
GPRobots and GPTeams - Competition, co-evolution andco-operation in Genetic ProgrammingConor RyanComputer Science Dept.University College CorkIrelandAbstractThis paper presents two simulations, GPRobots andGPTeams. GPRobots is a new, competition ori-ented benchmark for GP, where control programs areevolved for robots. These are then executed in a simu-lated real time environment, where execution time forinstructions varies with instruction complexity. Thecompetitive nature of GPRobots allows the directcomparison of di�erent evolutionary approaches, us-ing two or more best-of-run individuals from varioussimulations.GPTeams, the second simulation in this paper, intro-duces the idea of using GP to produce event drivenprograms, using a novel technique where a popula-tion of main control programs are co-evolved with thecallback functions they use. The callback functions,although competing against each other on an evolu-tionary scale, co-operate in teams organised by themain program at a local level.The experiments produce a wide array of behavioursfrom individuals, from paci�st to violent, from para-sitic to general. IntroductionGames of competition are often used as a test ofprogramming skill (Dewdney 84)(Rognlie 93)(Timin95)(Schick 94). These comparisons usually take theform of a competition between di�erent programmerswho try to outwit each other in the game. Often, theinner workings of the programs entered into these com-petitions are kept secret and the source is not pub-licly available. Under certain circumstances an opti-mal solution is known, as in the well known Prisoner'sDilemma game, so it is not really useful to directlycompare di�erent development methodologies. Thispaper develops a similar test for GP, where individualsproduced by di�erent evolutionary approaches may betested against each other.Competition, particularly in the form of co-evolution, (Siegel 94) (Koza 92) (Jannink 94) in GPis not uncommon, although competition between in-dividuals in a single population has also been investi-gated (Reynolds 94a). Invariably, these are one-on-one

competitions1, but GPRobots allows more than two in-dividuals in a tournament, and, as points are awardedfor longevity relative to the others in a tournament,it is possible for a number of di�erent strategies toemerge, e.g. a paci�st robot who avoids combat maysurvive longer than a very aggresive robot who con-stantly attacks.In scenarios where individuals are pitted againsteach other, usually a move is determined for each, andthen executed, implying that each move takes the samelength of time to execute. GPRobots di�ers from this,in that all instructions take an argument, e.g. how farto move forward, how many degrees to turn left etc..We share the view of (Reynolds 94b) that more com-plex or longer moves should take more than one timeunit to execute.A relatively new programming paradigm is that ofevent driven programming. Event driven programmingdi�ers from most paradigms in that instead of writinga sequential program, a programmer writes functionsto deal with particular events that may (or may not)happen during the running of a program. Each func-tion is registered with an event handler which callseach function as appropriate. It is possible to priori-tise these events, so an event with a higher prioritymay interrupt a lower priority event.In practice, event driven programming is really inter-rupt driven programming at a user rather than hard-ware level, in that events can interrupt the normal owof a program, and, in some cases, pre-empt each other.GPRobots TournamentsMost previous work with GP involving competition be-tween individuals has been concerned with one-on-onecompetitions. GPRobots conducts its tournaments be-tween two or more robots - three robots in the simu-lations presented here. Robots score points for theamount of other robots killed while they are alive. The1Although some researchers, notably (Siegel 94) and(Hillis 91), pit a single individual from one populationagainst several from another, each individual from the sec-ond population �ghts the �rst individual singly.

