
Deriving Queries from Results using Genetic Programming

Tae-Wan Ryu and Christoph F. Eick

Department of Computer Science
University of Houston

U,w.rtnn TPYOC 113M_1Al< ll”“UC”Ll, I”*Lw I ,.G--J7,J

{ twryu,ceick} @cs.uh.edu

Abstract
This paper centers on the problem of finding commonalities
for a set of objects belonging to an object-oriented database.
In our approach, commonalities within a set of objects are
described by object-oriented queries that compute this set of
objects. The paper discusses the architecture of a knowledge
discovery system, called MASSON, which employs genetic
programming to find such queries. We also report on an
experiment that evaluated the knowledge discovery
capabilities of the MASSON system.

1. Introduction
A database consists of extensional information and
intensional information. Extensional information is
physically stored data or database instances. Intensional
information is the descriptions and the high-level abstracts
of a database such as schema, relationships, and other
implicit information. Most traditional database systems
have focused on storing, maintaining and accessing the
extensional information efficiently in databases. Extracting
intensional information with respect to an extensional data
collection is relatively difficult using conventional database
systems. For example, suppose there is a police suspect
database which contains information about persons and
their activities, and a police officer has two drug-dealer
suspects {Joe, Mary} who may be involved in a particular
case. Then the police data analyst may be interested in
knowing “What do Joe and Mary have in common ?”
In order to answer this question, the data analyst has to
conduct a time-consuming search process in which he has
to find a query or a set of queries that returns the exactly
same instances, {Joe, Mary} in this case, as its result.
Suppose he found the following SQL form of query,
“ (SELECT ssn name address

FROM person purchase
WHERE (amount-spent > 1000) and (payment-type = ‘cash’)

and (store-name = ‘@a-market’))”
which returns {Joe, Mary} as its result, which states that
they both have spent more than $1,000 cash for shopping
in a ‘flea-market’. This information might lead the police
to investigate suspicious activities in flea-markets.
However, in the example we have given in the above, it is
not very obvious what kind of queries the user has to write.
Accordingly, an automatic tool that facilitates the task for

the data analyst is desirable. This paper will describe such
a tool for extracting intensional information in an object-
oriented database.

2. Deriving Queries From Results
Derivirzg queries ji-om results is the process of finding a
desired query or a set of queries from a set of objects. In
rl..T ulls approach, iiie USef’S roie is noi i0 deiive a fuels “viit
the knowledge discovery in databases (KDD) system
(Piatetsky & Frawley 1991) will derive a query or a set of
queries by accessing database schema information as well
as database instances through the database interface. The
user of the KDD-system does not need in-depth knowledge
about the database schema. We claim that this approach
actually discovers useful or interesting intensional
information implicitly stored in a database. We are
developing a prototype system called MASSON that
employs deriving queries from results approach in the
context of object-oriented database. Figure 1 depicts the
architecture of the system. MASSON takes a database
name and object set (or database instances) as its input and
accesses the database given from a user for domain
knowledge and schema information. The user may also
supply domain knowledge to restrict the search space if
possible. MASSON uses genetic programming (GP) (Koza
1990) to generate many different queries and to search a
query or a set of queries that describe the commonalities of
the given object set. The generated queries are sent to an
-I-:--r -2 ̂ d.^ -I -I^&^L^-^ - ^^^-^-^- & ̂ _.^b^- Irb-lnDx,T‘P\
UDJCWWltXllW UlldIJZiSt; lll~llil~1;lll!3lL SySLWl {““UDlU3,

for execution. The system will then evaluate those returned
results from OODBMS according to how well they cover
the given target object set. Based on the results of the
evaluation process the GP search engine will generate new
queries based on the principles of evolution by giving fitter
query a better chance to reproduce. In order to evaluate an
individual query q1 in a population, we use the following
fitness function f: f (qc) = T- (hc *h)/ni 1
where n, > 0, T 2 hi , and i = 1, 2, . . . population size. (T is
the cardinality of the set of objects whose commonalities
have to be determined, h, is the number of hits for an
individual query q,, n, is the cardinality of query qi’s
result) This function is our standardized fitness function
(Koza 1990), which means the smaller the fitness value,

