GPRobots and GPTeams - Competition, co-evolution and
co-operation in Genetic Programming

Conor Ryan
Computer Science Dept.
University College Cork

Ireland

Abstract

This paper presents two simulations, GPRobots and
GPTeams. GPRobots is a new, competition ori-
ented benchmark for GP, where control programs are
evolved for robots. These are then executed in a simu-
lated real téme environment, where execution time for
instructions varies with instruction complexity. The
competitive nature of GPRobots allows the direct
comparison of different evolutionary approaches, us-
ing two or more best-of-run individuals from various
simulations.

GPTeams, the second simulation in this paper, intro-
duces the idea of using GP to produce event driven
programs, using a novel technique where a popula-
tion of main control programs are co-evolved with the
callback functions they use. The callback functions,
although competing against each other on an evolu-
tionary scale, co-operate in teams organised by the
main program at a local level.

The experiments produce a wide array of behaviours
from individuals, from pacifist to violent, from para-
sitic to general.

Introduction

Games of competition are often used as a test of
programming skill (Dewdney 84)(Rognlie 93)(Timin
95)(Schick 94). These comparisons usually take the
form of a competition between different programmers
who try to outwit each other in the game. Often, the
inner workings of the programs entered into these com-
petitions are kept secret and the source i1s not pub-
licly available. Under certain circumstances an opti-
mal solution is known, as in the well known Prisoner’s
Dilemma game, so it is not really useful to directly
compare different development methodologies. This
paper develops a similar test for GP, where individuals
produced by different evolutionary approaches may be
tested against each other.

Competition, particularly in the form of co-
evolution, (Siegel 94) (Koza 92) (Jannink 94) in GP
is not uncommon, although competition between in-
dividuals in a single population has also been investi-
gated (Reynolds 94a). Invariably, these are one-on-one

competitions', but GPRobots allows more than two in-
dividuals in a tournament, and, as points are awarded
for longevity relative to the others in a tournament,
it 1s possible for a number of different strategies to
emerge, e.g. a pacifist robot who avoids combat may
survive longer than a very aggresive robot who con-
stantly attacks.

In scenarios where individuals are pitted against
each other, usually a move is determined for each, and
then executed, implying that each move takes the same
length of time to execute. GPRobots differs from this,
in that all instructions take an argument, e.g. how far
to move forward, how many degrees to turn left etc..
We share the view of (Reynolds 94b) that more com-
plex or longer moves should take more than one time
unit to execute.

A relatively new programming paradigm is that of
event driven programming. Event driven programming
differs from most paradigms in that instead of writing
a sequential program, a programmer writes functions
to deal with particular events that may (or may not)
happen during the running of a program. Each func-
tion is registered with an event handler which calls
each function as appropriate. It is possible to priori-
tise these events, so an event with a higher priority
may interrupt a lower priority event.

In practice, event driven programming is really inter-
rupt driven programming at a user rather than hard-
ware level, in that events can interrupt the normal flow
of a program, and, in some cases, pre-empt each other.

GPRobots Tournaments

Most previous work with GP involving competition be-
tween individuals has been concerned with one-on-one
competitions. GPRobots conducts its tournaments be-
tween two or more robots - three robots in the simu-
lations presented here. Robots score points for the
amount of other robots killed while they are alive. The

!Although some tesearchers, notably (Siegel 94) and
(Hillis 91), pit a single individual from one population
against several from another, each individual from the sec-
ond population fights the first individual singly.



arena in which tournaments take place measures 75x20
squares, with robots taking up 3x3 squares.

Each robot starts with 100 energy units. Units are
lost by shooting at other robots, by being hit by an-
other robot’s shot, or by crashing into another robot.
Energy is not lost by colliding with a wall of the arena.

The term round is used to denote one time step,
and the term turn to denote the action a robot wants
to take. As will be seen, some turns require multiple
rounds to achieve.

Robot Actions

As stated above, it is common practice when evolv-
ing control programs with GP (such as the well known
Artificial Ant problem(Koza 92)), that the actions in-
volve the robot moving ahead one square, going back
one square, turning left 90° etc. To add realism to the
simulation, robots in GPRobots are allowed turn fac-
ing any angle between 0° and 360°, and that robots
who are travelling forward several squares should ac-
celerate.