arena in which tournaments take place measures 75x20squares, with robots taking up 3x3 squares.Each robot starts with 100 energy units. Units arelost by shooting at other robots, by being hit by an-other robot's shot, or by crashing into another robot.Energy is not lost by colliding with a wall of the arena.The term round is used to denote one time step,and the term turn to denote the action a robot wantsto take. As will be seen, some turns require multiplerounds to achieve.Robot ActionsAs stated above, it is common practice when evolv-ing control programs with GP (such as the well knownArti�cial Ant problem(Koza 92)), that the actions in-volve the robot moving ahead one square, going backone square, turning left 90� etc. To add realism to thesimulation, robots in GPRobots are allowed turn fac-ing any angle between 0� and 360�, and that robotswho are travelling forward several squares should ac-celerate.Due to pressures of space, and to allow proper dis-cussion of the results, only a very brief account of theworkings of the robots will be given.The most comprehensive work in this area with GPhas been that of Reynolds(Reynolds 94a) and his is theonly work to permit robots to be continuous in orien-tation. GPRobots adopts this approach, and also as-sumes that robots accelerate if they are travelling con-tinuosly in the same direction. All but one of the robotinstructions are of the form: (action argument), andall return a value indicative of the success or otherwiseof the instruction.Robots may turn left or right, and may moveahead or reverse, and, of course, may �re. Left andright take an argument of degrees to turn, while aheadand reverse the number of squares to move. The �reinstruction doesn't take any arguments.Robot sensorsRobots have available a number of sensors to themwhich provide information about the arena. These in-clude a sensor which reports a robot's involvement ina collision and a sensor which reports the robot beingstruck by a missile. These sensors return the numberof degrees which the robot must turn to face eitherthe other robot involved in the collision or the robotwho �red the o�ending missile. Robots can see otherrobots who are directly in their line of vision, and candetermine how far away they are.For the purpose of evolving robots, conditional com-mands which directly access the contents of the sensorssuch as (IF-Collide x y) could be designed. It is theview of the author that functions such as these are notan integral part of the robot structure, no more thansay, a mathematical function would be, and for thisreason, are not considered to be \hardwired" into therobot.

This is not to say that the programs controlling therobot cannot use these, or, indeed, any other reason-able functions that an implementor wishes to use.Fitness FunctionOne of the reasons that games such as this are so pop-ular as a test of programming skill and strategy is thatthere is usually no obvious optimal strategy2. Whilethis makes the benchmark more interesting and use-ful, it complicates the �tness function when it comesto evolution.One approach is to hand code a few expert robots,and use these to test the best-individual produced bya GP run(D'haeseleer 94)3. However, this would seemto suggest that the ability of GP to produce individu-als is determined to some extent on the ability of theimplementor to produce hand coded solutions to thevery problem that is to be solved, a situation we wouldrather avoid.Given that there is no obvious �tness measurement,the only other choice is to measure an individual's�tness relative to other individuals. Problems suchas this involving competition between individuals lendthemselves to this sort of measurement to some degree.Only to some degree because, although it is easy tocompare k individuals, where k is the number involvedin a tournament, it is another matter to compare Nindividuals, where N is the size of the population.A variety of these methods were reported on by(Reynolds 94b) and are summarized in the table be-low.Competition Matches per ind.New versus all n� 1New versus several kKnockout tournament log2 nNew versus best 1New versus new 1New versus neighbour 1This paper uses a method which employs both theNew versus several (Reynolds 94b) and the New versusneighbour (D'haeseleer 94). Individuals live in a onedimensional neighbourhood, and are chosen in groupsof k for tournaments.Individuals in this particularsimulation of GPRobots are arranged on a one dimen-sional toroidal grid, in a manner similar to (Collins92). Rather arbitrarily it was decided to implementoverlapping demes each with three individuals. This2While this is not strictly true in the case of the Pris-oner's Dilemma game, it is the modelling of games suchas those mentioned in the introduction that we are mostconcerned with.3D'haeseleer and Bluming's work also used the problemof robots �ghting each other in an arena, but they weremore concerned with the e�ects of locality than the evolu-tion of interesting behaviours as is the case in this paper

