
Parameter Sweeps For Exploring GP Parameters
Michael E. Samples, Jason M. Daida, Matt Byom, Matt Pizzimenti

Center for the Study of Complex Systems and the Department of Atmospheric, Oceanic, and Space Sciences
The University of Michigan, 2455 Hayward Avenue

Ann Arbor, MI 48109-2143 USA
{msamples, daida}@umich.edu

ABSTRACT
This paper describes our procedure and a software application for
conducting large parameter sweep experiments in genetic and
evolutionary computation research. Both procedure and software
allows a researcher to examine multivariate nonlinearities that are
common in genetic and evolutionary computation. Experiments of
this nature are well suited to distributed computing environments
(such as Grids and clusters) and we present an automated system
for conducting parameter sweep experiments on heterogeneous
networks. Emphasis is placed on experimental sampling,
distributed robustness, and data analysis. The parameter sweep
experimental procedure is easily applicable to any experiment
involving computer simulations but is particularly well suited for
evolutionary computation experiments.

Categories and Subject Descriptors
I.6.7—Simulation Support Systems Environments; I.2.2—
Automatic Programming Program Synthesis

General Terms
Experimentation, Algorithms, Performance

Keywords
Parameter Sweep, Experiment Management, Evolutionary
Computation, Distributed Computation, Data Reduction.

1. INTRODUCTION
In recent years, a number of people have provided critiques of the
existing genetic programming (GP) experimental methodology
[9,10,15,17,19]. This paper continues that trend by analyzing the
design and execution of GP experiments. Although GP is used in
specific examples, the methodology presented in this paper is
applicable to the wider field of genetic and evolutionary
computation. When invoking a GP engine to solve a particular
problem, the engine can be thought of as performing a search on
the sample space of all programs expressible in a given language
of functions and terminals. Results obtained from this search
would be the products of many low-level nonlinear interactions.
Rules which govern these low-level interactions and thus restrict
outcomes would be highly dependent on engine configurations,
which, when changed only slightly, could produce dramatically

different outcomes. In mathematical notation, results R are
produced by the function GP when applied to a problem p and a
certain set of configurations:

!

R =GP p,c
1
,c
2
,c
3
,c
4
,L()

It is an experimentalist’s goal to understand how R is yielded by
specific configurations, but it is impossible to exhaustively test an
infinite number of configurations. While the use of small
experiments can lead to knowledge about a given configuration’s
behavior, the results cannot necessarily be extrapolated to other
configurations due to GP system nonlinearities. As a result,
general knowledge of the mapping’s behavior must be constructed
by testing multiple classes of configurations. If experiments are
run under multiple configurations, one would be able to develop
laws and theories that can encapsulate knowledge of the system
being studied to increase our predictive abilities on configurations
not yet studied. Succinctly, this means that it is critical to test for
an observed phenomenon by conducting multiple tests and
changing input parameters. Experimentalists should be prepared
to do this. We call an experiment involving the sampling of
multiple configurations of parameters a parameter sweep
experiment (PSE).

This type of experimental methodology is not limited to GP and
has often been practiced in other fields involving computer
simulations. A diverse body of works – including those dealing
with high-energy physics [3], biomedical molecular modeling [6],
analog circuit analysis in electrical engineering [20], and agent-
based modeling [2] – have all benefited from large parameter
sweep experiments. While this type of methodology is not new to
science, it is rarely practiced in our field. Some notable
exceptions to this trend are found in Daida et al. [11], Daida,
Samples et al. [12], Luke & Panait [15], and Luke & Spector [16].
Why is the number of large multi-configuration studies relatively
small? In this paper we suggest that parameter sweeps are often
prohibitively difficult for researchers and present an automated
system Commander, which is designed as an aid in conducting
large generic parameter sweep experiments in Grid computing
environments. Commander is not a GP system, but rather a
software utility that performs automated experiment
management and data reduction for parameter sweep
experiments.