Due to pressures of space, and to allow proper dis-
cussion of the results, only a very brief account of the
workings of the robots will be given.

The most comprehensive work in this area with GP
has been that of Reynolds(Reynolds 94a) and his is the
only work to permit robots to be continuous in orien-
tation. GPRobots adopts this approach, and also as-
sumes that robots accelerate if they are travelling con-
tinuosly in the same direction. All but one of the robot
instructions are of the form: (action argument), and
all return a value indicative of the success or otherwise
of the instruction.

Robots may turn left or right, and may move
ahead or reverse, and, of course, may fire. Left and
right take an argument of degrees to turn, while ahead
and reverse the number of squares to move. The fire
instruction doesn’t take any arguments.

Robot sensors

Robots have available a number of sensors to them
which provide information about the arena. These in-
clude a sensor which reports a robot’s involvement in
a collision and a sensor which reports the robot being
struck by a missile. These sensors return the number
of degrees which the robot must turn to face either
the other robot involved in the collision or the robot
who fired the offending missile. Robots can see other
robots who are directly in their line of vision, and can
determine how far away they are.

For the purpose of evolving robots, conditional com-
mands which directly access the contents of the sensors
such as (IF-Collide # y) could be designed. Tt is the
view of the author that functions such as these are not
an integral part of the robot structure, no more than
say, a mathematical function would be, and for this
reason, are not considered to be “hardwired” into the
robot.

This is not to say that the programs controlling the
robot cannot use these, or, indeed, any other reason-
able functions that an implementor wishes to use.

Fitness Function

One of the reasons that games such as this are so pop-
ular as a test of programming skill and strategy 1s that
there is usually no obvious optimal strategy?. While
this makes the benchmark more interesting and use-
ful, 1t complicates the fitness function when it comes
to evolution.

One approach is to hand code a few expert robots,
and use these to test the best-individual produced by
a GP run(D’haeseleer 94)%. However, this would seem
to suggest that the ability of GP to produce individu-
als is determined to some extent on the ability of the
implementor to produce hand coded solutions to the
very problem that is to be solved, a situation we would
rather avoid.

Given that there 1s no obvious fitness measurement,
the only other choice is to measure an individual’s
fitness relative to other individuals. Problems such
as this involving competition between individuals lend
themselves to this sort of measurement to some degree.
Only to some degree because, although it is easy to
compare k individuals, where k is the number involved
in a tournament, it is another matter to compare N
individuals, where N is the size of the population.

A variety of these methods were reported on by
(Reynolds 94b) and are summarized in the table be-
low.

Competition Matches per ind.
New versus all n—1

New versus several k

Knockout tournament log, n

New versus best 1

New versus new 1

New versus neighbour 1

This paper uses a method which employs both the
New versus several (Reynolds 94b) and the New versus
neighbour (D’haeseleer 94). Individuals live in a one
dimensional neighbourhood, and are chosen in groups
of k for tournaments.

Individuals in this particular
simulation of GPRobots are arranged on a one dimen-
sional toroidal grid, in a manner similar to (Collins
92). Rather arbitrarily it was decided to implement
overlapping demes each with three individuals. This

2While this is not strictly true in the case of the Pris-
oner’s Dilemma game, it is the modelling of games such
as those mentioned in the introduction that we are most
concerned with.

*D’haeseleer and Bluming’s work also used the problem
of robots fighting each other in an arena, but they were
more concerned with the effects of locality than the evolu-
tion of interesting behaviours as is the case in this paper



resulted in each robot being involved in three fights,
with each robot in a fight being awarded one point for
each robot killed while they are still alive. Their fitness
is the sum of their points over three games. A robot
who comes last in all three fights amasses three points.

Crossover 1s implemented by using these demes, in
a similar manner to (Collins 92), except, that if the
individual to be replaced has the highest fitness in the
deme, then that individual is instead selected for re-
production.