resulted in each robot being involved in three �ghts,with each robot in a �ght being awarded one point foreach robot killed while they are still alive. Their �tnessis the sum of their points over three games. A robotwho comes last in all three �ghts amasses three points.Crossover is implemented by using these demes, ina similar manner to (Collins 92), except, that if theindividual to be replaced has the highest �tness in thedeme, then that individual is instead selected for re-production.The reader should be aware that all implementationdecisions, such as those involving the spatial structure,points allocation, tournament size etc. are peculiarto this attempt to evolve interesting robots. Otherapproaches could yield vastly di�erent results. In fact,it is the hope of the author that other implementationsbe examined, and it would cause neither surprise nordisappointment if a di�erent implementation yieldedsuperior results.Preliminary ResultsNormally, a GP run reports a best-of-run individualwho performed better than any other, and when re-porting on results, one can often quote statistics show-ing the percentage of successful runs / average gen-erations to success etc. Unfortunately, the success orotherwise of a run in this case isn't quite so clear-cut.Firstly, there is no absolute \solution" to the problem.The second problem is that the performance of an in-dividual can be measured only relative to nearby indi-viduals. Both these problems were also encountered by(D'haeseleer 94), mentioned above, and their solutionwas to test potential best-of-run individuals against agroup of handcoded individuals.In this paper, we would rather not rely on the abil-ity of the implementor to gauge the quality of the re-sults, and so the discussion below will concentrate onthe more interesting individuals who appeared and thestrategies they adopted. These individuals were cho-sen for their longevity, as an individual who was re-produced several times is clearly employing some sortuseful strategy. Individuals who were rated \interest-ing" using this criterion were then set �ghting againsteach other, and in this way, a best-of-run individualwas discovered.Sloths, Triggers and SpinnersThere were two surprising aspects of the results. The�rst was how few of the successful individuals everutilised the AHEA or REV commands, most indi-viduals being content to remain stationary, turning inone postion whilst searching for opponents. The sec-ond surprise was how many of those robots selected asinteresting actually did nothing. The robots had avail-able to them a number of mathematical functions, andit wasn't uncommon for these individuals to consist ofa simple mathematical expression, such as(+ (* 5 2) 1)

These individuals, dubbed Sloths, often appeared neareach other in the population structure, very often oneither side of another common individual, which wename Trigger, who simply �res every turn. Unless aTrigger was very fortunate, it usually used up all itsenergy �ring and died quite early, while the Slothssimply sat out the hostilities until the time limit fora �ght ran out. The Sloths then, operate as a form ofparasite, living o� the behaviour of the Triggers, who,acting as \hosts" of sorts, provided them with an easylife.It is reasonable to assume that with a bigger demesize, Sloths would �nd it more di�cult to �nd the rightconditions to allow their survival. For the sake of con-sistency though, this paper will not try an experimentwith a larger deme.Rather reassuringly, another type of individual alsoappeared, who, while not quite as numerous as theSloths, was more successful. These individuals areknown as Spinners. The common trait in Spinnersis that they turn slowly, scanning the grid as they doso, until they see another robot. Upon seeing anotherrobot they �re continuously until the robot is eitherdead or runs away. These individuals are normally ofthe form (IF-See (FIRE) (LEFT 2))Spinners represented the best strategy, and, in di-rect competition with a Sloth, a Spinner would almostalways win. In certain cases, however, in a competitioninvolving two Spinners and one Sloth, the Sloth wonthe competition because the two Spinners found andattacked each other.The best of runTo �nd the best-of-run individual, several (up to ten)individuals were selected from a run based solely ontheir longevity. These ten were then pitted againsteach other in another tournament, with the winner ofthat being declared the best-of-run individual. Thisthen automated the selection of such an individualfrom a run.The best individual to appear was called a SmartSpinner and was as follows(IF-See (FIRE) (LEFT (IF-Missile (bear-ing of enemy) 5)))Like its ancestor, the Smart Spinner turns slowly,looking for enemies, but, if the Smart Spinner is hit bya missile, it turns to face the o�ender. In contrast, theordinary Spinners do not react to being shot, insteadcontinue turning and searching.It is suggested that di�erent approaches to evolvingrobots could be compared in a similar manner, withperhaps the best two or three from each approach beingentered into a tournament with each other.Only a small, albeit representative, selection of in-dividuals are presented above. Other individuals also

