Skip to main content

Advertisement

Log in

The Use of Genetic Programming and Regression Analysis for Modeling the Modulus of Elasticity of NSC and HSC

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Artificial intelligence has recently drawn the attention of explorers to predict the physical, chemical and mechanical properties of normal-strength concrete (NSC) and high-strength concrete (HSC). This study presents gene expression programming (GEP) and regression analysis (RA) for modeling the modulus of elasticity \({(E_{\rm c})}\) from the compressive strength \({(f_{\rm c})}\) values of NSC and HSC. In order to create the models, experimental results of NSC and HSC are collected from the published literature. The evaluated results by training, testing and checking of the GEP and RA models are compared with the results obtained from the experimental studies, the formulations presented by some national building codes and the formulations proposed by some authors available in the literature. These comparisons and statistic results show that GEP and RA models are very effective methods for calculating the \({E_{\rm c}}\) from \({f_{\rm c}}\) of NSC and HSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Almusallam A.A., Beshr H., Maslehuddin M., Al-Amoudi O.S.B.: Effect of silica fume on the mechanical properties of low quality coarse aggregate concrete. Cem. Concr. Compos. 26(7), 891–900 (2004)

    Article  Google Scholar 

  2. Shannag M.J.: High strength concrete containing natural pozzolan and silica fume. Cem. Concr. Compos. 22(6), 399–406 (2000)

    Article  Google Scholar 

  3. Tangchirapat W., Jaturapitakkul C., Chindaprasirt P.: Use of palm oil fuel ash as a supplementary cementitious material for producing high-strength concrete. Constr. Build. Mater. 23(7), 2641–2646 (2009)

    Article  Google Scholar 

  4. ACI 363-92: State-of-the-art report on high-strength concrete. Manual of concrete practice, Part 1: Materials and general properties of concrete. ACI, Detroit (1994)

  5. Hover K.C.: Concrete mixture proportioning with water-reducing admixtures to enhance durability: A quantitative model. Cem. Concr. Compos. 20(2-3), 113–119 (1998)

    Article  Google Scholar 

  6. Bharatkumar B.H., Narayanan R., Raghuprasad B.K., Ramachandramurthy D.S.: Mix proportioning of high performance concrete. Cem. Concr. Compos. 23(1), 71–80 (2001)

    Article  Google Scholar 

  7. CEP-FIP: Application of high performance concrete. Report of CEP-FIP working group on HS/HPC, p.69 (1994)

  8. Rashid M.A., Mansur M.A., Paramasivam P.: Correlations between mechanical properties of high-strength concrete. J. Mater. Civil Eng. 14(3), 203–238 (2002)

    Article  Google Scholar 

  9. ACI 318-99: Building code requirements for structural concrete (318-99) and commentary (318R-99). American Concrete Institute, Farmington Hills (1999)

  10. Kim J-K., Han S.H., Song Y.C.: Effect of temperature and aging on the mechanical properties of concrete: Part I. Experimental results. Cem. Concr. Res. 32(7), 1087–1094 (2002)

    Article  Google Scholar 

  11. prEN 1992-1:2001 (1st draft): Eurocode 2. Design of concrete structures Part 1: General rules and rules for buildings. CEN, Brussels (2000)

  12. Sarıdemir M.: Effect of silica fume and ground pumice on compressive strength and modulus of elasticity of high strength concrete. Constr. Build. Mater. 49, 484–489 (2013)

    Article  Google Scholar 

  13. Gesoğlu M., Güneyisi E., Özturan T.: Effects of end conditions on compressive strength and static elastic modulus of very high strength concrete. Cem. Concr. Res. 32(10), 1545–1550 (2002)

    Article  Google Scholar 

  14. Alexander M.G., Milne T.I.: Influence of cement blend and aggregate type on stress–strain behavior and elastic modulus of concrete. J. ACI Mater. 92(3), 227–234 (1995)

    Google Scholar 

  15. Wu K.R., Chen B., Yao W., Zhang D.: Effect of coarse aggregate type on mechanical properties of high-performance concrete. Cem. Concr. Res. 31(10), 1421–1425 (2001)

    Article  Google Scholar 

  16. Kliszczewicz A., Ajdukiewicz A.: Differences in instantaneous deformability of HS/HPC according to the kind of coarse aggregate. Cem. Concr. Compos. 24(2), 263–267 (2002)

    Article  Google Scholar 

  17. Zhou, C.; Xiao, W.; Tirpak, T.M.; Nelson, P.C.: Discovery of classification rules by using gene expression programming. In the Proceedings of the 2002 International Conference on Artificial Intelligence (IC-AI’02), CSREA Press, Las Vegas, pp. 1355–1361 (2002).

