzjZ�s¹ovm*]q~^Z±aV`bkqe�g^utx^_

ô |'~^ZÃm^Z�opnf~ ² `fg^kßx
X@m^op]{�!aVg^mh}	]jov`bm8ovzßsiZ�öhm^Z¡s÷]q`
² Z�]j~^ZO]q`-]qxbuwz{];x-mhshx-kj]�siZ��Sovx-]jov`bm³`ba.`,KàzjZ	]���x-uvg^Z�z
siZ¡zj}�kjo ² ovm^n�]j~^Z¾\huvxf}	Z�e­Z�mf] üY � û ! ( T Ú �hg i9j Úw6{Û5ª>k g iml ÚF6{Û5ª � g i P Úw6{Û�Û
¬�~^Z�kjZ i9n Úw6{ÛÞovz5siZ	öJm^Z�s.xbzÞ]j~^ZH��x-kqovxbmh}	Z�`bai]j~^Z'sio&KWZ�k�°
Z�mh}	Z¡z[`bay]q~^ZpoÂaVZ¡x�]qg^kjZ¡z§`-ay]q~^Z IXÿ � KML " ûD# � ÿ � KML " ûD���	# O
]qg^\^uvZ�zòovm7]j~hZ \J`f\^g^utx�]qop`fmQ_ � ��k�����xbkjZÅ\W`fzjo�]qop�fZ
}�`bmhz�]qxbmf]�¬HZ�ovnb~�]qz ü
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i n ÚF6ÜÛ !rqst�u Lwv)xyZz tEz { 4 " qst�u Lwv yHz t�z { # x�|~}}��ûH� �$� n ! ÿ � KML " ûD#V� ��� n T ÿ � KML " ûD���	#~� ��� n
Y[g^Z§]j`�]j~hZ§\hkj`f\J`�z�Z¡s�x-uvnb`fkjop]j~^e��S¬�~^Z�mUY � û ovz'zje­xbupu
]q~^Z�m@]{¬H`wm^Z�opnf~ ² `fg^kynfZ�m^Z¡zyzj~^`bg^uts ² Z$\^utxb}�Z�s@ovm�kqZ�up°
x-]jov�bZ�uv�±x-k ² o�]qkqxbkj�[\J`�z�op]jov`bmJzÞovm¾]j~hZd\W`b\^ghuvx-]jov`bmQ_5|'~^ovz
otzwzj`h�Þx�zje­xbupu�Y � û ��x-uvg^Z@e­Z�xbmhz§]j~Jx�]¾]j~hZ��µxbkjZ@z�]qx-°
]qovz�]jot}�xbupuv�­aV`bg^mJs*m^`b]d]q`�}�`S`b\WZ�k;x�]jZ[¬dZ�upuW]q`�¬Hxbkqs^zy]j~hZ
zj`buvgi]jov`bmÞ_Hä®~hZ�mWY � û ��x-uvg^Z�z ² Z¡}	`fe�Z.}	uv`fzjZ±]j` ( �^]j~hZ
kqZ�utx�]qop�fZ�\^uvxf}	Z�e�Z�m�]�`-a¾m^Z�ovnb~ ² `bg^k@nfZ�m^Z¡z@otz*x-uve­`fz�]
ö^½iZ¡såovmÂ]j~^Z�\W`b\hg^uvx-]jov`bmÂ¬�~^ot};~åe­Z�xbmhz�x ² g^ovutsiopmhn
² uv`i};��otz�Z�z�]qx ² upotzj~^Z�s ² �@]j~^Z¡z�Z¾mhZ�ovnb~ ² `fg^k;z�_

ô>� Z�`bk;siZ�k�aVkqZ�Ù�g^Z�mh}	��otz@};~^`fzjZ�måxbz��i_Â|'~hx�]­e­Z�xbmhz��
xbmhx-uv�iz�otz¾`-a>Y û ��x-uvg^Z¡z�x-mJsO\JZ�kje.gi]qx-]jov`bm¿e­`isiopöJ}�x-°
]qop`fm¹otz�si`fm^Z¾`bmh}�Z±opm���nbZ�m^Z�k;x�]qop`fmhz�_

65°m¯ EHP���U­C�P���A5IVUw�
|'~^ZµkjZ¡z�g^utz�]qzF`-a¾]j~hZµove­\^upZ�e­Z�m�]qx-]jov`bmò`ba¾]j~^Z�\^kq`b\W`fzjZ�s
x-uvnb`fkjop]j~he ]j`w]j~^Z[kjZ¡z�g^utz�]�`-aB]j~hZ$}	utxbzqz�ot}�xbuJÄ±�òove­\^uvZ�e­Z�mi°
]qx-]jov`bm�¬�~^Z�kjZwxbupuQ`b]j~^Z�k"\hxbkqxbe­x-]jZ�kqzHuvop�fZw}	kq`fzqz�`��fZ�kH`b\WZ�kj°
x�]qop`fmhz��De.gi]qx-]jov`bm�aVkjZ¡Ù�g^Z�mh}��b�5�bZ�Z�\Okqx-]jov` � xbkjZ­]q~^Z*zqx-e­Z
² gi]5m^`"\WZ�kqe�gi];x�]qop`fm±zj~Sg��@opmhn"ovzDsi`bmhZb_ÞºÜm±]q~^Zyove­\^uvZ�e­Z�mi°
]qx-]jov`bm�`ba#]j~^Z.\^kj`f\J`�z�Z¡s¹e�Z�]j~^`isB�B}�kj`�zjzj`��bZ�kqz'x-kqZw}�xbkjkqovZ�s
`bg^] ² �¾ghzjovm^n$]q~^Z'\JZ�kje.gi]qx-]jov`bm.opmiaV`fkje@x-]jov`bmQ�-xbmhsw\WZ�kqe�gi°
]qx-]jov`bm�e@x-\^\^ovm^n±otz)e�`isiopöhZ¡s.`fmh}	ZHovmC�[nfZ�m^Z�kqx-]jov`bmQ_Þ|DZ�z�]qz
x-kqZOkjZ�\JZ¡x�]qZ�s ç R ]qope­Z�z
¬�o�]q~ sio�KàZ�kqZ�m�]
k;x-mhs^`be zjZ�Z¡s^z�_
ºÜm =5opnfg^kqZ ç ]j~^Z¸Z��b`fupg^]jov`bm¥`-a±]j~hZ ² Z¡z{]Fopmhs^op�Sotsighx-u$ö^]�°
m^Z¡zjz'��x-uvg^Z¾otz'opmJsiov}�x�]qZ�sB_y|'~hZ§\hkj`f\J`�z�Z¡s*nfZ�m^Z±kqZ�`bk;siZ�kjovm^n
e­Z	]q~^`is¿}	`fm��fZ�kqnbZ¡zwz�ovnbmho�öJ}�x-m�]juv�µaXxbz�]jZ�k¡_
º»]�kjZ¡xb};~^Z¡z¾]j~hZ
e­ope­ove�g^e7ovm ( � R nfZ�m^Z�kqx-]jov`bmhz�}�`be­\hxbkjZ¡s*]q`��,� R ]j`�� R)R
nbZ�m^Z�k;x�]qop`fmhzH`-aD]j~^Zw}�uvxfzjzjov}�x-uÞÄ±�Å�fZ�k;z�ov`bmQ_
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Classical GA
Proposed GA

=5opnfg^kqZ ç ü ly�b`buvgi]qop`fm�`-aJ]j~^Z ² Z�z�]�ovmhsiov��otsighxbuiaV`bk#x±zqx-e­\^uvZ
Z	½iZ¡}	gi]qop`fm�~�����������#�����������	�V�����$�(���$���_�#���$ ��~���	¡¢��£#�	¡/�$�)�h�����w¡¤�������¥ �	¦,� ��¡¤���/�W¡��$§
��£w�$¡/�$�)�h�����#¡

Y[ovz�]jkqo ² gi]jov`bmhz§`ba�]j~^Z ² Z�z�]§ovmhsiov�Sovs^ghx-utz[aV`bk¾x-uvu ç R Z�½iZ�}	g^°
]jov`bm­}�xfz�Z¡zD]j~^kq`bg^nf~�]q~^Z'nbZ�m^Z�k;x�]qop`fmhz5ovz)nfop�fZ�m�ovmH=5opnfg^kjZ'è^_
|'~^Z§nbZ�m^Z$kqZ�`fkqsiZ�kjovm^nw�fZ�k;z�ov`bm@otz'}	`fmhz�otz�]jZ�m�]qup�@}	`fmS�bZ�kqnbovm^n
]j`±x$zj`buvgi]qop`fm�ovm�uvZ�zqzÞmSg^e ² Z�k5`bahnbZ�m^Z�k;x�]qop`fmhzBaV`fk#x-uvu�}�xbzjZ�z�_
aVg^kj]j~^Z�kje­`fkjZf�i]j~^Z.}	utxbzqz�ot}�xbuB�bZ�k;zjop`fmFZ�½S~ho ² op]qz[x@z�uv`�¬Å}	`bm^°
�bZ�kjnfZ�mh}�Z ² Z�~Jx���ov`bghkH¬�~hov};~¹ovz�xbuvzj`�upov�bZ�up�@]q`­nbZ	]']qkqxb\^\JZ¡s
ovmf]q`@x­up`i}�xbuBe­opm^ove@x�e�`fkjZ§aVkqZ�Ù�g^Z�mf]qup�f_
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Abstract
In order to maintain the diversity of structures in the
population and prevent premature convergence, I have
developed a new genetic algorithm called DCGA. In the
experiments on many standard benchmark problems,
DCGA showed good performances, whereas with harder
problems, in some cases, the phenomena were observed
that the search was stagnated at a local optimum despite
that the diversity of the population is maintained. In this
paper, I propose methods for escaping such phenomena
and improving the performance by reinitializing the
population, that is, a method called each-structure-based
reinitializing method with a deterministic structure
diverging procedure as a method for producing new
structures and an adaptive improvement probability
bound as a search termination criterion. The results of
experiments demonstrate that DCGA becomes robust in
harder problems by employing these proposed methods
and presents markedly superior performances to the
previous leading GA in some problems.

1 INTRODUCTION
Genetic algorithms (GAs) are a promising means for function
optimization. One problem plaguing traditional genetic algorithms
is convergence to a local optimum. The genetic search process
converges when the structures in the population are identical, or
nearly so. Once this occurs, the crossover operator ceases to
produce new structures, and the population stops evolving.
Unfortunately, this often occurs before the true global optimum
has been found. This behavior is called premature convergence.
The cause of premature convergence is that the structures in the
population are too alike. Therefore, one method for preventing
premature convergence is to ensure that the different members of
the population are different, that is, to maintain the diversity of
structures in the population [1]. In order to achieve this goal, I
have developed a new genetic algorithm called DCGA (Diversity-
Control-oriented Genetic Algorithm) [2, 3, 4, 5, 6, 7].

In DCGA, the structures in the next generation are selected from
the merged population of parents and their offspring with
duplicates eliminated on the basis of a particular selection
probability. The major feature of DCGA is that the distance
between a structure and the best performance structure is used as
the primary selection criterion and it is applied on the basis of a
probabilistic function that produces a larger selection probability
for a structure with a larger distance. The diversity of structures in

the population can be externally controlled by adjusting the
coefficients of the probability function so as to be in an appropriate
condition according to the given problem.

Within the range of some experiments described in the previous
papers [2, 3, 4, 5, 6], DCGA outperformed the simple GA and
seems to be a promising competitor of the previously proposed
algorithms such as Genitor [8] and CHC [9]. However, with
harder problems, in some cases, the phenomena were observed
that the search was stagnated at a local optimum despite that the
diversity of the population is maintained. This paper proposes
methods for escaping such phenomena and improving the
performance by the reinitialization of the population.

The reinitialization (also often called restart) is that whenever the
search cycle of the GA achieves its termination criteria, the
structures in the population are reinitialized with or without the
structures obtained so far to repeat the cycle. Relatively little work
has been done in this area. Goldberg [10] proposed to generate a
new population by transferring the best structures of the
converged population to the new population and then generating
the remaining structures randomly. Eshelman [9] employed in
CHC a method of generating a new population by adding the best
structure found so far to the new population and then generating
the remaining structures by flipping a fixed portion of the bits of
the best structure found so far that is chosen at random without
replacement. Maresky [11] proposed a method of generating a
new structure by reinitializing each bit of each structure with the
probability of bit reinitialization. In evolutionary programming,
Mathias [12] proposed a method of generating a new population
by seeding one structure with the parameters of the best structure
and then by initializing the parameter values for the remaining
structures with values randomly chosen from a normal
distribution centered around the corresponding parameter of the
best structure. Fukunaga [13] proposed the use of a restart
scheduling strategy which generates a static restart strategy with
optimal expected utility, based on a database of past performance
of the algorithm on a class of problem instances.

Common termination criteria used in practice include (1) cost
bound: stop when a solution with lower than or equal to a given
cost value is found, (2) time bound: stop after a given run time, (3)
improvement probability bound (IPB): stop after no improvement
had been found after some threshold number of generations, and
(4) convergence bound: stop after the population seems to have
converged [9, 11, 12].

In this paper, I propose a method called each-structure-based
reinitializing method (ERM) with a deterministic structure
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diverging procedure in which each structure in the new population
is produced by flipping a fixed portion of the bits of each structure
obtained so far. The flipping bits are chosen at random without
replacement. Also, I propose an adaptive improvement probability
bound (AIPB) in which the threshold number of generations is
adaptively changed according to the diversity of the population
measured by fitness values. Using harder benchmark problems,
the performances of the following three kinds of reinitializing
methods were tested: (1) new-structure-based reinitializing
method (NRM), (2) best-structure-based reinitializing method
(BRM) and (3) each-structure-based reinitializing method (ERM).
In the former two methods, two cases where the best structure
found so far is transferred or is not transferred to the new
population are included. As the termination criterion, the IPB or
the AIPB was used. The results showed that the performance of
the ERM is superior to those of the other two methods and that
AIPB is very effective in a function having local optima on the
plateaus. As the results, the robustness of DCGA with the ERM
and the IPB or the AIPB in harder problems was demonstrated.

2 OUTLINE OF DCGA
The skeleton of DCGA is shown in Fig. 1. The number of
structures in the population P(t) is constant and denoted by N,
where t is the generation number. The population is initialized by
using uniform random numbers. In the selection for reproduction,
all the structures in P(t-1) are paired by selecting randomly two
structures without replacement to form P’(t-1). That is, P’(t-1)
consists of N/2 pairs. By applying mutation with probability pm

and always applying crossover to the structures of each pair in
P’(t-1), two offspring are produced and C(t) is formed. The
mutation rate pm is constant for all the structures. The structures in
C(t) and P(t-1) are merged and sorted in order of their fitness
values to form M(t). In the selection for survival, those structures
that include the structure with the best fitness value are selected
from M(t) and the population in the next generation P(t) is formed.

The details of the selection for survival, are as follows:
① Duplicate structures in M(t) are eliminated and M’(t) is

formed. Duplicate structures mean that they have identical
entire structures.

② Structures are selected by using the Cross-generational
Probabilistic Survival Selection (CPSS) method, and P(t) is
formed from the structure with the best fitness value in M’(t)
and the selected structures. In the CPSS method, structures
are selected by using uniform random numbers on the basis
of a selection probability defined by the following equation:

where h is the hamming distance between a candidate
structure and the structure with the best fitness value, L is the
length of the entire string representing the structure, c is the
shape coefficient whose value is in the range of [0.0, 1.0],
and α is the exponent. In the selection process, a uniform
random number in the range of [0.0, 1.0] is generated for
each structure. If the generated random number is smaller
than ps that is calculated by Eq.(1) for the structure, then the
structure is selected; otherwise, it is deleted. The selection
process is performed in order of the fitness values of all the
structures in M’(t), without considering the fitness value of a

   Fig. 2.  Example curves of Eq. (1). (a) α = 0.19,
          c = 0.01; (b) α = 0.5, c = 0.234.

structure itself, except the structure with the best fitness value.
③ If the number of the structures selected in the process ② is

smaller than N, then new structures randomly generated as in
the initial population are introduced by the difference of the
numbers.

If the structure is represented as a bit string, the hamming distance
between two structures can be calculated by the usual way. With a
combinatorial optimization problem such as the traveling
salesman problem, also, the extended hamming distance can be
calculated as a minimum value of numbers of pairs that have
different cities, when the cities of the two tours are paired each
other in order of their path representations [2, 3, 4, 5]. DCGA is
applicable to all sorts of optimization problems by using the
definition of a proper distance measure between two structures.

begin;
　t=0;
　initialize population P(t);
　evaluate structures in P(t);
　while (termination condition not satisfied) do;
　begin;
　　t=t+1;
　　select P'(t-1) from P(t-1) by randomly pairing all
      structures without replacement;
　　apply mutation with pm and crossover to each pair of
      P'(t-1) and produce two offspring to form C(t);
　　evaluate structures in C(t);
　　merge structures in C(t) and P(t-1) and sort them in
      order of their fitness values to form M(t);
    select N structures including the structure with the
      best fitness value from M(t) to form the next pop-
      ulation P(t) according to the following procedure:
      (1) eliminate duplicate structures in M(t) to form
         M'(t);
      (2) select structures from M'(t) with CPSS method
         in order of their fitness values;
　    (3) if the number of selected structures is smaller
         than N, introduce new structures by the
         difference of the numbers;
  end;
end;
      Fig. 1  The skeleton of DCGA
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The reasons for employing the above methods in DCGA are as
follows.

As long as the structure with the best fitness value does not reach
the global optimum, it is a local optimum. If the selective pressure
for better-performing structures is too high, structures similar to
the best-performing structure will increase in number and
eventually take over the population. This situation is premature
convergence, if it is a local optimum. Therefore, we need to
reduce appropriately the selective pressure in the neighborhood of
the best-performing structure to thin out structures similar to it. Eq.
(1) can work to do such processing. Example curves of Eq. (1) are
shown in Fig. 2. The selection of structures on the basis of Eq. (1)
is biased toward thinning out structures with smaller hamming
distance from the best-performing structure and selecting
structures with larger hamming distances from the best-
performing structure. As a result, the population is composed of
various structures as demonstrated in Section 3. The larger bias
produces the greater diversity of structures in the population. The
degree of this bias is "externally" adjusted by the values of c and α
in Eq. (1). Their appropriate values need to be explored by trial
and error according to the given problem. As demonstrated in the
experiments described later, Eq. (1) is very suitable for controlling
the diversity of the structures in the population so as to be in an
appropriate condition by adjusting the values of c and α.

In the selection for survival, the fitness values of the structures
themselves are not considered. However, this does not mean to
neglect the selective pressure. Because the selection process is
performed in order of the fitness values of the structures and
better-performing structures can have an appropriate chance to be
selected, as a result, there exists an appropriate selective pressure
determined by the value of the selection probability.

We can produce an appropriate selective pressure according to the
given problem. That is, for a simple function with few local
optima, higher selective pressure can be produced with a larger
value of c and / or a smaller value of α For a complicated function
with many local optima, lower selective pressure can be produced
with a smaller value of c and / or a larger value of α. The selection
with c = 1.0 in DCGA is the same as (N + N)-selection in the
evolution strategies and the population-elitist selection in CHC
[9].

In DCGA, structures that survived and the structure with the best
fitness value obtained so far can always become parents and
produce their offspring. Crossovers are always applied to diverse
structures maintained in the population. When a pair of structures
with a small distance are mated, their neighborhood can be
examined to result in the local search. When a pair of structures
with a large distance are mated, a region not yet explored can be
examined to result in the global search. In such a way, local as
well as global searches can be performed in parallel.

A shortcoming of DCGA is that the number of parameters to be
tuned is three (mutation rate, and α and c in Eq. (1)) and they must
be tuned trial and error according to the given problem. However,
this is not a peculiar problem to DCGA, because Hart [14] has
demonstrated theoretically that no single robust parameter set
exists that is suitable for a wide rang of functions.

3  PERFORMANCE AND ISSUES OF DCGA
   IN HARDER PROBLEMS
The performance of DCGA for 13 standard benchmark functions
were tested [6]. For 11 functions among them, the global
optimums were obtained successfully in all runs, whereas for the
Griewank and expanded Rosenbrock functions, the rates of
successful runs were not 1.0. The expanded Rosenbrock function
is as follows:

In this paper, therefore, I investigated the results for these two
functions that are known as hard problems for GA to solve. The
binary string representing a structure was transformed to real
numbers in the phenotype so that for each coordinate, the
corresponding real number matches exactly the coordinate value
which gives the global optimum of the function. Exact global
optimums in these functions were explored with the optimality
threshold considering only round-off errors. The dimension of the
problem (n) and the maximum number of function evaluation
(MXFE) were set according to the previous studies [15]. Gray
coding was used. Bit-flip mutation and uniform crossover HUX
[9] were used. I performed 30 runs per parameter set, changing
seed values for the random number generator to initialize the
population. The run was continued until the global optimum was
attained by at least one structure (I call this the success) or until
MXFE was reached. The combination of best-performing
parameter values including the population size was examined by
changing their values little by little.

The performance was evaluated by the rate of successful runs out
of the total runs (SCR) and the average value of function
evaluation numbers in the successful runs (AVFE). Table 1 shows
the definitions of major symbols used in the subsequent Tables.
The best results of the experiments are summarized in Table 2.

In order to understand how DCGA succeeds or fails in attaining
the global optimum during the search process, we need to
examine how DCGA works and of what structures the population
is composed. Thus, in some cases where DCGA succeeded or
failed in attaining the global optimum, I examined the
relationships between minimum (best), average, and maximum
fitness values and generation number, and relationships between
minimum, average, and maximum values of the ratio h / L and
generation number.

Fig. 3 and Fig. 4, respectively, show the case where DCGA
succeeded or failed in attaining the global optimum for the
Griewank function (F1, n = 10) under the condition shown in
Table 2. In both cases, the diversity of the population in both
genotypes and fitness values is maintained during the search. At
the final stage, the best structures were trapped at local minimums.
In the case of success, the solution could escape from the local
minimum (0.0498) and reach the global minimum (0.0), whereas
in the case of failure, the solution kept trapped at a local minimum
(0.0488) until MXFE.
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Fig. 5 and Fig. 6, respectively, show the case where DCGA
succeeded or failed in attaining the global optimum for the
expanded Rosenbrock function (F2, n = 6) under the condition
shown in Table 2. In the case of success, the diversity of the
population in both genotypes and fitness values is maintained
during the search. Although at the final stage, the best structures
were trapped at a local minimum, the solution could escape from
the local minimum (5.01⋅10-4) and reach the global minimum
(0.0). In the case of failure, the diversity of the population in
genotypes is maintained during the search, whereas that in fitness
values is lost at the early stage. This means that all the structures of
the population lie on a plateau and the best structure could not
escape from a local minimum (5.94) on it.

The cases of failure in both functions indicate that it is vain
attempting to escape from some kind of local minimum by
extensive search, because crossover and bit-flip mutation
operators can not produce a structure that can escape from it
despite that the diversity of the population in genotype is
maintained.

4  METHODS FOR REINITIALIZING
   POPULATION

The reinitialization (also often called restart) is that whenever the
search cycle achieves its termination criteria, the population are
reinitialized with or without the structures obtained so far to repeat
the cycle. This is based on the experience that rather than
attempting to escape from a local optimum by extensive search, it
is better to terminate the search and restart from a new initial state
in order to attain the global optimum within limited computation
time.

In this paper, I examined the following three methods for
reinitializing the old population and producing a new population.
(1) New-structure-based reinitializing method: In this method, a

new population is produced by generating all the structures
randomly (NRM), or, a new population is produced by
transferring the best structure found so far to the new
population (elitist strategy) and then generating the remaining
structures randomly (NRM_E) as suggested by Goldberg
[10].

(2) Best-structure-based reinitializing method: The basic strategy
of this method is using the best structure found so far as a
template to generate a structure in the new population. In the
deterministic structure diverging procedure, each structure is
produced by flipping a fixed portion of the bits of the best
structure as in CHC [9]. The fixed portion is chosen at
random without replacement. The rate of the fixed portion to
the length of the string is called divergence rate (DVR). In the
probabilistic structure diverging procedure, each bit of each
structure is produced by transferring the bit of the best
structure or generating it randomly with the divergence rate.
That is, when the value of a random number calculated for
the bit is smaller than the value of the divergence rate, the
value of the bit is generated by using uniform random
number; otherwise, the bit of the best structure is transferred
to that of the structure. A new population is produced by
generating all the structures by these procedure (BRM), or, a
new population is produced by transferring the best structure
to the new population and then generating the remaining
structures by these procedure (BRM_E).

(3) Each-structure-based reinitializing method (ERM): This
method is based on the hypothesis that it is better to use all
the structures in the old population in order to explore regions
not yet explored, because all the structures contain some
information on the search space. Thus, the basic strategy of
this method is using each structure in the old population as a
template to generate each structure in the new population. In
the deterministic structure diverging procedure that I propose
in this paper, each structure is produced by flipping a fixed
portion of each structure in the old population in the same
way as described in (2). The fixed portion is chosen at
random without replacement. In the probabilistic structure
diverging procedure proposed by Maresky [11], each bit of
each structure is produced by transferring the bit of each

  Table 1.  Definitions of symbols in the subsequent Tables.

Symbol               Definition
F1 Griewank function.
F2 Expanded Rosenbrock function.
N Population size.
n Number of dimension.
α Exponent for probability function, Eq. (1).
c Shape coefficient for probability function, Eq. (1).
STC Search termination criterion.

IPB: Improvement probability bound,
AIPB: Adaptive improvement probability bound.

PRM Population reinitializing method
SDP Structure diverging procedure.

D: deterministic, P: probabilistic.
g0 Fixed threshold number of generations for

reinitializing population in Eq. (3).
k Coefficient to adjust increasing rate in Eq. (3).
DVR Divergence rate for generating new individuals.
SCR Success rate (rate of successful runs).
AVFE Average value of function evaluation numbers in

the successful runs.
SDFE Standard deviation of function evaluation

numbers in the successful runs.
AVBF Average value of best fitness values in all runs.
MXFE Maximum value of function evaluation numbers.

Table 2. Best results for the Griewank and expanded Rosenbrock functions without using reinitializing method.

F.  n  MXFE N  α  c  pm SCR  AVFE  SDFE  AVBF
10  500000 46 0.21 0.01 0.006 0.87  160298 122713 7.14⋅10-3F1

20 1000000 50 0.21 0.0096 0.0021 0.67  306324 202106 1.93⋅10-2

 6  500000 28 0.2 0.008 0.012 0.53   77723  24167 2.77
 8 1000000 34 0.204 0.0005 0.01 0.5  238829 116860 3.96

F2

10 5000000 42 0.2 0.002 0.011 0.47 2286790 812327 5.28
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                          (a)

                          (b)

Fig. 3  (a) Function value vs. generation number and (b) h / L vs.
 generation number in a successful run for Griewank function (F1).

                          (a)

                          (b)

Fig. 4  (a) Function value vs. generation number and (b) h / L vs.
 generation number in a failure run for Griewank function (F1).

                           (a)

                           (b)

Fig. 5  (a) Function value vs. generation number and (b) h / L vs.
 generation number in a successful run for Rosenbrock function (F2).

                           (a)

                           (b)

Fig. 6  (a) Function value vs. generation number and (b) h / L vs.
 generation number in a failure run for Rosenbrock function (F2).
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structure or generating it randomly with the divergence rate in
the same way as described in (2). The elitist strategy is not
adopted in this method.

Table 3 shows the acronyms of the population reinitializing
methods.

The optimum point to terminate search and restart is determined
empirically over a range of problem size and complexities. The
most often used method that is called improvement probability
bound (IPB) [13] is to terminate the search if after a certain
number of generations no better solutions have been found (that is,
the best fitness value has not changed). I propose an adaptive
improvement probability bound (AIPB). In this method, the
threshold number of generations is adaptively changed according
to the diversity of the population measured by fitness values on the
basis of the following equation:

where g is the adaptively changed threshold number of
generations; g0 is the fixed threshold number of generations; k is
the coefficient to adjust the increasing rate; fmax is the maximum
fitness value of the structures; fmin is the minimum fitness value of
the structures; and | f | is the larger value of | fmax | and | fmin |. In this
equation, (fmax - fmin) represents the diversity of the population
measured by fitness values and is divided by | f | in order to
normalizing it. With this equation, the threshold number of
generations is adaptively adjusted within the range between g0 and
g0 (1 + k) according to the diversity of the population measured by
fitness values. The search is continued longer, when the diversity
of the population measured by fitness values is larger.

5  EXPERIMENTS AND THE RESULTS
The performances of the population initializing methods above
mentioned were tested using the Griewank function and extended
Rosenbrock functions. The computation condition including all
the values of the control parameters (N, α, c, pm) are the same as in
the experiments described in Section 3. The combination of best-
performing values of g0, k and DVR were examined by changing
their values little by little.

Table 4 shows the best results for the Griewank function. For the
case n = 10 and STC = IPB, the performances of all the
population initializing methods were examined. According to the
results, the performances of the deterministic and probabilistic
structure diverging procedures are almost the same. Among those
methods, the ERM with deterministic structure diverging
procedure shows the best performance that SCR = 1.0 and the
performance is improved slightly by using AIPB as STC. With
the case n = 20 and STC = IPB, the ERM with deterministic
structure diverging procedure also shows the good performance

 Table 4.  Best results for the Griewank (F1) and expanded Rosenbrock (F2) functions using each reinitializing method

F.  n STC PRM SDP  g0  k DVR SCR  AVFE  SDFE  AVBF
NRM ― 1500 ― ― 0.97 179697 121161 3.29⋅10-3

NRM_E ― 2000 ― ― 0.83 124710  62407 8.18⋅10-3

BRM D 1000 ― 0.45 0.97 183175 122181 9.16⋅10-3

BRM_E D 2000 ― 0.6 0.83 132859  78971 8.74⋅10-3

ERM D 1250 ― 0.33 1.00 157312  94668 0.0
BRM P 1000 ― 0.55 0.97 173253 120117 1.66⋅10-3

BRM_E P 1000 ― 0.55 0.8 141399  93730 1.00⋅10-2

IPB

ERM P 1000 ― 0.25 1.00 160743 101743 0.0

10

AIPB ERM D  740 0.7 0.33 1.00 147553  87345 0.0

F1

20 IPB ERM D 1800 ― 0.3 1.00 419769 236028 0.0
NRM ―  1200 ― ― 0.93  171927  109847 9.70⋅10-4

NRM_E ―  1100 ― ― 0.97  177490  125987 1.98⋅10-1

BRM D  1400 ― 0.74 1.00  120519   77350 0.0
BRM_E D  1400 ― 0.80 1.00  149064   99641 0.0
ERM D  1400 ― 0.81 1.00  118365   72187 0.0
BRM P  1200 ― 1.00 0.93  166721  118755 1.98⋅10-1

BRM_E P  1100 ― 1.00 0.87  152495  107923 3.96⋅10-1

IPB

ERM P  1200 ― 1.00 0.93  161627  117855 1.98⋅10-1

 6

AIPB ERM D   500 2.0 0.80 1.00   94850   40070 0.0
IPB ERM D  4000 ― 0.80 1.00  443861  261869 0.0 8
AIPB ERM D  1900 2.4 0.80 1.00  323627  143343 0.0
IPB ERM D 35000 ― 0.80 0.83 3129242 1257473 6.60⋅10-1

F2

10
AIPB ERM D 10000 4.0 0.85 1.00 2547265  743240 0.0

 Table 3.  Acronyms of population reinitializing methods.

Acronym             Method
NRM New-structure-based reinitializing method

without elitist strategy
NRM_E New-structure-based reinitializing method

with elitist strategy
BRM Best-structure-based reinitializing method

without elitist strategy
BRM_E Best-structure-based reinitializing method

with elitist strategy
ERM Each-structure-based reinitializing method

without elitist strategy
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                           (a)

                           (b)

Fig. 7.  (a) Function value vs. generation number and (b) h / L vs.
 generation number for the Griewank function (F1) with ERM and IPB.

                           (a)

                           (b)

Fig. 8.  (a) Function value vs. generation number and (b) h / L vs.
 generation number for the Rosenbrock function (F2) with ERM and IPB.

                           (a)

                           (b)

Fig. 9.  (a) Function value vs. generation number and (b) h / L vs.
generation number for the Rosenbrock function (F2) with ERM and AIPB.

that SCR = 1.0.

Table 4 also shows the best results for the expanded Rosenbrock
function. For the case n = 6 and STC =IPB, the performances of
all the population initializing methods were examined. According
to the results, the performances with the deterministic structure
diverging procedure are markedly better than those with the
probabilistic structure diverging procedure. Among those methods,
the ERM with deterministic structure diverging procedure shows
the best performance that SCR = 1.0 and the performance is
improved greatly by using the AIPB as the STC. With the cases n
= 8 and n = 10 using the ERM with the deterministic structure
diverging procedure, the performances with the AIPB shows the
good performance that SCR = 1.0 and are markedly superior to
those with the IPB.

In order to demonstrate the effect of the population reinitializing
method, I examined the change of diversity of the population in
genotypes and fitness values during the search, for the case where
DCGA without the population reinitializing method failed in
attaining the global optimum, whereas DCGA with the population
reinitializing method succeeded in attaining the global optimum
using the same initial condition. For the Griewank function with
PRM = ERM, STC = IPB and SDP = D, Fig. 7 demonstrates the
result in the same case as shown in Fig. 4, where the solution can
escape from the local minimum (0.0488) by initializing the
population to reach the global optimum. For the expanded
Rosenbrock function with PRM = ERM, STC = IPB and SDP =
D, Fig. 8 demonstrates the result in the same case as shown in Fig.
6, where the solution can escape from the local minimum (5.94)
on the plateau by initializing the population to reach the global
optimum. Fig. 9 shows that in this case, by using the AIPB instead
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of the IPB as the search termination criterion, the period of the
search of the local optimum on the plateau is shortened to result in
improving the performance.

6  DISCUSSIONS
The results of the above experiments are summarized as follows:
(1)  As for the SDP, as a rule, the deterministic structure diverging

procedure is superior to the probabilistic structure diverging
procedure.

(2)  As a rule, the performances with elitist strategy are inferior to
those without elitist strategy. This is partly because the best
structure is apt to take over the population again, before the
remaining structures evolve to still better structures.

(3)  With the deterministic structure diverging procedure, the
performances of the ERM are better than those of the NRM.
Additionally, the performances of the ERM are better than
those of the BRM. For both the functions, the ERM with
deterministic structure diverging procedure proposed in this
paper shows the best performance. Also, the optimum values
of the divergence rate are relatively large. These justify the
hypothesis for this method that it is better to use all the
structures in the old population in order to explore regions not
yet explored, because all the structures contain some
information on the search space. The ERM can produce the
initial search points to escape from the local optimum at which
the population was trapped with relatively large divergence
rates.

(4)  In the expanded Rosenbrock function, the performance is
improved greatly by using the AIPB proposed in this paper
instead of the IPB as the STC. This demonstrates that the
AIPB is effective for a function with local minimums on
plateaus.

(5)  For both the functions with different dimensions, the ERM
with deterministic structure diverging procedure using the IPB
or the AIPB shows the performance that SCR = 1.0. The
performances of DCGA with these methods are markedly
superior to those of DCGA without the population
reinitializing method.

In conclusion, DCGA becomes robust in harder problems by
employing these proposed methods and presents markedly
superior performances to the previous leading GA in some
problems. For example, this is true of CHC for the expanded
Rosenbrock function with MXFE = 5000000, because its success
rates are 0.0, 0.067 and 0.033 for n = 6, 8, 10, respectively [15].

7  CONCLUSIONS
Within the range of the above experiments, the following
conclusions can be drawn.
(1) The ERM with deterministic structure diverging procedure

proposed in this paper shows the best performance and the
optimum values of the divergence rate are relatively large.
Therefore, The ERM can produce the initial search points to
escape from the local optimum at which the population was
trapped with relatively large divergence rates.

(2) The AIPB proposed in this paper is effective for a function
with local minimums on plateaus and the performance is
improved greatly by using the AIPB instead of the IPB as the
search termination criterion.

(3) The performances of DCGA with the proposed methods are
markedly superior to those of DCGA without the population
reinitializing method.

(4) DCGA becomes robust in harder problems by employing
these proposed methods and presents markedly superior
performances to the previous leading GA in some problems.
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Abstract 

 
 

In this paper, we introduce a biologically 
inspired recombination operator that occurs in 
the colonies of bacteria. The mechanism is called 
transformation and is responsible for the genetic 
variation and consequently the advantageous 
characteristics that some bacteria possess. We 
present an implementation of the transformation 
mechanism in the standard GA (SGA) and we 
compare its performance solving two different 
classes of problems using either transformation 
or the traditional crossover operators. The results 
show that the GA using transformation is always 
superior to the SGA. The good results obtained 
by transformation seem to be related to the great 
degree of diversity that the mechanism 
introduces in population. 

1 INTRODUCTION 

For a population to survive changes in its environment it 
must have sufficient genetic variety to adapt to the new 
conditions: less genetically diverse populations may be at 
greater risk. Known as genetic diversity, this great 
variation within species is what allows populations to 
adapt to changes in climate and other local environmental 
conditions.  

Genetic Algorithms (GAs) are inspired by genetics and 
natural selection: a population evolves through a number 
of generations, where the fittest individuals are more 
likely to be selected to reproduce in each generation. This 
process allows the evolution of the population to the best 
solution (Holland, 1992; Goldberg, 1989). The 
population’s diversity is introduced by the application of 
two main genetic operators: mutation and crossover. 
These operators produce changes in the individuals, 
creating evolutionary advantages in some of them.  

Nature maintains genetic diversity by several mechanisms 
besides crossover and mutation. Some of those 

mechanisms are: inversion, transduction, transformation, 
conjugation, transposition and translocation (Gould and 
Keeton, 1996). 

Some researchers in the field of Evolutionary 
Computation (EC) highlighted the importance of studying 
different biologically inspired genetic operators. (Mitchell 
and Forrest, 1994) and (Banzhaf et al., 1998) stress that it 
would be important to analyze if some of the mechanisms 
of rearranging genetic material present in the biological 
systems, when implemented and used in the Evolutionary 
Algorithms (EA), improve their performance. 

Several authors have already used some biologically 
inspired mechanisms besides crossover and mutation in 
EA. For instance, inversion (Holland, 1992), conjugation 
(Harvey, 1996), translocation (De Falco et al., 2000), 
transduction (Nawa et al., 1999) and transposition 
(Simões and Costa, 1999; 2001a) were already used as the 
main genetic operators in the EA. As far as we know none 
implementation of the transformation mechanism was 
tested in EA. 

Bacteria sometimes take up and incorporate fragments of 
DNA from the environment. This is called transformation 
(Clark and Russell, 1997).  

In this paper, we propose a computational implementation 
of the transformation mechanism and we study the GA 
performance solving two different problems. The 
empirical analysis will focus the application of the 
traditional crossover operators and transformation, for 
different population’s size. The two classes of problems 
used to study the GA performance were function 
optimization (Rastrigin, Griewangk, Schwefel and Ackley 
test functions) and a combinatorial optimization problem 
(0/1 knapsack problem). 

This paper is organized in the following manner. First, in 
section 2, we describe the biological functioning of the 
transformation mechanism and we introduce our 
computational implementation for the proposed 
recombination mechanism. Section 3, details the 
characteristics of the experimental environment, including 
the selected problems to test the GA performance and the 
GA parameters. In section 4, we make an exhaustive 
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comparison of the results obtained with the proposed 
recombination operator and with the standard crossover 
operators (1-point, 2-point and uniform crossover). 
Finally, we present the relevant conclusions of the work. 

2 TRANSFORMATION 

In our work, we will propose a modified GA with the 
introduction of a new biologically inspired operator, 
called transformation. Next sections will describe this 
mechanism. 

2.1 BIOLOGICAL TRANSFORMATION 

Some bacteria readily take up outside DNA. If they have 
this ability, they are said to be competent. Competent 
bacteria can absorb fragments of DNA proceeding from 
dead bacteria and present in their environment.  

Usually, transformation consists in the transfer of small 
pieces of extra cellular DNA between organisms. These 
strains of DNA, or gene segments, are extracted from the 
environment and added to recipient cells (Russell, 1998).  

After that, there are two possibilities, failure or success, 
known technically as restriction and recombination. 
Restriction is the destruction of the incoming foreign 
DNA, since those bacteria assume that foreign DNA is 
more likely to come from an enemy, such as a virus. In 
this case, transformation fails. Recombination is the 
physical incorporation of some of the incoming DNA into 
the bacterial chromosome. If this happens, genes from the 
assimilated segment replace some of the host cell’s 
genetic information and bacteria are permanently 
transformed.  Once integrated in the chromosome, the 
DNA segment is able to survive. 

2.2 COMPUTATIONAL TRANSFORMATION 

The DNA fragments to incorporate in the individuals of 
the population are generated at the beginning of the 
process. This DNA fragments consist in binary strings of 
different lengths and will form the gene segment pool. 

We will use the transformation mechanism as the main 
genetic operator in the GA.  Therefore, transformation is 
applied every generation instead of the standard crossover 
operator. First, we select the individuals to be transformed 
using the roulette-wheel selection method and these 
individuals are changed with a fixed probability. Part of 
the gene segment pool is changed every generation, using 
genetic information of the individuals of the population.  

This modified GA will be referred as Transformation-
based GA (TGA) and is described in Figure 1.  

The main aspects to consider in the implementation of 
transformation are the origin of the gene segments that 
will transform each individual and how the process of 
transformation will occur. These aspects will be detailed 
in the next sections. 

 

 

 

 

 

 

 

 

Figure 1: The GA Modified with Transformation 

2.2.1 The Basic Functioning of the Transformation 
Mechanism 

The GA starts with an initial population of individuals 
and an initial pool of gene segments, both created at 
random. In each generation, we select individuals to be 
transformed and we modify them using the gene segments 
in the segment pool. After that, the segment pool is 
changed, using the old population to create part of the 
new segments with the remaining being created at random 
(see Figure 2). 

 

 

 

 

 

 

 
 

 

 

Figure 2: Computational Transformation 

 

2.2.2 Origin of the Gene Segments 

The segments that each individual will take up from the 
"surrounding environment" will proceed, mostly, from the 
individuals existing in the previous generation. In the 
used experimental setup, we changed the segment pool 
every generation. The modifications were made replacing 
70% of the segments with new ones, created from the 
individuals of the old population. The remaining 30% 
were created at random.  The size of the gene segments is 
also chosen in a random manner.   

1. Generate Initial Population 
    Generate Initial Gene Segment Pool 
2. DO 
    2.1. Evaluate Population 
    2.2. Select Individuals 
    2.3. Transform Individuals 
    2.4. Replace Population with New Individuals 
    2.5. Create New Gene Segment Pool 
WHILE (NOT Stop_Condition) 
 

Old 
population 

New 
population 

New Gene 
Segment Pool 

 

RANDOM 

Gene segment 
pool 

Select individuals Select gene segs. 

Transform Individuals 
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2.2.3 Transforming the Genetic Information of an 
Individual 

After selecting individuals to a mating pool, we use the 
transformation mechanism to produce new individuals. In 
this case, there is no sexual reproduction among the 
individuals of the population. Each individual will 
generate a new one through the process of transformation. 
We can consider this process a form of asexual 
reproduction.  Each individual will be transformed using a 
transformation probability.  

The proposed mechanism can be described as follows: we 
select a segment from the segment pool and we randomly 
choose a point of transformation in the selected 
individual. The segment is incorporated in the genome of 
the individual, replacing the genes after the 
transformation point, previously selected. Obviously, the 
chromosome is seen as a circle. Proceeding this way the 
chromosome length is kept constant. This corresponds to 
the biological process where the gene segments, when 
integrated in the recipient's cell DNA, replace some genes 
in its chromosome. Figure 3 illustrates the process of 
transforming an individual. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Transforming an Individual 

 

3 EXPERIMENTAL SETTINGS  

In order to investigate the performance of the TGA, we 
selected two different classes of problems: a 
combinatorial optimization problem (the 0/1 Knapsack 
problem (KP)) and the function optimization domain. 

We selected these problems, since that, they are well 
known benchmarks to EA (Goldberg, 1989). 

3.1 THE 0/1 KNAPSACK PROBLEM 

The knapsack problem is a NP-complete problem, where 
we have to find the feasible combination of objects so that 
the total value of the objects put in the knapsack is 
maximized, subject to a capacity or weight constraint. 

Formally, let C be the weight limitation (maximum 
permissible weight of the knapsack), let the integers 
1,2,…, n denote n available types of objects, p

i
 and w

i
, the 

value (or profit) and the weight of the ith object, 
respectively. A solution for the problem is represented by 
the binary vector xx of length n. Each element of xx can be 
zero or one: if x

i
=1 then the item i was selected for the 

knapsack.   

The knapsack problem can be expressed as  

 

 

i.e., maximizing the profits, subject to the weight 
constraint 

 

 

 

where x
i 
 is the selected object. 

3.1.1 The Implemented Knapsack 

We used several knapsack types (with 50, 100, 250 and 
500 items). The evaluation of the solutions used a penalty 
function; the weights and profits vectors were created 
without any correlation and we used average capacity for 
the knapsack, as suggested in (Michalewicz, 1999). 

The fitness f(x) for each binary string is determined as: 

 

 

with Pen(x) the penalty function. 

The penalty function is zero to all feasible solutions 
(those that don’t exceed the knapsack capacity) and 
greater than zero otherwise. There are many possibilities 
for assigning the penalty value to the infeasible solutions. 
In our case, we considered a logarithmic penalty function 
defined by expression (4). 

      

 

 

with ρ = max
i=1..n

{pi/wi} 

The generation of the vectors of profits (P[i]) and weights 
(W[i]) was made using the uncorrelated method,  i.e.,  

    W[i]=(uniformly) random ([1..v]) 

     P[i]=(uniformly) random ([1..v]) 

The value used for the parameter v was 10. 

The capacity of the knapsack (average capacity) was 
calculated by: 
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3.2 TEST FUNCTIONS 

We also evaluate the transformation mechanism by 
comparing its performance with the performance of the 
SGA (using three standard crossover operators) on several 
function optimization problems. To assess the quality of 
the algorithms we used the minimum function value 
found after a fixed number of function evaluations 
(50000, 100000 and 200000 in this case). The selected 
functions selected to analyze the GA performance were 
Rastrigin, Schwefel, Griewangk, and Ackley functions. All 
those functions are highly multimodal and have been used 
in other experimental comparisons of EA (Potter and De 
Jong, 1994; Gordon and Whitley, 1993).  

The Rastrigin function is defined as: 

∑
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Π−+=
n

i
ii xAxnAxf

1

2 )2cos(**)(  

 
where n=20, A=10 and –5.12 ≤ xi ≤ 5.12. The main 
characteristic of this function is the existence of many 
sub-optimal peaks whose values increase as the distance 
of the global optimum point increases  

The Schwefel function is defined as: 
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where n=10, V=418.9829 and –500 ≤ xi ≤ 500. The global 
minimum of the function is zero. The interesting aspect of 
this function is the existence of a second-best minimum 
far away from the global minimum, which can trap the 
optimization algorithms on a local optimum.  

The Griewangk function is defined as: 
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where n=10 and –600 ≤ xi ≤ 600. This function has a 
product term, which introduces interdependency among 
the variables.  

The Ackley function is defined as: 
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where n=30 and –30 ≤ xi ≤ 30. At a low dimension the 
landscape of this function is unimodal, however, the 
second exponential term covers the landscape with many 
small peaks and valleys. 

3.3 THE PARAMETERS OF THE GENETIC 
ALGORITHM 

The GA was first implemented with crossover (1-point. 2-
point and uniform) and then with transformation. In the 

first problem, the 0/1 knapsack, we executed experiments 
to study the effect of the population size in the GA 
efficiency. Therefore, the population size varied between 
20, 50, 100 and 200 individuals. In this problem, the GA 
evolved through 1000 generations. 

For the function optimization domain, we fixed the 
maximum number of function evaluations equal to 
200000.  

In both classes of problems, we used binary 
representation to encode the problem, the roulette wheel 
selection and an elite size of two individuals. The 
mutation and crossover/transformation rate were 0.1% 
and 70%, respectively. The results reported in the next 
sections are the average computed over twenty-five runs. 

3.4 EVALUATION MEASURE 

We used the De Jong's off-line measure to compare GA 
efficiency when applied crossover or transformation (De 
Jong 1975). This measure is defined by: 

 

 

 
where f e

 * = best {fe(1), fe(2), ..., fe(n)} and T is the 
number of runs. This means that off-line measure is the 
average of the best individuals in each generation. Due to 
the 25 trials, the average of the 25 runs was evaluated. 

4 EXPERIMENTAL RESULTS 

Next sections show the averaged results obtained in the 
knapsack problem and in the selected test functions. 

4.1  RESULTS OBTAINED IN THE KNAPSACK 
PROBLEM 

The proposed mechanism allowed the GA to achieve 
better solutions than the SGA using one-point, two-point 
or uniform crossover. This observation can be generalized 
to all the tested instances of the KP, i.e., with 50, 100, 250 
and 500 items. Table 1 summarizes all the results for the 
0/1 KP using the SGA and the TGA with different 
population’s sizes. The best solutions found for n=50, 
100, 250 and 500 are marked in bold. 

As we can see, the population size is an important 
parameter when using crossover. In fact, increasing the 
population size from 50 to 100 or 200 individuals, 
crossover's performance shows some improvements. 
Using transformation with smaller populations, the GA 
obtained better results than the SGA with larger 
populations. As we can see in the table, with only 20 
individuals in the population the TGA achieves solutions 
superior to the ones achieved by the SGA with 200 
individuals. 
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Table 1: Summary of the Obtained Results using the SGA and the TGA with Different Population's Size 

 
  Genetic Operator 

  One-point Crossover Two-point Crossover Uniform Crossover Transformation 

 P. Size→ 50 100 200 50 100 200 50 100 200 20 50 100 200 

50 438.63 482.18 465.20 461.41 494.41 496.37 488.74 533.54 507.24 562.99 568.62 574.76 590.40 

100 358.71 454.66 466.24 439.65 491.63 514.46 490.97 511.70 520.96 528.21 551.28 576.93 590.40 

250 950.08 1074.39 1089.54 923.92 1120.51 1036.18 1037.94 1211.10 1173.67 1330.68 1361.94 1375.79 1410.28 

N
º 

of
 I

te
m

s 

500 1734.66 1985.96 1959.66 1845.88 1972.49 1996.18 2001.11 2303.35 2183.51 2548.29 2630.82 2633.53 2656.17 

 

 

In order to understand these results, it is important to see 
how the GA evolved through the 1000 generations. In 
Figure 4, we show a representative example for the KP 
with 100 items.  The figure compares the GA 
performance using uniform crossover with 200 
individuals and transformation with a population of 50 
binary strings. 
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Figure 4: Comparing the SGA (200 inds.) and the TGA 
(50 inds.) Performances 

 

As Figure 4 shows, uniform crossover only allow the 
SGA to improve in the first generations and after that the 
evolution stops. The TGA evolved during a long period, 
and was able to reach better results than crossover, even 
with a smaller population. 

To analyze the influence of the population size in the 
GA's performance when using transformation we show, in 
Figure 5, the results obtained for the KP with 100 items. 
To the other instances, the results are quite similar. We 
can see that when using larger populations the maximum 
result obtained is superior. 

Comparing the execution times spent by the four genetic 
operators solving the KP, we can see that transformation 
is the mechanism that consumes more time. Nevertheless, 

the differences are relatively small compared with the 
crossover operators. The time spent by the TGA is 
approximately 7% superior to the time spent by the 
operator that obtains the worst results (one-point 
crossover) and 3% superior to the best crossover operator 
(uniform crossover). 
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Figure 5: The TGA's Performance using Different 
Population's Size 

 

Table 2 reports the results (in seconds) obtained running 
25 trials of the SGA and the TGA with a population of 
200 individuals, in a Pentium II with a 300 MHz 
processor. 

Table 2: Time Spent to Solve the 0/1 Knapsack Problem 

Nº items Cx1 Cx2 CxU TGA 

50 2610 2758 2887 2901 

100 6642 6757 6807 7095 

250 15736 15842 16005 16656 

500 30870 31761 32356 33382 

 

Pop=20 

 Pop=50 

  Pop=100 

     Pop=200 
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Table 3: Function Optimization: Summary of the Results (minimization) 

    Genetic Operator 

    One-point Crossover Two-point Crossover Uniform Crossover Transformation 

 Nº evals 50000 100000 200000 50000 100000 200000 50000 100000 200000 50000 100000 200000 

Rastrigin 88.170 88.170 88.170 67.639 67.639 67.639 63.739 63.739 63.739 73.272 52.518 36.682 
Griewangk 0.323 0.323 0.323 0.259 0.259 0.259 0.244 0.244 0.244 0.074 0.026 0.010 
Schwefel 665.406 665.406 665.406 557.770 557.770 557.770 456.273 456.273 456.273 220.878 62.404 8.695 

F
un

ct
io

n 

Ackley 16.248 16.248 16.248 15.102 15.102 15.102 14.181 14.181 14.181 11.617 8.645 5.941 

 

4.2 RESULTS OBTAINED IN THE FUNCTION 
OPTIMIZATION DOMAIN 

The TGA obtained, in the entire set of test functions, the 
best solutions after 200000 function evaluations.  Table 3 
reports the achieved results. The results presented are 
those obtained after 50000, 100000 and 200000 function 
evaluations using the SGA and the TGA. The best 
solutions are marked in bold. 

In this case, the GA using the transformation mechanism 
evolves very slowly to the achieved result. On the other 
hand, the SGA converges very rapidly to the obtained 
value, but is unable to continue evolving. Besides, just 
like in the KP, in the function optimization domain, TGA 
obtained better results than SGA with fewer number of 
function evaluations. 

The graphical representation shown in Figure 6 illustrates 
the SGA and TGA performances minimizing the Ackley 
function, but we observed a similar behavior in all the test 
functions. Once the population converges to a certain 
value, SGA is incapable of continue exploring other zones 
of the search space. The TGA evolves slower, but can 
continue improving during the 2000 generations.  
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Figure 6: SGA and TGA evolution in 200000 function 
evaluations 

 

Once again, these results appear to be a consequence of 
the loss of diversity in the population when using the 

crossover operators. TGA evolves during the entire 
simulation because the genetic variation of the individuals 
is kept in high levels. In the next section, we will focus 
the population's diversity measured in both problem 
domains. 

Concerning the computational times, once again, TGA 
was the slower algorithm, but the differences to the times 
used by the crossover operators are quite small.  TGA was 
approximately 7% slower than one-point crossover (the 
operator which obtained the worst results) and 4% slower 
than uniform crossover (which obtained the best 
performance among the crossover operators). Table 4 
shows the times (in seconds) spent in the execution of the 
25 trials for the minimization of the test functions. 

Table 4: Time Spent to Minimize the Test Functions 

Function Cx1 Cx2 CxU TGA 
Rastrigin 7039 7059 7298 7698 

Griewangk 5338 5360 5478 5686 
Schwefel 4683 4722 4832 4989 
Ackley 11320 11588 11667 12152 

 
 

4.3 POPULATION'S DIVERSITY 

The main reason for the good results obtained by the TGA 
seems to be the great diversity that the proposed 
mechanism introduces in the population. This can be the 
explanation for the fact of the TGA with 20 individuals 
outperforms the SGA with 200. To compare the diversity 
in the population we used a standard measure, which is 
the sum of the Hamming distances between all possible 
pairs in the population. This measure, when normalized, 
is defined as: 

∑∑
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where L is the chromosome length, P is the population 
size; pi is the ith individual in the population and HD is the 
Hamming distance function. 

Figure 7 shows the variation of the population's diversity 
for the KP. The results were obtained by the GA solving 
the KP problem with 100 items and compare the diversity 

(11) 
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maintained by uniform crossover and transformation. To 
the other instances of the KP, the results were very 
similar. 
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Figure 7: Population's Diversity in the KP 

 

As we can see, the diversity of the population is higher 
when using transformation, indicating that the individuals 
are covering more areas of the search space. When 
applying uniform crossover, the population's diversity 
decreases to values near to zero avoiding the GA to 
continue evolving. In the Figure 4 we observed that the 
SGA stops evolving about generation 130. As Figure 7 
indicates, the diversity of the population achieves the 
lower levels about generation 130. 

In the domain of function optimization, the results were 
very similar. Figure 8 shows the diversity measure in the 
minimization of the Ackley function. Once again, there is 
a correspondence between the point where the diversity 
reaches low values and the point where the SGA stops 
evolving (20000 function evaluations in Figure 6). 
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Figure 8: Population's Diversity minimizing Ackley 
Function 

 

5 CONCLUSIONS 

In this paper, we introduced a new genetic operator 
inspired in bacterial genetics, called transformation. We 
used this operator as an alternative to crossover and we 
studied the GA performance solving two different classes 
of problems.  The results showed that the transformation 
mechanism is clearly superior to the SGA. Besides, with 
few individuals in population (or fewer function 
evaluations) transformation can achieve better solutions 
than crossover with larger populations. 

Observing the population’s diversity, we can see that 
transformation preserves a high degree of genetic 
variation among the individuals of the population.  

We are currently using this genetic operator in a classical 
dynamic optimization problem and the preliminary results 
show that the TGA is able to adapt to the new solution 
when a change occurs (Simões and Costa, 2001b). 

In order to enhance the GA performance when using this 
mechanism we are also implementing some modifications 
concerning some issues, namely, the assessment of the 
best transformation rate, the influence of the gene 
segment length and the generation of the gene segment 
pool. 
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Abstract

This work is an extension of the framework

for optimizing global-local hybrids. The ex-

isting theory idealizes the search problem

as a search by a global searcher for accept-

able targets or for basins of attractions which

lead to acceptable target by invoking a local

searcher. The two key parameters of this the-

ory are|the probabilities of successfully hit-

ting targets and basins and time-to-criterion

values for di�erent basins. First the exist-

ing theory is tested with variation in time-to-

criterion values for the local searcher across

several basins and is then extended to handle

variations within individual basins. As a �rst

step towards applying this theory to genetic

algorithms (as the global searcher), selection

dominated performance has also been studied

in the context of this theory. The results are

promising and make a strong case for further

work in this direction.

1 INTRODUCTION

Past work has indicated that hybridization is a key fac-

tor for achieving superior performance with a genetic

algorithm (GA) in many application domains. A pure

GA can seldom match the performance of a method

tailored to the problem at hand. A hybrid combines

the global searcher (the GA) with other methods which

exploit problem speci�c knowledge to generate better

solutions than either could have come up with on its

own. One of the issues central to hybridization is the

eÆcient allocation of time between the global and local

search. Most often the goals sought are to (a) max-

imize the reliability of reaching a solution of desired

quality in a given amount of time or (b) minimize the

time required to reach a solution of desired quality

with given reliability. This study is towards develop-

ing eÆcient combines of global and local searchers to

meet these goals.

The next section reviews some of the past work on hy-

brids and discusses the motivation for this work. This

is followed by some theoretical background for tackling

the problem at hand. Thereafter, some experiments

to test the existing theory for variations in local time-

to-criterion values across basins and then variations

within the same basin are considered. The paper con-

tinues with the development of a model for selection

(as a global searcher) and shows its signi�cance in de-

ciding between global and local searchers at di�erent

times. This is followed by suggestion of possible ex-

tensions. The study concludes with a brief summary

and some comments on its signi�cance.

2 PREVIOUS WORK

The applications literature of GA-local hybrids is too

numerous to cite here, but the EnGENEous system

(Powell, Tong, & Skolnick, 1989) was an early sys-

tematic hybrid of a GA and local search in a com-

mercial setting. Davis (1991) was an early exponent

of hybrids and his book gives a good rationale for so

doing. Ibaraki (1997) describes the combination of op-

timization methods such as local search, dynamic pro-

gramming and simulated annealing. with genetic al-

gorithms for several combinatorial optimization prob-

lems.

Less has been said on the theory of global-local hy-

brids, but an important distinction between Bald-

winian and Lamarckian learning was made by Hinton

and Nowlan (1987). This issue of substituting the indi-

vidual from the termination point of the local searcher

into the population for further genetic search has been

a much debated one. The study by Orvosh and Davis

(1993) has interesting empirical results.
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A majority of the work has been focused on narrow ap-

plication domains (combinatorial optimization, Trav-

eling Salesman Problem, etc.). A generic theoretical

framework for combining GAs with other methods has

been lacking.

The study by Goldberg and Voessner (1999) made a

start towards addressing this issue by developing a

framework for optimizing global-local hybrids. Prelim-

inary results with random search as the global searcher

and a quasi-Newton method as the local searcher were

also published. This study builds on the above work.

It veri�es some of the extant theory and extends it for

handling variation in time-to-criterion within a basin

and of developed therein for application to GAs by

tackling the �rst stage of a GA: selection.

In the next section we review necessary theory for this

work.

3 BACKGROUND THEORY

This section is mainly drawn from other works (Gold-

berg & Voessner, 1999; Goldberg, 1991) and the inter-

ested reader is urged to refer to these papers for fur-

ther details. A typical hybrid, H , consists of a global

method G and a local method L. An iteration of H

consists of one iteration of the G to generate a can-

didate solution which serves as the starting point for

L which is invoked multiple times each consuming no

more than an allowable time �a : 0 � �a � �max. This

process continues until we exceed an allowable time Ta
or the desired solution quality is obtained. The solu-

tion quality is the solution accuracy target � � �� .

In Figure 1, �i (depicted as tessellated polygons) are

the basins of attraction within which L can lead to the

target solution which are depicted as islands �i.

The solution sought is better than some target value

�� (= �� +��, where �� is the globally optimal max-

ima/minima and �� is the amount by which the

sought solution quality di�ers from the ��). Now we

consider the possible ways in which we can get to the

target islands, �i. The union of the targets, the global

region, RG =
S
i
�i. The probability of hitting RG in

a single invocation of the global searcher is denoted as

PG. For a random search with uniform distribution,

PG may be calculated by summing the areas of the

targets and dividing by the total area of the search

space.

The local time-to-criterion values �i are de�ned as the

average number of time units required to get to the

target starting from within the basin of attraction �i.

Although the time taken to reach the local optimum

would depend on the exact point in the basin where
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Figure 1: A 2-D sketch of the search space showing

the target islands, �i, basin of attraction under local

method L to those targets, �i, and dead zones.

we start from, here we consider a single �i over the

whole basin for the sake of simplicity. The probability

of hitting the basin �i (exclusive of the target �i) with

an invocation of G is denoted by Pi. Suppose G lands

in a basin where the local search does not reach a so-

lution of desired quality or in a basin where L fails to

converge in � � �max time units. These regions are

called dead zones. The probability of hitting the dead

zone is denoted by PD and can be calculated as follows

PD = 1� PG �
X
i

Pi: (1)

The global search is assumed to take one unit time

and the local search times are calculated relative to

that. Calling the allowable local time constant �a, and

the average local time constant �, the solution time T

consumed in n global-local iterations is:

T = (1 + �)n: (2)

Some of the basins may have a local time-to-criterion

higher than the allowable time for local search, �a.

Hence the probability of hitting the global zone can

be found by summing the probability of hitting global

region initially (by the global searcher) and the proba-

bility of hitting the basins with a time-to-criterion less

than the allowable, �a. This can be stated as

P�a = PG +
X

i:�i 6=0;�i��a

Pi: (3)

Next, we have the formulation for minimizing time for

certain reliability.

3.1 MINIMUM TIME FORMULATION

The probabilistic error, �a, is de�ned as the probabil-

ity of not reaching a solution of desired quality. For
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a speci�ed allowable error �a, the reliability condition

can be written as

�a = (1� P�a)
n; (4)

where n is the number of iterations. By eliminating n

and minimizing, we get:

min(�a + 1)
ln�a

ln(1� P�a)
: (5)

This gives us the minimum time required to reach a

solution with a speci�ed allowable error �a. Next, we

show formulation for maximum reliability in a given

time.

3.2 MAXIMUM RELIABILITY

FORMULATION

We have n = Ta

�a+1
. The maximum allowable time

�max � Ta� 1. Minimizing the error and substituting

for n gives

min(1� P�a )
Ta

�a+1 : (6)

We should go with G alone when (1 � PG)
Ta < [1 �

(1�PD)]
Ta=�

0

a (Goldberg & Voessner, 1999) which can

be reduced to

PD > (1� PG)
�

0

a ; (7)

where �0a = �a + 1.

Next, we report some experiments which verify di�er-

ent aspects of the theory on two di�erent test func-

tions.

4 EXPERIMENTS

This theory has been veri�ed using random search a

G and a quasi-Newton, the Broyden Fletcher Goldfarb

Shanno (BFGS) method (Press, Teukolsky, Saul, Vet-

terling, & Flannery, 1992) as L for uniform � across

several basins (Goldberg & Voessner, 1999). The

BFGS method has a useful property of having nearly

equal convergence times across geometrically similar

basins and the time taken is nearly the same irrespec-

tive of the starting point of the search within the basin.

The test function used in that work was:

f(x; y) =

(
di

r2
i

(r2)(2� r
2

r2
i

)� di for r2 � r2
i

0 otherwise

where x = x� cxi, y = y� cyi, r
2 = x2+ y2, and ci =

f(2:0; 8:0); (3:0; 4:0); (5:0; 7:0); (7:0; 8:5); (7:0; 4:0)g,
ri = f1:5; 2:0; 0:5; 1:0; 2:5g, di = f2:0; 3:0; 2:0; 4:0; 2:0g.
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Figure 2: The inverted test function (-f(x,y)) with �ve

quasi concave basins.

The global minima is �4:0 and is located at (7:0; 8:5).

Figure 2 shows the function. This function has been

used for all of the following experiments except where

mentioned otherwise. Similarly G is a random search

with uniform distribution except where mentioned

otherwise. L is the BFGS method throughout.

The termination criterion for all simulations was a

maximum error of 0:01%. For random search PG is

calculated by summing the areas of the targets and

dividing by the total area of the space. A Baldwinian

approach is followed wherein the result from the local

searcher is not substituted back into the original pop-

ulation, but the value found by local search is used to

evaluate the starting point.

There are two possible ways to measure time in

these experiments. One is clock or execution time

of the block of code representing the global and lo-

cal searchers. One problem with this approach is

the lack of high resolution timers for most platforms.

Also keeping track of actual execution time at di�erent

points is cumbersome. Another way is to assign appro-

priate weights to function and derivative evaluations

and use this computation as a measure of time. In real-

world applications function evaluations tend to be the

bottleneck. Also it is much easier and convenient to

track these rather than the exact time. Keeping this

in mind, the latter approach has been pursued in this

work.

4.1 CASE I: VARIATION IN �i

With di�erent �i for di�erent basins choosing an ap-

propriate value for �a becomes critical. The possi-

ble choices for �a are the di�erent �i. A higher �a
is appropriate if the cumulative probability of suc-

cess increases suÆciently. The following procedure is
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Figure 3: The probabilistic error � is shown as a func-

tion of the allowable time Ta with di�erent � values

for the local searcher L. The lowest error is obtained

for �a = 8:0, as suggested by the theory.

adopted for choosing an optimal value of �a. First,

the basins are arranged in ascending order of � values.

Locally optimal choices are obtained by comparing the

� values of the ith basin and the (i+1)th basin on the

basis of probabilistic error. The error is given by equa-

tion 4 with n = Ta=(�a + 1):

�a = (1� P�a)
Ta=(�a+1);

= P
Ta=(�a+1)

D
:

The locally optimal choice with the least error gives

the globally optimal choice of �a. PD is calculated

theoretically. This procedure yields �a = 8:0 as the

optimum value for the aforementioned function.

For this experiment we assign di�erent �i values

to di�erent basins. The assignment was �i =

f6:0; 12:0; 4:0; 10:0; 8:0g. Whenever the global searcher

lands in a basin, it is assumed that the local searcher

takes the assigned amount of time to reach a target.

The desired solution quality was �� = �1:0. Figure 3
shows the results for this case. The least error is with

�a = 8, which was predicted by the theory. For sake

of clarity , only three of the �ve possible choices of �a
have been plotted. The other choices of �a (which are

not shown) also led to inferior performance.

4.2 CASE II: VARIATION OF � WITHIN

A BASIN

For most real-world functions the time-to-criterion

values depend upon the starting point of the local

searcher. This case is illustrated by the Griewank func-

tion (T�orn & �Zilinskas, 1989) (for the two-dimensional
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Figure 4: The probabilistic error � is shown as a func-

tion of the allowable time Ta for �� = 0:02; PG =

0:002. In this case G+ L yields lower error.

case)

f(x1; x2) = 1 +
x1

2 + x2
2

4000
� cos(x1) cos(

x2p
2
) (8)

x1; x2�[�512; 511]. This is a di�erentiable, multi-

modal function with the global minima as 0:0 located

at x1 = 0:0 and x2 = 0:0.

