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ABSTRACT 
This paper describes our procedure and a software application for 
conducting large parameter sweep experiments in genetic and 
evolutionary computation research. Both procedure and software 
allows a researcher to examine multivariate nonlinearities that are 
common in genetic and evolutionary computation. Experiments of 
this nature are well suited to distributed computing environments 
(such as Grids and clusters) and we present an automated system 
for conducting parameter sweep experiments on heterogeneous 
networks. Emphasis is placed on experimental sampling, 
distributed robustness, and data analysis. The parameter sweep 
experimental procedure is easily applicable to any experiment 
involving computer simulations but is particularly well suited for 
evolutionary computation experiments. 

Categories and Subject Descriptors 
I.6.7—Simulation Support Systems Environments; I.2.2—
Automatic Programming Program Synthesis  

General Terms 
Experimentation, Algorithms, Performance 

Keywords 
Parameter Sweep, Experiment Management, Evolutionary 
Computation, Distributed Computation, Data Reduction. 

1. INTRODUCTION 
In recent years, a number of people have provided critiques of the 
existing genetic programming (GP) experimental methodology 
[9,10,15,17,19]. This paper continues that trend by analyzing the 
design and execution of GP experiments. Although GP is used in 
specific examples, the methodology presented in this paper is 
applicable to the wider field of genetic and evolutionary 
computation. When invoking a GP engine to solve a particular 
problem, the engine can be thought of as performing a search on 
the sample space of all programs expressible in a given language 
of functions and terminals. Results obtained from this search 
would be the products of many low-level nonlinear interactions. 
Rules which govern these low-level interactions and thus restrict 
outcomes would be highly dependent on engine configurations, 
which, when changed only slightly, could produce dramatically 

different outcomes. In mathematical notation, results R are 
produced by the function GP when applied to a problem p and a 
certain set of configurations: 
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It is an experimentalist’s goal to understand how R is yielded by 
specific configurations, but it is impossible to exhaustively test an 
infinite number of configurations. While the use of small 
experiments can lead to knowledge about a given configuration’s 
behavior, the results cannot necessarily be extrapolated to other 
configurations due to GP system nonlinearities. As a result, 
general knowledge of the mapping’s behavior must be constructed 
by testing multiple classes of configurations. If experiments are 
run under multiple configurations, one would be able to develop 
laws and theories that can encapsulate knowledge of the system 
being studied to increase our predictive abilities on configurations 
not yet studied. Succinctly, this means that it is critical to test for 
an observed phenomenon by conducting multiple tests and 
changing input parameters. Experimentalists should be prepared 
to do this. We call an experiment involving the sampling of 
multiple configurations of parameters a parameter sweep 
experiment (PSE). 

This type of experimental methodology is not limited to GP and 
has often been practiced in other fields involving computer 
simulations. A diverse body of works – including those dealing 
with high-energy physics [3], biomedical molecular modeling [6], 
analog circuit analysis in electrical engineering [20], and agent-
based modeling [2] – have all benefited from large parameter 
sweep experiments. While this type of methodology is not new to 
science, it is rarely practiced in our field.  Some notable 
exceptions to this trend are found in Daida et al. [11], Daida, 
Samples et al. [12], Luke & Panait [15], and Luke & Spector [16]. 
Why is the number of large multi-configuration studies relatively 
small? In this paper we suggest that parameter sweeps are often 
prohibitively difficult for researchers and present an automated 
system Commander, which is designed as an aid in conducting 
large generic parameter sweep experiments in Grid computing 
environments. Commander is not a GP system, but rather a 
software utility that performs automated experiment 
management and data reduction for parameter sweep 
experiments. 