The reader should be aware that all implementation
decisions, such as those involving the spatial structure,
points allocation, tournament size etc. are peculiar
to this attempt to evolve interesting robots. Other
approaches could yield vastly different results. In fact,
it is the hope of the author that other implementations
be examined, and it would cause neither surprise nor
disappointment if a different implementation yielded
superior results.

Preliminary Results

Normally, a GP run reports a best-of-run individual
who performed better than any other, and when re-
porting on results, one can often quote statistics show-
ing the percentage of successful runs / average gen-
erations to success etc. Unfortunately, the success or
otherwise of a run in this case isn’t quite so clear-cut.
Firstly, there 1s no absolute “solution” to the problem.
The second problem is that the performance of an in-
dividual can be measured only relative to nearby indi-
viduals. Both these problems were also encountered by
(D’haeseleer 94), mentioned above, and their solution
was to test potential best-of-run individuals against a
group of handcoded individuals.

In this paper, we would rather not rely on the abil-
ity of the implementor to gauge the quality of the re-
sults, and so the discussion below will concentrate on
the more interesting individuals who appeared and the
strategies they adopted. These individuals were cho-
sen for their longevity, as an individual who was re-
produced several times is clearly employing some sort
useful strategy. Individuals who were rated “interest-
ing” using this criterion were then set fighting against
each other, and in this way, a best-of-run individual
was discovered.

Sloths, Triggers and Spinners

There were two surprising aspects of the results. The
first was how few of the successful individuals ever
utilised the AHEA or REV commands, most indi-
viduals being content to remain stationary, turning in
one postion whilst searching for opponents. The sec-
ond surprise was how many of those robots selected as
interesting actually did nothing. The robots had avail-
able to them a number of mathematical functions, and
1t wasn’t uncommon for these individuals to consist of
a simple mathematical expression, such as

(+(*52)1)

These individuals, dubbed Sloths, often appeared near
each other in the population structure, very often on
either side of another common individual, which we
name 7rigger, who simply fires every turn. Unless a
Trigger was very fortunate, it usually used up all its
energy firing and died quite early, while the Sloths
simply sat out the hostilities until the time limit for
a fight ran out. The Sloths then, operate as a form of
parasite, living off the behaviour of the Triggers, who,
acting as “hosts” of sorts, provided them with an easy
life.

It is reasonable to assume that with a bigger deme
size, Sloths would find it more difficult to find the right
conditions to allow their survival. For the sake of con-
sistency though, this paper will not try an experiment
with a larger deme.

Rather reassuringly, another type of individual also
appeared, who, while not quite as numerous as the
Sloths, was more successful. These individuals are
known as Spinners. The common trait in Spinners
is that they turn slowly, scanning the grid as they do
so, until they see another robot. Upon seeing another
robot they fire continuously until the robot is either
dead or runs away. These individuals are normally of
the form

(IF-See (FIRE) (LEFT 2))

Spinners represented the best strategy, and, in di-
rect competition with a Sloth, a Spinner would almost
always win. In certain cases, however, in a competition
involving two Spinners and one Sloth, the Sloth won
the competition because the two Spinners found and
attacked each other.

The best of run

To find the best-of-run individual, several (up to ten)
individuals were selected from a run based solely on
their longevity. These ten were then pitted against
each other in another tournament, with the winner of
that being declared the best-of-run individual. This
then automated the selection of such an individual
from a run.

The best individual to appear was called a Smart
Spinner and was as follows

(IF-See (FIRE) (LEFT (IF-Missile (bear-
ing_of_enemy) 5)))

Like its ancestor, the Smart Spinner turns slowly,
looking for enemies, but, if the Smart Spinner is hit by
a missile, 1t turns to face the offender. In contrast, the
ordinary Spinners do not react to being shot, instead
continue turning and searching.

It is suggested that different approaches to evolving
robots could be compared in a similar manner, with
perhaps the best two or three from each approach being
entered into a tournament with each other.

Only a small, albeit representative, selection of in-
dividuals are presented above. Other individuals also



appeared, such as Panickers who turned and fled upon
being shot or involved in a collision, or Corners, in-
dividuals who backed themselves into a wall or corner
and tried to wait out the fight there.