For a solution quality of �� = 1:5 � varied from 3:0 to

24 for each of the basins. For the sake of convenience

in calculating the probabilities only a portion (with

4 basins including the one with the global minima)

of the space was considered. The area of each basin

was approximated by a circle. To calculating Pi, �

was chosen so that 90% of the observed � were below

this value. The above procedure reduced the e�ective

area of the basin by 10%. This was factored into the

calculation of Pi. Since the behavior was similar across

basins, �i were taken to be uniform. Figure 4 shows

the results for a desired solution quality �� = 0:02.

The results are according to the theory. Here PG =

0:002; PD = 0:6237; �a = 17:0. The global searcher

cannot succeed without the help of L. Figure 5 shows

the results for a desired solution quality �� = 1:5. For

this case, PG = 0:356; PD = 0:55; �a = 3:0. With a

higher PG here we see that G alone performs better

than G + L combined. According to the theory one

should proceed with G only if PD > (1� PG)
�

0

which

is the case here. The theory holds for this case.

In the foregoing experiments, G has been taken as uni-

form random search, making the correspondence be-

tween theory and experiment quite close. As we move

away from random search and toward genetic and evo-

lutionary algorithms as our choice of G, we consider

the changes necessary in the theory to accommodate

the more complex global search. The next section

takes our �rst steps in these directions by consider-
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Figure 5: The probabilistic error � is shown as a func-

tion of the allowable time Ta for �� = 1:5; PG = 0:356.

In this case G alone performs better.

ing selection dominated performance. This will result

in modi�cations to the basin probabilities Pi as the

generations progress.

5 TOWARDS G = GA: THE

ASSUMPTION OF SELECTION

DOMINATED PERFORMANCE

A typical GA can be decomposed into the follow-

ing steps: (a) random initialization, (b) selection, (c)

crossover and (d) mutation. So the next logical step

is to incorporate selection into the theory. Selection

tends to dominate early GA performance and proceed-

ing with selection alone as a choice for G would be a

positive step toward having GAs as the global searcher.

Some of the ideas in this section are drawn from (Gold-

berg, 1991).

First we develop a model for selection which enables

the prediction of the population �tness level in succes-

sive generations. This model also enables the calcula-

tion of probabilities of reaching a solution of desired

quality using G alone. This information can then be

used for choosing between G and G + L. We verify

these ideas with some experiments.

Truncation selection was used for modeling selection as

it lends itself to easier modeling. Figure 6 shows the

proportion of individuals above various �tness levels

at di�erent generations under selection. Using trun-

cation selection we can approximate the proportion of

individuals below a certain �tness level in successive

generations with a power law as follows:

fnorm = (f � fmin)=(fmax � fmin); (9)

p = (1=s)t = f bnorm: (10)
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Figure 6: Proportion of population above di�erent �t-

ness levels is shown for di�erent generations with trun-

cation selection.

fnorm is the normalized �tness, p is the proportion

of the population above a certain �tness level, f , t

is the generation number, s is the selection pressure

and b is a constant. Figure 7 shows the approximated

curve with b = 5:376 and the proportion curve for the

random initialization of the population (i.e. t = 0).

Solving for fnorm and substituting s = 2, we have

fnorm = (1=2)t=b; (11)

f = fnorm(fmax � fmin) + fmin: (12)

This gives us the �tness level above which all the in-

dividuals in the population lie for any generation t.

This may be used to obtain a closed form solution for

the proportion of population above a certain �tness

level as it is shown. After the initialization the indi-

viduals are randomly distributed over the whole search

space. During selection s copies are given to each of

top 1=s proportion of the population. This leads to

multiple copies of the �tter individuals, but their dis-

tribution remains random in space. So the probability

PG of reaching a point better than the current level of

the population, f , may be calculated by summing the

areas for the desired �tness across all basins and divid-

ing by the summation of the areas at current �tness

level over all the basins. If the current �tness level, f ,

happens to be better than the desired �tness then all

the individuals in the population meet the criteria and

PG = 1.

Since selection alone does not provide any new points,

if we set a very high solution quality criterion selec-

tion fails to reach the criterion all together because

the probability of having such a point after a random

initialization would be very low. But if the criterion is

within reach (i.e. already present in the initial popu-

lation) of the selection process the convergence is very
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Figure 8: The probabilistic error � is shown as a func-

tion of the allowable time Ta for �� = �1:0 with se-

lection as the global searcher. G alone yields lower

error.

fast. In this case selection alone fairs better than a

combination of selection and local search. The high

relative cost of the local search proves to be an over-

head. But when none of the initial points meet the

criteria, the local searcher plays a key role in leading

to an acceptable solution.

5.1 EXPERIMENT

Here selection was used as the global searcher in con-

junction with BFGS. A population of 50 individuals

was generated randomly. At each iteration of G one

truncation selection (s = 2) was carried out and one

randomly chosen individual from the resulting popu-

lation was returned. The local search then took over

with this individual as the starting point. This was

a single iteration of G + L. The output of the local

search was not substituted back into the population.

The results from the aforementioned model were used

to calculate theoretical PG values. These values were

no longer constant after each iteration (as was the case

with random search). Figure 8 shows the results. The

experimental results for G are in close agreement with

the one derived from the model. The di�erence can

be attributed to approximation errors in the model.

G alone performs better for this case. The theory for

G + L requires more work and will be addressed in a

later study.

6 EXTENSIONS

This work has initiated a �rst step towards applying

global-local hybrid theory to GAs. A number of ex-

tensions suggest themselves:

1. Consider selection dominated performance theory

with real GAs with crossover and mutation.

2. Currently, the theory uses stationary calculation

of probabilities. Modify theory to handle non-

stationary probabilities.

3. Test the theory on a rigorous test suite.

4. Consider o�-line and online methods to determine

theory parameters for real problems.

5. Consider extension to more than 2 methods.

The above steps can provide answers to some impor-

tant questions: When should theory be expected to be

good? What are the dimensions of hybrid diÆculty?

How should one estimate theory parameters in the ab-

sence of complete knowledge of the �tness landscape?

As practitioners seek answers to these questions, re-

searchers will soon direct their e�orts to explore these

directions.

7 SUMMARY & CONCLUSIONS

Global-local hybrid theory is increasingly being shown

to be a useful tool for dividing labor between multi-

ple solution techniques to obtain quality solutions eÆ-

ciently. When G is random search, the theory may be

used to choose eÆcient combines with local searcher,

L, resulting in � variation both between and within

basins of attraction. When G is not a random search,

it appears that modi�cations can be made to design

eÆcient combinations. By considering selection domi-

nated performance, a preliminary extension of the the-

ory towards GAs was proposed. More work is needed,

but these results and extensions promise a practical

design capability for eÆcient hybridization.
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Abstract

This paper introduces a dynamical systems

model of a generational Genetic Algorithm

with Self-Adaptation of mutation rates. This

model is used to predict the mean �tness of

an evolving population as a function of time.

The accuracy of these predictions are then

tested by running a series of experiments us-

ing Genetic Algorithms with di�erent popu-

lation sizes. It is shown that although there

is a threshold below which the \real" popula-

tions do not closely follow the predictions, the

model is still able to give us useful informa-

tion about the behaviour of the \real" GAs,

since the populations tend to get \stuck" at

points close to certain eigenvectors of the in�-

nite population model. Arguments are given

which allow the prediction of which eigenvec-

tors will be important.

The dynamics of the population evolving on

a non-stationary environment are then con-

sidered, and some conclusions drawn about

the nature of environmental change to which

the algorithm will be able to respond.

1. Introduction

This paper applies the dynamical systems models of

Genetic Algorithms (GAs) developed by Vose [9], to a

simple model of a genetic algorithm with self adaptive

mutation rates. In particular the behaviour of the al-

gorithm is considered on problems of unitation, where

the approaches of [8] [5] can be taken to reduce the

dimensionality of the dynamical systems to be solved.

Although these are in�nite population models, it has

been shown that provided the population size is suÆ-

ciently greater than the number of equivalence classes

considered, then the models can accurately predict the

behaviour of \real" GAs.

The Self Adaptation of mutation rates within a GA

was �rst proposed by B�ack in [1], who used a binary

encoding for the mutation rate within a generational

GA. This idea was expanded by Smith and Fogarty [6]

who examined a number of di�erent encodings within

the context of a Steady State GA, and Hinterding [3]

who used a real number encoding for mutation step

sizes to act on (e�ectively) real-valued genes.

In this model a generational model is used similar to

that of [1]: an individual is deemed to have a single

mutation rate, m attached to it, which takes one of a

�xed number, q, of values. Mutation is a two phase

process, where �rst the value of m is varied to yield a

new value m0, then the problem representation is mu-

tated with this new bit-wise mutation probability. For

the purposes of clarity, we will restrict ourselves here

to the situation where in the �rst process a new value

m 2 f1; : : : ; qg is chosen at random with probability z,

and the value is left unchanged with probability (1�z).

We will refer to z as the Innovation Rate. Note that by

setting q = 1, we can use this model for �xed mutation

rates as well. In[4] the results are given of experiments

which demonstrate that the mechanism described here

is suÆcient to permit adaptation of the mutation rates

to optimal values on a range on NK landscapes with

N = 40 and K 2 f0; 15g .

This model represents a simpli�cation of the algo-

rithms described in [1, 6], in two aspects. The �rst of

these is that rather than using a binary (or Gray code)

encoding for the mutation rate,(which is itself subject

to bitwise mutation) the mutation rate is represented

by a single allele of alphabet q. In this work q is taken

to have a much smaller value (10) than the number of

values considered by B�ack and Smith, so as to render

the resultant matrices more tractable, although this

is not a necessary restriction. However there remain
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implications for the inheritance of mutation \genes",

since these were subject to recombination in the works

mentioned above and are not in this system.

The second simpli�cation concerns the way in which

the mutation rates are themselves subject to change.

In [1, 6] the binary strings representing the mu-

tation rates are �rst decoded, then are themselves

subject to bit-wise mutation at the decoded rate.

This has the e�ect that (subject to decoding e�ects

such as\Hamming cli�s") mutation rates are likely to

change to similar values. By contrast, in this model

rates are changed to a randomly selected value with

probability z, and in fact the value is altered with prob-

ability z�(q�1)=q since the same value may be chosen.

This decision was made so as to simplify the derivation

and explanation of the mixing matrix, and (more im-

portantly) because experimental results showed better

ability to adapt to changing environments than sys-

tems where the rate was more likely to change to a

similar value. However it is a fairly trivial matter to

change the mixing matrix to a \similarity" based adap-

tation, once a set of suitable probability distributions

has been chosen. The main factor would be the ex-

plicit choice of what probability distribution to use for

each value, as opposed to the implicit choices made

when a bit string (whether binary or gray coded) is

used.

In this paper we will consider problems of unitation,

i.e. where the �tness of an individual solution depends

solely on the number of 1's in its binary representation.

For such a problem with a representation of length l

there are l+ 1 equivalence classes of solutions with

di�erent representations but equal �tnesses i.e. for a

three bit representation the four classes are:

f000g, f100, 010, 001g, f011, 101, 110g , f111g.

In order to deal with the di�erent mutation rates we

will extend this model so that each of the �tness equiv-

alence classes is subdivided into q further classes ac-

cording to the mutation rate attached to the individual

solutions, giving a total of N = q � (l + 1) states. For

an individual state i the �tness is f 0(i) = f(i=q) and

the mutation rate is indexed by m = i%q, where the

% symbol has its usual modulus meaning, and the di-

vision i=q is taken to be rounded down to an integer

value.

We can therefore de�ne a population vector p =

(p1; : : : ; pN ) such that the components pi represent the

proportions of the population in class i, subject to the

restriction �ipi = 1.

Following Vose's model, we can model the e�ect of the

GA on this population vector as

p0 = Gp =MFp (1)

where the functions M and F represent the mixing

(mutation and crossover) and selection operators re-

spectively. The outcome, p0 represents the probability

distribution from which the next population will be

sampled, which is equivalent to the next generation in

the In�nite Population Model (the reader is referred

to [9] for a more detailed discussion).

For �tness proportional selection, the selection opera-

tor can be modelled by using a diagonal matrix S with

elements

Sij =

�
f(i=q) i = j

0 i 6= j
(2)

and the operation of the selection operator is given by

Fp =
Sp

hfi(p)
(3)

where

hfi(p) =

NX
j=0

pjf(j=q) (4)

Crutch�eld et al have shown that this can be turned

into a linear form, and derived equations for the calcu-

lation of the mean �tness as a function of time without

the need for iterated matrix multiplication [8]. Al-

though both methods were used ( for the purposes

of testing), in practice it was found that the \brute

force" method could be executed in reasonable time

on a 500MHz Pentium III, using code developed in C

using the \meschach" libraries [7]. As an indication

of the roundo� errors, the eigenvector corresponding

to the maximum eigenvalue for the One-Max problem,

which should be positive, was computed to have a sin-

gle negative component of size < 1:1��17.

The Mixing matrix,M can be further decomposed into

two functions representing crossover and mutation, a

derivation in this case will be given in the next sec-

tion. Given a form for M and F we can revisit (1)

and consider the case for �xed points (if they exist) of

the algorithm. If v is a �xed point of the system (i.e.

GV = v) then we have:

MSv = hfi(v)v (5)

i.e. v is an eigenvector of MS with eigenvalue equal to

its average �tness. Theory tells us that there will only

be one eigenvector of the system corresponding to a

\real population" (i.e. which lies within the simplex),

and that this corresponds to the population whose
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mean �tness is equal to the biggest eigenvalue. How-

ever, other authors have shown eigenvectors of the sys-

tem which are close to the simplex, (i.e. which are al-

most attainable by real populations) can act as attrac-

tors for evolving populations in \real" GAs [5]. Given

the increased number of states of the system studied

here, it can be expected that more eigenstates with

similar eigenvalues will be present. The hypothesis is

that analysis of the composition of the eigenvectors

will inform our understanding of the adaptive process.

2. Derivation of Mutation Matrix

In the derivations below we will use the following no-

tation:

Ps(i) = Spi denotes the probability of selecting an in-

dividual of class i.

Pr(ijk) denotes the probability of generating a mem-

ber of class i by recombination between a member of

class j and one of class k.

Pm(ij) denotes the probability of creating a member

of class i by mutation from one of class j

Assuming the regular order of selection-crossover-

mutation, we know that the ith component of the prob-

ability distribution vector for the next generation, is

simply the sum over all classes j, of the probability

of generating a member of class j from the selection-

crossover process, multiplied by the probability of mu-

tating that individual from class j to class i, i.e.

Gpi =

NX
j=1

Pmij �
X
k

X
l

Pr(jkl) � Ps(k) � Ps(l) (6)

Initially we will restrict ourselves to the case where

there is no crossover, and the �rst parent is simply

copied, i.e.

Pr(ijk) =

�
1:0 i = j

0:0 i 6= j
(7)

and only one of the Ps terms is used. We can fur-

ther simplify (6) by noting that we can separate the

summation into two parts. In the �rst of these, the

member selected to be copied has the same attached

mutation probability as i (i.e. i%q = j%q) , and this

is unchanged. In the second, the attached mutation

rate is di�erent, but with probability z this is changed,

achieving the correct rate with probability 1=q.

Common to both of these is the fact that the problem

representation must then be mutated to contain the

same number of 1's. If we use the notation that a

mutation rate of mi is attached to the class i, a of the

j=q ones get mutated to zero and b zeroes get mutated

to one, this happens with probability :

P
0

m(ij) =

j=qX
a=0

l�j=qX
b=0

Æj=q�a+b;i=q � (8)

�
l � j=q

b

� �
j=q

a

�
m

a+b
i (1�mi)

l�a�b

where Æx;y is the Kronecker delta function:

Æx;y =

�
1 x = y

0 x 6= y
(9)

Taking the two parts together gives us:

Gpi = (1� z) � Æi%q;j%q

X
j

Ps(j) � P
0

m(ij)

+
z

q
�
X
j

Ps(j) � P
0

m(ij) (10)

=

NX
j=0

Ps(j) � P
0

m(ij) �

�
z

q
+ Æi%q;j%q(1� z)

�

from which we can see by inspection and comparison

with (1) that the elements of the mixing matrixM are:

Mij =

�
z

q
+ Æi%q;j%q(1� z)

�
� P

0

m(ij) (11)

where P 0

m(ij) is de�ned as per (8).

3. An Example: One-Max

In order to compare the predictions of this model

with the performance of \real" GAs - that is to say

ones with �nite populations- a series of experiments

were made using the \One-Max" function. A prob-

lem length (L) of �fty bits was used, along with ten

di�erent mutation rates ( i.e. q = 10), yielding a sys-

tem with 510 equivalence classes. The mutation rates

used were from the set f0.0005, 0.001,0.0025, 0.005,

0.0075, 0.01,0.025, 0.05, 0.075, 0.1g, and the rate at-

tached to an individual was changed to a new random

value with probability z = 0:01. In practice it was

found that because of the number of classes with selec-

tion probability 0.0, a singular matrix was generated,

and so the �tness function was modi�ed by adding 1.0

to each (scaled) value, giving �tness values in the range

1�101. The model was used to predict the mean pop-

ulation �tness as a function of time, the eigenvectors

of the system, their corresponding eigenvalues, and a

number of metrics relating to the distance of those

eigenvectors from the simplex. A series of experiments
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Figure 1: Evolution of Mean Fitness: Predicted vs. Empirical Results

were then run using a Self Adaptive GA with the same

mutation values, no crossover, and a range of di�erent

population sizes. Baker's SUS selection algorithm [2]

was used rather than \Roulette wheel" as it has been

shown to exhibit less noise, a factor which becomes

more important as we move from an in�nite popula-

tion model to the vagaries of stochastic e�ects with

�nite populations. Figure 1 shows the predicted tra-

jectory of the population's mean �tness against time,

along with empirical results for di�erent population

sizes, averaged over twenty runs of the GA.

As can be seen, the experimental curves deviate from

the predicted values, by an amount that decreases as

the population size increases. Allowing the GA to run

for longer periods showed that the mean �tness did

converge onto the predicted value, regardless of popu-

lation size.

In [5] results are reported for a GA on this problem

with L = 20 and a population of 500, i.e. at least an

order of magnitude larger than the number of equiva-

lence classes, and in [8] a ratio of population size (�)

to number of classes � > 2N is used in order to ob-

tain results that match the predictions. For the self-

adaptive GA, this presents a problem, since the num-

ber of equivalence classes in our model is increased by

a factor q.

As can be seen from Figure 1, population sizes of

greater than 1000 are needed to obtain a close match

with predictions, although for all population sizes

there is a good match in the �rst stages of the evo-

lution. The need for large population sizes can be

easily understood by the fact that in a \real" GA, the

population vector is e�ectively discretised with a scale

factor of 1=popsize.

In the model, the population is able to sustain initially

small proportions of individuals falling into the highest

�tness classes, which are created either through ran-

dom initialisation, or ( with very low probability) via

the mutation of less �t individuals. These will then in-

crease exponentially according to their �tness relative

to the population mean.

With �nite populations, the discretisation e�ect is

such that very few, if any, of these individuals are

created, and the population is consigned to a more

gradual evolution of �tness.

However, the deviations from the predictions caused

by stochastic e�ects do not mean that the model is of

no use. In Figure 2 the mean �tness for a single run

with a population size of 2000 is shown, along with the

Euclidean distance (multiplied by 1000) to the nearest

eigenvector, and the �tness of that eigenvector ( i.e.

it's eigenvalue). The epochal nature of the search can

clearly be seen, with the population being attracted

to a succession of increasingly �t eigenstates of the

system, before converging around the stable eigenvec-

tor. Note that convergence in this case is in terms of

phenotypic �tness rather than genotypes, since many

genotypes will belong to the same equivalence class as

discussed above.

In [8] the systems studied contain a small number of

equivalence classes, and the empirical results show that

the populations do spend \epochs" at the mean �t-

ness levels corresponding to the eigenvectors of the sys-

tem. Arguments are developed to explain the di�ering

amounts of time typically spent at each �tness level.

However for the systems studied here, there are much

larger numbers of eigenvectors of the system, and the

problem becomes one of predicting which of these will

become attractors for the population as it evolves.

Figure 3 shows the eigenvalues (mean population �t-
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Figure 4: Evolution of Mean Fitness After Environmental Change:Predicted vs. Empirical Results
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nesses) of the �rst �fty eigenvectors of the system,

along with the number of negative components, their

sum, and the mean mutation rate of a population at

the eigenvector. Also marked by vertical dashed lines

are the epochs noted in Figure 2. As can be seen these

correspond to eigenvectors of the system which are a)

close to the simplex, b) have few negative components

and c) have a range of mutation classes present. Note

that the �rst two points above although related are not

linearly related. Point c) is indicated by the fact that

the mutation rate 
uctuates between extremes, but the

epochs occur between these 
uctuations, and this has

been con�rmed by closer analysis of the experimental

log �les. Analysis of subsequent runs with di�erent

population sizes showed that epochs always occurred

close to eigenvectors with the properties listed above.

4 Adaption in Dynamic Environments

In order to begin to understand the ability of the al-

gorithm to adapt to dynamic environments, it is �rst

necessary to compare the predicted and observed be-

haviour of the algorithm in response to transitions in

dynamic environments. This was achieved by running

experiments as above, but extended to 2000 genera-

tions, with a change after 1000 generations from One-

Max to Zero-Max.

For the GAs, this change was trivial to implement. For

the model, this could have been achieved by changing

the values in the selection matrix, and the recalculat-

ing G and its eigensystems. In practice it was easier

to utilise the symmetry of the two problems, and leave

the matrices as above, and assume that prior to the

change the population vector would have converged

onto the stable eigenvector for the One-Max problem.

This vector was then translated into the equivalent for

the Zero-Max problem according to:

p
0
i = p

1
((L�i=q)�q+i%q) (12)

where the superscripts indicate the problem( Zero-

Max or One-Max).

Figure 4 illustrates the results of these experiments,

concentrating on the period immediately after the

transition. As can be seen there is a good match be-

tween the prediction and the observed behaviours, es-

pecially in the �rst thirty or so generations.

The patterns of (predicted and observed) evolved be-

haviour starting from a converged population are very

di�erent to those with the initial random population.

This can be explained by examining the proportions

of the population falling into the di�erent mutation

classes as shown in Figures 5 (predicted) and 6 (ob-

served). Initially after the transition, mutations are

on average bene�cial, and so once re-introduced by

chance, individuals with the highest mutation rates

attached start to take over the population. However

once the mean �tness has passed 50%, then on aver-

age mutations will be deleterious, and so there is a

phase transition, and individuals with lower mutation

rates attached have a selective advantage. Inspection

of Figures 5 and 4 shows that this happens around

25 - 50 generations after the change. It is notable

that the empirical and theoretical results are virtually

identical up to this point for all population sizes over

100. From Figures 5 and 6 it can be seen that with

a �nite population the lowest mutation class does not

takeover the population as much as is predicted af-

ter the phase transition. It has been suggested above

that this is because the model predicts the early gen-

eration of individuals with high �tness, for which low

mutation rates are selective advantageous, whereas the

e�ects of a �nite population mean that a more grad-

ual evolution of �tness occurs, with correspondingly

higher mutation rates.

These results suggests that there is a limit to the rate

of environmental change which the self adaptive algo-

rithm can respond to , this limit being related to the

time needed for this phase transition to occur. This

time will depend on the selection pressure, but also

on the Innovation Rate since this determines both the

background proportions of (initially) sub-optimal high

mutation rates in the population prior to the change,

and also the rate at which lower mutation rates are

re-introduced into the population.

Finally it can be seen that Figure 5 explains another

feature of the predicted behaviour of Figure 4, namely

that the mean �tness of the population surpasses that

of the stable eigenvector, before dropping to that level.

This happens because during the second phase individ-

uals with the lowest attached mutation rate dominate,

and so the selection pressure is able to keep the popula-

tion at a state with fewer \errors". This e�ect persists

until the population is largely converged, and the other

mutation rates are re-introduced by mutation, moving

the population towards the stable state.

Conclusions

In this paper a model of a particular form of self-

adaptation of mutation rates has been presented, along

with empirical studies to investigate its applicability

with �nite populations. In this model, the mutation

rate attached to an individual solution comes from one

of a �nite set of values, and at every time step can be

changed to a randomly selected member of the set with
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a �xed probability z. Although simpler than many

of the models used by previous authors, this form of

Self-Adaptation is shown to demonstrate the ability to

adapt in both static and dynamic environments.

The empirical results presented show that the pre-

dicted �tness of the evolving population is over-

estimated, and reasons are given for this in terms of

the discretisation of real populations with a granular-

ity of 1=popsize, and the greater number of equiva-

lence classes in this model compared to that for a GA

with a �xed mutation rate. Note that this presents an-

other argument in favour of the particular form of self-

adaptation used since it introduces a far fewer number

of classes into the system than binary or Gray coded

rates. However it is shown that the model does have

predictive value, since the �tness levels at which evo-

lutionary \epochs" occur correspond to the �nite pop-

ulation spending time near eigenvectors of the system

which lie close to the simplex and have a range of mu-

tation rates present. Further work remainsto be done

on predicting exactly which eigenstates will act as at-

tractors.

When the behaviour of the system was studied after an

environmental change, it was found that for a period

of time there is a strikingly close match between the

predicted and observed mean �tnesses over a range of

population sizes. This has immediate bene�ts since it

provides us with a means of predicting the ability of

\real" algorithms to react to dynamic environments,

and of tuning the range of mutation rates available,

and the meta-mutation rate z so as to achieve desirable

performance. This work is ongoing.

The problem studied here, the simplest example of a

\function of unitation", was taken to illustrate a gen-

eral approach. It would be perfectly possible to apply

the techniques here to other such functions (see [5] for

further examples of problems of this type), by making

appropriate changes to the selection matrix. In [8] an

example is given of how appropriate mixing matrices

can be constructed for problems where blocks of genes

ned to be considered together. This will be done in

future work.

It would be possible to extend this approach to con-

sider any problem type by considering the proportions

of the population with particular genotypes, rather

than using the aggregating approach. However there

are two impediments. Firstly the size of the matri-

ces induced has rendered this approach impractical for

standard GAs, so with the number of states increased

by a factor q, the size of problems that could be manip-

ulated would be very small. Secondly, as has been seen

above, the predictive power of the models depends on

the closeness of the match between the actual samples

of the problem space ( i.e. successive �nite sized pop-

ulations) and the model. In practice this meant that

population sizes of the order of the number of states

were needed before the empirical results matched the

predictions. This suggests that some form of aggre-

gating approach, such as the one used in this paper, is

required if the model is to have predictive value.
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Figure 5: Predicted Evolution of Mutation Classes After Environmental Change
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Abstract

Graph partitioning divides a graph into several
pieces by cutting edges. Very effective heuris-
tic partitioning algorithms have been developed
which run in real-time, but it is unknown how
good the partitions are since the problem is, in
general, NP-complete. This paper reports an evo-
lutionary search algorithm for finding benchmark
partitions. Distinctive features are the trans-
mission and modification of whole subdomains
(the partitioned units) that act as genes, and the
use of a multilevel heuristic algorithm to effect
the crossover and mutations. Its effectiveness is
demonstrated by improvements on previously es-
tablished benchmarks.

1 INTRODUCTION

The graph partitioning problem can be stated as: partition
the vertices of a graph into a given number of sets so that
each set is of (approximately) equal size and so that the
number of edges cut by the partition is minimised. The
need for graph partitioning arises naturally in many appli-
cations such as distributing a finite element mesh across the
nodes of a parallel computer in order to minimise commu-
nication overhead. It is well known that this problem is
NP-complete (i.e. it is unlikely that an optimal solution can
be found in polynomial time), so in recent years much at-
tention has been focused on developing suitable heuristics,
and a range of powerful methods have been devised, e.g.
[8].

Here we report on a technique, combining an evolution-
ary search algorithm together with a multilevel graph par-
titioner, which has enabled us to find partitions consider-
ably better than those that can be found by any of the pub-
lic domain graph partitioning packages such as JOSTLE,
METIS, etc. We do not claim this evolutionary technique

as a possible substitute for the aforementioned packages;
the very long run times preclude such a possibility for the
typical applications in which they are used. However we do
consider it of interest to find the best possible partitions for
benchmarking purposes and for certain applications such
as circuit partitioning, where the quality of the partition is
paramount, the computational resources required may be
completely justified by the very high quality partitions that
the technique is able to find.

The main focus of this paper is to describe a strategy for
combining evolutionary search techniques with a standard
graph partitioning method. In Section 2 we outline the mul-
tilevel graph partitioning method used and establish nota-
tion & definitions. In Section 3 we then describe the ge-
netic framework by defining the crossover and mutation
operators and discuss how they are combined with the mul-
tilevel partitioner. Related work is also discussed here. We
have conducted many experiments to test the technique and
in Section 4 present some of the results including tests on
unstructured meshes (x4.1). We also compare our results
against a recent benchmark of Kang & Moon, [10]. Some
of these graphs have similar structure to meshes, but some
less structured examples are included.

The principal innovation described in this paper is the
construction of crossover and mutation operators with an
heuristic bias suitable for partitioning certain types of
graphs which include meshes. These operators rely on the
use of a multilevel graph partitioner, which is used to par-
tition carefully chosen subgraphs of the original graph.

2 MULTILEVEL GRAPH
PARTITIONING

Let G = G(V;E) be an undirected graph of vertices V ,
with edges E. Given that the graph needs to be distributed
to P processors, define a partition � to be a mapping of V
into P disjoint subdomains Sp such that

S
P
Sp = V . The

partition � induces a subdomain graph onGwhich we shall
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refer to asG� = G�(S;L); there is an edge or link (Sp; Sq)
in L if there are vertices v1; v2 2 V with (v1; v2) 2 E
and v1 2 Sp and v2 2 Sq. We denote the set of inter-
subdomain or cut edges (i.e. edges cut by the partition) by
Ec. Vertices which have an edge in Ec (i.e. those which
are adjacent to vertices in another subdomain) are referred
to as border vertices. Finally, note that we use the words
subdomain and processor more or less interchangeably: the
mesh is partitioned into P subdomains; each subdomain Sp
is assigned to a processor p and each processor p owns a
subdomain Sp.

In the context of partitioning a mesh for a parallel appli-
cation, the definition of the graph partitioning problem is
to find a partition which evenly balances the load or ver-
tex weight in each subdomain whilst minimising the com-
munications cost. To evenly balance the load, the optimal
subdomain weight is given by S := djV j=P e1 and the im-
balance is then defined as the maximum subdomain weight
divided by the optimal (since the computational speed of
the underlying application is determined by the most heav-
ily weighted processor). There is some discussion about
the most appropriate metric for partitioning, e.g. [7], and
indeed it is unlikely that any one metric is appropriate,
however, it is common practice in graph partitioning to ap-
proximate the communications cost by jEcj, the weight of
cut edges or cut-weight. The usual (although not universal)
definition of the graph partitioning problem is therefore to
find � such that jSpj � S and such that jEcj is (approxi-
mately) minimised.

In fact it has been noted for some time that partition qual-
ity can often be improved if a certain amount of imbal-
ance is allowed, [15]. If we allow �% imbalance then the
partitioning problem becomes ‘find a partition � such that
jSpj � S� (100+ �)=100 and that jEcj is (approximately)
minimised’.

2.1 The multilevel paradigm

In recent years it has been recognised that an effective way
of both speeding up graph partitioning techniques and/or,
perhaps more importantly, giving them a global perspec-
tive is to use multilevel techniques. The idea is to match
pairs of vertices to form clusters, use the clusters to de-
fine a new graph and recursively iterate this procedure un-
til the graph size falls below some threshold. The coars-
est graph is then partitioned (possibly with a crude algo-
rithm) and the partition is successively optimised on all the
graphs starting with the coarsest and ending with the orig-
inal. This sequence of contraction followed by repeated
expansion/optimisation loops is known as the multilevel
paradigm and has been successfully developed as a strategy

1where the ceiling function dxe returns the smallest integer
greater than x

for overcoming the localised nature of the Kernighan-Lin
(KL), [12], and other optimisation algorithms. The multi-
level idea was first proposed by Barnard & Simon, [2], as a
method of speeding up spectral bisection and improved by
both Hendrickson & Leland, [8] and Bui & Jones, [4], who
generalised it to encompass local refinement algorithms.
Several algorithms for carrying out the matching of vertices
have been devised by Karypis & Kumar, [11], while Wal-
shaw & Cross describe a method for utilising imbalance in
the coarsest graphs to enhance the final partition quality,
[18].

3 THE GENETIC ALGORITHM

Genetic algorithms produce new search points by one of
two operations: crossover which combines information
from two or more randomly selected individuals in the cur-
rent generation, and mutation which modifies a single, ran-
domly selected, individual. The construction of success-
ful crossover and mutation operators is problem specific
and often complex, especially where individuals are sub-
ject to constraints (as are the partitions) so that information
from different individuals cannot be arbitrarily combined
or modified. Further, the information needs to be effec-
tively exploited so that new individuals result that are fitter
than the current best individuals with sufficient probability
even when the current generation is already very good, [1].

A number of genetic algorithms for graph partitioning (e.g.
[10]) have been constructed using a ‘linear’ chromosomal
representation consisting of a list of subdomain member-
ships of a graph’s vertices, each list item representing the
subdomain in which the vertex appears. Crossover com-
bines information from two chromosomes using standard
operations (one-point crossover etc) to produce a child
chromosome. In this case the linkage is determined by dis-
tance apart in the list and given that the ordering of vertices
is arbitrary for most graphs, so is the linkage. The linkage
has been improved by defining orderings of the list items
which place nearby vertices in the graph (separated by few
edges) close together in the list, and by ‘normalising’ the
chromosomes before mating by relabeling the subdomains
in one parent so that it has more vertices with the same
subdomain membership as when they appear in the second,
[10].

Genetic algorithms using this representation usually apply
a local optimisation procedure to the resulting offspring,
which improves and repairs them so that they are again bal-
anced partitions. A novel and more powerful such proce-
dure, termed Cyclic Partitioning, has recently been used by
Kang & Moon with a GA of this type. Their procedure pro-
vides a more comprehensive search for local improvements
than previous Kernighan-Lin based schemes by investigat-
ing the possible improvements available by transferring
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Figure 1: An illustration of the crossover operator

vertices across a set of partition boundaries (one vertex
at each), such that the subdomains the vertices belong to
form a cycle in the subdomain graph. They have run exten-
sive tests comparing their genetic algorithm with recursive
Kernighan Lin, pairwise Kernighan Lin and Cyclic Parti-
tioning, using many repeated applications of the optimi-
sation algorithm on different, initial, randomly-generated
partitions. The authors have used the results to establish
a set of high quality, benchmark partitions documented in
[5]; 8-way & 32-way partitioning were performed.

Soper et al. have recently constructed a genetic algorithm
which uses neither a linear chromosomal representation nor
a traditional crossover operator, [16]. The crossover is im-
plemented by modifying the graph to record where the par-
ents had cut-edges by weighting them, and then applying
a local optimisation procedure JOSTLE to the new graph
so that cut edges of the parents are more likely candidates
to be cut again due to the weighting. The mutation op-
erator has an heuristic bias which exploits the local trans-
lational invariance possessed by many graphs of interest.
This work produced benchmark partitions for evaluating
public domain packages, and especially on graphs repre-
senting unstructured meshes. The current work is based
on similar operators but further exploits the properties of
the graphs being partitioned. The major difference is that
the local optimisation procedure used during crossover and
mutation needs only to be applied to a fraction – almost al-
ways less than half – of the graph to be partitioned. Much
more information is transferred into the offspring from the
parent(s) and the optimisation algorithm is more effectively
focussed on one part of the problem at a time.

3.1 Recombining and mutating subdomains

Both crossover and mutations act on subdomains (or the set
of of cut edges containing a subdomain). Crossover selects
sets of complete subdomains from two individuals, and
combines them in the child by partitioning the remainder
of the graph as illustrated in Figure 1 ; Figures 1(a) & 1(b)
show two parent partitions which have been selected for
crossover. Sets of adjacent subdomains which do not in-

tersect are selected (shown shaded) and the remainder of
the graph – the unshaded part of Figure 1(c) – is reparti-
tioned. Crossover seeks to exploit locality - the fact that
graphs needing to be partitioned often only have vertices
with low degree, showing local connectivity. This property
holds for unstructured meshes which in their spatial embed-
ding of physical origin only have short range connections,
reflecting the locality of the physical systems they model.
Locality allows subdomains from one individual to be suc-
cessfully recombined with those from another when they
are well separated.

Mutation takes a set of subdomains from an individual that
constitute a cycle in the subdomain graph. The subgraph
defined by this cycle is then repartitioned so as to exploit
local translational symmetry; new partition boundaries are
sought close to existing boundaries where they should have
similar and so sometimes less cut edges. Another desirable
property of mutations is that they are compatible or com-
mute [14], i.e. their result does not depend on the order of
their application. Our mutations will tend to have this prop-
erty, either because their defining cycles don’t intersect, or
when they do because local translational symmetry, pro-
vides sufficient variations of common, partition boundaries
to accommodate the balance constraint with a very similar
number of cut edges.

In summary crossovers are constructed by producing cuts
in the subdomain graphs of two individuals and mutations
by constructing cycles in the subdomain graph of one indi-
vidual. Figure 2 shows a case where a partially translated
boundary has exactly the same number of cut edges.

Selection of subdomains for crossover: The number of
subdomains selected from the first parent was chosen ran-
domly and uniformly from the range (P=4)�1 to (P=2)�
1, which choice prevented a parent from producing an off-
spring mostly identical to itself. The first subdomain was
chosen randomly, then the second from its neighbours, the
third from neighbours of both these subdomains, with prob-
ability proportional to the number of chosen neighbours (1
or 2), and so on. Thus there is a bias to choosing sets of sub-
domains with more internal or common partition bound-
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Figure 2: A translated boundary fragment with the same number of cut edges

aries. The choice of a more compact structure increases
the chances of successful recombination; the extreme op-
posite a collection of scattered non-neighbouring subdo-
mains would effectively prevent any substantial change in
the parent.

Subdomains are selected from the second parent by a pro-
cess of elimination. First delete subdomains from this par-
ent which have any vertices in common with the subdo-
mains selected from the first. Then delete those that have
more than two fifths of their vertices in common with the
neighbours of the subdomains selected from the first par-
ent. The remaining subdomains are included in the off-
spring. The heuristic provides a balance between the com-
peting demands of information transfer, i.e. copy more sub-
domains and their bordering cut edges into the offspring,
and the need to allow successful recombination, i.e. is the
remainder of the graph capable of being partitioned with a
small enough number of cut edges?

In general, the crossover offspring partition will not be of
sufficiently high quality to be accepted into the succeeding
generation of the genetic algorithm, therefore it is immedi-
ately subject to a hill-climbing sequence of mutations.

In some cases during crossover, it is possible for the sub-
domains selected from the two parents to be such that the
remaining subgraph cannot be partitioned within the imbal-
ance constraint since it contains too many vertices. Such
situations turn out to be rare however and the crossover is
abandoned.

Selection of cycles of subdomains for mutations: Rather
than selecting a cycle independently for each mutation, sets
of mutations are carried out together in a hill-climbing se-
quence, the result of a mutation being the starting point of
the next if it produces a better or equally good partition
with respect to the number of cut edges. If the partition is
worse, the mutation is ignored.

A random spanning tree of the subdomain graph is gener-
ated, and then the fundamental cycles with respect to this
are recorded. Of these, cycles with lengths less than 4 and
greater than 8 are discarded; small cycles because they al-
low little variation and larger cycles since it is more difficult

for the partitioner to simultaneously improve more bound-
aries. When a cycle of subdomains is selected borders be-
tween subdomains are also targets for improvement, so that
very small cycles tend to be included in the optimisation
process already. Variations over longer cycles are provided
by the joint effect of crossover and mutation - they will tend
to be cut on crossover, and the resulting parts improved as
part of other smaller cycles.

Thus a hill-climbing sequence is the set of mutations as-
sociated with the remaining fundamental cycles. These se-
quences are used since they are more efficient to implement
than producing the mutations individually and their cycles
will include most subdomain boundaries.

3.2 Partitioning Subgraphs

The implementation of the new partitions of subgraphs
needed for both crossover and mutation are based on pre-
vious work, [16]. We use a multilevel technique as an ef-
ficient and effective partitioner. In fact the multilevel par-
titioner used is known as JOSTLE and we shall henceforth
refer to it as such, although any graph partitioning heuristic
which can deal with real (non-integer) edge weights could
be used. JOSTLE is fully described in [18].

Both crossover and mutation require that some edges of
the graph be made more likely to appear as cut edges un-
der the action of JOSTLE. This is achieved by biasing the
costs of the edges: the cost of an edge becomes unity plus
a positive number and JOSTLE takes account of these ad-
ditional costs when seeking low cost partitions. Mutations
are implemented by making existing cut edges and their
neighbours much less costly and crossover by making the
cut edges of both parents occurring in the subgraph being
repartitioned slightly less costly. New biases are explicitly
and partially randomly constructed from the parent(s) for
each operation.

3.3 The CHC adaptive search algorithm

The genetic algorithm framework chosen was Eshelman’s
CHC adaptive search algorithm, [6]. It has been shown
to work successfully on a wide range of problems (e.g.
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[13, 17]) with the same parameter settings and, importantly
for partitioning large graphs, it uses a small population of
50 individuals. This allowed the simulations to run in a
computer’s memory. Its main features are: an elitist selec-
tion strategy, a highly explorative crossover operator, incest
prevention and partial randomisations or restarts.

We adapted CHC as follows: Since the crossover provides
less variation than that used in the original version of CHC,
we also allow mutations. When a pair of parents are se-
lected for mating and pass the incest test, they crossover
with probability 0.3 and suffer mutation the rest of the time.
When mutation only is applied, a separate offspring is not
produced, rather, provided an improved partition or one of
equal quality results (compared to the parent), it is over-
written. This procedure helps maintain diversity within the
population.

When preventing incest, the distance between any two in-
dividual partitions was defined to be the number of vertices
in the graph minus the number of edge vertices that they
have in common. This measure clearly takes common cut
edges into account, but also any nearby borders. The dis-
tance threshold is initialised, both when starting the genetic
algorithm and on restarts, to the average distance apart of
some randomly sampled pairs in the population. Clearly
the distance between individuals is never zero, so that a
distance threshold to initiate restarts has to be set. This is
taken to be the distance of the best individual from itself,
the expected distance apart of individuals in the population
when it has converged. The distance threshold was decre-
mented by 10 whenever no new offspring were accepted.
This number need not be tuned to any great accuracy, since
a small value will produce earlier subsequent decrements
and vice-versa. However the value should be large enough
to allow more parents to mate on average; a decrement of
10 allowed this.

At a restart the best individual is randomised by mutating
the whole partition as described above, but with a heavier
bias supplied to non-border vertices in order to retain ap-
proximately 65% of the border vertices. Three restarts are
allowed after which the genetic algorithm is reinitialised.

The fitness of an individual was defined to be minus
the product of the number of cut edges times the imbal-
ance. JOSTLE occasionally produces partitions violating
the balance constraint which are strongly penalised by this
scheme.

The initial population was produced by repeatedly parti-
tioning the graph with JOSTLE using random but small bi-
ases, of the order of 0.1.

4 EXPERIMENTAL RESULTS AND
DISCUSSION

We have implemented the algorithms described here within
the framework of JOSTLE, a mesh partitioning software
tool developed at the University of Greenwich and freely
available for academic and research purposes under a li-
censing agreement2. The experiments were carried out on
a variety of different machines; with its very long runtimes
(of several days in the case of the larger graphs), the evo-
lutionary search approach can soak up CPU cycles and the
tests were run so as to use up any spare capacity in the sys-
tem. As a result we have not measured runtimes.

4.1 Results on unstructured meshes

Table 1: A summary of the test graphs

size degree
graph V E � � avg type
data 2851 15093 17 3 10.6 3D nodal
3elt 4720 13722 9 3 5.8 2D nodal
uk 4824 6837 3 1 2.8 2D dual
ukerbe1 5981 7852 8 2 2.6 2D nodal
add32 4960 9462 31 1 3.8 circuit
crack 10240 30380 9 3 5.9 2D nodal
4elt 15606 45878 10 3 5.9 2D nodal

The test graphs have been chosen to be a representative
sample of small to medium scale real-life problems and in-
clude mostly 2D (and one small 3D) examples of nodal
graphs (where the mesh nodes are partitioned) and dual
graphs (where the mesh elements are partitioned). The test
suite also includes one non mesh-based graph, add32.

Table 1 gives a list of the graphs, their sizes, the maximum,
minimum & average degree of the vertices and a short de-
scription. The degree information (the degree of a vertex
is the number of vertices adjacent to it) gives some idea of
the character of the graphs. These range from the relatively
homogeneous dual graphs, where every vertex represents a
mesh element, in these cases a triangle and so every vertex
has at most 3 or 4 neighbours respectively, to the non mesh-
based graph such as add32 which has vertices of degree 31.
As the graphs are not weighted, the number of vertices in
V is the same as the total vertex weight jV j and similarly
for the edges E.

Graph partitioning algorithms can usually find higher qual-
ity partitions if the balancing constraint is relaxed slightly.
Indeed some of the public domain graph partitioning pack-
ages such as JOSTLE & METIS have an in-built, although
adjustable, imbalance tolerance of 3% (i.e. the largest sub-
domain is allowed to be up 1.03 times the size of the maxi-

2available from http://www.gre.ac.uk/jostle
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mum allowed for perfect balance). We therefore tested the
evolutionary algorithm with various tolerances and Table 2
shows a comparison of the cut-weight results with 0% and
3% imbalance tolerances, C0

E
andC3

E
respectively, for four

values of P (the number of processors/subdomains). For
each value of P , the first & second columns show the cut-
weight with the allowed imbalance, while the third column
shows the ratio of cut-weight for 3% imbalance scaled by
that for 0% imbalance, C3

E
=C0

E
. Thus the figure of 0.98

for the data graph and P = 8 means that the algorithm was
able to find a partition 2% better if allowed a 3% imbalance
tolerance. As can be seen, the improvement in quality for
these tests is up to 7% and on average is around 3%.

To demonstrate the quality of the partitions, we have com-
pared the results in Table 2 with those produced by a pub-
lic domain partitioning package JOSTLE (JOSTLE 2.2,
March 2000), [18]. Firstly Table 3 shows a comparison of
the cut-weight results for the public domain version of JOS-
TLE compared to the evolutionary search algorithm. These
results are an improvement on our previous evolutionary
search implementation, [16]. The average difference in the
quality ranges from 23% to 20% as P increases and can be
as bad as 75%. Note that differences in quality tend to di-
minish as P increases. It is tempting to speculate that this
is because the margins for difference decrease as the num-
ber of vertices per subdomain (� V=P ) decreases. Indeed
in the limit where V = P the only balanced partition (for
an unweighted graph at least) is to put one vertex in each
subdomain and so the differences vanish altogether.

4.2 Comparison with the results of Kang & Moon

In this section we compare our results against a recent
benchmark of Kang & Moon, [10]. Some of these graphs
have similar structure to meshes, but some less structured
examples are included, [5, 9].

Three types of graph were tested: Un.d, random geometric
graphs of n vertices that lie in the unit square and whose
co-ordinates are chosen uniformly from the unit interval;
Gridn.b, a grid graph of n vertices whose optimal bisec-
tion size is known to be b and W-gridn.b, the same graph
with wrapped boundaries; Bregn.b, a random regular graph
of n vertices each of which has degree 3, and the optimal
bisection size is b with probability 1� o(1), [3].

We expect the random geometric graphs and grid graphs
to be suitable for the crossover and mutation operators
because of their geometric origin – they both arise from
the embedding of graph vertices in a low dimensional Eu-
clidean space, with only local connections between points
giving rise to edges. The randomly generated Bregn.b
graphs, with edges possible between any pairs of vertices
do not exhibit the structure required by the heuristic bias

of the genetic algorithm. Caterpillar graphs were not used
since they have a very different structure altogether.

Kang & Moon’s benchmarks were produced by running
their genetic algorithm 50 times on each problem graph,
with each run given an allotted CPU time and keeping
the best. The objectives of our experiments were twofold.
Firstly to test whether our genetic algorithm was robust –
could it find partitions as good as those of Kang & Moon
without requiring repeated runs (or equivalently the re-
peated full reinitialisations after 3 restarts) within broadly
similar total time budgets. This is a good test of the heuris-
tic bias given to the crossover and mutation operators, since
if insufficient very fit offspring are produced, the popula-
tion will converge and the quota of 3 restarts soon used
up. Secondly to support, improve and extend their bench-
marks. For 32-way partitioning the number of vertices in
the graphs did not divide exactly by 32, so that some parti-
tions will have more vertices than others. We use a less re-
strictive constraint than theirs, which requires that the par-
titions differ by no more than one vertex, since we only
constrain the maximum allowed number of vertices, so for
32-way partitioning we are extending the benchmark. For
8-way partitioning the number of vertices divides exactly,
so our constraint is the same and hence we can justly claim
to support and improve on their results.

The same parameters were used on all experiments except
that for the W-grid5000.100 and U1000.40 graphs, the ra-
tio of crossover to mutation was increased from 3::7 to
7::3. This slowed the rate of convergence of the popula-
tion, allowing a more thorough search and providing evi-
dence for the effectiveness of the crossover operator. Ta-
ble 4 shows our results, giving the minimum number of cut
edges found (with the change relative to those of Kang &
Moon in brackets) and the number of subgraph evaluations
taken to find the result.

For 8-way partitioning the results support or improve on
those of Kang & Moon, except for the graph Breg5000.16.
Even though improved results were found for the remaining
examples of the Breg graphs, they required substantially
more subgraph evaluations to find results as good as those
of Kang & Moon, in agreement with our expectations of
performance on this type of graph.

For 32-way partitioning, because of our less exacting con-
straint on the imbalance, we expected to find less cuts than
the previous benchmark. This turned out to be the case,
except for the Breg graphs. More evaluations were al-
lowed for these graphs, since the genetic algorithm con-
verged very slowly, showing further potential. Breg5000.0,
the most suitable for our algorithm given its construction,
eventually yielded less cut edges than the more constrained
partition of Kang & Moon. Our genetic algorithm made
much slower progress towards partitions of similar quality
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to their benchmark on the Breg graphs.

The robustness of our genetic algorithm was confirmed by
its requiring only one run to match the benchmark in almost
all cases.

5 SUMMARY & FUTURE WORK

We have described and tested an evolutionary search al-
gorithm for partitioning graphs and reported new bench-
mark partitions that it found. Distinctive features are the
transmission and modification of whole subdomains (the
partitioned units) that act as genes, and the use of a multi-
level heuristic algorithm to effect the crossover and muta-
tions. These features implement an heuristic bias suitable
for graphs such as unstructured CFD meshes and their ef-
fectiveness is demonstrated by improvements on previously
established benchmarks.

In future we aim to look at the integration of the evolution-
ary search procedure more fully into the multilevel frame-
work. We also intend to study more carefully the param-
eters which govern the interaction between the multilevel
scheme and the evolutionary algorithm.
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Table 2: A comparison of cut-weight results for the evolutionary search algorithm with 0% and 3% imbalance tolerances,
C0

E
and C3

E
respectively

P = 8 P = 16 P = 32 P = 64

graph C
0

E C
3

E

C
3

E

C
0

E

C
0

E C
3

E

C
3

E

C
0

E

C
0

E C
3

E

C
3

E

C
0

E

C
0

E C
3

E

C
3

E

C
0

E

data 671 656 0.98 1135 1118 0.99 1811 1783 0.98 2859 2795 0.98
3elt 348 336 0.97 596 565 0.95 963 949 0.99 1553 1524 0.98
uk 91 86 0.95 152 144 0.95 263 249 0.95 419 412 0.98
ukerbe1 113 111 0.98 201 196 0.98 338 334 0.99 548 542 0.99
add32 71 68 0.96 126 117 0.93 218 212 0.97 544 520 0.96
crack 683 683 1.00 1091 1076 0.99 1703 1662 0.98 2603 2519 0.97
4elt 552 529 0.96 946 909 0.96 1571 1530 0.97 2618 2552 0.97
Average 0.97 0.96 0.98 0.98

Table 3: A comparison of cut-weight results for JOSTLE, C3

J
, against those of the evolutionary search algorithm, C3

E
, both

with 3% imbalance tolerance
P = 8 P = 16 P = 32 P = 64

graph C
3

J

C
3

J

C3

E

C
3

J

C
3

J

C3

E

C
3

J

C
3

J

C3

E

C
3

J

C
3

J

C3

E

data 756 1.15 1263 1.13 2106 1.18 3140 1.12
3elt 418 1.24 603 1.07 1020 1.07 1666 1.09
uk 106 1.23 180 1.25 315 1.27 490 1.19
ukerbe1 121 1.09 233 1.19 378 1.13 593 1.09
add32 106 1.56 180 1.54 257 1.21 909 1.75
crack 751 1.10 1191 1.11 1804 1.09 2733 1.08
4elt 656 1.24 1012 1.11 1687 1.10 2772 1.09
Average 1.23 1.20 1.15 1.20

Table 4: The results of the evolutionary search algorithm with a 0% imbalance tolerance on the partitioning benchmark
graphs showing the cut-weight, jEcj, and the number of subgraph partitions required to find it

P = 8 P = 32

graph jEcj # evals jEcj # evals
Grid1000.20 114 (-0) 6932 302 (-12) 52183
Grid5000.100 250 (-0) 19639 658 ( -1) 437063
W-grid1000.40 172 (-4) 4566 372 (-12) 246908
W-grid5000.100 400 (-0) 215090 811 ( -9) 1342821
U1000.10 180 ( -7) 57350 559 (-18) 463057
U1000.20 812 ( -0) 10411 2325 (-42) 327932
U1000.40 2562 ( -0) 70147 7241 (-88) 280541
Breg5000.0 1079 ( -17) 457009 1675 (-45) 4991004
Breg5000.4 1081 ( -12) 498954 1779 (+54) 2915867
Breg5000.8 1079 ( -19) 450115 1786 (+49) 2814953
Breg5000.16 1180 (+103) 1148758 1755 (+62) 2941382
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Abstract

Multiple reading frames are an important

feature of gene expression in biological sys-

tems. Multiple reading frames allow several

genes to be encoded in the same region of

DNA. This produces an inherent form of in-

formation compression. In some organisms

this compression is so extensive their genes

are e�ectively longer than their DNA. In this

paper a modi�cation of a simple genetic al-

gorithm (GA) is introduced that uses mul-

tiple reading frames. It is shown that some

information compression does occur. Inter-

estingly, while the GA does utilize informa-

tion compression where necessary there is ev-

idently strong evolutionary pressure to limit

this compression.

1 Introduction

Recently there has been considerable interest in apply-

ing the basic processes of biological gene expression to

arti�cial forms of evolution, most notably genetic algo-

rithms (GAs). Gene expression, the process by which

DNA produces proteins, is a complex process which

has a signi�cant impact on how DNA actually `pro-

duces' an organism. Several researchers have explored

the impact of arti�cial gene expression on arti�cial evo-

lution (see [1] for a summary of this work) leading to

potentially bene�cial modi�cations of the basic GA

and other arti�cial evolutionary models.

One important feature of the gene expression process

that has received limited attention from the evolution-

ary computation �eld is multiple reading frames. Mul-

tiple reading frames occur because there are three dis-

tinct `translations' of a given segment of DNA. Each of

these translations can encode di�erent proteins. Thus,

DNA is inherently capable of a certain amount of in-

formation compression.

In this paper we examine a GA that uses an anal-

ogy of gene expression that allows multiple reading

frames. The primary questions are whether a GA can

use reading frames and whether a GA can exploit the

information compression capability inherent in multi-

ple reading frames.

2 Background

The primary genetic material of most biological or-

ganisms is Deoxyribonucleic acid (DNA). DNA itself

is composed of four nucleic acids: adenine (A), cyto-

sine (C), guanine (G), and thymine (T). Every pro-

tein component of an organism is made from a long

sequence of As Cs Gs and Ts.

Interestingly, most of the DNA contained in a typical

chromosome does not contain instructions for making

proteins or other functional products. Much of this

non-coding DNA serves a structural purpose or serves

to regulate how and when, the coding portion of the

DNA is utilized or to facilitate the coding process it-

self. Finally, much of the non-coding DNA serves no

known purpose.

The coding portion of DNA is organized into sets of

three nucleic acids known as codons. Thus, there are

64 codons in the genetic code of all biological organ-

isms (43). Each of the 20 amino acids is speci�ed

by at least one codon, which is interpreted in a com-

plex two-step process. In the �rst step, transcription,

the genetic code embedded in DNA is reinterpreted as

messenger ribonucleic acids (mRNAs). In the second

step, translation, the mRNA is read and used to con-

struct protein. Because the coding portions of DNA

are separated on a chromosome, the function of some

of the codons is to initiate or to terminate the tran-

scription process. The genetic code speci�es 3 termi-
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nation or \stop" codons and one initiation or \start"

codon. The remaining 60 codons specify 19 of the 20

amino acids that make up proteins. The 20th amino

acid, methionine, is speci�ed by the start codon itself.

(In fact, the initiation of transcription is dependent

upon the presence of several speci�c but non-coding

regions of DNA that must be adjacent to the start

codon. Only when these DNA regions are present does

the \start" codon actually initiate transcription, oth-

erwise it speci�es only the inclusion of methionine in

the �nal protein.) There is considerable redundancy in

the genetic code, with 61 codons specifying 20 amino

acids. Only methionine is speci�ed by a single codon.

The remaining 19 amino acids are each speci�ed by

as few as two or as many as six codons. There are

many useful sources for a further review of the bio-

logical genetic code and the processes of transcription

and translation (see, for example the summary by Kar-

gupta [2], or a genetics text such as Genetics [3]).

The arrangement of the genetic code into functional

codons each consisting of three contiguous nucleic

acids leads to a phenomenon known as reading frames.

Because one can start reading the DNA sequence at ei-

ther the �rst, second, or third nucleic acid of a codon

there are three di�erent possible sequences each of

which can be interpreted separately. For example the

DNA sequence:

...AACGTTGACTGCTAGTTTCACATGCGTACT...

can be organized into three distinct sets of codons,

... AAC GTT GAC TGC TAG TTT CAC ATG

CGT ACT ...

...A ACG TTG ACT GCT AGT TTC ACA TGC

GTA CT...

...AA CGT TGA CTG CTA GTT TCA CAT GCG

TAC T...

(Any other reading frame will produce codons that are

a subset of one of the primary three reading frames.)

The fact that three full and unique coding sequences

can be found in one DNA strand allows for a great

deal of information compression, as several genes can

overlap within the strand of DNA by using di�erent

reading frames.

In general, it is unclear to what extent most biological

organisms take advantage of multiple reading frames

to compress the genetic information contained in their

DNA. However, there is precedence for such a process

occurring in viruses, bacteria, and eukaryotes. No-

tably, the bacteriophage �X174 includes many regions

where two and three genes overlap. The overlapping

is so extensive that the total coding length of the bac-

teriophage is longer than its DNA[4].

The 
oating building block representation introduced

by Wu and Lindsay shares many features with the bio-

logical process outlined above [5]. The representation

uses a start tag to mark the beginning of genes and an

identity tag that determines the `function' of the gene.

The length of the genes are �xed so no end tag (stop

codon) is required.

In the 
oating building block representation a second

start tag may appear within an `active' gene. This

leads to overlap similar to that produced by multiple

reading frames. Additionally, the use of identity tags

allowed some genes to be over or under speci�ed.

Experimental results with the 
oating representation

were positive, particularly for longer chromosomes. It

performed signi�cantly better than a standard GA

on the two test functions, Royal Road and a version

of symbolic regression. Much of the bene�ts seemed

to arise because longer chromosomes allow additional

over speci�cation of genes and hence additional explo-

ration of the search space within the same size popula-

tion. In addition, multiple 
oating genes gave the GA

more 
exibility to explore di�erent physical arrange-

ments of the genes. Although the 
oating representa-

tion allows genes to overlap, the experiments did not

examine the extent of overlap or how it changed over

time.

Messy GAs also bear some resemblance to biological

genes (see for example [6]). In messy GAs each `gene'

has an associated tag that determines the gene's lo-

cation in a transcribed version of the genome. This

allows the genes to be rearranged on the evolving chro-

mosome.

3 The Encoding

Multiple reading frames require an encoding scheme

that produces codons. We have attempted to write

the simplest possible encoding rules that capture the

essential properties of biological reading frames. In

particular, the encoding is designed to include variable

length genes using start and stop codons, potentially

overlapping genes, and non-coding regions.

As noted above, nature uses 64 (43) codons. Our chro-

mosomes are binary strings, so we choose a codon

length of 5 which also produces 64 (25) codons. Of

course, there is nothing obviously signi�cant about the

value 64. It was chosen simply to be similar the bio-

logical value. Non-binary encodings and other codon

lengths could certainly be used and may be bene�cial

for some problems.
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Codons were transcribed as follows:

11111 = start

00000 = stop

ijklm = jklm for all other cases

The start and stop sequences (11111 and 00000) act

as regulatory codons. The other codons create a four

bit sequence by dropping the �rst bit of the �ve bit

codon. This creates two encodings for each 4 bit se-

quence (jklm can be encoded as 0jklm or 1jklm) except

0000 and 1111, which have one code apiece (10000 and

01111 respectively). The region between a start codon

and a stop codon is equivalent to a biological gene. Al-

though very simple, this encoding captures the essen-

tial properties of the genetic code necessary to study

multiple reading frames.

Because our codons are �ve bits long there are �ve sep-

arate reading frames. The genes are evenly distributed

among the reading frames. Thus, for N genes reading

frame 1 speci�es genes 1 through N/5, reading frame

2 speci�es genes N/5+1 through 2N/5, etc. For exam-

ple, our GA is tested on several function optimization

problems (see Section 4). Each function depends on 25

variables. Thus, 25 values need to be speci�ed. Each

value is speci�ed by a single gene, so there are 5 genes

per reading frame.

Transcription of the �rst gene begins at the �rst start

codon and continues until a stop codon or the end of

the chromosome is reached. Transcription of the next

gene begins at the next start codon and so forth, until

the end of the chromosome is reached or all genes of

that reading frame have been speci�ed. If the end

of the chromosome is reached before all of the gene

are speci�ed, the remaining variables are unspeci�ed.

Regions of the chromosome which do not fall between

start-stop pairs are non-coding. Start codons in the

middle of an open reading frame are ignored and thus

are also non-coding.

In our experiment, each of the transcribed strings rep-

resents the value of one of the variables written in Gray

code. Because the start and stop codons can occur at

arbitrary locations the binary strings produced by the

transcription process have arbitrary lengths. To avoid

over
ow errors at most the �rst 64 bits of the tran-

scribed string are considered. Because the transcribed

strings may have di�erent lengths their range of pos-

sible values is variable. So, each transcribed string is

scaled to a value between zero and one (by dividing

by 2the string
0
s length) and then is rescaled to the range

appropriate to the problem.

Our encoding varies from other gene-like encodings in

several signi�cant ways. It combines 
oating genes

with variable length genes. This gives the GA more

control over the amount of genetic overlap (and hence

the potential amount of information compression)

than other encodings. It does not use identity tags,

so over speci�cation is not a possibility (although un-

der speci�cation is, if there are too few start codons).

Our experiments focus on how the potential problems

and advantages of overlapping genes are handled by

the evolutionary algorithm.

4 Test Problems

We tested our GA on modi�cations of four of the func-

tions from the De Jong test suite. We used functions

F1, F3, F7 (Schwefel's function), and F8 (Griewangk's

function) [7, 8]. The goal is to �nd the function max-

imums. The �tness of an individual is the returned

value.

Our modi�ed functions were:

f1(xi) =

25X

i=1

x2i xi�[�5:12; 5:12]

(1)

f3(xi) =

25X

i=1

integer(xi) xi�[�5:12; 5:12]

(2)

f7(xi) =

25X

i=1

xisin(
pjxij) xi�[�512; 512]

(3)

f8(xi) =

25X

i=1

x2i=4000�
25a

i=1

cos(xi=
p
i) + 1xi�[�512; 512]

(4)

Clearly reading frames are only meaningful when there

are su�cient genes to make use of the reading frames.

Thus, each of the functions has been modi�ed from the

original version to include 25 variables. The value 25

was chosen strictly for convenience and consistency.

5 The Genetic Algorithms

These experiments compare a standard GA to a GA

using codons and multiple reading frames. The param-

eters common to both GAs are summarized in Table 1.

Both versions of the GA are generational.

For test functions F1, F2 and F3 the chromosome

length is 250 bits. For the standard GA this meant

each gene (variable value) is represented by exactly
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Population Size 200

Crossover rate 0.8

Crossover type one point

Mutation rate 1/Chromosome length

Selection 3 member tournament

Type Generational

Elitism 1 member

Trials 30

Table 1: Summary of the parameters used with the

GA with and without reading frames.

10 bits. For the GA with reading frames there are

roughly 1250 bits available, or 50 bits per gene. (5

reading frames with 250 bits apiece. The actual num-

ber is slightly smaller because the reading frames lose a

few bits at the beginning and end of the chromosome.)

Of course, with reading frames the number of bits en-

coding each solution is variable and in practice is much

smaller than 50. Much of the chromosomemay be non-

coding. Some of the bits must be start and stop codons

and the transcription process causes a `loss' of 1/5 of

the bits. In fact, the results show that the number of

bits per variable evolves in a systematic way over the

course of a GA run.

For F8 the chromosome length was 400. The stan-

dard GA uses 16 bits per variable. The GA with read-

ing frames was subject to the same considerations dis-

cussed above.

6 Results

We begin by examining the performance of the GA on

our test problems. Although our primary interest is

how evolution arranges the genes in di�erent reading

frames, it is important that the GA perform reason-

ably. Additionally, the evolution of �tness does pro-

vide some insight into how the GA is adapting the

reading frames.

The results of the GA and the GA with reading frames,

averaged over 30 trials, are shown in Table 2. The

GA using reading frames produces signi�cantly better

solutions than the standard GA in two of the four test

cases (F1 and F8) and better average solutions in one

case (F8). These data show that a GA can successfully

use reading frames despite the added complexity of

reading frames.

Additionally, there seems to be a speci�c reason for the

poor performance on F3. For F3 the optimal solution

is a maximum value (5.12) for all variables. This cor-

responds to a string of all ones, e.g. 11111111. When

reading frames are used the sequence 11111111 is en-

coded as 01111 01111. However, this only produces

an optimal solution in the �rst reading frame. In the

second reading frame the sequence 01111 01111 is read

as 0 11110 1111 and in the third frame it is read as 01

11101 111. Thus, for this problem the optimal solu-

tion for one reading frame is non-optimal for the other

frames.

As a test we used a the following modi�cation of the

F3 function:

f 0

3
(xi) =

25X

i=1

jinteger(xi)j (5)

This function has several more potential solutions

than the standard F3 function. Thus, it should be

easier for the GA to �nd overlapping sequences within

optimal (or near optimal) genes. The results are also

shown in Table 2 and the GA with reading frames

does outperform the standard GA. These results sug-

gest that for some problems, such as F3, the encoding

of the optimal solution(s) may make it extremely dif-

�cult to �nd optimal genes with overlapping regions.

Figure 1 shows the �tness of the best individuals (av-

eraged over 30 trials) evolved with the standard GA

and with reading frames on function F8. Initially the

GA with reading frames performs much more poorly.

Under speci�cation of the variables is a likely cause of

this poor initial performance.

Thus, we examined exactly how many variables are be-

ing speci�ed by the GA with reading frames. This cor-

responds to the number of genes (or start-stop pairs)

the GA is producing. Clearly, whether the GA can

evolve su�cient genes across multiple reading frames

is an important question. Figure 2 shows the number

of variables speci�ed at each generation for F1.

Initially, the average individual has approximately �ve

of the twenty-�ve variables speci�ed. This low value

occurs simply because in randomly generated binary

strings of 250 bits there will be relatively few start-

stop pairs. However, over the course of evolution the

number of speci�ed variables grows steadily, almost

reaching 24.97 for the best individuals and 24.24 for

the average individual. Additionally, the best individ-

uals consistently have more variables speci�ed than the

average. This is a clear indication that there is strong

pressure on the GA to specify more of the variables.

The results for the other three test problems are simi-

lar and are summarized in Table 3. For the F8 function

the initial number of speci�ed variables is higher (14.3

for the best individual and 7.44 for the average individ-
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Best Average

individual individual

Standard Reading p Standard Reading p

GA frames GA frames

F1 625 642 < 0:01 613 607 < 0:1

F3 112 67.7 < 0:01 108 61.3 < 0:01

F7 19600 16900 < 0:01 19300 16400 < 0:01

F8 1550 1600 < 0:01 1600 1570 < 0:01

F3' 112 121 < 0:01 109 114 < 0:1

Table 2: Results at generation 50 for the best and average individuals. The raw numbers represent the optimal

value achieved and are averaged over 30 trials. The p value is generated using Student's two-tailed test.
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Figure 1: Fitness of the best individuals evolved with

and without reading frames. These data are the aver-

age of 30 trials. The poor initial performance of the

GA with reading frames is attributed to its failure to

speci�c all of the variables.

ual) simply because the chromosome is longer, which

allows more start-stop pairs in the initial random chro-

mosomes. Thus, a second feature of the GA with read-

ing frames is that it can introduce new genes as nec-

essary, by increasing the number of regulatory codons

in the chromosomes. Similar behavior has been seen

with messy GAs and 
oating building blocks, but is

more di�cult here because of the requirements to pro-

duce both start and stop codons and the complications

introduced by overlap between the reading frames.