In Section 2, we discuss the difficulties of performing large 
software experiments, the role of previous software solutions, and 
the niche for Commander. Section 3 describes Commander’s 
internal design and distributed architecture. Section 4 uses 
common GP case studies to show why parameter sweeps are a 
useful type of scientific exploration. Section 5 discusses the 
results and the future of parameter sweeps in scientific computing. 
Section 6 concludes. 
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2. PARAMETER SWEEPS ARE HARD 
We begin with a few definitions. A trial in GP research is defined 
to be the execution of a GP engine with a specified set of 
parameters and an initial random number generator (RNG) seed. 
A parameter is broadly defined to be a modifiable setting that can 
influence some aspect of a GP engine’s behavior, thus influencing 
a trial’s results. Parameters can be numeric in nature (e.g., 
population size = 2048, maximum allowed generations = 51), or 
algorithmic (e.g., tournament selection, steady-state replacement). 
A datapoint is defined to be a collection of some number of trials 
with identical parameter settings but different initial RNG seeds. 
A parameter sweep is then defined to be a type of experiment in 
which multiple datapoints are examined by conducting a number 
of trials with different parameter values. Parameter sweeps can be 
one-dimensional (e.g., studying multiple datapoints with different 
population sizes) or multidimensional (e.g., studying a set of 
datapoints in which each datapoint has a different 2-tuple of 
population size and maximum allowable generations).  

There are difficulties inherent to the experimentation processes 
that make large n-dimensional parameter sweep experiments more 
difficult to complete than small single-datapoint experiments: 

• Experimental Setup – For small experiments involving a 
single datapoint it is acceptable to write a shell script capable 
of executing the associated binary file a number of times. 
Since configurations do not change between trials, 
parameters can be statically determined inside the script and 
precompiled inside the binary. In PSEs, any script that runs 
an experiment either needs to send a list of current 
parameters to the binary via command line or run a unique 
binary for every configuration of parameters to be tested. 
Satisfactory scripts are generally both lengthy and non-
portable—meaning that the construction of a new experiment 
would involve large time-consuming changes to the scripts. 

• Required Computation Time – A single trial in GP can be 
very CPU-intensive. Also, since GP is inherently 
nondeterministic it is necessary for a large number of trials to 
be executed for each configuration. Parameter sweeps 
amplify this effect since they would be, by design, evaluating 
a larger number of configurations. This effect can be 
somewhat ameliorated through the use of parallel processing. 

• Data Reduction – Single datapoint experiments generally 
produce the same type of data inasmuch as they were 
generated by the same configuration. As a result, the 
extraction of relevant data is a straightforward process. In 
parameter sweep experiments, the extraction of relevant data 
often necessitates the use of scripts in arranging the data in 
meaningful ways. Also, when sweeping across multiple 
variables there are problems in tagging data sets with 
parameter configurations. In a similar fashion to the setup 
scripts, these analysis scripts can be difficult to maintain 
between large experiments as the configuration spaces 
change. 

For several years, our own GP research group maintained a large 
collection of Perl scripts to partially automate the process of 
running parameter sweep experiments. To reduce computation 
time, we would partition an experiment among several machines, 
running several similar scripts on each machine. Each script 
would be manually executed on idle cluster machines in a multi-

user environment. From these experiences, we learned that 
distributing our computational load has its own unique challenges: 

• Distribution Algorithms – When running distributed 
processes on multiple machines, it was essential to have 
some way of automatically assigning tasks to those 
machines. Inefficient algorithms wasted valuable resources, 
but efficient algorithms were difficult to generate. The 
growth in recent years of Grid computing has suggested that 
distributed algorithms should take advantage of Grid 
protocols. This would introduce an additional difficulty; 
different Grids can operate under different job-control 
protocols. 

• Robustness in Job Management – While remotely executing 
a job, there were a number of ways in which a node or 
process could fail. This means that a distributed trial may not 
complete unless our experimental method gracefully handled 
such failures. This often involved the continuous re-
execution of trials until successful completion. Such a 
procedure demanded complex scripts with conditional 
behavior and methods for determining the validity of 
experimental data. Since the distribution and validation 
processes were written for a specific experiment, these 
scripts resulted in significant retooling times between 
experiments. 

• Data Collection – Any data that was generated on one 
computer was typically stored on that machine. When 
operating on a group of computers, however, we needed to 
collocate the data to conduct analysis. Data transmission (for 
our group typically amounting to several hundred megabytes 
per computer) was susceptible to errors, so the collation 
process needed to be robust. 