In Section 2, we discuss the difficulties of performing large
software experiments, the role of previous software solutions, and
the niche for Commander. Section 3 describes Commander’s
internal design and distributed architecture. Section 4 uses
common GP case studies to show why parameter sweeps are a
useful type of scientific exploration. Section 5 discusses the
results and the future of parameter sweeps in scientific computing.
Section 6 concludes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

GECCO’05, June 25-29, 2005, Washington D.C., USA.
Copyright 2005 ACM 1-59593-097-3/05/006…$5.00

2. PARAMETER SWEEPS ARE HARD
We begin with a few definitions. A trial in GP research is defined
to be the execution of a GP engine with a specified set of
parameters and an initial random number generator (RNG) seed.
A parameter is broadly defined to be a modifiable setting that can
influence some aspect of a GP engine’s behavior, thus influencing
a trial’s results. Parameters can be numeric in nature (e.g.,
population size = 2048, maximum allowed generations = 51), or
algorithmic (e.g., tournament selection, steady-state replacement).
A datapoint is defined to be a collection of some number of trials
with identical parameter settings but different initial RNG seeds.
A parameter sweep is then defined to be a type of experiment in
which multiple datapoints are examined by conducting a number
of trials with different parameter values. Parameter sweeps can be
one-dimensional (e.g., studying multiple datapoints with different
population sizes) or multidimensional (e.g., studying a set of
datapoints in which each datapoint has a different 2-tuple of
population size and maximum allowable generations).

There are difficulties inherent to the experimentation processes
that make large n-dimensional parameter sweep experiments more
difficult to complete than small single-datapoint experiments:

• Experimental Setup – For small experiments involving a
single datapoint it is acceptable to write a shell script capable
of executing the associated binary file a number of times.
Since configurations do not change between trials,
parameters can be statically determined inside the script and
precompiled inside the binary. In PSEs, any script that runs
an experiment either needs to send a list of current
parameters to the binary via command line or run a unique
binary for every configuration of parameters to be tested.
Satisfactory scripts are generally both lengthy and non-
portable—meaning that the construction of a new experiment
would involve large time-consuming changes to the scripts.

• Required Computation Time – A single trial in GP can be
very CPU-intensive. Also, since GP is inherently
nondeterministic it is necessary for a large number of trials to
be executed for each configuration. Parameter sweeps
amplify this effect since they would be, by design, evaluating
a larger number of configurations. This effect can be
somewhat ameliorated through the use of parallel processing.

• Data Reduction – Single datapoint experiments generally
produce the same type of data inasmuch as they were
generated by the same configuration. As a result, the
extraction of relevant data is a straightforward process. In
parameter sweep experiments, the extraction of relevant data
often necessitates the use of scripts in arranging the data in
meaningful ways. Also, when sweeping across multiple
variables there are problems in tagging data sets with
parameter configurations. In a similar fashion to the setup
scripts, these analysis scripts can be difficult to maintain
between large experiments as the configuration spaces
change.

For several years, our own GP research group maintained a large
collection of Perl scripts to partially automate the process of
running parameter sweep experiments. To reduce computation
time, we would partition an experiment among several machines,
running several similar scripts on each machine. Each script
would be manually executed on idle cluster machines in a multi-

user environment. From these experiences, we learned that
distributing our computational load has its own unique challenges:

• Distribution Algorithms – When running distributed
processes on multiple machines, it was essential to have
some way of automatically assigning tasks to those
machines. Inefficient algorithms wasted valuable resources,
but efficient algorithms were difficult to generate. The
growth in recent years of Grid computing has suggested that
distributed algorithms should take advantage of Grid
protocols. This would introduce an additional difficulty;
different Grids can operate under different job-control
protocols.

• Robustness in Job Management – While remotely executing
a job, there were a number of ways in which a node or
process could fail. This means that a distributed trial may not
complete unless our experimental method gracefully handled
such failures. This often involved the continuous re-
execution of trials until successful completion. Such a
procedure demanded complex scripts with conditional
behavior and methods for determining the validity of
experimental data. Since the distribution and validation
processes were written for a specific experiment, these
scripts resulted in significant retooling times between
experiments.

• Data Collection – Any data that was generated on one
computer was typically stored on that machine. When
operating on a group of computers, however, we needed to
collocate the data to conduct analysis. Data transmission (for
our group typically amounting to several hundred megabytes
per computer) was susceptible to errors, so the collation
process needed to be robust.

Our group has experienced all of these difficulties associated with
the remote distribution of GP parameter sweep experiments. We
would stress that the time-consuming aspect of experiment
administration cannot be underestimated. These difficulties, which
are inherent to parameter sweeps and distributed computation, led
us to explore automated experiment administration.