GPTeams - Evolving event driven
programs

A relatively new programming paradigm is FEwvent
Drwen Programming, used extensively when program-
ming in GUI environments such as Xview, Motif etc.
Events are stimuli which cause the program to take
notice, and such notice is given by an event handler.
Events may be a user clicking a button on a menu, a
user closing a window or anything else that may affect
the operation of a program.

Generally, a function, a callback function, is writ-
ten for each event and then registered with the event
handler. As events occur the appropriate function is
called. In the case of two events happening at once,
or an event occurring while the callback function of
another event is executing, the events may be queued,
or, in the case of prioritised events, the highest priority
event may interrupt other events.

As mentioned in the introduction, event driven pro-
gramming is really interrupt driven programming at a
higher level. As such, there are an enormous number
of real world applications, from washing machines to
microproccesors, that can utilise this type of program-
ming. It is suggested that Genetic Programming is
suitable for the automatic generation of event driven
programs, and the remainder of the paper shows how,
using a combination of competition, co-evolution and
co-operation, GP can evolve event driven programs.

Evolving Events

Multiple co-operating populations have been used be-
fore (Ryan 94a) (Ryan 94b) (Ryan 95) (Siegel 94), and
in this case, two populations are used. One popula-
tion contains individuals who will be used as callback
functions(CBs), while the other will contain the main
programs(MPs) which decide when it is appropriate
to call functions provided by the CBs. Each MP is
made up of a number of event registers which register
an event with the event handler. Each registered event
is registered as follows:

(Reg_Event Condition Priority Code)

Where Condition is the condition under which the call-
back function is to be executed, Priorityis the priority
of this event, and Code is a pointer to the callback
function.

Evolving event driven programming involves both
competition and co-evolution. Individuals from MP
compete with each other by organising individuals
from CB into co-operating teams. The co-operating
teams then compete against each other. FEach MP
robot contains pointers into the CB population to call
individuals when appropriate. The individual pointed

Event No.
Priority
sleiele
Pointers to
Callback fns
Figure 1 : Structure of an individual in the

MP population

to by Main_loop is called repeatedly until interrupted
(assuming they have a higher priority) by one of the
other functions.

Choosing Events

Although it would be possible, and indeed, more use-
ful, to allow evolution to choose under what conditions
an event should be registered, this paper will only con-
sider the most simple model, which consists of a fixed
set of events. In this case, every program consists of
four registered events, and it is the responsibility of
the event handler to monitor the robot’s sensors and
call the corresponding functions. For the purposes of
this paper, the MP individuals contain information for
four events which are called under the following cir-
cumstances.

e The robot is involved in a collision (Cld_event)
e The robot is struck by a missile (Hit_event)

e The robot sees another robot (See_event)

e No other event is active (Ord_event)

An MP individual contains a priority level for each
of these events, as well as a pointer into the CB popula-
tion to the individual to be used for that event. When
a robot’s sensor registers information, such as being
struck by a missile, this information is retained for a
number of time steps before being set to a blank value.
An event can only interrupt another one if it has a
higher priority, and if an event is interrupted its call-
back function will only be called again if the condition
that originally caused it still holds.

The individuals in the MP population were arranged
in a similar demetic structure to the individuals in the
original experiments, and fights / reproduction were
arranged in the same way. The individuals in the
CB population were also put into a demetic structure,
which made it a trivial task for the MP population to
keep track of what individuals they were pointing at.
Again, crossover and reproduction was implemented
using a deme size of three.



Each fight was conducted as follows:
Select MP robots to fight.
Using CBs pointed to by MPs, resolve conflict.

Award points to MPs in the same way as before.

Each CB used by an MP gets the same reward. The
rewards given are as follows:

1. +3 for each CB.

2. 41 for each CB.

3. -1 for each CB.

It is possible for a CB individual to be pointed at by
two or more MP individuals in the same fight, or even
used for several events by the same MP individual, so

points were awarded for each time a CB individual was
pointed at.