Our group has experienced all of these difficulties associated with 
the remote distribution of GP parameter sweep experiments. We 
would stress that the time-consuming aspect of experiment 
administration cannot be underestimated. These difficulties, which 
are inherent to parameter sweeps and distributed computation, led 
us to explore automated experiment administration. 

We are not the first group to attempt to solve these problems. Five 
available software packages are worth noting: APST [6,7], 
Condor [3,22], Drone [4], Nimrod/G [1], and BOINC [5]. In 
general, these projects are designed to distribute a list of 
computational tasks across a network to remote computers. A 
downside of these packages is that only some can do PSEs. For 
example, Drone, and Nimrod/G are the only ones designed to 
support parameter sweeps, whereas APST, Condor, and BOINC 
require the presence of custom external scripts to control 
parameter sweep experiments. Another downside of previous 
works is their occasional lack of transparency and robustness on 
various Grid and cluster networks. APST, Condor, and Nimrod/G 
contain support for only a limited number of Grid protocols. 
Drone does not support common Grid protocols, but is designed 
for cluster environments where a user has remote access. It has 
also been out of development for four years and has problems 
with robustness in remote computation. BOINC takes a different 
approach, using large numbers of common desktop computers and 
distributing jobs through downloadable clients, such as 
SETI@home. 

Comparing the advantages of other available solutions and our 
needs in GP for conducting parameter sweep experiments, we 



have developed the following four criteria for a generic 
distributed parameter sweep engine: 

• Commander should facilitate the easy setup of new 
parameter sweep experiments, including experiments 
involving previously created programs. This process should 
not be script-governed but should instead derive from a 
simple grammar capable of fitting any program we might 
want to use in a distributed fashion. There should be no 
reason that the program we are executing – such as a GP 
engine – needs to be rewritten or extensively modified before 
it can be used with Commander. Of the previous work, only 
Drone and Nimrod/G met these standards for easy 
experimental setup.  

• Commander should support automated data reduction and 
analysis. When experiments finish, Commander should be 
able to create sets of graphs and charts that were requested 
by the user in advance. Previously, only Nimrod/G attempted 
this feature. In an ideal engine, the graphs and charts should 
operate on the parameters over which the experiment was 
conducted, allowing users to quickly see results from a 
parameter sweep. This could lead to low turn-around time 
between experiments. This feature would be particularly 
valuable for GP experimentalists in both problem feedback 
and final analysis. These standard graphical tools could 
encapsulate overwhelming amounts of information 
immediately available after a GP experiment, giving the user 
invaluable feedback about the correctness of the results. 

• The system should operate transparently and seamlessly as 
middleware across many types of computing networks. It 
should be able to take advantage of large-scale Grid 
networks, but must also be able to take advantage of local 
clusters and desktop machines. In taking advantage of these 
remote resources, users should not need to specify or submit 
jobs in different manners – all remote distribution should 
happen transparently to the researcher. This system should be 
robust; data integrity should be verified at multiple steps. 

• Commander should be a generic tool for scientific 
exploration of computational problems. It is presumed that 
users of this tool have little interests in writing setup 
algorithms, distribution algorithms for multiple Grid 
protocols, and large analysis scripts. As such, Commander 
should hide the operational decisions from the user, allowing 
the user to focus on specifying the type of experiment. This 
allows the researcher to spend time and effort on valuable 
work instead of tedious experiment administration. 

Although Commander is not novel in either its ability to perform 
large parameter sweep experiments or its ability to run processes 
on remote networks, its blend of automated parameter sweep 
experiments with transparent, robust, distributed computation is 
unique. In the next section, we discuss the implementation-level 
details of Commander – operational design and architecture. 

3. COMMANDER IMPLEMENTATION 
Commander was developed entirely in Python —a platform-
independent interpreted language— to aid in transparency and 
robustness. Unlike the previous solutions listed in Section 1.1, 
Commander relies on no prescribed Grid technology for 
distributing processes. Instead, it operates with a host and 
numerous clients, relying on any one of numerous Grid protocols 

or cluster scripts merely to remotely launch the client process. In 
the following sections, we refer to the name “Commander” when 
referring to the entire project —a collection of hosts and clients—
but we refer to host and clients separately as such. Hosts maintain 
complete knowledge of the current experiments, while clients 
actually run jobs and generate results data. In this aspect, 
Commander uses a master-worker architecture, which can be 
shown to be automatically load-balancing. 