We are not the first group to attempt to solve these problems. Five
available software packages are worth noting: APST [6,7],
Condor [3,22], Drone [4], Nimrod/G [1], and BOINC [5]. In
general, these projects are designed to distribute a list of
computational tasks across a network to remote computers. A
downside of these packages is that only some can do PSEs. For
example, Drone, and Nimrod/G are the only ones designed to
support parameter sweeps, whereas APST, Condor, and BOINC
require the presence of custom external scripts to control
parameter sweep experiments. Another downside of previous
works is their occasional lack of transparency and robustness on
various Grid and cluster networks. APST, Condor, and Nimrod/G
contain support for only a limited number of Grid protocols.
Drone does not support common Grid protocols, but is designed
for cluster environments where a user has remote access. It has
also been out of development for four years and has problems
with robustness in remote computation. BOINC takes a different
approach, using large numbers of common desktop computers and
distributing jobs through downloadable clients, such as
SETI@home.

Comparing the advantages of other available solutions and our
needs in GP for conducting parameter sweep experiments, we

have developed the following four criteria for a generic
distributed parameter sweep engine:

• Commander should facilitate the easy setup of new
parameter sweep experiments, including experiments
involving previously created programs. This process should
not be script-governed but should instead derive from a
simple grammar capable of fitting any program we might
want to use in a distributed fashion. There should be no
reason that the program we are executing – such as a GP
engine – needs to be rewritten or extensively modified before
it can be used with Commander. Of the previous work, only
Drone and Nimrod/G met these standards for easy
experimental setup.

• Commander should support automated data reduction and
analysis. When experiments finish, Commander should be
able to create sets of graphs and charts that were requested
by the user in advance. Previously, only Nimrod/G attempted
this feature. In an ideal engine, the graphs and charts should
operate on the parameters over which the experiment was
conducted, allowing users to quickly see results from a
parameter sweep. This could lead to low turn-around time
between experiments. This feature would be particularly
valuable for GP experimentalists in both problem feedback
and final analysis. These standard graphical tools could
encapsulate overwhelming amounts of information
immediately available after a GP experiment, giving the user
invaluable feedback about the correctness of the results.

• The system should operate transparently and seamlessly as
middleware across many types of computing networks. It
should be able to take advantage of large-scale Grid
networks, but must also be able to take advantage of local
clusters and desktop machines. In taking advantage of these
remote resources, users should not need to specify or submit
jobs in different manners – all remote distribution should
happen transparently to the researcher. This system should be
robust; data integrity should be verified at multiple steps.

• Commander should be a generic tool for scientific
exploration of computational problems. It is presumed that
users of this tool have little interests in writing setup
algorithms, distribution algorithms for multiple Grid
protocols, and large analysis scripts. As such, Commander
should hide the operational decisions from the user, allowing
the user to focus on specifying the type of experiment. This
allows the researcher to spend time and effort on valuable
work instead of tedious experiment administration.

Although Commander is not novel in either its ability to perform
large parameter sweep experiments or its ability to run processes
on remote networks, its blend of automated parameter sweep
experiments with transparent, robust, distributed computation is
unique. In the next section, we discuss the implementation-level
details of Commander – operational design and architecture.

3. COMMANDER IMPLEMENTATION
Commander was developed entirely in Python —a platform-
independent interpreted language— to aid in transparency and
robustness. Unlike the previous solutions listed in Section 1.1,
Commander relies on no prescribed Grid technology for
distributing processes. Instead, it operates with a host and
numerous clients, relying on any one of numerous Grid protocols

or cluster scripts merely to remotely launch the client process. In
the following sections, we refer to the name “Commander” when
referring to the entire project —a collection of hosts and clients—
but we refer to host and clients separately as such. Hosts maintain
complete knowledge of the current experiments, while clients
actually run jobs and generate results data. In this aspect,
Commander uses a master-worker architecture, which can be
shown to be automatically load-balancing.

While Commander is not dependent on any specific Grid
technology, it requires a Python interpreter, a locally accessible
Commander client, and a Subversion client. Subversion [8] is an
open source version control system similar to CVS and is used to
distribute experiment-specific information to the clients. Since all
of these technologies are platform independent, Commander
clients are also platform independent. We regularly run clients on
Unix, Linux, and OSX platforms, spread across different Grid
architectures, cluster networks, and desktop computers.

In Section 2, we described three areas in which an ideal parameter
sweep engine would excel: experiment construction, support for
distributed computing, and data validation and analysis. In
describing the design, it is natural to break up the descriptions into
these portions as well. Figure 1 is Commander’s architectural
diagram that services Sections 3.1, 3.2, and 3.3.