appeared, such as Panickers who turned and ed uponbeing shot or involved in a collision, or Corners, in-dividuals who backed themselves into a wall or cornerand tried to wait out the �ght there.GPTeams - Evolving event drivenprogramsA relatively new programming paradigm is EventDriven Programming, used extensively when program-ming in GUI environments such as Xview, Motif etc.Events are stimuli which cause the program to takenotice, and such notice is given by an event handler.Events may be a user clicking a button on a menu, auser closing a window or anything else that may a�ectthe operation of a program.Generally, a function, a callback function, is writ-ten for each event and then registered with the eventhandler. As events occur the appropriate function iscalled. In the case of two events happening at once,or an event occurring while the callback function ofanother event is executing, the events may be queued,or, in the case of prioritised events, the highest priorityevent may interrupt other events.As mentioned in the introduction, event driven pro-gramming is really interrupt driven programming at ahigher level. As such, there are an enormous numberof real world applications, from washing machines tomicroproccesors, that can utilise this type of program-ming. It is suggested that Genetic Programming issuitable for the automatic generation of event drivenprograms, and the remainder of the paper shows how,using a combination of competition, co-evolution andco-operation, GP can evolve event driven programs.Evolving EventsMultiple co-operating populations have been used be-fore (Ryan 94a) (Ryan 94b) (Ryan 95) (Siegel 94), andin this case, two populations are used. One popula-tion contains individuals who will be used as callbackfunctions(CBs), while the other will contain the mainprograms(MPs) which decide when it is appropriateto call functions provided by the CBs. Each MP ismade up of a number of event registers which registeran event with the event handler. Each registered eventis registered as follows:(Reg Event Condition Priority Code)Where Condition is the condition under which the call-back function is to be executed, Priority is the priorityof this event, and Code is a pointer to the callbackfunction.Evolving event driven programming involves bothcompetition and co-evolution. Individuals from MPcompete with each other by organising individualsfrom CB into co-operating teams. The co-operatingteams then compete against each other. Each MProbot contains pointers into the CB population to callindividuals when appropriate. The individual pointed

Pointers to

Callback fns

Event No.

PriorityFigure 1 : Structure of an individual in theMP populationto by Main loop is called repeatedly until interrupted(assuming they have a higher priority) by one of theother functions.Choosing EventsAlthough it would be possible, and indeed, more use-ful, to allow evolution to choose under what conditionsan event should be registered, this paper will only con-sider the most simple model, which consists of a �xedset of events. In this case, every program consists offour registered events, and it is the responsibility ofthe event handler to monitor the robot's sensors andcall the corresponding functions. For the purposes ofthis paper, the MP individuals contain information forfour events which are called under the following cir-cumstances.� The robot is involved in a collision (Cld event)� The robot is struck by a missile (Hit event)� The robot sees another robot (See event)� No other event is active (Ord event)An MP individual contains a priority level for eachof these events, as well as a pointer into the CB popula-tion to the individual to be used for that event. Whena robot's sensor registers information, such as beingstruck by a missile, this information is retained for anumber of time steps before being set to a blank value.An event can only interrupt another one if it has ahigher priority, and if an event is interrupted its call-back function will only be called again if the conditionthat originally caused it still holds.The individuals in the MP population were arrangedin a similar demetic structure to the individuals in theoriginal experiments, and �ghts / reproduction werearranged in the same way. The individuals in theCB population were also put into a demetic structure,which made it a trivial task for the MP population tokeep track of what individuals they were pointing at.Again, crossover and reproduction was implementedusing a deme size of three.