While Commander is not dependent on any specific Grid 
technology, it requires a Python interpreter, a locally accessible 
Commander client, and a Subversion client. Subversion [8] is an 
open source version control system similar to CVS and is used to 
distribute experiment-specific information to the clients. Since all 
of these technologies are platform independent, Commander 
clients are also platform independent. We regularly run clients on 
Unix, Linux, and OSX platforms, spread across different Grid 
architectures, cluster networks, and desktop computers. 

In Section 2, we described three areas in which an ideal parameter 
sweep engine would excel: experiment construction, support for 
distributed computing, and data validation and analysis. In 
describing the design, it is natural to break up the descriptions into 
these portions as well. Figure 1 is Commander’s architectural 
diagram that services Sections 3.1, 3.2, and 3.3. 

3.1 Experiment Construction 
When running experiments, we assume that users possess 
platform-independent copies of all materials required to run the 
experiment. For example, users possess source code or byte code 
instead of merely precompiled platform-specific binaries. This 
should become important when distributing the processes across 
remote networks, because we may not know the type of platform 
on which our process is running—e.g., UNIX binary does not run 
on a Linux platform. These materials should be placed into a 
uniquely named Subversion repository. This is a reasonable 
request, since good software engineering practices mandate that 
all project materials should be placed into a versioning control 
system. This collection of project-specific materials is called the 
project repository.  

The project repository contains four types of items: 

• Project Source Code (Required) – All of the files needed to 
interpret, compile, link, and/or execute an experimental trial. 
This can include source code, java class files, or any required 
libraries to name a few. After the project is successfully built, 
there should be a program capable of accepting either the 
name of a data file (containing runtime parameters) or a list 
of command-line runtime parameters. 

• Configuration Scripts (Optional) – Sometimes when 
compiling a project from source it is important to set 
platform-specific configuration options. Commander client 
asserts that after the successful conclusion of any 
configuration scripts, the project should be ready to execute. 
This can be accomplished through the usage of established 
tools like autoconf, GNU Makefile, or Apache ANT. One 
requirement is placed on the configuration scripts – they are 
not allowed to alter the client computer’s file system outside 
of the directory in which the configuration script is located. 
This is important because system administrators of various 
remote nodes might give Commander clients different access 
permissions.  



• Validation Script (Optional) – After a trial has finished 
execution on a remote client, it is important to make sure that 
the data it generated was correct. When operating on a 
heterogeneous (and sometimes hostile) network, trials may 
never finish as local users can kill the processes or nodes 
may halt or run out of memory. It is possible to have the 
Commander host check for data errors, but it is better to have 
the numerous clients each perform their own validation 
procedure on any locally generated data. These scripts are 
discussed at length in Section 3.2. 

• Analysis Measures (Optional) – Commander can 
automatically perform basic types of analysis operations. 
Some information is needed from the user, such as what 
types of graphs to generate (e.g., 2D lines, 3D surface plot), 
what parameters to use to partition the data set (to construct 
multiple graphs), and what measure functions to use. These 
options are discussed in Section 3.3. On a side note, all 
experimental data presented in Section 4 was generated by 
the automatic execution of Commander analysis measures. 

For most projects, the project repository would not drastically 
change between experiments. The key differentiator between 
experiments lies in values for parameter sweeps. Users define sets 
of parameters to send to a program while creating an Experiment 
Builder file. Experimental parameters can be of three types: 

• Option – This type of parameter has no associated value. 
Every datapoint created has this option and thus every trial 
that is executed runs with this parameter. An example of a 
command line option from MGP (a genetic programming 
engine) could be “mgp -useLowMem”, which tells the 
engine to make tradeoffs favoring a small memory footprint 
over execution speed. Regardless of any other parameters 
subsequently issued, each trial that is conducted by 
Commander would subsequently be run with the 
useLowMem option. 

• Constant – This type of parameter has a value that is constant 
for every datapoint in the experiment. An example from 
MGP could be “mgp –maxGenerations 200”.  

• List – These are the types of parameters over which we want 
to sweep. These are like constants in that the parameterized 
type has a value, but unlike the constant parameters, different 
datapoints can have different parameter values. For example, 
sweeping over population size {1000,5000} in MGP would 
generate two unique datapoints with the command lines 
“mgp –popSize 1000” and “mgp –popSize 5000”. 

When creating experiments, Commander creates one datapoint for 
each element in the Cartesian product of the List-type values.  

Table 1. Sample parameter types in an Experiment Builder 
file. The experiment contains 4 datapoints, representing the 
Cartesian product of “popSize” and “selectionMethod”. 

Type Name Value 

Option “-useLowMem”  

Constant “-maxGenerations” 200 

List “-popSize” [1000, 5000] 

List “-selectionMethod” [“Tourn”, ”Roulette”] 

Next, a set of trial packages is created for each datapoint. In fully 
deterministic experiments, only one trial is needed per datapoint, 
thus only one trial package is created for each datapoint. 
However, in most experiments it is necessary to create a number 
of trial packages for each datapoint due to the nondeterministic 
behavior of the simulation being studied. After the user specifies 
the number of trials per datapoint, Commander adds trial 
packages to all datapoints, each with a unique RNG seed. 
Referring to Table 1, there is a parameter sweep encoding for 4 
datapoints. If the number of trials per datapoint is 10, then 
Commander would create 40 trial packages, each with unique 
RNG seeds. Commander manages RNG seeds automatically, so if 
at a later date this experiment is rerun, there is no danger that 
Commander would accidentally reassign the same RNG seeds. 
However, experiment files are saved for reuse and Commander 
does allow the reuse of old RNG seeds at the user’s option. 

Finally, the user specifies values for Subversion repository name  
(representing the address of the previously created project 
repository accessible through a Subversion server), validation 
script name (representing the name of the validation script in the 
repository), configure script command (representing the optional 
configure script in the repository), and the executable name (the 
resultant binary’s name after the configuration script is executed). 
At this point, the experiment is fully specified through sets of 
datapoints and trial packages. The experiment is written out to 
disk for later recovery, and the experiment is transferred to the 
Commander host to begin task distribution. 

3.2 Distributed Architecture 
As previously stated, Commander uses a master-worker 
architecture. Incomplete tasks reside in a list on the master and are 
checked out in arbitrary order by active clients. The clients 
complete the tasks and transfer results back to the master, which 
removes completed tasks from its list. The clients continue by 
checking out new tasks until no tasks remain. Some types of 
parallel computation feature coherent tasks—types that require 
partial orderings on task completion. This is generally not true for 
parameter sweeps, which are usually decoherent in nature. For 
decoherent tasks, the master-worker architecture is quite well 
suited, because it maximizes the efficiency of the workers—as 
soon as they complete one task, they start a new one. The master 
does not need a complex scheduling algorithm, which allows it to 
be more efficient at important client requests. 

The distributed computation begins with the launch of 
Commander clients. These Python programs can be started either 
manually, through scripts on cluster machines, or through Grid 
interfaces. Clients first conduct an initialization procedure, which 
includes creating a temporary directory somewhere on the node’s 
file system where project repositories and trial data are stored. 
The location of this directory is machine specific, and can depend 
on how the client was installed on the machine. For example, the 
default on UNIX machines is to use something like 
“/tmp/.__cmdr/” as the working directory. 

When ready to begin executing trials, clients connect to the host 
using an XML-RPC protocol and request a trial package. The 
package that the host returns is capable of fully specifying 
everything the client needs to do to successfully run the trial. The 
client extracts the location of the Subversion repository from the 
trial package, and uses its local Subversion client to download the 
project repository to a subdirectory of its working directory. 



 
 

Descending into the project directory, the Commander client 
executes configuration scripts as determined by the trial package 
in order to prepare the project for subsequent execution. This can 
include, for example, the execution of autoconf scripts to correctly 
set up platform specific settings and the use of GNU Makefile 
scripts to compile source objects into binary objects. If the binary 
object needs to accept a file with parameters (as opposed to 
accepting them listed on the command line), the configuration 
script should also create that data file from the parameters at this 
stage. The client then executes the program in a new process, 
instructing the program to write all data output to a specific data 
directory. The Commander client then suspends itself until the 
new process completes.  