3.1 Experiment Construction
When running experiments, we assume that users possess
platform-independent copies of all materials required to run the
experiment. For example, users possess source code or byte code
instead of merely precompiled platform-specific binaries. This
should become important when distributing the processes across
remote networks, because we may not know the type of platform
on which our process is running—e.g., UNIX binary does not run
on a Linux platform. These materials should be placed into a
uniquely named Subversion repository. This is a reasonable
request, since good software engineering practices mandate that
all project materials should be placed into a versioning control
system. This collection of project-specific materials is called the
project repository.

The project repository contains four types of items:

• Project Source Code (Required) – All of the files needed to
interpret, compile, link, and/or execute an experimental trial.
This can include source code, java class files, or any required
libraries to name a few. After the project is successfully built,
there should be a program capable of accepting either the
name of a data file (containing runtime parameters) or a list
of command-line runtime parameters.

• Configuration Scripts (Optional) – Sometimes when
compiling a project from source it is important to set
platform-specific configuration options. Commander client
asserts that after the successful conclusion of any
configuration scripts, the project should be ready to execute.
This can be accomplished through the usage of established
tools like autoconf, GNU Makefile, or Apache ANT. One
requirement is placed on the configuration scripts – they are
not allowed to alter the client computer’s file system outside
of the directory in which the configuration script is located.
This is important because system administrators of various
remote nodes might give Commander clients different access
permissions.

• Validation Script (Optional) – After a trial has finished
execution on a remote client, it is important to make sure that
the data it generated was correct. When operating on a
heterogeneous (and sometimes hostile) network, trials may
never finish as local users can kill the processes or nodes
may halt or run out of memory. It is possible to have the
Commander host check for data errors, but it is better to have
the numerous clients each perform their own validation
procedure on any locally generated data. These scripts are
discussed at length in Section 3.2.

• Analysis Measures (Optional) – Commander can
automatically perform basic types of analysis operations.
Some information is needed from the user, such as what
types of graphs to generate (e.g., 2D lines, 3D surface plot),
what parameters to use to partition the data set (to construct
multiple graphs), and what measure functions to use. These
options are discussed in Section 3.3. On a side note, all
experimental data presented in Section 4 was generated by
the automatic execution of Commander analysis measures.

For most projects, the project repository would not drastically
change between experiments. The key differentiator between
experiments lies in values for parameter sweeps. Users define sets
of parameters to send to a program while creating an Experiment
Builder file. Experimental parameters can be of three types:

• Option – This type of parameter has no associated value.
Every datapoint created has this option and thus every trial
that is executed runs with this parameter. An example of a
command line option from MGP (a genetic programming
engine) could be “mgp -useLowMem”, which tells the
engine to make tradeoffs favoring a small memory footprint
over execution speed. Regardless of any other parameters
subsequently issued, each trial that is conducted by
Commander would subsequently be run with the
useLowMem option.

• Constant – This type of parameter has a value that is constant
for every datapoint in the experiment. An example from
MGP could be “mgp –maxGenerations 200”.

• List – These are the types of parameters over which we want
to sweep. These are like constants in that the parameterized
type has a value, but unlike the constant parameters, different
datapoints can have different parameter values. For example,
sweeping over population size {1000,5000} in MGP would
generate two unique datapoints with the command lines
“mgp –popSize 1000” and “mgp –popSize 5000”.

When creating experiments, Commander creates one datapoint for
each element in the Cartesian product of the List-type values.

Table 1. Sample parameter types in an Experiment Builder
file. The experiment contains 4 datapoints, representing the
Cartesian product of “popSize” and “selectionMethod”.

Type Name Value

Option “-useLowMem”

Constant “-maxGenerations” 200

List “-popSize” [1000, 5000]

List “-selectionMethod” [“Tourn”, ”Roulette”]

Next, a set of trial packages is created for each datapoint. In fully
deterministic experiments, only one trial is needed per datapoint,
thus only one trial package is created for each datapoint.
However, in most experiments it is necessary to create a number
of trial packages for each datapoint due to the nondeterministic
behavior of the simulation being studied. After the user specifies
the number of trials per datapoint, Commander adds trial
packages to all datapoints, each with a unique RNG seed.
Referring to Table 1, there is a parameter sweep encoding for 4
datapoints. If the number of trials per datapoint is 10, then
Commander would create 40 trial packages, each with unique
RNG seeds. Commander manages RNG seeds automatically, so if
at a later date this experiment is rerun, there is no danger that
Commander would accidentally reassign the same RNG seeds.
However, experiment files are saved for reuse and Commander
does allow the reuse of old RNG seeds at the user’s option.

Finally, the user specifies values for Subversion repository name
(representing the address of the previously created project
repository accessible through a Subversion server), validation
script name (representing the name of the validation script in the
repository), configure script command (representing the optional
configure script in the repository), and the executable name (the
resultant binary’s name after the configuration script is executed).
At this point, the experiment is fully specified through sets of
datapoints and trial packages. The experiment is written out to
disk for later recovery, and the experiment is transferred to the
Commander host to begin task distribution.

3.2 Distributed Architecture
As previously stated, Commander uses a master-worker
architecture. Incomplete tasks reside in a list on the master and are
checked out in arbitrary order by active clients. The clients
complete the tasks and transfer results back to the master, which
removes completed tasks from its list. The clients continue by
checking out new tasks until no tasks remain. Some types of
parallel computation feature coherent tasks—types that require
partial orderings on task completion. This is generally not true for
parameter sweeps, which are usually decoherent in nature. For
decoherent tasks, the master-worker architecture is quite well
suited, because it maximizes the efficiency of the workers—as
soon as they complete one task, they start a new one. The master
does not need a complex scheduling algorithm, which allows it to
be more efficient at important client requests.

The distributed computation begins with the launch of
Commander clients. These Python programs can be started either
manually, through scripts on cluster machines, or through Grid
interfaces. Clients first conduct an initialization procedure, which
includes creating a temporary directory somewhere on the node’s
file system where project repositories and trial data are stored.
The location of this directory is machine specific, and can depend
on how the client was installed on the machine. For example, the
default on UNIX machines is to use something like
“/tmp/.__cmdr/” as the working directory.

When ready to begin executing trials, clients connect to the host
using an XML-RPC protocol and request a trial package. The
package that the host returns is capable of fully specifying
everything the client needs to do to successfully run the trial. The
client extracts the location of the Subversion repository from the
trial package, and uses its local Subversion client to download the
project repository to a subdirectory of its working directory.

Descending into the project directory, the Commander client
executes configuration scripts as determined by the trial package
in order to prepare the project for subsequent execution. This can
include, for example, the execution of autoconf scripts to correctly
set up platform specific settings and the use of GNU Makefile
scripts to compile source objects into binary objects. If the binary
object needs to accept a file with parameters (as opposed to
accepting them listed on the command line), the configuration
script should also create that data file from the parameters at this
stage. The client then executes the program in a new process,
instructing the program to write all data output to a specific data
directory. The Commander client then suspends itself until the
new process completes.

After the user’s program completes, the Commander Client moves
to the data directory and uses the optional validation scripts
included in the project repository to determine if the data
generated is acceptable to return to the host. This is important
because there are a number of ways that the new process could
fail—most likely through running out of memory or through local
user kill signals, and the failed status of a process may not always
be made known. If the data passes validation, any files present are

recursively compressed and placed into a tarball. The client
calculates an MD5 checksum based on this conglomerate file, and
adds the tarball along with the checksum information to the trial
package. The trial package is transferred back to the host, which
inspects both the tarball and the checksum to ensure that no
transmission errors occurred.

If the transfer was successful, the client deletes all local copies of
the data, but retains the project repository since it is highly likely
that it would need it again for another trial. The client continues
the process of check out, configure, execute, test, check in until no
more experiments remain. The client then shuts down, removing
all working directories to leave the file system in its original state.
Meanwhile, the host, having received the trial package and
verified the MD5 sum for correctness against the data, writes the
data to a long-term storage directory.

3.3 Data Analysis
When no more incomplete packages for a given experiment
remain, Commander accesses the Experiment Builder to
determine what types of analysis are desired. It partitions the
datapoints through a user-defined equivalence relation and places

Figure 1. Commander architectural diagram. Commander Clients connect to Commander Hosts and Subversion servers to install, configure,
and run experiments. Data is locally validated by the Client and returned to the Host for data reduction and analysis.

each equivalence class in its own graph. Commander then obtains
the analysis functions from the repository and applies them to
each class of datapoints to generate sets of tuples for each graph.

To rely on an earlier example from Table 1, we could choose
“Selection Method” as a partition parameter, “Population Size” as
an independent parameter, and “average best of trial fitness” as
our measure function. Commander would then use the partition
parameter to create two graphs: one for trials using tournament
selection and one for trials using fitness proportionate selection.
Each graph would be a 2D plot with population size (the
independent parameter) on the horizontal axis and the results from
“average best of trial fitness” on the vertical axis. The
combinations of graph points are represented as tuples and saved
in standard formats. Standard viewers for high-quality printing
can then use these files.

