Skip to main content

Probabilistic Model Building and Competent Genetic Programming

  • Chapter
Genetic Programming Theory and Practice

Part of the book series: Genetic Programming Series ((GPEM,volume 6))

Abstract

This paper describes probabilistic model building genetic programming (PM-BGP) developed based on the extended compact genetic algorithm (eCGA). Unlike traditional genetic programming, which use fixed recombination operators, the proposed PMBGA adapts linkages. The proposed algorithms, called the extended compact genetic programming (eCGP) adaptively identifies and exchanges non-overlapping building blocks by constructing and sampling probabilistic models of promising solutions. The results show that eCGP scales-up polynomially with the problem size (the number of functionals and terminals) on both GP-easy problem and boundedly difficult GP-hard problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baluja, S. (1994). Population-based incremental learning: A method of integrating genetic search based function optimization and competitive learning. Technical Report CMU-CS-94–163, Carnegie Mellon University.

    Google Scholar 

  • Bosman, P. and Thierens, D. (1999). Linkage information processing in distribution estima-tion algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference, Banzhaf, W. (Ed. ), pp. 60–67. Orlando, FL, July 1999. Morgan Kauffmann.

    Google Scholar 

  • Chen, Y. -P. and Goldberg, D. E. (2002). Introducing start expression genes to the linkage learning genetic algorithm. In Parallel Problem Solving from Nature-PPSN VII, Lecture Notes in Computer Science Vol. 2439, pp. 351–360. Springer, Berlin. (Also IlliGAL Report No. 2002007. )

    Chapter  Google Scholar 

  • Deb, K. and Goldberg, D. E. (1993). Analyzing deception in trap functions. In Foundations of Genetic Algorithms 2, D. Whitley (Ed. ), pp. 93–108. Morgan Kaufmann.

    Google Scholar 

  • Deb, K. and Goldberg, D. E. (1994). Sufficient conditions for deceptive and easy binary functions. Annals of Mathematics and Artificial Intelligence 10: 385–408. (Also IlliGAL Report No. 92001. )

    Article  MathSciNet  MATH  Google Scholar 

  • Goldberg, D. E. (1987). Simple genetic algorithms and the minimal, deceptive problem. In Genetic algorithms and simulated annealing, Davis, L. (Ed. ), pp. 74–88. Los Altos, CA: Morgan Kaufmann.

    Google Scholar 

  • Goldberg, D. E. (1999). The race, the hurdle, and the sweet spot: Lessons from genetic algorithms for the automation of design innovation and creativity. In Evolutionary Design by Computers, Bentley, P. (Ed. ), pp. 105–118. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Goldberg, D. E. (2002). The design of innovation: Lessons from and for competent genetic algorithms. Boston MA: Kluwer Academic Publishers.

    MATH  Google Scholar 

  • Goldberg, D. E., Deb, K. and Clark, J. H. (1992). Genetic algorithms, noise, and the sizing of populations. Complex Systems 6(4): 333–362. (Also IlliGAL Report No. 91010. )

    MATH  Google Scholar 

  • Goldberg, D. E., Deb, K., Kargupta, H. and Harik, G. (1993). Rapid, accurate optimization of difficult problems using fast messy genetic algorithms. In Proceedings of the Fifth Interna-tional Conference on Genetic Algorithms, S. Forrest (Ed. ), pp 56–64. Morgan Kaufmann. (Also IlliGAL Report No. 93004. )

    Google Scholar 

  • Goldberg, D. E., Korb, B. and Deb, K. (1989). Messy genetic algorithms: Motivation, analysis, and first results. Complex Systems 3(5): 493–530. (Also IlliGAL Report No. 89003. )

    MathSciNet  MATH  Google Scholar 

  • Goldberg, D. E. and O’Reilly, U. -M. (1998). Where does the good stuff go, and why? How contextual semantics influences program structure in simple genetic programming. In Proceedings of the First European Workshop on Genetic Programming (EuroGP ’98), W. Banzhaf et al. (Eds. ), pp. 16–36. Springer, Berlin.

    Google Scholar 

  • Harik, G. (1999a). Linkage learning via probabilistic modeling in the ECGA. IlliGAL Report No. 99010. Urbana, IL: University of Illinois at Urbana-Champaign.

    Google Scholar 

  • Harik, G. R. (1999b). Learning gene linkage to efficiently solve problems of bounded difficulty using genetic algorithms. Doctoral dissertation, University of Michigan, Ann Arbor, MI. (Also IlliGAL Report No. 97005. )

    Google Scholar 

  • Harik, G. and Goldberg, D. E. (1997). Learning linkage. In Foundations of Genetic Algorithms 4, R. Belew and M. Vose (Eds. ), pp. 247–262. Morgan Kaufmann. (Also IlliGAL Report No. 96006. )

    Google Scholar 

  • Harik, G., Lobo, F. and Goldberg, D. E. (1998). The compact genetic algorithm. In IEEE Con-ference on Evolutionary Computation, pp. 523–528. (Also IlliGAL Report No. 97006. )

    Google Scholar 

  • Kargupta, H. (1996). The gene expression messy genetic algorithm. In Proceedings of the Inter-national Conference on Evolutionary Computation, pp 814–819. Springer Verglag.