Finally, we consider the issue of information compres-

sion. Given that the GA is introducing additional

genes, how long are these genes and how much do

they overlap? To explore this question we focus on

functions F7 and F8. These are the most interesting

functions in that they are reasonably complex and they
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Figure 2: Number of variables speci�ed, or number of

genes per chromosome, for problem F1. Initially many

of the variables are under speci�ed due to a shortage of

start and stop codons, but as evolutions proceeds the

GA succeeds in specifying (almost) all 25 variables.

lead to dramatically di�erent performance by the GA

with reading frames.

Figure 3 shows the average length of the genes, when

all genes are speci�ed, for problems F7 and F8. (This

is the length in bits, not including the start and stop

codons.) In the early generations none of the solutions

are fully speci�ed and no data is shown. As noted

above, the chromosomes used with F8 are longer and

therefore include more start-stop pairs. Thus, fully

speci�ed solutions are found sooner.

For both problems the average gene length decreases

over time. However, it is clear that this decrease is

much faster and longer lasting for F8. (These runs

were extended to 100 generations to illustrate this dif-

ference.) By the �nal generation the length of the

genes for F8 has declined below 5, implying that some
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Test Average number Average number of

Problem of variables variables speci�ed

speci�ed initially in generation 50

F1 5.04 24.2

F3 5.05 22.9

F3' 5.09 24.3

F7 5.09 24.3

F8 7.44 24.7

Table 3: Average number of speci�ed variables in the

initial and �nal generations. By the �nal generation

the GA has introduced su�cient regulatory codons to

specify almost all of the variables.

of the genes consist of only a start-stop pair.
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Figure 3: Average length of the genes in individuals

with fully speci�ed solutions. In the early generations

none of the solutions are fully speci�ed and no data is

presented. Once the solutions are fully speci�ed the

average length of the genes decreases; steadily for F8

and quite slowly for F7.

There is another critical fact to draw from Figure 3.

Consider generation 32 where the average gene length

for both problems is roughly 15 bits. Including the

start and stop codons each gene takes up, on average,

25 bits. Because the data is only taken from chro-

mosomes in which all 25 variables are speci�ed this

means that the total length of the genes in one solu-

tion, measured in bits, is 625 (25 genes times 25 bits

per gene). However, the lengths of the chromosomes

for the F7 and F8 problems are only 250 and 400 bits

respectively. The GA has succeeded in compressing

a total gene length of 625 bits into 250 and 400 bits

respectively.

However, it is also true that performance on F8, where

there is less compression, is much better. In fact, by

the �nal generation the average gene length for F8 is

roughly 14 (including start and stop codons). This

leads to a total gene length of 350, which is less than

the chromosome length. Thus, although the GA can

perform information compression within the multiple

reading frames it seems to perform better when it does

not need to.

Because the GA has found a solution (or solutions)

to F8 that can be encoded in very short binary se-

quences, there are fewer bits per variable that need

to be determined to �nd the solution. Whereas the

standard GA must optimize all 250 bits in its chromo-

some, the GA with reading frames must only optimize

the bits within genes. By reducing this number the

GA reduces the size of the solution space and makes

the problem easier. It is also possible that the genes

are less susceptible to the e�ects of crossover and mu-

tation as they represent a smaller percentage of the

entire chromosome.

Finally, we are interested in howmuch overlap actually

occurs between genes in di�erent reading frames. A

given bit can be read in �ve di�erent reading frames.

Thus, each bit can `participate' in from 0 to 5 genes.

Figure 4 shows the number of bits that participate in

0, 1, 2 or 5 genes (the values for 3 and 4 genes are

omitted for clarity) for the F7 function. These results

are the average of 30 trials. Each bit that participates

in more than one gene represents a point of overlap.

Bits where zero genes overlap are non-coding.

Initially, the majority of the bits do not participate in

any gene, i.e. most of a chromosome is non-coding.

Again this is because in the initial random individ-

uals there are relatively few start-stop codon pairs.

However, the number of bits that do not participate

decreases extremely rapidly. There are corresponding

increases in the number of bits that participate in one

or more genes.

There are two important features of this �gure. First,

the amount of overlap is quite high. Many bits are

participating in several (and often all �ve) genes. This

explains how genes whose total length average 625 bits

can be squeezed into a chromosome 250 bits long.

The second important feature of the graph is how the

amount of overlap changes over time. The number of

bits that participate in zero genes decreases rapidly un-

til roughly generation 18. Generation 18 also roughly

corresponds to the point when all twenty-�ve variables

are speci�ed. This suggests that the GA attempts

to rapidly specify all of the variables. The steady
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Figure 4: Number of bits with overlap and the amount of overlap (0, 1, 2 or 5 genes) at those bits, for the F7

function. The count of bits where 3 or 4 genes overlap are left out for clarity. The rapid decrease in the number

of bits with 0 overlap, i.e. no gene is using them, illustrates that the chromosomes are evolving to utilize more of

the available chromosome length. Fluctuations in the other values shows that gene overlap is occurring between

the reading frames and that the amount of overlap appears to be subject to evolutionary pressure.

decrease in the number of bits shared by �ve genes

suggests that the GA is also trying to separate the

genes to minimize overlap. This seems reasonable, as

it should be easier to optimize bits that participate

in fewer genes. Thus, the overall behavior of the GA

appears to be extremely sophisticated.

Figure 5 shows the number of bits participating in 0,

1, 2, or 5 genes for the F8 function (again the 3 and 4

gene cases have been omitted for clarity). The results

are somewhat di�erent from those seen with the F7

function. Except in the very earliest generations the

number of non-coding bits increases throughout the

trial and the number of bits participating in �ve genes

decreases. Apparently there is much less pressure to

produce overlapping genes.

However, the number of bits where two genes overlap

does increase for roughly the �rst �fty generations and

then starts to decline. Thus, it still appears that ini-

tially there is strong pressure to specify all of the vari-

ables. Later there is pressure to reduce the amount

of overlap as much as possible. However, because the

F8 function can apparently be solved with relatively

short genes the amount of overlap never needs to be

as high as for the F7 function. Additionally, the in-

creased length of the chromosome for F8 allows less

overlap even if the genes were the same length.

7 Discussion

It is clear that a GA can introduce new `genes' as nec-

essary to solve a given problem, even with the dif-

�culties imposed by using start and stop codons and

overlapping genes. More importantly, where necessary

the GA can take advantage of multiple reading frames

to overlap genes producing a form of information com-

pression. In the most extreme case genes totaling 625

bits in length are represented in a chromosome 250 bits

long. However, it is also clear that too much overlap

between genes signi�cantly degrades the performance

of the GA. Thus, the potential bene�ts of this com-

pression may be limited. Interestingly, after introduc-

ing su�cient genes, which often requires considerable

overlap, the GA appears to reduce the amount of over-

lap (and hence the amount of compression) on its own.

It appears that multiple reading frames can be use-

ful on problems where the length of the optimal solu-

tion is unknown, but the maximum possible solution

length is quite large. Rather than requiring a chromo-

some as long as the maximum solution length, reading

frames can be used to compress the chromosome. As
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Figure 5: Number of bits with overlap and the amount of overlap (0, 1, 2 or 5 genes) at those bits, for the F8

function. The count of bits where 3 or 4 genes overlap are left out for clarity. The rapid increase in the number

of bits with 0 overlap, i.e. no gene is using them, illustrates that the chromosomes are evolving very short genes.

Fluctuations in the other values shows that gene overlap is occurring between the reading frames and that the

amount of overlap appears to be subject to evolutionary pressure.

observed here the GA can be expected to adjust the

actual length of the genes within the chromosome as

necessary to solve the problem.

Results with the F3 and F3' problems emphasize a

potential di�culty in using multiple reading frames.

The choice of codons may make it di�cult for a GA

to �nd overlapping genes that encode the optimal so-

lution. Without this overlap the bene�ts of multiple

reading frames are lost. A likely solution to this prob-

lem is to increase the amount of redundancy within

the encoding. Additional redundancy makes it more

likely that there are ways to produce optimal genes

with overlapping regions.
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Abstract

This paper makes a �rst attempt to study

and verify empirically the theory of continua-

tion through systematic formulation of exper-

iments. Both the basic, and in a sense bound-

ing, cases of building block salience, as en-

countered in diÆcult problems, are dealt with

individually. Experimental results closely

match theory and assure us of the useful-

ness of an apt blend of continuation operators

with epoch-wise runs.

1 INTRODUCTION

Undoubtedly, genetic algorithms (GAs) have come a

long way both in terms of a wide range of applica-

tions as well as the development of more sophisticated

and advanced algorithms needed therein. As GAs are

entrusted with more complex and commercially impor-

tant problems, it becomes imperative to develop and

verify predictive theories for increasing eÆciency and

economics of the algorithms. Given a suÆciently large

population size, genetic algorithms yield satisfactory

results for a range of problems. However, when re-

sources and time are limited, as is the case with any

real-world problem, it is imperative to use those re-

sources judiciously.

One critical aspect of GA runs is the preservation of di-

versity to ensure supply of appropriate building blocks

as and when the algorithm seeks to solve them. More-

over, often all the contributing building blocks (BBs)

are not of equal salience, that is some of them may con-

tribute much more to the overall �tness of a solution

than others. Particularly in cases where the nature of

the problem requires a primarily serial processing of

building blocks from high salience to low salience, it

is essential to either preserve the low-salience building

blocks until the end of the run, or to re-supply them

when the GA is ready to process them. Several suc-

cessful attempts have been made in this and related

�elds which enhance the problem-solving capabilities

of GAs. These include dominance and diploidy (Gold-

berg & Smith, 1987), adaptive and self-adaptive mu-

tation operators (B�ack & Schwefel, 1995) and linkage

learning (Harik & Goldberg, 1996; Harik, 1997).

More recently, this problem of supplying diversity tem-

porally as needed was called the continuation prob-

lem (Goldberg, 1999) and a bounding theory of con-

tinuation was developed that hinged on whether the

problem being solved had building blocks of compa-

rable �tness salience. That theory considered both

ideal continuation operators (ICOs) with no marginal

costs of continuation and real continuation operators

(RCOs) with non-zero rework. Although the original

paper developed the theory in some detail, no exper-

imental evidence was presented. This paper remedies

that situation by performing bounding computations

using ICOs and RCOs on problems of uniform and

exponential salience.

We make systematic tests using standard trap func-

tions which are known to be hard (Deb & Gold-

berg, 1993) for simple GAs to solve. Comparisons

are made between GA runs which use several small

epochs (where a smaller population is revived by in-

jecting diversity at the end of a relatively smaller con-

vergence epoch) to solve a problem and those which

use a single large epoch to solve the problem given the

same number of total function evaluations. The con-

tinuation operator models are discussed in some detail

with emphasis on their design from an implementa-

tion viewpoint. Results obtained are encouraging and

agree with the continuation theory.

The next section brie
y reviews the continuation the-

ory as derived elsewhere (Goldberg, 1999). Section

3 discusses the design of continuation operators and
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the requirements therein. It extends the previous de-

signs from an experimental and implementation point

of view. Section 4 spells out the experimental setup

and the result measurement criteria. Section 5 dis-

cusses the results obtained and their consequences. We

conclude with a detailed note on future work in section

6 and a summary with implications in section 7.

2 CONTINUATION THEORY

Before delving into the modeling|implementation is-

sues, experimental design and results of the study, we

brie
y review the continuation theory presented else-

where (Goldberg, 1999) and the predicted results for

continuation operators. This section looks at some of

the basic assumptions of the derivations and the �-

nal results for uniform and exponentially scaled BB

salience are given.

To summarize, the theory for a uniformly scaled build-

ing block problem predicts best solution quality for

single-epoch runs for real continuation operators and

proves quality indi�erence to population sizing for

ideal continuation operators. On the other hand, for

exponentially scaled building block salience, the the-

ory predicts best solution quality for building-block-

by-building-block solution|or in other words, a run

which uses several small epochs as against a single

large epoch for solving the problem, both for real and

ideal continuation operators.

The theory builds on the population-sizing equation

(Harik, Cant�u-Paz, Goldberg, & Miller, 1997)

n = �c�
d

p
m log�; (1)

where c depends on the problem diÆculty, � is the

probability of not meeting criterion, d=� is the signal

to noise ratio and m is the number of building blocks;

together with the primary continuation equation:

T = egn; (2)

where T is the total number of function evaluations

expended to gain the solution, e the number of epochs

and g the number of generations per epoch. While

equation 2 holds for an ideal continuation operator, a

real continuation operator also requires a �nite amount

of rework as part of the costs incurred for continuation.

The equation is then modi�ed to include the rework

as

T = e[gn+ r]; (3)

where r is the average number of additional function

evaluations required per epoch.

These equations assume nearly equal epoch sizes,

which is supported by considering the relationships

obtained from convergence time studies (M�uhlenbein,

1992; Thierens & Goldberg, 1994). For constant inten-

sity selection (eg. tournament and truncation selec-

tion), the convergence duration are of O(
p
l) and O(l)

for uniform and exponential (largely varying) building

block salience, respectively. Thus, the previous studies

have justi�ably assumed equal epoch sizes. However,

these relations hold best at appropriate and nearly

appropriate population sizing for the problem under

consideration and at very low population sizes, the

takeover time would be considerably less. A constant

epoch size designed according to convergence of op-

timal populations holds sparingly at low population

sizes. This may be explained by considering that for

a constant number of function evaluations T , a suf-

�cient number of epochs are not allowed if the same

high takeover time is considered to hold for small pop-

ulations. This is discussed in more detail in the results

section later.

We now look at the results derived for uniform and

exponentially scaled building blocks.

2.1 UNIFORM SCALING

With these assumptions and assuming a uniform

marginal epoch error, solution for an ICO for uni-

formly scaled building blocks gives

�e � exp(�T=(gn0)); (4)

where �e is the error in the e
th epoch and n0 is the

function of problem size, problem diÆculty, building

block size and signal-to-noise ratio and is therefore

constant for a given problem. Introducing the rework

for an RCO, the equation is modi�ed as

�e � exp[
�T=n0
g + r=n

]; (5)

which indicates that the best option for an RCO is a

single large implicitly parallel epoch (large n).

2.2 EXPONENTIAL SCALING

However, for an exponentially scaled BB salience case,

the theory takes a di�erent turn. For a constant re-

liability solution, and for a problem where � building

blocks are solved for in a particular epoch, the quality

Q of the solution, or the proportion of correctly solved

building blocks at the end of the run is derived to be

Q =
2T

n0g

�

2�
p
�
; (6)
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where n0 is again a constant for given problem and so-

lution quality. Thus, the above equation indicates that

the most economical way to solve a badly scaled prob-

lem is to do it building block-wise or in other words,

in several epochs instead of a single implicitly parallel

epoch.

This brief review of continuation theory prepares

ground for the discussion of the continuation issues

and presentation of experimental results.

3 CONTINUATION ISSUES

As with other eÆciency concerns, the theory of con-

tinuation is built on three elements

1. Time budget

2. Population Sizing

3. Run or epoch duration

In the remainder of this section, each of these is brie
y

discussed in the light of the needs of the continuation

theory.

3.1 TIME BUDGET

Time budgeting is the primary concern of continuation

with the fundamental tradeo� being that between a

single large implicitly parallel epoch vs. the run be-

ing distributed over several epochs in time, for a �xed

number of available function evaluations. Each epoch

is marked with a suitable continuation operator.

3.1.1 Ideal Continuation

An ideal continuation operator is assumed to introduce

diversity into a prematurely converged population by

disturbing only incorrectly converged alleles without

causing any extra rework penalties. An idealized con-

tinuation operator can hence only be constructed with

full knowledge of the problem solution. An extreme

ICO could simply 
ip the incorrect alleles (in case of

binary-coded GAs, or perturb them substantially oth-

erwise) at the end of an epoch by identifying them

through this problem-knowledge. The aim is essen-

tially to introduce diversity and to explore new zones

of the solution space. Although this is a theoretical

idealization, and real-life computations would be far

from this, ICOs serve as a stepping stone in the un-

derstanding of continuation theory.

3.1.2 Real Continuation

As mentioned before, an RCO costs the run a �nite

amount of rework. Building blocks which are already

converged correctly may be incorrectly disturbed by

the overly zealous continuation operator and may need

to be re-decided. It is therefore imperative to model

continuation operators which minimize this rework re-

quirements while serving satisfactorily to provide con-

tinuation to the run.

3.2 POPULATION SIZING

Considering convergence and continuation impera-

tively brings in the discussion of optimal population

size for a given problem. SuÆciently predictive pop-

ulation sizing models have been derived elsewhere

(Goldberg & Rudnick, 1991; Goldberg, Deb, & Clark,

1992; Harik, Cant�u-Paz, Goldberg, & Miller, 1997).

Equation 1 de�nes an approximate population sizing

model (Harik, Cant�u-Paz, Goldberg, & Miller, 1997)

for convergence within a desired error bound. The con-

tinuation model, viewed from another angle involves a

tradeo� decision between large and small populations

for the available time budget. It gives a new face to

the existing population sizing models indicating feasi-

ble solution runs for otherwise non-optimal population

settings.

3.3 EPOCH DURATION

Convergence (M�uhlenbein, 1992; Thierens & Gold-

berg, 1994) and takeover time (Goldberg & Deb, 1991)

studies are equally important in modeling the contin-

uation operators. The convergence time model gives

us an upper bound on the epoch duration or in other

words, for a given time budget T , it gives an estimate

on the maximum number of generations in a feasible

epoch; since a run with population size greater than

the optimal size and multiple epochs is decidedly not

advisable. Takeover time gives us a lower bound esti-

mate for epoch duration since calling continuation op-

erators into play without allowing the already present

good genetic material to seek the solution is equally

undesirable.

4 EXPERIMENTAL SETUP

This section describes in detail the systematic experi-

mental setup used to verify the results and enumerates

the important issues therein.
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4.1 TEST FUNCTION

There are several studies available on the choice of

suitable functions for testing GA enhancements and

models (Goldberg, 1992; Goldberg, 1987; Deb & Gold-

berg, 1993). Of these the class of trap functions are

proved to be GA hard and are particularly of interest

from an experimental point of view for testing algo-

rithm improvements. The bounding diÆculty of these

functions (Deb & Goldberg, 1993) lends credit to re-

sults and allows for extension to hard problems. In

this study, tests for continuation operators were done

for fully deceptive (maxtrap) functions. In particular,

twenty 4-bit Liepins and Vose's functions (Liepins &

Vose, 1990) were concatenated to form an eighty bit

function with 20 BBs. The trap, as shown in �gure 1,

is de�ned by

f(x) =

(
1 if u(x) = l

1� 1+u(x)

l
otherwise;

(7)

where l is the total length of the trap, and u(x) denotes

the unitation (the number of bits set to one in the

trap).

 1 2 3 4

0.25

0.50

0.75

1.00

  0

Figure 1: Single 4-bit Trap function, used as a Building

Block for the 80-bit test function

For uniform salience function tests, the individual's

�tness was computed as the sum of the �tnesses of

the constituent BBs. For the case of non-uniform BB

contribution, exponential scaling was used to vary BB

salience by scaling up each constituent BB's �tness so

that the signal di�erence is given as

d = 21��

; (8)

where � is the index of BBs from high salience to

low salience within the chromosome string (Goldberg,

1999). Selectorecombinative GAs were used in all runs

with one-point or two-point crossover probability of 1.0

while the background mutation probability was set to

zero. Tight linkage was assumed and pairwise tour-

nament selection without replacement was used in all

experiments.

4.2 MODELING ICOs

As outlined in (Goldberg, 1999) and discussed above,

an ICO provides a bounding case of perfect continua-

tion without rework costs. Exploiting the function do-

main information, incorrectly converged alleles alone

were mutated with increased probability at the end of

an epoch. Attempts were made to model an ICO such

that it may be easy to extend them to a real problem

where one has little or no information about the char-

acteristics of alleles which form the global solution.

Looking at this through a slightly di�erent lens, it may

be argued that a background mutation tries to do ex-

actly this but that is in an absolutely di�erent 
avor

and context and with much lesser zeal.

4.3 MODELING RCOs

The ICO assumption may only be modeled when in-

formation on the solution is available. However, the

idea may be extended to real cases under the banner

of an RCO. A simplest RCO was modeled where the

problem information being provided to the ICO was

withdrawn. This left continuation possibly operating

even on correctly converged BBs thereby introducing

the rework as included in equation 3. Although this

is possibly a crudest form of RCOs, it serves well as

a bounding case to evaluate the theory. It represents

an extreme in RCO modeling and more suggestions

are made regarding less blind RCOs in the section on

future work.

4.4 CONVERGENCE CRITERIA

In the primary runs, a convergence criterion was

used based on �tness di�erence to determine dynamic

epochs instead of specifying uniform epoch durations

as assumed in the previous theory. A population was

considered converged when the di�erence between the

maximum and average individual in the population fell

below the signal di�erence being tackled at that stage.

However, runs with equal epochs tailored to corre-

sponding population sizes were also taken and com-

pared with theoretical predictions as well as with the

dynamic-epoch model.

Results are measured in terms of the proportion of cor-

rect building blocks in the converged population after

expending a �xed number of total function evaluations.

From the point of view of continuation theory, it is best
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suitable to compare these results for runs with vary-

ing population sizes. This gives a direct estimate of

eÆciency of runs for several epochs vs. a single epoch.

5 RESULTS & DISCUSSION

Runs were recorded for the two bounding cases of uni-

form and exponentially scaled BBs (Rudnick, 1992;

Thierens, 1995) for the test function outlined in the

previous section. This section presents the results for

uniformly and badly scaled BBs under dynamic as well

as equal epoch assumptions.

5.1 DYNAMIC-EPOCH RUNS

We �rst take up the results obtained when the con-

tinuation criteria was determined based on the �tness

di�erence in the population as discussed above, rather

than assuming a �xed epoch duration.

5.1.1 For Uniformly scaled BBs

Figure 2 shows the results for the two operators and

trap function with uniform building block salience,

comparing the ICO, RCO and standard GA runs for

15,000 function evaluations1. Runs with an ideal con-

tinuation operator are indi�erent to the population

sizing; that is, the runs with a single implicitly par-

allel epoch are equivalent to runs where the problem

is solved with smaller populations, over several epochs.

This agrees with the continuation theory for uniformly

scaled BBs as given by equation 4

However, with no or little solution information|where

a real continuation operator is employed|�nite re-

work introduced according to equation 5 lowers the

solution quality for small population sizes. Experi-

mental results verify the superiority of a single-epoch

run over those with several epochs. A smaller popula-

tion causes considerable penalties to the run duration

due to the large rework for re-solving those parts of

the solution which have already been decided for in

previous generations. Solution quality in terms of the

proportion of correct building blocks found by the GA

is compared with simple GA runs (with no continua-

tion), as replicated from previous experimental studies

(Harik, Cant�u-Paz, Goldberg, & Miller, 1997).

5.1.2 BBs Scaled Exponentially

Figure 3 shows ICO runs for the trap function where

the constituting building blocks are exponentially

1Runs with continuation operators yielded equally good
results with lesser function evaluations. However, this
number is chosen for easy comparison with the control case.
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Figure 2: Proportion of correct building blocks in the

solution at �nal convergence versus population size

for uniformly scaled building block problem. Results

are shown for the test trap function; comparing the

ICO (dotted), RCO (dashed) and standard simple GA

(solid line) runs each with 15,000 total function eval-

uations

scaled. As expected from equation 6, runs with smaller

populations, i.e. those where the solution is obtained

by solving fewer building blocks at a time, are increas-

ingly more economical compared to those with fewer

epochs or large population sizes. These results are

compared for three T values, 5,000 10,000 and 15,000.

Such a comparison highlights the utility of continua-

tion operators in solving hard problems economically

(using overall lesser function evaluations) by employ-

ing several small run epochs.

5.2 EQUAL-EPOCH RUNS

Inferior solution qualities were obtained from runs un-

der the equal-epoch assumption, possibly owing to rea-

sons discussed in section 2. A limitingly low popula-

tion converges faster than predicted by standard con-

vergence theories.

An equal-epoch assumption continues to run a smaller

population even beyond convergence, thereby reducing

the total number of epochs which could otherwise be

possible through a dynamic-epoch consideration.

However, if epochs of smaller sizes|suitable for low

population size convergence are considered for the

constant-epoch size runs, results favorably match the

theoretical predictions, though not as well as in the

dynamic-epoch assumption owing to the �ne tuning

requirements of the epoch size. Figure 4 shows the

results for ICO runs for uniformly and exponentially

scaled BBs where appropriate equal epoch sizes are
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Figure 3: Proportion of correct building blocks in the

solution at �nal convergence versus population size for

exponentially scaled building block problem. Results

are shown for the test trap function; comparing the

ICO for 5,000 (solid), 10000 (dashed) and 15000 (dot-

ted line) total function evaluations

assumed for the continuation operator. Speci�cally,

an exponentially scaled building block problem was

given a constant epoch size of up-to-25 generations for

smaller populations.

The experimental results con�rm theoretical expecta-

tions and provide useful insight into the continuation

of genetic algorithm runs in time by addressing the

utility of recombination and diversity rejuvenating op-

erators when used in the correct proportion for a given

set of problem diÆculty.

6 FUTURE WORK

This study veri�es the e�ects of continuation opera-

tors, particularly depicting their usefulness in the case

of hard problems (with non-uniform building block

salience) by taking up the bounding case of exponen-

tially scaled BBs.

However, several questions still remain to be answered

and further new ones have sprung up during the course

of the study itself. Possible directions of investigation

include the following:

� Other BB salience: The present theory success-

fully predicts continuation for quantitatively dis-

tinct function regimes depending on BB salience.

It is yet to be probed whether these predictions

can be extended to problems of

{ mixed BB salience distribution

{ intermediate BB salience distribution
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Figure 4: Proportion of correct building blocks in the

solution at �nal convergence versus population size for

uniformly (solid) and exponentially scaled (dashed)

building block problem. Results are shown for the

test trap function; comparing the two salience cases

for 15,000 total function evaluations.

and to what extent. The original theory touches

upon this aspect by considering neutral scaling as

one case where the quality function begins to be

indi�erent to variations in BB salience.

� Other problem characteristics: The con-

tinuation theory distinguishes between problems

based on di�erence in BB salience alone. How-

ever, more factors may a�ect the algorithm's per-

formance and should be considered.

� The RCO spectrum: The current theory treats

RCOs as a single entity. However, evidently there

exists a spectrum of RCO designs, varying from

crude �xed mutations to adaptive, self-adaptive or

gene expression mutation. More detailed study in

the area is warranted to determine how well the

theory captures this spectrum - and to extend it

to capture any lacunae.

� Design of RCOs: It remains to be studied how

the continuation operators would a�ect GA runs

in a real setting in hard problems. This immedi-

ately spells out the need to delve into the design

of RCOs themselves. RCOs with minimal rework

hold the key to the success of continuation.

� Dynamic vs. constant epochs: The theory

considers constant epoch continuation, rendering

a batch-oriented cast to the runs. However, most

real GAs operate continuously. This is also sug-

gested by the dynamic-epoch experimental runs

in this study. The theory may accordingly need

modi�cations to cover this aspect.
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� Design of continuation-based eÆcient GAs:

How the concept of continuation may be used

to design eÆcient GEAs is of prime importance.

Continuation holds promise for optimal combines

of selectorecombinative and selectomutative GAs.

Systematic study to explore the current theory

models may hold substantial clue to eÆcient GA

design.

Results for RCOs for uniform building block salience

clearly indicate that these operators are not mere the-

ory but are of signi�cant value for actual evolutionary

computations. More systematic experiments need to

be done in the above mentioned areas to help arrive at

uni�ed guidelines for continuation operators.

7 CONCLUSIONS

This paper veri�ed the theory of continuation through

systematic experiment formulation and tests with

maxtrap functions. The ideal continuation operator

was shown to be indi�erent to epoch sizing for uni-

formly scaled BB salience while for badly scaled BBs,

better solution quality was obtained for a smaller pop-

ulation running over several epochs under continua-

tion. RCOs were also designed and their performance

was measured. The results presented in the paper

clearly express the validity of continuation theory and

provide ample evidence for their usefulness in provid-

ing quality solution to hard problems economically.

Since the continuation theory is predictive, we sug-

gest that researchers should begin making the salience-

sequence connection. Uniform salience suggests im-

plicit parallelism while non-uniform salience implies a

necessary sequential nature to the processing. Thus

the usual battle of crossover vs. mutation is increas-

ingly being proved to be wrong-headed. Continuation

strongly indicates that we should rather be thinking in

terms of an optimal combine of implicitly parallel and

implicitly sequential operators to get quality solutions

most quickly. More work is needed and is currently un-

derway, but this shift in perspective should help clarify

the research needed and dictate the methods used in

practice.
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Abstract

We extend a recently developed exact schema

based, or coarse grained, formulation of ge-

netic dynamics [8, 9, 10] and its associated

exact Schema theorem to an arbitrary selec-

tion scheme and a general crossover operator.

We show that the intuitive\building block"

interpretation of the former is preserved lead-

ing to hierarchical formal solutions of the

equations that upon iteration lead to new re-

sults for the limiting distribution of a pop-

ulation in the case of 1-point crossover and

\weak" selection, where we de�ne quantita-

tively \weak". We also derive an exact, ana-

lytic form for the population distribution as

a function of time for a 
at landscape and

1-point crossover.

1 Introduction

Developing a better qualitative and quantitative un-

derstanding of the theory of genetic dynamics, and

thereby of Genetic Algorithms (GAs), remains a chal-

lenging problem by any measure. The bene�ts are

almost too obvious to mention. However, it is worth

emphasizing the scale of the task. Almost all known

theoretical results are for systems with a small num-

ber of loci and even in the case of very simple land-

scapes very little is known as far as explicit, rather

than formal or numerical, results is concerned. In par-

ticular we are unaware of any systematic schemes for

developing approximate solutions such as perturbative

methods.

Passing beyond canonical results, such as Holland's

Schema theorem [1], which is associated with an in-

equality for the dynamics rather than an equality, var-

ious exact evolution equations have been derived pre-

viously: Goldberg and Bridges [2] wrote down exact

equations for two-bit problems. These equations al-

lowed for an explicit analysis of string gains and losses.

Whitley and Crabbe [3] also presented an algorithm

for generating evolution equations for larger problems

that was equivalent to the earlier equation of [2]. Al-

though exact these equations are extremely unwieldy

and it is diÆcult to infer general conclusions from their

analysis.

Another related approach is that of Vose and collabo-

rators [4] that treats GA evolution as a Markov chain.

Noteworthy, and less familiar in the GA community,

is analogous work in mathematical evolution theory

[5] (see also the signi�cant article of Altenberg [6] that

has a foot in both camps). This formulation of GA dy-

namics appears to be so removed from elements such

as the Schema theorem and Building Block hypothesis

that the latter have very much fell out of favour with

a�cionados of this dynamical formulation. Also, being

fundamental, microscopic equations they do not lend

themselves easily to a treatment of schemata. It is im-

portant to note that this is not just an academic point:

genetic dynamics with a large number of degrees of

freedom is so complex that a formalism that treats

the e�ective degrees of freedom at a more macroscopic

level is certainly required. Such a formalism could be

postulated directly, such as in the e�ective theory of

Shapiro and collaborators [7], or better, derived from

the underlying microscopic dynamics.

Evolution equations that o�er a very intuitive inter-

pretation, illuminate the content of the Schema the-

orem and the Building Block hypothesis, naturally

coarse grain from string equations to schema equa-

tions, yield an interpolation between the microscopic

and the macroscopic and that o�er new exact results

or simpler proofs of known results have been recently

derived [8, 9, 10]. Originally developed for a canon-

ical GA the basic elements have also recently been

extended to Genetic Programming (GP) by Poli and
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coworkers [11, 12] who have showed the utility of the

formalism by deriving several interesting new results.

In this paper we generalize the formalism of [8, 9, 10],

to arbitrary selection schemes and a general crossover

operator showing that the basic advantages of the for-

mer are preserved. We see that evolution can be fruit-

fully viewed as the hierarchical construction of more

and more complex building blocks. The usefulness of

crossover in aiding search is governed by linkage dise-

quilibrium coeÆcients associated with selection prob-

abilities rather than gene frequencies. We consider the

limit distributions of a population showing that in the

long time limit an arbitrary schema reaches Robbins

proportions but with a coeÆcient di�erent than one.

We also derive an exact, analytic form for the dynam-

ics of a GA for a 
at landscape and 1-point crossover.

2 Microscopic String Evolution

Equations

In this section we recapitulate the results of [8, 9, 10],

taking the opportunity to show their explicit general-

ization to a general crossover operator and arbitrary

selection. We start with an exact evolution equation

that relates string proportions, P (Ci; t) = n(Ci; t)=n,

for a genotype Ci consisting of binary alleles, at time t

to those at t+1, where n(Ci; t) is the number of strings

Ci in the population at time t and n is the population

size. In the limit n ! 1 the P (Ci; t) give the prob-

ability distribution for the population dynamics and

satisfy

P (Ci; t+1) = P(Ci)Pc(Ci; t)+
X
Ci=

P(Cj!Ci)Pc(Cj ; t) (1)

where, for an in�nite population, Pc(Ci; t) is the ex-

pected proportion of strings of type Ci after selection

and crossover.

The e�ective mutation coeÆcients are: P(Ci) which

is the probability that string i remains unmutated,

and P(Cj!Ci), the probability that string j is mu-

tated into string i. In the limit where the mutation

probability, pm, is uniform, P(Ci) = (1 � pm)
N and

P(Cj!Ci) = p
dH(i;j)
m (1 � pm)

N�dH(i;j), where dH(i; j)

is the Hamming distance between the strings Ci and

Cj . Note that for a �nite population the left hand side

of (1) is the expected proportion of genotype Ci to be

found at t+1 while any P (Ci; t) on the right hand side

are to be considered as the actual proportions found

at t.

Explicitly Pc(Ci; t) is given by

Pc(Ci; t) = P 0(Ci; t)

�

2NX
m=1

pc(m)
X
Cj 6=Ci

C
(1)
CiCj

(m)P 0(Ci; t)P
0(Cj ; t)

+

2NX
m=1

pc(m)
X
Cj 6=Ci

X
Cl 6=Ci

C
(2)
CjCl

(m)P 0(Cj ; t)P
0(Cl; t) (2)

where
P

2N

m=1
is the sum over all possible crossover

masks m 2 M, M being the space of masks, and

pc(m) is the probability to implement the mask m.

P 0(Ci; t) is the probability that genotype Ci is selected

and the coeÆcients C
(1)
CiCj

(m) and C
(2)
CjCl

(m), represent

the probabilities that, given that Ci was one of the

parents, it is destroyed by the crossover process, and

the probability that given that neither parent was Ci

it is created by the crossover process.

In order to write these probabilities more explicitly we

denote the set of alleles inherited by an o�spring from

parent Cj as S and the alleles inherited from parent

Cl, i.e. the set Cl � S, by C. Naturally, S and C

both depend on the particular crossover mask chosen.

Then,

C
(1)
CiCj

(m) = �(dH
S
(i; j))�(dH

C
(i; j)) (3)

and

C
(2)
CjCl

(m) =
1

2
[Æ(dH

S
(i; j))Æ(dH

C
(i; l))

+Æ(dH
C
(i; j))Æ(dH

S
(i; l))] (4)

where dH
S
(i; j) is the Hamming distance between the

strings Ci and Cj measured only over the set S, with

the other arguments in (3) and (4) being similarly de-

�ned. �(x) = 1 for x > 0 and is 0 for x = 0, whilst

Æ(x) = 0 8x 6= 0 and Æ(0) = 1. The equations (1)

and (2) yield an exact expression for the expectation

values, n(Ci; t), and in the limit n ! 1 yield the

correct probability distribution governing the GA evo-

lution for arbitrary selection, mutation and crossover.

It takes into account exactly the e�ects of destruction

and construction of strings and, at least at the formal

level, is either a generalization of or is equivalent to

other exact formulations of GA dynamics.

As an explicit example, consider 1-point crossover. In

this case there are onlyN�1 pertinent crossover masks

labelled by the crossover point k. Then, pc(m) =

pc=N � 1 for m = k, k 2 [1; N � 1] and pc(m) = 0 oth-

erwise. Also, S = L and C = R (or vice versa) where

L and R refer to the parts of the string to the left and

right of the crossover point respectively. For 2-point

crossover there are N�1C2 non-zero masks labelled

by two crossover points, k1 and k2. Then pc(m) =

pc=
N�1C2 for m 2 fk1; k2g with k1, k2 2 [1; N � 1]
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and k1 > k2. In this case S represents the parts of

the string outside k1 and k2 and C the part between

them (or vice versa). As a �nal example, for uniform

crossover pc(m) = pc�
NS (1 � �)N�NS=2N where � is

the probability that a given allele is inherited from

parent Cj , S being the set of alleles inherited from Cj .

Computationally, the above representation is very re-

dundant. The matrix C
(2)
CjCl

(m) has dimensionality

(2N � 1) � (2N � 1) but only (2NS � 1) � (2NC � 1)

matrix elements are non-zero where NS is the number

of alleles of Ci inherited from one parent and NC the

number from the other. As a consequence, and also

for other reasons, iterating the dynamics is exceedingly

diÆcult. The equations (1) and (2) o�er little in terms

of intuitive understanding of the evolutionary dynam-

ics and, arguably, not a great deal in terms of formal

results, though Vose and coworkers have made impor-

tant contributions in this area. Intuitive elements of

GA theory such as the Building block hypothesis seem

to play no role here and are not apparent in any de-

gree. Additionally, a more general formulation giving

the dynamics of schemata is relatively unnatural in

this formulation.

3 Coarse Grained Evolution

Equations

Far greater progress can be made by changing basis

from a microscopic string basis to a coarse-grained ba-

sis associated with schemata. Such a basis emerges

very naturally anyway from equation (2).

To see this, consider �rst the destruction term. For a

given crossover mask the matrix (3) restricts the sum

over the strings Cj to those that di�er from Ci in at

least one bit both in S and in C. One can convert the

sum over Cj into an unrestricted sum by subtracting

o� those Cj that have d
H
S
(i; j) = 0 and/or dH

C
(i; j) = 0.

We then use the fact that
P

Cj
P 0(Cj ; t) = 1 to gain

a tremendous simpli�cation of the destruction term.

Similarly one may write unrestricted sums for the con-

struction term by subtracting o� explicitly those terms

that have been added. The unrestricted construction

term then becomesX
Cj�C

S

i

X
Cl�C

C

i

P 0(Cj ; t)P
0(Cl; t) (5)

where C
S

i is the part of Ci inherited from Cj , i.e. the al-

leles S, while C
C

i is the part inherited from Cl, i.e. the

alleles C. Obviously, both C
S

i and C
C

i are schemata.

Noting that the extra terms originating from the con-

version of the restricted sums to unrestricted sums in

the destruction and construction terms exactly cancel

one can �nally rewrite Pc(Ci; t) as

Pc(Ci; t) = P 0(Ci; t)(1� pc)

+

2NX
m=1

pc(m)P 0(CSi (m); t)P 0(CCi (m); t) (6)

where pc =
P

2N

m=1
pc(m) is the probability to imple-

ment crossover (irrespective of the mask) and

P 0(CSi (m); t) =
X

Cj�C
S

i

P 0(Cj ; t) (7)

and similarly for P 0(CCi (m); t). In the absence of mu-

tation Pc(Ci; t) = P (Ci; t + 1). It is important to

note here that in this form the evolution equation

shows that crossover explicitly introduces the idea of a

schema and the consequent notion of a coarse graining

relating a string Ci to its building blocks, CSi and C
C

i ,

which are schemata of order NS and NC = N � NS

respectively. Notice by going to this coarse-grained

basis that the potentially (2N � 1) � 2N destruction

terms, (2N � 1) being the number of terms in the re-

stricted string sum and 2N being the number of pos-

sible crossover masks, have been reduced to only one

term and that for a given crossover mask the (2N�1)2

construction terms have been converted into one sin-

gle crossover term P 0(CSi (m); t)P 0(CCi (m); t). Actually,

this somewhat overstates the case as the schema aver-

ages contain (2N
S
� 1) and (2N

C
� 1) terms respectively.

However, at the very least the change in basis has ex-

plicitly eliminated the zero elements of C
(2)
CjCl

(m).

So let's recapitulate how the three di�erent operators

- mutation, crossover and selection - enter in this ex-

act dynamics. First of all, selection is embodied in

the factor P 0 which is a \black box" for the pur-

poses of the dynamics. That is to say, the highly

simpli�ed and elegant form of the dynamical equa-

tion (6) is independent of the type of selection used

and is a direct consequence of the form invariance of

P 0 under a coarse graining. In other words the re-

lationship between P 0(Ci; t) at the string level and

P 0(CSi ; t) at the coarse grained level is strictly linear,

i.e. P 0(CSi ; t) =
P

Ci�C
S

i
P 0(Ci; t). However, if one

wishes to know how the functional dependence on P

dynamically changes then one must implement a par-

ticular selection scheme. For example, with propor-

tional selection P 0(Ci; t) = (f(Ci)=f(t))P (Ci; t) where

f(Ci) is the �tness of string Ci and f(t) is the av-

erage population �tness. It is easy to demonstrate

in this case that P 0(CSi ; t) = (f(CSi ; t)=f(t))P (C
S

i ; t),

where f(CSi ; t) is the �tness of the schema C
S

i , which

demonstrates the form invariance of proportional se-

lection. Thus, the form invariance in this case also
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holds at the level of the P s not just the P 0s. This

will not generally be the case. For example with

a \non-linear" selection scheme where P 0(Ci; t) =

a(Ci; t)P (Ci; t) + b(Ci; t)P
2(Ci; t) there is no natural

form invariance at the level of the P s as P 0(CSi ; t) 6=

a(CSi ; t)P (C
S

i ; t) + b(CSi ; t)P
2(CSi ; t). We also see that

the elegance of the equation (6) is independent of the

type of crossover implemented. The details of the

crossover mechanism enter in pc(m) and also deter-

mine which alleles are included in S.

To iterate the equation it is clear that we need to know

the dynamics of the schemata C
S

i and C
C

i . Thus we

need to obtain an equivalent equation for an arbitrary

schema, � of order N2 and de�ning length l. To do

this we need to sum with
P

Ci��
on both sides of the

equation (1). This can simply be done to obtain [8, 9,

10]

P (�; t+ 1) = P(�)Pc(�; t) +
X
�=i

P(�=i!�)Pc(�=i; t) (8)

where the sum is over all schemata, �=i, that dif-

fer by at least one bit from � in one of the N2

de�ning bits of �. In other words any schema

competing with � and belonging to the same par-

tition. Pc(�; t) =
QN2

k=1(1 � pm(k)) is the prob-

ability that � remains unmutated and Pc(�=i; t) =Q
k2f���=ig

pm(k)
Q

k2f���=igc
(1 � pm(k)) is the prob-

ability that the schema �=i mutate to the schema �.

Pc(�; t) =
P

Ci��
Pc(Ci; t) is the probability of �nding

the schema � after selection and crossover. Note the

form invariance of the equation. i.e. (8) has exactly

the same form as (1). To complete the transformation

to schema dynamics we need the schema analog of (6).

This also can be obtained by acting with
P

Ci��
on

both sides of the equation. One obtains

Pc(�; t) = (1� pc
NMr

(l; N2)

NM

)P 0(�; t)

+
X

m2Mr(l;N2)

pc(m)P 0(�S(m); t)P 0(�C(m); t) (9)

where �S represents the part of the schema � inher-

ited from the �rst parent and �C that part inher-

ited from the second. NMr
(l; N2) is the number of

crossover masks that a�ect �, Mr being the set of

such masks. NM is the total number of masks with

pc(m) 6= 0. Obviously these quantities depend on the

type of crossover implemented and on properties of the

schema such as de�ning length.

Once again for the purposes of illustration we may con-

sider some speci�c examples. For 1-point crossover:

NM = N � 1, NMr
= l � 1,

P
m2Mc

pc(m) !

pc=N � 1
Pl�1

k=1, where k is the crossover point, and

�S = �L(k) the part of � to the left of the crossover

point and �C = �R(k) is the part to the right. Substi-

tuting into (9) one �nds the results of [8, 9, 10]. For

m-point crossover: NM = N�1Cm, NM�r = (N�1Cm �
N�lCm) and

P
m2Mr

pc(m) ! pc
P

k1>k2>:::>km
, where

k1; :::; km are the m crossover points.

4 Schema Theorem

With the exact evolution equations in hand we can ex-

tend the exact Schema theorem of [8, 9, 10] to a gen-

eral crossover operator and arbitrary selection scheme.

Once again we state it through the concept of e�ective

�tness [8, 9, 10]

Exact \coarse grained" Schema theorem

P (�; t+ 1) =
feff(�; t)
�f(t)

P (�; t) (10)

where

feff(�; t) =
�
P(�)Pc(�; t)

+
X
�=i

P(�=i!�)Pc(�=i; t)
� �f(t)

P (�; t)
(11)

and Pc(�; t) is given by equation (9). The interpre-

tation of this equation is as for its analog for 1-point

crossover and proportional selection [8, 9, 10]: that

schemata of higher than average e�ective �tness are al-

located an \exponentially" increasing number of trials

over time. An intuitive version of the Building Block

hypothesis is part and parcel of this Schema theorem:

(9) explicitly shows the competition between schema

destruction and construction and shows how a schema

is constructed from its building blocks �S and �C which

in their turn are composed of building blocks �S;S and

�SC and �C;S and �CC respectively, which in their turn...

The particular building blocks depend of course on the

particular mask. Note that the crossover dependent

part of (9) for a given crossover mask can be written

as

�(�;m) = P 0(�; t)� P 0(�S(m); t)P 0(�C(m); t) (12)

which is a selection weighted linkage disequilibrium

coeÆcient and, other than in a 
at landscape, is a

more relevant quantity than the standard linkage dis-

equilibrium coeÆcient which is associated with the

P s rather than the P 0s. If � > 0 then crossover

has a negative e�ect, i.e. schema destruction dom-

inates while if � < 0 crossover is positive. Thus,

whether the selection probabilities for the building

blocks of a given schema are correlated or anticor-

related determines the nature of crossover. It is im-

portant to note that the hierarchical structure inher-

ent in the iterative solution of (6) relating a string or
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schema to its more coarse grained antecedents termi-

nates after N2 steps when one arrives at the maxi-

mally coarse grained e�ective degrees of freedom - 1-

schemata. These play a priviliged role as they cannot

be destroyed by crossover and in the continuous time

limit satisfy P (�(i); t) = exp
R t
0
((f(�; t0)= �f(t))� 1)dt0.

One of the strengths of the present coarse grained for-

mulation is that, as we shall see, much can be deduced

simply by inspection of the basic formulas. We shall

�rst of all put the basic equation into a yet more ele-

gant form. We introduce a 2N -dimensional population

vector, P(t), whose elements are P (Ci; t), i = 1; :::; 2N .

Equation (1) can then be written in the form

P(t+ 1) =WPc(t) (13)

where the mutation matrix W is real, symmetric and

time independent and has elementsWij = p
dH(i;j)
m (1�

p)N�d
H(i;j), where for simplicity we restrict now to

the case of uniform mutation (the generalization to

non-uniform mutation is straightforward). Restrict-

ing attention to the case of selection schemes linear in

P (Ci; t), Pc(t) can be written as

Pc(t) = F(t)P(t) +

2NX
m=1

pc(m)j(m; t) (14)

where the selection - crossover destruction matrix,

F(t), is diagonal, and takes into account selection and

the destructive component of crossover. Explicitly, for

proportional selection Fii(t) = (f(Ci)= �f(t))(1 � pc).

Finally, the \source" matrix is given by j(m; t) =

P 0(CSi (m); t)P 0(CCi (m); t). De�ning the selection-

crossover destruction-mutation matrix Ws(t) =

WF(t) we have

P(t+ 1) =Ws(t)P(t) +

2NX
m=1

pc(m)Wj(m; t) (15)

The interpretation of this equation is that j(m; t) is a

source which creates strings (or schemata) by bring-

ing building blocks together while the �rst term on

the right hand side tells us how the strings themselves

are propagated into the next generation, the destruc-

tive e�ect of crossover renormalizing the �tness of the

strings.

5 Formal Solutions of the Basic

Equations

Needless to say solutions of these dynamical equations

are hard to come by. They represent, for binary alle-

les, 2N coupled non-linear di�erence equations, or in

the continuous time limit - di�erential equations. As

shown in [8, 9, 10], compared to a representation based

on (2), even a formal solution of (6) in the absence of

mutation and for 1-point crossover and proportional

selection yields much valuable qualitative information,

such as a simple proof of Geiringer's theorem [13] and

an extension of it to the weak selection regime. Here

we extend this formal solution to the case of general

crossover and mutation and for any selection scheme

linear in P (Ci; t). The iterated solution of (15) is

P(t) =

t�1Y
n=0

Ws(n)P(0)

+

2NX
m=1

pc(m)

t�1X
n=0

t�1Y
i=n+1

Ws(i)W j(m;n) (16)

The mutation matrix W being real and symmetric is

diagonalizable. Ws(t) is not generically symmetric

and therefore not diagonalizable. This solution ac-

tually holds true for arbitrary schemata. The only

changes are that the vectors are of dimension 2N2 , the

matrices of dimension 2N2 � 2N2 , the sum over masks

for the construction terms is only over the setMr and

that the building blocks in j(m; t) are those of the

schema rather than the entire string.

The interpretation of (16) follows naturally from that

of (15). Considering �rst the case without mutation,

the �rst term on the right hand side gives us the prob-

ability for propagating a string or schema from t = 0

to t without being destroyed by crossover. In other

words
Qt�1

n=0Ws(n) is the Greens function or propa-

gator for P. In the second term, bj(m;n), each element

is associated with the creation of a string or schema

at time n via the juxtaposition of two building blocks

associated with a mask m. The factor
Qt�1

i=nWs(i)

is the probability to propagate the resultant string or

schema without crossover destruction from its creation

at time n to t. The sum over masks and n is simply

the sum over all possible creation events in the dy-

namics. This formulation lends itself very naturally to

a diagrammatic representation that will be discussed

elsewhere. The role of mutation is to mix the strings

or schemata created in the aforementioned process.

So, what can be deduced from (16)? First of all let's

consider the case of a 
at �tness landscape with no

mutation; then bP(t) = P(t) andW is the unit matrix,

1, andWs = (1�pc)1. Then, for an arbitrary schema

�

P(t) = (1� pc
NMr

(l; N2)

NM

)tP(0)
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+(1� pc
NMr(l;N2)

NM

)t
X

m2Mr(l;N2)

pc(m)

�

t�1X
n=0

(1� pc
NMr(l;N2)

NM

)�(n+1)j(m;n) (17)

Now, obviously limt!1(1 � pc
NMr(l;N2)

NM
)t = 0 hence

P(t) ! 0 as t ! 1 unless the summation over time

leads to a cancellation of this damping factor. Given

that the building block constituents of j(m;n) are as-

sociated with damping factors (1� pc
NMr (l

0;N 02)
NM

)t and

(1�pc
NMr (l�l

0;N2�N
0

2)
NM

)t this can only occur if there is

no damping of the consituent building blocks and this

only happens if they are 1-schemata as NMr
(1; 1) = 0,

i.e. you can't cut a 1-schema. Given that it's a


at landscape P (�(i); t) = P (�(i); 0) where P (�(i); t)

is the probability of �nding the 1-schema �(i) corre-

sponding to the bit i, hence the only term of j(m; t)

which gives a non-zero contribution when integrated

is
QN2

i=1 P (�
(i); 0). Thus the limit distribution is

P �(�) = lim
t!1

P (�; t) =

N2Y
i=1

P (�(i); 0) (18)

which is Geiringer's theorem for a general crossover

operator.

The only role the type of crossover is playing here is

how fast the transient corrections to the limit distribu-

tion die out. The damping is controlled byNMr
(l; N2),

hence the bigger it is the faster the corresponding tran-

sient dies out. For example, for entire strings (or

schemata of de�ning length N) for m and m0-point

crossover, where m > m0

N
(m)
Mr

(l; N2)

N
(m0)
Mr

(l; N2)
=

0
@ 1�

�(N�l+1)�(N�m)
�(N�l�m+1)�(N)

1�
�(N�l+1)�(N�m0)
�(N�l�m0+1)�(N)

1
A > 1 (19)

where �(N) = (N � 1)!. Hence, we can quantify ex-

actly how quickly m-point crossover transients die o�

relative to m0-point crossover transients.

We can take this further and generalize Geiringer's

theorem to non-
at �tness landscapes for selection

schemes linear in P (Ci; t) such as proportional se-

lection and for 1-point crossover and without muta-

tion. Without loss of generality we write P 0(�; t) =

(1 + �Æ(�; t)) where � will serve as a control parame-

ter to determine how \weak" selection is, �Æ(�; t) being

the selection pressure for the schema �. Weak selection

will imply �jÆ(�; t)j < 1 8�; t. A 1-schema evolves as

P (�(i); t) = e��(�
(i);t;t0)P (�(i); t0) (20)

where �(�(i); t; t0) =
R t
t0
Æ(�(i); t00)dt00 is the integrated

selection pressure for the 1-schema.

Theorem

The limit distribution, P (�)�, of P (�; t) as t ! 1

for \weak" selection and no mutation and 1-point

crossover in the continuous time limit is

P (�)� = A(�;N; l; pc)

N2Y
i=1

P (�(i); 0) (21)

where the selection dependent amplitude A(�;N; l; pc)

is given by

A(�;N; l; pc) =

lim
t!1

Z pc(l�1)t

N�1

0

e��e

�
1�

pc(l�1)

N�1

�
�(�;t;t� N�1

pc(l�1)
)
�

N2Y
i=1

(1 + Æ(�(i); t� N�1

pc(l�1)
))e
P

N2

i=1
�(�(i);t� N�1

pc(l�1)
;0)
d� (22)

Note that for a 
at landscape A ! 1. Due to space

limitations here a proof of this theorem will be pre-

sented elsewhere, though we can outline the logic. The

key to the theorem is deciding just how weak selec-

tion must be in order that all higher order schema

transients die out. It is for this reason that a tuning

parameter was introduced. For a given weak selec-

tion landscape and values of l, N and pc there ex-

ists a critical value of �, �cr(�;N; l; pc), below which

all non-1-schema transients die out as t ! 1. One

examines the growth or decay rate of a schema and

all its constituent building blocks. Growth is caused

by selection and decay by crossover. By examining

the dominant growth mode, other than that associ-

ated with pure 1-schemata, one can tune � such that

it becomes a decay mode. All other growing modes

are subdominant and therefore also decay. Hence, the

only non-zero mode in the limit t!1 is the 1-schema

mode of (21). The di�erence with the result for a 
at

landscape is that in this case the e�ective �tness land-

scape for 1-schemata is not 
at. As an example, if one

considers a weak counting ones landscape, i.e. where

f(Ci) = 1 + �n1(Ci), n1(Ci) being the number of ones

on the string, then �cr � pc=N
3 for strings.

6 Explicit Solutions

To show the further utility of the present formalism we

will �nd the general explicit solution to (6) for a 
at

�tness landscape, without mutation and for 1-point

crossover in the continuous time limit. Lest this be

thought a trivial problem it's wise to remember that

it still involves the solution of 2N coupled non-linear
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di�erential equations. To illustrate the general princi-

ples we'll consider �rst a three bit problem. The gen-

eral structure of the equations (6) is that one builds

up a solution via intermediate building blocks. The

most fundamental blocks are 1-schemata as these can-

not be cut and hence transform trivially under re-

combination (save in the case of uniform crossover).

P(l;N2)(t) in this case is an N -dimensional vector and

P(l;N2)(t) = P(l;N2)(0), with l = 1 andN2 = 1. Explic-

itly, P (i � �; t) = P (i � �; 0), P (�j�; t) = P (�j�; 0) and

P (� � k; t) = P (� � k; 0). There are four 2-schemata

per crossover point corresponding to P (ij�; t) and

P (�jk; t), i; j = 0; 1. P (ij�; t) satis�es

P (ij�; t) = e�
pct
2 P (ij�; 0)

+
pc

2
e�

pct
2

Z t

0

P (i � �; t0)P (�j�; t0)e
pct

0

2 dt0 (23)

with an analogous equation for P (�jk; t). The simple

solution of (23) is

P (ij�; t) = e�
pct
2 P (ij�; 0)

+(1� e�
pct
2 )P (i � �; 0)P (�j�; 0) (24)

The 3-schema solution is found using (24)

P (ijk; t) = e�pctP (ijk; 0)

+
pc

2
e�pct

Z t

0

epct
0

(P (ij�; t0)P (� � k; t0)

+P (i � �; t0)P (�jk; t0)) dt0 (25)

Substituting the solution (24) into (25) one �nds sim-

ply

P (ijk; t) = e�pctP (ijk; 0)

+e�
pct
2 (1� e�

pct
2 ) (P (ij�; 0)P (� � k; 0)

+ P (i � �; 0)P (�jk; 0))

+(1� e�
pct
2 )2P (i � �; 0)P (�j�; 0)P (� � k; 0) (26)

In the limit t ! 1, P (ijk; t) ! P (i �

�; 0)P (�j�; 0)P (� � k; 0). We see here the approach

to Robbin's proportions is exponentially fast with the

bigger schemata dying o� quicker.

The general solution for an N -bit string is

P (Ci; t) =

N�1X
n=0

e�
npct
N�1 (1� e�

pct
N�1 )N�n�1P(n+ 1) (27)

where P(n + 1) is an initial condition and represents

a partition over the probabilities for �nding N � n

building blocks at t = 0. For a given n there are
N�1Cn such terms. Equation (26) o�ers a simple il-

lustration where N = 3, hence n = 0; 1; 2. n = 0

corresponds to the N building block terms of which

there are N�1C0 = 1 term, P (i��; 0)P (�j�; 0)P (��k; 0).

n = 1 corresponds to the N�1 building block terms of

which there are N�1C1 = 2 terms, P (ij�; 0)P (� � k; 0)

and P (i � �; 0)P (�jk; 0). Finally, n = 2 corresponds

to the N � 2 building block terms of which there are
N�1C2 = 1 term, P (ijk; 0).

Notice that (27) gives not only the asymptotic be-

haviour but also the complete transients. We are un-

aware of any similar result in the literature. It is not

diÆcult to prove that (27) is the general solution by

showing that it satis�es (6). This requires the solu-

tions of (6) for C
L(k) and C

R(k), the building blocks

of Ci also. From the form invariance of the equations

the solution of (6) is

P (CLi ; t) =

lL(k)�1X
nL=0

e�
nLpct

N�1 (1� e�
pct
N�1 )N�nL�1P(nL + 1) (28)

whereN�nL is the number of building blocks of CLi (k)

and lL(k) is the de�ning length of C
L
i (k). Using the

analogous equation for C
R
i (k) and the fact that n =

nL+ nR one sees that both sides of (6) have the same

time dependence hence it suÆces to prove the equiv-

alence at t = 0. The equality at t = 0 hinges on the

identity that P(n+1) =
Pn�1

nL=0
P(nL +1)P(nR +1).

In the case of zero mutation the other exact limit of

the evolution equations is that of pure selection. In-

terestingly, the solution is only exact in the case of dis-

crete time. With these two exact limits in hand there

should be scope for obtaining perturbative solutions to

the evolution equations either in powers of � for weak

selection or in powers of pc for strong selection.

7 Conclusions

In this article we have generalized the formalism of

[8, 9, 10] to cover arbitrary selection schemes and a

general crossover operator. We have tried to empha-

size the advantages of this formulation and in partic-

ular show how these advantages have concrete pay-

o�s. We believe that our coarse grained formulation

is more intuitive in its content than others, giving an

exact schema theorem that contains in a very obvi-

ous manner a Building Block hypothesis. Its coarse

grained hierarchical structure, both in terms of time

and building block complexity, leads to a formulation

wherein results such as Geiringer's theorem can be

seen in such a manifestly simple way that it is essen-

tially proof by inspection. Additionally, the way that

selection, schema destruction and schema creation en-
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ter in di�erent ways leads, using the same hierarchi-

cal structure, to a version of Geiringer's theorem for

a class of \weak" selection landscapes where we were

able to quantify the meaning of \weak".

The fundamental coarse grained equation show an

important form invariance, i.e. after passing from

schemata of a given N2 to more coarse grained

schemata of order N 0

2 < N2, the resulting equations

have exactly the same form. This is certainly not

manifestly true of the fundamental string equations

(2). This form invariance is an important property as

it implies that if a solution can be found for one de-

gree of coarse graining then an analogous solution can

simply be written down for the more coarse grained

degrees of freedom. We showed that the e�cacy of the

present formulation lies not only in its intutive appeal

and the facility with which more general formal re-

sults can be deduced but also in how one may derive

explicit analytic results, as in the case of an exact so-

lution for the evolution of strings in the case of a 
at

�tness landscape and 1-point crossover.

We believe that our previously derived results and the

results herein are the tip of the iceberg and that the

present formalism may serve as a starting point for de-

riving a whole host of similar results and beyond. To

name just a couple of obvious ones: �nding the asym-

potic limiting distributions for other types of crossover

and including in mutation and �nding the exact dy-

namics for other types of crossover operator One of

the most intriguing possibilities, that we have brie
y

alluded to, is the possibility of deriving approximate

results using a systematic approximation scheme such

as perturbation theory. The existence of exact solu-

tions in the 
at �tness landscape and the zero crossover

limit add weight to such a supposition as does the fact

that the iterative solution of the equations (6) leads

to a diagrammatic series very similar to the Feynman

diagrammatic series that appear in quantum �eld the-

ory.
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Abstract

A framework for combining �rst-order con-

cept learning with Genetic Algorithms is in-

troduced. This framework includes: 1) a

novel binary representation for clauses 2)

task-speci�c genetic operators 3) a fast evalu-

ation mechanism. The proposed binary rep-

resentation encodes the re�nement space of

clauses in a natural and compact way. It

is shown that essential operations on clauses

such as uni�cation and anti-uni�cation can

be done by simple bitwise operations (e.g.

and/or) on the binary encoding of clauses.

These properties are used for designing task-

speci�c genetic operators. It is also shown

that by using these properties individuals

can be evaluated at genotype level without

mapping them into corresponding clauses.

This replaces the complex task of evaluating

clauses, which usually needs repeated theo-

rem proving, by simple bitwise operations.

An implementation of the proposed frame-

work is used to combine Inverse Entailment

of the learning system CProgol with a genetic

search.

1 INTRODUCTION

In concept learning problems, there is a trade-o� be-

tween the expressive power of the representation and

the complexity of hypotheses search space. In the case

of �rst-order concept learning this search space grows

combinatorially and the search is usually intractable.

On the other hand, many real-world applications re-

quire a representation language which is at least as

expressive as �rst-order logic. For example, Inductive

Logic Programming (ILP) (Muggleton, 1991; Muggle-

ton and Raedt, 1994) has been a fast growing research

area in the last decade and has shown many successes

in machine learning and data-mining applications, es-

pecially in some challenging domains such as bioin-

formatics (Muggleton et al., 1992; Srinivasan et al.,

1997; Muggleton, 1999). Current �rst-order learning

systems mostly employ deterministic search methods

to examine the re�nement space of clauses and use

di�erent kind of syntactic biases and heuristics (e.g.

greedy methods) to cope with the complexity of the

search which otherwise is intractable. Using these bi-

ases usually limits the exploration power of the search

and may lead to local optima. Hence, more power-

ful search methods are required for inducing complex

concepts and for dealing with massive data. Genetic

Algorithms (GAs) have great potential for this pur-

pose. GAs are multi-point search methods (and less

sensitive to local optima) which can search through a

large space and manipulate symbolic as well as numer-

ical data. Moreover, because of their robustness and

adaptive characteristics, GAs are suitable methods for

optimization and learning in many real world applica-

tions (Goldberg, 1989). In terms of implementation,

GAs are highly parallel and can be easily implemented

in parallel and/or distributed models. However, GAs

are syntactically restricted and cannot represent a pri-

ori knowledge that already exists about the domain.

On the other hand, �rst-order concept learning meth-

ods, such as ILP, are well known paradigms that bene-

�t from the expressive power inherited from logic and

logic programming. Hence, it is likely that a combina-

tion of such learning paradigms and GAs can overcome

the limitation of each individual method and can be

used to cope with some complexities of real-world ap-

plications.

Even though GAs have been used widely for optimiza-

tion and learning in many domains, a few genetic-

based systems in �rst-order domain already exist.

Some of these systems (Giordana and Sale, 1992; Gior-

dana and Neri, 1996; Hekanaho, 1998; Anglano et al.,
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1998) follow conventional genetic algorithms and rep-

resent problem solutions by �xed length bit-strings.

Other systems (Var�sek, 1993; Leung and Wong, 1995;

Wong and Leung, 1997; Kennedy and Giraud-Carrier,

1999; Reiser and Riddle, 1998) use a hierarchical rep-

resentation and evolve a population of logic programs

in a Genetic Programming (GP) (Koza, 1991) manner.

These genetic-based systems con�rm that genetic algo-

rithms and evolutionary computing can be interesting

alternatives for learning �rst-order concepts from ex-

amples. However, these systems mostly use genetic

search as the only learning mechanism in the sys-

tem and hence they cannot bene�t from the existing

�rst-order learning techniques for example for utilizing

background knowledge in the learning process.

This paper aims to present a framework for combin-

ing �rst-order concept learning with GAs by introduc-

ing a novel binary encoding for clauses, relevant ge-

netic operators and a fast evaluation mechanism. In

this framework, unlike other genetic-based systems,

representation and operators can be interpreted in

well known �rst-order logic terms such as subsump-

tion, uni�cation and anti-uni�cation (Plotkin, 1969;

Nienhuys-Cheng and de Wolf, 1997). This representa-

tion and its interpretations and properties are intro-

duced in the next section. Section 3 shows how some

properties of the binary representation can be used to

design task-speci�c genetic operators. In this section

we show how essential operations on clauses can be

done by simple bitwise operations (e.g. and/or) on

binary strings. As another property of the proposed

representation we show that evaluating a clause, which

is a complex task, can also be done by simple and fast

bitwise operations. This evaluation mechanism is in-

troduced in section 4. Section 5 describes an imple-

mentation of the proposed framework for combining

Inverse Entailment in CProgol (Muggleton, 1995) with

a genetic algorithm. Evaluations and related works are

discussed in section 6. Finally, section 7 summarizes

the results and concludes this paper.

2 REPRESENTATION AND

ENCODING

Every application of GAs requires formulating prob-

lem solutions in such a way that they can be pro-

cessed by genetic operators. It has been suggested

that the binary representation is a suitable coding for

representing problem solutions in GAs (Holland, 1975;

Goldberg, 1989). The lack of a proper (binary) rep-

resentation, and consequently diÆculties for de�nition

and implementation of genetic operators, has been the

main problem for applying GAs in �rst-order domain.

B: p(X,Y) : − q(X,Z) , r(Z,Y)
V1 V2 V3 V4     V5 V6

M(B):

1
2
3
4
5
6

1  0  1  0  0  0
0  1  0  0  0  1
1  0  1  0  0  0
0  0  0  1  1  0
0  0  0  1  1  0
0  1  0  0  0  1

1  2  3  4  5  6

Figure 1: Binding matrix for clause p(X,Y):-

q(X,Z),r(Z,Y).

In this section we introduce a novel binary represen-

tation for �rst-order clauses. We show that this repre-

sentation encodes the re�nement space of clauses in a

natural and compact way. Even though all de�nition

and theorems in this paper hold for the general form

of �rs-order clauses, for simplicity and consistency rea-

sons, in all examples we use Horn clauses 1 which is the

standard representation in logic programming. Con-

sider a clause with n variable occurrences. The re-

lationships between these n variable occurrences can

be represented by a graph having n vertices in which

there exists an edge between vertices vi and vj if ith

and jth variable occurrences in the clause represent

the same variable. For example variable bindings in

clause p(X,Y):-q(X,Z),r(Z,Y) represent an undirected

graph and this clause can be represented by a binary

matrix as shown in Figure 1. In this matrix entry mij

is 1 if ith and jth variable occurrences in the clause

represent the same variable and mij is 0 otherwise.

This representation has interesting properties which

can be exploited by a genetic algorithm for searching

the re�nement space of a clause. Before we formally

show these properties, we need to show the mappings

between clauses and binary matrices.

De�nition 1 (Binding Set) Let B and C both be

clauses. C is in binding set B(B) if there exists a

variable substitution
2
� such that C� = B.

In De�nition 1, the variables in B induce a set of

equivalence classes over the variables in any clause

1In Horn clauses all clauses contain at most one positive
literal. For example fp(X;Y )_ � q(X;Z)_ � r(Z; Y )g
is a Horn clause and can be represented by p(X,Y):-

q(X,Z),r(Z,Y).
2Substitution � = fvi=ujg is a variable substitution if

all vi and uj are variables.
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C 2 B(B). Thus we could write the equivalence class

of u in variable substitution � as [v]u, the set of all

variables in C such that v=u is in �. We de�ne a bi-

nary matrix which represents whether variables vi and

vj are in the same equivalence class or not.

De�nition 2 (Binding Matrix) Suppose B and C

are both clauses and there exists a variable substitu-

tion � such that C� = B. Let C have n variable oc-

currences representing variables hv1; v2; : : : ; vni. The

binding matrix of C is an n � n matrix M in which

mij is 1 if there exist variables vi, vj and u such that

vi=u and vj=u are in � and mij is 0 otherwise. We

write M(vi; vj) = 1 if mij = 1 and M(vi; vj) = 0 if

mij = 0.

De�nition 3 (Normalized Binding Matrix)

Let M be an n � n binary matrix. M is in the set

of normalized binding matricesMn if M is symmetric

and for each 1 � i � n, 1 � j � n and 1 � k � n,

mij = 1 if mik = 1 and mkj = 1.

De�nition 4 (Mapping Function M(C))

The mapping function M : B(B) !Mn is de�ned as

follows. Given clause C 2 B(B) with n variable occur-

rences representing variables hv1; v2; : : : ; vni, M(C) is

an n � n binary matrix in which mij is 1 if variables

vi and vj are identical and mij is 0 otherwise.

De�nition 5 (Mapping Function C(M))

The mapping function C : Mn ! B(B) is de�ned

as follows. Given a normalized n � n binding matrix

M , C(M) is a clause in B(B) with n variable occur-

rences hv1; v2; : : : ; vni, in which variables vi and vj are

identical if mij is 1.

De�nition 6 (Matrix Subset) Let P and Q be in

Mn. It is said that P � Q if for each entry pij 2 P

and qij 2 Q , pij is 1 if qij is 1. P = Q if P � Q and

Q � P . P � Q if P � Q and P 6= Q.

De�nition 7 (Clause Subsumption)

Clause C subsumes clause D, C � D if there exists

a (variable) substitution � such that C� � D (i.e. ev-

ery literal in C� is also in D). C properly subsumes

D, C � D if C � D and D 6� C.

Because of the subsumption order between clauses

(which is a quasi-order) the search space (or re�ne-

ment space) can be modeled as a subsumption lat-

tice (Nienhuys-Cheng and de Wolf, 1997). The follow-

ing theorem represents the relationship between binary

matrices and the subsumption order of clauses.

(Binary Encoding: 000)

(Binary Encoding: 010)

(Binary Encoding: 101)

(Binary Encoding: 111)

(Binary Encoding: 100) (Binary Encoding: 001)

(Binary Encoding: 011)(Binary Encoding: 110)

p(U,V) :- q(U,X) , r(Y,Z) p(U,V) :- q(W,X) , r(X,Z)

p(U,V) :- q(U,X) , r(Y,V) p(U,V) :- q(U,X) , r(X,Z) p(U,V) :- q(W,X) , r(X,V)

p(U,V) :- q(U,X) , r(X,V)

p(U,V) :- q(W,X) , r(Y,V)

1  2  3  4  5  6
1  0  1  0  0  0
0  1  0  0  0  1
1  0  1  0  0  0
0  0  0  1  1  0
0  0  0  1  1  0
0  1  0  0  0  16

5
4
3
2
1

p(U,V) :- q(W,X) , r(Y,Z)

{Y/X}{Y/X}

{Y/X}

{W/U} {W/U}

{Z/V}

{Z/V} {Z/V}

{Z/V} {W/U}

{Y/X}{W/U}

Figure 2: A subsumption lattice bounded below by

clause p(X,Y):-q(X,Z),r(Z,Y) and binary encoding for

each clause.

Theorem 1 For each clause B and matrices M1 and

M2 in Mn such that C(M1) 2 B(B) and C(M2) 2

B(B), C(M1) � C(M2) if M1 �M2.

Proof. Suppose M1 � M2. Therefore there exist

variables vi and vj , i < j such that M1(vi; vj) = 0

and M2(vi; vj) = 1. Then according to De�nition 2,

C(M1)fvi=vjg = C(M2). Hence, C(M1) � C(M2). 2

A binding matrix is a symmetric matrix in which di-

agonal entries are 1. In practice, we only maintain

entries in top (or down) triangle of the matrix. Fur-

thermore, in our implementation (see section 5), we

are interested in a subsumption lattice bounded below

by a particular clause. Hence, each member of B(B)
can be encoded by a binary string in which each bit

corresponds to a 1 entry of matrix M(B).

Example 1 Figure 2 shows a subsumption lattice

bounded below by the clause p(X,Y):-q(X,Z),r(Z,Y).

Each clause in this search space can be encoded by 3

bits.

3 GENETIC OPERATORS AND

STOCHASTIC REFINEMENT

Genetic operators introduce new individuals into pop-

ulation by randomly changing or combining the geno-

type of best-�t individuals during an evolutionary pro-

cess. In conventional genetic algorithms these opera-

tors are domain-independent and usually without any

assumption about the problem on hand. However,

more eÆcient genetic operators can be designed by
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using simple facts about the domain. For example it

has been shown that introducing generalization and

specialization crossover operators, which are used to-

gether with standard crossover and mutation opera-

tors, can be useful in concept learning problems (Gior-

dana and Sale, 1992; Janikow, 1993). In this section

we show that the proposed binary representation has

great potential for designing task-speci�c genetic op-

erators. In particular, we show how mgi(most general

instance) and lgg(least general generalization) which

are also known as uni�cation and anti-uni�cation oper-

ations on clauses (Plotkin, 1969; Nienhuys-Cheng and

de Wolf, 1997) can be achieved by simple bitwise op-

erations on the binary encoding of clauses. In the fol-

lowing, �rst we introduce mgi and lgg operations for

clauses.

De�nition 8 (mgi and lgg) Clauses E and F are

respectively a common instance and a common gener-

alization of clauses C and D if and only if C;D � E

and F � C;D. mgi(C;D) and lgg(C;D) are the most

general instance and the least general generalization

for clauses C and D if and only if for every common

instance E and common generalization F it is the case

that mgi(C;D) � E and F � lgg(C;D).

Example 2 In Figure 2 clause

p(U,V):-q(U,X),r(X,Z) is the mgi of clauses p(U,V):-

q(U,X),r(Y,Z) and p(U,V):-q(W,X),r(X,Z) and clause

p(U,V):-q(W,X),r(Y,V) is the lgg of clauses p(U,V):-

q(U,X),r(Y,V) and p(U,V):-q(W,X),r(X,V).

De�nition 9 (Matrix AND) Let M1 and M2 be in

Mn. M = (M1 ^M2) is an n�n matrix and for each

aij 2 M , bij 2 M1 and cij 2 M2, aij = 1 if bij = 1

and cij = 1 and aij = 0 otherwise.

Similar to AND operator, OR operator (M1 _M2) is

constructed by bitwise OR-ing of M1 and M2 entries.

De�nition 10 (Matrix OR) Let M1 and M2 be in

Mn. M = (M1 _M2) is an n�n matrix and for each

aij 2M , bij 2M1 and cij 2M2, aij = 1 if bij = 1 or

cij = 1 and aij = 0 otherwise.

Theorem 2 For each clause B and matrices M1,

M2 and M in Mn such that C(M1) 2 B(B),
C(M2) 2 B(B) and C(M) 2 B(B), C(M) =

lgg(C(M1); C(M2)) if M = (M1 ^M2).

Proof. Suppose M = M1 ^M2. Therefore M � M1

and M � M2 and according to Theorem 1 C(M) �
C(M1) and C(M) � C(M2). Therefore C(M) is a

common generalization of C(M1) and C(M2). We

show that C(M) is the least general generalization

of C(M1) and C(M2). For each binding matrix M
0

in Mn it must be the case that if C(M 0) � C(M1)

and C(M 0) � C(M2) then C(M 0) � C(M). Suppose

C(M 0) 6� C(M) then according to Theorem 1 there

exist u and v such that M 0(u; v) = 1 and M(u; v) = 0.

If M 0(u; v) = 1 then M1(u; v) = 1 and M2(u; v) = 1

and this contradicts M(u; v) = 0 and completes the

proof. 2

By a similar proof it can be shown that the result of

or-operator is equivalent to mgi.

Theorem 3 For each clause B and matrices M1,

M2 and M in Mn such that C(M1) 2 B(B),
C(M2) 2 B(B) and C(M) 2 B(B), C(M) =

mgi(C(M1); C(M2)) if M =M1 _M2.

Proof. Symmetric with proof of Theorem 2. 2

Example 3 In Figure 2, lgg and mgi of any two

clauses can be obtained by AND-ing and OR-ing of

their binary strings.

According to these theorems uni�cation and anti-

uni�cation can be done by simple bitwise operations on

the binary encoding of clauses. These properties can

be used for designing task-speci�c genetic operators

such as generalization and specialization crossover op-

erators. Generalization and specialization are known

as the main operations in concept learning meth-

ods (Winston, 1970; Mitchell, 1982; Mitchell, 1997).

In particular, lgg and mgi are essential in �rst-order

learning. For example, the ILP system Golem (Mug-

gleton and Feng, 1990) which was successfully applied

to a wide range real-world applications (Bratko et al.,

1991; Feng, 1992; Muggleton et al., 1992) only uses a

lgg operator which operates on determinacy restricted

clauses 3. In addition to the generalization and spe-

cialization crossovers mentioned earlier, we can also

introduce task-speci�c mutation operators. In the

standard mutation operator we use a �xed probability

(mutation-rate) for changing 0 and 1 bits 4. As shown

in the previous section, the di�erence between bits in

binding matrices determines the subsumption order

between clauses. Hence, the subsumption distance be-

tween clauses increases monotonically with the Ham-

3It has been shown that the determinacy restriction
is inappropriate in some applications (Muggleton, 1994).
There is not such a restriction for the lgg operator intro-
duced in this paper.

4A random mutation could result in a matrix which is
not consistent with De�nition 3. Even though this inconsis-
tency doesn't a�ect the genetic search in practice, it could
be avoided by a normalization closure using De�nition 3.
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ming distance between corresponding matrices. We

can use this property to set di�erent mutation rates

for 0 and 1 bits based on a desirable degree of gener-

alization and specialization. This leads to a directed

mutation operator.

In �rst-order concept learning, upward and downward

re�nement operators are used for generalization and

specialization of clauses (Nienhuys-Cheng and de Wolf,

1997). In our case, task-speci�c genetic operators can

be interpreted as stochastic re�nement operators in the

context of �rst-order concept learning.

4 FAST EVALUATION AT

GENOTYPE LEVEL

The usual way for evaluating a hypothesis in �rst-order

concept learning systems is to repeatedly call a theo-

rem prover (e.g. Prolog interpreter) on training ex-

amples to �nd out positive and negative coverage of

the hypothesis. This step is known to be a complex

and time-consuming task in �rst-order concept learn-

ing. In the case of genetic-based systems this situation

is even worse, because we need to evaluate a popula-

tion of hypotheses in each generation. This problem

is another important diÆculty when applying GAs in

�rst-order concept learning.

In this section we introduce a method which replaces

the complex task of evaluating clauses by bitwise oper-

ations on binary strings. This idea is similar to data-

compilation method used by the attribute-based learn-

ing system GIL (Janikow, 1993). This system retains

binary coverage vectors for all possible features (at-

tributes and values) which can appear in a rule. This

introduces a database which can be used for comput-

ing the coverage set of each rule by bitwise operations

on the coverage vectors of participating features. How-

ever, in our case there is no need to maintain such a

database. We show that by maintaining the cover-

age sets for a small number of clauses and by doing

bitwise operations we can compute the coverage for

other binary strings without mapping them into the

corresponding clauses. This property is based on the

implicit subsumption order which exists in the binary

representation. In the following, �rst we de�ne the

cover-vector approach for representing coverage of a

clause on training examples.

De�nition 11 (Cover Sets and Cover Vectors)

Let C be a clause and E
+ = fe+1 ; e

+
2 ; : : : ; e

+
k g and

E
� = fe�1 ; e

�

2 ; : : : ; e
�

l g be the set of positive and neg-

ative training examples respectively. e
+
i is in the pos-

itive cover set P(C) if C � e
+
i . Similarly, e

�

j is in

the negative cover set N (C) if C � e
�

j . The positive

cover vector PV(C) is a k-bit binary string in which

bit i is 1 if e
+
i 2 P(C) and 0 otherwise. Similarly, the

negative cover vector NV(C) is a l-bit binary string in
which bit j is 1 if e

�

j 2 N (C) and 0 otherwise.

Theorem 4 For each clause C1 and C2,

P(mgi(C1; C2)) = P(C1) \ P(C2).

Proof. Let e 2 P(mgi(C1; C2)), then according to

De�nition 11, mgi(C1; C2) � e. But according to

the de�nition of mgi, C1 � mgi(C1; C2) and C2 �
mgi(C1; C2) and therefore C1 � e and C2 � e. Hence,

e 2 P(C1) and e 2 P(C2) and therefore e 2 P(C1) \
P(C2). Hence, P(mgi(C1; C2)) � P(C1) \ P(C2).

Now, let e 2 P(C1) \ P(C2), then according to Def-

inition 11, C1 � e and C2 � e. But according

to the de�nition of mgi, mgi(C1; C2) � e. Hence,

e 2 P(mgi(C1; C2)) and therefore P(C1) \ P(C2) �
P(mgi(C1; C2)) and this completes the proof. 2

Theorem 5 For each M , M1 and M2 in Mn ,

PV(C(M)) = PV(C(M1)) ^ PV(C(M2)) if M =

M1 _M2.

Proof. Suppose M = M1 _M2. Therefore according

to Theorem 3, C(M) = mgi(C(M1); C(M2)). Then

according to Theorem 4 ,P(C(M)) = P(C(M1)) \
P(C(M2)). But according to De�nition 11,

PV(C(M)) = PV(C(M1)) ^ PV(C(M2)). 2

This theorem, which also holds for negative coverage

vectors, can be easily extended for n clauses. Ac-

cording to these theorems, positive (or negative) cov-

erage of clauses can be computed by bitwise opera-

tions. Hence, the evaluation of each individual is done

at genotype level without mapping it into the corre-

sponding phenotype (clause).

Example 4 In Fig. 2, PV(C(111)) = PV(C(110)) ^
PV(C(101)).

5 IMPLEMENTATION

In our �rst attempt, we employed the proposed rep-

resentation to combine Inverse Entailment in CPro-

gol4.4 with a genetic algorithm. CProgol is an Induc-

tive Logic Programming (ILP) system which develops

�rst-order hypotheses from examples and background

knowledge. CProgol uses Inverse Entailment (Muggle-

ton, 1995) to construct the most speci�c clause (or the

bottom-clause) for each example and then searches for

the best clause H which subsumes this bottom-clause

(2 � H � ?). This introduces a subsumption lattice
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bounded below by the bottom-clause (?). The stan-

dard CProgol starts from the empty clause (2) and

uses an A
�-like algorithm for searching this bounded

subsumption lattice. The details for CProgol's A�-like

search, re�nement operator and algorithm for building

the bottom-clause can be found in (Muggleton, 1995).

As shown in section 2, B(?) represents a subsumption
lattice bounded below by the bottom-clause. We used

a genetic algorithm together with the binary encoding

for clauses (as described in section 2) to evolve a ran-

domly generated population of binary strings in which

each individual corresponds to a member of B(?). Be-
cause of simple representation and straightforward op-

erators any standard genetic algorithm can be used

for this purpose. We used a Simple Genetic Algo-

rithm(SGA) (Goldberg, 1989) and modi�ed it to suit

the representation introduced in this paper. This ge-

netic search evolves a population of hypotheses which

all subsume the bottom-clause and uses an evaluation

function which is similar to one used in the A
�-like

search of CProgol 5 but normalized between 0 and 1.

The predicates which violate the mode declaration lan-

guage are considered as inactive predicates which can

be �ltered from the induced hypothesis.

In our �rst experiment, we applied the genetic search

to learn Michlaski's east-bound trains (Michalski,

1980). Figure 3 compares the performance of the ge-

netic search with a random search in which each pop-

ulation is generated randomly as in the initial gener-

ation. In all experiments (10/10) a correct solution

was discovered by the genetic search before generation

20 (standard deviations for the average �tness mean

over 10 runs are shown as error bars). The following

parameter setting was used for SGA: popsize = 30,

pm = 0:0333 and pc = 0:6. Figure 3 also compares the

convergence of the standard SGA with a SGA which

uses together with standard one-point crossover, the

task-speci�c operators lgg introduced in section 3. The

following parameter setting was used for SGA + lgg:

popsize = 30, pm = 0:0333, pc = 1 � � � f and

plgg = ��f where f is the mean value of the �tness of

the parental strings (f =
f(s1)+f(s2)

2
) and � = 0:8 6.

Preliminary results show that the A
�-like search ex-

hibits better performance in learning hypotheses with

small and medium complexities. However, the per-

formance of the genetic search is less dependent on

5The criteria used in the evaluation function of the A�-
like search of CProgol include: number of positive and neg-
ative examples covered by the clause, length of the clause
and number of further literals to complete the clause. More
details can be found in (Muggleton, 1995).

6This parameter setting is similar to one used in (Gior-
dana and Sale, 1992).
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Figure 3: Convergence of the genetic search in the

trains problem.

the complexity of hypotheses, whereas A�-like search

shows a great dependency on this factor. Moreover,

genetic search can �nd the correct solution for some

special cases which the solution is beyond the explo-

ration power of the A
�-like search due to its incom-

pleteness (Muggleton, 1995; Badea and Stanciu, 1999).

6 DISCUSSION AND RELATED

WORKS

The actual completeness and complexity exhibited by

the standard A
�-like search of CProgol depends upon

the order of literals in the bottom clause and upon the

complexity of the hypothesis. In contrast, the genetic

search is less dependent on the complexity of the hy-

pothesis and is not a�ected by the order of literals in

the bottom clause. Therefore it is reasonable that ge-

netic algorithm is able to �nd some solutions which are

beyond the exploration power of the A�-like search.

As mentioned earlier, one main diÆculty in order

to apply GAs in �rst-order domain concerns formu-

lating �rst-order hypotheses into bit-strings. GA-

SMART (Giordana and Sale, 1992) was the �rst re-

lation learning system which tackled this problem by

restricting concept description language and introduc-

ing a language template. A template in GA-SMART is

a �xed length CNF formula which must be de�ned by

the user. Mapping a formula into bit-string is done by

setting the corresponding bits to represent the occur-

rences of predicates in the formula. The main prob-

lem of this method is that the number of conjuncts

in the template grows combinatorially with the num-

ber of predicates. REGAL (Giordana and Neri, 1996),
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DOGMA (Hekanaho, 1998) and G-NET (Anglano

et al., 1998) mainly follow the same idea of GA-

SMART and employ a user-de�ned template for map-

ping �rst-order rules into bit strings. However, in-

stead of using a standard representation, a template in

these systems is a conjunction of internally disjunctive

predicates. This leads to some diÆculties for exam-

ple for representing continuous attributes. Other sys-

tems including GILP (Var�sek, 1993), GLPS (Leung

and Wong, 1995), LOGENPRO (Wong and Leung,

1997), STEPS (Kennedy and Giraud-Carrier, 1999)

and EVIL (Reiser and Riddle, 1998) use hierarchi-

cal representations rather than using �xed length bit-

strings. These systems evolve a population of logic

programs in a Genetic Programming (GP) (Koza,

1991) manner. Even though some of the above men-

tioned systems use background knowledge for generat-

ing initial population or seeding the population, most

of these systems cannot bene�t from intentional back-

ground knowledge as it is used in usual �rst-order

learning systems. On the other hand, in our pro-

posed framework, encoding of hypotheses is based on

a most speci�c or bottom-clause which is constructed

according to the background knowledge and training

examples. This bottom-clause can be automatically

constructed using logic-based methods such as Inverse

Entailment. Moreover, as shown in section 2 and sec-

tion 3, the proposed encoding and operators can be

interpreted in well known �rst-order logic terms.

7 CONCLUSIONS AND FURTHER

WORK

In this paper we have introduced a framework for com-

bining �rst-order concept learning with GAs. EÆ-

cient binary representation for encoding clauses and

its properties, relevant task-speci�c operators and the

fast evaluation mechanism are the major novelty of the

proposed framework.

A preliminary implementation of this framework is

used to combine Inverse Entailment of the ILP system

CProgol with a genetic search. Even though this im-

plementation justi�es the properness of the proposed

framework, it could be improved in many ways. A

natural improvement might be using more sophisti-

cated genetic algorithms rather than using a simple

genetic algorithm. For example the greedy cover set

algorithm of CProgol, which repeatedly generalizes ex-

amples, could be replaced by a distributed genetic al-

gorithm. The task-speci�c genetic operators can be

used to guide the genetic search towards the interest-

ing areas of the search space by specialization and/or

generalization as it is done in usual concept learning

systems. The fast evaluation mechanism can be used

to compensate for the natural computation cost of a

genetic algorithm and could lead to a high performance

genetic search. In the current approach, the occur-

rence of atoms in a clause is not considered in the

binary encoding of the clause and inactive atoms (e.g.

unconnected predicates) are �ltered from the induced

hypotheses. This could lead to an incomplete search

or inexact evaluation. Alternatively, the presence or

absence of atoms in each clause can be encoded as a

part of the binary representation of the clause. Fi-

nally, more experiments are required to evaluate the

proposed framework in complex domains and noisy do-

mains.

Undoubtedly, �rst-order concept learning and GAs are

on opposite sides in the classi�cation of learning pro-

cesses (Kodrato� and Michalski, 1990). While GAs

are known as empirical or BK-poor, �rst-order concept

learning could be considered as BK-intensive method

in this classi�cation. We conclude that the framework

proposed in this paper can be considered as a bridge

between these two di�erent paradigms to utilize the

distinguishable bene�ts of each method in a hybrid

system.
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Abstract

An exploratory multi-objective evolutionary
algorithm (EMOEA) has been proposed in
previous publications. Its salient feature is to
combine the properties of tabu search and
evolutionary algorithm for effective multi-
objective optimization. In addition, it also applies
lateral interference, which is capable of
distributing non-dominated individuals
uniformly along the discovered Pareto-front at
each generation without the need of any
parameter setting. In this paper, the main
objective is to perform extensive simulation
studies to compare the performance of EMOEA
against other evolutionary methods. Four
benchmark test problems together with two well-
known performance measures are applied. The
studies have shown the competitive behavior of
EMOEA to escape from local optima as well as
to accurately identify the actual global optima in
the noisy environment.

1 INTRODUCTION
Evolutionary algorithms have been recognized to be well
suited for MO optimization problems (Fonseca and
Fleming, 1993). Unlike conventional methods that
linearly combine multiple attributes to form a composite
scalar objective function, evolutionary algorithm for MO
optimization incorporates the concept of Pareto's
optimality or modified selection schemes to evolve a
family of solutions at multiple points along the trade-off
surface simultaneously. Since Schaffer’s work (1985),
evolutionary techniques for MO optimization have been
gaining significant attentions from researchers in various
fields, which are reflected by the high volume of
publications in this topic in the last few years (over 25
Ph.D. theses, more than 80 journal papers, and more than
300 conference papers). For more information on various
techniques of handling multi-objective optimization

problems via evolutionary algorithms, readers may refer
to the literatures of (Coello Coello, 1998; Van Veldhuizen
and Lamont, 1998; Zitzler and Thiele, 1998).

(Tan et al., 2001) has proposed an exploratory multi-
objective evolutionary algorithm (EMOEA), which
incorporates the memory-based feature of tabu search
(TS) to maintain the stability of MO optimization towards
a global and uniform Pareto-front. The hybridization of
TS in evolutionary optimization helps to improve the MO
search performances by avoiding repeats of currently
found peaks, i.e., local optima in the search space is
avoided while good regions are being well explored.
Besides, a method of lateral interference, which is highly
efficient of distributing non-dominated individuals
uniformly along the discovered Pareto-front was also
proposed in (Tan et al., 2001). It can be performed
without the need of any parameter setting and can be
flexibly applied in either parameter or objective domain
depending on the nature of the optimization problem
involved. Seeing the needs to further examine and
evaluating the method, this paper is produced to do the
performance comparison studies of EMOEA against other
well-known evolutionary methods quantitatively. Four
test problems that exhibit important characteristics,
suitable for validating the effectiveness and efficiency of
MO optimization methods in converging to the Pareto-
optimal front and maintaining population diversity in the
current non-dominated front, have been applied in the
studies. This paper is organized as follow: The elementary
concepts of EMOEA are introduced in Section 2,
performance comparisons are performed in Section 3
while conclusions are drawn in Section 4.

2 EXPLORATORY MULTI-OBJECTIVE
EVOLUTIONARY ALGORITHM

In general, multi-objective (MO) optimization can be
defined as the problem of optimizing a vector of non-
commensurable and often competing objectives or cost
functions, viz, it tends to find a parameter set P for
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)(Min PF
P Φ∈

, nRP ∈ (1)

where P = {p1, p2,…, pn} is a individual vector with n
parameters and Φ defines a set of individual vectors. {f1,
f2,…, fm} are m objectives to be minimized and F = {f1,
f2,…, fm}. Instead of a single optima, solution to MO
optimization problem is often a family of points known as
Pareto optimal set, where each objective component of
any point along the Pareto-front can only be improved by
degrading at least one of its other objective components
(Richardson et al., 1989; Srinivas and Deb, 1994). In the
total absence of information regarding the preferences of
objectives, ranking scheme based upon the Pareto
optimality is regarded as an appropriate approach to
represent the strength of each individual in an
evolutionary algorithm for MO optimization (Fonseca and
Fleming 1993; Srinivas and Deb, 1994). A vector Fa is
said to dominate another vector Fb, denoted as Fa p  Fb,
iff

 miff ibia },...,2,1{,, ∈∀≤

and ∃ },...,2,1{ mj ∈ where jbja ff ,, < (2)

The Pareto ranking scheme assigns the same smallest cost
for all non-dominated individuals, while the dominated
individuals are ranked according to how many individuals
in the population dominating them. So, the rank of an
individual x  in a population can be given by rank (x) = 1 +
qx, where qx is the number of individuals dominating the
individual x  in the objective domain (Fonseca and
Fleming, 1993). They also extended the Pareto’s
domination scheme in their proposed multi-objective
genetic algorithm (MOGA) to include goal and priority
information for MO optimization. Although MOGA is a
good approach, the algorithm only allows a single goal
and priority vector setting, which may be difficult to
define in a-priori to an optimization process (Coello
Coello, 1998).

With a modified Pareto-domination scheme, Tan et al.
(1999) proposed a unified multi-objective evolutionary
algorithm (MOEA) that is capable of comparing the
domination among individuals for multi-objective
optimization dealing with both soft and hard optimization
constraints. The scheme also allows the incorporation of
multiple goals and priorities with different combinations
of logical “AND” and “OR” operations for greater
flexibility and higher-level decision support. Extending
from the Pareto's domination and ranking schemes of Tan
et al., (1999), (Tan et al., 2001) has proposed an
exploratory multi-objective evolutionary algorithm
(EMOEA) that incorporates the lateral interference and
memory-based feature of tabu search to maintain the
stability of MO optimization towards a global and
uniform Pareto-front. Sections 2.1 briefly explains the
working principle of lateral interference while Section 2.2

describes the overall algorithm of EMOEA including
tabu-based individual examination rule.

2.1 LATERAL INTERFER ENCE (LI)

Among the methods to evolve an equally distributed
population along the Pareto-front and to distribute the
population at multiple optima in the search space, the
‘niche induction’ technique by means of a sharing
function (Deb and Goldberg, 1989) is the most popular
approach. This method creates sub-divisions in the
objective domain by degrading an individual’s fitness
upon the existence of other individuals in its
neighborhood defined by a shared distance.

To avoid the setting of shared distance, a population
distribution method is proposed in (Tan et al, 2001). It is
capable of uniformly distributing all individuals along the
Pareto-front for MO optimization without the need of any
parameter setting. It can be applied in either the parameter
domain or in the objective domain as needed. The method
is called Lateral Interference which and it works based
upon the principles of exploitation competition and
interference competition (Encyclopaedia Britanica, 2000),
which form the basis of distributing population uniformly
along the Pareto-front in MO optimization without the
need of any parameter setting. According to the first
principle (exploitation competition), individuals with
higher fitness or lower cost values will always be more
likely to win when compete with individuals with lower
fitness or higher cost values. The second principle
(interference competition) only takes place among the
individuals with same level of fitness or cost, or in other
words, individuals that are equally strong in the
exploitation competition.

1

T 1

2

3
4

5

6

T
2

T
4

T3

T
6

T
5

d(x5,x6)

Fig. 1  Illustrative Example for Interference
Competition

Fig. 1 illustrates the determination of territory in lateral
interference for each individual among individuals x1-x6,
as depicted in cross-mark, in the concerned two
dimensional space which may be either in the parameter
domain or the objective domain. All of the individuals in
this figure are assumed to be at the same level of fitness
or Pareto rank values so that the inference competition
takes place among them for limiting resources.
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Table 1  Illustrative Example for Computation of Severity or Impact of Being Interfered with

Inhibited individual Territories of other individual(s) that it belongs to Hs(j)
x1 None 0
x2 T1 1
x3 T1, T2, and T4 3
x4 T2, and T3 2
x5 T6 1
x6 T5 1

The resulted territories are labeled as Ti for individual i, ∀
i = 1, 2,…, 6, which are represented as shaded circles in
different intensity for better visualization. As can be seen,
the territory for individual that is relatively far away, e.g.,
individual x1, from other individuals is assigned a larger
territory than those that are closed together, e.g.
individuals x3 and x4. Based on the territory of each
individual, the impact of being interfered with, denoted as
Hs(j) for individual j, ∀ j = 1, 2,…, 6, can be counted
according to how many territories of other individuals that
the individual j lies at or belongs to, as shown in Table 1.

Before the lateral interference, the non-dominated
individuals in the population are classified into one
category, with similar dummy cost value. To maintain the
diversity of the population, these classified individuals are
undergone lateral interference and the resulted severity
(Hs) of interference for each classified individual is added
to its dummy cost. This group of individuals is then
ignored and another layer of non-dominated individuals
(ignoring the previously classified ones) is considered,
where the assigned dummy cost is set higher than the
highest interference cost of the previously classified
individuals. This process continues until all individuals in
the individual list have been classified. The final resulted
individuals' dummy cost value after the lateral
interference is referred here as interference cost. The
smaller value of the interference cost, the better is the
individual.

2.2  FLOW CHART OF EMOEA

The overall program flowchart of the EMOEA algorithm
(Tan et al., 2001) is shown in Fig. 2. At the initial stage of
evolution, a list of Nc

(0) number of individuals is
initialized, where Nc

(0) is the size of individual list in the
evolution. The individual list is then decoded to parameter
vectors for cost evaluation. Subsequently, all the
evaluated individuals are ranked according to the
specifications assigned. All the non-dominated
individuals are copied to the empty tabu list while the rest
of the individual list are fed to lateral interference to
compute for interfered cost as described in Section 2.1. If
the stopping criterion is not met, genetic operations will
be applied to the evaluated individuals. Here, simple
genetic operations consist of tournament selection based
on interfered cost, standard crossover and mutation are
performed to reproduce offspring for the next generation.

Cost Evaluation

Genetic Operations

Lateral Inteference

Is
stopping criteria

met ?

Yes

No

Final
Solutions

Reproduced Individuals List

Tabu List
(all given rank 1)

Ranking start
from rank 2

+

C
om

bi
ne

d 
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di
vi

du
al

s 
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t

Move all the non-
dominated individuals to

Tabu list

Individuals list
examination

Knowledge-Based System

New Individuals List

   -Individuals List Initialization
-Cost Evaluation
-Ranking

Fig. 2  Overall Program Flowchart of EMOEA

After that, the resulted reproduced individual list with size
Nc will be evaluated and examined by the tabu-based
individual examination scheme. This scheme is equipped
with knowledge of and tabu list to further enhance the
search performance by avoiding repeats of previous
exploration path to the found peaks. Starting from the first
individual in the reproduced individual list, if the
examined individual dominate any member in the tabu
list, the individual will replace the dominated member(s)
in the tabu list. Otherwise, if the individual is dominated
by any member in the tabu list, it will be kept in the
individual list if the individual is not a tabu. If both the
conditions are not satisfied, the individual will be rejected
from the individual list and prohibited from surviving in
the next generation. In case that the individual is not
dominated by any member in the tabu list and if the tabu
list is not full i.e., its size does not achieve the maximum
limit, the individual will be added to the tabu list.
Otherwise, if the individual is able to interfere with more

649GENETIC ALGORITHMS



than one member in the tabu list within its territory, it will
be allowed to replace the tabu member that has the
shortest distance from the individual in the space
concerned. This is to promote the uniform distribution of
the tabu list. If the condition is not met, the individual will
be kept in the individual list if any of its objective
components is better than the best objective component
value found in the tabu list or the individual is not a tabu.
Besides encouraging long distance exploration to provide
better exploration for other possible peaks in the solution
space, it is also capable of maintaining stability of
evolution towards the global and uniform Pareto-front.

Subsequently the resulted new individual list as well as
the updated tabu list are fed into the MO genetic evolution
to form the combined individual list, which has the size of
Nc = Nc + Nt, where Nt is the size of tabu list. This
combined individual list is fed to the next generation of
evolution and this process is repeated until the stopping
criteria is met.

3 PERFORMANCE COMPARISONS

3.1  THE TEST PROBLEMS

Table 2 summarizes the test problems (T.P.). These test
problems are considered as they include some important
characteristics that are suitable for validating the
effectiveness and efficiency of MO optimization methods
in converging to the Pareto-optimal front and maintaining
population diversity in the current non-dominated front.

Table 2  Features of Test Problems
T.P. Features

1 Non-convex Pareto-optimal front
2 Discontinuous Pareto optima in search domain
3 Multi-modal and deceptive problem with

harmful local peak
4 Noisy and landscape

3.1.1  Test problem 1

This is the Fonseca’s two-objective minimization problem
which has been widely studied by (Fonseca and Fleming,
1993). Besides its non-convex Pareto optimal front, this
test function has large and non-linear trade-off curve that
should challenge the MO evolutionary algorithm’s ability
to find and maintain the entire front uniformly. Besides, it
is easy for visualization and comparison. The two-
objective functions, f1 and f2, to be minimized are given as
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where 8,...,2,1,22 =∀<≤− ixi . The trade-off line is
shown by the curve in Fig. 3, where the shaded region
represents the unfeasible area in the objective domain.

f 1,1

f 1
,2

Trade-off
curve

Unfeasible
region

Fig. 3  Trade-off Curve in the Objective Domain for Test
Problem 1

3.1.2  Test problem 2

This problem focuses on the feature of discontinuity of
Pareto optima in search domain. It uses the simultaneous
minimization of three objective functions f1, f2 and f3
depending on two real-valued parameters, x1 and x2

(Viennet et al., 1996):
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where 2,1,33 =∀≤≤− ixi . This problem has Pareto-
front appears to be a three dimensional curve as shown in
Fig. 4a. It is able to challenge the MO optimization
approaches (Van Veldhuizen and Lamont, 1999).
Moreover, f1 and f3 respectively, present four and two
local minima. The Pareto-optimum points are shown in
Fig. 4b where they are discontinuous in the parameter
domain. These can be explained by two facts. Firstly the
three optimal points in each individual objective function
f1, f2 and f3 are Pareto-optimal of the overall three
objective functions, and secondly f1 and f3 have local
minima.

f2,1
f
2,2

f 2
,3

x1

x2

(a) Objective Domain (b) Parameter Domain
Fig. 4  Pareto Optimal Set of Test Problem 2
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3.1.3  Test Problem 3

It is originated from Deb (1999) for two-objective
minimization with the existing of local optimum where
search algorithms are easily to be trapped. In this paper,
the original test problem is modified and expanded such
that the global optimum is farther away from the local
optimum and the dimensionality of the search space is
higher. The purpose of these modifications is to achieve
higher level of optimization difficulties in the sense that it
provides more tendencies for the search algorithms to pre-
maturely converge to local optimum, and has less
possibility to discover the global optimum. The modified
two-objective functions to be minimized are:

,11 xf = (5a)
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where, ,11.0 1 ≤≤ x (5d)

and, 4,3,2,10 =∀≤≤ jx j (5e)

Fig. 5 depicts the function of gi for 0 ≤ xi+1 ≤ 1. As can be
seen, gi is a bimodal function with xi+1 = 0.1 as global
minimum and xi+1 = 0.9 as local minimum, where the
distance (0.8) in between has been increased by 100%
from the original problem with a distance of 0.4 (Deb,
1999). Fig. 6 shows the f1-f2 plot, with local and global
Pareto-optimal curve represented by dashed and solid
line, respectively. The shaded region represents the
unfeasible area.

xi + 1

g i

f3,1

f 3
,2

Fig. 5 gi Has a Global and a
Local Minima

Fig. 6  Global and Local
Pareto-Optimal Curve

3.1.4  Test Problem 4

On this test problem, the search algorithms are evaluated
in noisy environment to test their robustness in the sense
that the disappearance of important individuals from the
population has little effect on the global evolution
behavior (Collard and Escazut, 1995). In order to
investigate the relative abilities of MO search algorithms

in noisy environment, noisy version of two-objective
optimization with three variables is constructed here the
function being optimized contains the elements of noise:

,11 xf ′= (6a)
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Instead of performing the optimization on the 'real'
parameters, xi, the optimization is performed on the
'corrupted' parameters with additive noise elements:

),,( µσNxx ii +=′ (6d)

where 11.0 1 ≤≤ x ; 3,2100100 =∀≤≤− ixi  and
N(σ,µ) is a white noise. Note that the noisy search
environment is modeled with the corrupted parameters.
This is to provide noisy global optimum points in
parameter domain while maintaining the global-front in
objective domain for easier comparison and illustration.

Besides the noisy environment, the optimization difficulty
is further enhanced by multi-model with different patterns
of their well depths and heights of the barriers between
wells as formulated in eqn. 6c originated from Schaffer et
al., (1989). The 2-dimensional cross section of f2(x)⋅x1
through the origin is shown in Fig. 7 and it can be seen
that there exists plenty of local optima around the global
optima. The Pareto-optimal curve in the objective domain
is shown in Fig. 8 and the shaded region represents the
unfeasible area.

X

f 4
,2

f4,1

f 4
,2

Fig. 7 Central Cross Section
of f2

Fig. 8 Pareto-Optimal Curve
in Objective Domain

3.2  SIMULATION RESULTS

Beside EMOEA, other MO evolutionary optimization
methods concerned in this comparison study include
VEGA from (Scaffer, 1985), NPGA from (Horn and
Nafpliotis, 1993), MOGA from (Fonseca and Fleming,
1993), NSGA from (Srinivas and Deb, 1994), SPEA from
(Zitzler and Thiele, 1999) and MOEA from (Tan et al.,
1999). These methods have often been applied or taken as
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reference in literature for comparing different population-
based multi-objective evolutionary algorithms.

Phenotype sharing is applied in all algorithms that apply
the sharing operation. A standard shared distance value of
0.01 in the normalized space are set for MOGA, NSGA,
and NPGA as well as for the performance measure of UD.
MOEA applies the adaptive sharing scheme to determine
a suitable sharing distance at every generation (Tan et al.,
1999), while SPEA and EMOEA does not require any
sharing distance parameters. Tournament selection is
applied in MOGA, SPEA, MOEA, and EMOEA with a
tournament size of 2 as they usually applied in their
respective original articles. For the Pareto tournament
selection in NPGA, tdom = 10%  of the population size is
used since it has been recommended by (Horn et al.,
1994) as an optimum value for tight and complete
distribution. Note that all algorithms considered are
implemented with same coding scheme, crossover and
mutation operations. Each parameter is represented by 3-
digit decimal code and concatenated to form the
chromosomes which results in a shorter chromosome
length and avoids the Hamming-cliff effect as encountered
in binary-based coding scheme (Tan et al., 1999). Also,
standard mutation with probability of 0.01 and standard
two-point crossover with probability of 0.7 are used in all
cases.

All methods under the comparison study are implemented
with the same common sub-functions using the same
programming language in Matlab (The Math Works,
1998) on an Intel Pentium II 450 MHz computer. Each of
the simulation is terminated automatically when a pre-
specified simulation period for each test problem is
reached, in the same platform that is free from other
computation or being interrupted by other program. The
period for all algorithms being compared for test problem
1, 2, 3 and 4 are set as 180, 60, 100 and 100 sec.,
respectively. These periods are pre-determined based on
the criteria that they are found most appropriate to clearly
observe the difference of simulation results among the
various methods, in which at least one method has
converged satisfactorily. 30 independent simulation runs
are performed for each method on each test problem so as
to study the statistical performance such as consistency
and robustness of the methods. Note that a random initial
population is created for each of the 30 runs, and for each
test problem, all methods are operated on the same 30
independent initial populations.

As according to (Zitzler and Thiele, 1999), three
combinations of population {P, P’} = {95, 5}, {70, 30}
and {30, 70}, where P  + P’ = 100 are used on test
problem 1 and 2 for SPEA. For test problem 3 and 4, only
one optimum combination of population {30, 10} is used
for SPEA. The combination of {Nc, Nt} in EMOEA for
test problem 1-4 are {100, 20}, {100, 80}, {30, 10} and
{30, 10}, respectively. For all other methods, a population
size of 100 and 30 is applied for test problems 1-2 and 3-
4, respectively. Note that all results are evaluated upon
the final population of each simulation run. For SPEA and
EMOEA that consists of two sub-populations, its
combined population of P + P’ at the final generation is
concerned. The indexes for the different algorithms on
each test problem are listed in Table 3, where SPEA 1, 2,
and 3 representing the different combination of {P, P’} as
mentioned above.

Fig. 9 summarizes the simulation results for each
algorithm on each test problem with respect to
performance measures of size of space covered SSC
(Zitzler and Thiele, 1999). The distribution simulation
data of 30 independent runs is represented in the box plot
format (Chambers et al., 1983) to visualize the
distribution of simulation data. In each graph, the
sequence of box plots from left to right is based on the
above indexes of algorithms. Concerning the measure of
size of space cover (SSC), the performance of EMOEA is
most outstanding in discovering a large Pareto-front as
compared with other algorithms, especially on the test
problems 1 and 2. This is followed by MOEA and SPEA
as evidence on all test problems under studied. For the
rest of algorithms, no significant difference of SSC is
observed.

The performance measures of C(Xi, Xj) for the comparison
sets between algorithms i and j where, i, j = 1, 2,…, 9 on
test problems 1-2 as well as i, j = 1, 2,…, 7 on test
problems 3-4, are shown in Fig. 10. Again box plots are
used to summarize the sample distributions of 30
independent runs per each case. In each rectangle
containing box plots, the sequence of box plots from left
to right is based on the indexes of algorithm as listed in
Table 3. The ranges of y-axis and x-axis of each graph are
[0, 1] and [1, number of compared algorithms on the
respective test problem. As can be seen, C(Xi, Xj) for i  = j
always take the value of zero since the two identical
populations cannot dominate each other.

Table 3  Algorithm Indexes for Each Test Problem
Test Problems 1 2 3 4 5 6 7 8 9

1 VEGA NPGA MOGA NSGA SPEA1 SPEA2 SPEA3 MOEA EMOEA
2 VEGA NPGA MOGA NSGA SPEA1 SPEA2 SPEA3 MOEA EMOEA
3 VEGA NPGA MOGA NSGA SPEA MOEA EMOEA - -
4 VEGA NPGA MOGA NSGA SPEA MOEA EMOEA - -
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(a) Test Problem 1 (b) Test Problem 2

(c) Test Problem 3 (d) Test Problem 4

Fig. 9  Box Plots for the Measures of SSC

For example, the rectangle C(X1, X1-7) on test problem 3
indicates that solutions of VEGA (given by X1) almost
fails to dominate any solutions of other algorithms (given
by X2-7) while the rectangle C(X7, X1-7) on the same
problem implies that solutions of EMOEA (given by X7)
dominate almost all of the solutions of (X1-6). In general,
the overall results show that, except the C(X3,X1-9) on test
problem 2 where SPEA and MOEA are slightly superior
than EMOEA, EMOEA provides the best or equally best
non-dominated individuals compared to other approaches.
Besides, other minor observations can also be made on
the basis of each test problem. For test problems 3 and 4,
it is noticeable (concerning the rectangles C(X7, X1-7) on
both test problems 3 and 4) that EMOEA dominates other
algorithms most obviously as compared to other
algorithms in the respective test problems. Also, EMOEA
is dominated the least by any other algorithms on test
problems 3 and 4, except rectangle C(X4, X1-7) where
MOEA is dominated the least by NSGA.

From our experiment, a few findings can be observed.
Although VEGA, NPGA, MOGA and NSGA require less
computational effort, their final populations are shown to
be worse than SPEA, MOEA and EMOEA in terms of the
performance measures of SSC and C. This may be caused
by the absence of preserved strategy or other genetic
operations that are different from SPEA, MOEA and
EMOEA. For SPEA, although it applies the preservation
strategy by means of external population and clustering,
the produced final populations are not the best among the
algorithms under studied. This may due to the large
computational effort required to realize the algorithm
such as the clustering operation, which limits the number
of iterations it may perform in a given fixed period of
CPU time. Although the needed computational effort for
EMOEA is moderate among all algorithms and is less
than SPEA, it perform well in relative to all other
algorithms especially in the measures of SSC and UD.
This is particularly evident on test problems 3 and 4,
where EMOEA is shown to have higher capability to
reach the global Pareto-front and escape from the harmful
local optima on test problem 3, and has shown to be more
robust to external noise than others for searching in noisy

environment which enables it to track the actual Pareto-
front effectively and accurately.

4 CONCLUSIONS

Extensive validation and comparison of EMOEA and
other famous MO optimization methods have also been
performed upon four benchmark problems, and their
performances have been compared quantitatively in this
paper. Simulation results unveiled that the overall
performance of EMOEA is relatively well in searching
and maintaining for the uniformly distributed non-
dominated solutions along the global Pareto-front as
reported. Besides, the studies also shows that EMOEA
has a competitive behavior to escape from local optima as
well as to accurately identify the actual global optima in
the noisy environment when compared against recent
methods. Nevertheless, the role of EMOEA in dealing
with other types of test problems (i.e. such as heavy
function evaluation, heavy constraint, dynamic search
space etc.) requires further investigations
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Abstract

This paper proposes an angular transformation
methodology that transforms the non-linear
optimization constraints into the gene domains in
evolutionary algorithms and as such, trimming
away sections of unfeasible regions in constraint
optimization problems. This results in a smaller
search space and reduces the efforts of evolution
in finding the global optimum solution. In
addition, the proposed method can be
incorporated in many objective domain based
methods to remove some of the unfeasible
regions before applying these methods and are
compatible with standard genetic operators like
crossover and mutation without the need of
rejecting/repairing any unfeasible solutions as
adopted in most existing methods.

1 INTRODUCTION

Practical optimization problems often involve optimizing
a set of objective components within a pre-specified
feasible region constrained in parameter domain. As
stressed by (Hoffmeister and Sprave, 1996), they often
not only have a high complexity with respect to the
number of decision variables or parameters but also have
a possibly large number of constraints to be satisfied for
feasible solution. Recently, many researchers have
proposed various constraint handling approaches for
evolutionary computations (ECs). These includes methods
based on:

• preserving feasible solutions (Schoenauer and
Michalewicz, 1996),

• penalty functions (Homaifar et al., 1994; Joines and
Houck, 1994; Michalewicz and Attia, 1994),

• search for feasible solutions (Schoenauer and
Xanthakis, 1993).

Although the above methods have shown some successful
results, they share the potential to produce new
chromosome strings that may or may not feasible (Koziel

and Michalewicz, 1999). This leads to additional
computation time to evolve and evaluate unfeasible
offspring that later need to be penalized or eliminated
through special operators. In addition, in problems where
feasible solutions are difficult to find, the whole
population may suddenly converge on a feasible string
when it is found, despite the fact that this feasible string
may be far away from the optima. To address the issue, an
interesting work, reported from Koziel and Michalewicz
(1999), has recently proposed an alternative approach to
the constraint handling which is based on homomorphous
mapping T between the n-dimensional cube [-1, 1]n and
the feasible part of the search space to guarantee a
feasible solution. Nevertheless, beside other drawbacks as
mentioned in (Koziel and Michalewicz, 1999), this
method introduced a mapping function T needed to
determine experimentally before the run of the algorithm.

Regarding the above consideration, this paper proposes an
alternative method of angular transformation, for use with
ECs or any other algorithms that represent solution
genetically, to handle non-linear constraint optimization
problem. The gene search space produced is the feasible
region and because of this, the solution is always feasible
and no special crossover or mutation operators are
necessary to evolve the population. This approach, later
explained in this paper, is a very promising direction of
research in evolutionary optimization.

2 ANGULAR TRANSFORMATION

Angular transformation is a gene domain constraint
handling technique that is capable of handling nonlinear
equality/inequality constraints. Although the angular
transformation proposed in this section may not be able to
handle all types of constraints, it can be effectively used
to trim away part of the unfeasible regions such that the
EA has a smaller area to search for the global optimum.

2.1 BASIC MECHANISM

The basic principle is to evolve the ratio of each
parameter involved. After the ratio is obtained, the actual
parameter value is derived from the constraint. Each
parameter has a constant value, which will be known as R,
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multiplied with its ratio to produce the final value for that
parameter.

In order to help explain angular transformation, let there
be an optimization problem that has an equality
constraint:

f(p1, p2, ... pn) = C (1)

where pi is parameter number i from a set of n parameters.
For each parameter pi, let:

pi = Rxi (2)

R is the constant described earlier to be multiplied with
the ratio xi of parameter i. By substituting eqn. 2 into eqn.
1, eqn. 3 is produced:

f(Rx1, Rx2, ... Rxn) = C (3)

If the EA is used to evolve a set of values for xi, and C is
user-defined, the only unknown variable in eqn. 3 is R. By
entering the set of xi values and C into eqn. 3, R can be
derived. Now, if R and xi substitutes their counterparts in
eqn. 2 to obtain pi, the result is a set of parameters pi that
fulfills the constraint in eqn. 1. This is the basic
mechanism of angular transformation. Note that angular
transformation is not limited to handling equality
constraints. An inequality constraint can be converted into
the form of constraint presented in eqn. 1 by adding a
dummy parameter. A generic double-sided inequality
constraint looks like eqn. 4:

HnL CpppfC ≤≤ ),...,( 21 (4)

By adding a dummy parameter d, the constraint becomes:

LH

Hn

CCd

Cdpppf

−≤≤

=+

0

),...,( 21 (5)

A single-sided inequality with a lower limit looks like
eqn. 6a:

),...,( 21 nL pppfC ≤ (6a)

Eqn. 6a can be converted into the equality constraint eqn.
6b or eqn. 6c:

0

),...,( 21

≤

=+

d

Cdpppf Ln (6b)

0

),...,( 21

≥

+=

d

dCpppf Ln (6c)

A generic single-sided inequality constraint with only an
upper limit looks like eqn. 7a:

Hn Cpppf ≤),...,( 21 (7a)

Eqn. 7a can be converted into the equality constraint
shown in eqn. 7b:

0

),...,( 21

≥

=+

d

Cdpppf Hn (7b)

The EA only evolves the set of xi while R  is allowed to
adapt freely to the constraints. As such, any genetic
boundary on xi does not necessarily result in a fixed
boundary on pi.

2.2 THE ANGULAR CONSTRAINT

This section describes an early attempt to restrict the
evolution of the set of pi values. First, consider a multi-
dimensional search space where each axis corresponds to
a single parameter. Within this search space, the equality
constraint can be represented as a hyperplane. A straight
line is drawn from the origin to meet the constraint
hyperplane. Using the length from the origin to the point
of intersection and the angle between this line and each
axis, the set of parameters that satisfy the constraints can
be derived. First, a two objective constraint f(p1, p2) = C is
considered. This constraint is illustrated on the two-
dimensional search space in Fig 1. A line is drawn from
the origin O to meet the constraint. By varying the angle
θ1, the gradient of this line is determined. This line
intersects with the constraint line at point A. The length of
OA is R and the angle between OA and each axis are θ1

and θ2 respectively.

Fig. 1  Two Parameter Example

X

f(p1, p2) = CR

θ1

θ2

p1

p2

R cos θ1
O

Y

A

R cos θ2

From Fig 1, it can be seen that:

p1 = R cos θ1 (8a)

p2 = R cos θ2 (8b)

Using Pythagoras’ Theorem to derive the relation
between the R cos θi of each parameter:

p1
2 + p2

2 = R2

R2 cos2θ1 + R2 cos2θ2 = R2

cos2θ1 + cos2θ2 = 1 (9)

Therefore, by evolving the values of cos2θ1 and cos2θ2

within the range of 0 to 1 and keeping the constraint in
eqn. 9, line OA is kept within the region OXY. This leads
the following constraints on the parameters:

∞≤≤

∞≤≤

2

1

0

0

p

p

Substituting eqns. 8a and 8b into f(p1, p2) = C to produces
f(R  cos θ1, R cos θ2) = C. Since the values of cos θ1 and
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cos θ2 can be obtained from cos2θ1 and cos2θ2, the value
of R can be derived to obtain the values for p1 and p2. If
there are more than two parameters, from Pythagoras’
Theorem to derive the relation between the R cos θi of
each parameter:

2

1

22

2

1

2

cos RR

Rp

n

i
i

n

i
i

=∑

=∑

=

=

θ

1cos
1

2 =∑
=

n

i
iθ (10)

The use of this method effectively restricts the parameters
to the constraints in eqn. 11:

∞≤≤ ip0 , for i = 1, 2, ..., n (11)

2.3 IMPROVED FLEXIBILITY ON
PARAMETER LIMITS

The method described in Section 2.2 does not allow the
free setting of a limit on the parameters. Effectively, the
method only allowed a lower limit of 0. In this section,
the method is extended in order to provide some control
over the parameter limits. The trick to achieving this is to
have an alternative arbitrary point as the starting end of
the R line, rather than O. This new starting position is
labeled as O'.

Fig. 2  Flexible Parameter Limits

f(p1, p2) = C

R

θ1

θ2

p2L

p2

R cos θ1
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p1

p1L

X

Y

O

To begin explaining the procedure, a two-parameter
example is first considered. This example is illustrated in
Fig 2. As stated earlier, the R line starts from O' instead of
O. O' is located at the lower limit of the parameters
involved. If O'A is confined within O'XY, the effect is that
each parameter cannot have a value lower than its lower
limit. R cos θi now represents the distance of a parameter
from lower parameter limit piL to the intersection point.
Thus, in order to obtain the final parameter value, piL is
added to R cos θi as shown in eqn. 12.

pi = piL + R cos θi (12)

Considering n number of parameters and using
Pythagoras’ Theorem to derive the relation between the R
cos θi of each parameter:

( )

( )

1cos

cos

cos

1

2

2

1

22

2

1

2

2

1

2

=∑

=∑

=∑

=∑ −

=

=

=

=

n

i
i

n

i
i

n

i
i

n

i
iLi

RR

RR

Rpp

θ

θ

θ

This is equivalent to eqn. 10 and thus, eqn. 10 still holds
with this new definition for pi. Substituting eqn. 12 into
the constraint formula, f(p1, p2, ..., pn) = C , the following
equation is obtained:

f(p1L + R  cos θ1,  p2L + R cos θ2, ..., pnL + R  cos θn) =C (13)

If cos θi, for i = 1, 2, ..., n was provided, R can be derived
in such a way that the constraint is satisfied. Since eqn. 10
still holds true with this new definition for pi, therefore, in
order for line O'A to be confined to the region O'XY, the
constraint in eqn. 10 should be satisfied during the
evolution. This constraint can be summarized as:

1cos
1

2 =∑
=

n

i
iθ (14a)

1cos0 2 ≤≤ iθ , for i = 1, 2, ..., n. (14b)

The constraint in eqn. 14 is a linear constraint, thereby
making the design of the genetic structure simple. The
resulting genetic structure would be a chromosome with
k(n – 1) number of genes, where k  is an arbitrary number
chosen for resolution preference and n is the number of
parameters. Each gene would have a possible integer
value between 1 and n, representing the parameters that
would receive the value of the packet represented by that
gene. Within each chromosome, first, there would be (n –

1) genes representing packets of the value 
( )( )121

20

−− kn
.

These would be followed by (n – 1) genes for packets of

value 
( )( )121

21

−− kn
, and so on until and including (n – 1)

genes for packets of value 
( )

( )( )121

2 1

−−

−

k

k

n
. Fig 3 below

illustrates the genetic structure.
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Fig. 3  Genetic Structure of Angular Transformed String
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Eqn. 12 is specific for a parameter with a lower limit. An
alternative to this is to consider the upper limit, where:

pi = piH – R cos θi (15)

The comparison of these two definitions is illustrated in
Fig. 4. In this figure, it can be observed that:

p1 = p1H – R cos θ1

p2 = p2L + R cos θ2

Here the first parameter has been defined according to
eqn. 15 while the second parameter is defined according
to eqn. 12.

Fig. 4   Considering the Upper Parameter Limit
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The purpose of having different definitions for the
parameters is to avoid the event where the feasible hyper-
area (formed by f(p1, p2, ..., pn) = C ) has a point at or near
O'. If the hyper-area has a point at O', then the resultant R
would be 0. If there is a point near O'  (relative to the rest
of the hyper-area), the hyper-area about this point will be
better represented than the rest of the hyper-area. Thus the
search is more intensive at this point compared to the rest
of the feasible region. Another reason is to avoid the
possibility that R is unknown. This can happen if the
factors for R cancels out. The possibility of such an event
may be predicted from the presence of a cos θi that has a
negative factor or is in a denominator. An example is the
following constraint:

p1 – p2 = C

If p1 = p1L + R cos θ1 and p2 = p2L + R cos θ2, the
constraint becomes:

(p1L + R cos θ1) – (p2L + R cos θ2) = C

R (cos θ1 – cos θ2) = C – p1L + p2L

Note that cos θ2 has a negative factor. If the result of the
evolution causes (cos θ1 – cos θ2) = 0, then there is no
way to derive R. As an additional note, if C – p1L + p2L =
0, there is a point at O' and therefore, R = 0. Therefore,
some caution should be used in deciding the form the
parameters should take. With eqn. 12 and 15, the
constraints that can be applied to the parameters are:

aaL pp ≤ , for Aa ∈ ; and

bHb pp ≤ , for Bb∈

where the parameters involved in the feasibility constraint
are arbitrarily divided into two sets, A and B. Another
point to note is that for sets of parameters with different
single-sided equality constraints, this flexibility allows the
simultaneous application of upper limits for certain
parameters and lower limits for others.

3 PRACTICAL IMPLEMENTATION

In this section, two types of constraint optimization
problems (COPs) were considered. Since angular
transformation is a gene domain constraint handling
method, it is compatible with objective domain constraint
handling methods. As such, objective domain constraint
handling methods were applied, with and without angular
transformation, on the COPs. The following is a
description of the objective domain methods that were
considered:

1. Multi-objective method (Tan et al., 1999), where the
constraints are assigned as additional ‘hard’
objectives.

2. Max penalty method, where unfeasible chromosomes
are assigned a value greater than the cost of the
largest cost. This is the cost variant of the zero fitness
method, which is a variant of the death penalty
method from (Coello Coello 1999).

3. Penalty function method (Michalewicz and
Schoenauer, 1996), where the further the
chromosome is from the feasible area, the higher its
penalty.

4. None or control method, where no objective domain
constraint handling method is used. This is used to
evaluate the performance of the evolutionary
algorithm should no objective domain constraint
handling method be used.

The details of each constraint handling method are
presented with each problem, as the specific details are
adapted according to the problem. These constraint-
handling methods were individually applied to a simple
evolutionary algorithm (EA). Tournament selection was
used with a tournament size of 2. The EA used simple
two-point crossover and simple mutation, with
probabilities of 0.7 and 0.01 respectively. No niching was
used but switching criteria preserve strategy (SCPS) (Tan
et al., 1999) was implemented.
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3.1 PROBLEM 1

This problem is based on the nonlinear-constraint
benchmark problem described in (Koziel and
Michalewicz , 1999):

Maximize ( ) ( ) ∏=
=

n

i
i

n
i pnPG

1
3 (16a)

subject to the constraint 1
1

2 =∑
=

n

i
ip (16b)

and 10 ≤≤ ip  for i = 1, 2, ..., n. (16c)

If angular transformation were used, the logical choice
would be to substitute eqn. 12 into eqn. 16b since piL = 0,
thereby simplifying the mathematics. In order to have a
variable R  and to better show the angular transformation's
capabilities, the constraint had been changed to:

1
1

3 =∑
=

n

i
ip

The cost function (eqn. 16a) was changed to a

minimization problem. The constant ( )nn  was changed

such that the possible cost value is between 0 and 1 when
the chromosome is feasible. Since the global solution is
when all the parameters are equal, the constant shall now
assume the inverse of the product of all these parameters
at the global optimum. The constraint in eqn. 16c remains
unchanged. The problem now becomes:

Minimize ( ) ( ) ∏−=
=

n

i
ii p

n

nPG
1

3
1'3 (17a)

with the constraints:

1
1

3 =∑
=

n

i
ip (17b)

10 ≤≤ ip  for i = 1, 2, ..., n. (17c)

And the global solution is:

( )















==

−−−
3

1

3

1

3

1

21 ,...,,,...,, nnnpppP n (18)

It should be mentioned that this problem has a nonlinear
equality constraint, which is a challenge for methods
using decimal coding to solve. The parameter xi was
replaced with piL + R cos θi. Since the lower limit piL of
each parameter was 0, parameter pi could be replaced
with:

pi = R cos θi (19)

Substituting eqn. 19 into the constraint in eqn. 17b:

( )
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1
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θ

Coding method in Fig. 3 was used to handle the following
constraint (taken from eqn. 14), where the set of cos2θi
was evolved.

1cos
1

2 =∑
=

n

i
iθ

1cos0 2 ≤≤ iθ , for i = 1, 2, ..., n

The value chosen for n for the purpose of this simulation
was 8. The chromosome had 42 genes, representing 42
packets. There were 6 for each of the following packet
sizes:
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The total value for all the packets is 1. Each gene had a
possible value of 1 to 8, representing the parameters that
may receive the value of the represented packet. The
simulations that do not use angular transformation used
simple decimal coding. Each parameter was represented
by 6 genes representing the following packet sizes:

(0.1 0.01 0.001 0.0001 0.00001 0.000001)

Each gene had a value between 0 and 9, except for the
genes representing the value of 0.000001, which had a
value between 0 and 10. Thus, each parameter could be
represented with values between 0 and 1 with a resolution
of 0.000001. The value of each parameter pi was:

∑=
=

−6

1
10

i

i
ii gp

where gi = the value of the i-th gene of parameter pi.

For the multi-objective method, there were three
objectives. In the first objective, the cost was the sum of
all the values of parameters exceeding the specified
parameter limits. The cost value of the second objective
was the deviation from the sum total in the constraint. The
third objective was the objective of the simulation itself.
Mathematically, these objectives are:
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where n = 8.

There were no goals but priority had been set. The
priority for the first two objectives had been set to 1 and
the third objective had a priority of 0 (don’t care).

For the max penalty method, each chromosome that does
not meet any constraint (whether the parameter constraint
in eqn. 17c or the overall constraint in eqn. 17b) was
assigned a cost of 10 (greater than 1, the maximum
possible value of a feasible chromosome).
Mathematically, the cost of chromosome i is:
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where n = 8

In the penalty function method, the cost of each
chromosome is the sum of the cost according to the cost
function, the value in excess of each parameter limit and
10 times the deviation from eqn. 17b. Mathematically, the
cost of parameter i is:
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where n = 8

In the control method, where no objective-domain
constraint handling method is used, the cost of parameter i
is simply:
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For each method, the simulation had been run both with
and without Angular Transformation with a population

size of 100 for 100 generations. Table 1 presents the best
feasible chromosome obtained.

Table 1  Results of the Simulation for Problem 1
Angular

Transformation
Decimal
Coding

Multi-Objective 3.5487x10-4 DNW
Max Penalty 3.5487x10-4 DNW

Penalty Function 105x10-4 0.6322
Control 6.0243x10-4 DNW

DNW = Did not work – the simulation was unable to find
any feasible chromosome.

In order to determine whether a chromosome is feasible,
the chromosome was tested against the cost function in
the multi-objective method (eqn. 20). If the first two
objectives each have a value of 1x10-6 or less, the
chromosome was considered feasible. It is obvious that
methods that used decimal coding did not handle the
nonlinear equality constraint well. The method of penalty
function with decimal coding produced some results.
Since the penalty was greater the further the chromosome
was from the feasible region, there was some guidance for
the evolution. Unfortunately, since the feasible region was
small and difficult to locate, as soon as a chromosome
was in the feasible region, the population converged on
that chromosome. This effected the quality of the results
for penalty function. When no additional constraint
handling method is applied along with angular
transformation, the simulation produced some results.
This shows that angular transformation has effectively
handled the nonlinear equality constraint.

3.2 PROBLEM 2

This is a specially designed problem with a nonlinear
equality constraint that is difficult for methods using
decimal coding to solve. At first it was decided that the
parameters each have only lower limits and the upper
limits would be derived from the available information.
However, this led to a problem with p2 and p3 where both
these parameters would have an upper limit of ∞. Decimal
coding cannot represent a parameter with the range

∞≤≤ p1 . Thus upper limits are imposed on the
parameters. The problem is shown in eqn. 21:

( ) ( ) ( )( )ππ 531 cossin pppPGMin += (21a)

subject to 2532 541 =+ ppp pp (21b)

9999.101 ≤≤ ip , i = 1, 2, 3, 4, 5 (21c)

Using angular transformation, the following definition is
used to replace the parameters involved:

iiLi Rpp θcos+= , for i = 1, 2, 3, 4, 5 (22)

Deriving R when eqn. 22 is substituted into the eqn. 21b
will be difficult by conventional algebra. Therefore linear
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interpolation is used instead. First, two initial values for R
are selected:
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Each R is applied to eqn. 22 and the result is applied to
the following modification of eqn. 21b:

2532
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541 −+=
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Rpp
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i

jijLj θ
(24)

where cos θj is obtained by decoding the chromosome,
and xi is the error of the i-th value of R. Subsequent values
for R is calculated using the following formula:

21

2112
3 xx

xRxR
R

−
−

= (25)

This new value for R is used to interpolate subsequent

values of R until an error (xi) of less than 610−  is
produced or until the maximum of 50 iterations have
passed. The final value for R  is used to obtain the final set
of parameters for the chromosome involved. Again,
coding method in Fig. 3 was used to handle the following
set of constraints (taken from eqn. 13):

1cos
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Each chromosome has 24 genes, representing 24 packets.
There are 4 of each of the following packet sizes:
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The total value for all the packets is 1. Each gene has a
possible value of 1 to 5, representing the parameters that
may receive the value of the represented packet. This
arrangement would handle the equality constraint.
However, there are still unfeasible chromosomes that
violate a parameter’s upper limit. For the simulations that
do not use angular transformation, simple decimal coding
was used. Each of the five parameters was represented by
5 genes for the following packet sizes:

(1 0.1 0.01 0.001 0.0001)

Each gene may have a value between 0 and 9. The value
of each parameter pi is:

iL
i

i
ii pgp +∑=

=

−5

1

)1(10

where gi = the value of the i-th gene of parameter pi.
Thus, each parameter may be represented with values
between 1 and 10.9999 with a resolution of 0.0001. For
the multi-objective method, there are three objectives. In
the first objective, the cost is the sum of all the values of
parameters exceeding the specified parameter limits. The
cost value of the next objective is the deviation from the
equality constraint (eqn. 21b). The last objective is the
objective of the simulation itself. Mathematically, these
objectives are:
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A goal of [ 610−  610−  10] has been set with priority [1 1
0] for objectives 1, 2 and 3 respectively. Note that a goal
of 10 for objective 3 is an easily achievable goal. The first
two objectives have been set as hard constraints so they
would not be considered once the constraints are satisfied.
With these settings, a chromosome that is feasible would
dominate a chromosome that is unfeasible.

For the max penalty method, each chromosome that does
not meet the constraint (eqn. 21b or eqn. 21c) is assigned
a cost of 100 (a very large cost). Otherwise, the
chromosome is evaluated according to eqn. 21a.
Mathematically, the cost of chromosome i is:
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In the penalty function method, the cost of each
chromosome is the sum of the cost according to the cost
function (eqn. 21a), the value in excess of each parameter
limit and 10 times the deviation from the constraint in
eqn. 21b. Mathematically, the cost of parameter i is:

( ) ( ) ( )( )( ) ( ) ( )iii pgpgpppPf 21531 cossin +++= ππ

( )
















∑







>−

<−

=
=

5

1
1

0i
iHiiHi

iLiiiL

i

otherwise

ppifpp

ppifpp

pg

( ) 




 −+= 253210 5412 ppppg pp

i

In the control method, where no objective-domain
constraint handling method is used, the cost of parameter i
is simply:

( ) ( ) ( )( )ππ 531 cossin pppPf i +=

For each method, the simulation has been run both with
and without Angular Transformation with a population
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size of 100 for 100 generations. Table 2 presents the best
feasible chromosome.

Table 2  Results of the Simulation for Problem 3
Angular

Transformation
Decimal
Coding

Multi-Objective -16.3304 DNW
Max Penalty -3.1526 DNW

Penalty Function -16.3304 -1.8669
Control -15.8336 DNW

DNW = Did not work – the simulation was unable to find
any feasible chromosome.

In order to determine the feasibility of a chromosome, that
chromosome is evaluated according to eqn. 26. If

objective 1 and 2 each have a value of 610−  or less, the
chromosome is considered feasible. From the results, it is
clear that decimal coding with multi-objective or max
penalty was totally ineffective. Penalty function produced
some results but the simulation was mainly concerned
with finding a feasible chromosome rather than the
optimum, hence the poor result. Many of the trials with
penalty function ended up with no solution. The
simulations that used angular transformation were
successful in finding feasible solutions. However, the
result for the control method is misleading – if the
simulation was run for 200 generations with a population
size of 200, it would be likely that the control method
would find the global optimum that violates the parameter
constraints. Thus it can be concluded from these
simulations that angular transformation is capable of
handling nonlinear equality constraints. Angular
transformation can be used to handle a combined set of
equality constraints. In addition to this, an objective
domain method, such as multi-objective, should be used
to handle the parameter constraints (which are inequality
constraints) that are neglected by angular transformation.

4 CONCLUSIONS AND FUTURE
WORKS

The paper has proposed an angular transformation
method, which implements the feasibility constraints
within the coding of chromosomes to ensure all candidate
solutions to be confined within the feasible region. It can
also be used to remove some of the unfeasible region in
such cases, leaving a smaller search space and reduces the
effort of finding the global optimum. In addition, it does
not require additional parameters that are sensitive to the
performance of the optimization nor extra computational
effort to evaluate the unfeasible solutions. Besides, the
proposed methods can be incorporated in many objective
domain based constraint handling techniques to remove
some of the unfeasible regions before applying these
methods.
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Abstract

We propose an algorithm for multi-objective

optimization using a mixture-based iterated

density estimation evolutionary algorithm

(M IDEA). The M IDEA algorithm is a prob-

abilistic model building evolutionary algo-

rithm that constructs at each generation a

mixture of factorized probability distribu-

tions. The use of a mixture distribution gives

us a powerful, yet computationally tractable,

representation of complicated dependencies.

In addition it results in an elegant procedure

to preserve the diversity in the population,

which is necessary in order to be able to cover

the Pareto front. The algorithm searches for

the Pareto front by computing the Pareto

dominance between all solutions. We test our

approach in two problem domains. First we

consider discrete multi-objective optimiza-

tion problems and give two instantiations of

M IDEA: one building a mixture of discrete

univariate factorizations, the other a mixture

of tree factorizations. Secondly, we look at

continuous real valued multi-objective opti-

mization problems and again consider two

instantiations of M IDEA: a mixture of con-

tinuous univariate factorizations, and a mix-

ture of conditional Gaussian factorizations as

probabilistic model.

1 Introduction

In classical evolutionary computation search is driven

by two interacting processes: selection focuses the

search to more promising points in the search space

while mutation and crossover try to generate new and

better points from these selected solutions. EÆcient

exploration requires that some information of what

makes the parents good solutions needs to be trans-

fered to the o�spring solutions. If there were no cor-

relation between the �tness of the parents and the o�-

spring the search process would essentially be an un-

biased random walk. Whether or not information is

passed between parents and o�spring depends on the

representation and accompanying exploration opera-

tors. For mutation this is usually accomplished by let-

ting it take small randomized steps in the local neigh-

bourhood of the parent solution. Crossover recombines

parts of two parent solutions which results in a more

globally oriented exploration step. This broader ex-

ploration requires a careful choice of genotype repre-

sentation and crossover operator. A common practice

in the design of evolutionary search algorithms is to

develop a number of representations and operators by

using prior domain knowledge, and picking the best

after a considerable number of experimental runs.

An alternative to this labour intensive task is to try to

learn the structure of the search landscape automati-

cally, an approach often called linkage learning (see for

instance [8]). In a similar e�ort to learn the structure

of the problem representation a number of researchers

have taken a more probabilistic view of the evolution-

ary search process ([1, 2, 7, 9, 11, 13, 15, 14, 17]). The

general idea here is to build a probabilistic model of

the current parent population and learn the structure

of the problem representation by inducing the depen-

dence structure of the problem variables. The explo-

ration operators mutation and crossover are now re-

placed by generating new samples according to this

probabilistic model (for a survey see [16]). In [2] we

have given a general algorithmic framework for this

paradigm called iterated density estimation evolution-

ary algorithm (IDEA). In this paper we will propose

an algorithm for multi-objective optimization within

the IDEA framework called M IDEA. The probabilis-

tic model build is a mixture distribution that not only

gives us a powerful and computationally tractable rep-
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resentation to model the dependencies in the popu-

lation, but also provides us with an elegant method

to preserve the diversity in the population, which is

needed in order to be able to cover the Pareto front.

2 Multi-objective optimization

Optimization is generally considered to be a search

process for optimal or near optimal solutions in some

search space where it is implicitly assumed that given

any arbitrary solution one can always tell which so-

lution is preferred. However such a single preference

criterion does not always exist. In multi-objective op-

timization problems di�erent objective functions have

to be optimized simultaneously. A key characteristic

of multi-objective optimization problems is the exis-

tence of whole sets of solutions that cannot be ordered

in terms of preference when only considering the ob-

jective function values. To formalize this we de�ne a

number of relevant concepts. Suppose we have a prob-

lem with k objective functions fi(x); i = 1 : : : k which

- without loss of generality - should all be minimized.

1. Pareto dominance: a solution x is said to domi-

nate a solution y (or x B y) i� 8i 2 f1; : : : ; kg :

fi(x) � fi(y)
V
9i 2 f1; : : : ; kg : fi(x) < fi(y):

2. Pareto optimal: a solution x is said to be Pareto

optimal i� @y : y B x:

3. Pareto optimal set: is the set PS of all Pareto

optimal solutions: PS = fx j @y : y B xg:

4. Pareto front: is the set PF of objective func-

tion values of all Pareto optimal solutions: PF =

fF(x) = (f1(x); : : : ; fk(x)) j x 2 PSg:

Note that the Pareto optimal set is de�ned in the pa-

rameter space, while the Pareto front is de�ned in the

objective space. Multi-objective problems have been

tackled with di�erent solution strategies. A strategy

which is particularly interesting from an evolutionary

computation viewpoint is to search for the Pareto front

- or for a representative set of Pareto optimal solu-

tions - by making use of the Pareto dominance con-

cept. The idea is to maintain a population of solu-

tions that cover the entire Pareto front. The notion of

searching a search space through maintaining a popu-

lation of solutions is a key characteristic of evolution-

ary algorithms, which makes them natural candidates

for multi-objective optimization algorithms following

the covering strategy. The �eld of evolutionary multi-

objective optimization has indeed seen an explosive

growth in recent years (for a survey see [4]).

3 Multi-objective mixture-based IDEA

The IDEA is a framework for Iterated Density Esti-

mation Evolutionary Algorithms that uses probabilis-

tic models to guide the evolutionary search [2]. A key

characteristic of this class of evolutionary algorithms

is the way they explore the search space. Contrary

to classical evolutionary algorithms who generate new

o�spring by applying crossover and mutation to indi-

vidual parent solutions, IDEAs generate new o�spring

by sampling from a probability distribution P̂ �t
& (Y).

The probability distribution P̂ �t
& (Y) is induced every

generation from the b�nc best performing individu-

als (n = population size, 0 < � < 1). One way of

achieving this, is by �nding a factorized probability

distribution. A factorized probability distribution is

product of probability density functions (pdfs). Fac-

torizations are usually composed either of multivariate

joint pdfs or of multivariate conditional pdfs in which

a single variable is conditioned on a multiple of oth-

ers. The model of the probability distribution P̂ �t
& (Y)

is determined in two steps. Firstly, a structure & im-

plying a factorization of the probability distribution

needs to be determined. Secondly, a vector of param-

eters � need to be �tted. The choice of structure & de-

�nes how the algorithm will explore the search space

and whether it will be able to �nd good solutions ef-

�ciently. In this paper we will discuss four structures

in the context of multi-objective optimization prob-

lems: a mixture of discrete univariate factorizations,

a mixture of tree factorizations, a mixture of continu-

ous univariate factorizations, and a mixture of condi-

tional Gaussian factorizations. Assuming without loss

of generality, we want to minimize C(y). For every

problem variable yi we introduce a corresponding ran-

dom variable Yi and de�ne P �(Y) to be a probability

distribution that is uniform over all vectors Y with

C(y) � �. Sampling from P �(Y) gives more samples

that evaluate to a value below �. To use this in an

iterated algorithm, we select the best b�nc samples in

each iteration t and let �t be the worst selected sample

cost. We then estimate the distribution of the selected

samples and thereby �nd P̂ �t
& (Y) as an approxima-

tion to the true distribution P �t(Y). New samples can

then be drawn from P̂ �t
& (Y) and be used to replace the

worst n�b�nc samples. This results in a elitist mech-

anism since we have a monotonically decreasing series

�0 � �1 � : : : � �t
end

.

3.1 Factorization mixtures by clustering

The structure of the sample vector may be highly non-

linear. This non-linearity can force us to use proba-

bilistic models of a high complexity to retain some of
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this non-linearity. However, especially using relatively

simple probability density functions, the non-linear in-

teractions cannot always be captured even with higher

order models. The key issue is the use of clusters. The

use of clusters allows us to eÆciently break up non-

linear interactions so that we can use simple models

to get an adequate representation of the sample vec-

tor. Each cluster is processed separately in order to

have a probability distribution �t over it. The result-

ing probability distribution is a weighted sum of the

individual factorizations over each cluster:

P̂fhKi(Y) =

jKj�1X
i=0

�iP̂
i
fi
(Y) (1)

An e�ective way to set the mixture coeÆcients �i, is to

proportionally assign larger coeÆcients to the clusters

with a better average cost. Pelikan and Goldberg [14]

proposed this method to introduce niching in the prob-

abilistic model-building genetic algorithms. By taking

the absolute value of the di�erence of the average clus-

ter cost and the average initial sample vector cost, we

allow for both maximization as well as minimization

problems. Here we will make use of the randomized

Euclidean leader algorithm which is one of the fastest

clustering algorithms. The �rst sample to make a new

cluster is appointed to be its leader. The leader algo-

rithm goes over the sample vector exactly once. For

each sample, it �nds the �rst cluster that has a leader

being closer to the sample than a given threshold Td

(using the normalized Euclidean distance measure). If

no such cluster can be found, a new cluster is created

containing only this sample. To prevent the �rst clus-

ters from becoming a lot larger than the later ones, we

randomize the order in which clusters are inspected.

3.2 Multi-objective mixture-based IDEA

The algorithm discussed so far is still a single-objective

optimization algorithm. To change it into a multi-

objective Pareto covering optimization algorithm we

need to make the following modi�cations:

1. First, we have to search for the Pareto-front: in

the IDEA framework selection picks out the best

b�nc samples. Making this selection on the ba-

sis of Pareto dominance allows us to search for

the Pareto front. For each individual in the pop-

ulation we determine the number of individuals

by which it is dominated, calling this its domina-

tion count. All individuals are sorting according

to increasing domination count and the top b�nc

solutions are selected.

2. Second, we have to cover the Pareto-front: main-

taining diversity is needed to prevent the popula-

tion to converge to a single Pareto optimal point

instead of to a representative set of the entire

front. Since the mixture-based IDEA already con-

structs a set of clusters we can simply use this to

maintain the diversity. Note that the clustering

can be done in the parameter space or in the ob-

jective space, but to maintain a good covering of

the Pareto front clustering in the objective space

is more suitable.

Finally, the multi-objective mixture-based iterated

density estimation evolutionary algorithm - or M IDEA

- can be summarized as:

M IDEA(n, �)

1 Evaluate n randomly generated samples P

2 Iterate until termination

2.1 Compute the domination counts

2.2 Select the b�nc best samples from P ) Ps

2.3 Set �t to the worst selected cost

2.4 Search Ps for a structure &

2.5 Estimate parameters � fit � & ) P̂&(Y)

2.6 Draw n� b�nc new samples from P̂&(Y)

2.7 Evaluate the new samples

2.8 Add the new samples to Ps ) new P

Depending on the type and complexity of the applica-

tion one has to choose the kind of factorization learned

during the structure search. To illustrate this we will

implement four versions of the M IDEA algorithm: two

for discrete and two for continuous multi-objective op-

timization problems.

3.2.1 M IDEA univariate and M IDEA tree

A simple structure one can apply for discrete prob-

lems is the mixture of univariate factorizations lead-

ing to the M IDEA univariate algorithm. The prob-

ability a problem variable has a certain value is as-

sumed to be independent of other problem variables.

Although this is a very strong assumption it appears

in practice that many problems can be solved this way.

When optimizing more complicated problems it is nec-

essary to learn more structure of the domain represen-

tation. One approach which is still simple enough to

be computationally eÆcient is to model the domain

variable interactions with a tree factorization. The

model thus becomes a mixture of trees, a probability

model recently proposed in [12]. The M IDEA tree can

be viewed as a generalization of the optimal depen-

dency tree algorithm [1] towards a mixture model and

adapted for multi-objective problems. Interestingly,

the use of a mixture of tree factorizations in proba-
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bilistic model building EAs is currently also proposed

in relation with the Estimation Maximization learning

algorithm [17].

3.2.2 M IDEA univariate and

M IDEA Gaussian

For multi-objective continuous function optimization

we can again use a mixture model where each compo-

nent distribution ignores conditional dependences be-

tween the variables. Inducing a mixture of univari-

ate factorizations is very simple and extremely fast.

A more intelligent search can be performed when us-

ing a model that learns conditional dependences be-

tween the variables. Here we induce a mixture of

conditionally factorized Gaussian probability density

functions. This structure has the advantage of be-

ing capable to learn conditional dependences between

variables, while at the same time being computation-

ally eÆcient enough to be applied at each generation.

Learning a conditional factorization from the vector of

selected samples can be done in a variety of ways [16].

Here we use an incremental algorithm that starts from

the empty graph with no arcs. Each iteration, the

arc to add is selected as the arc that increases some

metric the most. If no addition of any arc further in-

creases the metric, the �nal factorization graph has

been found. The metric used is the Bayesian Informa-

tion Criterion (for details see [3]).

Without detailed knowledge about the functions it is

not possible to tell which structure is optimal. To il-

lustrate the potential of each model we ran a number

of experiments on problems previously studied in the

literature.

4 Experimental results

4.1 Multi-objective 0/1 knapsack problem

Our �rst test function is a discrete multi-objective 0/1

knapsack problem taken from Zitzler and Thiele [18]

who introduced it to compare a number of di�erent

multi-objective evolutionary algorithms. The problem

is additionally interesting because of its real life practi-

cality and the large string lengths it requires. Whereas

the problem de�nition is relatively simple, optimiz-

ing it is diÆcult (NP-hard). The multi-objective 0/1

knapsack problem consists of a set of nI items and a

set of nK knapsacks. With each knapsack i, a weight

wi;j and a pro�t pi;j are associated with each item j.

Each knapsack i has an upper-bound ci on the amount

of weight it can hold, which is called the capacity con-

straint. The objective is to �ll each knapsack so that

the pro�t of the selected items is maximized, but with-

out violating the capacity constraints. If item i is se-

lected, it is automatically placed in every knapsack.

This creates a multi-objective interaction between the

knapsacks: the goal is to search for a vector of decision

variables x 2 f0; 1gnI such that each objective func-

tion fi in (f0(x); f1(x); : : : ; fnK�1(x)) is maximised

with

8i2f0;1;:::;nK�1g

2
4fi(x) =

nI�1X
j=0

pi;jxj

3
5

s.t. 8i2f0;1;:::;nI�1g

2
4nK�1X

j=0

wi;jxj � ci

3
5 :

To deal with the feasibility problem with respect to

the capacity constraints, we use a repair method. The

type of repair method used has a great in
uence on

the way the search space is traversed and thus on the

performance of the optimization algorithm. To com-

pare di�erent algorithms with respect to their multi-

objective performance, it is important to use the same

repair method. To this end, we have used the same

approach as is in [18]. If a solution violates a con-

straint, the repair algorithm iteratively removes items

until all constrains are satis�ed. The order in which

the items are investigated, is determined by the max-

imum pro�t/weight ratio. The items with the lowest

pro�t/weight ratio are removed �rst. This amounts to

computing the quotients

qj = maxi2f0;1;:::;nK�1g

�
pi;j

wi;j

�

on beforehand and sorting the qj .

The pro�ts, weights and knapsack capacities are cho-

sen as follows: pi;j and wi;j are random integers cho-

sen from the interval [10,100], while the capacities ci
are set to half the items' weight in the corresponding

knapsack:

ci = 0:5

NI�1X
j=0

wi;j :

This results in half of the items to be expected in

the optimal solutions. We performed tests on prob-

lems with two knapsacks (nK = 2) allowing us to plot

the Pareto front found by M IDEA and to make a vi-

sual comparison with results obtained by the Strength

Pareto Evolutionary Algorithm (SPEA) and the Non-

dominated Sorting Genetic Algorithm (NSGA). In [18]

a total of 8 algorithms were compared but for clarity

we restrict ourselves here to SPEA and NSGA: they

are the most commonly known and SPEA gave the

best results of all 8 algorithms. Three di�erent knap-

sack problems with an increasing number of items were
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Figure 1: knapsack 250 items
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Figure 2: knapsack 500 items

studied, nI 2 f250; 500; 750g. The data sets are the

same as those used by Zitzler and Thiele (available on

http://www.tik.ee.ethz.ch/ zitzler/testdata.html).

In our experiments we �xed the selection size to

b�nc = 200 (� = 0:3, population size n = 667). We

have also �xed the number of evaluations to be the

same as in the tests by Zitzler and Thiele, respectively

f60000; 80000; 100000g for increasing values of nI . For

the univariate factorization the �nal front reported is

obtained by combining the results of 30 independent

runs (similar to Zitzler and Thiele), but it should be

noted that individual runs give an almost as wide cov-

ering of the Pareto front. Results for the tree factor-

ization are only from one single run. The clustering is

done in the objective space using the leader algorithm

with Td chosen so as to get at least 5 clusters.

Figures 1, 2, and 3 show the results for the M IDEA

with a mixture of univariate distributions, and for the

M IDEA with a mixture of trees. To study the in
uence

of the clustering we have also tested the univariate

distributions without clustering. The graphs give also

a rough sketch of the front found by SPEA and NSGA

in [18]. A number of observations can be made:

1. The M IDEA algorithm found solutions with high

objective function values. Performance is compa-
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24500 25000 25500 26000 26500 27000 27500 28000 28500 29000 29500
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IDEA (no clustering, univariate)

MIDEA (trees)
SPEA
NSGA

Figure 3: knapsack 750 items

rable to SPEA for the problem sets with 250 and

500 items. For the knapsack problem with 750

items M IDEA �nds a Pareto front that clearly

dominates the solutions found by SPEA. The re-

sults from NSGA are substantially worse.

2. The M IDEA algorithm found a widely covered

Pareto front, wider than SPEA and NSGA.

3. Clustering is necessary for the covering to take

place: without it the algorithm �nds only a small

part of the Pareto front.

4. On the two larger problem sets (nI 2 f500; 750g)

the Pareto front obtained by the mixture of uni-

variate distributions is slightly better than the

front found by the mixture of trees. It is reason-

able to assume that this is only an indication of

the faster convergence speed of the mixture of uni-

variate distributions. When more function evalua-

tions would be done one might expect the mixture

of trees algorithm to catch up, and even surpass-

ing it for more diÆcult problems. This should be

further investigated though.

4.2 Multi-objective continuous function

optimization

Next to the multi-objective 0/1 knapsack problem we

also tested the M IDEA algorithm on multi-objective

continuous function optimization problems taken from

the literature [5].

First we will look at the mixture of Gaussian pdfs us-

ing learning conditional factorizations. We �xed the

selection size to b�nc = 250 (� = 0:3, population size

n = 834). Clustering is done using the leader algo-

rithm in both the objective space as well as the pa-

rameter space, with Td chosen so as to get approxi-

mately 3 clusters on the Pareto front. The �nal front

reported is obtained by combining the results of 10
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MOP2 MOP4 EC4 EC6

Obj. 3754 10762 1019330 9535
Par. 3754 35348 2500000 8835
None 3754 43058 2500000 8426

Figure 4: Average number of evaluations.

independent runs. As before it should be noted that

individual runs give an almost as wide covering of the

Pareto front. The average number of required evalua-

tions for each type of clustering is stated in �gure 4.

For comparison, we also tested an approach using no

clustering. Termination is enforced when the domi-

nation count of all of the selected samples equals 0.

At such a point, the selected sample vector contains

only non-dominated solutions. Note that this does not

have to imply at all that full convergence has been ob-

tained since the front itself may not be optimal. To

prevent the alternative of allowing an arbitrary num-

ber of generations or evaluations, a good termination

criterion might be when non of the selected samples

is dominated by any of the selected samples in the

previous generation. For now, we restrict ourselves to

the simple termination criterion, keeping in mind that

premature convergence is possible. No single run was

allowed more than 2 1
2
� 106 evaluations. Finally the

conditional Gaussian factorizations are searched using

the BIC metric with � = 1

2
(which makes this measure

similar to the minimum description length measure).

Name Objectives Domain

MOP2
f0 = 1� e

�

Pl�1
i=0

�
yi�

1p
l

�
2

f1 = 1� e
�

Pl�1
i=0

�
yi+

1p
l

�
2 [�4; 4]3

MOP4
f0 =

Pl�2
i=0�10e

�0:2
q

y2
i
+y2

i+1

f1 =
Pl�1

i=0 jyij
0:8 + 5sin(y3i )

[�5; 5]3

EC4

f0 = y0

f1 = 

�
1�

q
y0



�


 = 91 +
Pl�1

i=1

�
y2i � 10cos(4�yi)

�
[�1; 1]�

[�5; 5]9

EC6

f0 = 1� e�4y0sin6(6�yi)

f1 = 

�
1� ( f0



)
�


 = 1 + 9
�Pl�1

i=1
yi
9

�0:25 [0; 1]10

In �gures 5 and 6, the results using objective clus-

tering on MOP2 and MOP4 are shown respectively.

For each of these two problems, none of the individ-

ual runs di�er signi�cantly from the combined result.

Moreover, the results of parameter clustering as well

as no clustering at all are also similar to these results,

so we omit further graphs for these two problems. The

table in �gure 4 indicates that using the M IDEA al-

gorithm requires only a few evaluations to adequately

solve the two MOP problems.
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Figure 5: Result for MOP2 (objective clustering).
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Figure 6: Result for MOP4 (objective clustering).

Compared to EC4, the two MOP problems are rela-

tively simple. Converging to the optimal front is very

diÆcult in EC4. In �gure 4, we can see that we indeed

require a vastly larger number of evaluations. Only

when we cluster in the objective space, do we on av-

erage require less than the maximum of 2 1
2
� 106 eval-

uations. However, closely observing the results points

out that premature convergence has often taken place

in the algorithm with objective clustering. Figure 7

shows the individual plots of each run. Taking more

clusters in combination with a larger population size

to e�ectively �ll up and use these additional clusters,

might lead to a better estimation of the promising re-

gions of the multi-objective space. To illustrate this,

we have plotted the resulting fronts after 10 runs for

objective clustering with b�nc = 500 and Td such that

we have approximately 5 clusters, and for parameter

clustering with b�nc = 125 and Td such that we have

7 clusters. The results in �gure 8 show that very good

results are obtained with these settings. It should also

be noted that some sort of clustering is crucial to be

able to tackle diÆcult problems such as EC4: when no

clustering is applied the results are rather poor even

for large populations sizes.

The main diÆculty with problem EC6 is that the opti-

mal front is not uniformly distributed in its solutions.
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Figure 7: All runs for EC4 (objective clustering).
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Figure 8: Results for EC4.
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Figure 9: Result for EC6 (objective clustering).
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Figure 10: Result for EC6 (parameter clustering).
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Figure 11: Result for EC4 with univariate factoriza-

tion (objective clustering).

Without clustering, we are therefore very likely to �nd

only a part of the front. Furthermore, by clustering in

parameter space, we also have no guarantee to �nd a

good representation of the front since the parameter

space is directly related to the density of the points

along the front. On the other hand, clustering this

space does give a means of capturing more regions than

a single cluster can. If we are to cluster in the objective

space, we should have no problem �nding a larger part

of the front unless the problem itself is very diÆcult as

is the case for instance with EC4. In �gures 9 and 10,

the results for objective clustering and parameter clus-

tering are shown respectively. Using parameter clus-

tering is clearly not e�ective. It should also be noted

that the Pareto front found in �gure 9 seems to coin-

cide with the optimal Pareto front, which is not trivial

to achieve since the fast elitist non-dominated sorting

GA (NSGA-II [6]), the strength Pareto Evolutionary

Algorithm (SPEA [18]), and the Pareto-archived evo-

lution strategy (PAES [10]) are all reported to con-

verge to a sub-optimal front ([6]).

In the experiments so far, the structure learned at each

generation is a conditionally factorized Gaussian prob-

ability density function. It might well be possible that

the �tness function can be optimized without the need

to learn the conditional dependences between vari-

ables. In this case it would be computationally more

eÆcient to use a probability density structure that ig-

nores the interactions between the variables. To get a

feeling of the impact of this choice we have optimized

the functions EC4 and EC6 with a mixture of univari-

ate factorizations. A population size of b�nc = 125,

resp. b�nc = 50 (� = 0:3) was used, with a cluster

threshold = 1.5, resulting in 3 to 5 clusters. Cluster-

ing was done in the objective space, and a total of 10

runs were performed. Figures 11 and 12 show that

the Pareto front found is of similar quality than in

the previous experiment using conditionally factorized

Gaussian pdfs with objective clustering. The average
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Figure 12: Result for EC6 with univariate factoriza-

tion (objective clustering).

amount of function evaluations for EC4 was 209635,

while for EC6 the number was 2284. These �gures are

substantially lower than those found before (see �g-

ure 4), indicating that for these functions the compu-

tational e�ort spent by learning a more powerful and

complicated model seems to be unnecessary. It should

be noted that this gives only a rough impression about

convergence speed and quality of the algorithms. Fu-

ture studies will have to look at the in
uence of pop-

ulation size, selection threshold, and cluster size.

5 Conclusion

We have proposed the multi-objective mixture-based

iterated density estimation evolutionary algorithm

M IDEA. M IDEA builds a mixture distribution as

probabilistic model resulting in a computational ef-

�cient method to represent complicated dependencies,

and at the same time in an elegant procedure to

search for a good covering of the Pareto front. As

speci�c instantiations of the proposed algorithm we

have implemented a mixture of univariate factoriza-

tions and a mixture of tree factorizations for discrete

multi-objective optimization, and a mixture of contin-

uous univariate factorizations and a mixture of condi-

tional Gaussian factorizations for continuous optimiza-

tion problems. Experiments showed good results for

all models, including the simple univariate models.
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Abstract

Interaction among decision variables is inherent
to a number of real-life engineering design
optimisation problems.  The aim of this paper is
to analyse multi-objective optimisation problems
from the perspective of inseparable function
interaction. In spite of its immense potential for
real-life problems, lack of systematic research
has plagued the field of interaction for a long
time. The paper attempts to fill this gap by
devising a formal definition and classification of
interaction. It then uses this analysis as a
background for identifying the challenges that
interaction poses for optimisation algorithms. A
number of existing test problems are also listed
and analysed in this paper. The paper uses the
viewpoint of inseparable function interaction
developed here to devise a solution strategy and
to propose an algorithm capable of handling
complex multi-objective optimisation problems.
The performance of the proposed algorithm is
compared to that of a high performing
evolutionary-based multi-objective optimisation
algorithm, NSGA-II, using three test problems
chosen from a set of existing problems listed and
analysed in this paper. The paper concludes by
giving the current limitations of the proposed
algorithm and the future research directions.

1 INTRODUCTION

Real-life engineering design optimisation problems, as
opposed to the theoretical problems (test cases), are those
that are encountered in industry. Some examples of these
problems are the design of aerospace structures for
minimum weight, the surface design of automobiles for
improved aesthetics and the design of civil engineering
structures for minimum cost (Rao, 1996). A survey of
industry and literature reveals that along with multiple

objectives, constraints, qualitative issues and lack of prior
knowledge, most real-life design optimisation problems
also involve interaction among decision variables (Roy et.
al., 2000). This interaction provides another perspective
of looking at real-life design optimisation problems. Since
multi-objectivity is the principal feature of most real-life
problems, this paper analyses multi-objective optimisation
problems from the perspective of interaction. The degree
of this interaction also defines the level of difficulty of
optimisation problems.

In spite of its immense potential for real-life problems,
lack of systematic research has plagued the field of
interaction for a long time. This can mainly be attributed
to the lack of sophisticated techniques, and inadequate
hardware and software technologies. However, in the last
two decades, with the improvements in hardware and
software technologies some research has been carried out
in this area especially in the field of statistical data
analysis (Draper and Smith, 1998). This has been further
augmented in the recent past with the growth of
computational intelligence techniques like Evolutionary
Computing (EC), Neural Networks (NN) and Fuzzy Logic
(FL) (Pedrycz, 1998).

2 LEVELS OF VARIABLE
INTERACTION

In an ideal situation, desired results could be obtained by
varying the decision variables of a given problem in a
random fashion independent of each other. However, due
to interaction this is not possible in a number of cases,
implying that if the value of a given variable changes, the
values of others should be changed in a unique way to get
the required results. The two levels of interaction that can
exist among decision variables are discussed below.

2.1 INSEPARABLE FUNCTION INTERACTION

The first level of interaction among decision variables,
known as inseparable function interaction, is the main
focus of this paper. This interaction occurs when the
effect that a variable has on the objective function
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depends on the values of other variables in the function
(Taguchi, 1987). This concept of interaction can be
understood from Figure 1. Figure 1(a) shows the case of
no interaction between two variables A and B. Here, the
lines representing the effect of variable A for the settings
B1 and B2 of variable B are parallel to each other. Figures
1(b) and 1(c) show two examples of the presence of
interaction. The type of interaction in Figure 1(b) is
sometimes called synergistic interaction and the one in
Figure 1(c) is called anti-synergistic interaction (Phadke,
1989).

              (a)    (b)                    (c)

Figure 1: Examples of Interaction (a) No Interaction
(b) Synergistic Interaction (c) Anti-synergistic Interaction

(Phadke, 1989)

The above discussion reveals that this interaction depends
on the definition of objective functions and manifests
itself as cross-product terms. As an example, assume y in
Figure 1 stands for A2+B2, having no cross-product terms.
Here, y3-y1 is equal to y4-y2 (see below), making the two
lines parallel and implying that there is no interaction
between A and B in the given function.
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Let us take the other case in which y in Figure 1 stands
for A2+B2+AB, having a cross-product term AB. Here,
y3-y1 is not equal to y4-y2 (see below). This makes the two
lines non-parallel implying interaction between variables
in the given function.
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In GA literature, the inseparable function interaction, as
defined above, is termed as epistasis. The GA community
defines epistasis as the interaction between different
genes in a chromosome (Beasley et. al., 1993). An
alternative definition of epistasis is given by Reeves and
Wright (1995), who define it in terms of alleles. In this
sense, the term epistasis is used to denote the effect of a
combination of alleles on the chromosome fitness that is
not merely a linear function of the effects of individual
alleles.

A number of real-life examples can be found in literature
that involve this level of interaction. For example, the
temperature (T) of an ideal gas varies with its pressure (P)
and volume (V) as T=kPV, where k is the constant of

proportionality. This equation has cross-product term PV
clearly demonstrating the interaction between P and V in
the definition of T.

2.2 VARIABLE DEPENDENCE

The second level of interaction among decision variables,
known as variable dependence, occurs when the variables
are functions of each other, and hence cannot be varied
independently. Here, change in one variable has an impact
on the value of the other. The presence of dependence
among decision variables also modifies the variable
search space.

Variable dependence is frequently observed in real-life
problems. As an example, the resistance (R) of a wire is
defined in terms of two parameters, namely Temperature
(T) and Stress (S), where T and S are as defined below.
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3 CHALLENGES FOR OPTIMISATION
ALGORITHMS

Complex variable interaction poses a number of
challenges for optimisation algorithms. Classical
optimisation techniques, like goal programming (Charnes
and Cooper, 1961), suffer from serious limitations in
handling the complexity of multi-objective optimisation
problems having interaction among variables. This has
provided yet another motivation for the growth of
research in the field of EC, NN and FL. Literature reveals
that most of the multi-objective optimisation techniques
are GA-based. GA’s are, therefore, the principal focus in
this paper.

3.1 CHALLENGES POSED BY INSEPARABLE
FUNCTION INTERACTION

GA operates on the building blocks, growing them and
mixing them with each other in an attempt to solve the
search problem at hand. Epistasis, termed here as
inseparable function interaction, causes problems for GA
by creating obstacles in the formation of these building
blocks (Harik, 1997). Further, in its presence, a multi-
objective optimisation problem cannot be decomposed
into simpler parts. Hence, GA requires updating all
decision variables in a unique way in order to maintain a
spread of solutions over the Pareto optimal region or even
converge to any particular solution. With a generic search
operator, this becomes a difficult task for GA.
Furthermore, even if a set of Pareto optimal solutions are
obtained, it is difficult to maintain them since any change
in one variable must be accompanied by related changes
in others in order to remain on the Pareto-optimal front.
The difficulties that inseparable function interaction may
create for GA are summarised below (Deb, 1999).
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3.1.1 Convergence to Global Pareto-optimal Front

Inseparable function interaction in objective functions
may augment one or more of the following features that
obstruct convergence to the true (or global) Pareto-
optimal front.

•  Multi-modality: In this case, GA, like many other
search and optimisation methods, may converge to a
local Pareto-optimal front.

•  Deception: Deception is a kind of multi-modality in
which almost the entire search space favours the
deceptive (non-global) optimum. If present in a
problem, deception misleads GA towards deceptive
attractors (Goldberg et. al., 1989).

•  Collateral Noise: Complex inseparable function
interaction in objective functions may lead to
problems that are ‘rugged’ with relatively large
variations in the function landscape. This collateral
noise may create convergence problems for GA.

•  Isolated Optimum: In some problems, the optimum
may be surrounded by a fairly flat search space.
Since there is no useful information provided by most
of the search space, GA faces difficulty in solving
such problems with isolated optima.

3.1.2 Maintenance of Diverse Pareto-optimal
Solutions

Maintenance of diversity in Pareto-optimal solutions may
become difficult for GA due to one or more of the
following features that may be enhanced in the problem
by inseparable function interaction.

•  Discontinuity in Pareto-optimal Front: Here the
Pareto-optimal fronts are a collection of discretely
spaced continuous sub-regions (Schaffer, 1984). In
such problems, although solutions within each sub-
region may be found, competition among them may
lead to extinction of some sub-regions.

•  Non-uniform Distribution over Pareto-optimal Front:
In this case, feasible solutions have a non-uniform
density across the Pareto-optimal front. This leads to
a natural tendency for GA to find a biased
distribution in the Pareto-optimal region.

•  Shape Complexity of Pareto-optimal Front:
Inseparable function interaction also influences the
shape of Pareto–optimal front. In some cases, the
shape complexity of the front may be so high that it
becomes difficult for GA to find uniformly
distributed solutions across it.

Further, in a number of real-life multi-objective
optimisation problems, inseparable function interaction
may lead to Pareto-optimal fronts that correspond to
complex relationships among decision variables. All such
cases become difficult for GA to handle since it is
required to update the decision variables in a unique way
in order to attain the desired results.

3.2 CHALLENGES POSED BY VARIABLE
DEPENDENCE

As discussed in Section 2.2, the decision variables cannot
be varied independently in the presence of variable
dependence. Also, the search space gets modified creating
a new feasible region based on the nature of dependence
among decision variables. A generic GA independently
varies the decision variables and works in the feasible
region that does not take variable dependence into
account. Hence, it creates solutions that have limited
practical significance since they do not lie in the actual
feasible region of the search space.

4 ANALYSIS OF EXISTING TEST
PROBLEMS

A number of test problems have been reported in
literature in the area of multi-objective optimisation. An
analysis of these problems from the perspective of
variable interaction reveals that all of them represent
varying degrees of inseparable function interaction. No
test problem was observed to represent variable
dependence in multi-objective optimisation problems.

This section analyses the existing test problems from the
point of view of interaction (Table 1). One of the test
problems listed in Table 1 was cited by Veldhuizen
(1999) in his work. This problem is KUR from Kursawe’s
study (1990). Deb (1999) has suggested a systematic way
of developing test problems for multi-objective
optimisation. Zitzler, Deb and Thiele (2000) followed
those guidelines and suggested six test problems. Two of
these test problems, namely ZDT4 and ZDT6, have been
reported in this work. Finally, the problem DEB has been
directly extracted from Deb (1999) and the problem ROT
from Deb et. al. (2000). These test problems were chosen
with an aim to form a representative set capable of
depicting the features of interaction (Section 3).

5 PROPOSED OPTIMISATION
ALGORITHM

This paper focuses on the analysis of inseparable function
interaction. Here an optimisation algorithm is proposed
for handling complex multi-objective optimisation
problems having high degrees of inseparable function
interaction.

5.1 SOLUTION STRATEGY

For any continuous portion of the Pareto front, there is a
unique relationship involving objective functions. This
relationship is difficult to obtain analytically, and even if
it is found, it has limited usefulness since mapping from
function space to variable space is very complex.
However, the existence of a relationship among objective
functions of Pareto solutions necessarily implies that a
corresponding unique relationship exists among the
decision variables of these solutions.
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Table 1: Analysis of Existing Test Problems (PF: Pareto Front)

Problem n
Variable
Bounds

Objective Functions (Minimisation) Interaction Related Features
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A simple multi-objective optimisation problem is used
below for explaining the above concept (Figure 2).
Consider a two-objective optimisation problem having f1

and f2 as the two objective functions. For any continuous
portion of the Pareto front, there exists a Function F
involving f1 and f2.

0)2,1( =ffF

Suppose the problem has two decision variables x1 and x2

that define the functions f1 and f2 i.e. f1 and f2 can be
expressed as f1(x1,x2) and f2(x1,x2). Substituting the
expressions for f1 and f2 in the above equation yields the
function F1 in decision variables.
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This proves the statement made earlier that a unique
relationship exists among the decision variables of the
solutions belonging to any continuous portion of the
Pareto front. The proposed algorithm aims to explore this
relationship using non-linear multi-variable regression
analysis (Draper and Smith, 1998). It uses the relationship
thus obtained for the following purposes.

•  To perform periodic re-distribution of solutions for
aiding their spread over the current front.

•  To use history of change of regression coefficients
for guiding the search towards global Pareto front.

•  To use rate of change of regression coefficients for
determining the termination condition of the
algorithm.

•  To re-distribute the final solutions for obtaining the
whole range of well-distributed Pareto-optimal
solutions.

x 1 x 2

f 1 f2

F1

F

x-space

f-space

Figure 2: Solution Strategy

5.2 EPISTASIS VERSUS PROPOSED
SOLUTION STRATEGY

As discussed in Section 2.1, the inseparable function
interaction, defined in this paper, is termed as epistasis in
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the GA community. Based on the philosophy of epistasis
handling, the research in this field has taken two almost
independent paths. The first path views this interaction as
a race between linkage evolution and allele selection
(Harik, 1997), and the second as a GA theory problem
(Heckendorn and Whitley, 1999). Most of the previous
research in this area has concentrated on single objective
optimisation having limited number of optimal solutions.
Further, this research has focused more on the theory of
epistasis rather than its actual handling.

As opposed to the previous research, this paper proposes a
generic solution strategy for epistasis by treating it from
the point of view of definition of objective functions. This
explains why epistasis has been referred to as ‘inseparable
function interaction’ in this paper. Further, this work
focuses on multi-objective optimisation problems. Since
in these problems the aim is to identify as many diverse
Pareto optimal solutions as possible, the formation of
building blocks becomes more difficult than in single
objective optimisation (Deb, 1999). The proposed
solution strategy deals with this by directly targeting the
Pareto front of a problem rather than its building blocks.

5.3 DESCRIPTION OF PROPOSED
GENERALISED REGRESSION GA (GRGA)

The solution strategy is encoded in C++ using a new
algorithm ‘Generalised Regression GA (GRGA)’
described in Figure 3. It should be noted that being a high
performing latest algorithm, NSGA-II has been chosen as
the optimisation engine for GRGA (Deb et. al., 2000).
However, since GRGA is completely modular it can also
be used with any other multi-objective optimisation
algorithm for enhancing the algorithm performance in
handling problems with complex inseparable function
interaction. The steps involved in GRGA are explained
below.

1. Run the optimisation cycle until all individuals have
rank 0. This ensures that a front containing only non-
dominated solutions is achieved. This intermediate
front can be assumed to be continuous for continuous
global Pareto front. As revealed in Section 5.1,
regression analysis on decision variables carried out
in subsequent steps of this algorithm will give
relevant results only when such a continuous front is
used for analysis.

2. Perform regression analysis on the decision variables
to obtain the correlation coefficient (that shows how
accurately the regression model represents
relationship among variables) and the regression
coefficients (that determine the exact nature of
relationship).

3. If the correlation coefficient is greater than a pre-
determined value (say 0.7), proceed to Step 4 else
continue running optimisation cycle and performing
regression analysis until the correlation coefficient
becomes greater than 0.7. This ensures that
regression analysis is used in subsequent steps only
when the correlation coefficient has a value greater

than 0.7. This removes the possibility of misleading
the search through the use of a regression model that
does not accurately represent relationship among
variables.

4. If the generation number is a multiple of 10, proceed
to Step 5 else go to Step 7.

5. Artificially modify the regression coefficients after
every 10 generations using their history of change
observed in previous generations. This guides the
search towards global Pareto front by preventing it
from getting trapped in local fronts.

6. Re-distribute the solutions after every 10 generations
using modified regression coefficients. The aim of
this step is to encourage diversity among solutions.
The algorithms that can be used for re-distribution of
solutions are discussed in Section 5.4.

Optimisation

Start

Ranks = 0?

Regression Analysis

Remainder 
(gen_num, 10 = 0)?

Re-distribution

Optimisation

Regression Analysis

Changes in 
correlation and 

regression 
coefficients? 

Re-distribution

Display

Stop

Yes

Yes

No

No

No

Yes

Correlation 
Coefficient > 0.7?

Optimisation

Regression Analysis

Yes

No

Modification of reg_coeffs.

Figure 3: Generalised Regression GA (GRGA)
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7. Proceed to the next generation by running the
optimisation process.

8. Perform regression analysis on the decision variables.
9. If there are any changes in the values of correlation

and regression coefficients in the last two
generations, go to Step 4 else proceed to Step 10. No
changes in the values of these coefficients imply that
the Pareto front has been reached and that the
algorithm should now be terminated.

10. Re-distribute the final solutions using regression
coefficients. This creates solutions that are well
distributed across the Pareto front.

11. Display both distributed and undistributed final
solutions.

It should be noted that infinite looping is avoided in this
algorithm by restricting the maximum number of
generations to a pre-determined value. For the sake of
simplicity, this feature is not depicted in Figure 3.

5.4 DISTRIBUTION ALGORITHMS

Distribution algorithms are used here for periodically
spreading out solutions over their current front. The aim is
to encourage diversity among solutions. The distribution
algorithm should be able to deal with complex objective
functions without significantly adding to the
computational expense of the optimisation algorithm.
This section proposes and analyses three different
distribution algorithms.

5.4.1 Linear Distribution Algorithm (LDA)

LDA re-distributes the solutions using equally spaced
decision variables in their respective ranges. This means
that in a problem that has two decision variables x1: [0:1]
and x2: [0:1], the algorithm chooses equally spaced x1

values in [0:1] such that the number of points chosen is
equal to the population size. It then uses results from
regression analysis to find the x2 values corresponding to
these x1 values. The algorithm uses this set of decision
variables to form the new individuals and proceeds
forward.

This algorithm is simple to implement but it works on the
assumption that well-distributed points in parameter space
will give rise to well-distributed points in function space.
This works well for relatively simple objective functions.
However, for complex functions the assumption is not
valid causing the algorithm to fail.

5.4.2 Random Distribution Algorithm (RDA)

The failure of LDA in handling complex objective
functions was the motivation for the development of
RDA. This algorithm first generates a set of random
values for x1 in its range such that the number of points
generated is equal to the population size. It then uses
results from regression analysis to find the corresponding
x2 values and maps the obtained set of x1-x2 values back
to the function space. The algorithm then determines
unique points from this set and repeats the above process

until the number of unique points becomes equal to the
population size.

In this algorithm, a unique point is defined using the
concept of diversity metric (∆) given by Deb et. al.
(2000). Here, a hypothetical circle, with radius equal to
the average Euclidean distance, is drawn around the first
point (Figure 4). This point is now marked as unique and
all other points lying in its circle are deleted. This process
is repeated till all the given points have been analysed.

Hypothetical circle

Unique point

Deleted point

Figure 4: Identification of Unique Points

5.4.3 Hybrid Distribution Algorithm (HDA)

Although RDA has satisfactory performance, it is difficult
to implement and has high computational expense. This
has led to the development of HDA, in which a part of the
population is generated by linear distribution and the rest
is generated on a point-by-point basis using Euclidean
distances between consecutive points in the function
space. This algorithm is described below for a two-
variable problem (Figure 5).

1. Generate equally distributed values for x1 in its range.
Number of values generated should be equal to a pre-
determined proportion (say 10%) of the population
size.

2. Use results from regression analysis to get
corresponding x2 values.  Map the above set of x1-x2

values back to the function space.
S ta r t
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Figure 5: Hybrid Distribution Algorithm (HDA)
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3. Sort these points based on function values. Find the
Euclidean distances between consecutive points in
the function space.

4. Generate a new x1 value as mid-point of two
consecutive x1 values that have the maximum
Euclidean distance corresponding to them.

5. Use results from regression analysis to get the x2

value corresponding to this new x1 value. Map the
new x1-x2 pair back to the function space.

6. Find the Euclidean distances in the function space
between this new point and its immediate neighbours.

7. Check if the total number of generated points is equal
to the population size. If yes stop the process else go
to Step 4.

6 PERFORMANCE ANALYSIS

GRGA was tested using three problems namely ROT,
ZDT4 and ZDT6 listed in Table 1. These problems
together represent a number of features that create
difficulties for optimisation algorithms. Further, a number
of existing multi-objective optimisation algorithms have
exhibited limitations in solving these problems. This
section compares the performance of GRGA with that of
NSGA-II, which demonstrates better performance than
most other contemporary algorithms in solving these
optimisation problems (Deb et. al., 2000).

It was observed that in solving ROT the GRGA gives
better distribution of solutions as compared to NSGA-II.
This is illustrated in Figure 6, which compares the
performance of GRGA with that of NSGA-II for 100
population size, 500 generations, 0.8 crossover
probability, 0.05 mutation probability and simulated
binary crossover with 10 crossover distribution index and
50 mutation distribution index. In case of ZDT4 and
ZDT6, it was observed that the GRGA exhibits better
convergence as compared to NSGA-II. Figure 7 compares
the performance of GRGA and NSGA-II in solving ZDT6
for 100 population size, 250 generations, 0.9 crossover
probability, 0.1 mutation probability and simulated binary
crossover with 20 crossover distribution index and 20
mutation distribution index. It should be noted that
GRGA used HDA for the tests reported here.

The tests performed with GRGA lead to the following
conclusions.

•  The periodic modification of regression coefficients
using history of search guides the algorithm towards
global Pareto front by preventing it from getting
trapped in local fronts.

•  The periodic distribution of solutions using
regression analysis ensures that better distribution of
solutions is attained across the Pareto front.

•  The use of regression analysis for the termination of
the optimisation cycle ensures that the process is
terminated when no further improvements are
possible in terms of convergence to the Pareto-
optimal front.

•  The re-distribution of final solutions performed in
this algorithm provides the designers with the whole
range of well-distributed Pareto-optimal solutions.

•  As revealed in Section 4, most of the optimisation
problems have varying degrees of inseparable
function interaction. Since GRGA is capable of
handling this interaction and the logic behind it is
generic in nature, it is expected that the algorithm
would perform better than the existing ones in
dealing with a wide variety of optimisation problems.

ROT Problem
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Figure 6: Performance Analysis using ROT Problem
(True Pareto front shown by white line)
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(Assuming 2 variables)

A number of observations were also made regarding the
performance of the three distribution algorithms discussed
in Section 5.4. RDA and HDA exhibit better performance
as compared to LDA especially in dealing with problems
like ZDT4 and ZDT6 (Figure 7), which have complex
objective functions (Figure 8). This is because LDA
introduces an artificial bias in the search, leading to
inferior performance in the case of complex problems.
However, the computational expense of HDA is much
lesser than that of RDA. Therefore, HDA has been chosen
for use with GRGA.
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7 FUTURE RESEARCH ACTIVITIES

The current limitations of GRGA and the corresponding
future research activities are listed below.

•  The algorithm in its present form requires the Pareto
optimal front to be continuous. However, even if the
front is discontinuous, it can, in principle, be sub-
divided into continuous portions. The algorithm can
then be applied individually to these portions. This
provides an important area for future research.

•  The performance of this algorithm is dependent on
how accurately the relationship among decision
variables can be represented. Hence, use of more
sophisticated non-linear modelling tools like NN
have the potential of improving its performance.

•  The algorithm in its current form cannot deal with the
second level of interaction (variable dependence).
Research is currently underway to explore the use of
NN for handling this interaction.

•  Finally, research is going on for using sensitivity
analysis to identify and maintain multiple Pareto
fronts.

8 CONCLUSIONS

In spite of its immense potential for real-life problems,
lack of systematic research has plagued the field of
interaction for a long time. This paper proposes an
algorithm capable of handling inseparable function
interaction in multi-objective optimisation problems. The
performance of proposed algorithm is compared to that of
a state-of-the-art optimisation algorithm NSGA-II using
test problems listed and analysed in this paper. It is
observed that the proposed algorithm enhances the
interaction handling capabilities of NSGA-II.
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Abstract

This paper proposes a new parallel genetic algo-
rithm with adaptive adjustment of genetic param-
eters, which runs on a hierarchical island model.
During the execution of the parallel GA, each
subpopulation executes an adaptive GA, and ge-
netic parameters of a subpopulation with low per-
formance are adaptively adjusted by exchang-
ing the values of genetic parameters among the
neighboring subpopulations. Experimental re-
sults show the effectiveness of the proposed al-
gorithm compared to a parallel genetic algorithm
without adaptive parameter adjustment among
subpopulations.

1 Introduction

Genetic Algorithms (GAs) [4] are known as one of robust
heuristic algorithms for complex large optimization prob-
lems. However, there are two notorious problems on GAs
to realize their performance. One is the difficulty of setting
genetic parameters to appropriate values so as to draw out
a maximum capability of GA. The other is its large amount
of computation time. To solve the former problem, the con-
cept of adaptive GAs has been proposed [3]. An adaptive
GA is a GA, in which genetic parameters are adaptively
tuned automatically during the algorithm execution, and
many results on adaptive GAs have been presented [6]. On
the other hand, to solve the latter problem, introduction of
parallel and/or distributed processing into GAs has been
also intensively investigated [8].

To achieve a good performance of a GA, it is a natural
idea that both parameter adaptation and parallel process-
ing are combined in a GA to realize a high-performance
parallel adaptive GA, and according to this idea, several
works have already been presented. Schlierkamp-Voosen
and Mühlenbein proposed the breeder genetic algorithm

(BGA) [13], in which adaptation is performed among sub-
populations. Although the authors did not call their GA the
parallel GA, it could be run in a parallel/distributed envi-
ronment. Schnecke and Vornberger proposed a parallel GA
for the combined optimization of placement and routing in
VLSI layout [11]. The main idea of this algorithm is the
self-adaptation of the search process. Several islands ex-
ecute a sequential GA with different strategies. At fixed
intervals, these strategies are ranked and each strategy is
adjusted to the next better one by assimilating its charac-
teristical parameters. In contrast to those subpopulation
based adaptive parallel GAs, Budin et al. proposed a paral-
lel adaptive GA, in which there exists only a single mating
pool, but a number of threads can operate on the population
at the same time, each one acting independently [1]. The
adaptive method determines the way in which the genetic
operators applied, not interfering with the operators them-
selves. Recently, Sawai and Adachi presented a parallel
GA, which relieved the user from having to set the param-
eters of the GA [10]. In their GA, the search strategy was
based on a dynamic change of subpopulation size extracted
from the population.

From the implementation point of view, a parallel adap-
tive GA based on an island model, in which the population
consists of some number of subpopulations, is preferred,
especially when the GA is implemented on a network of
workstations. As mentioned above, several parallel adap-
tive GAs based on an island model have been proposed.
In this paper, we have several concerns on parallel island
model GAs with parameter adaptation. First, the way how
to realize and control parameter adaptation is a crucial point
to design a parallel adaptive GA. The adaptation mecha-
nism may be defined by the set of parameters to be adapted,
adaptation timing, the method of updating parameters, and
so on. Second, the ranking method to evaluate each sub-
population is important. When adapting the parameters in
each subpopulation, usually, we should evaluate the whole
set of parameter values of that subpopulation, and based
on that, parameter values are exchanged among subpopu-
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lations to update them. Third, we are interested in how to
choose initial values of parameters, which are both ordi-
nary GA parameters and “strategy” parameters to control
the parameter adaptations, in each subpopulation. Finally,
in [13], Schlierkamp-Voosen and Mühlenbein pointed out
that the crucial question of the adaptation based on sub-
populations concerned the level where the adaptation was
done, and the level of subpopulations or the level of pop-
ulations could be used. However, until now, this problem
has not been discussed further in detail.

In this paper, we propose a new parallel GA with adaptive
adjustment of genetic parameters based on an extended is-
land model. The main features of the proposed GA are as
follows. First, we introduce several adaptation control pa-
rameters so that the behavior of each subpopulation can be
characterized differently each other. Based on those param-
eters, second, we also propose a new adaptation algorithm
among subpopulations. Third, we propose a new strategy to
initialize the values of genetic parameters in each subpop-
ulation. Fourth, we investigate several methods for ranking
subpopulations. Finally, experimental results are provided
to show the effectiveness of the proposed adaptive GA.

The paper is organized as follows: It starts with a descrip-
tion of the overall algorithm. Then, the proposed adapta-
tion method is presented. Finally, experimental evaluation
on the proposed algorithm is described.

2 Preliminaries

2.1 Population model

The proposed parallel adaptive GA adopts an extended is-
land model as its population model. An island parallel GA
is a GA, in which a whole population is divided into a set
of mutually disjoint subpopulations, and for each subpop-
ulation, a process is assigned to execute a GA procedure.
During the execution of the GA, each process exchanges
the individual data to prevent a premature convergence to
a local optimum. This operation is generally called mi-
gration. The migration process can be characterized by
its timing and the selection and update algorithm of mi-
grated individuals. For migration timing, it can be done
synchronously or asynchronously. Synchronous migration
is the one, in which all subpopulations synchronously ex-
change their individual data. In case of asynchronous mi-
gration, each subpopulation independently starts migration
when a given condition is satisfied in the subpopulation.
For the selection and update algorithm of migrated individ-
uals, there are also several variants. When a subpopulation
receives a request to send an individual data, there are sev-
eral selection methods to choose it, for example, the best
one, or an arbitrary one. When a subpopulation receives
a migrated data from another subpopulation, there are also

several update methods, for example, to add it into the sub-
population no matter how its fitness value is, or to add it
only when the migrated data is superior than any data in
the current subpopulation.

An island parallel GA is also characterized by the commu-
nication topology among subpopulations. This is often rep-
resented by a graph, in which each vertex represents a sub-
population, and there is an edge between subpopulations if
migration is performed between those two subpopulation.
If a subpopulation A has an edge to a subpopulation B, we
say A is a neighbor of B.

In this paper, we adopt an extended island population
model as the population model of the proposed parallel
adaptive GA. The basic structure of our model is the same
as the ordinary island model. However, we introduce a hier-
archical structure into the island model. In our model, a set
of subpopulations is divided into a set of mutually disjoint
groups of subpopulations, and we call each group a commu-
nity. Mathematically speaking, a set of subpopulations can
be regarded as a refinement of a set of communities. The
aim of introducing the concept of communities is to control
the parameter adaptation among subpopulations. We have
a hypothesis that, to achieve a good performance of a par-
allel adaptive GA, it is more effective to set parameter val-
ues in neighboring subpopulations to similar values rather
than to set them to totally different values. According to
this hypothesis, as mentioned below, each community will
have the same initial values for some genetic parameters.
The validity of this hypothesis is shown by experimental
results.

Figure 1 shows an example of our proposed population
model, in which there are 16 subpopulations, and each 4
subpopulations constitute a community. In this example,
subpopulations in a community are more tightly connected
with each other than with subpopulations outside the com-
munity so that parameter adaptation will mainly be per-
formed in each community.

subpopulation

community

Figure 1: An example of the proposed population model.
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2.2 Adaptive GA for each subpopulation

Parameter adaptation of a parallel adaptive GA may be
classified into two types: parameter adaptation among sub-
populations, and parameter adaptation in each subpopu-
lation. Although the former is more interesting from the
viewpoint of parallel GAs, the latter is still worth consider-
ing to get a better GA performance. There have been many
adaptive GAs so far, and many of those could be used as
the adaptive GA procedure for each subpopulation in the
proposed parallel adaptive GA. In this paper, we adopt an
elite-degree based adaptive GA (EAGA), which we have
proposed in [5]. An EAGA is a generational adaptive GA,
in which, when recombining a pair of individuals, a poten-
tial superiority of each individual is estimated by a special
measure called elite degree, and based on their elite de-
grees, types of crossover operators and the values of mu-
tation probabilities are selected and applied to individu-
als. An individual having a high elite degree is supposed
to have many good schemata, and so a schema preserving
crossover such as 2-point crossover is applied. Otherwise,
for an individual having a low elite degree, a more disrup-
tive crossover such as uniform crossover is applied to ex-
plore the search space widely. Selecting GA operators and
parameter values for each individual based on elite degree,
an EAGA can realize a good balance of global search and
local search so that a good solution can be found in a short
computation time. For formal description of elite degrees,
see Appendix.

3 Parallel Adaptive GA

3.1 Outline of the algorithm

The outline of the proposed algorithm is as follows. First,
initial genetic parameter values are randomly set in each
subpopulation. During the execution of the algorithm, each
subpopulation executes the adaptive GA procedure [5] to
evolve the individuals. In this process, the crossover op-
erators and mutation probabilities are adaptively selected
to each individual based on elite degree. Migration to ex-
change individual data among subpopulations is also exe-
cuted when a given migration condition is satisfied. After
the execution of GA procedures for one generation, each
subpopulation checks whether the condition to start param-
eter adjustment among subpopulations is satisfied. Adap-
tive parameter adjustment to genetic parameters is per-
formed among neighboring subpopulations if no best indi-
vidual has been updated in the last k generations by genetic
procedures in the subpopulation except migration, where k
is a user-specified parameter. Then, genetic parameters of
the subpopulation are updated according to the ones in a
neighboring subpopulation, whose performance is ranked
to be the best among neighboring subpopulations. After

the parameter adjustment among subpopulations, the adap-
tive GA procedure in a subpopulation is started again. This
process is repeated until the specified number of genera-
tions are executed. The flowchart of the proposed algorithm
concerning each subpopulation is shown in Figure 2.

Start

Generating an initial population

Setting parameters

Receiving the best individual from neighboring subpopulations

Roulette selection

Crossover

Mutation

Calculation of individual fitness and subpopulation performance

Parameter adjustment?

Ranking subpopulations

Parameter adjustment

End

Terminate?

Migration?
No

Yes

No

Yes

No

Yes

Figure 2: Outline of the proposed algorithm.

3.2 Genetic parameters to be adjusted

In the proposed algorithm, genetic parameters are classi-
fied into four types, that is, adjustment parameters, sub-
population parameters, community parameters, and popu-
lation parameters. Adjustment parameters are the param-
eters to be adaptively adjusted during the algorithm exe-
cution, and those initial values are set independently and
randomly in each subpopulation. Another parameters are
static parameters, and those values are specified at the start
of the algorithm execution and fixed during the algorithm
execution. Subpopulation parameters are parameters, for
which initial values are set independently in each subpop-
ulation. Community parameters are the parameters, whose
values are common among subpopulations in a community.
Population parameters are parameters to be used to control
the overall behavior of the algorithm, and those values are
common in all subpopulations. In the following, parameter
values and their ranges of values are listed.
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1. Adjustment parameters

• crossover probability† Pc ∈ [0.0, 1.0]
• the number of crossover points for elite

crossover† CP ∈ {1, 2, 3, 4, 5}
• low mutation probability † PmL ∈ [0.0, 0.05]
• high mutation probability † PmH ∈ [0.0, 0.5]
• threshold for adaptive operator selection Dth ∈

[0.0, 4.0]
• migration rate‡ Rm ∈ {1, 2, . . ., 100}
• migration exchange mode‡ Mexc ∈
{asynchronous, synchronous, random}
• migration update mode‡ Mup ∈ {conditional,

non-conditional}
2. Subpopulation parameters

• adjustment weight∗ Wadj ∈ [0.0, 1.0]
• adjustment start generation∗ Tadj ∈
{0, 500, 1000,1500}
• adjustment restart interval∗ Iadj ∈
{100, 101, . . . , 500}
• adjustment rejection rank∗ Rrej ∈
{∅, {2}, {2, 3}}
• adjustment order∗ Oadj

3. Community parameters

• subpopulation size N ∈ {30, 31, 32, . . ., 100}
• elite decision factor† α ∈ [0.0, 1.0]
• elite influence factor† β ∈ [0.0, 1.0]

4. Population parameters

• the maximum number of generations Tmax

• the number of subpopulations in a community
Nsub

• the number of communities Ncom

• initial setting mixture ratio R ini

In the above list, parameters with † are parameters used in
the adaptive procedure based on elite degree proposed in
[5]. We assume that, in this paper, for elite crossover oper-
ator, one of 1-point, 2-point, 3-point, 4-point, and 5-point
is adaptively selected to be applied to each pair of elite in-
dividuals. For recombining non-elite individuals, uniform
crossover is used. Parameters with ‡ are parameters to be
used to control the individual data exchange among sub-
populations. For lack of space, the details of them are omit-
ted here. For detailed description on those, please refer to
[12]. Parameters with ∗ are parameters to control adaptive
parameter adjustment among subpopulations, that will be
explained in the following.

3.3 Initial parameter setting

Performance of a parallel GA partly depends on the initial
values of genetic parameters. In [7], Miki et al. showed that
setting different values for each subpopulation was more
effective than setting the same values in an island parallel
GA. On the other hand, if we randomly generate an initial
value to each parameter, a parameter may have an inappro-
priate value. Thus, it is better to restrict the range of the
value of each parameter.

In this paper, initial genetic parameter setting is performed
in two different ways, called standard setting and non-
standard setting. In the standard setting, an initial value of
a parameter is randomly generated within a narrow range,
whose center value is equal to the standard one. The stan-
dard value of each parameter is derived from the De Jong’s
standard parameter values or the ones which are empiri-
cally shown to be best effective. On the other hand, in the
non-standard setting, an initial value is randomly generated
within a more wider range.

In the proposed parallel adaptive GA, initial values of ad-
justment parameters are set by both the standard and non-
standard setting methods, and for each subpopulation, one
of two initial setting methods is randomly selected accord-
ing to the initial setting mixture ratio R ini. For example, if
Rini = 0.8, then for 80% of subpopulations, the standard
setting is applied. Table 1 shows the ranges of parame-
ter values. For subpopulation and community parameters,
only the standard setting is applied to produce the initial
values of parameters. For population parameters, the user
specifies them.

Table 1: Standard and non-standard parameter setting

standard setting non-standard setting
Pc 0.4 ∼ 0.8 0.0 ∼ 1.0
CP 2, 3 1, 2, 3, 4, 5
PmL 0.0001 ∼ 0.005 0.00001 ∼ 0.05
PmH PmL × 10 0.0001 ∼ 0.5
Rm 5 ∼ 40 1 ∼ 100

Mexc async., sync., random async., sync., random
Mup cond., non-cond. cond., non-cond.
Dth 2.0 ∼ 3.5 0.0 ∼ 4.0

3.4 Parameter adjustment order

In the proposed algorithm, not all adjustment parameters
are updated at a time. Adjustment parameters are clas-
sified into some number of groups, and at a time when
the adaptive parameter adjustment is performed, param-
eters in one group are updated. In the current imple-
mentation of the algorithm, adaptive adjustment parame-
ters are classified into the following four groups: G 1 =
{Pc, CP}, G2 = {PmH , PmL}, G3 = {Rm,Mexc,Mup},
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and G4 = {Dth}. The order of groups to be adjusted is
given by the adjustment order Oadj, which is a subpopula-
tion parameter.

3.5 Ranking subpopulations

When a subpopulation starts the parameter adjustment with
its neighboring subpopulations, first, it determines the rank
of each subpopulation based on some criterion to evaluate
the performance of the current parameter set. We have per-
formed some preliminary experiments for 8 kinds of crite-
rion [12], and from the experiments, we adopt the follow-
ing three methods as the ranking methods. We assume that
the method to be actually used in the proposed algorithm is
specified in advance by the user.

• the diversity of genotypes [2]

• the standard deviation of fitness values [9]

• the number of times the best fitness has been updated.

3.6 Adaptive parameter adjustment among
subpopulations

Adaptive parameter adjustment among subpopulations in
the proposed parallel adaptive GA consists of three phases
described below. Let T be the current generation, and I be
the number of generations passed since the latest genera-
tion, in which the best individual has been updated with-
out migration. Parameter adjustment will be started if both
T ≥ Tadj and I ≥ Iadj are satisfied, where Tadj and Iadj

are both subpopulation parameters. It means that, parame-
ter adjustment in a subpopulation will happen when a sub-
population seems to have a low possibility to find a better
individual with the current parameter values.

3.6.1 Phase 1

In Phase 1, the ranks of neighboring subpopulations are de-
termined. Let p be a subpopulation, for which the adap-
tive parameter adjustment is performed, and let NB(p) be
the set of neighboring subpopulations of p including p it-
self. For each q ∈ NB(p), let R(q) be the rank of q, and
Rlast(q) be the rank of q in the last parameter adjustment.
The rank is calculated by the user-specified criterion de-
scribed in Subsection 3.5.

3.6.2 Phase 2

In Phase 2, the algorithm determines whether to start pa-
rameter adjustment or not. If the rank of p itself is 1, then it
may be difficult to change its situation by receiving the pa-
rameter values from other subpopulations. Thus, p changes
its parameter values by itself. Otherwise, parameter adjust-
ment based on the parameter values of other subpopulation

will be started. Detailed description of Phase 2 is as fol-
lows.

Step 1 If R(p) > 1 then go to Phase 3. Otherwise, if
Rlast = 1, then go to Step 2, else terminate the pa-
rameter adjustment.

Step 2 If all adjustment parameters have been adjusted,
then go to Step 3, otherwise go to Step 4.

Step 3 Set all adjustment parameters to the initial values,
which were set at the start of the algorithm. Terminate.

Step 4 Set the parameter values using the setting method,
which is different from the one used in the last param-
eter setting. For example, if, in the last setting, the
standard setting was applied, then the non-standard
setting will be applied.

3.6.3 Phase 3

In Phase 3, parameter adjustment among subpopulations is
actually performed. Characteristics of each subpopulation
for parameter adjustment may be different. For example,
using parameter Rrej, some subpopulation may be set to
be persistent to keep its parameter values. The order of pa-
rameters to be adjusted may be also different among sub-
populations.

Step 1 If R(p) ∈ Rrej then terminate. Otherwise, go to
Step 2.

Step 2 Find the subpopulation q ∈ NB(p) whose rank is
1.

Step 3 Obtain the values of adjustment parameters in a
group specified by the parameter adjustment order
Oadj from q.

Step 4 Compare the parameter values obtained in Step 3
with the current parameter values of p. If the differ-
ence between the obtained value and the current value
is small, then go to Step 5. Otherwise, go to Step 6.

Step 5 If all groups of adjustment parameters have been
updated according to the adjustment order, then let q
be the subpopulation with the next rank of current q,
and go to Step 3. Otherwise, go to Step 3.

Step 6 Let I(q) be the number of generations passed since
the latest generation, in which the best individual has
been updated without migration in q. If I(q) ≤ Iadj ,
then go to Step 7, else go to Step 8.

Step 7 For each adjustment parameter, denoted r, in the
current group to be adjusted in p, let r ′ be the corre-
sponding parameter in q. Then, r← r + Wadj × (r−
r′), where Wadj is the adjustment weight.
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Step 8 r ← r′ × (0.8 + rand(0.4)), where rand(t) is a
random number in [0.0, t].

4 Experiments

The proposed parallel adaptive GA has been implemented
with the C language and the PVM (Parallel Virtual Ma-
chine), a software system that enables a collection of het-
erogeneous computers to be used as a coherent and flexible
concurrent computational resource, running on two work-
stations (Ultra COMPstation Model 170×2) connected
with a LAN. We used the following three benchmark func-
tions to evaluate the proposed GA.

f11(�x) = 20× 10 +
20∑

i=1

(x2
i − 10 cos(2πxi))

−5.12 ≤ xi ≤ 5.12(i = 1, 2, . . . , 20)
min(f11) = f11(0, 0, . . . , 0) = 0

f13(�x) = 1 +
10∑

i=1

x2
i

4000
−

10∏
i=1

(cos(
xi√
i
)

−600 ≤ xi ≤ 600(i = 1, 2, . . . , 10)
min(f13) = f13(0, 0, . . . , 0) = 0

f14(�x) =
50∑

i=1

f ′(xi)

(xi, f
′(xi)) = ((0, 3), (1, 2), (2, 1), (3, 0), (4, 4))

(i = 1, . . . , 50)
max(f14) = f14(4, . . . , 4) = 200

In the experiments, the population parameters were set as
follows: Tmax = 3000, Ncom = 4, Nsub = 4 and
Rini = 0.5. The population model used in the experiments
is the one shown in Figure 1. The proposed algorithm was
compared with an algorithm without parameter adaptation
among subpopulations, that is, the algorithm was the same
behavior as the proposed one except that no parameter val-
ues were exchanged among subpopulations. Note that, in
each subpopulation, adaptive parameter selection based on
elite degree [5] was performed in the both algorithms. Two
algorithms were run in 20 times with the different initial
values of individual data and genetic parameters. In each
run, the same initial values of corresponding parameters of
two algorithms were set. As the methods of evaluating a
subpopulation, the three methods described in Subsection
3.5 were used.

Results of the experiment were summarized in Tables 2, 3,
and 4. In Table 2, the average, the best, and the worst of
the best fitness in 20 runs were shown. From the table, as
the best value, the proposed algorithm produced the better

results than the non-adaptive method in most cases. As the
evaluation method of the performance of a subpopulation,
the method based on the diversity of genotypes [2] may be
the best among the three. Next, in Table 3, we evaluated
the effectiveness of the proposed hierarchical population
model by changing the number of communities. In this ex-
periment, we used f11 as the benchmark function, and the
diversity of genotypes was used to evaluate the subpopu-
lation performance. From Table 3, we see that the hierar-
chical model was in fact effective. In this experiment, the
topology of 4×4 was the best. Finally, we changed the ini-
tial setting ratio, and compared the results. Table 4 showed
the results. From the table, it is appropriate to set the ratio
of nonstandard setting to 0.5 to 0.75. We have performed
several other experiments using the different benchmarks,
and have obtained the similar results. Thus, we conclude
that the proposed parallel adaptive GA is in fact effective
to obtain good results.

Table 3: Evaluation of the proposed hierarchical population
model.

Ncom ×Nsub average best worst
16× 1 35.0 12.8 69.7
8× 2 37.2 7.8 71.4
4× 4 31.0 4.5 65.9
2× 8 24.6 10.0 52.6
1× 16 33.4 8.3 85.2

Table 4: Evaluation of the initial setting method.

stand. : non-stand. average best worst
100% : 0% 41.5 11.8 71.6
75% : 25% 39.8 16.6 70.8
50% : 50% 33.8 4.5 65.9
25% : 75% 28.9 7.7 67.3
0% : 100% 24.3 8.9 44.9

5 Conclusion

In this paper, we proposed the new parallel adaptive GA,
in which parameter values were exchanged to adjust them.
Experimental results show that the proposed parallel adap-
tive GA can produce better solutions than previous meth-
ods. In particular, introducing a hierarchical structure into
the population model has been shown to be effective. Fu-
ture research includes the development of a more effective
adaptive method to adapt parameter values among subpop-
ulations.
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Table 2: Comparison with the non-adaptive parallel GA.

function the evaluation method of a subpopulation average best worst
f11 diversity in a genotype 31.0 4.5 65.9

standard deviation of fitness 35.1 8.1 71.9
the number of updates of the bests 30.3 3.7 75.2
non-adaptive GA 28.4 11.5 54.7

f13 diversity in a genotype 0.492 0.067 1.289
standard deviation of fitness 0.629 0.045 1.950
the number of updates of the bests 0.702 0.069 1.887
non-adaptive GA 0.630 0.084 1.501

f14 diversity in a genotype 28.0 11.0 52.0
standard deviation of fitness 25.3 15.0 42.0
the number of updates of the bests 29.5 17.0 49.0
non-adaptive GA 29.6 17.0 52.0
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Appendix

A Elite Degree

In [5], we introduced a new measure called the elite de-
gree, which shows how much the good schema is supposed
to be included in an individual (chromosome). Let the gen-
eration of initial population be generation 0, and T (> 0)
be the current generation. Let xT

i (1 ≤ i ≤ N , where N
represents the population size) be the i-th individual of the
population in the generation T , and AncT

i (j) be the set of
ancestors in T − j generation of individual xT

i .

In order to define the elite degree, first, we define an elite.
Consider the case of the maximization problem. We as-
sume that the distribution of the fitness values of the in-
dividuals is a normal distribution, where µ and σ are the
mean and the standard deviation of fitness values of indi-
viduals, respectively. Then, we regard an individual as an
elite if an individual has a fitness value equal to or greater
than µ + α × σ, where α is a real number greater than 0.
Then, elite degree of individual xT

i , denoted E(T, i), is de-
fined by the following equation.

EliteT
i (j) = {xT−j

k |xT−j
k ∈ AncT

i (j),

µT−j + α× σT−j ≤ f(xT−j
k )}

E(T, i) =

level max∑
j=0

{∣∣EliteT
i (j)

∣∣ × βj

}

level max∑
j=0

{
|AncT

i (j)| × βj

}

where EliteT
i (j) is the set of elite ancestors of xT

i in gen-
eration T − j, f(xT−j

k ) is the fitness value of k-th indi-
vidual in generation T − j. We call α the elite decision
factor and β (0 ≤ β ≤ 1) the elite influence factor. If
α is large, the number of individuals regarded as elites
decreases. Conversely, if α is small, the number of elite
individuals increases. And, as β becomes small, the influ-
ence of ancestors far from the current generation decreases.
For the minimization problem, we can define elite degree
in a similar manner.

Using the elite degree, GA operators and GA parameters
are selected during the GA execution. For example, in the
crossover phase of two individuals, u and v, first the elite
degrees of them, denoted E(u) and E(v), are calculated.
Then, if E(u) + E(v) is larger than the user-defined pa-
rameter, denoted Dth, then a crossover operator suitable
for elite individuals is selected and applied. Otherwise, an
operator suitable for non-elite individuals is selected and
applied. The same mechanism can be used for other GA
operators and GA parameters.
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Abstract
This paper proposes an evolutionary approach
for the traveling salesman problem. The
proposed approach consists of global and local
strategies by incorporating the family
competition into edge assembly crossover and near
2-opt mutation. The method is applied to six well-
known problems, including the eil101, lin318,
pcb442, att532, rat575, and u724. The
experimental results indicate that the proposed
approach performs robustly and is very
competitive with the other approaches surveyed
in this paper. As our approach, although
somewhat slower, executes 50 independent runs
for the att532 problem, it is able to find the
optimum solution in 23 runs and the average
value of solution quality is 27691.3 To the best
of our knowledge, the solution quality is the best
in our surveys for this problem.

1 INTRODUCTION
The traveling salesman problem (TSP) is a well-

known NP-hard optimization problem, in which we
require to determine the shortest closed route passing
through a set of n cities under the condition that each city
is visited exactly once. Many problems in science,
engineering, and bioinformatics fields, such as expert
systems, routing as well as scheduling problems, flexible
manufacturing systems, physical mapping problems
[Alizadeh et al., 1993], and phylogenetic tree construction
[Korostensky, 2000] can be formulated as a TSP. Up to
now, there is no known algorithm which can determine an
optimum path for the TSP bounded by any power of n.

A large number of approaches have been devoted to
solve the TSP. Many traditional local and heuristic
methods of operational research have been proposed, such
as 2-opt as well as 3-opt [Lin, 1965] and Lin-Kernigan
[Lin and Kernighan, 1973]. Although local search is very
efficient, it often gets struck at local minima. Simulated
annealing [Kirkpatrick, 1983] based on Metropolis
procedure and Hopfield neural networks [Hopfield et al.,
1985] have also been applied to TSP.

Evolutionary algorithms [Freisleben and Merz, 1996]
[Dorigo and Gambardella, 1997] [Nagata and Kobayashi,
1997] [Tao and Michalewicz, 1998] [Mulhem and
Maghrabi, 1998] [Zhenya et al., 1999] had been applied to

solve TSP. An evolutionary algorithm is based on the
ideas borrowed from genetics and natural selection. It is a
generally adaptable concept for problem solving,
especially well suited for solving difficult optimization
problems, where traditional optimization methods are less
efficient. There are about three main independently
developed but strongly related implementations of
evolutionary algorithms: genetic algorithms [Goldberg,
1989], evolution strategies [Baeck, 1996], and
evolutionary programming [Fogel, 1995]. These three
types of standard evolutionary algorithms are not very
efficient. Thus, many modifications [Xiao et al, 1997]
[Hart, 1994] [Saravanan and Fogel, 1997] [Back et al.,
1997] have been proposed to improve solution quality and
to speed up convergence.

Because original evolutionary algorithms are not very
efficient, a trend [Hart, 1994], [Yen et al., 1998] is to
incorporate local search techniques into evolutionary
algorithm. Such a hybrid approach may possess both the
global optimality of the genetic algorithms and also the
convergence of the local searches. Another technique is to
use multiple genetic operators [Saravanan et al., 1997],
[Xiao et al., 1997]. The main disadvantage of this
technique is that the mechanism for selecting applied
operators may mislead evolutionary algorithms toward
local optima.

To further improve the above approaches, in this
paper a new method called family competition genetic
algorithm (FCGA) is proposed for solving TSP. The
approach combines the family competition, near 2-opt,
and edge assembly crossover [Nagata and Kobayashi, 1997],
which is an efficient genetic crossover operator. The
concepts of the family competion have been successfully
applied to several continuous parameter optimization
problems, such as protein docking [Yang and Kao, 2000]
and thin-film coatings [Yang and Kao, 2001]. The near 2-
opt is a new mutation operator derived from the original
2-opt operator. In this paper, the near 2-opt is viewed as
local search strategies, while the family competition and
the edge assembly crossover (EAX) are viewed as global
search strategies and the former is used to keep the
diversity of the population. The proposed approach seems to
be able to balance exploration and exploitation.

The rest of this paper is organized as follows. Section
2 introduces the evolutionary nature of the proposed
approach. Section 3 provides the experimental results on
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three benchmark problems and comparisons of our
approach with well-known approaches, such as
evolutionary approaches and local search approaches.
Some characteristics of our approach are also discussed.
Concluding comments are drawn in Section 4.

1. Set g =1, randomly generates an initial population,
P(g), with N solutions. Each solution is represented as
i = �(1,2,..,M), where� is the permutation operator,
and M is the number of cities. Denote L as the family
competition length.

2. Evaluate the fitness of each solution in the population P(g).
3. repeat

3.1 Let C be an empty set (C =�).
3.2 for each solution a, called family father, in the

population
! for l = 1 to L

Randomly select b from the current
population
Generate an offspring cl by using EAX with
parents a and b. (Figure 2)
endfor

! Select the one (cbest) with the lowest objective
value from c1,…,cL, and a. (family selection)

! Generate an offspring cm by applying near 2-
opt operator to cbest. cbest is set to the one with
better solution from cbest and cm .

! Add the cbest into the set C.
endfor

3.3 Let g = g + 1 and P(g) = C
until (termination criteria are met)
Output the best solution and the value of merit
function.

Figure 1. The outline of FCGA

2 APPROACH
In this section, we present the details of our proposed

algorithm for TSP. The basic ideas of FCGA are to keep
the diversity of the population by the family competition
and to design the genetic operators that are able to
compensate for the advantages of each other. FCGA is a
multi-operator approach, combining EAX and near 2-opt,
that seem to be able to balance the search power of
exploration and exploitation.

Figure 1 shows the main steps of FCGA. N solutions
are generated as the initial population. Each solution is
represented as a permutation from 1 to M, where M is the
number of cities. After evaluating each individual, FCGA
enters the main loop, which consists of EAX, the family
competition, and near 2-opt. Each individual in the
population sequentially becomes the “family father” to
produce L offspring by conducting the EAX and the
family competition. The near 2-opt is applied to the one,

with lowest fitness value from these L offspring and the
“family father”, to generate a solution which is an
individual of next generation. Therefore, LN solutions are
generated in one generation and N solutions are selected
as the parent population of the next generation.

In the following subsections, we will describe the
important components including the selection mechanism,
the EAX, family competition, and near 2-opt.

Generate AB-cycles from
two parents

Construct a AB-cycle set
either randomly or

heuristic

Generate some intermediate
individuals by applying the set
to parent I. Mark I as selected

Modify these intermediates
into valid ones and

choose the best child.

Select an individual I from Population, L = 0

Random Select an individual J from Population, L = L+1

If I is better
than J

Generate some intermediate
individuals by applying the set
to parent J. Mark J as selected

If J is marked
as selected

YES

YES

NO

NO

L>5
NO YES

Family selection

Figure 2. The outline of EAX, the selection
mechanism, and family computation

2.1 SELECTION MECHANISM

A new selection mechanism derived from [D.J.
Cavicchio, Jr., 1970] is proposed to integrate the search
ability of the family competition and EAX. This
mechanism is used to maximize the EAX searching
ability and to avoid trapping to the local minima. In the
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procedure of integrating the family competition and EAX
(Figure 2), each individual in the population sequentially
becomes the “family father.” This “family father” and
another solution randomly chosen from the rest of the
parent population are used as parents for EAX, which is
not a symmetric operator. One parent is the major parent
while the other parent, “assisting father”, is responsible
for supplying diverse edges. If the “family father” was
always the main parent during EAX, the power of
exploring search space of EAX will lose. But if the parent
with lower fitness value was always selected as the major
parent, FCGA may easily trap to the local minima. Here
FCGA maintains a vector V = (v1…vn) to record the status
whether or not each individual has been selected as the
major parent. If vi is true, it means that individual i had
been selected as the major parent in one generation. In the
selection procedure, when a parent I in terms becomes the
“family father” to generate a child; another individual J is
randomly selected. If vj is true, individual I will be the
major parent to generate children; otherwise check the
fitness value of individual J and I. The one with lower
fitness value will become the major parent to generating
children. This selection mechanism not only keeps the
population diversity but also preserves the search power
of EAX.

2.2 EAX

Edge assembly crossover is a powerful crossover
operator proposed by Nagata [Nagata and Kobayashi,
1997]. EAX has two important features. First, EAX is
excellent in preserving parent’s structure because most of
the edges of the offspring are made from parents. Second,
EAX is able to generate a wide variety of children by
exploring the search space. Here EAX is biased to a
global search operator in FCGA.

The EAX operator merges two parents into a single
graph denoted by G. Two parents are denoted A and B,
respectively. EAX uses the following steps to generate a
new child (see Figure 2):

(1).Generate AB-cycles.

(2).Select “hopeful” AB-cycles.

(3).Generate intermediate individual by applying
“hopeful” AB-cycles to the parent with lower
fitness value.

(4).Modify the intermediate individual into a valid
one.

In graph G, we trace the edge in tour-A and the edge in
tour-B alternatively until we generate a cycle, and such a
cycle is defined as an AB-cycle. Once an AB-cycle has
been found, it is stored and the edges of AB-cycle are
removed from G. This procedure is repeated until G
contains no more edges. Each edge in G belongs to a
unique AB-cycle. After AB-cycles have been generated, a
subset of AB-cycles is chosen randomly or heuristic.

Nagata [Nagata and Kobayashi, 1997] proposed a
heuristic method, which uses some statistical information
about two individuals versus the whole populations. The
information is intuitively concerned about the gains and
diversities of modified individual after applying this AB-
cycle. the parameter� is set to 1 to balance these two terms.

Once the subset of AB-cycles is determined, it is
applied on the parent A (the one with lower fitness value,
denoted as the “major” parent) to generate an intermediate
individual I. At the beginning, I is a duplicate of A. If the
edge exists in parent A, the edge is deleted from I.
Otherwise the edge is added to I. After this procedure, I
will contain some disjoint sub-tours. Finally, EAX
modifies the intermediate individual I into a valid child.
Readers may get the more details in [Nagata and
Kobayashi, 1997].

In the process of generating a child, Nagata first apply
their heuristic method to generate a child. If the child is
not proper to survive, then AB-cycles are randomly
selected to generate another child. This random process is
repeated for one hundred times. In our test and
experimental results, it is proper to apply random search
to find a child within the limit of 30 trails in FCGA for
both time and solution concerns.

2.3 FAMILY COMPETITION

In the family competition step, EAX crossover
operator creates L offspring and only one with best
objective fitness value is survived. The procedure of the
family competition is described as follows. Each
individual (a) sequentially becomes the “family
father.“ This “family father“ and another solution (b)
randomly chosen from the rest of the parent population
are used as parents to do EAX crossover operation to
generate an offspring (cl). For each family father, such a
procedure is repeated L times. Finally L solutions (c1,...,cL)
are produced. After L solutions compete with “family
father,“ only the one (cbest) with the best objective value
survives. Since we create L solutions from the same
“family father“ and perform a selection, this is a family
competition strategy. Because each individual
sequentially becomes the “family father“, LN offspring
are generated in one generation.

2.4 NEAR 2-OPT

In this subsection a new local search operator, near 2-opt
inversion genetic operator, is proposed. Near 2-opt is based
on simple inversion. It is a unary operator, since the
inversion is applied to a segment of a single individual. Near
2-opt operator is adapted here to enhance the local search
ability, speedup the convergence rate, and help EAX to
escape from local optimum. Since EAX is a crossover
operator, most edges of children are inherited from
parents. Due to this property, EAX may suffer from
slower convergence rate and poorer ability for exploring
new edges. In other words, this operator used here is to
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compensate EAX both speed and ability of searching
problem space.

Figure 3 provides a description of the whole algorithm
of the proposed operator. By the input of an individual b
and maximum inversion counter, MIC, near 2-opt operator
first sets the temporal individual b’ as b, reset the failed
inversion counter t as 0, and then randomly selects a city
c from current individual b. The other city c’ is then
selected by choosing the city with lowest distance to the
city c. The section from the next city of city c to the city
c’ in b’ is then inverted if c and c’ are not neighbors in b’.
If c and c’ are already neighbors in b’, the failed inversion
t is added by 1. Selecting another city c and repeating
above steps until the failed inversion counter t exceeds
MIC. Finally, if the fitness value of b’ is better than b, we
replace the individual b by b’.

Let’s illustrate the behaviors of near 2-opt in the
following example. Assume that the current individual b
is (1,2,3,4,5,6,7) and the current city c is 2. If city 5 is the
city with lowest distance of city 2, the offspring b’ will be
(1,2,5,4,3,6,7) after we make 2-5 inversion. Now if city 2
is randomly selected again as c. Since the city with lowest
distance is 5 and these two city are neighbors in
individual b’, no inversion is applied and just add the
failed inversion counter t by 1.

1. Set the value MIC and the operating individual b, let
b’ = b,

2. randomly select a city c from b’, set t = 0

3. repeat

3.1 select the city c’ , c’ is the city with lowest
distance of the city c

3.2 if (the city c’ is already aligned “next” to the city
c in the individual b’)

! t = t +1

! if (t > MIC) exit from repeat loop

3.3 else inverse the section from the next city of city
c to the city c’ in b’

4. randomly select a city c from b’

5. until (t>MIC )

6. if the fitness value of b’ is better than b, let b = b’

7. return b

Figure 3. The outline of near 2-opt operator

3 EXPERIMENTAL RESULTS
FCGA was implemented in C++ on a Pentium III

600MHz personal computer with single processor.
Detailed information about the development of the
solution qualities in each of the experiments conducted is
given elsewhere [Dorigo and Gambardella, 1997]

[Freisleben and Merz, 1996] [Jung and Moon, 2000]. For
each test problem, fifty trials have been executed. FCGA
has tested on six TSPLIB [Reinelt, 1991] benchmark
problems, eil101, lin318, pcb442, att532, rat575, and
u724. These problems are selected because they are
widely used to compare the performances among
algorithms.

Setting the values of parameters in FCGA, we have
tested various values of these parameters, including the
family competition length (L), the bias (� ) and redo
counter r in EAX, MIC in near 2-opt, and the population
size. According to the experiments, L = 5 is good for both
time and solution quality. The population size is the
tradeoff between solution quality and convergence time.
There are no obvious impacts for the others parameters.
Therefore, L = 5,� = 1, r =30, and MIC = 1 in this paper.
The population size is set to the similar value of the
number of cities in TSP. That is, the population sizes are
set to 100, 300, 400, 500, 550, and 700 for eil101, lin318,
pcb442, att532, rat575, and u724, respectively.

Table 1 shows the experimental results of FCGA and
EGA named in [Nagata and Kobayashi, 1997] on three
problems. Each problem was tested 50 independent runs.
We implemented EGA according to the original paper
[Nagata and Kobayashi, 1997]. “Average tour length” is
the average value of the best tours found by FCEA and
EGA on 50 runs as well as “Average time” and “Average
generation” are values of the average time and average
generation required for finding the best tours, respectively.
The column, “Optimal/times” denotes the number of
finding the optimal solution in 50 trails. FCGA can find
the optimum solutions for eil101 and lin318 in each
independent run. For the att532, FCGA is able to find the
optimum solution in 23 runs and the average value of
solution quality is 27691.3. FCGA, integrating the EAX
and near 2-opt operators, is much better than EGA which
uses only EAX. The results of EGA in this paper are
better than the results in the original papers. Based on the
experimental results, we find that FCGA integrate the
benefits of two operators. Take the att532 case for an
example, the solution quality and optimal trails are greatly
improved by combining two operators. Although FCGA
is somehow slower, these results show that FCGA is more
robust than EGA for these testing TSP.

Table 2 shows the comparisons of FCGA with NGA
[Juna and Moon, 2000], ACS [Dorigo and Gambardella,
1997], and STSP-GA [Freisleben and Merz, 1996] on
lin318 and att532 problems. NGA, ACS, and STSP-GA
had excellent results according to our surveys. NGA
integrates NX (nature crossover) and LK local search [Lin
and Kernighan, 1973]; ACS is an ant colony system with
3-opt operator; STSP-GA is the genetic algorithm with
DPX [Boese, 1995] and 3-opt. The results of these three
methods directly summarized from [Juna and Moon,
2000], [Dorigo and Gambardella, 1997], and [Freisleben
and Merz, 1996]. “Average generation” is the values of
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the average generations required for finding the best tours
by the comparative methods, respectively. Table 2 shows
that FCGA has better solutions than the others on these
problems. In the comparison of FCGA and NGA, since
NGA uses the well-known LK local search operator with
smaller size of population, the time is short for solving
problems. But FCGA is more stable than NGA in the
solution quality without LK.

Figure 4 shows the convergence rate of the
experimental results, which FCGA tested on lin318 and
att532. The sketches reveal that the convergent speed of
FCGA is rapid during the early search time. The speed is
slow while FCGA approaches convergent state.
Fortunately, FCGA often can escape from the local
optimum to get the global minimum tour length.

Table 1.

Comparisons between EGA [Nagata and Kobayashi, 1997]
and FCGA on TSP problems taken from TSPLIB [Reinelt,
1991] based on the average tour length, the average time
and average generation in 50 trails.

Average
time

Average
tour

length

Average
generation

Optimal

times

FCGA 2 629 15 50

Eil101
EGA 1 629 24 50

FCGA 60 42029 49 50

Lin318
EGA 34 42034.3 60 42

FCGA 232.9 50778.0 39.2 50

Pcb442
EGA 116.3 50778.0 46.7 50

FCGA 304 27691.3 66 23

Att532
EGA 226 27697.5 96 8

FCGA 500.0 6773.2 54.8 43

Rat575
EGA 249.2 70.3 6773.333

333
35

FCGA 845.1 41912.3 49.8 41

U724
EGA 396.7 41912.9 76.4 34

Table 2.

Comparisons between FCGA, NGA [Nagata and
Kobayashi, 1997], ACS [Dorigo and Gambardella, 1997],
and STSP [Freisleben and Merz, 1996] on several TSP
problems taken from TSPLIB [Reinelt, 1991] based on
average tour length of the best tour

318 532

Average tour Length Average tour length

FCGA 42029 27691.3

NGA 42029 27695.6

ACS 42029 27718.2

STSP 42029 27693.7
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(a) Tour length vs. generations: The
experimental results of FCGA tested on lin318
problem.
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(b) Tour length vs. generations: The
experimental result of FCGA tested on att532
problem.

Figure 4. The convergence of FCGA for the lin318
and att532 problems.
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4 CONCLUSION
This study demonstrates that FCGA is a stable

approach for TSP. From our experience, it suggested that
a global optimization method for NP-hard optimization
problems should consist of both global and local search
strategies. In our approach, the edge assembly crossover is
a global search strategy as well as the family competition
and the select mechanisms are local search strategies.
These strategies can closely cooperate with each other to
improve the overall search performance.

Experiments on these three test cases verify that the
proposed approach is able to generate efficient solutions
for TSP. Our approach can find out the optimum solution
in 23 runs and the average value of solution quality is
27691.3 when it was applied the att532 problem with 50
independent runs. We believe that the flexibility and
robustness of our approach make it an effective tool for
TSP.

We will continue to design a more powerful operator
to improve the performance as well as to speed up the
convergence and will study a more diverse set of TSP to
determine the limits of our approach.
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Abstract

The working of a genetic algorithm is usually
explained by the search for superior building
blocks. Building blocks with above average
fitness are combined to construct higher order
building blocks. This paper shows that this
mechanism is not sufficient to solve problems
where multimodality is ubiquitous. For this class
of problems niching becomes a necessity. The
paper analyzes the Ising model as an archety-
pal problem where multimodality is ubiquitous
and niching is essential. The analysis introduces
an important difference between searching for
superior building blocks and searching for non-
inferior building blocks.

1 INTRODUCTION

The practice of preserving multiple solutions in GA search
has a long history [2, 11, 7, 12], the usual motivation is to
preserve multiple peaks of equal or unequal fitness. The
question remains whether niching is necessary in certain
types of problems and, if so, whether we may better char-
acterize the problem class where such mechanisms aren’t
simply a convenience, but are absolutely essential to ob-
tain high or highest quality solutions, quickly, reliably and
accurately.

The purpose of this paper is to analyze the Ising model as
an archetypal problem where multimodality is ubiquitous
and niching is essential, and to generalize that analysis to
understand a key dividing line between different types of
genetic search: the difference between searching for supe-
rior building blocks of a solution versus non-inferior build-
ing blocks of different solutions.

The paper is structured as follows. First, the Ising model
is described and an intuitive explanation of why the prob-
lem is difficult for a GA is given. Then, section 2 gives a

short introduction to Walsh analysis and shows how they
can be used to calculate a schema’s fitness value. In this
section we describe the Ising model as a linear combination
of Walsh monomials. Section 3 introduces the notion of
non-inferior building blocks and shows how those building
blocks can cause a GA to get stuck in a local optimum be-
cause of a synchronization problem. The occurrence of this
synchronization problem is explained in detail and niching
is proposed to avoid this problem. In section 4 we exper-
imentally verify that a niching technique, such as sharing,
can help a GA to solve a multimodal problem like the Ising
model, and at the end of the paper we draw some conclu-
sions and discuss future work.

1.1 THE STANDARD ISING MODEL

The presence of symmetry and multimodality in a problem
can influence the dynamics of a search algorithm. Else-
where [13], the one-dimensional nearest-neighbor interac-
tion functions (NNIs) are introduced to the GA community
as a class of functions that are difficult to solve because of
their symmetry. The spin-flip symmetry in these problems
prevents a simple GA from solving the problem quickly
and can cause the GA to get stuck in a local optimum.

The standard one-dimensional Ising model [10] has its
origin in statistical physics. It can be written as a one-
dimensional nearest-neighbor interaction function of the
form

f : f0; 1gl ! R : x 7!
lX

i=1

Æ(xi; xi+1) (1)

with string length l, xl+1 � x1 and

Æ(xi; xj) =

�
1 if xi = xj ;
�1 otherwise.

The maximum fitness value equals l, the minimum fitness
value equals�l and the average fitness value equals zero.

The Ising model clearly contains spin-flip symmetry: flip-
ping all ones in zeros and visa versa does not change the
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fitness value. This characteristic implies that the problem
has two maxima, the string containing only ones and the
string containing only zeros. In the next section, we give
an intuitive explanation of how a GA tries to solve the Ising
model following the arguments presented elsewhere [13].

1.2 THE RANDOM WALKS OF DOMAINS

Consider the following bit string

0000j1111111j000:

Sequences of the same values are called domains and pair-
wise combinations of a 1 and 0 are called domain walls.
The fitness value of the bit string is only 4 less than the fit-
ness of the optima, but in Hamming distance the problem
is far from an optimum. Mutating a bit in the interior of a
domain, for example

0000j111j0j111j000;

creates two new walls and decreases the fitness value with
4. Mutating a bit next to a domain wall, for example

00000j111111j000;

moves the wall to the left or the right and leaves the fit-
ness value unchanged. The only way to increase the fitness
value is to make two domain walls collide. So solving the
Ising model with a single-bit-flip hill-climber results in a
sequence of random walks of domain walls.

When trying to solve the Ising model using a GA, experi-
ments show that as the building blocks grow, diversity gets
lost and the population becomes a set of strings all con-
verging to the same optimum and with domain walls at
about the same string positions. At that point, a normal
crossover operator, like two-point crossover, produces off-
spring which are worse than their parents,

000011 11 110000

000111 10 000000

�
) 000011 10 110000

000111 11 000000;

or in the best case equally good,

000011 111100 00

000111 100000 00

�
) 000011 100000 00

000111 111100 00:

So again, solving the problem becomes a sequence of ran-
dom walks of domain walls.

In the next sections, we perform a Walsh analysis of the
Ising model to understand why the model is difficult to
solve for a GA and show how niching can prevent a GA
from getting stuck in a local optimum.

2 WALSH ANALYSIS OF THE ISING
MODEL

In this section, the Ising model is described in terms of
Walsh coefficients which make it easier to investigate the
performance of a GA solving this problem. We first give
a brief introduction to Walsh functions and show how they
simplify the calculation of schema average fitness, which
was first shown by Bethke [1]. The notation we will use is
developed elsewhere [4] and for a more elaborate introduc-
tion to Walsh functions and their application to the analysis
of a GA’s performance, we refer to this work.

2.1 INTRODUCTION WALSH FUNCTIONS

A GA processes bit strings, x = xl : : : x1, with xi 2 f0; 1g
and string length l. Every bit string x 2 f0; 1gl can be
mapped to an auxiliary string y 2 f�1; 1gl by using the
mapping

yi = 1� 2xi;

which simply states that a 0 in the bit string maps to a 1

in the auxiliary string and a 1 in the bit string maps to a
�1 in the auxiliary string. Using this mapping, the Walsh
functions can be defined as a set of 2l monomials over the
auxiliary string variables:

'j(y) =

lY
i=1

yjii ;

with the index counter j used bit by bit to determine
whether the ith string position is represented in the prod-
uct or not. In other words, the Walsh functions can be seen
as partial parity functions, which return�1 or 1 if the num-
ber of 1s in the auxiliary string y over the bit positions de-
fined by the 1s in the binary representation of the index j
is odd, respectively even. For instance, for j = 6 = 1102,
'6(011) = 1

1
(�1)1(�1)0 = �1 and the number of ones

in the two most left positions in string 011 is odd. Table 1
shows the index j, its binary representation and the corre-
sponding Walsh monomial for l = 3 auxiliary strings.

j binary j 'j(y)

0 000 1

1 001 y1
2 010 y2
3 011 y2y1
4 100 y3
5 101 y3y1
6 110 y3y2
7 111 y3y2y1

Table 1: Table of the Walsh monomials for l = 3.
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Because the Walsh functions form an orthogonal basis over
the auxiliary strings, the fitness function f can be written
as a linear combination of the Walsh monomials

f(x) =

2
l
�1X

j=0

wj'j(x);

mapping bit strings to auxiliary strings in the term 'j(x)
when necessary.

2.2 ANALYSIS OF THE ISING MODEL IN WALSH
COEFFICIENTS

The Ising model described in Eq.1 can easily be trans-
formed to the function

f(y) =

lX
i=1

yiyi+1

over the auxiliary string y, with yl+1 � y1. Looking at
this transformation it becomes immediately clear which the
Walsh coefficients of the Ising model are. The only non-
zero Walsh coefficients are the second-order Walsh coeffi-
cients which have a binary representation for their index
j containing all zeros except for two adjacent positions.
Table 2 shows all non-zero Walsh coefficients, the corre-
sponding binary representation for j for l = 6 bit string
and the corresponding Walsh monomials.

wj = 1 binary j 'j(y)

w3 000011 y2y1
w6 000110 y3y2
w12 001100 y4y3
w24 011000 y5y4
w48 110000 y6y5
w33 100001 y6y1

Table 2: Table of all non-zero Walsh coefficients of the Ising
model for l = 6 bit strings.

Mathematically, the Walsh coefficients of the Ising model
can be described by

wj =

8<
:

1; if j 2 f3 � 2i : 80 � i � l � 2g;
1; if j = 2

l�1
+ 1;

0; otherwise.

2.3 SCHEMA AVERAGE

Using the Walsh functions, the schema average fitness of
a schema h = hl : : : h1 can be written as a sum of Walsh
coefficients:

f(h) =
X

j2J(h)

wj'j(�(h))

with the function � mapping all �s to a 0 and the sum taken
over all js having a binary representation which is an ele-
ment of the index set J(h):

J(hi) =

�
0 if hi = �;
� if hi = 0; 1:

For example J(�1�) = 0�0 which can be seen as a schema
for the index set f0002; 0102g = f0; 2g and J(00�) =

� � 0 which can be seen as a schema for the index set
f0002; 0102; 1002; 1102g = f0; 2; 4; 6g. Table 3 gives
the fitness average of some l = 3 schemata expressed in
Walsh coefficients. Notice that low-order schemata, which
are more general schemata, are specified by a short sum
of Walsh coefficients and high-order schemata, which are
more specified schemata, are specified by a long sum.

Schema Fitness average
� � � w0

� � 0 w0 + w1

� � 1 w0 � w1

� 0 � w0 + w2

1 � � w0 � w4

� 1 1 w0 � w1 � w2 + w3

1 � 0 w0 + w1 � w4 � w5

1 1 1 w0 � w1 � w2 + w3 � w4 + w5 + w6 � w7

Table 3: Some l = 3 schemata and their fitness average ex-
pressed in Walsh coefficients.

3 BB-SUPERIORITY VERSUS
NON-INFERIORITY

In this section the notions of non-inferior BBs and synchro-
nization problems are introduced. We will see that the Ising
model contains many non-inferior BBs and that their exis-
tence can cause a GA to get stuck in a local optimum be-
cause of a synchronization problem. Niching will be pro-
posed to avoid these synchronization problems. At the end
of the section we introduce some badly scaled Ising mod-
els which act like needle-in-a-haystack problems for a GA
without niching.

3.1 SYNCHRONIZATION PROBLEMS

The working of a GA can be explained by use of the build-
ing block hypothesis [8, 5]. GAs process minimal sequen-
tial superior building blocks (BBs) in such a way that low-
order BB-blocks with above average fitness are combined
to construct higher-order BB-blocks. The schema theorem
[8] gives a lower bound for the expected number of indi-
viduals containing a schema h at a particular time t:

m(h; t+ 1) � m(h; t)
f(h)

f

h
1� pc

Æ(h)

l�1
� pmo(h)

i
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with m(h; t) the expected number of BBs at time t, f the
average fitness value, pc the crossover rate, pm the mutation
rate, Æ(h) the defining length of the schema and o(h) the
order of the schema.

The Ising model contains only a small portion of non-zero
Walsh coefficients. The zeroth-order coefficients tells us
that the average of the fitness function is zero, f(� � � � ��)
= w0 = 0. Because all first-order coefficients are also zero,
it is easy to see that the first-order BBs,

f(� � � � � 0) = w0 + w1 = 0;
f(� � � � 1 �) = w0 � w2 = 0;
f(� � � 0 � �) = w0 + w4 = 0;
f(� � 1 � � �) = w0 � w8 = 0;

do not teach us anything about the optima of the problem.
Investigating the second-order we notice that l of the (

l

2
)

coefficients have the value 1. Table 2 shows that these co-
efficients favor schemata having the same value at two ad-
jacent string positions.

f(� � � � 11)=6w0� 6w1� 6w2 + w3= 1 =f(� � � � 00)
f(� � � � 10)=6w0+ 6w1+ 6w2 � w3=�1=f(� � � � 01)

Because all Walsh coefficients of order higher than two are
zero, the fitness average of all BBs of order higher than two
is exactly determined by the non-zero second-order coeffi-
cients. This causes that at any order q, all BBs having q
adjacent fixed positions all set to the same value have the
same fitness value and their fitness value is superior to all
other order-q BBs:

f(� � � 1 1 1)=f(� � � 0 0 0)=f(� � 1 1 1 �)>f(� � 1 0 0 � �)
f(� 1 1 1 1 �)=f(� 0 0 0 0 �)=f(1 1 1 � � 1)>f(� � 1 0 0 1 �)
BBs which are equally good and superior to all alternatives
are called non-inferior BBs [6].

Following the Schema Theorem, non-inferior BBs, like
���111 and ���000, should grow with the same proportion.
Unfortunately, this does not always happen due to genetic
drift and the limited size of the population. It is even pos-
sible that some non-inferior BBs disappear out of the pop-
ulation. If at that moment for example all BBs in the pop-
ulation which fix more string positions to the right are BBs
of optimum 000000 and all BBs in the population which
fix more string positions to the left are BBs of optimum
111111, the BBs cannot be combined to form higher-order
BBs of an optimum. We say that the GA has a synchroniza-
tion problem [14]: it is stuck in a local optimum because the
schemata in its current population, which are non-inferior
BB of different optima, cannot be combined. Following
example describes a synchronization problem in more de-
tail. Suppose the population contains only BBs 11���� and
����00; their non-inferior counter parts 00���� and ����11
are not present in the population. The combination of the

BBs in the population, 11��00, is not a BB of an optimum
and does not lead the GA to an optimum. The GA has a
synchronization problem. Solving the problem is left to the
mutation operator whose working can be compared with a
sequence of random walks of domain walls.

Why is the probability that a synchronization problem oc-
curs so high when solving an Ising model with a GA? This
question can easily be answered by investigating BBs from
which the fixed positions are not all adjacent. BBs like
�11� 00� which are not BBs of a solution and BBs like
�00�00� which certainly are BBs of an optimum have the
same average fitness value because of the few non-zero
Walsh coefficients. This means that they both have the
same chance to be selected for reproduction, although one
of them is not a BB block of an optimum and leads the GA
to a synchronization problem when losing diversity. If the
problem would have more non-zero Walsh coefficients, as
is the case when all second-order coefficients are set to 1,
BBs having the same value at all their fixed positions would
have an higher average fitness value than other BBs. The
GA would decide faster to which of the two optima it would
converge and when diversity gets lost, the population will
still contain enough BBs of the same optimum to find it.

3.2 SELECTION PRESSURE WITH NICHING

The key problem of a GA stuck in a local optimum due to
a synchronization problem is the existence of non-inferior
BBs of different solutions. Due to genetic drift and the
limited size of the population it is possible that such non-
inferior BBs do not grow in the same proportion and that
some of them eventually disappear. In case of the Ising
model, this results in a population which is not diverse
enough to contain the necessary BBs to construct an op-
timum.

A well-known technique to maintain diversity in the pop-
ulation is niching. By dividing the population in different
niches non-inferior BBs will grow in the same proportion
and the GA will process more in terms of minimal non-
inferior sequential BBs instead of minimal sequential su-
perior BBs [6].

The Ising model shows that for a certain class of optimiza-
tion problem niching becomes a necessity for a GA to solve
these problems. This statement is even stronger than in [9]
where it is stated that even without the need of a diverse
population, for example to obtain multiple optima, niching
can be beneficial and enhance the performance of a GA.

The niching technique used in this paper is sharing [7].
Fitness sharing accomplishes niches by degrading an in-
dividuals fitness according to the similarity with the other
individuals in the population. The sharing function Sh is
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defined as follows

Sh(di;j) =

(
1�

�
di;j
�sh

��sh

if di;j < �sh;

0 otherwise;

with di;j the hamming distance between individuals i and
j. The parameter �sh determines the proximity of the indi-
viduals with who an individual has to share. In [3], Deb and
Goldberg proved that we may approximate this parameter
by using

�sh =
1

2
(l +

1

q

p
l);

with q the problem’s number of optima. The other parame-
ter �sh is mostly set to one, giving us the triangular shar-
ing function. For each individual i the niche count mi is
calculated as

mi =

nX
j=1

Sh(di;j)

with n the population size. The shared fitness fsh of an
individual i is then

fsh(i) =
f(i)

mi

:

3.3 SCALING

Before experimentally verifying our theory which states
that niching is necessary to solve the Ising model, we intro-
duce the scaling aspect in the Ising model. This can make
the Ising model even more difficult for a GA.

When not all non-zero Walsh coefficients are set to one, but
some of them have an higher value, a phenomenon called
pinning [13] can occur. When an Ising model is not well
scaled, the GA will pay more attention to BBs with high
Walsh coefficients because of their high fitness contribu-
tion and the processing of the other BBs will be delayed. If
at a moment diversity gets lost and some of the non-inferior
BBs disappear a synchronization problem can occur. The
processing of the Ising model can then again be compared
with a sequence of random walks of domain walls. Do-
main walls which where first free to walk until they met
another wall and collide, can now only walk in a restricted
area because of the BBs with high Walsh coefficients. For
example in

0000
^
h

00j111
^
h

1j0000

(^
h

is a high BB) a domain wall will never break up a high

BB because this will decrease the fitness value of the string
too much. A random walk can only solve the problem if all
BBs with high Walsh coefficients are BBs from the same
optimum.

Elsewhere [13], Naudts and Naudts construct some badly
scaled Ising models which are needle-in-a-haystack prob-
lems for a GA. Experiments in this work show that those
Ising models cannot be solved by a GA within 30000 itera-
tions. In next section we will show that a GA with niching
can solve badly scaled Ising models.

4 EXPERIMENTAL VERIFICATION

In this section we verify experimentally that niching is nec-
essary for a GA to solve the Ising model accurately. The
algorithm used in the experiments is a simple genetic algo-
rithm with two-point crossover, rate 0:8. The mutation rate
is set to zero to investigate the influence of the recombina-
tion operator. As niching technique, sharing with �sh set
to 1

2
(l + 1

q

p
l) is used. Experiments show that the value of

the parameter q is not so important when solving the Ising
model.

An important issue when solving an Ising model is the di-
versity of the population. Therefore, we define a diversity
measure which gives the percentage of ones at a certain
string position for all strings in the population. For exam-
ple, a diversity of 1 (respectively 0) for string position i
means that all strings have value one (respectively value
zero) at that string position. A diversity of p, with p be-
tween 0 and 1, indicates that p percentage of the population
has value one at that string position and 1 � p percentage
has value zero. The population is perfectly diverse if the
diversity measures for all string positions are 0:5.

Without niching a GA gets stuck in a local optimum be-
cause of a synchronization problem. The population is not
diverse enough and a solution cannot be reached by mixing
the BBs in the population. Figure 1 shows a diversity plot
for a GA trying to solve an l = 80 (well scaled) Ising model
without niching. The population size is set to 1000. The
figure shows that already quite early in the run all strings in
the population have value one for a certain set of string po-
sitions and value zero for an other set of string positions. A
synchronization problem occurs and recombination of BBs
cannot help the GA to find the optimum.

By sharing an individual’s fitness according to the similar-
ity with the other individuals in the population, the algo-
rithm tries to keep its population diverse. The size of the
population is hereby an important factor. If the population
size is too small, sharing cannot maintain the diversity and
a synchronization problem can occur. Figure 2 shows the
diversity of the population while solving the l = 80 Ising
model with sharing. A population size of 60 is not big
enough to maintain diversity. In contrast, figure 3 shows
that a population size of 140 is big enough to maintain di-
versity and the solution is found within 68 generations.

Figure 4 shows the minimum population size that a GA
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Figure 1: Representation of the diversity of the population while
solving an l = 80 Ising model without niching.
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Figure 2: Representation of the diversity of the population while
solving an l = 80 Ising model with sharing. A population size of
60 is not big enough to maintain diversity.
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Figure 3: Representation of the diversity of the population while
solving an l = 80 Ising model with sharing. The population size
is 140 and the optimum is found after 68 generations.

with sharing needs to solve the Ising model. The parameter
q which determines �sh is set to 2 and the population size n
is empirically determined to be sufficiently large to find an
optimum for 30 independent runs. The population size for
a normally scaled Ising model scales up subquadratically
(about n = l0:627) which is acceptable and similar to other
known models. Changing the parameters q does not change
the minimum population size significantly. Similar results
are found for badly scaled Ising models. The badly scaled
Ising models used in the experiments are

f : f0; 1gl ! R : x 7!
lX

i=1

Æ(xi; xi+1)

with string length l, xl+1 � x1 and

Æ(xi; xi+1) =

8<
:

a if i mod b = 0 and xi = xi+1;
1=2 if i mod b 6= 0 and xi = xi+1;
0 otherwise.

These models where first defined in [13] where it is shown
that those badly scaled Ising models cannot be solved ac-
curately by a GA within 30000 iterations. Figure 4 shows
that a GA using sharing can solve badly scaled Ising mod-
els using reasonable small populations.
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Figure 4: Minimum population the sharing GA needs to solve
the Ising model. The full line represents the normally scaled Ising
model, the dashed line represents the badly scaled Ising model
with a set to 2 and b set to 8, the dotted line represents the badly
scaled Ising model with a set to 4 and b set to 8.

The Ising model can be seen as a base model for a GA with
niching. We claim that it is one of the simplest optimization
problem for which niching becomes a necessity to find an
optimum. Where mutation was essential to solve an Ising
model without niching by a sequence of random walks of
the domain walls, the crossover operator becomes essen-
tial in the search process of a GA with niching. Figure 5
shows the average number of generation a GA with shar-
ing needs to find an optimum. The population size is set to
300, which is big enough for all string lengths between 20
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and 260. The average is taken over 30 independent runs.
The algorithm still uses only two-point crossover with rate
0:8 and has no mutation operator. The figure shows that
by mixing good BBs an optimum can be found quickly.
Adding a mutation operator with a high mutation rate, for
example 1

l
, even prolongs the search process. Every muta-

tion that flips a bit which is not situated next to a domain
wall introduces two new domain walls. This neutralizes the
positive effect of a successful recombination.
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Figure 5: Average number of generations versus string length for
a GA using sharing and with population size 300.

5 CONCLUSIONS AND FUTURE WORK

The paper showed that niching is not only a good technique
to preserve multiple solutions in GA search, but for a cer-
tain class of problems niching becomes a necessity to solve
the problem quickly, reliably and accurately. By analyz-
ing the Ising model as an archetypal problem where mul-
timodality is omnipresent, we tried to understand the dif-
ference between searching for superior building blocks of
a solution and searching for non-inferior building blocks
of different solutions. In the future we would like to bet-
ter specify the class of problems where the search for non-
inferior building blocks is essential. We think of clustered
problems in which every cluster has multiple solutions, but
not all solutions of different clusters match together. We
would also consider hierarchical problems, like the H-IFF
problem [15], where the choice between low level non-
inferior BBs should be postponed until a higher level is
reached.
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Abstract 
 

 

One of the central difficulties of coevolutionary 
methods arises from ‘intransitive superiority’ – in 
a two-player game, for example, the fact that A 
beats B, and B beats C, does not exclude the 
possibility that C beats A. Such cyclic superiority 
in a coevolutionary substrate is hypothesized to 
cause cycles in the dynamics of the population 
such that it ‘chases its own tail’ - traveling 
through some part of strategy space more than 
once despite apparent improvement with each 
step. It is often difficult to know whether an 
application domain contains such difficulties and 
to verify this hypothesis in the failure of a given 
coevolutionary set-up. In this paper we wish to 
elucidate some of the issues and concepts in an 
abstract domain where the dynamics of 
coevolution can be studied simply and directly. 
We define three simple ‘number games’ that 
illustrate intransitive superiority and resultant 
oscillatory dynamics, as well as some other 
relevant concepts. These include the distinction 
between a player’s perceived performance and 
performance with respect to an external metric, 
and the significance of strategies with a multi-
dimensional nature. These features alone can also 
cause oscillatory behavior and coevolutionary 
failure. 

Keywords: Coevolution, intransitive superiority, multiple 
dimensions, coevolutionary failure. 

1 INTRODUCTION  

Coevolution has become increasingly popular in 
Evolutionary Algorithms research (e.g. Hillis 1992, Sims 
1994, Juille 1996, Miller & Cliff 1994). The basic idea 
behind the approach seems intuitive enough – rather than 
evolve individuals against a fixed objective metric, we 
engage individuals in the task of improving their 
performance against other evolving individuals. One of 
the most unequivocal benefits of this approach comes 

from the fact that for many machine learning domains a 
suitable objective metric of performance is simply not 
available. Examples include the coevolution of pursuit and 
evasion behaviors (Miller and Cliff 1994, Reynolds 
1994), and competitive manipulation of physical objects 
(Sims 1994). Apart from this primary benefit of providing 
some target for performance, coevolution is commonly 
understood to have several other benefits. The following 
list is not a comprehensive account of coevolution’s 
supposed benefits – rather we have selected those ideas 
for which we will be able to illustrate related issues in our 
experiments – but, these ideas cover some of those most 
common in the coevolution literature. We use examples 
from the domain of chess but the concepts apply equally 
to any task that can be described using performance with 
respect to an opponent: 

a) Providing a target that is ‘hittable’ – gradient.  
If any two novice chess players play against, say, a 
Grand Master then both will lose and their 
performance will be indistinguishable. But if the 
novices play against each other the superiority of one 
with respect to the other will be revealed. By 
engaging players in the mutual pressure to outperform 
one-another coevolution provides adaptive gradients 
that might otherwise be hard to engineer. Pollack & 
Blair (1996) provide an example where ‘self-play’ 
provides a gradient for learning. 

b) A target that is relevant – focusing.  
If we have our two novices play against a (fixed) set 
of other chess players of various abilities then the 
number of games they win might be different, and we 
may select the better. But how are we to devise this 
set of opponents? A random set may not be 
representative of all chess players. Any given set may 
fail to test certain aspects of play. By using other 
evolving players as opponents coevolution may focus 
adaptation on those aspects of a task that have not yet 
been optimized. Examples where one ‘species’ is 
used to provide a focused test-set for another species 
include Hillis (1992), and Juille (1996). 

c) A moving target – open-endedness.  
Even if we could find a representative fixed set of 
opponents that provided a gradient from novice play 
through to master level, any fixed set will have an 
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upper limit. Using coevolution there is always the 
potential to be a better player than the best player 
found so far, and when found such a player provides 
the new target to beat. Open-endedness is often cited 
as a benefit of coevolution, e.g. (Ficici 1998) 

However, although these notions are common, and seem 
intuitive enough, they are not very well defined. 
Moreover, there is increasing awareness, in this same 
community of researchers, that coevolution can sometimes 
introduce as many problems as it solves. In the list below 
we describe informally some of the ways in which a 
coevolving target for performance might not be hittable, 
relevant, or moving in the right direction: 

a) Loss of gradient.  
Suppose an evolving population of opponents 
becomes too good – we may find ourselves with an 
‘unhittable’ target once more. For example, perhaps 
evasion is very much easier than pursuit, and none of 
the evaders can be caught. In this case we lose the 
gradient information and players may drift without 
improvement. 

b) Focusing on the wrong things.  
The ability to focus on an opponent’s weakness can 
provide an easy way to win. This may produce 
degenerate players that over-specialize on opponents 
weaknesses, and fail to learn a task in a general way. 

c) ‘Relativism’.  
When opponents co-adapt, and describe a task for 
one another, we suppose that they will 'leap-frog' one 
another in steps of increasing performance. But, if A’s 
performance is defined by B, and B’s performance is 
defined by A, then the adaptive system is 
disconnected from any absolute measure of 
performance. Two good players get the same score 
against each other, as do two bad players. So, 
supposing variation is equally likely to take the 
standard of play down as up (perhaps more likely), 
what is to ensure that these moving targets will move 
the way we want them to? Such relativism may enable 
ways for the players to ‘subvert’ the game we as 
researchers had in mind, and may lead to mediocre 
players that never improve. 

Problems such as these may be involved in some of the 
failures in the literature, but it is very difficult to be sure. 
Identifying the cause of a failure is complicated by the 
fact that it is very difficult to separate the dynamics of the 
coevolutionary set-up from the details of the application 
domain, be it backgammon, robotics, pursuit and evasion, 
or whatever. Thus, the benefits and the problems with 
coevolution continue to be a bit vague and ill -defined; 
often going no further than the level of description we 
have given above, and relying on metaphors like ‘arms 
race’ and ‘collusion’.  

Some work has addressed issues in coevolution and 
relativism in the abstract, which enables particular 
underlying concepts to be illustrated and investigated 
(Maynard-Smith 1982, Cliff & Miller 1995, Kauffman 

1993). In this style, we introduce in this paper a minimal 
substrate in which coevolutionary concepts, dynamics, and 
problems can be investigated - in particular, the 
importance of intransitive superiority. Specifically, we 
evolve scalar values and vectors under various 
coevolutionary set-ups. This substrate enables us to 
illustrate some important concepts that may be underlying 
the problems we introduced above. Our experiments 
provide concrete examples for each of the ideas we have 
discussed, and assist us in gaining some defining concepts 
that may be useful in diagnosing coevolution failures.  

The following sections are organized as follows: Section 2 
introduces some of the concepts we see as central to the 
issues we described above, and describes the minimal 
substrate we use for our investigations. Section 3 
describes other aspects of our coevolutionary set-up. 
Section 4 describes experiments that each illustrate a 
different potential cause of failure in coevolution. Section 
5 concludes. 

2 A MINIMAL SUBSTRATE  

In this section we introduce the minimal substrate that we 
will use in our experiments. In the process we will 
describe some of the concepts that we see as important for 
understanding the issues involved in coevolution. 

2.1 SCALARS 

We commence by considering the coevolution of scalar 
values. For example, we could evolve integers using 
coevolutionary techniques to find high values. In this 
domain we know that the task is trivial and that evolving 
integers is easy, thus any problems we have using 
coevolutionary techniques are a product of coevolution. 
Although it may seem too trivial to be of use we will see 
that there are several phenomena that can be illustrated 
with its help.  

We assert that the goal of the evolutionary process is to 
maximize, a, the value being evolved. Clearly, if we 
evolve integer values using a fitness function, f(a)=a, then 
the problem is trivial. However, we will investigate what 
happens when we coevolve these values using a fitness 
function, f(a,S), that returns a value for one number, a, 
with respect to a set of other numbers, S. S is a sample of 
individuals against which a will be tested. For the 
purposes of our experiments we will use f(a,S) that counts 
the number of members of S that are less than a: 

∑
=

=
||

1

),(),(
S

i
iSascoreSaf  /eq.1 

where score(a,b)=1 if a>b, 0 otherwise.    

In this way we may evolve the scalar values as if they 
were playing a ‘greater than’ game, rather than evolving 
them against an objective fitness function.   

Clearly, if S were the complete set of possible values in 
the domain of a, then our coevolutionary set-up would be 
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the same as the trivial evolutionary case. But naturally, for 
our purposes S will consist of other coevolving 
individuals. In some cases these will be drawn from the 
same population and may therefore be genetically related. 
In other cases, they will be drawn from a separate 
coevolving population. We will see that the effects of this 
choice can be significant. 

2.2 OBJECTIVE FITNESS, A ND SUBJECTIVE 
FITNESS 

In evolutionary algorithms the fitness of an individual is 
given by a 'fitness function' or 'objective function' - this 
provides some measure of the individual's performance or 
quality with respect to the task at hand. In coevolution, 
there is still a fitness function, e.g. Equation 1 - but the 
value it returns is no longer objective, it is subject to the 
sample chosen. To make the distinction clear, we will call 
the metric that we as researchers seek to optimize the 
objective fitness, and we will call the metric of 
performance as perceived by the co-evolving individual 
the subjective fitness.1 

We asserted above that our objective fitness was f(a)=a. It 
seems fairly likely that anything adapting under our 
‘greater than’ game will become maximized, as we 
intended, but this is not necessarily so. Consider making a 
judgment: which of a and b is to be preferred? (where a 
and b are any two individuals). With respect to our 
objective metric, the preferred individual is whichever is 
larger in value. They may be equally preferred only if they 
are equal in value. Let us denote this objective preference 
relation as Pobj(a,b). In the coevolutionary game, the one 
that will be preferred will be whichever gets the highest 
value when played in the ‘greater than’ game against S. 
This is its subjective fitness. If f(a,Sa) is greater than 
f(b,Sb) (according to Equation 1) then a is preferred. Let 
us write the coevolutionary preference as Psubj(a,b), then 
we have stated that Psubj(a,b)=Pobj(f(a,Sa), f(b,Sb)). Notice 
that we do not assume that a and b are evaluated against 
the same S. And it should be clear that we may get a 
different preference depending on how we choose Sa and 
Sb.  

Many of the problems we encounter in coevolution can be 
described as arising from the separation between a 
player’s performance as they perceive it, from their 
performance with respect to an external metric. A 
mismatch of preference relations from objective and 
subjective metrics, i.e. Psubj(a,b) ≠ Pobj(a,b), will occur 
depending on the choice of S. Clearly if any choice of S is 
possible then we can reverse the preference relation of a 
and b. For example, suppose, a =4 and b=5, so Pobj(a ,b) 
returns b. If we choose Sa={1,2,3} and Sb={6,7,8} then 

                                                           
1 Notice that neither of these correspond to the Darwinian meaning of 
fitness relating to the number of viable offspring. Even in regular 
evolution the number of offspring an individual produces is regulated by 
the objective fitness of other individuals in the population as well as its 
own objective fitness. 

f(a,Sa)=3, and f(b,Sb)=0, so Psubj(a,b)=a. The subjective 
and objective preferences give opposite answers. 

Even if S is the same for both a and b we can get an 
erroneous result. Consider, Sa=Sb={1,2,3}. Both a and b 
score the same as each other because they win against all 
opponents. Alternatively, we can choose S so that they 
lose against all opponents. So, Psubj(a,b)=“draw”. This 
corresponds to the ‘loss of gradient problem’ we 
described in the introduction. 

To be sure, in a coevolutionary set-up, the composition of 
S is not arbitrary. But, we must be aware that even though 
the choice of a coevolutionary game may not seem 
problematic, we have already disconnected from the 
objective measure of performance. We will see that even 
our simple ‘greater than’ game can cause problems even 
in a quite normal coevolutionary set-up. Whereas, in an 
applied coevolution, the absence of an objective metric 
can prevent us from examining what is really happening, 
here we are able to illustrate these concepts clearly 
because we have access to both the subjective and 
objective fitnesses. 

2.3 MULTIPLE DIMENSIONS  

The second feature of our minimal substrate is the 
introduction of additional dimensions to the definition of 
an individual. That is, we may represent individuals by 
pairs of scalars, or vectors. For simplicity, let us discuss 
pairs, and call the two dimensions x and y. We will let 
each dimension represent a different aspect of a player’s 
abilities. It is important to realize that we cannot 
necessarily reduce multiple dimensions to a single scalar 
value that will represent a player’s quality. We cannot let 
the fitness of a player be represented by some weighted 
sum of its component dimensions, for example. This is 
because the value of the weighting for an aspect of play 
may depend on who the opponent is; for one opponent, x 
may be more important than y, for another opponent 
maybe only y is important. This subjectivity prevents us 
from reducing a multi-dimensional player to a single 
scalar and then determining a winner by comparing these 
values.  

A simple way to model these aspects of coevolution is to 
allow some comparison between individuals to determine 
a single dimension that will, for these individuals, 
determine the outcome of the match. One way to do this is 
to choose that dimension in which the two players are 
most distinct. We define f2(a,S), where a and each 
member of S are pairs, as follows: 

∑
=

=
||
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where 

and, as before, score(a,b)= 1 if a>b, 0 otherwise. 

score2((ax,ay),(bx,by)) = {  
score(ax,bx), if (|ax-bx|>| ay-by|) 
score(ay,by), otherwise. 
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This game is easily extended to more than two dimensions 
by asserting that whichever dimension has the biggest 
difference between opponents is the dimension that 
determines the outcome of the game. Note that the game 
has the desirable property that a generalist, a player that is 
maximal in all dimensions, can be defined that beats all 
other players. Accordingly, we assert that the objective of 
this game is to maximize all dimensions – i.e. the 
objective fitness of an individual is the sum of all 
dimensions. Potentially, a coevolutionary set-up could 
enable selective pressure to move from one dimension to 
the other dimension focusing on whichever is weakest. On 
the other hand, it might focus on one dimension to the 
detriment of other dimensions. We will use this game to 
model the effects of focusing and over-specializing that 
can occur in coevolution. 

2.4 INTRANSITIVE SUPERIO RITY  

In Section 2.2, we considered the case where coevolution 
is erroneous in determining the superiority of two 
individuals when each is compared to some other sample 
of individuals. However, when using coevolutionary 
games, it is possible to create problematic scenarios even 
when comparing individuals against each other. 

For example, it is quite conceivable that for three chess 
players, A, B and C, A can reliably beat B, B can reliably 
beat C, but A cannot beat C. Simply stated, we may say 
that the superiority of players in chess is not transitive. 
Further, suppose that A may be beaten by C creating a 
loop as in the “rock, scissors, paper” game –  we might 
call this a game with circular superiority relations or 
circular dominance relations. This may result in local 
superiority relationships that provide a deceptive gradient 
and encourage strategies that are inferior in a global sense 
(e.g. further away from some strategy D which beats A, B 
and C). Or, coupled with over-specialization, coevolving 
species may drive each other from strategy to strategy, 
apparently improving, only to arrive back where they 
started. 

The concept of intransitive superiority is central to issues 
in coevolutionary failure (Cliff & Miller 1995), and we 
want to be able to include it in our minimal substrate. To 
do this we will have to use at least a two dimensional 
game. Consider: if all the relevant characteristics of a 
player can be represented by a single value - for example, 
the ability of a javelin thrower can be characterized by 
distance alone - then such circular dominance is not 
possible. But in fencing, for example, the ability of a 
player is multi-dimensional including for example, the 
ability to parry, the ability to thrust, and stamina. As 
already stated, we cannot simply sum the ability of the 
swordsman in each of these respects - which of these 
characteristics is critical, or the weighting of these 
characteristics, depends on the characteristics of their 
opponent. In such cases where the ability of a player is 
multi-dimensional it is quite possible that three or more 
players may form a circular superiority relation. 

A simple way to modify our game to incorporate 
intransitive superiority is to modify Equation 2 so that the 
dimension that determines the outcome of a game is the 
dimension in which the players are most similar (instead 
of most different). That is, when two players, (ax,ay) and 
(bx,by), enter a game the winner will be whoever is the 
greater in the dimension in which they are closest.  

∑
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where 

score3((ax,ay),(bx,by)) = {  
score(ax,bx), if (|ax-bx|<| ay-by|) 
score(ay,by), otherwise. 

and, as before, score(a,b)= 1 if a>b, 0 otherwise. 

Using this game we can easily define three players that 
exhibit circular superiority, a beats b beats c beats a. For 
example, a=(1,6), b=(4,5), c=(2,4): a beats b because they 
are closest in the y dimension and ay>by; b beats c because 
they are closest in the y dimension and by>cy, but c beats a 
because they are closest in the x dimension and cx>ax. 

Note that this game still has the desirable property that a 
player that is maximal in both dimensions beats all other 
players. Again, we assert that the objective fitness of an 
individual in this coevolutionary game is the sum of all 
dimensions. 

3 EXPERIMENTAL SET -UP 

The following experiments use the games defined in 
Equations 1 through 3. In addition to defining the game 
we will use there are several other choices to be made in 
the set-up of the coevolution: 

• Number of populations (who competes with who?, 
who reproduces with who?) 

• Choosing members to make S (who plays who?) 
• Sample size (how many do you play?) 
• Selection scheme 
• Variation operators 

The following experiments will use one or two separate 
populations. Selection and reproduction in one population 
will operate independently of the other population in the 
cases where there are two. Unless otherwise stated, the 
population size is 25 for each population. In principle, the 
choice of who plays who is independent from the 
segregation of reproduction. However, in the following 
experiments when there is more than one population we 
shall limit ourselves to considering the case where players 
only play against opponents from the other population. 
Unless otherwise stated the sample size, S=15. We use 
fitness proportionate selection, and for simplicity we use 
mutation as the only variational operator. One detail we 
found illuminating concerns the bias of the mutation 
operator.  
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3.1 MUTATION BIASES  

Because we are using such a simple substrate we must be 
careful about the assumptions we make with respect to the 
likelihood of beneficial and detrimental variations. If we 
imagine that our individuals are represented by real 
numbers then we might reasonably assume that a mutation 
would be equally likely to increase or decrease the value - 
perhaps we would add a random value drawn from a 
Gaussian distribution. If, alternatively, we were to 
represent individuals using a unary representation (simply 
the unitation, number of ones, of a fixed-length binary 
string) and vary values by mutating bits then mutation 
would have inherent biases. Specifically, a string with 
more than half zeros is more likely to increase than 
decrease, a string with more than half ones is more likely 
to decrease than increase, and in general, there is a natural 
bias towards strings with 50:50 ones and zeros.  

In real applications, for example, a neural network 
controller, sorting networks, or a genetic programming 
game player, there are likely to be significant mutational 
biases. It may well be the case that a random neural 
network controller, sorting network or genetic program is 
likely to be superior to a null or default representation that 
might be used to initialize individuals; for example, a 
neural network with no connections or weights of 0, a 
sorting network with no comparitors, or a GP tree with no 
nodes. However, once a moderate solution has been found 
we would reasonably expect the situation to change. In the 
later stages of evolution it is likely to be the case that 
nearly all changes to an individual will be detrimental. We 
will call this situation a negative mutation bias. These 
basic observations have theoretic underpinnings in the 
simple models used by Fisher (1930).  

Since we are abstracting an evolutionary substrate to a 
scalar (or two) we must be careful with assumptions like 
unbiased mutation. The following experiments will use a 
biased mutation. A simple way to do this is to evolve 
integers as if they were represented with a fixed length 
binary string and the value they represent is given by the 
unitation of the string. The (simulated) string length will 
be 100 and mutation per bit will be 0.05 probability of 
assigning a new random value. 

4 EXPERIMENTS AND RESULTS 

We start with a control experiment, and then conduct 
several experiments using Equations 1 through 3 to 
illustrate a few of the concepts we have discussed. 

4.1 CONTROL: MUTATION BI AS 

The first experiment is a control experiment using f(a)=0 
to illustrate the effects of mutation bias and provide 
reference performance levels for the following 
experiments. We evolve single integer values in two 
separate populations with the biased mutation discussed 
previously. All individuals in the first population are 
initialized to 0. All individuals in the second population 

are initialized to 100. Figure 1 shows the populations 
evolving over time. The vertical axis represents the 
objective fitness of individuals. Reference lines are 
included at 50 and 100. The horizontal axis runs from 
generation 0 to generation 600. 

 

 

 

 

 

 

 

 

 

 

 

 

 

We see that the population average is drawn to about 50 
in both cases, as predicted. The performance level in the 
latter half of the run represents a neutral, no-selection, 
performance level for the populations. 

4.2 EXPERIMENT 1: LOSS OF GRADIENT  

Next we demonstrate that the subjective measure of fitness 
does not always deliver the desired objective performance 
even in the simple one-dimensional game of Equation 1. 
Figure 2 shows the performance of individuals in two 
coevolving populations. 

 

Figure 2: Coevolution using Equation 1. 

The additional two plots in the lower section of the figure 
show the average subjective fitness for members of each 
population. These show that the subjective fitness of one 
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Figure 1: Neutral selection showing mutation bias. 
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population is approximately one minus the subjective 
fitness of the other. They also show that the subjective 
fitness of either population does not vary significantly as 
evolution progresses despite the fact that objective fitness 
has changed. This is the Red Queen effect (Cliff & Miller 
1995) – though the performance of individuals improves, 
the performance of their opponents improves at the same 
rate, and they find themselves no better off (subjectively). 
In an experiment where we do not have an objective 
measure of performance, this creates a problem for 
monitoring progress. 