Early Results

The initial results for this simulation were quite dis-
appointing, with the more successful members of the
MP population using only one or two callback func-
tions in a sensible manner, i.e. an individual fired if
it saw another one, but did nothing if it was hit itself,
or if involved in a collision. It was very rare that an
individual was produced who made proper use of the
event structure.

Another disappointment was the difficulty encoun-
tered when comparing the individuals - sometimes an
individual who reacted appropriately upon seeing an-
other robot performed better than an individual who
took evasive action upon being shot, but other times
it did not.

There were two reasons for these disappointing re-
sults. Firstly, the MP population became very stable
very quickly, so newly created individuals in the CB
population often didn’t have an MP pointing at them,
and so didn’t even get tested. The second reason was
the CB population trying to maintain a balance of rad-
ically different individuals - crossover between an indi-
vidual successfully used as callback function for an MP
being shot and an individual called when an MP didn’t
have any other active events often produced unviable
individuals.

The solution to both of these problems was to divide
up the CB population into several sub populations, one
for each event.

Multiple Callback Populations

This decision resulted in four CB populations. An MP
individual now pointed at one individual in each pop-
ulation. Again, it was unusual for an MP individual
to be produced that used the event structure properly,
most using one or two good events, but pointing at less
useful ones also.

One distinct advantage of this method, however, is
that one could select good performing individuals from
the CB populations in a similar manner to the original

simulation - in this case there was no doubt which in-
dividuals were a good choice for each event. Like the
original simulation, GP produced a number of differ-
ent, but equally interesting individuals for each event.
Individuals for the See_event for example, ranged from
the aggressive

(PN2 (REV (FIRE)) (FIRE))

(IF-Collide (REV 2) (FIRE))

to the passive, who shied away from any contact with
other robots

(PN2 (REV 5) (RT 1))

to the cautious, who only fired if it was absolutely
necessary

(IF-Collide* (FIRE) 1)

Similarly, each event produced individuals who
adopted interesting and different approaches. For the
Cld_event individuals either moved away from the col-
lision very quickly, turned to face the offending indi-
vidual, or simply started firing. Hit_event produced in-
dividuals remarkably similar to Cld_event, but, as both
these events cover somewhat similar circumstances this
was not too surprising.

The final event is the Ord_event and these individ-
uals fell into two categories noted earlier - Sloths and
Spinners. When no other events were called, individ-
uals either scanned the arena slowly, or simply waited
for something to happen.

It should be noted that only the successful individ-
uals are reported in this paper. Other individuals also
appeared, who would warrant interest because of their
unusual and often amusing tactics - individuals who
tried to ram others for example, or those turned their
back on individuals who shot them. Due to the pres-
sures of space, however, this paper will only concern
itself with viable and useful individuals.

The problems of skewed fitness measures still ex-
isted, however, with several individuals not even be-
ing tested. Again, this was due to no MP individuals
pointing at them. Other individual had an over abun-
dance of MP individuals pointing at them even though
they themselves didn’t do much to help that individ-
ual. These parasitic individuals tended to take over
large portions of the population and often survived
from Generation 0 until the end of the run. One possi-
ble solution to this is to calculate the fitness of the CB
individuals based on their average performance over all
the fights they are involved in, which would reduce an
individual scoring highly by simply being involved in
a lot of fights.

* Although it may appear strange that the callback func-
tion for the See_eventinvestigates a sensor associated with
another event, this often occured, particularly in the case
of a high-priority event.



Digesting the results

At this point we have a number of genuinely useful in-
dividuals for each event, but no clear indication as to
how they should be combined, or what priority should
be associated with each event. As mentioned above,
the MP individuals from the runs that produced these
individuals, although serving to provide a fitness mea-
sure, are not particularly useful now.

The solution to this problem is to run the simula-
tion a second time, in a slightly modified form. This
time, the CB populations are seeded with individuals
produced in the first run, and no crossover takes place
in those populations. This time so, only the MP pop-
ulation is evolving, and “interesting” individuals from
these simulations would be candidates for the best-of-
run individual, which can be selected in the same man-
ner as before.