In this manner, when a project has its own measure functions,
there is no longer a need for the user to invest time in writing new
scripts to perform data analysis. The researcher merely chooses
the parameters with which to partition the graphs, the variables
types that serve as inputs to a measure function, and the identity
of the measure function. MGP, a GP engine developed at the
University of Michigan, comes with a standard suite of measure
functions, thus reducing the amount of time required to spend on
data analysis. This also gives researchers a much faster turn-
around time between experimentation and analysis, allowing
quicker results response times. Novel analysis methods must
naturally be implemented first by hand and added to the
repository, but the process of performing analysis is no longer
requisitely tedious.

4. PARAMETER SWEEP EXAMPLES
In this section, we provide useful demonstrations of Experiment
Construction, Builder Files, and Data Analysis through common
GP experiments involving selection and replacement methods. A
number of authors [13,18,21] have studied selection and
replacement methods from a mathematical perspective.
Discussions of fitness distributions, loss of diversity, and ordinary
differential approximations influence our understanding of these
dynamics, but very few empirical studies have compared different
strategies [11,12]. A number of authors have argued that
maintaining genetic diversity is important to EC populations [e.g.,
23], but the effects of correlating selection and replacement
methods is not known. For example, if both tournament selection
and steady-state replacement individually lead to genetic drift,
then what are the effects of their combination? What about a
steady-state algorithm using fitness-proportionate selection?

To demonstrate that parameter sweeps can augment a researcher’s
big-picture view, we studied two well-known GP problems while
sweeping across various selection and replacement methods. We
chose to study 6-input multiplexer and 4-bit parity because these
problems have been shown to be tunably-difficult under varying
population size and number of generations [e.g., 16]. We
configured 6-input multiplexer to use logical NAND and NOR as
functions, while 4-bit parity used AND, OR, NAND, and NOR.

Given the relatively few empirical studies comparing selection
and replacement strategies, we decided to analyze both parity and
multiplexer using different combinations of tournament selection,
fitness proportionate selection, generational replacement, and
steady-state replacement. We used the MGP genetic programming
engine because it was designed to support these command-line

parameter configurations. Note that since MGP receives all trial
parameters from Commander, we are able to use Commander’s
Experiment Builder files to describe the experiment here since
they fully specify the experiment’s parameters to MGP as
described in Section 3.1.

Table 2. The parameters in an Experiment Builder file used
for sweeping 6-input multiplexer and 6-bit parity.

Type Field Name Value

Constant Max tree depth 512

List Population Size

!

2
x
: 2 " x "11,x # Z{ }

List Max Generations

!

2
x
: 0 " x " 9,x # Z{ }

List Selection Method {“Tourn”, “Fit Prop”}

List Replacement Method {“Generational”,
“steady-state”}

Cmdr. Setting Trials per datapoint 100

Commander swept over 10 different population sizes, 10 different
maximum generation counts, 2 selection methods, 2 replacement
methods, and 2 problems, constructing 800 datapoints
representing the Cartesian product of the List parameters. Since
there were 100 trials per datapoint, it constructed 80,000 total trial
packages. These trials used ~2 CPU-months and finished, with
complete analysis, in under 3 days using approximately 50
machines.

The results presented in Figure 2 were generated by Commander
analysis scripts and then imported into Igor. Inside our MGP
analysis script file was a function,

!

SuccessCount : DataPoint" Z,
which examines a datapoint’s trial packages and reports the
number of successes found with the datapoint’s configuration. To
generate four graphs, Commander partitioned the set of all
datapoints using selection and replacement methods. Each graph
subsequently had a different combination of selection and
replacement. The graphs were written to files as lists of tuples
with descriptive axis titles. Because surface plots can occasionally
make comparisons difficult, Table 3 contains the total number of
successful trials for each configuration class of selection and
replacement. Note that these configurations can be properly
ordered by their solution counts.

Figure 2 represents the total number of successes with a more
fine-grained analysis, in which number of successes is measured
as a function of population size, max generations, and selection
and replacement method.

Table 3. Total number of successes out of 10,000 possible trial
successes is summed for each configuration class and
presented for both 4-bit parity and 6-input multiplexer. The
configurations exhibit the same ordering using both problems.