After the user’s program completes, the Commander Client moves 
to the data directory and uses the optional validation scripts 
included in the project repository to determine if the data 
generated is acceptable to return to the host. This is important 
because there are a number of ways that the new process could 
fail—most likely through running out of memory or through local 
user kill signals, and the failed status of a process may not always 
be made known. If the data passes validation, any files present are 

recursively compressed and placed into a tarball. The client 
calculates an MD5 checksum based on this conglomerate file, and 
adds the tarball along with the checksum information to the trial 
package. The trial package is transferred back to the host, which 
inspects both the tarball and the checksum to ensure that no 
transmission errors occurred.  

If the transfer was successful, the client deletes all local copies of 
the data, but retains the project repository since it is highly likely 
that it would need it again for another trial. The client continues 
the process of check out, configure, execute, test, check in until no 
more experiments remain. The client then shuts down, removing 
all working directories to leave the file system in its original state. 
Meanwhile, the host, having received the trial package and 
verified the MD5 sum for correctness against the data, writes the 
data to a long-term storage directory. 

3.3 Data Analysis 
When no more incomplete packages for a given experiment 
remain, Commander accesses the Experiment Builder to 
determine what types of analysis are desired. It partitions the 
datapoints through a user-defined equivalence relation and places 

Figure 1. Commander architectural diagram. Commander Clients connect to Commander Hosts and Subversion servers to install, configure, 
and run experiments. Data is locally validated by the Client and returned to the Host for data reduction and analysis. 



each equivalence class in its own graph. Commander then obtains 
the analysis functions from the repository and applies them to 
each class of datapoints to generate sets of tuples for each graph. 

To rely on an earlier example from Table 1, we could choose 
“Selection Method” as a partition parameter, “Population Size” as 
an independent parameter, and “average best of trial fitness” as 
our measure function.  Commander would then use the partition 
parameter to create two graphs: one for trials using tournament 
selection and one for trials using fitness proportionate selection. 
Each graph would be a 2D plot with population size (the 
independent parameter) on the horizontal axis and the results from 
“average best of trial fitness” on the vertical axis. The 
combinations of graph points are represented as tuples and saved 
in standard formats. Standard viewers for high-quality printing 
can then use these files. 

In this manner, when a project has its own measure functions, 
there is no longer a need for the user to invest time in writing new 
scripts to perform data analysis. The researcher merely chooses 
the parameters with which to partition the graphs, the variables 
types that serve as inputs to a measure function, and the identity 
of the measure function. MGP, a GP engine developed at the 
University of Michigan, comes with a standard suite of measure 
functions, thus reducing the amount of time required to spend on 
data analysis. This also gives researchers a much faster turn-
around time between experimentation and analysis, allowing 
quicker results response times. Novel analysis methods must 
naturally be implemented first by hand and added to the 
repository, but the process of performing analysis is no longer 
requisitely tedious.  

4. PARAMETER SWEEP EXAMPLES 
In this section, we provide useful demonstrations of Experiment 
Construction, Builder Files, and Data Analysis through common 
GP experiments involving selection and replacement methods. A 
number of authors [13,18,21] have studied selection and 
replacement methods from a mathematical perspective. 
Discussions of fitness distributions, loss of diversity, and ordinary 
differential approximations influence our understanding of these 
dynamics, but very few empirical studies have compared different 
strategies [11,12]. A number of authors have argued that 
maintaining genetic diversity is important to EC populations [e.g., 
23], but the effects of correlating selection and replacement 
methods is not known. For example, if both tournament selection 
and steady-state replacement individually lead to genetic drift, 
then what are the effects of their combination? What about a 
steady-state algorithm using fitness-proportionate selection? 