Figure 3 shows the same experiment but with a sample 
size, S=1. i.e. each player is evaluated by playing against 
one randomly selected player from the other population. 

 
 

Figure 3: Coevolution using Equation 1, S=1. 

This is clearly a different result altogether. There are clear 
downward trends as well as upward trends. Notice that the 
subjective fitnesses (at the bottom of the figure) show 
periods of polarization – one population scores 1 and the 
other population scores 0 – and these periods coincide 
with the downward trends in objective fitness. At these 
times all the individuals in the first population beat all the 
individuals they are tested against in the second 
population, or vice versa. This separation of the 
populations can be seen in the points plotted for the 
objective fitness values. Thus there is no selective 
pressure and the negative mutation bias is thus allowed to 
pull the population back down towards the neutral 
performance position shown in Figure 1. Then, by chance, 
the two populations happen to re-engage and race each 
other to high values again. This may happen repeatedly in 
a run. 

In this game, the effect is only seen at these low 
population sizes and low sample sizes, and the good 
performance seen in Figure 2 can be regained using a 
larger population size, even with S=1. However, it is 
surprising that such a disconnection of the populations is 
possible at all in such a simple symmetric game. In a 
practical application of coevolution the likelihood of one 

population dominating the other may be affected by 
asymmetry in the game – for example, evasion may be 
easier than pursuit, and a population of evaders may get a 
little too far ahead on occasions, and cease to provide 
selective pressure. But note that even if the coevolving 
populations do not disconnect completely as they do here, 
the subjective fitnesses may be distorted. 

4.3 EXPERIMENT 2: FOCUSSING 

In these experiments we use Equation 2 to illustrate 
problems of focusing. We have already seen two 
populations coevolving successfully on a single dimension 
in Figure 2. Figure 4 shows two populations evolving on 
ten dimensions. To avoid using a larger genome, that 
would suffer unfairly from our mutation bias, we use ten 
dimensions of 10 bits each (instead of one dimension of 
100 bits). The vertical axis shows the objective fitness of 
each individual, i.e. the sum over all dimensions. 

 

Figure 4: Coevolution using Equation 2, 10 dimensions. 

Notice that the performance levels fail to reach 100. This 
can be explained by noticing that whilst any one 
dimension is the dimension that matters given the make-
up of the other population, the other nine dimensions are 
likely to drift toward their neutral position. Although 
selective pressure switches from one dimension to 
another, high performance cannot be maintained in all 
dimensions simultaneously. This may cause individuals to 
‘forget’ skills that they had learned previously, only to re-
discover them later.2 If our objective metric was 
concerned with only a subset of the ten dimensions then 
oscillations in performance would be pronounced. But, 
even when the objective metric values all dimensions 
equally we see that over-specializing can prevent the 
discovery of a generalist. Depressed performance also 
occurs in single-population coevolution using this game 
(drawing S from other members of the population). 

                                                           
2 This is clear in these experiments when the performance in each 
dimension is observed separately (not shown). 
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In a normal evolutionary set-up, the failure to reach the 
maximum performance could be remedied with the use of 
elitism in the objective metric. But, note that elitism acting 
in the subjective metric cannot assist us here. We only 
have access to the ‘apparent best’ and elitism in this 
metric will not produce elitism in the actual (objective) 
best. However, a “Hall of Fame” method, where 
individuals play against representatives from past 
generations may decrease ‘forgetting’ and increase 
generalization (Cliff & Miller 1995). 

4.4 EXPERIMENT 3: RELATI VISM  

In our third experiment we examine the game in Equation 
3 that exhibits intransitive superiority. Figure 5 shows the 
intransitive game with two populations.  

 

Figure 5: Coevolution using Equation 3. 

Clearly, things are not working the way we want them to 
according to our objective metric. Notice that the 
downward trends are not accompanied by a domination of 
one population by the other – the average subjective 
fitnesses are not polarized as they are in Figure 3. So the 
downward trends are not the result of drifting under 
negative mutation bias. Also, the downward excursions 
sometimes go below the neutral level of 50 showing that 
the populations are actually being driven downwards.  

This activity can be explained by noticing that subjective 
scores in this game can sometimes be improved by 
lowering the value a player represents. Specifically, if a 
player is losing in the chosen dimension it may be 
possible to change which dimension is relevant by 
lowering its value. In some circumstances, this may make 
the second dimension become relevant and the outcome of 
the game may be different. For example, consider a=(4,7) 
and b=(5,5). The closest dimension is the first, and b wins. 
Now, a'=(3,6) is a small variation from a. The closest 
dimension when a'  plays b is the second dimension and a'  
wins. So, a'  is preferred over a even though a'  is inferior 
to a in the objective metric.  

So, whereas Figure 3 showed how subjective preference 
may give a draw where objective preference should give a 
winner, in this experiment, we see that Psubj may give the 
opposite answer to Pobj. As a result, we see that 
performance can be driven down not just drift down. This 
dynamic is produced by the exact characteristics of the 
game we defined. However, it is sufficient to illustrate the 
point that Psubj can be the reverse of Pobj even in a game 
which looks innocent enough. The difficulty that Equation 
3 causes arises from the fact that the features of a player 
that control a win with respect to one player, are in 
opposition to the features that will win against another 
player. Specifically, reduction in some dimension can 
allow a win against one player, whilst inducing a loss 
against another player. We may expect such destructive 
dynamics in any game with these counter acting 
properties.  

Figure 6 shows that the effects of intransitive superiority 
can be destructive even in one-population coevolution. 
That is, even when players play against opponents from 
their own population, the intransitive nature of the game 
can prevent continued increases in performance. 
Interestingly, the data from this run can be seen to exhibit 
some ‘spontaneous speciation’. Although there is only one 
population, the individuals occasionally diverge showing 
two separate sub-populations.  

 

 

Figure 6: Coevolution using Equation 3: one population. 

The phenomena in these experiments with Equation 3 are 
not overcome by larger population sizes and larger sample 
sizes. Examining the exact values in both dimensions (not 
shown in these figures) reveals that evolution in this game 
is indeed moving through the same parts of strategy space 
repeatedly. Thus this simple game illustrates the cyclic 
activity often speculated about in coevolution literature 
(Cliff & Miller 1995). 
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5 CONCLUSIONS 

With the use of our minimal substrate we have provided 
concrete illustrations of several coevolutionary issues. We 
have given simple examples in which subjective fitness 
measures appear unproblematic but can actually disagree 
with objective fitness.  

We illustrated three kinds of coevolutionary failure: loss 
of gradient where performance drifts (downward) because 
one population dominates the other, over-specialization 
where coevolution fails to find general solutions because 
strategies transition from one dimension to the other 
exploiting specific weaknesses, and issues of relativism 
where subjective fitness can act in opposition to objective 
fitness. Each of these weaknesses in coevolution can cause 
repeated ‘forgetting’ and re-discovery of strategies and 
prevent the continued improvement in performance that 
we would like to see. 

Important concepts in these illustrations include the 
separation of objective and subjective fitness: the metric 
that we as researchers seek to optimize, and the metric of 
performance as perceived by the co-evolving individual, 
respectively. Also, the fact that a coevolutionary game 
may not be reducible to a single dimension – the 
performance of an individual is always with respect to 
some other individual (or set of individuals) – thus the 
subjective metric may not be reduced to a one-
dimensional notion of quality, or a single superiority 
ordering. Finally, intransitivity is an important 
characteristic of subjective superiority that can be 
particularly problematic. 

In illustrating these problems and concepts we have made 
many choices both in the game and the coevolutionary set-
up. Our substrate is by no means the only simple substrate 
in which these concepts could be illustrated. Nonetheless, 
the coevolution of scalars and vectors provides one 
concrete example for several of the slippery issues 
common in the coevolution literature. And, unlike 
previous work, in this substrate we are able to properly 
separate the issues of coevolution from the issues of any 
complex application domain. The problems caused by 
these simple games caution us in making assumptions 
about more complex coevolutionary endeavors.  

In previous work we have used the term ‘mediocre stable 
state’ to mean what we may now describe as a condition 
where the coevolutionary system is not producing 
improved performance in the objective metric despite 
continued adaptive steps in the subjective metric. This 
paper has begun to decompose the mechanisms that may 
be behind such failures, and in so doing, it may assist us in 
at least diagnosing problems in future. Related work 
builds upon the insights here to formulate an optimization 
method that explicitly respects the multi-dimensional 
nature of coevolutionary games by applying the notions of 
multi-objective optimization to a set of subjective scores. 
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Abstract 
The puzzle of the persistent question marks (a 
phrase coined by Harvey in 1993) refers to the 
occurrence of residual learnable alleles in 
simulations of the Baldwin effect, which 
concerns interactions between learning and 
evolution. Explanations of the puzzle have 
focused on the role of fitness proportional 
selection pressures and of drift.  We replicated 
the original 1987 model by Hinton and Nolan, 
extending the number of generations simulated 
until populations converged on stable genotypes, 
thus quantifying the number of residual question 
marks and the time to homogeneity (only one 
allele remaining in the population for each gene 
in a chromosome). Previous explanations of the 
residual question marks imply that algorithms 
that maintain strong selection pressure should 
not result in residual question marks. We tested 
this implication by simulating Hinton and 
Nolan’s Baldwin model replacing frequency 
proportional selection by tournament selection.  
Fewer residual question marks remained, but 
they were still present in many populations.  We 
analyzed the relative factors that contribute to 
these effects in both fitness proportional and 
tournament selection runs. We conclude that 
homogeneous question marks are a significant 
factor in populations exhibiting the Baldwin 
effect in all the types of selection strategies 
tested in this study. 

 

1 INTRODUCTION 

Learning is ubiquitous in nature. It may be argued that the 
ability to learn is the single most valuable trait in Homo 
sapiens, but even single-celled microbes learn to follow 
chemical gradients. The nature of the interaction between 

evolution and learning has been a subject of research and 
debate for decades. The suggestion that learning by 
individuals may guide the evolution of a population was 
proposed by Baldwin towards the end of the nineteenth 
century (Baldwin, 1896), and has been dubbed the 
“Baldwin Effect”. 

1.1 THE BALDWIN EFFECT 

The assumption underlying the Baldwin effect is that 
behaviour may be either innate (genetically determined) 
or learned. Innate behaviour has the advantages of being 
available to the individual throughout its life, and being 
quick to carry out, requiring no decision-making on the 
part of the individual. Innate behaviour is, however, 
inflexible; if a novel situation arises it may not be dealt 
with appropriately. Learned behaviour is exactly the 
opposite: slower to acquire and apply, but flexible. 

Baldwin suggested that some individuals may contain 
genes which predispose them to learn a particular 
behaviour. If this behaviour is advantageous to the 
individuals, they will produce a higher than average 
number of offspring, and the advantageous genes will 
spread through the population. Further mutations to these 
genes are then possible, making the behavior more innate 
and hence easier to learn. Eventually a behavior that was 
learned may become encoded into the genome as an 
instinct. Learning on the part of individual organisms has 
then shaped the evolution of the entire population. 

1.2 MODELLING THE BALDWIN EFFECT 

Baldwin’s hypothesis, like those of Darwin, Lamarck and 
other evolutionary theorists was not testable with the 
science of the nineteenth century. It remained an 
intriguing possibility until the advent of sufficiently 
powerful computers and evolutionary computation 
algorithms made empirical investigations into evolution-
ary processes a real possibility, almost a century later. 

The most widely studied model of the Baldwin Effect was 
developed by Hinton and Nowlan (1987). In this model, 
each individual consists of a simple neural network with 
twenty connections, which must be set correctly via either 
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learning or evolution. A network that achieves the correct 
settings has a fitness dependant upon how long it took to 
achieve the correct settings, while all incorrect networks 
have equal, minimal fitness. The genetic search space is 
thus a “needle in a haystack”, with the ability to learn 
smoothing the single spike of high fitness (Figure 1). 

 

 

Figure 1. Search space for the Baldwin Effect, 
viewed in terms of expected fitness. The highest 
fitness is given for a genome consisting of twenty 
1s, which only occurs in one in a million randomly 
generated individuals (a needle in a haystack 
problem). By allowing some genes to be learned (the 
?s), the landscape around the single target of high 
fitness develops “shoulders’’ that allow effective 
searching. 

 

Computationally, each individual is implemented as a 
string of twenty “genes”, each of which may be either 1, 
0, or ? (question mark). The ? represents a learnable gene. 
The individual learns by guessing 0 or 1 with a 
probability of 0.5. The target pattern is a string of twenty 
1s. The number of guesses required to achieve this target, 
g, is recorded and used to calculate the individual’s 
fitness, f: 

G

gGL
f

))(1(
1

−−+=  

where G is the maximum number of guesses allowed and 
L is the length of the chromosome. In Hinton and 
Nowlan’s model, G = 1000, L = 20, and the population 
size, N = 1000. 

Hinton and Nowlan (1987) modeled the Baldwin Effect 
using a simple genetic algorithm, with no mutation and a 
crossover value of 1.0; on average each pair of parents 
undergoes crossover once during each reproduction event. 
They state that the probability of an individual being 
selected as a parent for the next generation is proportional 
to the fitness of that individual, with an organism that 
learns immediately being twenty times as likely to be 

selected as an organism that never learns. Such a selection 
strategy is usually implemented using the roulette wheel 
algorithm (Mitchell, 1996). The next generation is created 
by repeatedly selecting two parents for each new 
individual. The probability that an individual is selected 
as a parent is proportional to its fitness divided by the 
total population fitness. 

Hinton and Nowlan (1987) demonstrated that under these 
conditions “learned” behaviours, represented by 1s, did in 
fact become genetically encoded, rising from an initial 
25% of alleles in the population to over 50%. Non-target 
alleles, represented by 0s, disappeared from the 
population and the proportion of learnable alleles, 
represented by question marks, reduced slightly from an 
initial 50% of the alleles in the population. A typical run 
demonstrating the Baldwin Effect as modeled by Hinton 
and Nowlan is shown in Figure 2. 

 

Figure 2. Replication of the Baldwin Effect 
simulations by Hinton and Nowlan (1987). The alleles 
in the initial population are generated with probability 
50% learnable (question marks), 25% target (1s) and 
25% non-target (0s). The 0s are rapidly removed from 
the population, the 1s increase and the ?s decrease. In 
this simulation, the proportions of alleles appeared to 
stabilize at approximately 80% 1s and 20% question 
marks (but see text for further discussion of the 
convergence properties). 

 

1.3 THE PERSISTENT QUESTION MARKS 

An interesting feature of the Hinton and Nowlan model is 
the persistence of learnable genes, represented by 
question marks, in the population once it has stabilized. 
Hinton and Nowlan themselves suggest that this is 
because there is very little selective pressure in favor of 
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genetically specifying the last few connections, since 
learning can occur in very few guesses. 

Belew (1987) carried out a detailed analysis of the Hinton 
and Nowlan model. He concluded that there are three 
causes for the persistence of question marks: little 
selection pressure for replacing the last few question 
marks; the fact that a discrete number of offspring means 
that a slight selective advantage translates merely into a 
slightly higher probability of producing an extra 
offspring; and the fact that the number of offspring 
produced per parent depends on the fitness differential 
between the individual and the average population fitness, 
a value that will generally be extremely small. 

Harvey (1993) argued that Belew’s interpretation is 
erroneous; he suggests that “the combination of genetic 
drift and hitch-hiking so completely swamps the selective 
pressures that some of the genes are completely 
converged to the undecided value, rather than the 
‘correct’ one” (Harvey, 1993, p. 1). 

Hinton and Nowlan, Belew and Harvey agree 
fundamentally, that the explanation for the persistent 
question marks lies in the reduced importance of selection 
pressure compared with other factors at work in the GA 
late in the course of evolution. All of the mechanisms 
described by these researchers are affected to a large 
extent by the choice of selection operator in the model. 
Following this reasoning, a selection operator with 
different characteristics, such as the ability to exert a 
strong selection pressure when small differences in 
fitnesses exist, should result in different equilibrium 
behaviour in the model. In this paper we re-examine the 
extent to which the persistence of question marks is due to 
practical, as opposed to theoretical, factors of the model. 

2 METHODS 

2.1 THE MODEL 

The model used in these experiments was a re-
implementation of the Hinton and Nowlan (1987) model, 
coded in Java. The initial parameters were similar to their 
values with initial proportions of 1, 0 and ? alleles 0.25, 
0.25 and 0.50 respectively. We made a minor change of  
setting both population size and maximum number of 
guesses  to 1024 instead of 1000, for comparison with 
other population sizes that were powers of two. 

The two major factors to be investigated in determining 
the persistance of question marks in the equilibrium 
population of this model are 

1. Genetic drift; and 

2. Selection pressure. 

In order to dissect the effects of these factors, we ran 
multiple runs until convergence was reached.  Hinton and 
Nowlan’s original simulations were run for 50 
generations, and Harvey’s for 500 generations.  In many 
replication runs, at these points the populations are still 

changing, albeit slowly.  Given sufficient time, runs 
converge to a stable population, in which all individuals 
in a population have identical genotypes.  The fitness 
values may still fluctuate slightly as residual question 
marks result in slightly varying fitnesses for each 
generation, but the composition of the genotype in a 
population stabilizes when all genes are homogeneous 
(only one allele remains in the population for each locus 
on the chromosome). In our simulations, the number of 
generations was chosen so that a substantial proportion of 
runs had converged to homogeneous populations. 

In order to study the long term behaviour of the model 
using roulette wheel selection and the variance in 
performance, we simulated 100 runs using the parameters 
described above. The number of runs which became 
homogeneous for all genes, the generation at which 
homogeneity occurred, and the number of persistant 
question marks in each population were recorded (section 
3.1). 

To assess the contributions of genetic drift and selection 
pressure, comparison simulations were run with no 
selection pressure (sections 2.1.1 and 3.2), and an 
alternative selection algorithm (sections 2.1.2 and 4). 

2.1.1 Genetic Drift 

Genetic drift is defined by Maynard Smith (1998) as 
fluctuation in the proportions of different kinds of 
individuals due to chance. Drift may result in the 
elimination of some alleles from a population, and in 
others becoming homogeneous, depending on the 
population size. 

In a genetic algorithm, drift would be expected to play a 
significant role only in the outcome of simulations with a 
small population size. Harvey (1993) is of the opinion that 
the population size used by Hinton and Nowlan (1987), 
1000 individuals, is small enough for drift to be 
important. In practical EC studies, population sizes much 
less than 1000 are often used, so the role of drift in 
populations of this size are of importance not just for the 
Baldwin effect, but potentially for other studies also. 

In the Baldwin model, a run that results in one or more 
homogeneous 0s in the population would have to reflect 
the result of chance, since no selection pressures favor 0s.  
By contrast, both homogeneous 1s and question marks are 
subject to selection pressures that favor their increase. For 
the 1s, selection is always favorable, and ?s are favored 
over 0s at the start of runs, before the 0s have been 
eliminated from the population.  

In order to study the role that drift plays in the 
convergence to homogeneity, we simulated 100 runs of 
the model using the parameters detailed above with the 
sole change that no selection pressure was applied (i.e., 
selection of parents was random).  The same measures 
were recorded as for the first set of simulations (section 
3.2). 
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2.1.2 Selection Pressure 

Previous investigators of the Baldwin Effect agree that 
fitness-proportional (roulette wheel) selection leads to 
reduced selection pressure against question marks as the 
population stabilizes. This effect arises because roulette 
wheel selection used the fitness differential between 
individuals to compute the expected number of offspring. 
As the total number of question marks in the population is 
reduced, the fitness differential between individuals is 
exponentially reduced.  For example, the maximum 
fitness for an individual in the Baldwin model is 20. For 
one learnable allele the expected fitness is 19.96 and for 
two learnable alleles it is 19.92. In a population in which 
half the agents had two learnable alleles and the other half 
had one learnable allele, the expected proportions of the 
two groups as parents for the next generation would be 
50.05% with one learnable allele, and 49.95% with two. 

An alternative selection strategy is tournament selection. 
In this algorithm two individuals are selected at random 
from the parent population, and the individual with the 
higher fitness becomes a parent. The probability of being 
selected as a parent for the next generation is therefore 
dependant upon the relative rank of an individual within 
the population, rather than its proportional fitness. Under 
tournament selection, the reduced fitness differential later 
in evolution does not change the ranking of individuals 
and selection pressure is maintained as long as there are 
different fitnesses within the population. Consider the 
example given above. The expected fitness of individuals 
with zero, one or two learnable alleles is the same as in 
roulette wheel (20, 19.96 and 19.92 respectively), 
however, the selection of parents is by competition, so 
even these very small differences confer advantage. 
Consider the differences this change in the algorithm 
makes for the example given above. In a population in 
which half the agents had two learnable alleles and the 
other half had one learnable allele, with tournament 
selection, the expected proportions of the two groups as 
parents for the next generation would be 75.00% with 
one, and 25.00% with two learnable alleles. 

Thus, under tournament selection, we expect to find 
strong pressure to remove all residual question marks 
from the population.  Any divergence from complete 
homogeneity of 1s would indicate the presence of other 
factors at work. 

We ran 100 runs of the model using tournament selection, 
but with all other parameters as above for roulette wheel 
selection. The same sets of measures were recorded 
(Section 3.3).  

3 RESULTS AND DISCUSSION 

3.1 PROPORTIONAL FITNESS SELECTION 

The replications of the roulette wheel model show that at 
50 generations (the number of generations used by Hinton 
and Nolan, 1987), all runs had residual question marks, 

which persisted for many subsequent generations. By 500 
generations (the number of generations used by Harvey, 
1993), the proportions of alleles had changed, and the 
populations had far fewer learnable alleles, with all runs 
having 20% or fewer residual question marks.  

However, when allowed to continue beyond 500 
generations, all populations either converged on a single 
genotype (i.e., reaching homogeneity in all genes) or 
appeared close to convergence. By 2500 generations, 
85/100 populations had converged to homogeneity and 
the remaining 15 populations had 19/20 homogeneous 
genes.  No 0s remained in any of the populations, and the 
number of residual question marks varied from 0 to 4 per 
individual (out of the total of twenty genes). The average 
number of residual question marks in the converged runs 
was 1.63 (standard deviation 1.02).  

By studying the distribution of residual question marks in 
the homogeneous populations, the issue of the persistent 
question marks may be examined in detail.  

Runs that took less than about 500 generations had more 
residual question marks than those that took longer to 
converge. The distribution can be seen by graphing the 
time taken to reach homogeneity against the number of 
residual question marks (see Figure 3). 

 

Figure 3. Time to converge for roulette wheel runs. 
When runs converged quickly (less than 500 
generations), they tended to have more residual question 
marks. 

Inspection of individual runs revealed that the average 
fitness of the population started at the minimum value 
(1.0) as expected, and at about twenty generations rose 
steeply to the high teens. It then gradually improved over 
the following hundreds (in some cases thousands) of 
generations until the population reached homogeneity 
(See Figure 4). This behavior - a steep initial rise in 
fitness followed by slow convergence - is consistent with 
the thesis of diminishing selection pressures.  
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(a) 

(b) 

 

Figure 4. Fitness and number of homogeneous genes 
vs generation for runs with zero (a) and four (b) 
homogeneous question marks. Both runs show a steep 
early rise in fitness and then variable lengthy periods 
before convergence (note the difference in scales on 
the x-axis). The steep rise in average fitness occurs 
before any genes become homogeneous in (a), and all 
genes are eventually 1s. In (b), by generation seven, 
fitness is more than 50% of the maximum and by 
generation ten three loci have homogeneous question 
marks. 

 

The long convergence time (after the initial rapid rise in 
fitness) suggests that drift may be the only mechanism 
affecting the incidence of residual question marks.  If drift 
was the sole factor in the resulting homogeneity of 1s and 
question marks in each population, then the distribution of 
question marks should have no observable pattern. By 
studying the inheritance of alleles throughout the 
generations, however, we observed that in the vast 
majority of cases, the residual question marks in the final 
population were in the same loci as those of the first 
successful individual in each run. This effect can be 
understood by considering the mechanism of inheritance 
in proportional selection.  

In the initial population all alleles are likely to be 
represented in all positions on the chromosomes. The first 

individual to successfully guess the solution during its 
lifetime, on average, will have a much larger number of 
descendents in later generations compared to other 
individuals in its generation. Future winners are likely to 
be drawn from among these offspring, and in time, the 
alleles of the first individual dominate the distant 
descendents. This effect is similar to the “founder effect”, 
observed when a few individuals establish an isolated 
population, and we refer to it as a pseudo-founder effect. 
The question mark alleles of the first successful individual 
are “hitch-hikers” on its success (Harvey, 1993). 

3.2 THE ROLE OF GENETIC DRIFT 

In the second set of simulations, parents for each 
generation were chosen without considering their fitness.  
None of the 100 runs eliminated all 0s from the 
population (compared to 100% elimination of 0s under 
roulette wheel selection). The pattern of 0s, 1s and 
question marks in the populations reflected the initial 
allele frequencies.  The presence of homogeneous 0s in all 
runs emphasizes the effects of the strong selection 
pressures against them in roulette wheel runs (and has 
relevance to the tournament runs in the next section). 

By 2500 generations (the point at which the results in the 
roulette wheel runs were measured above), only six of the 
populations had converged to homogeneity, although on 
average, 83.6% of the genes were homogeneous. By 7000 
generations, 92% of the populations had converged (see 
Figure 5). 

 

 

 

Figure 5. Time to converge for runs without selection 
pressues.  Note the length of time to converge and the 
scatter of values.  None of these runs eliminated 0s 
from the population. 

 

We also tested drift in a variety of much smaller 
populations, from 32 to 512 individuals. As expected, 
convergence in smaller populations was much more rapid, 
with populations of size 32 (individuals with ten genes) 
converging to homogeneity in 104 generations on 
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average. By comparison, populations converged in 29 
generations on average with roulette wheel selection. 

4 SELECTION PRESSURE 

The original posing of the puzzle of the persistent 
question marks concerned why learnable genes remain, 
when after many generations they might have been 
expected to have been replaced by instincts.  With a 
detailed study of the factors that affect the residual 
question marks using roulette wheel selection, in the third 
set of simulations we are in a position to consider the 
generality of the phenomenon.  That is, to what extent are 
the behaviours observed in the Baldwin effect due to the 
formulation of the problem in terms of fitness 
proportionate selection, and do the same factors play 
similar roles under other formulations?  

In our third set of simulations, we examined the effects of 
using a tournament-based selection strategy.   

Neither of the two core phenomena of the Baldwin effect 
(i.e., that learning can smooth the search space of a needle 
in a haystack problem; and that intially learned behaviour 
can become instinctual over time) depend on the 
proportional fitness selection strategy chosen by Hinton 
and Nolan (1987). Under other selection strategies, the 
core properties are expected to be exhibited. 

In tournament selection, as discussed above, any small 
advantage between individuals in a population maintains 
selection pressure, so that as a population increases in 
fitness, the selection pressure does not decrease for the 
residual question marks.  Thus, consideration of selection 
pressures leads to the hypothesis that question marks 
should not persist in populations subject to tournament 
selection. 

As expected, the majority of tournament selection runs 
demonstrated the Baldwin effect of the elimination of 0s 
from the population and a gradual increase in the number 
of 1s over time. However, the variance was much greater 
than for the roulette wheel runs. Of the 100 runs, 75 found 
successful solutions, all within 600 generations (cf. 2500 
for some of the roulette wheel runs). The unsuccessful 25 
runs all had at least one homogeneous 0 by generation 
2500. 

Of the successful runs, the number of residual question 
marks varied from 0 to 8 per individual (cf. 0-4 for 
roulette wheel runs). The average number of residual 
question marks in the converged runs was 1.00 (standard 
deviation 1.74).  

A strong trend can be seen in the time taken to reach 
homogeneity with respect to the number of residual 
question marks. Runs that took fewer generations to 
converge had fewer residual question marks that those 
that took longer to converge (see Figure 6).  

 

 

 

 

 

 

 

Figure 6. Time to converge for successful tournament 
selection runs. Compared with roulette wheel runs 
(Fig. 3), tournament runs show much higher variance 
in the number of residual question marks, time to 
homogeneity is much shorter and 25% of runs 
contained  homogeneous 0s (none had converged by 
2500 generations). 

 

Inspection of individual runs revealed that the typical 
fitness curve over the generations had a similar shape to 
roulette wheel runs (initially flat, rapid rise, then flat 
again), but the number of generations to the rapid fitness 
rise varied widely (tens to hundreds of generations). After 
the rapid fitness rise, convergence was always fast, 
typically less than twenty generations (see Figure 7). The 
rapid convergence from high fitness illustrates the 
continuing effect of tournament selection pressure. 
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(a) 

(b) 

 

Figure 7. Tournament selection runs showing fitness 
and number of homogeneous genes for (a) zero and 
(b) four homogeneous question marks. Both runs 
show late rises in fitness followed by fast convergence 
(note the difference in scales on the x-axis). In (b), by 
the start of the rapid fitness rise, two loci have 
homogeneous 1s and one has homogeneous ?s. 

 

The long period before the rapid fitness rise allows drift to 
play a role in the proportions of alleles in the populations. 
Some of the poorer solutions tended to have late rapid 
fitness rises, and frequently by that stage one or more 
genes had become homogeneous.  In the cases where 
those genes were 0s, failures resulted. In the cases where 
several early homogeneous genes were question marks, 
mediocre solutions ensued.  

4.1 COMPARISON OF ROULETTE WHEEL 
AND TOURNAMENT SELECTION 

The multiple runs of the two selection strategies resulted 
in a majority of successful runs in both cases, but clear 
differences in the variance across multiple runs.  

Tournament selection, which retains strong selection 
pressure when any question marks remain has 
significantly fewer residual question marks than roulette 

wheel (1.00 vs 1.63, p<0.005), supporting the basic thesis 
that the lack of selection pressure during the final stages 
of evolution under roulette wheel selection contributes to 
the residual question marks.  However, the fact that 
tournament runs do have at least some residual question 
marks indicates that other factors are also contributing.  

Interestingly, under roulette wheel selection, the runs 
that converged to homogeneity fastest had the most 
residual question marks, whereas under tournament 
selection the opposite effect was observed, and the runs 
that converged to homogeneity in fewest generations had 
the smallest number of residual question marks. The 
differences in the variance of the behaviors across 
different runs was marked, and can be observed directly 
from the graphs (cf. Figures 3 and 6).  

Consideration of fitness and homogeneity over the time 
course of runs provides insight into the mechanisms at 
work in the two selection strategies.  

In roulette wheel runs the average fitness of the 
population rises rapidly within relatively few generations 
(10-20) to a level at which many individuals have good, 
but not perfect solutions. If the population converges to 
homogeneity at this point, question marks from the 
pseudo-founders cannot be eliminated.  If convergence is 
delayed, the large number of good solutions is able to 
gradually improve further, until two or fewer question 
marks remain.  

By contrast, with tournament selection, whenever a rapid 
fitness improvement occurs, the population converges 

soon afterwards (typically 10-50 generations after the 
characteristic rapid fitness rise). The invariant selection 
pressure, independent of the reduction in the number of 
question marks, drives their ongoing elimination until 
homogeneity precludes further improvement.  

Why should there be an interaction between selection 
strategies for the number of residual question marks and 
the generations required to reach homogeneity?  

There are differences worth noting between the early 
performance of roulette and tournament selection.  In 
tournament selection, any successful individual  
(regardless of the number of question marks) results in a 
doubling of genes in the next generation. This value is 
fixed, regardless of the number of question marks in its 
genome.  Given a critical number of such genomes, the 
geometric increase in descendents rapidly increases the 
proportion of the successful individuals’ alleles. However, 
the variance for one individual is high, and early 
successful individuals frequently are not sufficiently 
prevalent to increase in number before crossover remixes 
their genes with other individuals, reducing the fitness of 
their offspring. Before a critical mass is reached, some 
loci may drift to homogeneity. The variance of outcomes 
(higher variance in number of residual question marks and 
the existance of runs with residual 0s) can be traced to 
early homogeneous question marks and 0s before critical 
mass is reached. 
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By contrast, using proportional fitness, individuals with 
more 1s in their genomes have far higher rates of 
geometric increase (up to a factor of twenty) over 
individuals with far fewer.  Thus, successful individuals 
with very high fitness can build a critical mass of 
descendents quickly, and those with many question marks 
(and hence comparably lower fitness) are less likely to 
become pseudo-founders. The roulette wheel runs reliably 
had rapid rises in fitness early in their runs (typically 20-
50 generations into the run), whereas much higher 
variations were found with tournament selection (50-500 
generations).  

This difference accounts for the fact that in roulette wheel 
all runs succeeded, whereas in tournament selection 25% 
of the runs had homogeneous 0s for at least some genes.  

It remains to be explained why runs with more residual 
question marks in tournament selection take longer to 
reach homogeneity. One possible explanation relates to 
the variance in the fitness function (as suggested by 
Harvey, 1993, for roulette wheel selection).  Although in 
tournament runs the selection pressure for a given fitness 
value is constant, the fitness values themselves have 
higher variance for genotypes with more question marks, 
thus delaying time to convergence.  

5 CONCLUSIONS 

In this paper we have demonstrated the generality of the 
persistence of learnable alleles in the Baldwin effect using 
a selection strategy that does not reduce selection pressure 
as fitness improves.  Thus, reduction in selection pressure 
need not be the only mechanism that results in the 
persistent question marks.   

Roulette wheel and tournament selection were compared 
with respect to a variety of possible factors, including 
drift to early homogeneity, loss of diversity due to a 
pseudo-founder effect, the rate of mixing of genes and the 
relative selection pressures. This study demonstrates that 
roulette wheel and tournament selection can be analysed 
in terms of the time taken by a population to reach a 
critical mass which results in a rapid rise in fitness, and 
the time for a population with high fitness to converge to 
homogeneity.  Tournament selection has fewer residual 
question marks on average in successful runs, but greater 
variance in outcomes.  Roulette wheel  has slightly more 
residual question marks, but has consistently good 
performance, with no populations failing to find good 
solutions. The study has shown that homogeneous 
question marks are a significant factor in populations 
exhibiting the Baldwin effect in all the types of selection 
strategies tested in this study.  

In further work, we are testing the persistence of residual 
question marks and their underlying causes in a range of 
fitness proportional and tournament selection algorithms. 
We have been comparing selection strategies with high 
variance, such as traditional roulette, with low variance, 
such as Baker’s guaranteed selection (as described in 
Mitchell, 1996). Results to date indicate that high 

variance plays a significant role in the persistance of 
residual question marks in populations. 
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Abstract

This paper demonstrates dynamical system mod-
els of genetic algorithms that exhibit cycling
and chaotic behavior. The genetic algorithm is
a binary-representation genetic algorithm with
truncation selection and a density-dependent mu-
tation. The density dependent mutation has a
separate mutation rate for each bit position which
is a function of the level of convergence at that
bit position. Density-dependent mutation is a
very plausible method to maintain diversity in
the genetic algorithm. Further, the introduction
of chaos can potentially be used as a source of
diversity in a genetic algorithm.

The cycling/chaotic behavior is most easily seen
in a 1-bit genetic algorithm, but it also occurs in
genetic algorithms over longer strings, and with
and without crossover.

Dynamical system models of genetic algorithms model
the expected behavior or the algorithm, or the behav-
ior in the limit as the population size goes to infinity.
These models are useful because they can show behav-
ior of a genetic algorithm that can be masked by the
stochastic effects of running a genetic algorithm with a
finite population. The most extensive development of
dynamical systems models has been done by Michael
Vose and coworkers. (See [Vose and Liepins, 1991],
[Vose and Wright, 1994] and [Vose, 1999] for examples.)
They have developed an elegant theory of simple genetic
algorithms based on random heuristic search. Heuristic
search theory is based on the idea of a heuristic map G,
which is a map from a population space to itself. The map
G includes all of the dynamics of the simple genetic algo-
rithm. The map defines a discrete-time dynamical system
which we call the infinite population model.

The simple genetic algorithm heuristic G is called focused
if G is continuously differentiable and if the sequence

p,G(p),G2(p), . . . converges for every p. In other words,
G is focused if every trajectory of the dynamical system
converges to a fixed point.

With one exception, infinite population models of ge-
netic algorithms always seem to converge to a fixed
point. The exception is the result of Wright and Bid-
well [Wright and Bidwell, 1997], who show stable cy-
cling behavior corresponding to very “weird” mutation and
crossover distributions that would never be used in prac-
tice. Cycling behavior has also been shown in biological
population genetics models [Hastings, 1981].

The random heuristic search model also leads in a natural
way to a Markov chain model where the states are (finite)
populations. Vose has a number of results that connect the
infinite population model to the finite population model in
the limit as the population goes to infinity. These theorems
assume that the heuristic G is focused. For example, he
shows that ([Vose, 1999], theorem 13.1), the probability of
being in a given neighborhood of the set of fixed points can
be made arbitrarily high by choosing the population size to
be sufficiently large.

Thus, there is a lot of interest in knowing whether the
heuristic that defines the infinite population model of a ge-
netic algorithm is focused. This paper gives numerical ex-
amples where the infinite population model of a genetic
algorithm exhibits stable cycling/chaotic behavior, which
implies that the heuristic is not focused.

We expect that the examples of this paper very well could
arise in practice if the mutation and selection described in
this paper was used. However, they are not examples of
the simple genetic algorithm in that a density-dependent
mutation scheme is used.

Chaotic behavior could also be useful for restoring diver-
sity in a run of a genetic algorithm that is not making
progress. When the GA seems to have converged, the pa-
rameters could be adjusted to introduce chaotic behavior,
which can move the algorithm from a local optimum.
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We are aware of one other paper that discusses chaos (more
accurately fractals) and genetic algorithms. Juliany and
Vose [Juliany and Vose, 1994] generated fractals by deter-
mining the basins of attractions of fixed points of G

1 Notation

Let Ω be the search space of length ` binary strings, and let
n = 2`. For u, v ∈ Ω, let u ⊗ v denote the bitwise-and
of u and v, and let u ⊕ v denote the bitwise-xor of u and
v. Let u denote the ones-complement of u, and #u denote
the number of ones in the binary representation of u. Let
1 denote the string of ones (or the integer 2` − 1). Thus,
u = 1⊕ u.

Integers in the interval [0, n) = [0, 2`) are identified with
the elements of Ω through their binary representation. If
j ∈ Ω, we assume that j0 denotes the least significant
bit of the binary representation of j and j`−1 denotes the
most significant bit. However, when we write j as a binary
string, we will use conventional notation with the least sig-
nificant bit on the right.

This correspondence allows Ω to be regarded as the product
group

Ω = Z2 × . . .× Z2

where the group operation is ⊕. The elements of Ω corre-
sponding to the integers 2i, i = 0, . . . , `− 1 form a natural
basis for Ω.

A population for a genetic algorithm over length ` binary
strings is usually interpreted as a multiset (set with repe-
titions) of elements of Ω. A population can also be inter-
preted as a 2` dimensional incidence vector over the index
set Ω: if x is a population vector, where xi is the propor-
tion of the element i ∈ Ω in the population. This implies
that

∑

j xj = 1. For example, suppose that ` = 2 so that
Ω is identified with the set {0, 1, 2, 3}. Then the popula-
tion {0, 0, 2, 2, 3} is represented by the population vector p
where p0 = 2/5, p1 = 0, p2 = 2/5, and p3 = 1/5. We
would also write p = 〈2/5, 0, 2/5, 1/5〉T .

Let

Λ = {p ∈ Rn :
∑

i

pi = 1 and xi ≥ 0 for all i ∈ Ω}.

Thus any population vector is an element of Λ. Geomet-
rically, Λ can be interpreted as the n − 1 dimensional unit
simplex in Rn. Note that elements of Λ can be interpreted
as probability distributions over Ω.

If expr is a Boolean expression, then

[expr] =

{

1 if expr is true
0 if expr is false

If p is a population, i ∈ {0, . . . , `− 1}, and k ∈ {0, 1}, let

S(p, i, k) =
∑

j∈Ω

pj [ji = k].

In other words, S(p, i, k) is the relative frequency of popu-
lation elements whose ith bit has the value k. For example,
if ` = 2 and if p = 〈2/5, 0, 2/5, 1/5〉T is the example pop-
ulation described above, then S(p, 0, 0) = p0 + p2 = 4/5,
S(p, 0, 1) = p1 + p3 = 1/5, S(p, 1, 0) = p0 + p1 = 2/5,
and S(p, 1, 1) = p2 + p3 = 3/5. S(p, i, k) can be also in-
terpreted as the “schema average” of the schema with one
fixed position in position i where the value of that fixed
position is k.

In the random heuristic search model, a population-based
generational search algorithm over Ω is defined by a heuris-
tic function G : Λ→ Λ. Given a population of size r which
is represented by p ∈ Λ, the next generation population is
obtained by taking r independent samples from the proba-
bility distribution G(p). When the simple genetic algorithm
is modeled by random heuristic search, the heuristic func-
tion G can be represented as the composition of a selection
heuristic function F , and a mixing heuristic function M.
See [Vose, 1999] for more details. In this paper, we ex-
press G as G(p) = F ◦M(p), rather than the more usual
G(p) =M◦F(p).

2 Density-dependent mutation

One of the major practical difficulties in the practical
use of genetic algorithms is “premature convergence”.
The genetic algorithm population loses diversity be-
fore sufficient exploration is done to discover the solu-
tions of interest. A number of techniques have been
proposed to prevent or slow down premature conver-
gence. These include crowding [DeJong, 1975], sharing
[Goldberg and Richardson, 1987], and partial reinitializa-
tion [Eshelman, 1991].

In this section, we propose another method to avoid pre-
mature convergence, based on maintaining population di-
versity. The idea is to use a different mutation rate at each
string position, and this rate depends on the convergence
of the population at that string position. If a string posi-
tion is highly converged in a population, then a high muta-
tion rate will be used at that string position in the produc-
tion of the next generation. The theoretical justification of
this method can be found in [Leung et al., 1997]; building
on the concept of degree of population diversity, the au-
thors show that premature convergence on a chromosome
location (that is, the probability for allele loss on that po-
sition) decreases with population size and increases with
|m − 1/2| where m is the mutation rate. As we choose to
keep the population size fixed, the suggestion is straight-
forward: Use population diversity as a quantitative mea-
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sure to prevent premature convergence by adaptively vary-
ing mutation probability. This also corresponds to the com-
plementing schema in case of stagnation procedure intro-
duced by [Agapie and Dediu, 1996] for solving deceptive
problems.

When there is a mutation rate at each string position, then
the process of mutation of a chromosome is to mutate the
loci of the chromosome independently. In other words, the
probability of flipping the bit at string position i is the mu-
tation rate mi at that string position.

Next, we show how this adaptive mutation rate can be ex-
pressed in the framework of the infinite population model.

Mutation can be described in terms of a probability distri-
bution over mutation masks. If j ∈ Ω is a binary string
and u ∈ Ω is a mutation mask, then the result of mutating
j using u is j ⊕ u. Since mutation masks are elements of
the search space, a probability distribution over mutation
masks is an element of Λ. Given such a probability dis-
tribution µ ∈ Λ, the corresponding mutation heuristic is
defined by

U(p)k =
∑

u∈Ω

∑

j∈Ω

µupj [u⊕ j = k] =
∑

j∈Ω

µk⊕jpj .

In the case where there is a mutation rate mi for each string
position,

µu =
`−1
∏

i=0

(1− ui −mi + 2uimi)

where ui denotes the bit value of u at string position i, i =
0, 1, . . . , `− 1. For example, if ` = 5 and u = 01001, then
µu = (1−m0)m1(1−m2)(1−m3)m4.

Under density-dependent mutation, the string position i
mutation rate mi is a function of the current population. In
particular, it is a function of the population bit frequencies
S(p, i, 0) and S(p, i, 1) at position i. A one way to define
such a function is to define a function r : [0, 1] → [0, 1/2]
with the property that r(1 − x) = r(x), and where r has a
minimum at x = 1/2 and maxima at x = 0, 1. Then we
define

mi = r(S(p, i, 0)) = r(S(p, i, 1)).

One particular family of such functions is defined by:

ra,b(x) = 2a−1b

∣

∣

∣

∣

x−
1

2

∣

∣

∣

∣

a

(1)

where a ≥ 1 and 0 ≤ b ≤ 1. Under this definition,
ra,b(0) = ra,b(1) = b/2 and ra,b(1/2) = 0. Thus, mi is
b/2 when position i has completely converged in the popu-
lation, and mi is zero when the bit values at position i have
equal frequency.

Figure 1 shows a graph of r4,1.

Figure 1: Mutation-adaptation rule: mutation increases
whenever diversity is low on a chromosome position.

3 Truncation selection

In this section we show how truncation selection can be
modeled by random heuristic search. Denote the popula-
tion size by r. Under classic truncation selection, a number
t with 0 < t < r is given. The the current population is or-
dered by fitness, and the t most fit individuals are selected
for reproduction. For simplicity, we assume that all indi-
viduals in the population have distinct fitnesses. The most
fit t individuals, when represented as a population vector
in Λ, define a probability distribution. Under our adapta-
tion of truncation selection to the random heuristic search
model, the population at the next step is formed by taking
r independent samples from this probability distribution.

This procedure can be defined as a selection heuristic.
Without loss of generality, we assume that Ω is ordered
so that f0 < f1 < . . . < fn−1, where fj denotes the fit-
ness of j ∈ Ω. Let T = t/r. Then the truncation selection
heuristic function FT : Λ→ Λ is defined by:

FT (p)k = (2)










0 if T <
∑

k<j pj

T−
∑

k<j
pj

T
if

∑

k<j pj ≤ T <
∑

k≤j pj

pk

T
if

∑

k≤j pj ≤ T.

(3)

It can be verified that this formula agrees with the above
procedure for every finite population size. An example will
be given in the next section.

4 The 1-bit GA case

We first show how to obtain cycling and chaos in the dy-
namical system model when the genetic algorithm repre-
sentation has only a single bit. In this case, the model is 1-
dimensional since a population p = 〈p0, p1〉

T can be com-
pletely described by p1 since p0 = 1−p1. Thus, we identify
Λ with [0, 1] under the correspondence 〈p0, p1〉 ←→ p1.
Our objective is to describe a heuristic function G : [0, 1]→
[0, 1] which describes one generation of the GA so that the
dynamical system determined by G exhibits stable cycling.
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In the 1-bit case, the truncation selection heuristic defined
in the previous section reduces to the following:

FT (p1)1 =

{

1 if T < p1

p1

T
if p1 ≤ T.

In the 1-bit case, the mutation heuristic is:

U(p0, p1)0 = (1−m)p0 + mp1

U(p0, p1)1 = mp0 + (1−m)p1

where m is the mutation rate.

Reducing this to the one variable p = p1 gives

U(p) = m− (2m− 1)p = m(1− 2p) + p

If the ra,b function is used for density-dependent mutation,
then

Ua,b(p) = 2a−1b

∣

∣

∣

∣

p−
1

2

∣

∣

∣

∣

a

(1− 2p) + p

= p−
b

2
|2p− 1|a(2p− 1)

It can be verified that Ua,b is continuously differentiable
even when a = 1 and thus ra,b is not continuously differ-
entiable.

Since there is no crossover possible in the 1-bit case, the
heuristic that defines the 1-bit dynamical system describing
the genetic algorithm is Ga,b,T = FT ◦ Ua,b.

Figure 2 shows graphs of the selection heuristic FT for
T = 7/10 and the mutation heuristic Ua,b for a = 2 and
b = 1.

Figure 2: HeuristicsFT (selection) for T = 7/10, res. Ua,b

(mutation) for a = 2 and b = 1

Note that under our assumption that f0 < f1, if the maxi-
mum value of the mutation heuristic function U is less than
T , then the region where the selection heuristic has value

1 is never reached, and the GA heuristic Ga,b,T is continu-
ously differentiable.

We show later that the behavior of G undergoes a phase
transition as G goes from being continuously differentiable
to having a discontinuous derivative. Thus, it is of interest
to determine the conditions on a, b, and T that assure that
G is continuously differentiable.

Lemma 1 If T satisfies the condition

T ≥
1

2

(

1

b(a + 1)

)
1
a

(

a

a + 1

)

+
1

2

then G is continuously differentiable.

Proof.

As above, G is continuously differentiable if and only if the
maximum value of U is less than or equal to T . This max-
imum value will occur when p > 1/2, so we can drop the
absolute value from the the formula that defines U . Thus,

U(p) = p−
b

2
(2p− 1)a+1

Now we solve the equation ∂U
∂p

= 0.

∂U

∂p
(p0) = 0 ⇐⇒ (2p0 − 1)a =

1

b(a + 1)

⇐⇒ p0 =
1

2

(

1

b(a + 1)

)
1
a

+
1

2

Then we substitute p0 into U to obtain the maximum value
of U .

U(p0) =
1

2

(

1

b(a + 1)

)
1
a

+
1

2
−

b

2

(

1

b(a + 1)

)

a+1

a

=
1

2

(

1

b(a + 1)

)
1
a

(

a

a + 1

)

+
1

2

This value gives the minimum for T such that G is contin-
uously differentiable. 2

Figure 3 shows the area of (a, T ) space where G is contin-
uously differentiable.

A fixed point z of a 1-dimensional continuously differen-
tiable discrete-time dynamical system y −→ g(y) is sta-
ble if |g′(z)| < 1 and is unstable if |g′(z)| > 1. The
system is focused if f is continuously differentiable and
if limt→∞ gt(y) converges for every starting point y. If
limt→∞ gt(y) = z and if g is continuous, then z is a fixed
point of g.

We can now give a more rigorous justification of stable
cyclic behavior of the dynamical system defined by G for
some specific values of the parameters.
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Figure 3: G is continuously differentiable in the region
above the curve.

For the above example with a = 2, b = 1, and T = 7/10,
the dynamical system defined by y −→ G(y) exhibits sta-
ble cycling. G has a single fixed point at z = 0.908430,
and G′(z) = −1.431114512, so the fixed point is unstable.
G2 = G ◦ G has three fixed points at 0.756838, 0.908430,
and 0.984383, and the derivative of G2 at these points are
−0.7721976, 2.0480887, and −0.7721976. Thus, G2 has
two stable fixed points that map to each other under G. This
demonstrates that G exhibits stable cycling of period 2. Fig-
ure 4 shows the graphs of the identity function, G, and G2

for a = 2, b = 1, and T = 7/10.

Figure 4: Heuristics G and G2 for a = 2, b = 1, T = 7/10

5 Empirical Results Using the Infinite
Population Model

We implemented the 1-bit and multi-bit infinite population
models in the MapleTMprogramming language. MapleTM,
along with other mathematical symbolic processing lan-
guages, allows for both symbolic processing and arbitrary
precision floating point computation.

To assure correctness of the code, we implemented the
models in several different ways (1-bit, multi-bit, with and
without the Walsh transform), and we cross-checked the
results of the different implementations.

5.1 The 1-bit case

For the 1-bit case, we produced what [Peitgen et al., 1992]
call final-state or Feignebaum diagrams. We used the fol-
lowing algorithm for a fixed value of the parameters a, T
and b.

1. Choose an initial value p0 at random from the interval
[0, 1].

2. Carry out 100 iterations to compute p1, p2, . . . , p100

using pn+1 = G(pn).

3. Carry out 200 more iterations to compute
p101, . . . , p300.

4. Plot p101, . . . , p300 on the diagram.

To produce a diagram, we fixed one of the a and T param-
eters and varied the other. The b parameter was fixed at
1. Figure 5 shows the diagram with T fixed at 7/8 and a
varying from 5 to 14 with an increment of 0.01. Figure 6
shows the diagram with a fixed at 4 and T varying from
0.6 to 0.99 in increments of 0.001. Both diagrams show
period-doubling approach to chaos as the a or T parameter
approaches the boundary of the region where G is continu-
ous. In the region where G is discontinuous, the behavior
seems to be mostly periodic, but with some chaotic devia-
tion from the period behavior for some parameter values.

0.6

0.7

0.8

0.9

1

p

6 8 10 12 14a

Figure 5: Final-state diagram for G heuristic for T = 7/8,
b = 1, and values of a from 5 to 14

These diagrams were generated with 100 digits of floating-
point precision. However, the diagrams look identical to
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0.7 0.75 0.8 0.85T
Figure 6: Final-state diagram for G heuristic for a = 4,
b = 1, and values of T from 0.7 to 0.9

diagrams produced using 10 digits of floating-point preci-
sion. Lack of precision means that specific iterates may
not be computed correctly (due to the sensitivity of initial
conditions due to chaos), but the overall behavior is not af-
fected.

5.2 The multibit case

We also did a number of runs using 2-bit to 4-bit repre-
sentations, and using one-point and uniform crossover with
crossover rates from 0 to 1. The fitness function used as-
signed one plus the integer value of the binary representa-
tion of a string to that string. Thus, the fitness of the 3-bit
string 000 was 1, the fitness of 001 was 2, etc.

We found that the behavior of the multi-bit representation
models were qualitatively the same (e. g., same period of
cycling) as the 1-bit model for the same values of a and
T . The presence or absence of crossover and the crossover
rate did not affect the results. To be more specific, we ran
the model for the combinations of the a and T parameters
that are given table 1 for bit lengths of 2 to 4, for crossover
rate 1/2, and for both one-point and uniform crossover. To
check for cycling of period C, we ran for 100 iterations
with a random initial population, and then looked at the 1-
norm of the difference between the final population and the
population C iterations prior to the final iteration. To check
for chaos, we ran both an initial random population and a
small random perturbation of this initial random popula-
tion for 100 iterations, and looked at the 1-norm of the dif-
ference between the final populations. The cycling checks
were run with 50 decimal digit floating point precision and
the chaos checks were run with 100 digit floating point pre-
cision.

In the check for cycling, the maximum deviation (1-norm)
between the last population and the population C iterations
back was 1.3× 10−6, and in the check for chaos, a pertur-

bation of size approximately 10−50 grew to a difference of
at least 10−38 after 100 iterations.

T\a 4 6 8 10
3/4 10 3 3 3
5/6 2 Chaos 4 4
7/8 1 2 8 Chaos
9/10 1 1 2 4

11/12 1 1 1 2
13/14 1 1 1 1

Table 1: Cycle length or chaotic behavior for 1-bit to 4-bit
representations, for different values of the parameters a and
T

We did some experiments with the multibit model where
the parameters for the bits were set separately. When one
bit was set to give cycling behavior and the other bits had
a constant mutation rate, the model exhibited cyclic be-
havior of the same period as when all bits were set to
give cycling behavior. And when one bit was set to give
chaotic behavior and the remaining bits had constant mu-
tation, the model exhibited chaotic behavior. When bits
were set to give cyclic behavior of different periods where
the shorter periods were divisors of the longest period, and
where G was continuously differentiable, the longest pe-
riod resulted. When one bit was set with parameter values
that did not make G continuously differentiable and corre-
sponded to period 3, and other bits were set to give period
10, period 3 resulted.

6 Empirical Results Using A Finite
Population GA

We implemented the finite population genetic algorithm
that corresponds to the infinite population model described
above. To show how the behavior depends on the popula-
tion size, we did many runs of the case where r = 5/6 and
a = 4. As shown in table 1, the infinite population model
has cyclic behavior of period 2 in this case. As a test for
cyclic behavior, we looked at when the population average
fitness exhibited period 2 cyclic behavior. Let ft denote
the average population fitness at time t. We would say that
the GA has cyclic behavior at time t (over 4 generations)
if either ft−3 ≤ ft−2, ft−2 ≥ ft−1, and ft−1 ≤ ft; or if
ft−3 ≥ ft−2, ft−2 ≤ ft−1, and ft−1 ≥ ft . Note that the
probability of this happening for a given value of t for a
sequence of uniformly distributed random numbers is 1/4.

Table 6 shows the results of running the GA for 100 runs
for 1020 generations with population sizes 100, 250, 1000,
and 5000. The fitness function was the same as used for
the infinite population model. The string length was 50,
and 1-point crossover with a crossover rate of 1/2 was used.
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Truncation selection was used with r = 5/6, and bitwise
density dependent mutation with a = 4 was used. The ta-
ble shows how many of the last 1000 generations exhibited
cyclic behavior as defined above.

These results show that the infinite population model makes
predictions about a finite population genetic algorithm that
can be verified with a population size of 100.

Population size 100 250 1000 5000
# generations 660.8 804.4 968.0 1000.0
Standard error 18.1 16.5 8.7 0.0

Table 2: Number of generations exhibiting cyclic behavior
out of 1000

7 Conclusion

We have shown that introducing a bitwise density depen-
dent mutatation in conjunction with truncation selection
into a bit-representation genetic algorithm can cause the
infinite-population model of this genetic algorithm to ex-
hibit cyclic and chaotic behavior. As the mutation param-
eter increases, the model goes through a period-doubling
approach to chaos.

This work is significant for two reasons.

First, it shows that the very important Vose infinite pop-
ulation model can exhibit a qualitatively different kind of
behavior, namely chaos, than has been seen before.

Second, it demonstrates a new way to introduce diversity
into an evolutionary computation algorithm, namely the
cyclic and chaotic behavior shown in this paper. To follow
up on this, more work needs to be done on characterizing
the conditions under which cyclic and chaotic behavior can
occur.

Acknowledgements

This work was done while the second author was visiting
the University of Montana, supported by a COBASE grant
from the National Research Council, USA.

References

[Agapie and Dediu, 1996] Agapie, A. and Dediu, H.
(1996). GA for deceptive problems: Inverting schemata
by a statistical approach. In Proceedings IEEE Interna-
tional Conf. on Evolutionary Computation (ICEC’96),
pages 336–340, Nagoya, Japan. IEEE.

[DeJong, 1975] DeJong, K. A. (1975). An analysis of the
behavior of a class of genetic adaptive systems. PhD
thesis, University of Michigan, Ann Arbor, MI.

[Eshelman, 1991] Eshelman, L. (1991). The CHC adaptive
search algorithm: how to have safe search while engag-
ing in nontraditional genetic recombination. In Rawl-
ings, G. J. E., editor, Foundations of genetic algorithms,
pages 265–283, San Mateo. Morgan Kaufmann.

[Goldberg and Richardson, 1987] Goldberg, D. E. and
Richardson, J. (1987). Genetic algorithms with sharing
for multimodal function optimization. In Proceedings of
the Second International Conference on Genetic Algo-
rithms, pages 41–49, Hillsdale, N. J. Lawrence Erlbaum
Associates.

[Hastings, 1981] Hastings, A. (1981). Stable cycing in
discrete-time genetic models. Proc. Nat. Acad. Sci.
USA, 78:7224–7225.

[Juliany and Vose, 1994] Juliany, J. and Vose, M. D.
(1994). The genetic algorithm fractal. Evolutionary
Computation, 2(2):165–180.

[Leung et al., 1997] Leung, Y., Gao, Y., and Xu, Z. B.
(1997). Degree of population diversity - a perspective
on premature convergence in genetic algorithms and its
markov chain analysis. IEEE Trans. on Neural Net-
works, 8:1165–1176.

[Peitgen et al., 1992] Peitgen, H.-O., J:urgens, H., and
Saupe, D. (1992). Chaos and Fractals, New Frontiers
of Science. Springer-Verlag, New York.

[Vose, 1999] Vose, M. D. (1999). The Simple Genetic Al-
gorithm: Foundations and Theory. MIT Press, Cam-
bridge, MA.

[Vose and Liepins, 1991] Vose, M. D. and Liepins, G. E.
(1991). Punctuated equilibria in genetic search. Com-
plex Systems, 5:31–44.

[Vose and Wright, 1994] Vose, M. D. and Wright, A. H.
(1994). Simple genetic algorithms with linear fitness.
Evolutionary Computation, 4(2):347–368.

[Wright and Bidwell, 1997] Wright, A. H. and Bidwell,
G. L. (1997). A search for counterexamples to two con-
jectures on the simple genetic algorithm. In Foundations
of genetic algorithms 4, pages 73–84, San Mateo. Mor-
gan Kaufmann.

724 GENETIC ALGORITHMS



Genetic Algorithms:
A Fitness Formulation for Constrained Minimization

J. A. Wright

Department of Civil and Building Eng.

Loughborough University,

Loughborough,

Leicestershire, LE11 3TU, UK

J.A.Wright@lboro.ac.uk

R. Farmani

Department of Civil and Building Eng.

Loughborough University,

Loughborough,

Leicestershire, LE11 3TU, UK

R.Farmani@lboro.ac.uk

Abstract

A �tness formulation is presented for solving

constrained optimization problems. In this

method, the dimensionality of the problem is

reduced by representing the constraint viola-

tions by a single infeasibility measure. The

infeasibility measure is used to form a two

stage penalty that is applied to the infeasible

solutions. The performance of the method

has been examined by its application to a

set of eleven test cases. The results have

been compared with previously published re-

sults from literature. It is shown that the

method is able to �nd the optimum solutions.

The proposed method is easy to implement

and requires no parameters. The approach is

also robust in its handling of both linear and

nonlinear equality and inequality constraint

functions. Furthermore, the method does not

require an initial feasible solution.

1 INTRODUCTION

In the last two decades, genetic algorithms have re-

ceived much attention regarding their potential as

global optimization techniques. More recently, the so-

lution of constrained optimization problems has been

addressed by some researchers. However, the meth-

ods developed still have several limitations and there

is no single technique which could overcome all the

problems posed by constrained optimization. In what

follows, the merits and limitations of the di�erent con-

straint handling methods is discussed.

1.1 Constraint Handling Methods for

Numerical Optimization Problems

Penalty function methods are the most common meth-

ods in handling constraint optimization problems. In

these methods, a penalty term is added to the objec-

tive function for the degree of violation of constraints

(static penalty) or the degree of violation of constraints

as well as the generation number (dynamic penalty)

(Homaifar et al, 1994, Joines and Houck, 1994). The

death penalty method simply rejects infeasible individ-

uals so it is necessary to initialize a population with

feasible solution. In general the weakness of penalty

methods is that they require a large number of param-

eters (to adjust the relative weights of each constraint

in the penalty, and the weight of the penalty against

the objective function). Penalty approaches also fail to

capitalize on any information generated by the search

on the nature of the solution space.

Michalewicz and Janikow (1991), presented the

GENOCOP method which is based on designing spe-

cialized operators that incorporate knowledge of the

constraints. This method uses projection operators

that map feasible points back to feasible bound-

aries. Their system only handles linear constraints

with any objective function with a feasible starting

point and e�ectively reduces search space. Schoenauer

and Michalewicz (1996), constructed operators which

maintain solution on non-linear analytical constraint

surfaces.

In order to avoid generating and rejecting a large num-

ber of infeasible solutions, specialized operators can be

used. In the Greedy decoder method, the chromosome

does not directly encode a solution in the feasible re-

gion but rather a set of parameters is used by the

decoder to generate a feasible solution. Because the

decoder must be guaranteed to never produce infeasi-

ble solutions, it is often extremely diÆcult to design.

Hajela and Yoo (1995), overcame this problem in an

725GENETIC ALGORITHMS



alternative approach that is able to handle both non-

linear, equality and inequality constraints. Their ap-

proach derives from the fact that the structure of both

feasible and infeasible solutions is present in the pop-

ulation at any generation of the search. The basis for

this scheme is that those segments of the binary chro-

mosome (bit string), that contribute to calculating the

objective function are minimally altered, while those

segments of the chromosome that contribute to con-

straint violations are replaced by corresponding seg-

ments from feasible chromosomes.

Schoenauer and Xanthakis (1993), presented behav-

ioral a memory method which considers the problem

constraints in a sequence; a switch from one constraint

to another is made upon arrival of a suÆcient number

of feasible individuals in the population. The success

of the whole process is highly dependent on the genetic

diversity maintained during the initial steps, thus en-

suring a uniform sampling of the feasible region.

Constrained multi-objective methods use the value of

the objective function and the penalty values, or the

number of constraint violations, as elements of a vec-

tor and apply multi-objective techniques to minimize

all components of the vector. Surry, et al. (1997),

presented the COMOGA method in which all mem-

bers of the population are ranked on the basis of the

constraint violations. Such a rank, together with the

value of the objective function, lead to a two-objective

optimization problem. Cheng and Li (1997), pre-

sented another constrained multi-objective optimiza-

tion methodology. The approach integrates a Pareto

genetic algorithm and fuzzy penalty function. In this

method, the rank of a solution is determined by know-

ing the solutions status (feasible or infeasible), the

distance from the Pareto optimal set, and position

in infeasible region. The fuzzy-logic penalty function

method, having a discrete membership function, can

express the rank order of solutions in a Pareto opti-

mization and transform a multi-objective constrained

optimization into an unconstrained problem.

Hybrid methods combine evolutionary techniques with

deterministic optimization procedures for numerical

optimization problems. Myung et. al, (1996), pre-

sented a two phase evolutionary programming method

based on a hybrid method. During the �rst phase, an

evolutionary algorithm is used to optimize the func-

tion. In the second phase of the optimization, La-

grange multipliers are used to place emphasize on the

violated constraints whenever the best solution does

not ful�ll the constraints. By updating the Lagrange

multipliers, the trial solutions are driven to the opti-

mal point where all constraints are satis�ed.

Koziel and Michalewicz (1999), presented the homo-

morphous mapping approach for solving constrained

optimization problems. The method incorporates a

homomorphous mapping between an n-dimensional

cube and the feasible search space. The method in-

troduces an additional problem-dependent parameter

to partition the interval [0,1] into subintervals of equal

length such that the equation of each constraint has at

most one solution in every subinterval. The method

loses the locality feature of the mapping for non-convex

feasible search spaces, and a small change in the coded

solution may result in large change in the solution it-

self. The method requires additional computational

e�ort for �nding all the intersection points for a line

segment with the boundaries of the feasible region.

Runarsson and Yao (2000), introduced a stochastic

ranking method in which the objective function val-

ues are used for ranking the solutions in the infeasible

region of the search space. A probability parameter

is used to determine the likelyhood of two individuals

in the infeasible space being compared to each other.

Although the method proved to be e�ective in solving

a wide range of constrained optimization problems, it

was also sensitive to the choice of probability parame-

ter.

Most of these constraint handling methods are prob-

lem dependent. They often require user supplied pa-

rameters to be adjusted in order to obtain good per-

formance from the method. Some of the methods are

also only able to handle only speci�c constraint types

and therefore lack generality. Some of the methods

limit the search to the feasible search space. How-

ever, a good search should approach the optimum so-

lution from both sides of the feasible/infeasible border

(Richardson et al, 1989). Only two methods appears

to be able to solve many types constrained optimiza-

tion problem, the homomorphous method (Koziel and

Michalewicz, 1999) and the stochastic ranking method

(Runarsson and Yao, 2000). The disadvantages of the

homomorphous method are that it requires an initial

feasible solution and that all infeasible solutions are

rejected. Another limitation is the need for problem-

dependent parameters in the method. One possible

restriction on the stochastic ranking method is that it

is sensitive to the form of the underlying evolutionary

algorithm.

2 THE FITNESS FORMULATION

The �tness formulation described here addresses the

limitations of existing constraint handling methods. In

particular, it is independent of any parameters and can

be used without an initial feasible solution being given.
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The approach is also robust in its handling of both lin-

ear and nonlinear equality and inequality constraint

functions. The methodology described here applies to

the minimization of an objective function f(X), sub-

ject to inequality constraints gj(X), and equality con-

straints hj(X), (Equations 1, 2 and 3):

f(X) = f(x1; ::::; xn) (1)

and

gj(X) � 0; (j = 1; ::::; q) (2)

hj(X) = 0; (j = q + 1; ::::;m) (3)

The method has been formulated to ensure that

slightly infeasible solutions with a low objective func-

tion value remain �t. This is seen as a bene�t to solv-

ing highly constrained problems that have solutions

on one or more of the constraint bounds. In contrast,

solutions furthest from the constraint bounds are seen

as containing little genetic information that is of use

and are therefore penalized.

This is achieved through the application of a two part

penalty function. The �rst penalty ensures that the

worst of the infeasible solutions has an objective func-

tion value that is higher or equal to that of the best

solution in the population. The second penalty in-

creases the objective function value of the infeasible

solutions in proportion to their infeasibility. The ap-

proach is implemented in three stages, �rst an infeasi-

bility is assigned to each individual, second the \best"

and \worst" individuals in the population are identi-

�ed, and �nally the two part penalty function is ap-

plied to the infeasible solutions.