  18. Baykasoğlu A., Dereli T., Tanış S.: Prediction of cement strength using soft computing techniques. Cem. Concr. Res. 34(11), 2083–2090 (2004)

    Article  Google Scholar 

  19. Gen M., Cheng R.: Genetic Algorithms and Engineering Design. Wiley, USA (1997)

    Google Scholar 

  20. Nassif H.H., Najm H., Suksawang N.: Effect of pozzolanic materials and curing methods on the elastic modulus of HPC. Cem. Concr. Compos. 27(6), 661–670 (2005)

    Article  Google Scholar 

  21. Galobardes I., Cavalaro S.H., Aguado A., Garcia T.: Estimation of the modulus of elasticity for sprayed concrete. Constr. Build. Mater. 53, 48–58 (2014)

    Article  Google Scholar 

  22. Kim J.-K., Han S.H., Park Y.D., Noh J.H.: Material properties self-following concrete. J. Comput. Civil. Eng. 10(4), 244–249 (1998)

    Google Scholar 

  23. Siddique R.: Effect of fine aggregate replacement with Class F fly ash on the mechanical properties of concrete. Cem. Concr. Res. 33(4), 539–547 (2003)

    Article  Google Scholar 

  24. Güneyisi E., Gesoğlu M., Özturan T.: Properties of rubberized concretes containing silica fume. Cem. Concr. Res. 34(12), 2309–2317 (2004)

    Article  Google Scholar 

  25. Giaccio G., de Sensale G.R., Zerbino R.: Failure mechanism of normal and high-strength concrete with rice-husk ash. Cem. Concr. Compos. 29(7), 566–574 (2007)

    Article  Google Scholar 

  26. Qian X., Li Z.: The relationships between stress and strain for high-performance concrete with metakaolin. Cem. Concr. Res. 31, 1607–1611 (2001)

    Article  Google Scholar 

  27. Wee T.H., Chin M.S., Mansur M.A.: Stress-strain relationship of high-strength concrete in compression. J. Mater. Civil Eng. 8(2), 70–76 (1996)

    Article  Google Scholar 

  28. Suhaendi S.L., Horiguchi T.: Effect of short fibers on residual permeability and mechanical properties of hybrid fibre reinforced high strength concrete after heat exposition. Cem. Concr. Res. 36(9), 1672–1678 (2006)

    Article  Google Scholar 

  29. Parra C., Valcuende M., Gómez F.: Splitting tensile strength and modulus of elasticity of self-compacting concrete. Constr. Build. Mater. 25(1), 201–220 (2011)

    Article  Google Scholar 

  30. Aslani F., Nejadi S.: Self-compacting concrete incorporating steel and polypropylene fibers: Compressive and tensile strengths, moduli of elasticity and rupture, compressive stress–strain curve, and energy dissipated under compression. Compos.: Part B 53, 121–133 (2013)

    Article  Google Scholar 

  31. Diaz-Loya E.I., Allouche E.N., Vaidya S.: Mechanical properties of fly-ash-based geopolymer concrete. J. ACI Mater. 108(3), 300–306 (2011)

    Google Scholar 

  32. Malaikah A.S.: A proposed relationship for the modulus of elasticity of high strength concrete using local materials in Riyadh. Eng. Sci. 17(2), 131–142 (2006)

    Google Scholar 

  33. Smaoui N., Berube M.A., Fournier B., Bissonnette B., Durand B.: Effects of alkali addition on the mechanical properties and durability of concrete. Cem. Concr. Res. 35(2), 203–212 (2005)

    Article  Google Scholar 

  34. Schindler A.K., Barnes R.W., Roberts J.B., Rodriguez S.: properties of self-consolidating concrete for prestressed members. J. ACI Mater. 104(1), 53–61 (2007)

    Google Scholar 

  35. González-Ortega M.A., Segura I., Cavalaro S.H.P., Toralles-Carbonari B., Aguado A., Andrello A.C.: Radiological protection and mechanical properties of concretes with EAF steel slags. Constr. Build. Mater. 51(31), 432–438 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Sarıdemir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarıdemir, M., Severcan, M.H. The Use of Genetic Programming and Regression Analysis for Modeling the Modulus of Elasticity of NSC and HSC. Arab J Sci Eng 41, 3959–3967 (2016). https://doi.org/10.1007/s13369-016-2043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2043-4

Keywords

Navigation