To demonstrate that parameter sweeps can augment a researcher’s 
big-picture view, we studied two well-known GP problems while 
sweeping across various selection and replacement methods. We 
chose to study 6-input multiplexer and 4-bit parity because these 
problems have been shown to be tunably-difficult under varying 
population size and number of generations [e.g., 16]. We 
configured 6-input multiplexer to use logical NAND and NOR as 
functions, while 4-bit parity used AND, OR, NAND, and NOR. 

Given the relatively few empirical studies comparing selection 
and replacement strategies, we decided to analyze both parity and 
multiplexer using different combinations of tournament selection, 
fitness proportionate selection, generational replacement, and 
steady-state replacement. We used the MGP genetic programming 
engine because it was designed to support these command-line 

parameter configurations. Note that since MGP receives all trial 
parameters from Commander, we are able to use Commander’s 
Experiment Builder files to describe the experiment here since 
they fully specify the experiment’s parameters to MGP as 
described in Section 3.1. 

Table 2. The parameters in an Experiment Builder file used 
for sweeping 6-input multiplexer and 6-bit parity.  

Type Field Name Value 

Constant Max tree depth 512 

List Population Size 

! 

2
x
: 2 " x "11,x # Z{ } 

List Max Generations 

! 

2
x
: 0 " x " 9,x # Z{ } 

List Selection Method {“Tourn”, “Fit Prop”} 

List Replacement Method {“Generational”,     
“steady-state”} 

Cmdr. Setting Trials per datapoint 100 

 
Commander swept over 10 different population sizes, 10 different 
maximum generation counts, 2 selection methods, 2 replacement 
methods, and 2 problems, constructing 800 datapoints 
representing the Cartesian product of the List parameters. Since 
there were 100 trials per datapoint, it constructed 80,000 total trial 
packages. These trials used ~2 CPU-months and finished, with 
complete analysis, in under 3 days using approximately 50 
machines. 

The results presented in Figure 2 were generated by Commander 
analysis scripts and then imported into Igor. Inside our MGP 
analysis script file was a function, 

! 

SuccessCount : DataPoint" Z, 
which examines a datapoint’s trial packages and reports the 
number of successes found with the datapoint’s configuration. To 
generate four graphs, Commander partitioned the set of all 
datapoints using selection and replacement methods. Each graph 
subsequently had a different combination of selection and 
replacement. The graphs were written to files as lists of tuples 
with descriptive axis titles. Because surface plots can occasionally 
make comparisons difficult, Table 3 contains the total number of 
successful trials for each configuration class of selection and 
replacement. Note that these configurations can be properly 
ordered by their solution counts. 

Figure 2 represents the total number of successes with a more 
fine-grained analysis, in which number of successes is measured 
as a function of population size, max generations, and selection 
and replacement method. 
 
Table 3. Total number of successes out of 10,000 possible trial 
successes is summed for each configuration class and 
presented for both 4-bit parity and 6-input multiplexer. The 
configurations exhibit the same ordering using both problems. 

Configuration Parity Multiplexer 

Tournament Generational 1066 1739 
Tournament Steady State 780 1609 
Proportionate Steady State 43 76 
Proportionate Generational 4 21 



5. DISCUSSION 
Observation: There is an ordering on configurations involving 
selection and replacement methods. 
It is beyond the scope of this paper to analyze this ordered effect, 
but it serves as an example of the necessity in conducting 
parameter sweeps. These results have bearing on experimentalists 
for two reasons.  
First, the nonlinearity in parameter-orderings implies that 
experimentalists should test many configurations to see a relevant 
big picture. For both problems we tested, tournament selection 
outperformed proportionate selection, but a similar statement 
cannot be made for replacement methods. When paired with 
tournament selection, a generational algorithm performed better. 
However, when a proportionate selection was used, steady state 
performed better than generational. Experimentalists who assume 
that parameters exert linear influences on the results would be 
surprised to learn that a generational replacement has a beneficial 
effect on success when tournament selection is used, but a 
harmful effect when proportionate selection is used. These 
nonlinearities imply that experimentalists should test multiple 
configurations when constructing a big-picture view. Parameter 
sweeps can find and classify these types of nonlinearities. 