Configuration Parity Multiplexer

Tournament Generational 1066 1739
Tournament Steady State 780 1609
Proportionate Steady State 43 76
Proportionate Generational 4 21

5. DISCUSSION
Observation: There is an ordering on configurations involving
selection and replacement methods.
It is beyond the scope of this paper to analyze this ordered effect,
but it serves as an example of the necessity in conducting
parameter sweeps. These results have bearing on experimentalists
for two reasons.
First, the nonlinearity in parameter-orderings implies that
experimentalists should test many configurations to see a relevant
big picture. For both problems we tested, tournament selection
outperformed proportionate selection, but a similar statement
cannot be made for replacement methods. When paired with
tournament selection, a generational algorithm performed better.
However, when a proportionate selection was used, steady state
performed better than generational. Experimentalists who assume
that parameters exert linear influences on the results would be
surprised to learn that a generational replacement has a beneficial
effect on success when tournament selection is used, but a
harmful effect when proportionate selection is used. These
nonlinearities imply that experimentalists should test multiple
configurations when constructing a big-picture view. Parameter
sweeps can find and classify these types of nonlinearities.

Secondly, experimentalists should reconsider their notions of
significant improvements in GP. The differences in success
between the configurations tested here were several orders of
magnitude. Small improvements might not be statistically
significant when compared to orders of magnitude change that
could be uncovered using a parameter sweep. Further, any
benefits gained might be dependent on a narrow configuration
setting and thus could be negated by a different configuration.

We are aware that these suggestions for improved GP
methodology involve significant work with standard tools.

Lengthy scripts are subsequently written to govern and analyze
experiments, and experiments often take many more man-hours
than before. In an effort to reduce these prohibitive effects, we
have presented a program, Commander, to automatically perform
many of the tedious tasks involved with building, running, and
analyzing distributed parameter sweep experiments. The process
of constructing and analyzing experiments should not be tedious.
Likewise, there is no reason that distributing decoherent tasks
across a network should be difficult. We hope that tools like
Commander would enable and encourage the community to
perform large parameter sweep. Commander was intentionally
designed to easily work with numerous other engines (e.g., ECJ
[14], lilgp [24]). Although we frequently use GP engines as an
example, we suggest that other researchers in the genetic and
evolutionary computation community should use a parameter
sweep methodology like the one we have offered in this paper.

6. CONCLUSIONS
Parameter sweep experiments are useful. The presence of
nonlinearities inherent to the lower-level interactions of GP means
that small experiments can yield an incomplete view of GP
dynamics. With large parameter sweeps, experimentalists can
examine multiple configurations of influential settings. This
process can lead to a more complete mapping of configurations to
results and a deeper understanding of GP.
Parameter sweeps are difficult. This methodology requires an
engine that can accept parameters and a script that can iterate over
collections of parameters. Actually conducting these experiments
is expensive in terms of both human labor —writing scripts— and
computation —many CPU-hours. The increased number of trials
allows for a greater chance that errors can occur which could
invalidate results. Further detection and resolution of these errors
requires more scripts. Distributed computation can alleviate the
pains of lengthy trials, but introduces software engineering

Figure 2. Number of successes as a function of Max Generations, Population Size, and Selection and Replacement method.
Max Generations and Population size are represented logarithmically with base 2. All axes are similarly oriented.

 6-input Multiplexer 4-bit Parity
 Generational Steady-State Generational Steady-State

To
ur

na
me

nt

Fit
ne

ss

Pr
op

or
tio

na
te

Su
cc

es
s C

ou
nt

 Max Generations Population Size

concerns —distribution algorithms, robust data collection— upon
which experimentalists should not focus.

Commander is our solution to a generic parameter sweep engine
for experimentalists. Commander is designed to automate as much
of the experimentation process as possible by alleviating tedious
human tasks, providing robust remote trial distribution, and
ensuring validity in data collection. Through simple interfaces,
Commander allows researchers to quickly define new
experiments, run them, and use included analysis measures to see
the results. This low turnaround time means that experimentalists
can be more productive with their experiments. Data can be
interpreted, questions can be asked, and science can be achieved
in a productive and responsive fashion.

7. FUTURE WORK
There are a number of ways in which automated experimentation
can progress. One method is an automatic-exploration of program
parameters. An experimentalist could define the types of
parameters over which Commander would sweep. Commander
would then attempt to generate a mapping of the configurations to
results in meaningful ways. For example, it might automatically
explore the interaction of certain list parameters, such as
population size in genetic programming.

On a similar thought, GP experimentalists have recently been
discussing the number of trials that is necessary to obtain a degree
of confidence in results. From mathematics we know that the
required number of samples depends on the variance of the
random variable being sampled. A future version of Commander
could take variance information into account and sample different
datapoints with different numbers of trials, achieving a constant
degree of results confidence over the entire dataset.