2.1 Chromosome Infeasibility

The infeasibility of an individual should represent both

the number of active constraints and the extent to

which each constraint is violated. A measure of in-

feasibility that has these properties is the sum of the

constraint values for all violated constraints. This can

be evaluated in two stages. First the feasible constraint

values are reset as zero and infeasible values as posi-

tive (Equation 4); a small tolerance Æ is applied to

the equality constraints to aid the �nding of a feasible

solution. Second, the solutions infeasibility ({(X)), is

taken as the sum of the normalized constraint values

(Equation 5).

cj(X) =

�
max (0; gj(X)) ; if 1 � j � q

max (0; (jhj(X)j � Æ)) ; if q + 1 � j � m

(4)

{(X) =

Pm

j=1

cj(X)

cmax;j

m
(5)

The constraint violation values are normalized since

large di�erences in the magnitude of the constraint

values can lead to dominance of the infeasibility by

constraints having the highest values. The scaling fac-

tor for each constraint cmax;j , is taken as the maximum

value of the constraint violation in the current popula-

tion. Resetting the scaling factor for each population

provides a further dynamic element to the infeasibility

calculation. This has been found to give better algo-

rithm performance than for a static scaling factor; for

instance, by basing cmax;j on the constraint violations

in the �rst population.

2.2 Identi�cation of the Bounding Solutions

The penalties applied to the infeasible solutions are

a function of the infeasibility and objective function

value for the \best" and \worst" individuals in the

population. For a population containing at least one or

more feasible solution, the \best" individual �X, is the

feasible solution having the lowest objective function

value. If all individuals are infeasible however, then the

best solution is taken as the solution having the lowest

infeasibility (regardless of the objective function value

of the individuals).

The \worst" individual X̂, is selected by comparing

all individuals against the best individual ( �X). Two

potential population distributions exist in relation to

this comparison.

� The �rst population distribution occurs when one

or more of the infeasible solutions has an objec-

tive function value that is lower than the \best"

solution. In this case, the \worst" individual is

taken as the infeasible solution having the high-

est infeasibility and an objective function value

that is lower than the \best" solution's. If more

than one individual exists with the same highest

infeasibility, then the \worst" individual is taken

as the solution with maximum infeasibility and

the lower of the objective function values.

� The second population distribution occurs when

all of the infeasible solutions have an objective

function value that is greater than the \best"

solution. Here the \worst" individual is identi�ed

as being the solution with the highest infeasibility.

If more than one individual exists with the same

highest infeasibility, then the \worst" individual
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is taken as the solution with maximum infeasibil-

ity and the higher of the objective function values.

2.3 Chromosome Fitness

Since we are concerned with the minimization of the

objective function, the infeasible solutions are been pe-

nalized prior to the conversion of the objective func-

tion values to �tness form. The conversion to �tness

(F (X)), is by the simple subtraction of the penalized

objective function values ( �f(X)), from the maximum

penalized value in the current population. The ob-

jective function values of the infeasible solutions are

penalized according to the solutions infeasibility in re-

lation to that of the \worst" solution ({(X̂)) and the

\best" solution ({( �X)). Note that if a feasible solution

exists, then the \best" solution is feasible and will have

a zero infeasibility ({( �X)=0.0).

The penalty is applied in two stages. The �rst stage

only applies if one or more infeasible solutions has a

lower and therefore potentially better objective func-

tion value than the \best" solution ((f(X) < f( �X)) ^

({(X) > 0:0)). If this relationship holds, then the

penalty is applied to all of the infeasible solutions; if

the relationship does not hold, then the �rst penalty

is not applied to any solution. The goal of the �rst

penalty is to increase the objective function value of

the infeasible solutions such that the \worst" solution

has an objective function value that is equal to that

of the \best" solution. This has been implement us-

ing a simple linear relationship between the objective

function values and the infeasibility of the \best" and

\worst" solutions (Equations 6 and 7).

~{(X) =
{(X)� {( �X)

{(X̂)� {( �X)
(6)

_f(X) = f(X) +~{(X) (f( �X)� f(X̂)) (7)

Note that if the penalty is not applied the _f(X) =

f(X). The application of the �rst penalty is illus-

trated by Figure 1 in which the original solutions are

indicated by a \+" and the penalized solutions by a

\o". The \best" and \worst" solutions are connected

by a line (with the infeasibility of the \best" solution

being reset to zero). Note that in this and subsequent

�gures, a negative infeasibility indicates a feasible so-

lution (the negative infeasibilities only being assigned

for the purposes of illustrating the distribution of so-

lutions in the current population).

The second penalty exponentially increases the objec-

tive function values such that the objective function of

Figure 1: Application of the First Penalty
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the \worst" individual is twice that of the best (Equa-

tions 8 and 9). A penalty equal to one \best" objec-

tive function value has been found to give good perfor-

mance of the algorithm for a range of problems and is

therefore considered here to be a constant. Similarly,

an exponential weighting parameter of 2.0 has been

found to give good performance over a range of prob-

lems and is therefore also considered to be a constant.

The exponential function gives a slight reduction in the

rate of penalty applied to solutions of low infeasibil-

ity, thus helping to maintain the �tness of the slightly

violated solutions.

�f(X) = _f(X) + 

��� _f(X)

���
�
exp(2:0 ~{(X))� 1:0

exp(2:0)� 1:0

�
(8)


 =

8><
>:

1:0; if(f(X̂) � f( �X))

0:0; if(f(X̂) � (f( �X) +
��f( �X)

��))
f( �X)+jf( �X)j�f(X̂)

f( �X)
; otherwise

(9)

The scaling factor 
, simply ensures that the maxi-

mum penalty is equivalent to the value of the \best"

individual's objective function value. The second case

in Equation (9) (
 = 0:0), applies when the \worst"

individual already has a value that is greater than this

amount. Here, no penalty is applied since the infea-

sible solutions would naturally have a low �tness and

should not be penalized further. The absolute values

of the objective functions in Equations (8) and (9) are

necessary to allow the minimization of objective func-

tions having a negative value.

The application of the second penalty is illustrated
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by Figure 2 (the �rst penalized objective values being

indicated by \o" and the second penalized objective

values by \�").

Figure 2: Application of the Second Penalty
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Figure 3, shows the penalized objective function val-

ues converted to �tness form. Note that the �ttest

individuals lie in both the infeasible and feasible re-

gions. This allows the slightly infeasible, low objective

function value solutions to be selected for reproduc-

tion. Note also that in this case, the �ttest individual

is infeasible.

Figure 3: Solution Fitness
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It is evident that the approach is dynamic in the allo-

cation of the penalty in that the absolute value of the

penalty depends on the value of the \best" individ-

ual's objective function. The penalty also accounts for

the range of infeasibility in the current population and

the distribution of the infeasible solutions in relation

to the \best" individual in the population.

3 TEST CASES

The performance of the proposed constraint handling

method has been evaluated using a set of eleven test

cases (Koziel and Michalewicz, 1999; Michalewicz and

Fogel, 2000). These test cases include various forms

of objective function (linear, quadratic, cubic, polyno-

mial, nonlinear), each test case also having a di�erent

number of variables (n). The test problems also pose

a range of constraint types and number of constraints

(linear inequalities, LI; nonlinear equalities, NE; and

nonlinear inequalities, NI). The general form of each

test case is given in Table 1, which also indicates the

number of constraints active at the optimum solution

(a).

Table 1: Summary of Test Cases

Function n Form of f(X) LI NE NI a

G1 13 quadratic 9 0 0 6

G2 k nonlinear 0 0 6 1

G3 k polynomial 0 1 0 1

G4 5 quadratic 0 0 6 2

G5 4 cubic 2 3 0 3

G6 2 cubic 0 0 2 2

G7 10 quadratic 3 0 5 6

G8 2 nonlinear 0 0 2 0

G9 7 polynomial 0 0 4 2

G10 8 linear 3 0 3 6

G11 2 quadratic 0 1 0 1

The �tness formulation described here has been im-

plemented and evaluated using simple genetic algo-

rithm with binary encoding of the variables (25 bits

used represent each variable). The implementation

uses a \roulette wheel" selection strategy, single point

crossover, mutation by changing bit values, and �nally

an elitist replacement strategy.

The performance of the method has been compared di-

rectly to the results obtained from the homomorphous

mapping method (Koziel and Michalewicz, 1999), and

therefore, where possible the same genetic algorithm

(GA), parameter values have been adopted (a popu-

lation size of 70; 90% probability of crossover; and

a probability of mutation between 0.3% and 0.5%,

Koziel and Michalewicz use a variable probability

rate). Although Runarsson and Yao (2000), give re-

sults for the same test problems, a direct comparison

of the algorithm performance to this method is not

possible since they perform di�erent experiments to

those given in this paper, (particularly in terms of the

number of function evaluations). For each test case,

the three types of experiment described by Koziel and

Michalewicz (1999), have been performed:
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� Experiment 1; 20 runs each starting from a dif-

ferent randomly generated population; the maxi-

mum number of generations was set to 5,000.

� Experiment 2; the same as experiment 1, except

that the maximum number of generations was in-

creased to 20,000.

� Experiment 3; was also carried out in the same

way as experiment 1, except that all runs started

with a feasible individual (which was taken as

the best solution obtained in experiment 1); how-

ever, only 10 di�erent initial generations were op-

timized.

Table 2 shows the known optimal solution for each

problem. The result of experiments 1 and 2 and 3

are given in Tables 3, 4 and 5 respectively. Tables 6,

7, and 8 give the corresponding results reported by

Koziel and Michalewicz (1999).

Table 2: Summary of Optimum Values

Function Optimum value

G1 -15

G2 0.803553

G3 1.0

G4 -30665.5

G5 5126.4981

G6 -6961.8

G7 24.306

G8 0.095825

G9 680.63

G10 7049.33

G11 0.75

A comparison of the two sets of results indicates

that the method described here can �nd a more op-

timal solution than the method reported by Koziel

and Michalewicz (1999); these solutions are shown in

\bold" in Tables 3, 4, and 5. This is particularly the

case for Experiment 3. For Experiments 1 and 2, it

could be argued that the two approaches are compara-

ble. However, the method by Koziel and Michalewicz

(1999) requires an initial feasible solution, whereas the

approach described here has no requirement for an ini-

tial feasible solution and can begin with a completely

infeasible population. The ability to �nd a feasible

solution as well as the optimum solution represents a

signi�cant improvement in algorithm performance.

The ability to �nd a feasible solution was examined

in Experiment 1. For 8 of the 11 test cases (G1, G2,

G3, G4, G6, G8, G9, G11), the algorithm described

here found a feasible solution for all 20 independent

runs (and in many cases, the search also found the

global optimum). Furthermore, on average, the �rst

feasible solution for this group of problems problems

was found within 19 generations, (a maximum of 1,330

function evaluations). However, problems G7 and G10

required a higher number of generations in order to

�nd a feasible solution (on average, 41 generations for

G7 and 285 generations for G10). Further, feasible

solutions G10 were only found for 18 of the 20 runs,

and in 19 of 20 runs for G7. Feasible solutions for G5

were only found for 2 of the 20 runs.

The use of �xed parameters also proved to be e�ec-

tive, although for problem G4, improved results were

obtained by reducing the weight of the second penalty

(indicated as \small 
", in Tables 3, 4, and 5). A

comparison of the results from Experiments 1 and 3,

also makes it clear that the method is not dependent

on the selected reference point for �nding global opti-

mum. However, reference point selection had e�ect on

average scores.

4 CONCLUSIONS

This paper introduces a �tness formulation for con-

straint minimization. The infeasibility values are rep-

resented by the sum of the normalized constraint vio-

lation values. The infeasibility measure has the prop-

erties that it increases in value with both the number

of active constraints and the magnitude of each con-

straint violation. The infeasibility measure is used to

form a two stage dynamic \penalty" which applied to

the infeasible solutions. The penalty is applied such

that the slightly infeasible solution having a low ob-

jective function value are allowed to remain �t. It

is shown, that this approach gives comparable, if not

improved results than existing methods. The princi-

ple advantages of the approach are that �rst, it does

not require any parameters, and second, that it is able

to �nd the global optimum starting with a completely

infeasible population of solutions. The method is also

able to solve a range of constrained optimization prob-

lems, having both non-linear equality and inequality

constraints.
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Table 3: Results from Experiment 1

Function Experiment #1

worst best average

G1 -12.9519 -14.9996 -14.84

G2 0.7205 0.79434 0.76739

G3 0.99027 0.99937 0.99812

G4 -30261.6 -30624.1 -30547.915

G4(small 
) -30403.7 -30661.12 -30568.65

G5 5126.64487

G6 -6347.8 -6948.85 -6484.06

G7 37.98319 24.672 31.52044

G8 0.0267 0.09588 0.089135

G9 712.869 681.5615 688.05

G10 10572.66 7298.136 8776.7699

G11 0.9884 0.75 0.8151

Table 4: Results from Experiment 2

Function Experiment #2

worst best average

G1 -14.9081 -14.9996 -14.988

G2 0.77091 0.79664 0.78465

G3 0.99807 0.9994 0.99902

G4 -30604.2 -30650.01 -30609.97

G4(small 
) -30403.7 -30661.1 -30591.765

G5 5135.4409 5126.6398 5131.0404

G6 -6347.8 -6961.37 -6657.81

G7 37.9273 24.6707 30.927

G8 0.06413 0.09588 0.09246

G9 689.6234 681.1982 684.413

G10 10343.04 7152.832 8255.847

G11 0.90296 0.75 0.808

Table 5: Results from Experiment 3

Function Experiment #3

worst best average

G1 -14.9691 -14.9996 -14.9911

G2 0.7812 0.8003 0.7845

G3 0.9989 0.9994 0.9991

G4 -30604.2 -30650 -30609.025

G4(small 
) -30604.5 -30661.1 -30615.809

G5 5126.63997

G6 -6347.8 -6958.44 -6692.61

G7 30.723 24.61897 27.3009

G8 0.09314 0.09588 0.095328

G9 685.7403 681.162 683.4643

G10 8357.847 7289.063 7788.533

G11 0.795 0.75 0.768

Table 6: Results from Experiment 1 (Koziel and

Michalewicz, 1999)

Function Experiment #1

worst best average

G1 -14.0566 -14.7207 -14.4609

G2 0.78427 0.79506 0.79176

G3 0.9917 0.9983 0.9965

G4 -30617.0 -30662.5 -30643.8

G5

G6 -4236.7 -6901.5 -6191.2

G7 38.682 25.132 26.619

G8 0.0291434 0.095825 0.0871551

G9 682.88 681.43 682.18

G10 11894.5 7215.8 9141.7

G11 0.75 0.75 0.75

Table 7: Results from Experiment 2 (Koziel and

Michalewicz, 1999)

Function Experiment #2

worst best average

G1 -14.6154 -14.7864 -14.7082

G2 0.79119 0.79953 0.79671

G3 0.9978 0.9997 0.9989

G4 -30643.8 -30645.9 -30655.3

G5

G6 -5473.9 -6952.1 -6342.6

G7 25.069 24.62 24.826

G8 0.0291438 0.095825 0.0891568

G9 683.18 680.91 681.16

G10 9659.3 7147.9 8163.6

G11 0.75 0.75 0.75

Table 8: Results from Experiment 3 (Koziel and

Michalewicz, 1999)

Function Experiment #3

worst best average

G1 -14.5732 -14.7184 -14.6478

G2 0.78279 0.79486 0.78722

G3 0.996 0.9978 0.997

G4 -30645.6 -30661.5 -30653.1

G5

G6 -6390.6 -6944.4 -6720.4

G7 26.182 25.09 25.545

G8 0.0958246 0.095825 0.0958248

G9 683.58 681.72 682.56

G10 7685.8 7321.2 7498.6

G11 0.75 0.75 0.75
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Abstract

We describe a novel GA approach to parti-

tion programs to be executed on a parallel

system. Two unique features distinguish this

GA from traditional GA programs. First,

this GA uses a dynamically incremental �t-

ness function which starts out rewarding for

simpler goals, gradually increasing the di�-

culty of the desired �tness values or goals un-

til a full solution is found. Second, this GA

uses a 
exible representation style which al-

lows the GA itself more control over both the

structure and the value of the evolved solu-

tions.

1 Introduction

We successfully apply a genetic algorithm (GA) to the

problem of partitioning a collection of tasks to be ex-

ecuted on a group of parallel processors.

Parallel programming improves the performance of a

program by breaking the program down into smaller

tasks and executing these subtasks simultaneously

where possible. Executing the subtasks of a program

in parallel can signi�cantly speed up the run time of

a program. The quality of a parallel algorithm can be

evaluated with the following equation:

Speedup =
Run time of best sequential algorithm

Run time of parallel algorithm
:

Obviously, the larger the speedup, the better the par-

allel algorithm. Ideally, one hopes to achieve a max-

imum speedup of P when solving a problem using P
parallel processors. In practice, such a speedup can-

not be achieved for every problem for the following

reasons:

� It is not always possible to decompose a problem

into P tasks, each requiring 1=P of the total se-

quential time to execute.

� The structure of the parallel computer may im-

pose restrictions that render the optimum run-

ning time unattainable (e.g. synchronization and

communication overhead).

Many factors can a�ect the exploitation of parallelism

in programs, including the partitioning of programs,

the balancing of computational load among processors,

and the overhead created by data communication be-

tween processors. The problem of partitioning a par-

allel program involves the speci�cation of sequential

units of a program that can be executed concurrently

by the available processors such that the total parallel

computation time of the program is minimized when

inter-processor communication costs are included. The

e�cient partitioning of a program into parallel sub-

tasks is not a trivial problem. (Bokhari 1981) has

shown that there does not exist a polynomial algo-

rithm to solve this problem.

Given the number of possible orderings of tasks in pro-

cessors, the percentage of valid orderings can be very

small. If a GA is not restricted to only work with valid

individuals, the chance of randomly �nding a valid or-

dering, let alone a good valid ordering, may be very

low. Restricting a GA to only form valid individu-

als, however, may introduce unexpected biases in the

system. In addition, such a strategy may require ex-

tensive revision of the system with each new problem.

We describe here a novel GA approach which can suc-

cessfully partition programs to be executed on a par-

allel system. Our GA places no restrictions on the

individuals that can be formed and does not require

special operators or repair mechanisms to ensure va-

lidity. Rather, it attempts to give partial �tness for in-

valid individuals that contain some valid subsequences
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of tasks and encourages the formation of successively

longer valid subsequences. Two unique features distin-

guish this GA from traditional GA programs. First,

this GA uses a 
exible representation style which al-

lows the GA itself more control over both the structure

and the value of the evolved solutions. Second, this GA

uses a dynamically incremental �tness function which

starts out rewarding for simpler goals, gradually in-

creasing the di�culty of the desired �tness values or

goals until a full solutions is found.

2 Related work

A variety of heuristic algorithms have been proposed

to solve the partitioning problem. These algorithms

include mapping-based methods (Sadayappan and Er-

cal 1987; Sadayappan, Ercal, and Ramanujam 1990)

and clustering-based methods (Kim and Browne 1988;

Sarkar 1989; Maheshwari and Shen 1998)

Researchers have also applied GAs to the problem of

partitioning parallel programs. Hou et al. (1994)

evolve strings which represent processor task sched-

ules. Their approach restricts the actions of genetic

operators to ensure the validity of evolved individu-

als. As a result, some parts of the search space may

be unreachable. Correa et al. (1999) improve upon

Hou's method to allow the entire search space to be

searched. Tsuchiya et al. (1998) propose a GA based

scheduler which incorporates the idea of task dupli-

cation: one task may be assigned to multiple proces-

sors. They compare their GA approach to a heuris-

tic scheduling algorithm called Duplication Scheduling

Heuristic (DSH) and show that the GA is able to �nd

better solutions. All of these GA approaches require

special methods to ensure the validity of the initial

population and to ensure the validity of o�spring gen-

erated by crossover and mutation. In other words, all

individuals generated by these systems must represent

\executable" partitions.

3 Algorithm design

We have implemented a novel GA approach for parti-

tioning programs to be executed on parallel systems.

We extend the traditional GA (Holland 1975; Gold-

berg, Korb, and Deb 1989) in two ways. First, we use

a 
exible representation style which allows the GA to

dynamically evolve the structure and value of the so-

lutions. Second, we use an dynamically adaptive, in-

cremental �tness function which initially rewards for

simple goals and gradually increases the di�culty of

the goals over the generations. Our GA places no re-

strictions on the individuals that can be formed; both

(3,0)(1,3)(2,2)(1,2)(3,0)(4,3)(5,2)(0,0)(2,1)

Figure 1: An example individual.

valid and invalid individuals may occur.

3.1 Problem representation

Previous work indicates bene�ts in using location in-

dependent problem representations (Goldberg, Korb,

and Deb 1989; Holland 1975; Wu and Lindsay 1996)

where the information content is not dependent on its

location on a GA individual. Such a representation

combined with genetic operators that rearrange and

exchange information is expected to allow a GA to

�nd building blocks (learn how to arrange related or

epistatic information close together). Compactly ar-

ranged building blocks (building blocks with low de�n-

ing length) are expected to be more likely to be trans-

mitted as a whole by the genetic operators during a

reproduction event.

Each individual in our GA population consists of a

vector of cells. We de�ne a cell to be a task and pro-

cessor pair: (t; p). Each cell indicates that task t is
assigned to be processed on processor p. The number
of cells in an individual may vary, so individuals in our

GA population will vary in length. Figure 1 shows an

example individual. The �rst cell of this individual as-

signs task 3 to processor 0, the next cell assigns task 1

to processor 3, etc. This representation requires that

the number of processors and number of tasks to be

performed are known in advance. The problem itself

de�nes the number of tasks to be performed and their

dependencies on each other. We assume that the num-

ber of available processors is also de�ned in advance.

The cells on an individual determine which tasks are

assigned to which processors. The order in which the

cells appear on an individual determines the order in

which the tasks will be performed on each processor.

Individuals are read from left to right to determine the

ordering of tasks on each processor. For example, the

individual shown in �gure 1 results in the processor

assignments and ordering of tasks shown in �gure 2.

Invalid task orderings will have their �tness value pe-

nalized by the �tness function.

The same task may be assigned more than once to dif-

ferent processors. The example individual in �gure 1

assigns tasks 1 and 2 twice. Tasks may not be assigned

to the same processor more than once. Should a task-

processor pair appear more than once on an individ-

ual, only the �rst (leftmost, since individuals are read
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Processor 0 Task 3 Task 0

Processor 1 Task 2

Processor 2 Task 2 Task 1 Task 5

Processor 3 Task 1 Task 4

Figure 2: Assignment of tasks from individual in �g-

ure 1.

from left to right) pair is active. Any remaining iden-

tical pairs are essentially non-coding regions. In the

example from �gure 1, the second instance of (3,0) is

not scheduled into the processor lists in �gure 2.

As each (task, processor) pair is read from left to right,

all active pairs are placed into FIFO queues based

on their processor speci�cation. The content of each

queue indicates the tasks that will be performed on

each processor. The order of the tasks in each queue

indicates the order in which the tasks are assigned to

be executed on each processor. Thus, the order in

which tasks will be performed on each processor de-

pends on the order in which the task-processor pairs

appear on an individual.

3.2 Genetic operators

The novel representation requires some modi�cation

in the genetic operators used. We use both crossover

and mutation in our algorithm. The modi�ed versions

of these genetic operators are described here.

3.2.1 Crossover

Recall that each individual consists of a vector of task-

processor pairs or cells. Crossover exchanges sub-

strings of cells between two individuals. This allows

the GA to explore new solutions while still retaining

parts of previously discovered solutions.

Initially we will use random one-point crossover. Ran-

dom crossover involves two parent individuals. This

operator randomly selects a crossover point on each

parent and exchanges the segments to the left of the

crossover points to form two o�spring. Figure 3 shows

an example of random crossover.

The crossover rate parameter gives the probability

that a pair of parents will undergo crossover. Par-

ents that do not crossover undergo only mutation to

form o�spring.

3.2.2 Mutation

The mutation rate indicates the probability that a cell

will be changed. As a result, the expected number of

mutations per individual is equal to the mutation rate

multiplied by the length of an individual. If a cell is

selected to be mutated, then either the task number

or the processor number of that cell will be randomly

changed.

3.3 Fitness function

For this problem, a number of factors are expected to

contribute to the �tness of an individual (\goodness"

of a solution). These factors include but are not lim-

ited to:

1. Are all tasks performed? Does an individual con-

tain at least one copy of each task?

2. Are the tasks scheduled on the processors in valid

orders?

3. How long will it take the parallel processors to

complete all tasks?

4. How well are the tasks distributed among the

available processors.

Our task, then, is to determine a �tness function that

e�ectively evaluates and incorporates each of the above

components. The current �tness function breaks

down the �tness function into two parts. The �rst part

of the �tness function, task fitness, deals with items

one and two above. The second part of the �tness

function processor fitness, deals with items three and
four. The actual �tness, fitness, of a GA individual is

a weighted sum of the above two partial �tness values.

3.3.1 Calculating task �tness

The task �tness component of the �tness function eval-

uates whether all tasks are represented and in valid

order. Because of the complexity of the solutions, we

develop an incremental �tness function that changes

over time. We will initially start out with a less de-

manding �tness function, and gradually increase the

di�culty of the �tness function over time as the indi-

viduals in the GA population improve (Lohn, Haith,

Columbano, and Stassinopoulos 1999). As in positive

reinforcement training, this strategy rewards for small

steps toward the goal, to encourage the algorithm to

�nd the complete goal. We initially reward for �nding

short valid sequences of tasks. Over time, we increase

the length of the sequences that can be rewarded, en-

couraging the GA to �nd and maintain longer valid

sequences. Eventually the valid sequences will be long

enough that the individuals will represent full valid

solutions. In addition to \leading the GA towards a

goal", this strategy also makes it possible to assign �t-

ness values to valid sub-schedules even if the full rep-

resented schedule is not valid. As a result, no special
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Randomly select parent 1 crossover point: 2

Randomly select parent 2 crossover point: 4

Parent 1 (3,0)(1,3)j (2,2)(1,2)(4,3)(0,0)(2,1)

Parent 2 (3,2)(2,2)(4,1)(2,3)j (1,3)(2,2)

Random crossover produces

O�spring 1 (3,0)(1,3)j (1,3)(2,2)

O�spring 2 (3,2)(2,2)(4,1)(2,3)j (2,2)(1,2)(4,3)(0,0)(2,1)

Figure 3: Random one-point crossover randomly selects crossover points on each parent and exchanges the left

segments to form o�spring.

actions need to be taken to restrict the formation of

o�spring individuals and the full search space is acces-

sible.

The task fitness component of an individual's �tness

is based two main components:

� The percentage of valid sequences of a given

length on an individual.

� The percentage of the total number of tasks spec-

i�ed by an individual.

Initially our �tness function will reward for short se-

quences of valid tasks. A sequence of tasks is valid

if the tasks in the sequence are arranged in a valid

chronological order. When the average �tness of the

GA population exceeds a threshold �tness, the length

of the sequence for which the GA searches is increased,

thus increasing the di�culty of the �tness function.

We anticipate several advantages to this approach.

First, previous work indicates that gradually increas-

ing the di�culty of a GA �tness function can result in

the formation of more complex solutions (Lohn, Haith,

Columbano, and Stassinopoulos 1999). Second, a dy-

namically changing �tness function is expected reduce

the likelihood of premature convergence to partial so-

lutions. A good partial solution (valid subsequence)

that does not improve will be worth less over time as

the �tness function becomes more demanding.

Calculating raw �tness

The raw �tness of an individual re
ects the percentage

of sequences of a given length in an individual that are

valid sequences. For example, processor 2 in Figure 2

has been assigned three tasks. If our current sequence

length is two, processor 2 contains two sequences of

length two. Processor 2 contains only one valid se-

quence of length 2, the sequence Task1-Task5. The

sequence Task2-Task1 is not a valid sequence because

Task 2 cannot be executed before Task 1.

Assume that the problem to be solved involves P pro-

cessors and T tasks. Evolution will occur in eras,

era = 0; 1; 2; :::; E � 1. Initially, era = 0. The max-

imum era count, E � T=P , is a user de�ned param-

eter value. The era counter, era, is increased when

the average population �tness exceeds a user de�ned

threshold, thresh and when the number of individuals

with the current maximum possible �tness exceeds a

user de�ned threshold, thresh max�t.

Let numtasks(p); p = 0; :::; P �1, indicate the number

of tasks assigned to processor p. To calculate the raw
�tness of a processor, we need to consider two things:

the �rst era+1 (or fewer) tasks assigned to the proces-

sor, and all task sequences of length era+2. The �rst

component is important because as era increases, the

likelihood of processors containing fewer than era+ 2

tasks increases. We need to reinforce the GA for these

shorter sequences in order for them to eventually build

up to the measured sequence length. This reinforce-

ment also encourages distribution of tasks among the

available processors.

We will �rst determine the contribution of the �rst

era+ 1 or fewer tasks in a processor. Let

subseq(p) =

�
1 if numtasks(p) > 0

0 otherwise
(1)

and let

valseq(p) =

8>><
>>:

1 if the �rst era+ 1 or fewer

tasks in processor p are in

valid order

0 otherwise.

(2)

Equations 1 and 2 refer to individual processors. To

calculate the contribution over all processors (the con-

tribution for the entire individual), we let

Subseq =

P�1X
p=1

subseq(p)
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V alseq =

P�1X
p=1

valseq(p):

We will next determine the contribution of all se-

quences of length era+ 2 in a processor. Let

s(p) = # sequences of length era+ 2 in processor p
(3)

and let

v(p) = # valid seq. of length era+ 2 in proc. p. (4)

Combining equations 3 and 4 to determine the contri-

bution over all processors we let

S =

P�1X
p=1

s(p) V =

P�1X
p=1

v(p):

The raw fitness for an individual is then calculated

with the following equation

raw fitness =
V alseq + V

Subseq + S
: (5)

Calculating the task ratio

In addition to encouraging the system to �nd valid se-

quences of tasks, we also want to encourage the system

to include at least one copy of each task in each so-

lution. We de�ne the task ratio to be the percentage

of distinct tasks from the total tasks in the problem

that are represented in an individual. The task ratio

is calculated with the following equation:

task ratio =

number of distinct tasks

speci�ed on an individual

total number of tasks

in the problem.

(6)

This factor penalizes solutions that do not contain at

least one copy of every task. Once all tasks are repre-

sented in an individual, this penalty becomes null.

E�ective �tness

The e�ective task fitness of an individual is the prod-
uct of equations 5 and 6.

task fitness = raw fitness � task ratio (7)

This value makes up the �rst component of the �tness

of a GA individual.

3.3.2 Calculating processor �tness

To fully optimize the use of parallel processors, the GA

must be able to distribute tasks among the available

processors. The processor fitness component of the
�tness function addresses this issue.

Suppose t is the run time for a solution represented

by an individual. Let serial len equal the length of

time required to complete all tasks serially on a sin-

gle processor and let super serial len = P �serial len
where P equals the number of processors. Any rea-

sonable solution should give t � super serial len,
making super serial len a safe but reasonable upper

bound to solution run time. The goal of the GA is to

minimize t. The processor fitness �rst calculates the
di�erence between super serial len and t then calcu-

lates what proportion of super serial len this di�er-

ence represents:

processor fitness =
super serial len� t

super serial len
:

As a result, processor fitness is inversely propor-

tional to t. As the run time of a solution decreases,

the amount that processor fitness contributes to the
individual's full �tness increases.

It is important to note that although the theoretical

maximum value of processor �tness is 1.0, in practice,

this value can not be achieved. For processor �tness

to equal 1.0, the run time, t, of a solution would have

to be zero. Since all tasks obviously require non-zero

run time, t will never be zero for valid individuals.

3.3.3 Calculating �tness

The full �tness of an individual is a weighted sum of

the task fitness and processor fitness:

fitness = (1�b)�task fitness+b�processor fitness:

Our initial experiments use b = 0:1. The value of b
may be adjusted in future runs.

Even though the theoretical maximum value of �tness

is 1.0, this value will never be achieved in practice

because the processor �tness component of the �tness

function can never reach 1.0 in practice.

The value of fitness is returned to the GA by the

�tness function as the �tness of an individual.

4 Experimental details

A parallel program can be represented by its data 
ow

graph G = (V;E). This graph is a node-labeled and

edge-labeled directed acyclic precedence graph (APG),

where V is a set of nodes that represent sequential

processes and E is a set of directed edges that specify

both precedence constraints and communication paths
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(C) (B)

Figure 4: Description of task dependencies for prob-

lems C and B in (Tsuchiya, Osada, and Kikuno 1998).

among nodes. In an APG, each node gives the execu-

tion cost time and each edge represents the communi-

cation cost time required to pass data from one node

to another during program execution.

We test our GA on several problems described by

(Tsuchiya, Osada, and Kikuno 1998), speci�cally

problems B and C from their paper. The APG for

these problems are shown in �gure 4. The communi-

cation time, tc, is set to 25 for problem B and 20 for

problem C. For problem B, Tsuchiya et al. (1998) ob-

tained a minimum run time of 300 with their GA and

315 with DSH. For problem C, they obtained a mini-

mum run time of 260 with their GA (Tsuchiya 2001)

and 260 with DSH.

The details of our GA are described in section 3. We

used the following parameter settings in our experi-

ments:

Population size = 200

Crossover type = Random 1-point

Crossover rate = 1.0

Mutation rate = 0.005

Selection method = Tournament

Stopping condition = 1500 generations.

Our GA performs 300,000 evaluations (= population

size 200 � 1500 generations) in each run, making it

comparable to the data from (Tsuchiya, Osada, and

Kikuno 1998) (population size 30 � 10,000 generations

= 300,000 evaluations). On average, however, our GA

�nds the best solution in about 600 generations, so

signi�cantly fewer evaluations are actually needed. We

Minimum run time

thresh = 0:7 thresh = 0:75

b = 0:1 303 (6.32) 301.5 (4.47)

b = 0:2 304.5 (10.12) 302 (4.83)

Maximum �tness

thresh = 0:7 thresh = 0:75

b = 0:1 0.9874 (0.0003) 0.9874 (0.0002)

b = 0:2 0.9746 (0.0008) 0.9748 (0.0003)

Figure 5: Results for problem B: average (and stan-

dard deviation) over ten runs.

tested the following variations in the �tness function

parameters:

thresh = 0.7, 0.75

b = 0.1, 0.2

thresh max�t = 0.1 .

For each experiment, we also include a set of runs in

which the �tness function simply rewards for valid runs

with minimal run time and does not use an incremen-

tal schedule. These runs are used as a comparison to

judge the merits of our GA using an incremental �t-

ness function.

5 Results

Our initial experiments test two values of thresh
(which determines when the era counter will advance)
and two values of b (which determines the contribution
of the two main components of the �tness function).

Ten runs were executed for each experiment. We re-

port here the average performance over each set of ten

runs.

Figure 5 gives the results for problem B. The top table

in �gure 5 shows the run time of the best solution (so-

lution with minimum run time) found, averaged over

ten runs. The minimum run time found is 300. This

minimum value is achieved in 80% of the 40 runs rep-

resented in �gure 5 and is comparable to the best GA

solution found in (Tsuchiya, Osada, and Kikuno 1998).

The bottom table in �gure 5 shows the average max-

imum �tness found in the runs. While there is not a

large di�erence in the average run times of each set of

experiments, the data suggest that a lower value of b
appears to produce solutions with higher �tness.

In addition to these experiments on problem B, we also

run an experiment consisting of a set of ten baseline

runs in which the �tness function simply rewarded for

minimum valid run times. No incremental �tness is

given in these runs. Seven of the ten runs are unable
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Minimum run time

thresh = 0:7 thresh = 0:75

b = 0:1 267 (9.49) 274 (13.50)

b = 0:2 275 (15.81) 271 (9.94)

Maximum �tness

thresh = 0:7 thresh = 0:75

b = 0:1 0.9848 (0.0005) 0.9844 (0.0007)

b = 0:2 0.9687 (0.0018) 0.9692 (0.0011)

Figure 6: Results for problem C: average (and stan-

dard deviation) over ten runs.

to �nd any valid partitions within the 500 generations.

Three �nd solutions with run times of 500, 435, and

655, all signi�cantly higher than the run times found

using the incremental �tness function. Closer inspec-

tion of these runs reveals that these solutions are not

actually evolved. Rather they are randomly generated

individuals that just happen to be valid individuals.

They appear for only for a single generation and do

not produce any viable o�spring. In fact, all three of

these solutions were randomly generated in the initial

population and then immediately destroyed. No other

valid solutions were found in any of these runs.

Figure 6 gives the results for problem C. The top table

in �gure 6 shows the run time of the best solution (so-

lution with minimum run time) found, averaged over

ten runs. The minimum run time found is 260, oc-

curring in almost half of the 40 runs reported above.

This value is comparable to the best GA and DSH

solutions from (Tsuchiya 2001; Tsuchiya, Osada, and

Kikuno 1998). The bottom table in �gure 6 shows the

average maximum �tness found in the runs. Again,

a lower value of b appears to produce solutions with

higher �tness. We also run a baseline experiment for

problem C consisting of ten runs without incremental

�tness. Eight of the ten runs are unable to �nd a valid

solution within 500 generations. Two runs �nd solu-

tions with a run time of 590 and 380. These solutions,

again, appear to be random occurrences, the only valid

individuals generated in these runs.

Figure 7 shows an example of how the population �t-

ness of a run evolves in our GA. The top line shows the

best population �tness at each generation. The bot-

tom line shows the average population �tness at each

generation. The vertical lines indicate the generations

at which the era counter is incremented. The start of

each era is indicated at the top of the graph. The av-

erage population �tness climbs within each era. Each

time the era counter is incremented, however, the dif-

�culty level of the �tness function increases and the

0
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Figure 7: Evolution of population �tness in response

to increasing eras.
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Figure 8: Evolution of run time in response to increas-

ing eras.

average �tness of the population drops. After about

six eras in this run, there are apparently enough valid

task sequences to allow the remaining eras to incre-

ment once per generation until the maximum era = 15

is reached. Figure 8 shows the evolution of run time in

the same run. The run times of the evolved solutions

seem to be less reactive to the change in eras.

6 Conclusions and future work

We introduce a novel GA approach to evolving sched-

ules that partition the tasks of programs to be ex-

ecuted on parallel processors. Our GA successfully

solves this problem, �nding solutions that are compa-
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rable or better than solutions found by previous meth-

ods. The key advantage of our GA over previous GA

approaches to this problem is that our GA does not

use special operators or repair mechanisms to restrict

the search to only valid regions of the search space.

As a result, we eliminate biases that may occur due

to the special operators, we know that all individuals

within the search space are reachable, and we elimi-

nate the need to re-tune or revise the special opera-

tors and repair mechanisms each time a new problem

is introduced to be solved.

Two unique features distinguish our GA from tradi-

tional GA programs. First, this GA uses a dynamically

incremental �tness function which starts out rewarding

for simpler goals, gradually increasing the di�culty of

the desired �tness values or goals until a full solutions

is found. Second, this GA uses a 
exible represen-

tation style which allows the GA itself more control

over both the structure and the value of the evolved

solutions.

It is clear from our baseline experiments that this is

a di�cult problem for a GA to solve if there are no

restrictions placed on the evolutionary process. We

modify the problem speci�c components of a GA {

the problem representation and the �tness function {

to encourage the GA to create and maintain valid in-

dividuals. The incremental �tness function initially

rewards the GA for �nding short valid sequences of

tasks. As �tness improves, the lengths of these se-

quences increase, thus rewarding the GA for �nding

and keeping longer valid sequences. Valid individuals

are further evaluated with respect to their quality so

that shorter run times are rewarded.

We hope to further improve the performance of our

GA with future developments. Issues that we plan to

address include an analysis of the e�ectiveness of our

representation format, an examination of the use of

alternate genetic operators, and a study of the e�ects

of variable genome length in a GA.
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Abstract 
 
 
A new constraint handling technique is 
developed to work with Multi-Objective Genetic 
Algorithms (MOGAs). This technique is based 
on a primary-secondary fitness assignment 
scheme, one that uses both individuals� fitness 
and matching. A Pareto ranking scheme is used 
for the primary fitness assignment wherein no 
subjective and problem dependent parameters are 
used. Rules that take the concept of �matching� 
into account are used for the secondary fitness 
assignment. Some new set quality metrics are 
introduced and used for a comparison of the new 
technique with a previous approach. Due to the 
stochastic nature of MOGA, confidence intervals 
with a 95% confidence level are obtained for the 
quality metrics based on the randomness in the 
initial population. An engineering example, 
namely the design of a vibrating platform, is 
used for the comparison and demonstration of 
the new technique. 

1 INTRODUCTION 
Engineering design optimization problems usually have a 
mix of continuous-discrete design variables, multiple 
objectives that are at least partly conflicting, and multiple 
constraints. The solutions to such  optimization problems 
are known as Pareto solutions (Miettinen, 1999). 
Evolutionary algorithms such as Genetic Algorithms (or 
GAs) (Holland, 1975) are capable of solving single 
objective optimization problems with mixed variables. 
There have been different approaches to incorporate 
multiple objectives into GAs. Coello (1999) gives a 
comprehensive survey of evolutionary-based multi-
objective optimization methods. Among these methods, a 
Multi-Objective Genetic Algorithm or MOGA (Fonseca 
and Fleming, 1993) is one of the methods that is capable 
of generating a Pareto solution set in a single run of the 

GA as opposed to solving a series of single objective 
optimization problems. 
GAs, and thus MOGAs, are essentially unconstrained 
optimization techniques. Hence, the way that the 
constraints are handled in GAs or MOGAs becomes 
important. Most constraint handling techniques that 
reported in the literature for GA and/or MOGA focus on 
handling constraints during a fitness assignment stage. A 
fitness is used to interpret the mating performance, taking 
both objectives and constraints into account, and as an 
allocation of reproductive opportunities. For example, two 
individuals selected independently with high fitness 
values have a higher chance of producing better 
offsprings than those with low fitness values. 
Conventionally, only a single fitness is used throughout 
the procedure. The most common form of a single fitness 
assignment is to alter the fitness value of an individual by 
a penalty if it violates any constraint (Goldberg, 1989):  

fitnessi = fi (x) + Qi                                       (1) 
where the quantity fitnessi  refers to the fitness of the ith 
individual, fi(x) is the objective function value (to be 
minimized) of the ith individual, and  Qi is a penalty 
function due to a constraint violation of the ith individual. 
Since an aggregation between objectives and constraints 
is involved in Eq.(1), subjective and problem dependent 
penalty parameters are usually introduced in Qi. 
Although, the use of a penalty method in GAs and 
MOGAs has been somewhat successful (Homaifar, et al., 
1994; Michalewicz and Attia 1994; Narayana and Azarm, 
1999; Kurapati et al., 2000; among others), the definition 
of a good penalty function or setting up the corresponding 
subjective and problem dependent parameters can be very 
critical and difficult. Among the recent constraint 
handling techniques, those that treat constraints as 
separate objectives and make use of a Pareto ranking 
scheme are the most promising ones. Surry et al. (1995) 
and Coello (2000) proposed methods that make use of 
Pareto rankings to handle constraints. Since these 
methods use Vector Evaluated Genetic Algorithms or 
VEGAs (Schaffer, 1985) to ensure solution feasibility, 
when the number of constraints increases, the required 
computational effort can increase dramatically. A 
comprehensive survey of these constraint handling 
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techniques can be found in Michalewicz (1995). So far, 
there have not been any published constraint handling 
techniques based on a Pareto ranking scheme applied to a 
MOGA. 
In this paper, a new constraint handling approach is 
proposed for a MOGA. This new approach takes both 
individuals� performance and matching against one 
another into account by using a primary-secondary fitness 
assignment scheme. The primary fitness is used to 
measure individuals� performance, while the secondary 
fitness is used to interpret �matching� of two individuals. 
The objectives and constraints are handled via a Pareto 
ranking scheme in order to avoid their aggregation and 
the use of subjective and problem dependent parameters. 
In order to show that the proposed constraint handling 
technique does work better with a MOGA, the constraint 
handling technique CH-I4 from Kurapati et al. (2000) is 
chosen for a comparison with the new constraint handling 
technique. In the literature, most of such comparisons are 
done in an ad-hoc manner (e.g., Azarm et al., 1999, Binh 
and Korn, 1997). Very few papers in the literature have 
reported on metrics for measuring and comparing the 
quality of observed Pareto solutions obtained from 
different evolutionary methods. Zitzler and Thiele (1998) 
proposed two metrics for the purpose of comparing four 
multiobjective evoluationary algorithms. Van Veldhuizen 
(1999) (wherein further references can be found) 
reviewed and defined nine metrics to assess the quality of 
Pareto solutions. More recently, five new set quality 
metrics are formulated in closed-forms and geometrically 
illustrated by Wu and Azarm (2000). In this paper, a few 
new set quality metrics are proposed and some metrics 
from Wu and Azarm (2000) are modified so that they can 
be used to compare multiple observed Pareto solution sets 
from different techniques in a more meaningful way. 
Confidence intervals with a 95% confidence level are 
used in the comparison study so that when analyzing the 
performance of the different techniques, their stochastic 
nature is accounted for. 
The rest of the paper is organized as follows. The 
definition and terminology used in the paper are given in 
Section 2. The proposed constraint handling technique is 
discussed in Section 3. The details of the comparison 
study including the quality metrics and confidence 
intervals are described in Section 4. An engineering 
example, the design of a vibrating platform, is provided in 
Section 5 to demonstrate performance of the proposed 
technique. The paper is concluded with the remarks in 
Section 6. 

2 DEFINITION AND TERMINOLGY 
The formulation of a typical multi-objective design 
optimization problem with m objective functions is shown 
below in Eq.(2): 
Minimize  f(x)={f1(x), �, fi(x), �, fm(x)} 
subject to:  x∈D                                                              (2) 
D = {x∈ℜn: gj(x)≤0,  j=1, �, J;  hk(x)=0, k=1, �, K} 

where x is a design vector containing n components of 
design variables, fi(x) is the ith objective function, gj(x) is 
the jth inequality constraint and hk(x) is the kth equality 
constraint. The set of all design vectors that satisfies all 
constraints is denoted by D. The solution to a multi-
objective optimization problem is a set of Pareto 
solutions: X = (x1, x2, �, xnp ), wherein for any point xj∈X, 
there does not exist another point xk∈D with k≠j, such that 
fl(xk) ≤ fl(xj) for all l = 1,�,m, with strict inequality for at 
least one l. In this paper, a Pareto solution set that truly 
meets this definition is also called a �true� Pareto solution 
set or a Pareto frontier. In contrast, a Pareto solution set 
that is obtained by a multi-objective optimization method 
is referred to as an �observed� Pareto solution set. In 
reality, an observed Pareto solution set is a finite set and 
is an estimate of the true Pareto solution set. 
Let P1, P2, �, PT denote the observed Pareto solution sets 
obtained from T different optimization runs or T different 
optimizers. For a solution pj,k∈Pk, (j=1,�,npk, npk is the 
number of Pareto solutions contained in the kth observed 
Pareto solution set and k=1,�,T), if there does not exist 
another solution pl,s∈P1∪P2∪�∪PT (l=1,�,npk and 
s=1,�,T), with j≠l,  such that fi(xl,s) ≤ fi(xj,k), for all i = 
1,�,m with strict inequality for at least one i, then pj,k is 
defined as a Meta Pareto solution. Total Meta Pareto set 
(TMP) is then defined as the best possible solutions 
obtained in P1, P2, �, PT, which means that 
TMP={�,pk,j,�,ps,l,�} is the union of all the Meta 
Pareto solutions contained in P1, P2, �, PT .  Figure 1 
shows two observed Pareto solution sets and their total 
Meta Pareto solution set. 

 Observed
 Pareto set 1

  Total M eta
  Pareto set

 f1

 f2

Observed
 Pareto  set 2

 
 

Figure 1: Total Meta Pareto Set  

3 NEW CONSTRAINT HANDLING 
(NCH) APPROACH FOR MOGA 

The proposed new constraint handling approach, as 
discussed in the following sections, uses a primary-
secondary fitness assignment scheme to account for both 
individuals� performance and matching. A Pareto ranking 
approach is used for the primary fitness assignment so 
that subjective and problem dependent parameters are 
avoided. A rule based algorithm is developed for a 
secondary fitness assignment, at the selection stage, so 
that the �matching� between the individuals as parents is 
accounted for. 
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3.1 PRIMARY FITNESS ASSIGNMENT 
Primary fitness expresses an individual�s performance by 
taking both the objectives and constraints into account. 
Unlike the conventional penalty methods, no aggregation 
between objectives and constraints are involved in this 
Pareto ranking scheme. 
The primary ranking has two stages. In the first stage, 
only the design objectives in the optimization problem are 
considered and all constraints are ignored. Dominant 
values of all individuals are calculated. The dominant 
value of an individual pk is defined as the number of all 
other individuals in the population that dominate over pk. 
At the second stage, the dominant value calculated from 
the first stage is taken as a new objective, and the sum of 
constraint violations is taken as the other objective. 
Dominant values of all individuals are calculated in this 
objective-constraint space again. Each individual is 
ranked based on its new dominant value. For those 
individuals with the same newly found dominant value, 
their rankings are modified based on their constraint 
violation. In this case, those individuals with a less 
amount of constraint violation are preferred over those 
with a more amount of constraint violation. Primary 
fitness can then be computed based on the ranks of all 
individuals. For a typical multi-objective optimization 
problem in the form of Eq. (2), a step-by-step approach 
for a primary fitness assignment is described next. 
1) Consider: Minimize f(x)={f1(x),�, fm(x)}. These m 

objective functions are the m objective functions in 
Eq. (2). For an individual i (i =1,�,M), compute the 
dominant value Dobj.i, in the objective space without 
considering any constraint.  Here, M is the population 
size. 

2) Compute the extent of constraint violation Ccon,i for 
an individual i (i =1,�,M), using Eqs. (3)-(5). 
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where gj,i is the jth inequality constraint value for the 
ith individual, and hk,i is the kth equality constraint 
value for the ith individual.  According to Kurapati et 
al. (2000), Eq.(3)-(5) take both the number of 
violated constraints C1

con,i and the amount of 
constraint violation C2

con,i into account in order to 
measure the quality of individual i with respect to 
constraint violation in a more accurate way. Also, 
according to the experimental results from Kurapati 
et al. (2000), the information regarding the number of 
violated constraints should be considered to be more 
important than the amount of constraint violation. As 

one can see, C1
con,i ranges from 0 to any integer 

number that is less than the total number of 
constraints while C2

con,i is scaled (C2
con,i≤1) by using 

Eq. (5). If an individual i violates more number of 
constraints than individual j does, C1

con,i > C1
con,j, then 

Ccon,i will always be greater than Ccon,j which implies 
that individual j is preferred over i. Since C2

con,i is 
always less than or equal to one, it is only used when 
two individuals violate the same number of violated 
constraints. 

3) Take new design objectives as: Minimize 
fnew(x)={fobj(x), fcon(x)}, where fobj(xi) = Dobj,i, and 
fcon(xi) = Ccon,i. For individual i (i =1,�,M), compute 
the dominant value Dnew,i in this objective-constraint 
space. 

4) Rank individual i (i =1,�,M) according to its new 
dominant value Dnew,i.  Let Ri = Dnew.i, (i =1,�,M).  
For those individuals with the same rank Ri, modify 
their ranks according to their extent of constraint 
violation Ccon,i. Those individuals with a smaller 
constraint violation are given higher ranks. In other 
words, for all the individual s, s+1,�,s+n-1 (1≤s≤M, 
1≤n-1≤M) with Rs=Rs+1=�=Rs+n-1, if there exists 
Ccon,s≤Ccon,s+1≤�≤Ccon,s+n-1, then the rank R′s+k (0≤ k 
≤n-1) is:  

n
kRR sks

1−+=′+   (6) 

5) Assign a primary fitness value to all individuals 
according to Eq. (7) 

max
minmaxmaxi R

R
 - CC - Cfitness_P

′
′

= i)(     (7) 

where: Cmax = 1.2;  Cmin = 0.8; R′i is the modified rank of 
individual i; R′max is the maximum modified rank when all 
the individuals in the population are considered, i.e., 
R′max=(R′1, R′2,�, R′M). 

3.2 SECONDARY FITNESS ASSIGNMENT 
The secondary fitness assignment takes place after the 
first parent is selected from the population using the 
primary fitness. The concept of �matching� between an 
individual and the selected first parent is taken into 
account. Heuristics have been developed, as will be 
described in this section, to rank individuals based on how 
much they match with the first parent. The secondary 
fitness can then be calculated based on individuals� ranks. 
Those individuals with a high secondary fitness will tend 
to be selected as the second parent and in turn produce 
offsprings. The purpose is to generate offsprings that are 
likely to be better than both parents. 
In a MOGA, in order to achieve a fast evolutionary 
process, it is desired that an offspring be better than both 
of the parents. Usually, if two parents have some 
complementary features (e.g., one parent is good from the 
design objectives point of view while the other from the 
constraint violation), then it is hoped that their offspring 
will be better than the two parents since it should inherit 
the complementary good genes from both parents. (Note: 
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Of course, there is also a risk of having the offspring 
being worse than the two parents, since it might inherit 
the complementary bad genes from both parents. 
Although throwing the bad children away may appear to 
encourage fast convergence, our experimental results 
show that it would indeed be less efficient than simply 
leaving the bad children in the population, since 
identifying the bad children also can be computationally 
expensive.) Here, the two parents with complementary 
features are regarded as the matching parents. Using the 
primary fitness alone does not take this matching concept 
into account. For example, Figure 2 shows a solution set 
{A, B, C, D, E, F} in an objective-constraint space. 
According to the procedure described in Section 3.1, the 
rank order of these six solutions should be 
RF<RA<RB<RC<RD<RE, hence, their primary fitness values 
should satisfy P_fitnessF>P_fitnessA>�>P_fitnessE. If the 
selection is conducted independently based on the 
individuals� primary fitness only, when solution A is 
selected as one of the parents, between solutions E and D, 
solution D will have a higher chance to be selected as the 
other parent. But, since A and E are non-inferior to each 
other, the offspring from A and E will have a higher 
chance to receive good complementary features from both 
parents and in turn a higher chance to be better than both 
parents, from both objectives and constraints points of 
view. On the other hand, since A dominates D, the 
offspring from A and D will have a much less chance to 
perform better than both parents. Hence, from the 
evolution�s point of view, E �matches� A more than D 
does, although D does have a higher primary fitness.  

  E

 D

  A

  B

  C  F

 fcon

 fobj

 
 

Figure 2: An Example 
In order to take the concept of matching into account, the 
secondary fitness should be used as a complement to the 
primary fitness. The secondary fitness of an individual 
expresses the degree of matching between two parents. 
The individual that matches the first parent most will be 
assigned the highest secondary fitness value. The 
following rules are used to rank individuals based on their 
degree of matching with the first parent. 
(i) Individuals that are non-inferior to the first parent in 

the objective-constraint domain will be given higher 
ranks because they are considered to match more 
with the first parent than others do. For instance, as 
the example shows in Figure 2, if A is selected to be 
the first parent, B, C and E will be considered to 
match more with A than D and F will, since B, C, and 
E are all non-inferior with respect to A.   

(ii) Among all the non-inferior individuals of the first 
parent, the number of �common� constraints that 
both a candidate individual and the first parent 
violate is calculated. The candidate individuals who 
violate fewer numbers of common constraints are 
considered to match more with the first parent than 
others do since they have more complementary 
features with the first parent, just from the 
constraints� point of view.  As an example, let SA, SB 
and SC denote the set of constraints that A, B and C 
violate, respectively. Let Ncom(A,B) denote the 
number of common constraints that both A and B 
violate. That is: Ncon(A,B)=<SA∩SB> and 
Ncon(A,C)=<SA∩SC>, wherein the quantity �<•>� 
refers to the number of elements in the set �•�. If there 
exists Ncon(A,B)<Ncon(A,C), then B is considered to 
match more with A than C does.  

(iii) If the numbers of common violated constraints are 
the same, then those individuals with a less extent of 
constraint violation will be considered to match more 
with the first parent. In other words, if there exist: 
Ncon(A,B)=Ncon(A,C), and Ccon,B<Ccon,C, then B is 
considered to match more with A than C does.  

(iv) Among all the inferior and dominant individuals of 
the first parent, those with a less extent of constraint 
violation are considered to match with the first parent 
more. In the example shown in Figure 2, since there 
is Ccon,F<Ccon,D, the individual F  is considered to 
match more with the first parent than D does. 

By using the above rules, individuals can be easily sorted 
according to the �matching� concept. The secondary rank 
of the ith individual SRi is defined as the number of other 
individuals in the population that are considered to match 
the first parents less. For instance, if there exist 
p1fp2f�fpsfps+1f�fpM, wherein �f� stands for 
�matches with the first parent more than�, then SRs will 
have a value of M-s. The secondary fitness can then be 
assigned to all the individuals according to Eq. (8) 

max

_ i
i

SRS fitness
SR

=    (8) 

where SRmax is the maximum secondary rank when all the 
individuals in the population are considered. 

4 A COMPARISON STUDY:             
MOGA-NCH VS. MOGA-I4 

In this section, a baseline MOGA with the new constraint 
handling technique, hereafter called MOGA-NCH, is 
compared with the same baseline MOGA where the 
constraint handling technique CH-I4 (Kurapati et al, 
2000), hereafter called MOGA-I4, is implemented. In 
order to compare the quality of the observed Pareto 
solution sets from these two algorithms, some new set 
quality metrics as well as some modified set quality 
metrics are presented in this section. To make the 
comparison meaningful, confidence intervals for all 
metrics in the study are obtained so that the stochastic 
nature of the MOGA is accounted for. 

744 GENETIC ALGORITHMS



4.1      SET QUALITY METRICS 
In a recent paper by Wu and Azarm (2000), a few set 
quality metrics were introduced to aid in a quantitative 
assessment of the quality of an observed Pareto solution 
set. The metrics used in that paper are: coverage 
difference that evaluates the difference between the size 
of the objective space dominated by an observed Pareto 
solution set and that of the objective space dominated by 
the true Pareto solution set; Pareto spread that quantifies 
how widely the Pareto solution set spreads over the 
objective space; accuracy of an observed Pareto frontier 
that provides knowledge of an observed Pareto frontier in 
addition to the observed Pareto solution set; number of 
distinct choices that measures the number of designs that 
are sufficiently distinct from one another; and cluster that 
expresses the cluster phenomenon. In this section, some 
of the above metrics are modified so that the quality of 
the observed Pareto solution set can be assessed more 
accurately in the presence of multiple observed Pareto 
solution sets obtained by different optimizers. A new set 
quality metric, i.e., an inferiority index, is also introduced. 

4.1.1 Modified Pareto Spread (MOS and MOSk) 
Two metrics in the category of Pareto spread were 
introduced in Wu and Azarm (2000). These were the 
overall Pareto Spread (OS) and the kth objective Pareto 
Spread (OSk). The overall Pareto Spread quantifies how 
widely the observed Pareto solution set spreads over the 
objective space when the design objective functions are 
considered altogether. The kth objective Pareto spread OSk 
aims at quantitatively depicting the Pareto range with 
respect to each individual design objective (Wu and 
Azarm, 2000). An observed solution set with higher 
values of OS and OSk is preferred more than a set with 
lower values. 
When there are multiple observed Pareto solution sets 
(obtained from different optimizers), some of the 
observed Pareto solutions might no longer be Pareto and 
can be inferior with respect to the solutions contained in 
the remaining Pareto solution sets. Hence, in order to 
accurately measure the Pareto spread, these new inferior 
solutions should not be considered. In other words, Pareto 
spread should be measured over the Meta Pareto solutions 
instead of the observed Pareto solutions obtained from a 
single optimizer. 
Let P1, P2, �, PT denote all observed Pareto solution sets 
that need to be compared. The total Meta Pareto solution 
set is TMP={�,pk,j,�,ps,l,�} where pj,k∈Pk, pl,s∈Ps 
(j=1,�,npk, l=1,�,nps and k,s=1,�,T). For an observed 
Pareto solution set Ps, the modified overall Pareto spread 
(MOS) and modified kth objective Pareto spread (MOSk) 
are defined as: 
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where nms (nms≤nps) stands for the number of Meta 
Pareto solutions in the observed Pareto set Ps. 
For example, in a two-objective space shown in Figure 3, 
the modified overall Pareto spread and the modified kth 
objective Pareto spread for the observed Pareto solution 
set P1 is calculated as: 
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Figure 3: Modified Pareto Spread 

4.1.2 Modified Accuracy of the Pareto Frontier 
(MAC) 

Knowledge of a Pareto frontier that corresponds to an 
observed Pareto solution set may become important to a 
designer dealing with engineering problems, since it 
might provide some insights into where the potential 
tradeoff solutions might be. In Wu and Azarm (2000), the 
observed Pareto solutions were used to approximate the 
Pareto frontier. With the presence of the other observed 
Pareto solution sets, Meta Pareto solutions should be used 
when calculating the quantity for the accuracy of the 
Pareto frontier. 

pg
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  f1

 f2

  Solutions in P2
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Figure 4: Modified Approximation of the Pareto Frontier 
Figure 4 shows the concept of the modified 
approximation of the Pareto frontier (MAP) in a two-
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dimensional objective domain. MAP can be calculated 
according to Eq. (13). 
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wherein I is the entire objective space under 
consideration, Sin(Ps

M) and Sdo(Ps
M)  are the inferior region 

and dominance region of the Meta Pareto sets Ps
M. The 

definitions of both inferior region and dominance region 
of a set can be found in Wu and Azarm (2000).  Eqs. (14) 
and (15) can be used to calculate the space of Sin(Ps

M)  
and Sdo(Ps

M) respectivly. 
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where xg and xb denote the good point and bad point, nms 
stands for the number of Meta Pareto solutions in 
observed Pareto set Ps. The quantity MAC is taken as the 
inverse of MAP.  Hence, the solution set with a higher 
MAC value indicates that an approximation of the Pareto 
frontier is more accurate and therefore more preferred. 

4.1.3 Inferiority Index (InfI) 
Once the observed Pareto solution set is obtained, the 
designer will have to choose a preferred solution from the 
set. The higher the number of true Pareto solutions and 
the fewer the number of inferior solutions the observed 
set contains, the higher chance is there for the designer to 
select a true Pareto solution. With the presence of many 
Pareto solution sets, although one still can not guarantee 
that the Meta Pareto solutions are true Pareto solutions, 
one can be sure that the inferior solutions are not true 
Pareto solutions. As such, it is desired that a MOGA 
should provide as fewer inferior solutions as possible and 
as more Meta Pareto solutions as possible. The metric of 
inferiority index (InfI) is defined as the ratio between the 
number of inferior solutions that a particular MOGA has 
obtained over the total number of observed Pareto 
solutions the MOGA has provided as shown in, Eq. (16).   
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wherein Ps is the observed Pareto solution set, Ps
M is the 

Meta Pareto solution set contained in Ps. 
A MOGA with a smaller inferiority index implies that it 
will give the designers a higher chance to select a true 
Pareto solution from the set. 

4.2 CONFIDENCE INTERVALS 
Since a MOGA is essentially a stochastic method that has 
randomness in almost every stage of its evolutionary 
process, it will be inappropriate to state that one MOGA 
is better than another solely based on the values of the 
quality metrics obtained from one single MOGA run. As 
such, confidence intervals (Longley-Cook, 1985), with a 
95% confidence level, are obtained for the set quality 
metrics based on some random runs of the two MOGAs 
that are compared. The confidence intervals are scaled 
such that the mean of MOGA-I4 with respect to each 
quality metric has a value of 1. The generation of initial 
population is chosen as the random factor. All other 
MOGA parameters, such as mutation rate, crossover 
probability, etc., are kept fixed for both techniques. The 
values of these fixed parameters are shown in Table 1. 

Table 1: MOGA Parameters and Configurations 
MOGA Parameters Configurations 

Population size 100 
Percentage replacement 10 
Crossover type Two-points crossover 
Crossover probability 0.95 
Mutation probability 0.05 
Selection Type Tournament selection 
Duplication None 

 
In general, with the confidence intervals for each quality 
metric, one can clearly see which technique works better 
without ignoring the random behavior of MOGAs. 

5 EXAMPLE 
In this section, both MOGA-NCH and MOGA-I4 are 
tested on an engineering example: design of a vibrating 
platform. The confidence intervals are obtained for the 
aforementioned quality metrics to demonstrate the 
statistical significance of the improvement by MOGA-
NCH over MOGA-I4. 

5.1 VIBRATING PLATFORM: PROBLEM 
DESCRIPTION 

This example was selected from Messac (1996) with 
some modifications. It consists of a pinned-pinned 
sandwich beam with a vibrating motor on its top. As 
shown in Figure 5, the beam has five layers of three 
different materials. There is a middle layer and two 
sandwich layers. The distance from the center of the beam 
to the outer edge of each layer comprises three of the 
sizing design variables, d1, d2, and d3. The width of the 
beam, b, and the length of the beam, L, are the other two 
sizing design variables. There are also three combinatorial 
variables for the material type Mi, where i=1,2,3, for the 
different materials that can be used for each layer. Hence, 
there are 8 design variables, 3 combinatorial variables for 
the material type of the 3 layers, and 5 sizing variables.  
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Figure 5: Vibrating Platform Example 
 

The two design objectives are to maximize the 
fundamental frequency of the beam, and to minimize the 
material cost. The maximization of the fundamental 
frequency is converted to a minimization form by 
minimizing the negative of the fundamental frequency. 
The problem formulation is shown below:   
Minimize f1(d1,d2,d3,b,L,Mi) = - (π/2L2)(EI/µ)0.5  

                (EI) = (2b/3)[E1d1
3 + E2(d2

3-d1
3)+E3(d3

3-d2
3)]  

       (µ) = 2b[ρ1d1 + ρ2(d2 � d1) + ρ3(d3 � d2)]  
Minimize f2(d1,d2,d3,b, Mi) = 2b[c1 d1 + c2(d2 � d1) + c3(d3 
� d2)] 
Subject to: g1:   µL � 2800 ≤ 0  
  g2:   d2 � d1 � 0.15 ≤ 0 
  g3:   d3 � d2 � 0.01 ≤ 0    (17) 
where 0.05 ≤ d1 ≤ 0.5, 0.2 ≤ d2 ≤ 0.5, 0.2 ≤ d3 ≤ 0.6,  
0.35 ≤ b ≤ 0.5 and 3 ≤ L ≤ 6. Here, Ei is the modulus of 
elasticity of material Mi, while ρi is the density, and ci is 
the cost. According to the material type variable Mi, the 
value of the parameters Ei, ρi, and ci is different for 
different layer material, as given in Table 2. It is assumed 
that the material types for the three layers are mutually 
exclusive. In other words, the same material cannot be 
used for more than one layer.  However, the layers are 
allowed to have zero thickness.  The first three constraints 
refer to upper bounds on the mass of the beam, thickness 
of layer 2, and thickness of layer 3, respectively, and they 
are labeled g1 through g3.  The last 5 constraints are the 
set constraints on the sizing variables (Azarm et al., 
1999). 
 

Table 2 Layer�s Material Properties of the Vibrating 
Platform Example 

Material Mi ρi (Kg/m3) Ei (N/m2) Ci ($/volume) 
1 100 1.6 × 109 500 
2 2,770 70 × 109 1,500 
3 7,780 200 × 109 800 

5.2 RESULTS 
Fifty runs with different randomly generated initial 
population are performed. The configurations of MOGA 
parameters are shown in Table 1. Both techniques were 
run until the number of function evaluations reached 
4000. The quality metrics were obtained for all the 
observed Pareto solution sets. The statistical results are 
shown in Figure 6. As one can see, MOGA-NCH gives 
clearly better coverage difference which indicates that the 
Pareto solution sets from MOGA-NCH are more similar 
to the true Pareto solution set. MOGA-NCH is more 

likely to give a smaller inferiority index than MOGA-I4 
does which shows that  using MOGA-NCH, the designers 
are less likely to select an inferior solution. The solutions 
from MOGA-NCH clearly spread over wider space in the 
objective domain. Moreover, the Pareto frontiers that 
MOGA-NCH approximates is more accurate than 
MOGA-I4. Although MOGA-NCH does provide fewer 
distinct choices than MOGA-I4 does, the solutions from 
MOGA-NCH are less clustered. 
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(a) Coverage Difference (CD) (b) Inferiority Index (InfI) 
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(c) Modified Overall Pareto Spread  (MOS) and kth 
Objective Pareto Spread (MOSk) 
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(d) Modified Accuracy of Pareto Frontier (MAC) 
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(e) Number of Distinct Choices (NDC)  (f) Cluster (CL) 
 

Figure 6: Vibrating Platform Results 

6 CONCLUSION 
In this paper, a new constraint handling (NCH) technique 
is proposed to work with MOGAs. The technique is based 
on a primary and secondary assignment schemes. A 
Pareto ranking scheme is used in the primary fitness 
assignment so that subjective and problem dependent 
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parameters are avoided. Rules that take the concept of 
�matching� into account are then used in a secondary 
fitness assignment scheme. A MOGA that uses this new 
constraint handling technique (MOGA-NCH) and a 
MOGA that uses a previously published constraint 
handling technique (MOGA-I4) are tested on an 
engineering example: design of a vibrating platform. The 
results are compared by using some new set quality 
metrics. By calculating the confidence intervals, it is 
observed that for this example, MOGA-NCH performs 
better than MOGA-I4 with respect to almost all quality 
metrics, such as coverage difference, inferiority index, 
Pareto spread, accuracy of the Pareto frontier as well as 
the cluster, except for the number of the distinct choices.  
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