Secondly, experimentalists should reconsider their notions of 
significant improvements in GP. The differences in success 
between the configurations tested here were several orders of 
magnitude. Small improvements might not be statistically 
significant when compared to orders of magnitude change that 
could be uncovered using a parameter sweep. Further, any 
benefits gained might be dependent on a narrow configuration 
setting and thus could be negated by a different configuration. 

We are aware that these suggestions for improved GP 
methodology involve significant work with standard tools. 

Lengthy scripts are subsequently written to govern and analyze 
experiments, and experiments often take many more man-hours 
than before. In an effort to reduce these prohibitive effects, we 
have presented a program, Commander, to automatically perform 
many of the tedious tasks involved with building, running, and 
analyzing distributed parameter sweep experiments. The process 
of constructing and analyzing experiments should not be tedious. 
Likewise, there is no reason that distributing decoherent tasks 
across a network should be difficult. We hope that tools like 
Commander would enable and encourage the community to 
perform large parameter sweep. Commander was intentionally 
designed to easily work with numerous other engines (e.g., ECJ 
[14], lilgp [24]). Although we frequently use GP engines as an 
example, we suggest that other researchers in the genetic and 
evolutionary computation community should use a parameter 
sweep methodology like the one we have offered in this paper. 

6. CONCLUSIONS 
Parameter sweep experiments are useful. The presence of 
nonlinearities inherent to the lower-level interactions of GP means 
that small experiments can yield an incomplete view of GP 
dynamics. With large parameter sweeps, experimentalists can 
examine multiple configurations of influential settings. This 
process can lead to a more complete mapping of configurations to 
results and a deeper understanding of GP.  
Parameter sweeps are difficult. This methodology requires an 
engine that can accept parameters and a script that can iterate over 
collections of parameters. Actually conducting these experiments 
is expensive in terms of both human labor —writing scripts— and 
computation —many CPU-hours. The increased number of trials 
allows for a greater chance that errors can occur which could 
invalidate results. Further detection and resolution of these errors 
requires more scripts. Distributed computation can alleviate the 
pains of lengthy trials, but introduces software engineering 

Figure 2. Number of successes as a function of Max Generations, Population Size, and Selection and Replacement method. 
Max Generations and Population size are represented logarithmically with base 2. All axes are similarly oriented. 
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concerns —distribution algorithms, robust data collection— upon 
which experimentalists should not focus. 

Commander is our solution to a generic parameter sweep engine 
for experimentalists. Commander is designed to automate as much 
of the experimentation process as possible by alleviating tedious 
human tasks, providing robust remote trial distribution, and 
ensuring validity in data collection. Through simple interfaces, 
Commander allows researchers to quickly define new 
experiments, run them, and use included analysis measures to see 
the results. This low turnaround time means that experimentalists 
can be more productive with their experiments. Data can be 
interpreted, questions can be asked, and science can be achieved 
in a productive and responsive fashion.  

7. FUTURE WORK 
There are a number of ways in which automated experimentation 
can progress. One method is an automatic-exploration of program 
parameters. An experimentalist could define the types of 
parameters over which Commander would sweep. Commander 
would then attempt to generate a mapping of the configurations to 
results in meaningful ways. For example, it might automatically 
explore the interaction of certain list parameters, such as 
population size in genetic programming. 

On a similar thought, GP experimentalists have recently been 
discussing the number of trials that is necessary to obtain a degree 
of confidence in results. From mathematics we know that the 
required number of samples depends on the variance of the 
random variable being sampled. A future version of Commander 
could take variance information into account and sample different 
datapoints with different numbers of trials, achieving a constant 
degree of results confidence over the entire dataset. 

Finally, we’re very interested in developing decentralized 
computing through shared resources. Grid computing can be very 
expensive, and the development of a local cluster might not be 
logical because experimentalists are not constantly running 
experiments. With distribution systems like Commander it is 
possible for experimentalists to run a Commander client during 
their CPU’s idle time and share their CPU with the larger 
community. They could accumulate points for participation that 
could then be cashed in and used on Commander’s network. In 
this fashion, a researcher with low CPU resources could 
accumulate the ability to run time-intensive trials in small 
amounts of wall time.  

Commander is available online with documentation at 
http://lattice.engin.umich.edu/Commander 
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