Finally, we’re very interested in developing decentralized
computing through shared resources. Grid computing can be very
expensive, and the development of a local cluster might not be
logical because experimentalists are not constantly running
experiments. With distribution systems like Commander it is
possible for experimentalists to run a Commander client during
their CPU’s idle time and share their CPU with the larger
community. They could accumulate points for participation that
could then be cashed in and used on Commander’s network. In
this fashion, a researcher with low CPU resources could
accumulate the ability to run time-intensive trials in small
amounts of wall time.

Commander is available online with documentation at
http://lattice.engin.umich.edu/Commander

8. ACKNOWLEDGMENTS
Many thanks to Paul Chiusano for helpful comments and for
reviewing an earlier draft of this paper. The first and second
authors gratefully acknowledge I. Kristo.

9. REFERENCES
[1] Abramson, D., R. Sosic, J. Giddy, and M. Cope. The laboratory

bench: Distributed computing for parametised simulations. In 1994
Parallel Computing and Transputers Conference, Wollongong,
Australia, 1994.

[2] Axelrod, R., The Dissemination of Culture: A Model with Local
Convergence and Global Polarization, 1997.

[3] Basney, J. et al. Harnessing the Capacity of Computational Grids for
High Energy Physics. In CCHENP, 2000. Padova, Italy, 2000.

[4] Belding, T. http://drone.sourceforge.net

[5] BOINC. http://boinc.berkeley.edu

[6] Casanova, H., T. Bartol, J. Stiles, and F. Berman, "Distributing
MCell Simulations on the Grid," Int'l J. High Performance
Computing Applications, vol. 14, no. 3, 2001.

[7] Casanova, H., G. Obertelli, F. Bermand, and R. Wolski. The AppLeS
Parameter Sweep Template: User-Level Middleware for the Grid. In
Proceedings of SC00, November 2000.

[8] Collins-Sussman, B., B. Fitzpatrick & C. Pilato. Version Control
With Subversion. svnbook.red-bean.com 2004.

[9] Daida et al. Challenges with Verification, Repeatability, and
Meaningful Comparisons in GP. In GP97, Koza et al. (Eds). Morgan
Kaufmann. 1997.

[10] Daida et al. Challenges with Verification, Repeatability, and
Meaningful Comparison in GP: Gibson's Magic. In GECCO 1999.
San Francisco, CA: Morgan Kaufmann. 1999.

[11] Daida, J. et al., Visualizing the Loss of Diversity in GP in CEC 2004.
Piscataway: IEEE Press, 2004.

[12] Daida, J., Samples, M., et al. Demonstrating Constraints to Diversity
with a Tunably Difficult Problem for GP. In CEC 2004. Piscataway:
IEEE Press, 2004.

[13] Goldberg, D. & K. Deb, "A comparative analysis of selection scheme
used in genetic algorithms," in FOGA’91, Rawlins Ed. San Mateo,
CA: Morgan Kaufman, 1991.

[14] Luke, S. ECJ, George Mason University, ECLab, Fairfax 2004.

[15] Luke, S. and Panait, L. Is the Perfect the Enemy of the Good? In
GECCO 2003. Spring-Verlag, Berlin, 2003.

[16] Luke, S. and L. Spector. 1998. A revised comparison of crossover
and mutation in GP. In GP98: J. Koza et al, eds. 208--213. San
Francisco: Morgan Kaufmann.

[17] Meysenburg, M. M., & Foster, J. A. Random generator quality and
GP performance. In Banzhaf, W. et al. (Eds). In GECCO 1999. San
Francisco, CA: Morgan Kaufmann Publishers.

[18] Motoki, T. Calculating the Expected Loss of Diversity of Selection
Schemes. Evolutionary Computation 10(4): 397-422 (2002).

[19] Paterson, N. and Livesey, M. Performance Comparison in GP. In
LPB GECCO 2002. San Francisco, CA: Morgan Kaufmann 2002.

[20] Spice. bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/

[21] Syswerda, G. A Study of Reproduction in Generational and Steady
State Genetic Algorithms, in FOGA’91, Rawlings ed., pp. 94-- 101,
San Mateo: Morgan Kaufmann, 1991.

[22] Thain D., and M. Livny, Building Reliable Clients and Servers, in
Foster et al. (EDS), The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 2003.

[23] Ursem, R.K. Diversity-Guided Evolutionary Algorithms. In PPSN-
2002, pages 462-71, Springer-Verlag. 2002.

[24] Zongker, D. and Punch, W. lilgp, Michigan State University, GA
Research and Applications Group, Lansing 1995.