Genetic Algorithms 303

From: KDD-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

f

user interface

user input

c:,

Domain
knowledge

KB

c
system input

4 + I
Discovery System

genf rate aPF Y
-2 Query Set-+ DB

se1 xt
GP engine interface

* Query result
evaliate +Tiun

return

(GGzi
Figure 1: Architecture of MASSON

the fitter the individual is. The above fitness function
depends on the number of hits and the cardinality of the
query result. If a query does not make any hit (h, = O), then
it has the value 7’, which is the worst fitness value. If, on
the other hand the result of query q, perfectly matches the
set of objects given to the system, then its fitness value f(q,
) is 0 (hi = n, = Tin this case). We call this case perfect
hit. However, if a query is too general, it may contain
superfluous instances (false positives) even if it made
100% of hits. If, on the other hand, a query is too specific
then the number of hits of the query is less than the
number of target instances - the difference is the number
of false negatives. To cope with false positives and false
negatives, we put the number of instances for an individual
query, n, as denominator. Moreover, because we take the
square of the number of hits, false positives are punished
less severely than false negatives by the fitness function:
we are more interested in queries that return the target set
or at large portions of the target set, even if they return
objects that do not belong to the target set.

Object-oriented queries are used to describe
commonalities among objects in our approach. The
supported navigational query operators include SELECT,
RESTRICTED, RELATED, GET-RELATED, and set
operators (Ryu & Eick 1996). SELECT operator selects all
the objects that satisfy the conditional predicate.
RESTRICTED operator restricts the objects in the given set
to those that are related to another class, according to the
given predicate. The relationship operator RELATED
rc.lo~tc ~111 the nhbrtr frnm CI rlarr that CWP wlatd tn nhierto U”IU~c.3 l.LA, U,” ““JVUC” I.“11. u “.*,u” L..UC L.-v 1V.UC”” L” ““JVVW

in another class through the relationship links. GET-
RELATED operator is an inverse operator of RELATED.
In addition, the set operators UNION, INTERSECTION,
DIFFERENCE are supported.

-6 OODBMS

The schema diagram shown in Figure 2 represents our
experimental object-oriented database that contains
information of persons and their related activities. Each
class (or entity set) has slots and their values. A
relationship or reverse relationship links a class to another
class. The MASSON system was implemented by the PCL
(Portable Common Loops) version of the CLOS (Common
Lisp Object System) (Paepcke 1993) implementation.

We used GP as a search engine for MASSON (Ryu &
Eick 1996). GP searches for a target program in the space
of all possible computer programs (queries in our
application) randomly composed of functions (query
operators) and terminals (basic arguments for each
operator) appropriate to the problem domain. Initially, a
pre-defined number of queries that are syntactically legal,
are generated by randomly selecting operators and their
arguments from the function set and the terminal set
respectively, forming the initial population. Each
individual is evaluated based on the fitness function J
Fitter queries are then selected with higher probability to
breed a new population, using three genetic operators:
selection, crossover, and mutation. The selection operator
is used to choose certain individuals based on their fitness
values for generating the next generation. The crossover
operation creates two new offsprings by exchanging
subtrees between the two parents if we represent a query as
a tree. The mutation operation produces a new offspring by
replacing one parent subtree with a newly created subtree.
The size, shape, and structures of queries can be
dvnamicallv chanwd when CTQS~QI)V~T 0~ mut@e~n q~er&xs -, ------ ---, ------o-1-
are applied to each pair of selected queries (parent queries)
during the breeding process. The selection-crossover-
mutation cycle is repeated until an user defined
termination criteria are satisfied.

304 Technology Spotlight

- %!!@ deposit-with&s?

&Zkransaction-tvru?e

0 : Class 0 : Slot (or attnbute) value / : Relationship / ReverseRelatll lonship

Figure 2: Schema Diagram for Personal Database

3. MASSON at Work
To demonstrate how MASSON works, and to evaluate the
knowledge discovery capabilities of MASSON, we
manually created 5 benchmark queries, Q l - QS.
Ql: “Select persons who have transferred cash to anyone

more than 4 times. ”
(GET-RELATED (RESTRICTED bank-account (> transfer-to 4))

owned-by
person)

An object set that Q l computes for a given example
database consists of 22 persons. This object set was then
used as the target object set when running the MASSON
system. The query discovery process starts by generating
100 queries randomly. At generation 33, MASSON found
the original query Q l. This was the first query that made a
perfect hit, which is the case of fJ3 = 0 (since T=h=n=22).
At generation 47, the average fitness value was
significantly decreased to 2.83, and the best query that also
made a perfect hit and has different semantics was:
“Select persons who have tran$ferred cash to anyone more than
4 hes and are age less than 36 or greater than i0. ”
(GET-RELATED (RESTRICTED BANK-ACCOUNT (> TRANSFER-TO 4))

‘OWNED-BY
(SELECT PERSON (OR (<AGE 30) (> AGE 20))))

The predicate in boldface is an additional predicate.
Another perfect hit query was also found at generation 81.
Q2: “Select persons who live in Houston. ”

{SELECT person (= address “Houston”))
The first perfect hit query to the object set provided by Q2
was found at generation 122. The query and the semantics
were:

“Select persons who have telephone and live in Houston. ”
(GET-RELATED BANK-ACCOUNT OWNEDBY

(SELECT (RELATED PERSON HAS PHONE) (= ADDRESS “Houston’)))

The query Q2 was found at generation 135. Several other
perfect hit queries that was different from Q l was found.
43: “Select persons who purchased more than $3,000 by cash in

one store. ”
(RELATED person shopped-at

(SELECTpurchase (AND (> amount-spent 3000)
f = pay~nwv 1))))

The first perfect hit query was found at generation 70.
Even if the exactly same query Q3 was not found during
200 generations, syntactically and semantically almost
similar query to Q3 was found at generation 94:
(RELATED PERSON SHOPPED-AT

(SELECT (SELECT PURCHASE (= PAYMENT-TYPE 1))
(> AMOUNT-SPENT 3002)))

The only difference between the discovered query and the
query Q3 is the amount 3002 showed in boldface which is
different from 3000. Actually, it is not possible to find the
exact value 3000 unless the value is stored in the database,
since MASSON only generates constants that appear in the
database. Therefore we assume it found a query that is
approximately the same as the original query Q3. Several
other different perfect hit queries were also found.
Q4: “Select persons that have more than 7 times of suspect

activities records or spent more than $5,000 cash in a
store. ”

(O-UNION
(RELATED person shopped-at

(SELEm purchase (AND (> amount-spent 5000) (= payment-type 1))))
(SELECT p&n (> nsuspect-act 7)))

Q4 is relatively a complex query. The first query that made
perfect hit was found at generation 95:

Genetic Algorithms 305

“Select persons that have more than 7 times of suspect activities
records or paid cash when shopping. ”
(O-UNION

(SELECI. PERSON I> NSUSPECT-ACT 7))
&ELATED (O-UNIbN PERSON (SELEC? (RESTRICTED (RESTRICTED

PERSON (x RECEIVED 3)) (< HAS 0)) (> NSUSPECT-ACT 7)))
SHOPPED-AT

(SELECT (GET-RELATED PERSON SHOPPED-AT (GET-RELATED
PERSON SHOPPED-AT PURCHASE)) (= PAYMENT-TYPE 1))))

Other perfect hit queries was found. However, MASSON
could not find the original query Q4 for 200 generations.
QS: “Select persons who have transferred rnore than $2,000 and

have called more than 4 times and spent more than $500
cash. ”