There was an enormous variety of individuals pro-
duced who were more than able to hold their own in
the arena. Most individuals reacted in some way to
each event, the most common being as follows :

e See_event : Fire or run away.

e Hit_event : Turn to face opponent, turn slowly or
run away.

e Cld_event : Turn to face opponent, turn slowly or
run away.

e Ord_event : Scan the arena, run around or do noth-
ing.

The best individual to appear was very simple, but
quite agressive, and, once it found an opponent would
not stop firing until the opponent either got out of
the way or died. This robot did not win every fight
it was involved in, but in the tournament at the end
of the run it performed the best. In the fights it did
lose, it usually was because it backed into a wall, and,
while being shot by some individual it couldn’t see,
kept trying to reverse.

(Reg_event See_event 68 (FIRE) )
(Reg_event Cld_event 37 (RIGHT 5) )
(Reg_event Hit_event 23 (REV 1) )
(Reg_event Ord_event 1 (RIGHT 3) )

A number of other individuals also appeared, using
various combinations of the above strategies, with dif-
ferent priorities. Few of the successful robots did noth-
ing when there were no events happening, and those
that did were often struck several times before they re-
acted to an attack. The next best strategy was to shoot
only when not under attack. Individuals adopting this
strategy had a low priority for See_event, choosing in-
stead to take evasive action if they came under attack.

Best-of-Paper Results

The big question of course, is what is the best indi-
vidual produced by any of the simulations? In the

end it came down to a competition between those in
Appendix A, the best three individuals that appeared
in each simulation being chosen to fight in a similar
demetic tournament to those used in the simulations.
The best four individuals (three of whom were event-
driven individuals) were then put into a round-robin
tournament together, with the eventual winner being
the individual described above.

Is this individual the best possible? Probably not.
There is an enormous amount of tweaking that can
be done, and a huge variety of other approaches to
evolving an individual - from varying the deme size, to
the fight size; to the kind of functions available to the
robots - the list i1s endless.

Discussion and Future Work

This paper presents a new benchmark problem for GP.
Unlike many benchmarks, there is no known optimal
solution, and, because the evolved controller program
is abstracted away from the robot to be controlled,
there are a huge number of ways to approach the prob-
lem. Every part of the problem, from the functions
and terminals available, to the tournament size, to
crossover implementations, can be changed without af-
fecting the main problem - to produce interesting and
viable behaviours - in any way.

Due to the nature of the problem, it is easy to com-
pare two (or more) different solutions against each
other, to test the performance of GP under varying
conditions. It is even possible that sometime in the
future there could be a GPRobot tournament, where
individuals bred under different conditions could be
tested against each other. Such is the particularly open
nature of those in the GP community, 1t is hoped that
if such a tournament does take place, that, unlike com-
petitions in games such as those mentioned earlier, all
information about a robot be made available, including
code and the method used to produce the individual.
In the event of such a tournament taking place, it is
likely that the individual in the previous section can be
bettered - and that is the whole point of this bench-
mark, that individuals from various approaches can be
directly compared, or even watched on screen.

This paper also introduces the notion of teams
of specialist individuals in GP and the evolution of
event driven programs, where teams of individuals co-
operate with each other in competition with other
teams. This method produced the best individual
found, and the area warrants further investigation, par-
ticularly in the areas of evolving the conditions un-
der which an event is deemed to have occured, which
would allow the system to become truly automatic. Po-
tentially, event driven programming has an enormous
number of applications area. This paper has served
to show how programs requiring any number of events
may be evolved.

This is very much a report on work in progress, and
little effort was made to optimize any part of the sim-



ulations. It was clear that some degree of mutation is
needed in the MP population to prevent new CB indi-
viduals from being ignored. Also, as noted above, cal-
culating the CB individuals’ fitness as average rather
than a sum could well reduce any skewed measure-
ments.

The event driven approach can even be used in ap-
plications that don’t employ events, Appendix B shows
some individuals rewritten in this way. The only dif-
ference in individuals rewritten is that they no longer
employ pre-emption.

Appendix A - Candidates for the
Best-Of-Paper Individual

The following individuals were considered when choos-
ing the Best-of-Paper individual.

From the initial simulations:

Spinners :
¢ (IF-See (FIRE) (LEFT 2))

¢ (IF-See (FIRE) (LEFT (IF-Missile (bear-
ing of_enemy) 5)))

Panicker
e (IF-Hit (AHEA (RIGHT 5)) 1)
FEvent Driven Individuals :

¢ (Reg_event See_event 96

(FIRE) )

(Reg_event Cld_event 73
(PN3 (LEFT 5) (RIGHT 5) (AHEA (RIGHT
5)))

(Reg_event Hit_event 23
(AHEA (LEFT (AHEA (LEFT 2) ))))

(Reg_event Ord_event 1
(LEFT 3) )

¢ (Reg_event See_event 68

(FIRE) )

(Reg_event Cld_event 37
(RIGHT 5) )

(Reg_event Hit_event 23
(REV 1))

(Reg_event Ord_event 1
(RIGHT 3) )

¢ (Reg_event See_event 34

(PN3 (REV (FIRE) ) (FIRE) (REV 1) ) )

(Reg_event Cld_event 23
(RIGHT 3) )

(Reg_event Hit_event 82
(REV 1))

(Reg_event Ord_event 17
(RIGHT 3) )

Appendix B - Event Driven individuals
rewritten without events

The Event Driven individuals shown in Appendix A are

rewritten below. Functionally, they are almost identi-

cal in either form, in that the priorities remain intact,

but 1t is no longer possible for pre-emption to take

place.

(IF-See (FIRE)
(IF-Cld (PN3 (LEFT 5) (RIGHT 5) (AHEA
(RIGHT 5) ) )
(IF-Missile (AHEA (LEFT (AHEA (LEFT

2))))
(LEFT 3) ) ) )

(IF-See (FIRE)
(IF-Cld (RIGHT 5)
(IF-Missile (REV 1)
(RIGHT 3) ) ) )

(IF-Missile (REV 1)
(IF-Hit (PN3 (REV (FIRE)) (FIRE) (REV
1)
(IF-Cld (RIGHT 3)
(RIGHT 3) ) ) )

References

Smith, R.E. 1992 : Studies in Artificial Evolution.
PhD Diss., Dept. of Computer Science, UCLA.

Dewdney, A. (1984) : In a game called core war hostile
programs engage in a battle of bits. Scientific Amer-

1can 250:14-23.

D’haeseleer, P. and Bluming, J. : Effects of Locality in
Individual and Population Evolution. In Advances in
Genetic Programming. Ed. K. Kinnear Jr. Cambridge
: MIT Press

Hillis, D. (1991) : Co-evolving parasites improve sim-
ulated evolution as an optimization procedure. In Ar-
tificial Life IT Ed. C. G. Langton. Addison-Wesley.
Jannink, J. (1994) : Cracking and Co-evolving Ran-
domizers. In Advances in Genetic Programming.
Cambridge : MIT Press

Koza, J. (1992) : Genetic Programming. Cambridge :
M.I.T. Press.



Timin, M. : Robot Auto Racing Swvmulation
available through anonymous FTP from mag-
donaz.mcaffee.com

Reynolds, C. : Evolution of Obstacle Behaviour: Us-
ing Noise to Promote Robost Solutions. In Advances
in Genetic Programming. Cambridge : MIT Press

Reynolds, C. : Competition, Coevolution and the
Game of Tag. Forthcoming.

Rognlie, R. (1993) : C++Robots available through
anonymous FTP from ftp.netcom.com.
Ryan, C. (1994) : Pygmies and Civil Servants. In

Advances in Genetic Programming. Ed. K. Kinnear
Jr. Cambridge : MIT Press

Ryan, C. (1994) : Racial Harmony in Genetic Algo-
rithms. Forthcoming.

Ryan, C. (1995) : Racial Harmony and Function Op-
timization in Genetic Algorithms - The Races Genetic
Algorithm. Forthcoming.

Schick, B. (1994) : Robowars available through anony-
mous FTP from psycfrnd.interaccess.com.

Siegel, E. (1994) : Competitively Evolving Decision
Treees Against Fixed Traiing Cases for Natural Lan-
guage Processing. In Advances in Genetic Program-
ming. Cambridge : MIT Press