Each �ght was conducted as follows:� Select MP robots to �ght.� Using CBs pointed to by MPs, resolve conict.� Award points to MPs in the same way as before.� Each CB used by an MP gets the same reward. Therewards given are as follows:1. +3 for each CB.2. +1 for each CB.3. -1 for each CB.It is possible for a CB individual to be pointed at bytwo or more MP individuals in the same �ght, or evenused for several events by the same MP individual, sopoints were awarded for each time a CB individual waspointed at.Early ResultsThe initial results for this simulation were quite dis-appointing, with the more successful members of theMP population using only one or two callback func-tions in a sensible manner, i.e. an individual �red ifit saw another one, but did nothing if it was hit itself,or if involved in a collision. It was very rare that anindividual was produced who made proper use of theevent structure.Another disappointment was the di�culty encoun-tered when comparing the individuals - sometimes anindividual who reacted appropriately upon seeing an-other robot performed better than an individual whotook evasive action upon being shot, but other timesit did not.There were two reasons for these disappointing re-sults. Firstly, the MP population became very stablevery quickly, so newly created individuals in the CBpopulation often didn't have an MP pointing at them,and so didn't even get tested. The second reason wasthe CB population trying to maintain a balance of rad-ically di�erent individuals - crossover between an indi-vidual successfully used as callback function for an MPbeing shot and an individual called when an MP didn'thave any other active events often produced unviableindividuals.The solution to both of these problems was to divideup the CB population into several sub populations, onefor each event.Multiple Callback PopulationsThis decision resulted in four CB populations. An MPindividual now pointed at one individual in each pop-ulation. Again, it was unusual for an MP individualto be produced that used the event structure properly,most using one or two good events, but pointing at lessuseful ones also.One distinct advantage of this method, however, isthat one could select good performing individuals fromthe CB populations in a similar manner to the original

simulation - in this case there was no doubt which in-dividuals were a good choice for each event. Like theoriginal simulation, GP produced a number of di�er-ent, but equally interesting individuals for each event.Individuals for the See event for example, ranged fromthe aggressive(PN2 (REV (FIRE)) (FIRE))or(IF-Collide (REV 2) (FIRE))to the passive, who shied away fromany contact withother robots (PN2 (REV 5) (RT 1))to the cautious, who only �red if it was absolutelynecessary (IF-Collide4 (FIRE) 1)Similarly, each event produced individuals whoadopted interesting and di�erent approaches. For theCld event individuals either moved away from the col-lision very quickly, turned to face the o�ending indi-vidual, or simply started �ring. Hit event produced in-dividuals remarkably similar to Cld event, but, as boththese events cover somewhat similar circumstances thiswas not too surprising.The �nal event is the Ord event and these individ-uals fell into two categories noted earlier - Sloths andSpinners. When no other events were called, individ-uals either scanned the arena slowly, or simply waitedfor something to happen.It should be noted that only the successful individ-uals are reported in this paper. Other individuals alsoappeared, who would warrant interest because of theirunusual and often amusing tactics - individuals whotried to ram others for example, or those turned theirback on individuals who shot them. Due to the pres-sures of space, however, this paper will only concernitself with viable and useful individuals.The problems of skewed �tness measures still ex-isted, however, with several individuals not even be-ing tested. Again, this was due to no MP individualspointing at them. Other individual had an over abun-dance of MP individuals pointing at them even thoughthey themselves didn't do much to help that individ-ual. These parasitic individuals tended to take overlarge portions of the population and often survivedfrom Generation 0 until the end of the run. One possi-ble solution to this is to calculate the �tness of the CBindividuals based on their average performance over allthe �ghts they are involved in, which would reduce anindividual scoring highly by simply being involved ina lot of �ghts.4Although it may appear strange that the callback func-tion for the See event investigates a sensor associated withanother event, this often occured, particularly in the caseof a high-priority event.

Digesting the resultsAt this point we have a number of genuinely useful in-dividuals for each event, but no clear indication as tohow they should be combined, or what priority shouldbe associated with each event. As mentioned above,the MP individuals from the runs that produced theseindividuals, although serving to provide a �tness mea-sure, are not particularly useful now.The solution to this problem is to run the simula-tion a second time, in a slightly modi�ed form. Thistime, the CB populations are seeded with individualsproduced in the �rst run, and no crossover takes placein those populations. This time so, only the MP pop-ulation is evolving, and \interesting" individuals fromthese simulations would be candidates for the best-of-run individual, which can be selected in the same man-ner as before.There was an enormous variety of individuals pro-duced who were more than able to hold their own inthe arena. Most individuals reacted in some way toeach event, the most common being as follows :� See event : Fire or run away.� Hit event : Turn to face opponent, turn slowly orrun away.� Cld event : Turn to face opponent, turn slowly orrun away.� Ord event : Scan the arena, run around or do noth-ing.The best individual to appear was very simple, butquite agressive, and, once it found an opponent wouldnot stop �ring until the opponent either got out ofthe way or died. This robot did not win every �ghtit was involved in, but in the tournament at the endof the run it performed the best. In the �ghts it didlose, it usually was because it backed into a wall, and,while being shot by some individual it couldn't see,kept trying to reverse.(Reg event See event 68 (FIRE))(Reg event Cld event 37 (RIGHT 5))(Reg event Hit event 23 (REV 1))(Reg event Ord event 1 (RIGHT 3))A number of other individuals also appeared, usingvarious combinations of the above strategies, with dif-ferent priorities. Few of the successful robots did noth-ing when there were no events happening, and thosethat did were often struck several times before they re-acted to an attack. The next best strategy was to shootonly when not under attack. Individuals adopting thisstrategy had a low priority for See event, choosing in-stead to take evasive action if they came under attack.Best-of-Paper ResultsThe big question of course, is what is the best indi-vidual produced by any of the simulations? In the

end it came down to a competition between those inAppendix A, the best three individuals that appearedin each simulation being chosen to �ght in a similardemetic tournament to those used in the simulations.The best four individuals (three of whom were event-driven individuals) were then put into a round-robintournament together, with the eventual winner beingthe individual described above.Is this individual the best possible? Probably not.There is an enormous amount of tweaking that canbe done, and a huge variety of other approaches toevolving an individual - from varying the deme size, tothe �ght size, to the kind of functions available to therobots - the list is endless.Discussion and Future WorkThis paper presents a new benchmark problem for GP.Unlike many benchmarks, there is no known optimalsolution, and, because the evolved controller programis abstracted away from the robot to be controlled,there are a huge number of ways to approach the prob-lem. Every part of the problem, from the functionsand terminals available, to the tournament size, tocrossover implementations, can be changed without af-fecting the main problem - to produce interesting andviable behaviours - in any way.Due to the nature of the problem, it is easy to com-pare two (or more) di�erent solutions against eachother, to test the performance of GP under varyingconditions. It is even possible that sometime in thefuture there could be a GPRobot tournament, whereindividuals bred under di�erent conditions could betested against each other. Such is the particularly opennature of those in the GP community, it is hoped thatif such a tournament does take place, that, unlike com-petitions in games such as those mentioned earlier, allinformation about a robot be made available, includingcode and the method used to produce the individual.In the event of such a tournament taking place, it islikely that the individual in the previous section can bebettered - and that is the whole point of this bench-mark, that individuals from various approaches can bedirectly compared, or even watched on screen.This paper also introduces the notion of teamsof specialist individuals in GP and the evolution ofevent driven programs, where teams of individuals co-operate with each other in competition with otherteams. This method produced the best individualfound, and the area warrants further investigation, par-ticularly in the areas of evolving the conditions un-der which an event is deemed to have occured, whichwould allow the system to become truly automatic. Po-tentially, event driven programming has an enormousnumber of applications area. This paper has servedto show how programs requiring any number of eventsmay be evolved.This is very much a report on work in progress, andlittle e�ort was made to optimize any part of the sim-

ulations. It was clear that some degree of mutation isneeded in the MP population to prevent new CB indi-viduals from being ignored. Also, as noted above, cal-culating the CB individuals' �tness as average ratherthan a sum could well reduce any skewed measure-ments.The event driven approach can even be used in ap-plications that don't employ events, Appendix B showssome individuals rewritten in this way. The only dif-ference in individuals rewritten is that they no longeremploy pre-emption.Appendix A - Candidates for theBest-Of-Paper IndividualThe following individuals were considered when choos-ing the Best-of-Paper individual.From the initial simulations:Spinners :� (IF-See (FIRE) (LEFT 2))� (IF-See (FIRE) (LEFT (IF-Missile (bear-ing of enemy) 5)))Panicker� (IF-Hit (AHEA (RIGHT 5)) 1)Event Driven Individuals :� (Reg event See event 96(FIRE))(Reg event Cld event 73(PN3 (LEFT 5) (RIGHT 5) (AHEA (RIGHT5)))(Reg event Hit event 23(AHEA (LEFT (AHEA (LEFT 2)))))(Reg event Ord event 1(LEFT 3))� (Reg event See event 68(FIRE))(Reg event Cld event 37(RIGHT 5))(Reg event Hit event 23(REV 1))(Reg event Ord event 1(RIGHT 3))� (Reg event See event 34(PN3 (REV (FIRE)) (FIRE) (REV 1)))

(Reg event Cld event 23(RIGHT 3))(Reg event Hit event 82(REV 1))(Reg event Ord event 17(RIGHT 3))Appendix B - Event Driven individualsrewritten without eventsThe Event Driven individuals shown in Appendix A arerewritten below. Functionally, they are almost identi-cal in either form, in that the priorities remain intact,but it is no longer possible for pre-emption to takeplace.(IF-See (FIRE)(IF-Cld (PN3 (LEFT 5) (RIGHT 5) (AHEA(RIGHT 5)))(IF-Missile (AHEA (LEFT (AHEA (LEFT2))))(LEFT 3))))(IF-See (FIRE)(IF-Cld (RIGHT 5)(IF-Missile (REV 1)(RIGHT 3))))(IF-Missile (REV 1)(IF-Hit (PN3 (REV (FIRE)) (FIRE) (REV1))(IF-Cld (RIGHT 3)(RIGHT 3))))ReferencesSmith, R.E. 1992 : Studies in Arti�cial Evolution.PhD Diss., Dept. of Computer Science, UCLA.Dewdney, A. (1984) : In a game called core war hostileprograms engage in a battle of bits. Scienti�c Amer-ican 250:14-23.D'haeseleer, P. and Bluming, J. : E�ects of Locality inIndividual and Population Evolution. In Advances inGenetic Programming. Ed. K. Kinnear Jr. Cambridge: MIT PressHillis, D. (1991) : Co-evolving parasites improve sim-ulated evolution as an optimization procedure. In Ar-ti�cial Life II Ed. C. G. Langton. Addison-Wesley.Jannink, J. (1994) : Cracking and Co-evolving Ran-domizers. In Advances in Genetic Programming.Cambridge : MIT PressKoza, J. (1992) : Genetic Programming. Cambridge :M.I.T. Press.

Timin, M. : Robot Auto Racing Simulationavailable through anonymous FTP from mag-donaz.mca�ee.comReynolds, C. : Evolution of Obstacle Behaviour: Us-ing Noise to Promote Robost Solutions. In Advancesin Genetic Programming. Cambridge : MIT PressReynolds, C. : Competition, Coevolution and theGame of Tag. Forthcoming.Rognlie, R. (1993) : C++Robots available throughanonymous FTP from ftp.netcom.com.Ryan, C. (1994) : Pygmies and Civil Servants. InAdvances in Genetic Programming. Ed. K. KinnearJr. Cambridge : MIT PressRyan, C. (1994) : Racial Harmony in Genetic Algo-rithms. Forthcoming.Ryan, C. (1995) : Racial Harmony and Function Op-timization in Genetic Algorithms - The Races GeneticAlgorithm. Forthcoming.Schick, B. (1994) : Robowars available through anony-mous FTP from psycfrnd.interaccess.com.Siegel, E. (1994) : Competitively Evolving DecisionTreees Against Fixed Traiing Cases for Natural Lan-guage Processing. In Advances in Genetic Program-ming. Cambridge : MIT Press