(O-INTERSECTION
(GET-RELATED (GET-RELATED

(SELECT cash-trmfer (> amount 2000))
transfer-from bank-account) owued-by person)

(GET-RELATED (RESTRICTED (GET-RELQTED
(SELECT phone-call (> amount 500)) phone-used phone)(z mode-call 4))
owned-by person)))

This is another complex query. The first query that made
perfect hit to the object set provided by the query Q5 was
found at generation 112:
“Select persons who have telephone and have called to
two persons not at 11/10/1987 and have made phone calls
more than 4 times. ”
[GET-RELATED PHONE

OWNEDBY
(GET-RELATED (RESTRICTED (GET-RELATED PHONE-CALL PHONE-USED

(GET-RELATED PHONE-CALL PHONE-USED (GET-RELATED (SELECT
(RELATED (RESTRICTED PHONE-CALL (= CALLED-TO 2)) PHONE-USED
(RELATED (GET-RELATED PHONE-CALL PHONEUSED PHONE)

MADECiLL (RELATED PHONE-CALL CALLED-TO PERSON)))
(NOT (EQUAL DATE “11 10 87”))) PHONE-USED PHONE)))
(z MADE-CALL 4)) OWNED-BY

(GET-RELATED (RESTRICTED (GET-RELATED PHONE-CALL
PHONE-USED PHONE) (> MADE-CALL 3)) OWNED-BY PERSON)))

MASSON could not find the original query Q5 during 200
generations; however, it found several other queries that
made perfect hit. These queries are semantically and
syntactically different from Q5. This is an interesting
discovery by MASSON since the input object set was
obtained by Q5 consisting of a set operator,
INTERSECTION. On the other hand, MASSON found
those queries that consist of only selection and relationship
operators. The semantics of those queries are also different
from Q5. Table 1 shows summary for this experiment.

Table 1: Execution results and the complexity for the 5 test
queries

The left part of Table 1 shows the benchmark results for
the 5 test queries and the right part of the table shows

relative complexity of each test query although these are
not a precise metrics of complexity measure. In this table,
Hit-at is the generation number that made first perfect hit.
Org shows whether MASSON found the original query or
not. Othr is the number of other queries found that made
perfect hit other than the original query. Nclass is the
number of classes that each test query traversed. Nvsl,
Nop, Nsop, and Ncop are the number of slots, query
operators, set operators, and conditional operators
respectively. According to the table, the query Q4 and Q5
are relatively more complex than Ql, Q2, and Q3.
MASSON could not find the exactly same queries as those
queries Q4 and Q5 for 200 generations but found other
queries that describe commonalities within the given target
set.

4. Summary
In this paper, we proposed a problem on how to extract,
intensional information or concept descriptions for a set of
objects from a database without other knowledge about the
given object set. The major contribution of this paper is the
presentation of a new approach to discovering
common&ties within a given set of objects. We dealt with
this problem by introducing deriving queries from results
approach in which we try to find an object-oriented query
that returns a given result or set of results for a given
database. These derived queries present intensional
information for the given set of objects. MASSON takes a
database name and a set of objects belonging to the
database as its input and returns a query or a set of queries
as the result of the search process. We presented an
example that demonstrated how MASSON works, and we
reported on an experiment that evaluated MASSON’s
knowledge discovery capabilities.

References
Ryu, T.W and Eick, C.F. 1996. MASSON: Discovering
Commonalities in Collection of Objects using Genetic
Programming. In Proceedings of the Genetic
Programming 1996 Conference.

Koza, John R. 1990. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: The MIT Press.

Paepcke, Andreas 1993. Object-Oriented Programming:
the CLOS perspective. Cambridge, MA: The MIT Press.

Piatetsky-Shapiro, G. and Frawley, W.J. 1991. Knowledge
Discovery in Databases: An Overview. Knowledge
Discovery in Databases. AAAIlThe MIT press. Pagesl-27.

306 Technology Spotlight