    Google Scholar 

  • Koza, John (1992). Genetic Programming: On the Programming of Computers by Natural Selection. MIT Press, Cambridge, MA, USA.

    MATH  Google Scholar 

  • Larrañaga, P. and Lozano, J. A. (Eds. ) (2002). Estimation of distribution algorithms. Boston, MA: Kluwer Academic Publishers.

    MATH  Google Scholar 

  • Munetomo, M. and Goldberg, D. E. (1999). Linkage identification by non-monotonicity detection for overlapping functions. Evolutionary Computation 7(4): 377–398.

    Article  Google Scholar 

  • O’Reilly, U. -M. and Goldberg, D. E. (1998). How fitness structure affects subsolution acquisition in genetic programming. In Genetic Programming 1998: Proceedings of the Third Annual Conference, W. Banzhaf et al (Eds. ), pp. 269–277.

    Google Scholar 

  • Pelikan, M. (2002a). Bayesian optimization algorithm: From single level to hierarchy. Doctoral dissertation, University of Illinois at Urbana-Champaign, Urbana, IL.

    Google Scholar 

  • Pelikan, M. (2002b). A survey of optimization by building and using probabilistic models. Computational Optimization and Applications 21: 5–20. (Also IlliGAL Report No. 99018).

    Article  MathSciNet  MATH  Google Scholar 

  • Pelikan, M. and Goldberg, D. E. (2001). Escaping hierarchical traps with competent genetic al-gorithms. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 511–518.

    Google Scholar 

  • Pelikan, M., Goldberg, D. E. and Cant¨ú-Paz, E. (2000). Linkage learning, estimation distribution, and Bayesian networks.Evolutionary Computation 8(3): 314–341.

    Article  Google Scholar 

  • Pelikan, M., Goldberg, D. E. and Sastry, K. (2001). Bayesian optimization algorithm, decision graphs, and Occam’s razor. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 519–526. (Also IlliGAL Report No. 2000020. )

    Google Scholar 

  • Pelikan, M. and Mühlenbein, H. (1999). The bivariate marginal distribution algorithm. In Advances in Soft Computing-Engineering Design and Manufacturing, Roy, R., Furuhashi, T. and Chawdhry, P. K. (Eds. ), pp. 521–535. London: Springer-Verlag.

    Google Scholar 

  • Pelikan, M., Sastry, K. and Goldberg, D. E. (2003). Scalability of the Bayesian optimization algorithm. International Journal of Approximate Reasoning 31(3): 221–258. (Also IlliGAL Report No. 2002024. )

    Article  MathSciNet  Google Scholar 

  • Salustowicz, R. P. and Schmidhuber, J. (1997). Probabilistic incremental program evolution. Evolutionary Computation 5(2): 123–141.

    Article  Google Scholar 

  • Sastry, K. and Goldberg, D. E. (2003). Scalability of simple selectorecombinative genetic al-gorithms on problems with tight linkage. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2003). (Also IlliGAL Report No. 2002013. )

    Google Scholar 

  • Sastry, K., O’Reilly, U. -M., Goldberg, D. E. and Hill, D. (2003). Building-block supply in genetic programming. In Genetic Programming, Theory and Practice, B. Worzel and R. Riolo (Eds. ). Kluwer. (Also IlliGAL Report No. 2003011. )

    Google Scholar 

  • Spector, L., Langdon, W. B., O’Reilly, U. -M. and Angeline, P. J. (Eds. ) (1999). Advances in genetic programming 3. Cambridge, MA: MIT Press.

    Google Scholar 

  • Thierens, D. (1999). Scalability problems of simple genetic algorithms. Evolutionary Computa-tion 7(4): 331–352.

    Article  Google Scholar 

  • Thierens, D. and Goldberg, D. E. (1993). Mixing in genetic algorithms. In Proceedings of the Fifth International Conference On Genetic Algorithms, S. Forrest (Ed. ), pp. 38–45. Morgan Kaufmann.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sastry, K., Goldberg, D.E. (2003). Probabilistic Model Building and Competent Genetic Programming. In: Riolo, R., Worzel, B. (eds) Genetic Programming Theory and Practice. Genetic Programming Series, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8983-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8983-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4747-7

  • Online ISBN: 978-1-4419-8983-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics