
Eric Schulte
Candidate

Computer Science
Department

This dissertation is approved, and it is acceptable in quality and form for publication:

Approved by the Dissertation Committee:

Stephanie Forrest, Chairperson

Westley Weimer

Jedidiah Crandall

Melanie Moses



Neutral Networks of Real-World Programs
and their Application to Automated

Software Evolution

by

Eric Schulte

B.A., Mathematics, Kenyon College, 2004

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Computer Science

The University of New Mexico

Albuquerque, New Mexico

July 2014



iii

©2014, Eric Schulte



iv

Neutral Networks of Real-World Programs
and their Application to Automated

Software Evolution

by

Eric Schulte

B.A., Mathematics, Kenyon College, 2004

Ph.D., Computer Science, University of New Mexico, 2014

Abstract

The existing software development ecosystem is the product of evolutionary forces,

and consequently real-world software is amenable to improvement through automated

evolutionary techniques. This dissertation presents empirical evidence that software

is inherently robust to small randomized program transformations, or mutations.

Simple and general mutation operations are demonstrated that can be applied to

software source code, compiled assembler code, or directly to binary executables.

These mutations often generate variants of working programs that differ significantly

from the original, yet remain fully functional. Applying successive mutations to the

same software program uncovers large neutral networks of fully functional variants

of real-world software projects.

These properties ofmutational robustness and the corresponding neutral networks

have been studied extensively in biology and are believed to be related to the capacity

for unsupervised evolution and adaptation. As in biological systems, mutational

robustness and neutral networks in software systems enable automated evolution.
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The dissertation presents several applications that leverage software neutral net-

works to automate common software development and maintenance tasks. Neutral

networks are explored to generate diverse implementations of software for improving

runtime security and for proactively repairing latent bugs. Next, a technique is in-

troduced for automatically repairing bugs in the assembler and executables compiled

from off-the-shelf software. As demonstration, a proprietary executable is manipu-

lated to patch security vulnerabilities without access to source code or any aid from

the software vendor. Finally, software neutral networks are leveraged to optimize

complex nonfunctional runtime properties. This optimization technique is used to

reduce the energy consumption of the popular PARSEC benchmark applications by

20% as compared to the best available public domain compiler optimizations.

The applications presented herein apply evolutionary computation techniques to

existing software using common software engineering tools. By enabling evolution-

ary techniques within the existing software development toolchain, this work is more

likely to be of practical benefit to the developers and maintainers of real-world soft-

ware systems.
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Chapter 1

Introduction

We present empirical studies of the effects of small randomized transformations, or

mutations, on a variety of real-world software. We find that software functionality is

inherently robust to mutation. By successively applying mutations we explore large

neutral networks of fully functional variants of existing software projects. We leverage

software mutational robustness and the resulting neutral networks to improve software

through evolutionary processes of stochastic modification and fitness evaluation that

mimic natural selection. These methods are implemented using familiar tools from

existing software development toolchains, and yield several techniques for software

maintenance and improvement which are practical, widely applicable, and easily

integrated into existing software development environments.

We demonstrate multiple applications of evolutionary techniques to the improve-

ment of real-world software, including automated techniques to repair bugs in off-

the-shelf software and patch exploits in closed source binaries, techniques to generate

diverse implementations of a software specification, and methods to optimize complex

runtime properties of software. By combining the techniques of software engineering

and evolutionary computation this dissertation advances a shared research objective

of both fields: automating software development.
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We propose that the existing software development ecosystem is the product of

evolutionary forces, and is thus amenable to improvement through automated evo-

lutionary techniques. We present empirical evidence of mutational robustness and

neutral networks in software—both of which are hallmarks of evolution previously

only studied in biological systems. We demonstrate multiple applications of evolu-

tionary techniques for software improvement. The remainder of this section motivates

the work, highlights the main empirical results and practical applications, outlines

the organization of the remainder of the document, and provides instructions for

reproducing the experiments presented herein.

Motivation: Over the last fifty years the production and maintenance of software

has emerged as an important global industry, consuming the efforts of 1.3 million

software developers in the United States alone in 2008 [25]. This is projected to

increase by 21%, or to over 1.5 million by 2018 [25]. As it stands now, software

development is difficult, expensive, and error prone. Software bugs cost as much as

$312 billion per year [20], patching a single security vulnerability can cost millions

of dollars [152], and while data centers are estimated to have consumed over 1%

of total global electricity usage in 2010 [88], no existing mainstream compilers offer

optimizations designed specifically to reduce energy consumption.

Empirical Results: We find that existing software projects, when manipulated

using common software engineering tools, exhibit properties such as mutational ro-

bustness and large neutral networks which have previously been studied only in

biological systems. In such biological systems mutational robustness and neutral

networks have been shown to enable evolutionary processes to function effectively.

Our results suggest that the same is true of software systems.

Applications Evolutionary computation improves the fitness, or performance, of

a population of candidate solutions through an iterative cycle of randommodification,

evaluation, and selection in a process greatly resembling natural selection [63, 64].

Evolutionary computation techniques typically begin with an initial population of
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Figure 1.1: Improving real-world software by applying evolutionary computation
techniques which are implemented using software engineering tooling.

randomly generated individuals. The methods of representation and the transforma-

tion operators of candidate solutions are often domain-specific and selected for the

particular task at hand [130].

This work improves an existing instance of software that is already close to op-

timal.1 Instead of using domain-specific representations and transformations (as in

most prior work in genetic programming), existing software engineering tools are used

to ensure applicability to the wide range of complex software used in the real world as

well as interoperability with existing software development environments. Building

on prior work using genetic programming to repair bugs in existing software [161, 96],

we adopt evolutionary computation techniques to support the software engineering

applications presented in later chapters.

Organization We present empirical results suggesting that today’s software en-

gineering toolchain supports the operations required by evolutionary computation

techniques (Chapter 3; including previously unpublished work and work published

in Genetic Programming and Evolvable Machines (GPEM) [144]), and more specifi-

1The techniques studied herein more closely resemble evolution in natural systems than
traditional applications of evolutionary computation do. Biological systems do not create
new organisms from whole cloth but rather improve extant organisms.
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cally, the program representation, transformation operators, and evaluation functions

(Sections 3.1 and 3.2; including previously unpublished work and work published in

Automated Software Engineering (ASE) 2010 [143]). We show that software systems

have high mutational robustness and large neutral networks, which makes them

amenable to improvement through evolutionary processes (Section 3.3).

We next apply evolutionary techniques to a number of software engineering tasks

such as repairing bugs in off-the-shelf software (Chapter 5; published in Architectural

Support for Programming Languages and Operating Systems (ASPLOS) 2013 [141]),

patching vulnerabilities in a closed-source binary (Chapter 6; previously unpub-

lished), generating diverse implementations of a specification (Chapter 4; published

in GPEM [144]), and reducing the energy consumption of popular benchmark pro-

grams (Chapter 7; published in ASPLOS 2014 [142]). We conclude with a discussion

of the outstanding challenges standing in the way of wider adoption of these tech-

niques, possible steps to overcome these challenges, and a summary of the impact of

this work to date (Section 8).

We review the relevant literature (Chapter 2) and define the technical terms used

in this work (Glossary).

Reproducibility The tools, data, and instructions required to reproduce the

experimental results presented in this work are provided. Appendix A describes the

software developed for this research and includes pointers to supporting libraries

and the implementations of applications. Appendix B describes the data sets used

in the experiments, including multiple suites of benchmark programs. In some cases

the analysis that produced Figures and Tables is preserved in Org-mode files [41],

to support automated reproducibility [140], and links to these files are provided as

footnotes.
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Chapter 2

Background and Literature Review

This research builds upon previous studies of biological and computational systems.

The study of robustness and evolvability in biology provides the concepts and ter-

minology with which we investigate the same principles in computational systems.

Moving from the biological to the computational, this chapter reviews the most

relevant results from prior work in biology (Section 2.1), evolutionary computation

(Section 2.2), and software engineering (Section 2.3). The final section of this chap-

ter focuses on the immediate precursor work; the use of evolutionary techniques to

automatically repair defects in software source code (Section 2.4).

2.1 Robustness and Evolvability in Biology

The ability of living systems to maintain functionality across a wide range of environ-

ments and to adapt to new environments is unmatched by man-made systems. The

relationship between robustness and evolvability in living systems has been studied

extensively. This section reviews this field of study, highlighting the elements most

relevant to this dissertation.
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Living systems consist of a genotype and a phenotype. The genotype is the herita-

ble information which specifies, or gives rise to the organism. The resulting organism

and its behavior, or interaction with the world, is the phenotype.

Both the genetic and phenomenal components have associated types of robust-

ness. Genetic robustness, or mutational robustness, is the ability of a genotype to

consistently produce the same phenotype despite perturbations to its genetic mate-

rial. Genetic robustness can be achieved in different ways and on different levels. At

the lowest level, important amino acids are over-represented in the space of possible

codon encodings of triplets of base pairs, making random changes to encoding more

likely to produce useful amino acids. Further, functionally similar amino acids have

similar encodings. As a result of these properties, many small mutations in amino

acid codings are likely to encode identical or similar amino acids [86], making the

organism more robust to mutations affecting amino acid encodings. At higher levels,

vital functions are often degenerate, meaning that they are implemented by diverse

partially redundant systems [43]. For example, in the nervous system no two neu-

rons are equivalent, but no single neuron is necessary, resulting in a system whose

functionality is robust to small changes. Degenerate systems may be more evolvable

than systems which achieve robustness through mere redundancy [48, 163]. Finally,

many mechanisms have evolved that buffer environmental changes, e.g., metabolic

pathways whose outputs are stable over a wide range of inputs [157].

Environmental robustness is the ability of a phenotype to maintain functionality

despite environmental perturbations. Many of the biological mechanisms responsible

for environmental robustness improve the overall robustness of the organism and as a

result contribute to mutational robustness [98]. There is a strong correlation between

genetic and environmental robustness [84].

Mutational robustness appears to be an evolved feature because evolution tends

to increase the mutational robustness of important biological components [31, 164].

Although it is unlikely that mutational robustness is explicitly favored by natural
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selection as a protection against mutation (due to the low mutation rates in most

populations), it seems likely that it arose as a side-effect of evolution to enhance

environmental robustness [153].

In evolutionary biology fitness is the measurement of an organism’s ability to

survive and reproduce. Fitness landscapes are used to visualize the fitness of related

genotypes [165]. Typically one dimension of a fitness landscape encodes an organism’s

fitness as a scalar, and all other dimensions are used to represent genotypes. This

space of genotypes may be a high-dimensional discrete space in which each point is

a genotype and the immediate neighbors of each point are the genotypes that are

reachable by application of a single mutation to the original point.

A mutationally robust organism has many genotypes that map to phenotypes

with the same fitness [82]. Regions of the space consisting of genotypes with iden-

tical fitness are called neutral spaces [81], or neutral networks, and are depicted in

Figure 2.1.

Figure 2.1: Neutral spaces are subsets of an organism’s fitness landscapes in which
every organism has identical fitness.
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The relationship between mutational robustness and neutral networks and evolv-

ability is complex [157, 156, 42]. Mutational robustness can be explicitly selected for

in static environments and selected against in dynamic environments [164, 111]. Pe-

riods of time without selection can increase mutational robustness [153], and periods

of strong directional selection can reduce mutational robustness [60].

Mutational robustness directly inhibits evolution by reducing the likelihood that

any given genetic modification will have a phenotypic effect. This inhibitory effect

can dominate at the small time scales of individual mutations. In some cases overly

large neutral networks can actually reduce evolvability [5]. However, large neutral

networks predominately promote evolvability. Populations tend to spread out across

neutral networks via a process called drift, accruing genetic diversity and novel ge-

netic material [30, 145, 18, 99]. This accrued genetic material is believed to play an

important role in evolutionary innovation, and provides the genetic fodder required

for large evolutionary advances [155, 107, 125, 128, 3].

2.2 Evolutionary Computation

This section describes research into the application of evolutionary techniques in

computational systems. We describe the fields of digital evolution and evolutionary

algorithms. In digital evolution computational systems are used to perform experi-

ments not yet feasible in biological systems. In evolutionary algorithms engineered

systems are optimized using algorithms which mimic the biological process of natural

selection.
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2.2.1 Digital evolution

Some of the research into evolutionary biology discussed in Section 2.1 rely on ex-

periments not based on direct observation of biological systems, but rather on com-

putational models of evolving systems. The evolutionary time frames and the degree

of environmental controls required for such experiments are not yet achievable in

experiments using biological systems. In digital evolution, much more control and

measurement is possible via computational models of evolving populations. These

models represent genotypes using specialized assembly languages in environments in

which their execution (phenotype) determines their reproductive success [126].

In addition to modeling biological evolution, work in digital evolution has gen-

erated hypotheses about those properties of programming languages that might en-

courage evolvability [124]. Although the languages, or chemistries, studied in these

computational environments are far from traditional programming languages, some

predictions do transfer, such as the brittleness of absolute versus symbolic address-

ing to reference locations in an assembler genome[124]. Work in the computer virus

community has produced similar research on the evolvability of traditional x86 as-

sembly code [69]. One of the contributions of this dissertation is to support some

of these claims and intuitions while disproving others. For example, Section 3.3.2.5

confirms the brittleness of absolute addressing in Executable and Linkable Format

(ELF) files, while in Chapter 5 we find that x86 assembler (ASM) may be effectively

evolved, contrary the conclusions of the computer virus community.

2.2.2 Evolutionary Algorithms

Evolutionary algorithms, including both the genetic algorithms and genetic program-

ming sub-fields, predate the work on digital evolution.
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Genetic algorithms are techniques which apply the Darwinian view of natural

selection [36] to engineering optimization problems [63, 113]. Genetic algorithms

require a fitness function which the algorithm seeks to maximize. A population of

candidate solutions, often represented as a vector, is randomly generated, and then

maintained and manipulated through transformations operations typically including

mutation and crossover.1 The algorithm proceeds in a cycle of fitness based selection,

transformation, and evaluation, which is usually organized into generations, until a

satisfactory solution is found or a runtime budget is exhausted.

Steady state genetic algorithms such as those used in Chapters 6 and 7 are not

organized into discrete generations, rather steady state genetic algorithms apply the

selection, transformation and evaluation cycle to single individuals [104]. New in-

dividuals are immediately inserted into the population and when the size of the

population exceeds the maximum allowed population size individuals are selected for

eviction. The use of a steady state evolutionary algorithm simplifies the implementa-

tion of genetic algorithms by removing the need for explicit handling of generations.

Steady state algorithms also reduce the maximum memory overhead to almost 50%

of generational techniques because of the interleaved individual creation and evic-

tion. Of most relevance to this work, steady state algorithms are more exploitative

than generational genetic algorithms and are thus more appropriate in situations

which begin with a highly fit solution, such as in this work which uses evolutionary

techniques to improve existing software.

Genetic programming is a specialization of genetic algorithms in which the candi-

date solutions are programs, often represented as Abstract Syntax Trees(ASTs) [64,

89], and have been applied to a number of real-world problems [130, Chapter 12].

1The construction of an initial population “from scratch” is a significant difference be-
tween the practice of evolutionary algorithms and the application of natural selection in
biological systems, where the starting point of evolutionary processes is always a relatively
fit organism (cf. NK-studies [128]). The applications presented in the following chap-
ters only work to improve extant software, and more closely resemble natural selection in
biological systems.
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Genetic programming languages are often much simpler than those used by human

programmers and rarely resemble regular programming languages, although in some

cases machine code has been evolved directly [91]. Recently genetic programming

techniques have been applied to the repair of extant real-world programs [161]. This

application is discussed at greater length in Section 2.4.

Genetic algorithms and genetic programming differ both in the way candidate so-

lutions are represented (by using vectors and trees respectively [130, Chapter 2]) and

in the application to programs in the case of genetic programming. The work pre-

sented in this dissertation applies to existing programs as does genetic programming.

However, vector representations are often used, as they are in genetic algorithms. so

the blanket term “evolutionary computation” is used in this dissertation to avoid

confusion.

The performance of evolutionary algorithms are highly dependent upon the prop-

erties of the fitness landscape as defined by their fitness function. NK-studies have

been used to access the effectiveness of these techniques over tunable fitness land-

scapes [10, Section B2.7.2]. In these studies the values N and K may be tuned to

control the ruggedness of the landscape being searched. N controls the dimension-

ality of the space, and K controls the epistasis (the degree of interaction between

parts) of the space. Chapter 7 in this work explores the use of smoother fitness

functions than those used in prior chapters. Further discussion of fitness functions

are given in Sections 3.6.4 and 8.2.2.

Prior work in genetic programming has leveraged vector program representa-

tions applied to machine code. The limited amount of previous work in this field

falls into two categories. The first category guarantees that the code-modification

operators can produce only valid programs, often through complex processes in-

corporating domain-specific knowledge of the properties of the machine code being

manipulated [119, 127]. In the second approach, the genetic operators are completely

general and the task of determining program validity is relegated to the compiler and
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execution engine [91]. This dissertation takes the latter approach, and we find that

both compiler Intermediate Representations(IRs) and ASM are surprisingly robust

to naïve modifications (Section 3.3.2.5).

2.3 Software Engineering

This dissertation contributes to the larger trend in software engineering of emphasiz-

ing acceptable performance over formal correctness. We review recent work in this

vein and highlight tools and methods of particular interest.

Approximate computation encompasses a variety of techniques that seek to ex-

plore the trade-off of reduced accuracy in computation for increased efficiency. The

main motivation behind this work is the insight that existing computational systems

often provide much more accuracy and reliability than is strictly required from the

level of hardware up through user-visible results. Examples of promising approx-

imate computation techniques include neural accelerators for efficiently executing

delineated portions of software applications [47], and languages for the construction

of reliable programs over unreliable hardware [27, 19].

In failure oblivious computing [134], common memory errors such as out-of-

bounds reads and writes are ignored or handled in ways that are often sufficient

to continue operating but not guaranteed to preserve program semantics. For ex-

ample, a memory read of a position beyond the end of available memory can be

handled in a number of different ways. The requested address can be “wrapped”

modulo the largest valid memory address. Memory can be represented as a hash

table in which addresses are merely keys and new entries are created when needed.

In this case reads of uninitialized hash entries can simply return random values. By

preventing common errors such as buffer overruns these techniques have been shown

to increase the security and reliability of some software systems. Failure oblivious
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computing assumes that in many cases security and reliability are more important

than guaranteed semantics preservation [132, 135, 102, 133].

Beal and Sussman take a similar approach proposing a system for increasing the

robustness of software by pre-processing program inputs [14]. Under the assumption

that most software operates on only a sparse subset of the possible inputs, they

propose a system for replacing aberrant or unexpected inputs with fabricated inputs

remembered from previous normal operation. This system of input “hallucination”,

is shown to improve the robustness of a simple character recognition system.

While the previous system learns and enforces invariants on program input,

the clearview system [129] learns invariants from trace data extracted from a run-

ning binary using Daikon [46]. When these invariants are violated by an exploit

of a vulnerability in the original program the system automatically applies an

invariant-preserving patch to the running binary, which ensures continued execution.

ClearView was evaluated against a hostile red-team and was able to successfully re-

pair seven out of ten of the red team’s attacks [129]. Despite these impressive results

the ClearView system has a number of limitations. The tool used to collect invariants

(Daikon) is not exhaustive (e.g., missing polynomial and array invariants [118]), is

only able to detect a limited set of errors, is only able to repair a pre-configured set

of errors for which hand written templates exist, and is not guaranteed to preserve

correct program behavior.

The approaches mentioned above are applied to executing software systems.

There are also techniques that apply to the pre-compiled software source-code, or

genotype. One family of such techniques includes loop-perforation [112] and dy-

namic knobs [62]. In loop-perforation, software is compiled to a simple IR, looping

constructs are found in this IR and then modified to execute the loop fewer times

by skipping some loop executions. This technique can be used to reduce energy and

runtime costs of software while maintaining probabilistic bounds of expected cor-

rectness. This work is notable for introducing program transformations that are not
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formally semantics preserving but are rather predictably probabilistically accurate.

The impact of these techniques is limited to specific manually specified program

transformations, a more general method of program optimization, of which loop

perforation may be a special case, is given Chapter 7.

There is a common misconception that software is brittle and that the smallest

changes in working code can lead to catastrophic changes in behavior. This perceived

fragility is codified in mutation testing systems. Such systems measure program test

suite coverage by the percentage of random program changes that cause the test suite

to fail, and operate under the assumption that random changes to working programs

result in breakage [101, 39, 66, 74]. This usage presumes that all program mutants

are either buggy or equivalent to the original program.

The detection of equivalent programs is a significant open problem for the mu-

tation testing community (cf. equivalent mutant problem [74, Section II.C]) [58].

Although the detection of equivalent mutants is undecidable [24], a number of tools

have been proposed for automatically finding equivalent mutants [120, 123, 138]. By

contrast, the techniques presented herein exploit neutral and beneficial variation in

program mutants for use in software development and maintenance. Recent work by

Weimer et al. [160], seeks to leverage work on equivalent mutants from the mutation

testing community to improve the efficiency of automated of bug repair.

2.4 Genprog: Evolutionary Program Repair

Genprog is a tool for automatically repairing defects in off-the-shelf software using

an evolutionary algorithm. It does not require a formal specification, program an-

notations, or any special constructs or coding practices. It requires only that the

program be written in C and be accompanied by a test suite [161, 96].
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Input

XXXXX

Evaluate

Population

Output

XXXXX

Figure 2.2: Genprog automated evolutionary program repair (Le Goues [94, Fig-
ure 3.2]). Input includes a C program, a passing regression test suite, and at least
one failing test indicating a defect in the original program. The C source is parsed
into an AST which is iteratively mutated and evaluated. When a variant of the
original program is found which continues to pass the regression test suite and also
passes the originally failing test, this variant is returned as the "repair."

The Genprog repair process is shown in Figure 2.2. As input Genprog requires

the C source code of the buggy software, the regression test suite which the current

version of the software is able to pass, and at least one failing test indicating the bug.

The source is parsed into a C Intermediate Language (Cil) AST [116, 161], which

is then duplicated and transformed using the three mutation operations (shown in

Panels a-c of Figure 3.2) and crossover to form a population of program variants.

In an evolutionary process of program modification and evaluation, Genprog

searches for a variant of the original program which is able to pass the originally fail-

ing test case, while still passing the regression test suite. This version is returned by
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the evolutionary search portion of the Genprog technique. As a final post-processing

step the difference between the original program and the repair is minimized to the

smallest set of diff hunks required to achieve the repair. This minimization is per-

formed using delta debugging, a systematic method of minimization while retaining

a desired property [166].

In a large-scale systematic study Genprog was able to fix 55 of 108 bugs taken

from a number of popular open-source projects. When performed on the Amazon

EC2 cloud computing infrastructure each repair cost less than $8 on average [95]

which is significantly cheaper than the average cost of manual bug repair.

Genprog has had a significant impact on the software engineering research com-

munity. The project won best paper awards at the International Conference on

Software Engineering (ICSE) in 2009, the conference on Genetic and Evolutionary

Computation (GECCO) in 2009, and Search-Based Software Testing (SBST) in 2009.

In addition it earned Humies awards for human-competitive results produced by evo-

lutionary algorithms. In 2009 Genprog [161] and ClearView [129] demonstrated the

applicability of automated program repair to real-world software defects, and Orlov

and Sipper demonstrated a technique similar to Genprog over smaller Java pro-

grams [127]. Since then interest in the field has grown with multiple applications

(e.g., AutoFix-E [158], AFix [75]) and an entire section of ICSE 2013 (e.g., SemFix

and FoREnSiC [117, 87], ARMOR [28], PAR [79, 114]).

This dissertation is also a descendant of Genprog. The experiments described

in the following chapters investigate the mechanisms underlying Genprog’s success

(Chapter 3 [144]) and extend the Genprog technique into new areas such as repair

in embedded systems (Chapter 5 [141]) repair of closed source binaries (Chapter 6),

and optimization to reduce energy consumption (Chapter 7 [142]).
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Chapter 3

Software Representation, Mutation,

and Neutral Networks

In biological systems both mutational robustness and the large neutral networks

reachable through fitness-preserving mutation are thought to be necessary enablers

of evolutionary improvement as discussed in Section 2.1. This chapter describes a

series of experiments which demonstrate the prevalence of mutational robustness and

large neutral networks in software using the existing development toolchain.

Mutational robustness and neutral networks arise in systems with a genetic struc-

ture which support mutation and crossover and which give rise to a phenotype that

in turn supports fitness evaluation. This chapter defines multiple program represen-

tations and the mutation and crossover transformations they support (Section 3.1).

These representations include high-level Abstract Syntax Trees(ASTs), compiler In-

termediate Representation (IR), assembler (ASM), and binary executables. Methods

of expressing these representations as executable programs and evaluating their fit-

ness are given (Section 3.2).
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Software mutational robustness is present in real-world programs across multiple

levels of representation, regardless of the quality of the method of fitness evaluation

(Section 3.3; published in GPEM [144]). Large neutral networks are found and

their properties are investigated (Section 3.4; previously unpublished work and work

published in GPEM [144]). This chapter concludes with a mathematical analysis of

the fitness landscape defined by these program representations and of the resultant

neutral networks (Section 3.5; previously unpublished).

3.1 Representation and Transformation

3.1.1 Representations

In this dissertation we view a program’s representation as its genetic information,

which can be modified with mutation and crossover operations. As discussed in Sec-

tion 2.1, program representations are typically hierarchical trees linear vectors. In

this dissertation we study both forms. By focusing on program representations which

are closely based upon structures used commonly in software engineering the imple-

mentations of many of these program representations are able to leverage existing

tools.

Specifically we will investigate two high-level tree program representations and

three low-level vector program representations. The tree program representations

include one based on Cil [96], and one based on C Language family frontend for

LLVM (CLang) ASTs [92]. The three lower-level program representations include

one based on argumented ASM code [143], one based upon Low Level Virtual Ma-

chine (LLVM) IR [93], and one program representation applicable directly to binary

ELF files [141]. This last representation is operationally similar to the ASM repre-

sentation with additional bookkeeping required for all program transformations. The



Chapter 3. Software Representation, Mutation, and Neutral Networks 19

if (a==0){
printf("%g\n", b); }

else {
while (b!=0){

if (a>b){ a=a-b; }
else { b=b-a; } } }

printf("%g\n", a);

(a) Source

if(a==0)

printf("%g\n",b); while(b!=0)

if(a>b)

a=a-b; else

b=b-a;

printf("%g\n",a);

(b) AST (Cil and CLang)

.file "gcd.c"

.globl main

.type main, @function

main:
.cfi_startproc

pushq %rbp

.cfi_def_cfa_offset 16

.cfi_offset 6, -16

movq %rsp, %rbp

.cfi_def_cfa_register 6

subq $48, %rsp

(c) Vector (Assembler and LLVM)

ELF\?

ELF header

program header table

section 1
...

.text section
[55] [48 89 e5] [48 83 ec 20] [48 89 7d e8]
[89 75 e4] [83 7d e4 01] [7e 60] . . .

...

section n

section header table

(d) ELF

Figure 3.1: Program representations. The Cil and Clang tree representations are
shown in Panel (a). Panels (c) and (d) shown the ASM, LLVM, and ELF program
representations. The source code shown in Panel (a) is not used as a program
representation because of the lack of directly source-code level transformations (most
tools for source code transformation first parse the source into an AST which is then
transformed and serialized back to source).

five program representations are depicted graphically in Figure 3.1 and are described

in greater detail below.

3.1.1.1 CLang-AST

The highest level representation is based on ASTs parsed from C-family languages

using the C Language family frontend for LLVM (CLang) tooling. This level of

representation most closely matches source code written directly by human software

developers. This level of representation is used in Section 3.3.2.5.
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3.1.1.2 Cil-AST

The next highest level of representation is based on ASTs parsed from C source code

using the C Intermediate Language (Cil) toolkit to parse, manipulate and finally

serialize C source ASTs back to C source code [116, 161].

Cil simplifies some C source constructs to facilitate programmatic manipulation.

Despite these simplifications, the Cil AST representation more closely resembles a

high-level source code than a true compiler IR. This level of representation is used

in Sections 3.3 and 3.4 and in Chapters 4 and 5.

3.1.1.3 LLVM

The Low Level Virtual Machine (LLVM) representation operates over the LLVM

compiler IR, which is written in Static Single Assignment (SSA) form [93]. LLVM

supports multiple language front-ends making it applicable to a wide range of soft-

ware projects.

A rich suite of tools is emerging around the LLVM infrastructure.1 This rep-

resentation benefits from these tools because they can be easily applied to LLVM

program representations to implement fitness evaluation or program transformation.

This level of representation is used in Section 3.3.2.5.

3.1.1.4 ASM

Any compiled language is amenable to modification at the assembler (ASM) level.

This level represents programs as a vector of assembler instructions. Some compilers

support this translation directly, e.g., the -S flag to the GCC compiler causes it to

emit a string representation of ASM instructions. For our ASM program represen-

1An updated list of related publications is maintained at http://llvm.org/pubs/.

http://llvm.org/pubs/
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tation, we parse this sequence of instructions into a vector of argumented assembly

instructions. This parsing is equivalent to splitting the output of the string emitted

by GCC -S on newline characters. This vector can be manipulated programatically

(e.g., by mutation and crossover operations) and serialized back to a text string of

assembly instructions [143, 141]. The ASM program representation handles multiple

Instruction Set Architectures(ISAs) including both Complex Instruction Set Com-

puter (CISC) ISAs such as x86 and Reduced Instruction Set Computer (RISC) ISAs

such as MIPS.

This level of representation is used in Sections 3.3 and 3.4 and in Chapters 5

and 7.

3.1.1.5 ELF

The Executable and Linkable Format (ELF) file format is a common format of com-

piled and linked library and executable files [151]. When the code in ELF files is

executed, it is loaded into memory and translated by the CPU into a series of argu-

mented assembler instructions. Using custom tooling in combination with existing

disassemblers such as objdump it is possible to modify the sequence of assembler

instructions in an ELF file in much the same way as with the ASM program repre-

sentation [141]. This level of representation is used in Section 3.3.2.5 and 3.4 and in

Chapters 5 and 6.

3.1.2 Transformations

Every program representation used in this dissertation supports the same set of three

simple mutation transformations (copy, delete and swap) and at least one crossover

transformation. These transformations are taken from previous work in the genetic
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programming community where they have been shown to be powerful enough to

evolve novel behavior [130, Section 2.4].

All four program transformations are simple and general. They do not encode

any domain knowledge specific to the program material they manipulate. They are

applicable to multiple program representations (e.g., AST or ASM), and to multiple

languages (e.g., x86 or ARM assembler) without modification. These transforma-

tions are plausible analogs of common biological genetic transformations, and are

commonly performed by human software developers [80].

None of these transformations creates new code. Rather they remove, duplicate,

or re-order elements already present in the original program. This design is based

on the intuition that most extant programs already contain the code required to im-

plement any desirable behavior related to their specification. The benefit of limiting

the program transformations in this way is to limit the size of the space of potential

programs (Section 3.5).

3.1.2.1 Mutation

The mutation transformations are copy, delete, and swap. Copy duplicates an AST

subtree, or instruction in vector and inserts it in a random position in the AST

or immediately after a randomly chosen location in the vector respectively. Delete

removes a randomly chosen AST subtree or vector element. Swap exchanges two

randomly chosen AST subtrees or vector elements.

Figure 3.2 illustrates the mutation operators. ELF mutation operations are sim-

ilar to ASM mutation operations, are described in greater detail in Section 6.2.2.1,

and are shown in Figure 6.2.

The LLVM transformations are more complex than the simple operations shown

in Figure 3.2. The LLVM IR requires that a valid data-dependency graph be main-
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(a) AST Delete (b) AST Copy (c) AST Swap

(d) Vector Delete (e) Vector Copy (f) Vector Swap

Figure 3.2: Mutation transformations over both tree and vector program represen-
tations.

tained by all program transformations. Thus, the LLVM mutations must explicitly

patch this dependency graph, assigning inputs and outputs for all new statements

and replacing the inputs and outputs of all removed statements. Figure 3.3 illus-

trates the process for the delete and copy operations. These data dependencies that

we manipulate explicitly in the LLVM IR are managed implicitly at the ASM level

through the re-use of processor registers.

3.1.2.2 Crossover

Crossover re-combines two program representations and produces two new program

representations with elements from each parent in a process analogous to the biolog-

ical process of the same name. In tree representations, one subtree of each parent

is chosen randomly and they are swapped. In the vector representation a two-point

crossover is used [37]. First, two indices which are less than the size of the smaller

vector are chosen, then the contents of the vectors between these indices are swapped.

Figure 3.4 illustrates both the tree and vector crossover transformations.



Chapter 3. Software Representation, Mutation, and Neutral Networks 24

i32 2

x

%0i32 3

%add

x

%2%1

%mul

x

%3 printf

(a) LLVM Delete

i32 2

x

%0i32 3

%add

x

%2%1

%mul

x

%3 printf

%add2

i32 3

(b) LLVM Copy

Figure 3.3: Illustration of transformations over LLVM IR. These transformations
require that the SSA data dependency graph be repaired after each mutation.

3.1.3 Implementation Requirements

Each level of representation places different requirements on how the software can be

programatically manipulated and what parts of the tool chain need to be available.

(a) AST Crossover (b) Vector Crossover

Figure 3.4: Crossover transformations over tree and vector program representations.
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AST The Cil-AST and CLang-AST representations have the strictest requirements.

Manipulation at the AST level requires that the source code be written in C

(for Cil) or a C family language (for CLang) and be available. To express

AST programs as executables the entire build toolchain of the software must

be available.

ASM and LLVM The ASM and LLVM representations require that the assembler

or LLVM IR compiled from the original program be available. To express these

programs, the linking portion of a project’s build toolchain must be available.

Any language whose compiler is capable of emitting and linking intermediate

machine code or LLVM IR can use this representation level, making these levels

more broadly applicable than the AST representations.

In some cases, re-working a complex software project’s build toolchain to emit

and re-read intermediate ASM or LLVM IR is not straightforward because not

all compilers support such operations directly (e.g., g++ the C++ front end of

the GCC compiler collection).

ELF Any ELF file can be used as input for the ELF program representation. This

level of representation does not require access to the source code of the original

program. ELF representations can be serialized directly to disk for evalua-

tion and do not require access to the original program’s build toolchain. For

these reasons the ELF representation is helpful for modifying closed source ex-

ecutables for which no development access or support is available. An example

application to a proprietary executable is given in Chapter 6.
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Source Cil IR

ASM

LLVM IR

Executable

CLang Cil

LLVM

ASM ELF

Key
Compile
Link

Modify

Figure 3.5: Expression of program representations to executables. Gray solid boxes
represent traditional software engineering artifacts and red dashed boxes represent
program representations. Each program representation modifies a different point in
the process of compilation and linking of program code to an executable. In each case
only those stages of compilation and linking which are downstream from a program
representation are necessary for expression of that program representation.

3.2 Fitness Evaluation

Fitness evaluation in this context is a two-step process. The genotype must first be

expressed as an executable (Section 3.2.1), and is then later run against a test suite

so that the program phenotype can be evaluated (Section 3.2.2).

3.2.1 Expression

As with biological organisms, a program’s fitness is a property of its phenotype or

behavior in the world. To assess the fitness of a program, its representation must

first be expressed into a phenotype. Expression is shown in Figure 3.5 and varies by

program representation as follows.
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AST The Cil and CLang AST representations are first serialized back to C-family

source code. The CLang tooling produces formatted source code which is

identical to the input source. This source code is then compiled and linked

into an executable using the build toolchain of the original program.

Expression can fail if the compilation or linking processes fail, for example if

an AST violates either type or semantic checks performed by the compiler, or

references symbols that cannot be resolved by the linker. In these cases no

executable is produced.

ASM The argumented assembler instructions constituting the ASM and LLVM

genomes are serialized to a text file. This text code is then linked into an

executable using the build toolchain of the original program.

Expression can fail if the linker fails. This is commonly caused by sequences of

assembler instructions that are invalid or cannot be resolved by the linker. In

this case no executable is produced.

ELF The ELF representation genome is composed of those sections of the ELF file

that are loaded into memory during execution. These sections, along with the

remainder of the ELF file, are serialized directly into an executable on disk.

This process requires no external build tools.

Eliminating the compilation and linking steps for representations at the ASM and

ELF levels increases efficiency of evaluation as compared to the other levels. This

can dramatic affects the efficiency of techniques using these lower levels (cf. runtime

Section 5.4).

3.2.2 Evaluation

Evaluation entails executing the program against a test suite. This execution might

be evaluated for functional correctness, as in the applications presented in Chap-
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ters 4, 5 and 6, or for nonfunctional runtime properties, as in the application pre-

sented in Chapter 7.

During both functional and nonfunctional evaluation the programs that fail to

express executables are assigned the worst possible fitness value, typically positive

or negative infinity.

Functional Evaluation The goal of functional evaluation is to determine if the

program behavior is correct or acceptable. This is determined by its ability to

pass all of the test in the test suite. Functional evaluation does not actually

determine whether the evaluated program is semantically equivalent to the

original program. In many cases a fully functional program variant computes

a slightly different function, which is undetectable by the test suite.

Functional evaluation is not related to, nor does it provide any guarantee with

respect to, any formal program specification. In every case discussed in this

dissertation (and in the vast majority of real-world software) there is no written

or formal program specification. In these, cases the program’s test suite serves

as an informal specification. In the cases we present, excluding the repair of

proprietary software in Section 6 for which no test suite is available, the test

suite distributed with the program is used unaltered.

Nonfunctional Evaluation nonfunctional evaluation assesses the desirability of

the nonfunctional runtime properties of a program’s execution. Standard profil-

ing tools are used to perform this evaluation. Section 7.1 presents a framework

designed to optimize nonfunctional fitness functions. Section 8.2.1 describes

additional software engineering tools that could be leveraged in future work to

target other types of diverse fitness functions.
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3.3 Software Mutational Robustness

Robustness is an important aspect of software engineering research, especially with

respect to the reliability and availability of software systems. In contrast to these

aforementioned types of phenotypic robustness, this section investigates a form of

genotypic robustness which we call software mutational robustness. Software mu-

tational robustness refers to the functionality of program variants, or instances of

software whose genome has been randomly mutated.

Functionality is assessed using the program’s test suite as described in Sec-

tion 3.2.2. We investigate the appropriateness of using program test suites to assess

program functionality and find that in the majority of cases test suites serve as a

useful proxy for a formal specification. We find that this result holds across a wide

range of test-suite qualities—where quality is measured using statement and ASM

instruction coverage. Borrowing a term from prior work in biology we call functional

program variants neutral variants. Neutral variants continue to satisfy the require-

ments of the original program as defined by the test suite. But, they often differ

from the original in minor functional properties such as the order of operations or

behaviors left unspecified by the program requirements, and nonfunctional properties

may differ from the original, e.g., run-time or memory consumption.

As a simple example, consider the following fragment of a recursive quick-sort

implementation.

if (right > left) {

// code elided ...

quick(left , r);

quick(l, right);

}

Swapping the order of the last two statements like so,

quick(l, right );

quick(left , r);
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or even running the recursive steps in parallel does not change the output of the

program, but it does change the program’s run-time behavior. We find that examples

of such neutral changes to programs are commonly and easily discovered through

automated random program mutation.

This section provides empirical measurement of software mutational robustness

collected across a wide range of real-world software spanning 22 programs compris-

ing over 150,000 lines of code and 23,151 tests. These programs are broken into

three broad categories according to the properties of the test-suite. We find an av-

erage software mutational robustness of 36.8% and minimum software mutational

robustness of 21.2%. We see little variance in software mutational robustness across

categories or programs, and we find that the levels of mutational robustness are not

explained by the quality of a program’s test suite. Given these results we surmise

that software is inherently mutationally robust.

3.3.1 Experimental Design

This section defines software mutational robustness and describes the techniques used

to measure the software mutational robustness of a number of benchmark programs.

It will also describe the benchmark programs and their related test suites.

3.3.1.1 Software Mutational Robustness

The formal definition of software mutational robustness is given in Equation 3.1.

It is a property of a triplet consisting of a software program P , a set of mutation

operations M , and a test suite T : P → {true, false}. Software mutational robustness

written MutRB(P, T,M) is the fraction of the variants P ′ = m(p), ∀m ∈ M for

which t(P ) (program P passes test t) is true ∀t ∈ T . For any program P, which can
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not be successfully expressed as an executable t(P ) is false ∀t ∈ T , so such programs

count in the denominator of MutRB(P, T,M) but not in the numerator.

MutRB(P, T,M) =
|{P ′ | m ∈M. P ′ = m(P ) ∧ T (P ′) = true}|

|{P ′ | m ∈M. P ′ = m(P )}|
(3.1)

3.3.1.2 Measurement of Software Mutational Robustness

In all experiments we use the generic mutation operations described in Section 3.1.2

with equal probability. We evaluate mutational robustness using the Cil-AST and

ASM program representations. All of the test suites used are those distributed with

the programs P , and are described in more detail along with the description of the

benchmark programs in Section 3.3.1.3.

Since exhaustive evaluation of all possible first-order variants (i.e., variants result-

ing from the application of a single mutation to the original program) is prohibitively

expensive (cf. Number of neighbors Section 3.5.2), the following technique is used to

estimate the mutational robustness of each benchmark program.

1. The original program is run on its test suite and each AST node or ASM in-

struction executed by the test suite is identified. AST identifying information is

collected by instrumenting each AST node to print an identifier during execu-

tion. ASM identifying information is collected by using a simple ptrace-based

utility2 to collect the values of the program counter during execution. These

program counter values are converted into offsets into the program data where

they identify specific argumented instructions in the ASM genome.

2. A total of 200 unique variants are generated using each of the three mutation

operations for a grand total of 600 unique program variants. Mutation oper-

ations are applied uniformly at random along the traces collected in Step 1.
2https://github.com/eschulte/tracer

https://github.com/eschulte/tracer
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Mutations are limited to portions of the programs exercised by the test suite

in order to avoid overestimating software mutational robustness by including

changes in untested portions of the program.

At the AST level, variants are considered unique if they produce a different

assembler when compiled with gcc -O2. Non-unique variants are discarded and

do not contribute to either the denominator or the numerator of the MutRB

fraction to avoid overestimating mutational robustness by counting obviously

equivalent mutants as neutral variants. To avoid overestimating mutational

robustness, variants which fail to compile are all considered unique and are

added to the denominator of the MutRB fraction.

3. Each successfully compiled unique variant is evaluated using the program test

suite. Time to execute the test suite is limited to within an order of magnitude

of the time taken by the original program to complete the suite. Variants which

exceed the time limit (e.g., because of infinite loops) are treated as having failed

the test. Only variants that pass every test in the test suite are counted as

neutral and added to the numerator of the MutRB fraction.

4. The fraction of unique variants that successfully compile and pass every test in

the test suite within the given resource limitations are reported as the software

mutational robustness.

3.3.1.3 Benchmark Programs and Test Suites

Our investigation includes 22 real-world software programs listed in Table 3.1. The

programs cover three groups including 14 open-source systems programs,3 four sort-

ing programs,4 and four programs taken from the Siemens Software-artifact Infras-

tructure Repository.5

3https://cs.unm.edu/~eschulte/repro/robustness.tar.bz2
4https://github.com/eschulte/sorters
5http://sir.unl.edu

https://cs.unm.edu/~eschulte/repro/robustness.tar.bz2
https://github.com/eschulte/sorters
http://sir.unl.edu
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The systems programs were chosen to represent the low- to middle-quality test

suites which are typical in software development. The test suites used to evaluate

the mutational robustness of these programs are those maintained by the software

developers and distributed with the programs.

The sorting programs were taken from Rosetta Code,6 and were selected to be

easily testable. We hand-wrote a single test suite to cover all four sorting algorithms.7

The test suite covers every branch in the AST and exercises every executable assem-

bler instruction in the assembler compiled from the program using gcc -O2.

The Siemens programs were selected to represent the best attainable test suites.

These programs were created by Siemens Research [67], and later their test suites

were extended by Rothermel and Harold until each “executable statement, edge, and

definition-use pair in the base program or its control flow graph was exercised by at

least 30 tests” [136]. Also among the Siemens programs, the space test suite was

created by Volkolos [154] and later enhanced by Graves [57]. The resulting space

test suite covers every edge in the control flow graph with at least 30 tests.

3.3.2 Results

We report the rate of mutational robustness (Section 3.3.2.1), an analysis of mu-

tational robustness by test suite quality (Section 3.3.2.2), a taxonomy of neutral

variants (Section 3.3.2.3), an evaluation of mutational robustness across multiple

languages (Section 3.3.2.4) and an evaluation of mutational robustness across all five

program representations (Section 3.3.2.5).

6http://rosettacode.org
7https://github.com/eschulte/sorters/blob/master/bin/test.sh

http://rosettacode.org
https://github.com/eschulte/sorters/blob/master/bin/test.sh
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3.3.2.1 Mutational Robustness Rates

Table 3.1 lists estimated mutational robustness for each of the 22 benchmark pro-

grams

Across all programs and representations we find an average mutational robustness

of 36.8% and minimum software mutational robustness of 21.2%. These values are

much higher than what might be predicted by those who view software as fundamen-

tally fragile. They suggest that for real-world programs there are large numbers of

alternate implementations which may easily be discovered through the application

of random program mutations. Although actual rates of mutational robustness in

biological systems are not available, these rates of software mutational robustness

are in the range of mutational robustness thought to support evolution in biological

systems [42, Figure 2].

There is little variance in mutational robustness across all software projects de-

spite a large variance in the quality of test suites. At one extreme, even high-quality

test suites (such as the Siemens benchmarks, which were explicitly designed to test

all execution paths) and test suites with full statement, branch and assembly instruc-

tion coverage have over 20% mutational robustness. At the other extreme, a minimal

test suite that we designed for bubble sort, which does not check program output

but requires only successful compilation and execution without crash, has only 84.8%

mutational robustness. This suggests that software mutational robustness is an in-

herent property of software and is not a direct measurement of the quality of the test

suite.
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Program Lines of Code Test Suite Mut. Robustness
ASM C # Tests % Stmt. AST ASM

Sorting

bubble-sort 184 34 10 100 27.3 25.7
insertion-sort 170 29 10 100 29.4 26.0
merge-sort 233 38 10 100 29.8 21.2
quick-sort 219 38 10 100 28.9 25.5

Siemens [67]†

printtokens 2419 536 4130 81.7 21.2 25.8
schedule 922 412 2650 94.4 34.4 29.1
space 18098 9126 13494 91.1 37.7 32.1
tcas 544 173 1608 96.2 33.5 25.9

Systems

bzip2 1.0.2 18756 7000 6 35.9 33.0 26.1
(alt. test suite) 22 71.0 46.4 23.6
ccrypt 1.2 15261 4249 6 29.5 33.0 69.7
(alt. test suite) 16 40.4 34.6 69.7
grep 28776 10929 119 24.9 50.0 36.7
imagemagick 6.5.2 6128 147 145 0.8 33.3 66.3
jansson 1.3 6830 2975 30 28.8 33.3 28.0
leukocyte 40226 7970 5 45.4 33.3 39.9
lighttpd 1.4.15 34165 3829 11 40.1 61.5 56.9
nullhttpd 0.5.0 5951 5575 6 64.5 41.5 37.8
oggenc 1.0.1 299959 59094 10 38.4 33.4 22.1
(alt. test suite) 40 58.8 40.5 72.3
potion 40b5f03 80406 15033 204 48.4 33.3 48.9
redis 1.3.4 44802 17203 234 9.2 33.3 34.0
sed 17026 8059 360 42.0 33.0 25.6
tiff 3.8.2 22458 1732 10 15.4 33.3 90.4
vyquon 335426d 20567 4390 5 50.6 33.3 69.0

total/average 664100 158571 23151 40.9 33.9 ±10 39.6 ±22

Table 3.1: The mutational robustness of 22 programs spanning three categories. The
“Lines of Code” columns report program size in lines of C source code and lines of
x86 assembly code. The “Test Suite” columns show the size of the test suite in terms
of test cases and the percentage of AST statements exercised by the test suite. The
“Mut. Robustness” columns report the rates of software mutational robustness. The
± values in the bottom row indicate one standard deviation. † Although the Siemens
benchmark suite claims complete branch and statement coverage, we find less than
100% statement coverage. This is due to our use of finer-grained Cil statements in
calculating coverage.



Chapter 3. Software Representation, Mutation, and Neutral Networks 36

0
10
20
30
40
50

bubble-sort

%
N
eu
tr
al

V
ar
ia
nt
s

insertion-sort

merbe-sort

quick-sort

(a) Sorters

0
10
20
30
40
50

printtokens

schedule
sed space

tcas

(b) Siemens

0

20

40

60

80

100

%
N
eu
tr
al

V
ar
ia
nt
s

bzip2 1.0.2

– ccrypt 1.2

– imagemagick 6.5.2

jansson 1.3

leukocyte

lighttpd 1.4.15

nullhttpd 0.5.0

oggenc 1.0.1

– potion 40b5f03

redis 1.3.4

tiff 3.8.2

vyquon 335426d

grep

C ASM

(c) Systems Programs

Figure 3.6: Mutational robustness by test suite quality. The simple sorting programs
in 3.6a have complete AST node and ASM instruction coverage. The Siemens pro-
grams in 3.6b have extremely high quality test suites incrementally developed by
multiple software testing researchers, including have complete branch and def-use
pair coverage. The Systems programs in 3.6c have test suites that vary greatly in
quality.

3.3.2.2 Mutational Robustness by Test Suite Quality

Figure 3.6 shows the mutational robustness of the 22 benchmark programs broken

into groups by the type and quality of test suite. The differences in test suites are

qualitative in the source of the test suites and quantitative in the amount of coverage.

Qualitatively:
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Sorting (Panel 3.6a) The sorting test suites all share a single test suite. This test

suite leverages the simplicity of sorting program specification and implementa-

tions to provide complete coverage with only ten tests.

Siemens (Panel 3.6b) The Siemens test suites were taken from the testing com-

munity where they have been developed by multiple parties across multiple

publications until each executable statement, and definition-use pair was exer-

cised by at least 30 tests [67, 136].

Systems (Panel 3.6c) The systems test suites are taken directly from real-world

open-source projects. These test suites are those used by the software develop-

ers to control their own development and consequently reflect the wide range

of test suites used in practice.

Quantitatively the sorting test suite provides 100% code coverage at both the

AST node and ASM instruction levels. The Siemens programs provide near 100%

coverage and the systems programs provide 37.63% coverage on average, with a large

standard deviation of 19.34%.

Despite the large difference in provenance and quality, the mutational robustness

between panels differs by relatively little as shown in Table 3.2. The average values

are within 17% of each other, and the minimums of each group differ by less than

1%.

Sorting Siemens Systems
Average Mut. Robustness 26.7% 29.8% 43.7%

Minimum Mut. Robustness 21.2% 21.2% 22.1%

Table 3.2: Average and minimum mutational robustness of benchmark programs by
group.
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3.3.2.3 Taxonomy of Neutral Variants

To investigate the significance of the differences between neutral variants and the

original program we manually investigated and categorized 35 neutral variants of

the bubble sorting algorithm. Bubble sort is chosen for ease of manual inspection

because of its simplicity of specification and of implementation.

We first generated 35 AST level random neutral variants of bubble sort. The

phenotypic traits of these variants were then manually compared to the original

program. The results are grouped into a taxonomy of seven categories as shown in

Table 3.3.

Number Category Frequency
1 Different whitespace in output 12
2 Inconsequential change of internal variables 10
3 Extra or redundant computation 6
4 Equivalent or redundant conditional guard 3
5 Switched to non-explicit return 2
6 Changed code is unreachable 1
7 Removed optimization 1

Table 3.3: A Taxonomy of 35 neutral variants of the bubble sort sorting algorithm.

The categories are listed in decreasing order of frequency. Only categories 1

and some of the variants in category 5 affected the output of the program, either by

changing what is printed to STDOUT or by changing the final ERRNO return value. Both

affect program output in ways that are not controlled by the program specification

or the test suite.

While some of the remaining five categories affected program output, all but

category 6 and some members of category 4 affected the runtime behavior of the

program. Category 2 includes the removal of unnecessary variable assignments, re-

ordering non-interacting instructions and changing state that is later overwritten or

never again read.
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Many of the changes, especially in categories 2, 3, and 4, produce programs that

will likely be more mutationally robust than the original program. These include

changes which insert redundant and occasionally diverse control flow guards (e.g.,

conditionals that control if statements) as well as changes that introduce redundant

variable assignments.

The majority of the neutral variants included in this analysis are semantically dis-

tinct from the original program. Only variants in categories 4, 5 and 6 could possibly

have no impact on runtime behavior and could be considered semantically equiva-

lent. Instead, the majority of neutral variants appear to be valid implementations of

a program specification. In some cases these alternate implementations might have

desirable properties such as increased efficiency through the removal of unnecessary

code or increased robustness (e.g., the addition of new diverse conditional guards).

Subsequent work by Baudry further explores the computation diversity of neutral

variants [13], and finds sufficient computational diversity to support moving target

defense [72].

3.3.2.4 Mutational Robustness across Multiple Languages

To address the question of whether these results depend upon the idiosyncrasies of a

particular paradigm, we evaluate the mutational robustness of ASM level programs

compiled from four languages spanning three programming paradigms (imperative,

object-oriented, and functional). The results are presented in Table 3.4. The uni-

formity of mutational robustness across languages and paradigms demonstrates that

the results do not depend on the particulars of any given programming language.
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C C++ Haskell OCaml Avg.
Imp. Imp. & OO Fun. Fun. & OO

bubble 25.7 28.2 27.6 16.7 24.6±5.3
insertion 26.0 42.0 35.6 23.7 31.8±8.5
merge 21.2 46.0 24.9 22.7 28.7±11.6
quick 25.5 42.0 26.3 11.4 26.3±12.5
Avg. 24.6±2.3 39.5±7.8 28.6±4.8 18.6±5.7 27.9±3.1

Table 3.4: Mutational robustness of ASM level programs compiled from four lan-
guages spanning three programming paradigms. “Imp.” indicates an imperative lan-
guage, “Fun.” indicates a functional language and “OO” indicates an object oriented
language.

3.3.2.5 Mutational Robustness across Multiple Representations

This section compares the mutational robustness of the four sorting programs im-

plemented in C across all five program representations. The tests and program

implementations used in this section are available online,8 as well as the code used

to run the experiment,9 and the analysis.10

Each of the four sorting algorithms (bubble, insertion, merge, and quick) are

represented using each of the five program representations (CLang, Cil, LLVM,

ASM, and ELF). Each of the resulting 20 program representations is then randomly

mutated and evaluated 1000 times.

Table 3.5 shows the average software mutational robustness across all four sorting

algorithms broken out by representation. The highest level representation is CLang,

which has by far the lowest level of software mutational robustness. The low muta-

tional robustness of the CLang representation is likely an effect of the immaturity

of the CLang representation and transformations. It is possible that these trans-

8https://github.com/eschulte/sorters
9https://github.com/eschulte/sorters/blob/master/src/

software-mutational-robustness.lisp
10https://github.com/eschulte/sorters/blob/master/src/

software-mutational-robustness.org

https://github.com/eschulte/sorters
https://github.com/eschulte/sorters/blob/master/src/software-mutational-robustness.lisp
https://github.com/eschulte/sorters/blob/master/src/software-mutational-robustness.lisp
https://github.com/eschulte/sorters/blob/master/src/software-mutational-robustness.org
https://github.com/eschulte/sorters/blob/master/src/software-mutational-robustness.org
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Representation Software mutational robustness
CLang 3.12

Cil 20.95
LLVM 35.05
ASM 35.23
ELF 15.78

Table 3.5: Software mutational robustness averaged across four sorting algorithms
broken out by each of the five program representations.

formations do not accurately implement the intent of the program transformation

operations. For example, an experienced CLang developer would likely produce func-

tionally different delete or copy transformations of CLang ASTs than those defined

in the library used herein.11

In general the lower the level of program representation the higher the software

mutational robustness with the sole exception of the ELF representation which is

fragile due to the need to maintain the overall genome length, and the inability to

update literal program offsets.

Figure 3.7 shows the distribution of fitness values across all levels of representa-

tion. Each fitness is equal to the number of inputs sorted correctly from a test suite

of 10 inputs designed to cover all branches in each sorting implementation. As is the

case in biological systems [107], the fitness distribution is bi-modal with one peak

at completely unfit variants and another peak at neutral variants. This may help

explain the relative stability of software mutational robustness across test suites of

varying qualities found in Section 3.3.2.2.

In both biological and computational systems the bi-model fitness distribution

may be beneficial, because partially fit solutions are often particularly pernicious (cf.

anti-robustness [38]). Cancer cells in biological systems are not neutral are able to

survive and even thrive, and unfit variants in computational systems which are able

11https://github.com/eschulte/clang-mutate

https://github.com/eschulte/clang-mutate
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Figure 3.7: Fitness distributions of first order mutations of sorting algorithms by
program representation.

to pass incomplete test suites are the most likely to cause problems for end users. It

is not yet clear if similar causes underlay this bi-modal distribution in biological and

computational systems.

3.4 Software Neutral Networks

3.4.1 Span of Neutral Networks

The previous experiments measured the percentage of first-order mutations that

are neutral. This subsection explores the effects of accumulating successive neutral

mutations in a small assembly program. We begin with a working assembly code

implementation of insertion sort. We apply random mutations using the ASM rep-

resentation and mutation operations. After each mutation, the resulting variant is
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retained if neutral, and discarded otherwise. The process continues until we have

collected 100 first-order neutral variants. The mean program length and mutational

robustness of the individuals in this population are shown as the leftmost red and

blue points respectively in Figure 3.8a. From these 100 neutral variants, we then

generate a population of 100 second order neutral variants. This is accomplished

by looping through the population of first-order mutants, randomly mutating each

individual once retaining the result if it is neutral and discarding it otherwise. Once

100 neutral second-order variants have been accumulated, the procedure is iterated

to produce higher-order neutral variants. This process produces neutral populations

separated from the original program by successively more neutral mutations. Fig-

ure 3.8 shows the results of this process up to 250 steps producing a final population

of 100 neutral variants, each of which is 250 neutral mutations away from the original

program.

The results show that under this procedure software mutational robustness in-

creases with the mutational distance away from the original program. This is not

surprising given that at each step mutationally robust variants are more likely to

produce neutral mutants more quickly, and the first 100 neutral mutants generated

are included in the subsequent population. We conjecture that this result corre-

sponds to the population drifting away from the perimeter of the program’s neutral

space. Similar behavior has been described for biological systems, where populations

in a constant environment experience a weak evolutionary pressure for increased mu-

tational robustness [153, 157, Chapter 16]. The average size of the program also

increases with mutational distance from the original program (Figure 3.8a), suggest-

ing that the program might be achieving robustness by adding “bloat” in the form of

useless instructions [130, Section 11.3]. To control for bloat, Figure 3.8b shows the

results of an experiment in which only individuals that are the same size or smaller

(measured in number of assembly instructions) than the original program are counted

as neutral. With this additional criterion, software mutational robustness continues



Chapter 3. Software Representation, Mutation, and Neutral Networks 44

170

180

190

200

210

220

230

0 50 100 150 200 250
12

13

14

15

16

17

18

19

20

21

A
vg

.
LO

C

%
N
eu
tr
al

V
ar
ia
nt
s

Number of Applied Mutations

Avg. LOC
% Neutral Variants

(a) Program size not controlled.

172

173

174

175

0 50 100 150 200 250
4

6

8

10

12

14

16

18

20

A
vg

.
LO

C

%
N
eu
tr
al

V
ar
ia
nt
s

Number of Applied Mutations

Avg. LOC
% Neutral Variants

(b) Program size controlled.

Figure 3.8: Random walk in neutral landscape of ASM variations of Insertion Sort.

to increase but the program size periodically dips and rebounds, never exceeding the

size of the original program. The dips are likely consolidation events, where addi-

tional instructions are discovered that can be eliminated without harming program

functionality.

This result shows that not only are there large neutral spaces surrounding any

given program implementation (in this instance, permitting neutral variants as far

as 250 edits removed from a well-tested < 200 LOC program), but they are easily

traversable through iterative mutation. Section 3.5 analytically explores the possi-
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ble sizes of these neutral spaces. Figure 3.8b shows a small increase in mutational

robustness even when controlling for bloat. Further experimentation will determine

if these results generalize to a more diverse set of programs subjects.

3.4.2 Higher Order Neutral Mutants

The previous section demonstrates the ability of automated techniques to explore

neutral networks by continually applying single mutations to neutral variants. While

this demonstrates the span of neutral networks far from an original program, it does

not address questions of the density of neutral variants in the space of all possible

programs (cf. program space Section 3.5).

To address this question we apply multiple compounding random mutation op-

erations to an individual without performing intervening checks for neutrality. Such

higher-order random variants take random walks away from the original program in

the space of all possible programs. We then evaluate the percentage of these higher

order variants at different distances from the original program to see how the rate of

neutral variants changes with mutational distance.

We compare the rate of neutral variants along random walks to the rate of neutral

variants found along neutral walks which use the fitness function to ensure the walk

remains within the program’s neutral network as in Section 3.4.1. This empirically

confirms the utility of fitness functions in the search for neutral variants, as opposed

to suggested alternatives such as random search [59].

Finally we manually examine some interesting higher-order neutral variants which

have non-neutral ancestors, and discuss the implication of the low rate of such vari-

ants discovered through random search.
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3.4.2.1 Experimental Design

Using the ASM representation, an initial population of 210 is generated of first-

order neutral variants of an implementation of quicksort in C.12 This population is

allowed to drift (Section 2.1) by iteratively selecting individuals from the population,

mutating them and inserting only the neutral results back into the population. The

result is a neutral exploration which maintains the population size of 210 until a

fitness budget of 218 total fitness evaluations has been exhausted. The fitness and

mutational path from the original program is saved for every tested variant including

non-neutral variants.

The distribution of the number of individuals tested at each number of muta-

tions from the original during the neutral search is saved. A comparison population

of 218 random higher-order variants is generated by repeatedly drawing from the

distribution of mutational distances resulting from the neutral search, and for each

drawn distance generating a random higher-order variant with the same order, or

mutational distance from the original. This results in two collections of 218 vari-

ants with the same distribution of mutational distances from the original program,

one generated through neutral search and the other through random walks. These

distributions are shown in Figure 3.9.

The software and input data used to perform this experiment is available online.13

The analysis is also available online.14

3.4.2.2 Neutrality of Random Higher-Order Neutral Variants

As shown in Figure 3.10 the experimental levels of neutrality at two, three, and four

random mutations removed from the original almost exactly match an exponential

12https://github.com/eschulte/sorters/blob/master/sorters/quick_c.c
13https://github.com/eschulte/sorters/blob/master/src/horns.lisp
14https://github.com/eschulte/sorters/blob/master/src/horns.org

https://github.com/eschulte/sorters/blob/master/sorters/quick_c.c
https://github.com/eschulte/sorters/blob/master/src/horns.lisp
https://github.com/eschulte/sorters/blob/master/src/horns.org
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Figure 3.9: The distribution of mutational distance from the original for populations
of higher-order variants collected using two methods: random walks and guided
neutral walks.

function decreasing at a rate equal to the mutational robustness of the original pro-

gram. The highest order random neutral variant found in this experiment was 8

mutations removed from the original.

Exponential decay models the number of higher-order neutral variants which will

be found through random walks which are neutral at every intermediate step. The

very high correlation between exponential decay and the rate of neutrality decrease

along random walks indicates that most higher-order neutral variants are the product

of neutral lower-order ancestors. This may be an effect of the very high dimensional-

ity of program spaces (cf. dimensionality Section 3.5), or of the difference in effective

dimensionality between the neutral space and the program space.
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Figure 3.10: Neutrality of random higher-order mutants by the number of mutations
from the original.

3.4.2.3 Comparative Neutrality along Random and Guided Walks

Figure 3.11 shows the comparative neutrality by mutational distance up to 100 muta-

tions from the original program for both random and guided walks through program

space. By contrast the neutrality increases along guided neutral walks. This agrees

with the results presented in Section 3.4.1. By the sheer increase in viable higher-

order neutral variants found through neutral search as compared to random search,

28,055 and 1,342 respectively, these results support the utility of a fitness function

in guiding search for higher-order neutral variants.

3.4.2.4 Analysis of Interesting Random Higher-Order Neutral Variants

Table 3.6 shows the percentage of a large collection of over 50,000 randomly gener-

ated higher-order neutral variants which are “interesting,” meaning that they have
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Figure 3.11: The neutrality by mutational distance from the original program for
both guided neutral and random walks through program space.

ancestors which were not themselves neutral. These variants are the results of ran-

dom walks that wander off of the neutral network, and then subsequently wander

back on. As can be seen the majority of randomly generated neutral variants are the

result of random walks that never leave the neutral network. This agrees with the

results found in Figure 3.10.

Higher-Order Neutral Variants
Order Total Interesting Percentage

2 33787 139 0.41%
3 12458 153 1.23%
4 4478 107 2.39%

sum 50723 399 0.79%

Table 3.6: Percentage of over 50,000 randomly generated higher-order neutral vari-
ants that have non-neutral ancestors.
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Note that the percentage of neutral variants which are interesting (column “Per-

centage” in Table 3.6) increases as the order increases because the number of random

intermediate steps increases, each of which has a chance of being non-neutral.

The interesting variants may be further separated into those whose step back

onto the neutral network in a reversion of a previous mutation (i.e., a “step back”),

and those who return to a different position in the neutral network than the spot

of their exit. We find that roughly half 199
399

are not the result of such a reversion or

a “step back”. Of these many have fitness histories in which their ancestor’s fitness

values drop to zero or near zero and then slowly climb or suddenly jump back to

neutral.

Such cases of random walks which leave and then re-enter the neutral network

in a new place may actually find portions of the neutral network which are unreach-

able or are very far removed from the original program when restricted to neutral

walks. The extreme size of these networks make this possibility difficult to determine

experimentally.

Although these results indicate that it is possible to find new (possibly uncon-

nected) portions of the neutral network using random walks, such interesting random

walks remain very rare. With 6% of random higher-order variants between 2 and 4

mutations removed from the original being neutral, 0.79% of those being interesting

and roughly 50% of those not being reversions we have 0.06× 0.0079× 0.5 = 0.0002

or 0.02% of all randomly generated higher-order mutants are truly interesting. This

result motivates the technique used in this Chapter and in Chapter 4 of restricting

explorations of program space to neutral networks in which functional neutrality is

used as the acceptance criteria for every step in the walk.
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3.5 Program Spaces and Neutral Network Analysis

This dissertation develops applications for automated software engineering which

rely on the discovery of alternate versions of existing programs through application

of program transformations to program representations as presented in Section 3.1.

Each of these program representations with its associated transformations defines a

program space. The applications described in Chapters 4 through 7 may be viewed

as methods of searching these program spaces. This section provides a mathematical

analysis of the size15 and properties of these program spaces.

The elements of program spaces are program instances, and the distance between

any two elements is their edit distance as calculated using the space’s mutation

operations.16 Each space has an associated size, or the number of different programs

which the representation is able to specify. Following the standard practice in analysis

of neutral spaces in biology, we set the dimensionality of the space equal to the

maximum length of a representation [157, 145], and the number of potential values at

each dimension (program spaces are discrete spaces) equal to the number of possible

distinct program elements (e.g., AST statements, ASM or LLVM IR instructions).

This approach has the undesirable property that the dimensionality of a space is not

constant. To keep dimensionality constant, every element of the genome is allowed

to take on an ∅ value indicating no element is present.

15We only consider programs of finite length resulting in finite size program spaces. We
believe this is a reasonable restriction. Any realistic application leveraging software neutral
spaces will place limits on the size of allowable programs as arbitrarily large programs are
generally not desirable.

16These program spaces may be thought of and effectively modeled as metric spaces.
Technically program spaces are not valid metric spaces as not all of the mutation operations
are invertible. For example the effect of deleting the last instance of an instruction from
an ASM program can not be reversed because there’s no other instance remaining in the
program to be used by future copy operations. Despite this, the mutation operations can
easily be made invertible and cause the program spaces to behave as metric spaces. We do
not explore such altered mutation operations in this work because we do not believe the
added mutational overhead would be justified by a significant practical effect in mutation
operations behavior.
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Cil-AST ASM
Stmts. Neighbors Reach Stmts. Neighbors Reach

program all uniq. all neut. all uniq. all neut.
bubble 21 18 609 166.26 7.1× 10+26 197 138 46689 11999.07 1.4× 10+422

insertion 20 18 570 167.58 3.8× 10+25 186 130 41571 10808.46 6.4× 10+393

merge 29 25 1160 345.68 1.1× 10+41 237 139 61146 12962.95 4.2× 10+508

quick 26 23 949 274.26 7.7× 10+35 230 157 62675 15982.12 4.9× 10+505

24.00 21.00 822.00 238.44 1.7× 10+32 212.50 141.00 53020.25 12938.15 1.0× 10+508

Table 3.7: Size of neighborhood of sorting programs. Results are given for both the
AST and ASM representations. The “Stmts.” columns give the number of statements
and number of unique statements. The “Neighbors” columns give the number of
immediate neighbors reachable by a single mutation, and the expected number of
neutral neighbors given the software mutational robustness calculated in Table 3.1.
The “Reach.” columns give the calculated size of the set of programs reachable from
the original program using the given mutation operations.

Table 3.7 presents analysis of the program spaces of the four sorting programs

used previously in this Chapter. This analysis includes calculations of neighborhood

sizes, calculations of the sizes of neutral networks and sizes of reachable sets. The

methods for calculating these values are given in the remainder of this section.

3.5.1 Size of Program Space

Given a program space P with a program length limit of L and a total of U unique

elements, the total size of P is P = (U + 1)L. One is added to U to account for

removed statements, and the result is raised to the program length because every

slot in the program length may take any of U +1 possible values. This holds strictly

for the vector representations, but does not take into account differences in possible

tree structures at the AST level.17

17The number of possible binary trees of N nodes is equal to the Nth Catalan Number.
Unfortunately calculation of the number of possible tree structures of valid ASTs depends
on a number of other factors, for example not all elements of ASTs (only conditionals) can
be branch points (and not all elements can live under conditionals, e.g., function defini-
tions can not). The calculations in the remainder of this section are restricted to vector
representations.



Chapter 3. Software Representation, Mutation, and Neutral Networks 53

To develop intuition about the size of these program spaces, we can calculate the

size of the space of ASM programs written in MIPS assembler of length L = 10, 00.

Every MIPS instruction is 32 bits long, so there are at most 232 possible argumented

MIPS instructions. Including ∅ statements, there are 232+1 possible values for each

element of the program representation. For a 10,000 instruction program this results

in a program space which is 10, 0002
32+1 elements long. These program spaces are

unfathomably large, and it is very likely that only small fractions of these spaces

encode useful programs. This motivates the decision in this dissertation to improve

upon existing software artifacts rather than attempting to synthesize wholly new

instances of software.

3.5.2 Number of Neighbors

The number of neighbors is equal to the number of transformations which generate

unique programs. Let l = length(P ) be the length of the original program and u

be the number of unique elements in the original program. The number of unique

neighbors is equal to the number of possible deletes plus the number of possible

unique copies plus the number of possible unique swaps. It is impossible that any two

different mutation operations (e.g., a swap and an copy) produce the same program,

because they each generate a different number of elements in the new program (i.e.,

l − 1 for deletes, l for swaps, and l + 1 for copies).



Chapter 3. Software Representation, Mutation, and Neutral Networks 54

There are l possible delete operations, no two of which result in identical pro-

grams.18 There are roughly u × l possible copy operations,19 and
(
l
2

)
possible swap

operations so the number of neighbors N(P ) '
(
l
2

)
+ lu+ 1.

Table 3.7 shows the size of the neighborhood for each sorting program. Even

for very small programs the sizes are quite large with 822 and 53020.25 immediate

neighbors for each sorter on average at the AST and ASM levels respectively. Given

that these neighborhoods grow exponentially with the length of the program, the

number of immediate neighbors will be very large for typical programs of sizes much

larger than the sizes of sorters.

In Table 3.1 we empirically measured the rates of software mutational robustness

for each sorter. By multiplying the neighborhood size by the rate of software muta-

tional robustness from Table 3.1 we can estimate the total number of first order (i.e.,

separated from the original program by a single mutation) neutral variants for each

sorting program. These estimates are shown in the “Neighbors” columns of Table 3.7.

3.5.3 Reachability

An important property of each level of representation is the fraction of the program

space that is reachable from any given starting program, and the length of the short-

est edit path to reach that position. Given an initial program p in a program space

P , where p has u unique elements and P has e possible elements and a maximum

program length of l, the total size of P is |P | = (e+1)l, and the number of programs

reachable from p or R(p) to be R(p) = (u+ 1)l.

18Given that delete is represented by overwriting the deleted element with a special null
element, cases that would normally lead to equivalent programs (e.g., deleting one in a
series of identical elements) generate unique program representations.

19Technically there, are likely fewer unique copy operations, because copying instruction
e1 either before or after another e1 instruction produce an identical result. Section 3.5.4
contains more exact calculations of neighborhood in a program space defined by a reduced
set of mutation operations.
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Every program representation includes inline literals (e.g., 32-bit integers), so

any real-world programs p will contain only a small fraction of all possible program

elements (e.g., possible C statements at the AST level) or u < e. Thus, a search

starting from most programs at these levels will cover only very small portions of the

total program spaces in which they exist so R(p) << |P |.

Leaving literals aside, lower level program representations with smaller instruction

sets such as LLVM and CISC ASM, will have much greater coverage of possible

program elements. Because of the increased length of most programs in LOC at

lower levels (e.g., over a 3× more ASM instructions than AST statements found in

Table 5.1), search at the lower levels will often have access to much larger fractions

of the total program space and are much less constrained by the original program

from which any individual search starts.

3.5.4 Density of Neutral Networks

The question of the total size and density of neutral networks in the program space

requires a more analytically tractable model of program space than we’ve used for our

calculations and estimates thus-far in Section 3.5. Namely a space is required where

the number of mutation operations leading to identical variants may be determined

analytically.

In this section we define such a rigid program space based upon the same fixed-

length vector program representation, but using a single mutation operator. We cal-

culate the number of new program representations encountered in successive steps

through this space. We provide mappings between this rigid space and the space

of ASM programs allowing us to project calculations from rigid space to gls:asm

program space. Finally we combine these into an expression of the total size of a

program’s neutral space under the assumption of nearly constant mutational robust-

ness along random walks through the neutral network.
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3.5.4.1 Rigid Space

The rigid program space uses the same vector program representation used previous

in Section 3.5. Each program is represented as a vector of length d (the dimension-

ality). In this section the dimensionality will be equal to the length of the original

program, so the space will only hold programs of equal or lesser length. This is not

a practical limitation as demonstrated in our empirical investigation of the span of

neutral networks when program length is limited shown in Figure 3.8b.

The elements which may appear in program vectors are taken from the set E

of all possible elements with the set containing the empty set ∅. Placing ∅ into a

program index is equivalent to deleting the contents of that index. The total size of

E is e.

A single mutation operation is defined in this space. This operation is called

“replacement”. Given a variant p, an index i ≤ d, and an element e ∈ E, replacement

sets p[i]← e. All of the operations defined over vector representations in Section 3.1

may be implemented using only replacement. In addition replacement is ergodic,

making this program space a true metric space.

3.5.4.2 Step Wise Expansion in Rigid Space

The number of unique neighbors accessible through successive applications of re-

placement to the original program in this space may be calculated using the following

recurrence relation. Note that every variant is reachable from the original program in

at most d applications of replacement (or replacement of every index in the program

vector).

ni+1 =
ni(d− i)(e− 1)

(i+ 1)
(3.2)
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The variable d is the dimensionality of the program space and e is the number

of elements (including ∅) which any program dimension may take.

Intuitively, the components of Equation 3.2 have the following meanings

ni The number of elements of the last expansion. Each element of ni+1 will be

accessible by a single application of the replacement operation to one of these

elements.

(d− i) The number of dimensions at which each element of ni may be mutated. No

member of ni may be mutated on any of the i previously mutated dimensions

and yield a new variant.

(e− 1) The number of new elements which each mutated dimension may take.

(i+ 1) Division by this term accounts for the property of the space that each element

of ni+1 is reachable from (i+ 1) members of ni.

For every i ≤ d, the number of variants exactly i applications of replacement from

the original program is given by n(i). The value n(0) = 1 as only the original program

is 0 mutations from the original. Figure 3.12 illustrates these sets of programs in a

space in which d = 3 and e = 5. The original program is placed on the origin for

clarity.

The sets n(i),∀i ≤ d are mutually exclusive and partition the program space. The

sum of every n(i) is equal to the total number of elements in this space
∑

i≤d ni = ed.

3.5.4.3 Mappings Between ASM and Rigid Space

There is not a one-to-one mapping from the members of the rigid space defined in

this Section to unique ASM programs. Instead, there is a many-to-one mapping with

multiple members of this rigid space mapping to the same ASM program. Specifically
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(a) n(0) = 1 (b) n(1) = n0(3−0)(5−1)
(0+1) = 12

(c) n(2) = n1(3−1)(5−1)
(1+1) = 48 (d) n(3) = n2(3−2)(5−1)

(2+1) = 64

Figure 3.12: The variants accessible through 0, 1, 2, and 3 applications of replacement
to an original program in a space with 3 dimensions and 5 possible elements.

this is due to the use of ∅ elements in this space which are removed to generate the

ASM related program.

These ∅ elements may be placed in any places in rigid space program. Thus the

number of rigid space programs which map to any given ASM program is equal to

the difference between the length of that program and the length of the original

program.
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Given an element of ASM of size k, where k ≤ d (d is the size of the original)

and k+j=d, that element of ASM will have
(
l
j

)
projections into rigid space (equal to

the number of slots at which an ∅ could be placed in the genome). As a result, an

element of rigid space with j ∅ elements will only represent
(
l
j

)−1
of an element in

ASM space.

In order to translate the sizes of successive steps in expansion in the rigid space

to numbers of programs in ASM, we need to determine the number of elements of

each expansion ni which have z ∅ elements.

For each expansion i, let nz,i be the number of programs with z ∅ elements in step

i. The first program has no ∅ elements, so n0,0=1. Given this, we know that n0,1 =

n1 - n1,1, and n1,1=d, because there is one variant in n1 with an ∅ element for each

mutated dimension in the original program.

This leads to the recurrence relation given in Equation 3.3. The number of ele-

ments of nz,i+1 is composed of elements of nz−1,i which gain an ∅ in a new dimension,

plus elements of nz,i which do not gain an ∅ in a new dimension. It is not possible for

an element of nz+1,i to lose an ∅, because that would require a repeated mutation in

an already mutated dimension. We still have to compensate for duplication, which

is accomplished through division by i+1.

nz,i+1 =
nz−1,i(d− i)1 + nz,i(d− i)(e− 2)

i+ 1
(3.3)

Once we know how many elements of each step have each number of ∅, we may

then find the cardinality of the projection of any given step i into ASM space, A in

Equation 3.4.

Ai =
∑
z≤i

nz,i

(
l

z

)−1
(3.4)
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3.5.4.4 Total Size of Neutral Networks

We assume that a single value of software mutational robustness holds for each step

of expansion in the rigid program space. Let r be the rate of software mutational

robustness. We may then calculate the total number of neutral variants in ASM.

For each i ≤ d we may calculate the number of neutral variants in ni in rigid space.

These sizes may then be converted to cardinalities of the ASM programs mapped to

by elements of ni as in Equation 3.5.

Ai = ri
∑
z≤i

nz,i

(
l

z

)−1
(3.5)

The sum of these cardinalities ∀i ≤ d will be the total number of neutral variants

of the original program in ASM is R in Equation 3.6, with nz,i is calculated using

Equation 3.3.

R =
∑
i≤d

ri
∑
z≤i

nz,i

(
l

z

)−1
(3.6)

The expression in Equation 3.6 for the total number of neutral variants of a

program in a program space of a given size has a number of important implications.

Every possible optimization of the original program (such as those found using the

technique described in Chapter 7) will be a member of this large neutral network.

Similarly, refinements of the program specification which preserve existing behavior

will be constrained to points within this large neutral network.

Previous work by Martinez and Monperrus analyzing program space concludes

that program repairs requiring more than ≥ 5 or ≥ 10 steps in program space are

impossible to find through automated search [106]. In light of the analytic expressions

for the size of neutral spaces presented in Equation 3.6, this prior analysis should be

redone to give the chance of finding any point in the neutral network of the repaired
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program, rather than the chance of finding a single unique instance of the repaired

program.

3.6 Discussion

The results presented in this chapter contradict the prevailing folk wisdom that

software is a precise and intentionally engineered mechanism, which is brittle to

small perturbations. We find software to be robust to random mutations, malleable

within extensive neutral networks. In this section we discuss a number of implications

of this change in perspective.

3.6.1 Evolutionary Provenance of Software

Over the past fifty years software developers have been selecting, reusing, and mod-

ifying efficient and robust software development tools, code, and design patterns.

Like their biological counterparts, software artifacts which have stood the test of

time including applications, interfaces, operating systems, programming languages,

utilities, libraries, compilers and linkers all display both robustness and adaptability

(in some cases to the exclusion of engineering quality [56]). The history of the exist-

ing software development ecosystem can be viewed as an evolutionary process, albeit

one in which human engineers are the mechanisms of both mutation and selection [1].

Ultimately, software may stand with biological organisms as a second example of an

evolved complex system.

This history of development, through a process mirroring natural selection, has

produced the surprisingly biological features of software which were empirically

demonstrated in this chapter and will be applied in the remaining chapters.



Chapter 3. Software Representation, Mutation, and Neutral Networks 62

Program Syntactic Space
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Killed Mutants

Figure 3.13: Syntactic Space of a Program. The set of programs satisfying the pro-
gram specification are shaded blue (left), the set of programs passing the program’s
test suite are shaded red (right), and the set of equivalent programs are shown in
green (center). Three classes of mutants are shown and labeled.

3.6.2 Re-interpretation of Mutation Testing

Many of the techniques presented in this chapter mirror those used in mutation

testing [74]. However this dissertation makes a fundamentally different interpretation

of the value and semantic stature of neutral mutants.

Figure 3.13 shows the syntactic space surrounding a program. This is similar to a

fitness landscape; each point in the space represents a syntactically distinct program,

and each program is associated with a semantic interpretation although that is not

shown in the figure. Randomly mutating a program’s syntactic representation can

have several possible semantic effects, which are shown in the figure.

This highlights an alternative interpretation of our results: for every specification

there exist multiple non-equivalent correct implementations. This emphasizes a dif-
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ferent view of software from that of the mutation testing technique, namely, that for

every program specification, all correct implementations are semantically equivalent.

To see how this follows from mutation testing, assume that ∃ programs a and b

s.t. a is not equivalent to b (a 6= b) and both a and b satisfy specification S. Without

loss of generality let a be the original program and b be a mutant of a. Let T be a

test suite of S. According to Offut [123] there are two possibilities when T is applied

to b. Either “the mutant is killable, but the test cases is insufficient” or “the mutant

is functionally equivalent.” The former case is impossible because b is assumed to

be a correct implementation of S and thus should not be killed by any test suite of

S. The later case is impossible because we assume a 6= b. By contraction, ∀ a and b

satisfying the same specification S, a = b or ∀ specification S ∃!a s.t. a satisfies S.

Non-equivalent neutral mutants require a significant amount of developer atten-

tion. Each requires changes to the program test suite and possibly changes to the

program specification and to the original program. The problem of differentiating

between equivalent and non-equivalent mutants is termed the equivalent mutant prob-

lem, and is a significant problem in the practice of mutation testing (cf. equivalent

mutant problem [74, Section II.C]). Such mutants are often not easily discriminated,

taking an average of 15 minutes in one user study [58], and is only done correctly

80% of the time [2]. Beyond the problem of determining equivalence, it is not clear

that adding tests to distinguish non-equivalent mutants is a useful way to drive test

suite development [53].

Although these problems are well known, we were unable to find formal publica-

tions that experimentally identify the fraction of equivalent mutants (aside from work

explicitly targeting Object-Oriented mutation operators which generate particularly

high rates of equivalent mutants [146, 138, 122]).

Through our own review of the mutation testing literature we collected unre-

ported counts of equivalent mutants from a number of papers [53, 121, 120, 40] that
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Acronym Description
aar array reference for array reference replacement
abs absolute value insertion
acr array reference for constant replacement
aor arithmetic operator replacement
asr array reference for scalar variable replacement
car constant for array reference replacement
cnr comparable array name replacement
crp constant replacement
csr constant for scalar variable replacement
der DO statement end replacement
dsa DATA statement alterations
glr GOTO label replacement
lcr logical connector replacement
ror relational operator replacement
rsr RETURN statement replacement
san statement analysis (replacement by TRAP)
sar scalar variable for array reference replacement
scr scalar for constant replacement
sdl statement deletion
src source constant replacement
svr scalar variable replacement
uoi unary operator insertion

Table 3.8: The Mothra mutation operators used in the landmark Mothra mutation
testing system. Adapted from Table 1 of King et al. [83].

all used the Mothra [83] mutation operators and that found equivalent mutant rates

of 9.92%, 6.75%, 6.24% and 6.17% respectively, indicating that equivalent mutants

are common, but are less frequent than neutral variants.

The Mothra mutation operations are shown in Table 3.8. Mothra mutations are

specific to the Fortran programming language are typically more specific than those

used in this work. Mothra mutations include operations for constant, variable or

array replacement which may be implemented using combinations of our copy and

insert, and Mothra includes operators analogous to our own delete and copy (sdl

and uoi in Table 3.8).
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Of those categories of neutral variants described in Table 3.3, only categories

4, 5 and 6 could possibly have no impact on runtime behavior and could possibly

be equivalent under Offut’s strict definition of equivalence. Under the mutation

testing paradigm, tests would be constructed to “kill” the remaining 29 of 35 neutral

mutants. Given the sorting specification used (namely to print whitespace separated

integer inputs in sorted order to STDOUT separated by whitespace), none of these

classes of neutral mutations could be viewed as faulty. Consequently, any such extra

tests constructed to distinguish them (e.g., for mutation testing) would over-specify

the program specification. Rather than improving the test suite quality, such over-

constrained tests could potentially judge future correct implementations as faulty.

In Chapter 4 we present an alternative to mutation testing which changes basic

paradigm. Instead of immediately analyzing neutral variants manually, they are ei-

ther deployed in an N-version scenario, or saved to aid in future debugging. This

approach postpones the manual work of analyzing equivalent mutants (possibly for-

ever), significantly reducing the burden on developer time. The alternative paradigm

is discussed further in Section 4.3.

3.6.3 Legibility of Transformations

If automatically generated program transformations are to be incorporated into on-

going software development, they may need to be communicated back to software

developers. This communication process is also important for manual review of

evolved program adaptations. The legibility of program transformations differs for

each level of representation. In general, transformations are less legible at the lower

levels of program representation. Each representation is discussed in turn below.

CLang-AST Mutations at the CLang level provides the best legibility. Changes to

the CLang AST may be automatically converted to source-level diffs which are
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properly indented and ready for either manual developer review or for direct

application to program source.

Cil-AST Mutations at the AST level may be presented as differences in Cil pro-

cessed source code, which are easily (if not automatically) translated into source

level diffs. These changes can easily be applied to the original source code for

integration into the software project moving forward.

LLVM and ASM Mutations at these levels are applied to either LLVM IR or com-

piled assembler code. Changes in program variants may easily be represented

as assembler or IR diffs. Such diffs do allow for manual developer review,

however, many software developers are not able or inclined to read such low-

level languages, which are mainly written by compilers rather than by human

developers.

Many compilers provide options to map specific assembler instructions to spe-

cific lines of code in the original program. In these cases it is easy to find the

location of modifications in the source (e.g., using the -c -g -Wa,-ahl=out.s

flags to gcc), however the content of the modification is often not easily, or

not possibly, translated to the source code level, so there is currently no clear

way to integrate changes at the LLVM or ASM levels into a software project

for future use.

ELF Mutations in ELF representations which take place in the executable portion

of the ELF file may be translated into changed assembler instructions using a

disassembler such as objdump (part of the GNU Binutils collection20). In these

cases ELF modifications are as legible as ASM modifications. In other cases

ELF modifications will occur either in the data portion of an executable, or

will not be easily disassembled, in which case manual review becomes a more

difficult forensic exercise.
20http://www.gnu.org/software/binutils

http://www.gnu.org/software/binutils
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3.6.4 Functional vs. Nonfunctional Evaluation

Nonfunctional evaluation leads to smoother fitness landscapes that are more

amenable to search using evolutionary algorithms, as discussed in Section 2.1. The

fitness evaluations described in this work that rely on the test suite of the original

program return fitness values from a discrete set. This leads to a stepped fitness

landscape composed of flat plateaus which provide no guidance to the evolutionary

computation technique except at plateau boundaries. By contrast, the fitnesses re-

turned by nonfunctional evaluation techniques (normally software profilers) are often

continuous, and provide the gradients which evolutionary computation techniques are

able to climb.

Function and nonfunctional properties of software are analogous to discrete and

continuous, or quantitative, traits of biological organisms respectively. Discrete traits

of biological organisms express phenotypes in a finite number of discrete classes and

are often controlled by one or a few genes. Continuous traits are generally controlled

by hundreds of genes, and are more common than discrete traits.

Chapter 7 presents an application that leverages the beneficial aspect of non-

functional fitness evaluation. Section 8.2.2 posits possible techniques with which to

address this limitation of current methods of functional fitness evaluation.
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Chapter 4

Application: Program Diversity

Through the automated exploration of software neutral networks as in Section 3.4.1,

large number of alternate implementations of programs, program variants, may be

automatically generated. Such variants may be collected to form large populations

of diverse implementations of a program. This process results in a novel form of

artificial diversity.

Automated techniques of generating program variants with runtime or pheno-

typic diversity are collectively called artificial diversity [51]. These techniques make

computer systems more secure against attack by making it harder to find, reproduce,

and transfer exploits between machines. Such techniques typically involve random-

izing some aspect of a computation; e.g., stack frame layouts [34], instruction set

numbering [12], or address space layouts [147].

Unlike previous work in artificial diversity, neutral variants provide implementa-

tion diversity [33]. By randomizing implementation choices in the program rather

than execution choices controlled by the operating system or environment, popula-

tions of neutral variants potentially offer increased security and may also potentially

repair semantic defects present in the original program.
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In this chapter we demonstrate that populations of diverse neutral variants can

provide sufficient diversity to proactively repair latent defects in a program. In

one possible use case, large populations of neutral variants could be retained by

developers and used retroactively to quickly repair new bugs as they are discovered.

When developers become aware of a new bug, the population could be checked

quickly for variants that repair the bug.1 If such variants exist they could be used

to pinpoint the bug, and suggest a patch. This would be of practical benefit because

developers are able to repair bugs more quickly with the help of such machine-

generated diffs [159].

This chapter introduces an application of neutral networks in the automated gen-

eration of implementation diversity. The utility of neutral program variants to repair

latent defects is accessed using held-out defects seeded into benchmark programs ac-

cording to known fault distributions.

This work appeared in GPEM [144].

4.1 Methodology

We access the degree to which populations of neutral program variants may proac-

tively repair bugs latent in an original program. We proceed by seeding latent bugs

into real-world software, generating populations of variants of that software with-

out knowledge of the seeded bugs, and then evaluating the degree to which software

variants repair seeded bugs. The following steps were followed.

1. We manually seed each benchmark program in Table 4.1 with five bugs. These

programs are selected to be characteristic of large real-world software projects.
1Although these variants are neutral to the original program with respect to the regres-

sion test suite, many neutral variants are computationally diverse from the original program
(Section 3.3.2.3) and would not remain neutral under different test suites (in this case one
which tests for the previously unknown bug).
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The seeded bugs are drawn at random from an established defect distribu-

tion [55] and fault taxonomy [85], to ensure that our results generalize to the

types of bugs found in real-world software.

2. For each defect, we manually write a test capable of detecting its presence in

the program. These held out tests are withheld until step 4.

3. For each program, using the Cil-AST program representation we generate 5000

neutral variants using only the program regression test suite and not using the

held out tests. These regression test suites are distributed with the programs,

and are the test suites used by the software’s developers themselves. As in

Section 3.3.1.3 these test suites vary in quality and size. We apply mutations

(defined in Section 3.1) uniformly at random and retain the resulting population

of neutral variants.

4. Using the held out tests, we evaluate the populations of neutral variants noting

how many variants pass each of the held out tests.

4.2 Results

Table 4.1 shows the results of this experiment. We find that in most (9 of 11)

programs with five seeded bugs and 5000 neutral variants at least one neutral variant

proactively repaired one of the bugs. When a bug repair was found in the neutral

network we call this bug “repairable”, multiple repairs were usually found with 17.25

proactive repairs found per repairable bug on average.

The types of bugs most commonly repaired were those that resemble the mutation

operations. For example, we found multiple repairs for bugs that could be addressed

by deleting problematic statements or clauses, or inserted clauses or statements to

test for extra conditions. However, there was significant overlap between the types
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Program Total Bugs Fixed of 5 Bug Fixes Fixes per Bug
bzip 2 63 31.5
imagemagick 2 8 4.0
jansson 2 40 20.0
leukocyte 1 1 1.0
lighttpd 1 73 73.0
nullhttpd 1 7 7.0
oggenc 0 0 0.0
potion 2 14 7.0
redis 0 0 0.0
tiff 0 0 0.0
vyquon 1 1 1.0
Average 1.09 18.82 17.3
Total 12 207 17.2

Table 4.1: Proactive repairs of seeded defects found in a population of 5000 neutral
variants.

of bugs which were and were not repaired. We are not yet able to identify features

which distinguish repairable and non-repairable bugs.

Through manual analysis of those variants that proactively repaired bugs, we

found examples where the variant directly reverted the seeded bug by changing the

same line of code in which the bug was seeded (3% of all repairs) or made a change

within 5 lines of code on either side of the seeded bug (12% of all repairs). How-

ever, the majority of repairs (88%) were compensatory (compensatory mutations

repair deleterious effects of changes in one gene by mutating a different gene, and

are thought to be related to evolvability [131]) repairing the bug through changes

elsewhere in the program.

These experiments included only five latent bugs per program. Most deployed

programs have many more than five outstanding defects (e.g., 18,165 from October

2001 to August 2005 for Eclipse (V3.0) and 2,013 from May 2003 to August 2005 for

Firefox (V1.0) [7]).
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Figure 4.1: Number of proactive repairs in a population of 5000 neutral variants for
the potion program as a function of the number of bugs seeded.

Figure 4.1 shows the number of distinct bugs repaired by 5000 neutral variants as

a function of the number of defects seeded. The correlation between the number of

proactive repairs found and the number of seeded bugs is 95%. If our results gener-

alize and this correlation applied to the Eclipse and Firefox projects a population of

5000 neutral variants would repair 9000 and 1000 of the latent later-reported defects

respectively, or in the case of Eclipse almost two bugs per neutral variant.

4.3 Discussion

This use of mutational robustness is analogous to software mutation testing, with

the critical differences that (1) neutral mutants are retained rather than manually

examined; (2) the test suite is not augmented to kill all mutants; and (3) the set

of mutation operators considered is different. The commercial practice of mutation
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testing has been limited by the significant effort required to analyze mutants that pass

the test suite. Such mutants must be manually classified, either as fully equivalent

to the original program or non-equivalent, and the latter further classified as buggy

or as superior to the original program (cf. human oracle problem [162]).

The methodology proposed in this section could provide an alternative to the tra-

ditional mutation testing practice, amortizing these labor-intensive steps by retaining

a population of all such neutral variants. When a bug is encountered in the original

program, it will be detected by running all variants against the bug and checking if

some members of the population behave anomalously with respect to the result of the

population. Then the non-failing variations need only then be analyzed to suggest

a repair. This approach of deferring analysis until a potentially beneficial variation

is found may be more feasible than traditional mutation testing, because it does not

require exhaustive manual review of large numbers of program variants. Section 3.6.2

further discusses the relationship between this work and mutation testing.

Additional applications of the implementation diversity attained through neutral

exploration could include running multiple neutral variants of a program simultane-

ously and automatically detecting differences in behavior (as in [71]), or deploying

autonomous vehicles such as space vehicles with multiple neutral versions of critical

software components providing fallback options in case of software failure. Tech-

niques for reducing the size of neutral populations while maximizing the retained

mutual diversity are explored in prior work [144].
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Chapter 5

Application: Assembler- and

Binary-Level Program Repair

Previous work on automated evolutionary program repair at the level of Cil ASTs

demonstrated a wide range of applicability, for example, repairing 55 of 105 bugs in

a large systematic study [95]. Lower level program representations such as the ASM

and ELF levels (Section 3.1) offer a number of desirable features including gener-

ality to other languages than C, reduced source-code requirements (Section 3.1.3),

faster expression times (Section 3.2.1) and greater coverage of the space of possible

programs (Section 3.5).

Chapter 3 showed that the ASM and AST levels of representations have compa-

rable mutational robustness. This chapter builds on that result to investigate both

ASM and ELF level representations in terms of their ability to repair bugs (Sec-

tion 5.3) and efficiency (Section 5.4). Performing program repair at these lower levels

requires a new form of fault localization (Section 5.1), as the instrumentation-based

method of AST fault localization [96] provides neither the granularity or efficiency

necessary for these lower-level representations.
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This work appeared in ASE 2010 [143] and ASPLOS 2013 [141].

5.1 Fault Localization

Fault localization is the process of determining the location of program faults [45].

The prior work with the AST program representation relied on fault localization to

focus mutation operations to those portions of the program most likely related to

the defect to be repaired. The fault localization process used synthesized traces of

program execution on both good and bad input data to estimate the likelihood that

each execution portion of the program was related to the fault [77].

These techniques required AST statement level program instrumentation. Anal-

ogous instrumentation solutions are problematic for lower level program represen-

tations, which may have no access to program source. Additionally. many existing

code profilers (e.g., gcov) are source language specific making them unsuitable for

application to ASM program representations.

We develop two methods of profiling, which are applicable to arbitrary assem-

bler and ELF programs; a heavy-weight deterministic runtime harness and a lighter

weight stochastic sampling technique. We compare the quality of results for the

two techniques, finding them to be comparable, and conclude that the sampling

technique is generally preferable. In both cases values of the program counter are

collected which are easily converted into offsets in the vector program representation.

Finally, stochastic samples are smoothed using a Gaussian convolution to improve

their approximation of a full deterministic trace. The smoothing process is shown in

Figure 5.1.
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memory addr.

to instruction

movq 8(%rdx), %rdi
xorl %eax, %eax
movl %eax, (%r15)
addl $1, %r14d
call atoi
movq -80(%rbp), %rdx
movq %rdx, -80(%rbp)
addq $4, %r15
movq 8(%rdx), %rdi
xorl %eax, %eax
movl %eax, (%r15)CPU

Machine-code
Instructions

Figure 5.1: ASM and ELF level fault localization showing raw and smoothed samples
from the merge-cpp benchmark shown in Table 5.1.

The deterministic sampling technique uses a simple ptrace-based runtime har-

ness, which collects every value obtained by the program counter during execution.1

The simplicity of this technique makes it preferable for short-running programs.

In most cases however, a lighter weight method is preferable. Stochastic sam-

pling uses the oprofile2 [100] system-wide profiler for Linux systems to sample

the value of the program counter during execution (configuration settings including

sampling frequency were left at their default values). Oprofile returns a count of the

total number of times each instruction in the program was sampled. Sampling only

approximates control flow and is vulnerable to gaps and over-sampling of certain

instructions (e.g., those inside of loops), in addition, the fine granularity of samples

often under-estimates the total number of executed instructions by sampling single

instructions in long runs of contiguous executed instructions.

To compensate for these issues, we apply a 1-D Gaussian convolution (Equa-

tion 5.1) to the sampled addresses with a radius of 3 assembler instructions. The

resulting smoothed address of each instruction x is then a weighted sum G(x) of its

raw sample count and it’s 3 neighbors (x+ i) on either side.

1https://github.com/eschulte/tracer
2http://oprofile.sourceforge.net/news

https://github.com/eschulte/tracer
http://oprofile.sourceforge.net/news
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Figure 5.2: Comparison of stochastic sampling (shown in red) and deterministic fault
localization (shown in blue).

G(x) =
3∑

i=−3

F (x+ i)× 1√
2π
e−

1
2
i2 (5.1)

Gaussian convolution is commonly used to smooth data in fields such as computer

vision [148]. However to our knowledge it had not previously been used for fault

localization. Figure 5.2 compares stochastic and deterministic fault localization for

two programs, deroff and merge sort. In both cases the light weight stochastic

samples have a high fidelity to the full deterministic samples. Merge sort provides

an example of a program with high fault localization coverage, and deroff provides

an example of a program with low fault localization coverage.
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Program Size
C ASM ELF

Program LOC LOC Bytes Program Description Defect
atris 9578 39153 131756 graphical tetris game buffer exploit
ccrypt 4249 15261 18716 encryption utility segfault
deroff 1467 6330 17692 document processing segfault
flex 8779 37119 73452 lexical analyzer generator segfault
indent 5952 15462 49384 source code processing infinite loop
look-s 205 516 1628 dictionary lookup infinite loop
look-u 205 541 1784 dictionary lookup infinite loop
merge 72 219 1384 merge sort improper sorting
merge-cpp 71 421 1540 merge sort (in C++) improper sorting
s3 594 767 1804 sendmail utility buffer overflow
uniq 143 421 1288 duplicate text processing segfault
units 496 1364 3196 metric conversion segfault
zune 51 108 664 embedded media player infinite loop
total 31862 117682 304288

Table 5.1: Benchmarks used in program repair experiments using the ASM and
ELF level program representations. Each program includes one bug described in the
“Defect” column. The “Program Size” columns give the size of the programs in lines
of code “LOC” for AST and ASM representations and in bytes of program data for
the ELF representation.

5.2 Benchmarks

To evaluate the effectiveness of repair at the ASM and ELF levels, a number of

benchmark programs used in previous work at the Cil-AST level were selected. The

success rates and search metrics were collected and compared to earlier work.

The suite of benchmark programs is shown in Table 5.1 together with the size at

different representation levels, a brief program description, and a defect description.

The selected programs cover a wide range of both bugs and security vulnerabilities.

All programs except for the C++ version of merge sort are taken directly from

previous on program repair at the Cil-AST level [161].
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% Success Expected Fitness Evaluations
Program AST ASM ELF AST ASM ELF
atris 83 0 5 27.44 † 48806.00
ccrypt 100 100 100 7.00 673.00 25.00
deroff 100 98 100 48.00 50.00 454.00
flex 6 1 0 78340.50 496255.00 †
indent 4 41 0 62737.25 13517.48 †
look-s 100 100 100 41.00 71.00 3.00
look-u 100 100 100 90.00 16.00 19.00
merge 54 100 84 4456.85 621.00 1008.19
merge-cpp 100 79 † 314.00 2135.2658
s3 100 96 50 4.00 4.00 95.00
uniq 100 100 100 8.00 46.00 8.00
units 91 13 51 930.23 57374.63 8538.47
zune 100 100 100 17.00 26.00 45.00
average 78.17 70.75 65.83 622.45 6542.40 1132.85
w/o units 77.00 76.00 67.18 583.98 188.38 207.15

Table 5.2: Evaluation of the effectiveness of ASM and ELF level representations.
“% Success” gives the percentage of random seeds for which a valid repair is found
within 5000 runs of the full test suite. “Expected Fitness Evaluations” counts the
expected number of evaluations per repair (Equation 5.2). † Indicates that there
were no successful repairs in 5000 fitness evaluations. Rows with † were excluded
when calculating average “Expected Fitness Evaluations”.

5.3 Effectiveness

Table 5.2 compares the ability of the ASM and ELF level representations to repair

defects that were also repaired in previous work at the Cil-AST level (Weimer et

al. [161]). Due to the smaller scale of the program transformations performed at ELF

and ASM levels (Section 3.1.2), we expected the repair process at these levels to be

both slower and less successful. We were surprised to find comparable overall success

rates between the ASM and ELF level repairs (70.75% and 65.83% respectively)

and the AST level 78.18%. Using the Fisher’s Exact test to compare success rates

between Cil-AST and the lower levels we find no significant difference, with p-values

of 1 between AST and ASM, and 0.294 between AST and ELF.
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The “Expected Fitness Evaluations” column reports the expected number of fit-

ness evaluations per repair (including failed repair attempts). The calculation of

expected fitness evaluations is given in Equation 5.2.

expected = fits + (runs − 1)× fitf where (5.2)

fits = average evaluations per successful run

fitf = average evaluations per failed run

runs = average runs per success

More surprising was the reduced number of fitness evaluations required to find

a repair at these lower levels shown in the “w/o units” average (which removes the

outlier “units” program) of the expected fitness evaluations for each representation.

The ASM and ELF level repairs required 188.38 and 207.15 fitness evaluations on

average respectively as compared to 583.98 fitness evaluations on average for Cil-

AST level repairs. These results suggest that even though mutations at these lower

levels affect smaller portions of the program, the repairs at these levels are located

more closely (in terms of mutation) or more densely around the original program.

To provide intuition for this statement, consider the repair for the simple merge sort

bug which incorrectly sorts some inputs. A valid repair is to swap the then and else

branches of the following if statement.

if(left[l-mid -1]<= right [0]) { /* fix: swap branches */

result=list;

} else {

result=merge(left ,l-mid , right ,mid);

}
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At the Cil-AST level this repair is only accomplished by 2 of 4900 possible swap

mutation operations.3 At the lower levels this repair is accomplished by simply

deleting the cmpl instruction in the following assembler code.
cmp %eax , %edx ;; fix: delete instruction

jg .L12

mov -72(%rbp), %rax

This is 1 of only 280 possible delete mutation operations,4 and is much more easily

found.

5.4 Efficiency

Having found comparable effectiveness across all levels, we next consider the effi-

ciency of the repair process by level of representation. This includes both static

properties such as the size of the installed toolchain required to perform repair (Sec-

tion 3.2.1), as well as runtime properties such as the time required to perform repair.

In general the ASM and ELF representations perform automated program repair

more efficiently than the higher Cil-AST level as shown in Table 5.3.

Runtime The runtime of the automated repair process is dominated by the time

taken to perform fitness evaluations (Section 3.2). The time taken for a fit-

ness evaluation includes both the time required to run the test suite, and the

time required to express the program as an executable (i.e., compile and link),

the lower level representations are expressed much more efficiently because they

don’t need to be compiled (ASM) or compiled and linked (ELF) (Section 3.2.1).

This effect is compounded by the fact that fewer expected total fitness evalu-

ations were required at the lower levels as shown in the previous section. As
3Merge sort has 70 total Cil-AST statements. Each swap selects two statements for a

total of 70× 70 = 4900 possible swap operations.
4Merge sort has 280 total ASM instructions. Each deletion selects one instruction for a

total of 280 possible deletion operations.
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Memory (MB) Runtime (s)
Program AST ASM ELF AST ASM ELF
atris 2384∗ 2384∗ 496 22.87 † 385.63
ccrypt 6437∗ 3338∗ 334 39.15 342.23 21.58
deroff 1907∗ 811 453 37.33 1366.61 292.88
flex 691 381 162 1948.84 1125.44 †
indent 3242∗ 1669∗ 572 3301.88 3852.47 †
look-s 420 62 29 747.59 353.81 6.00
look-u 430 52 62 12.68 6.38 3.66
merge 152 45 57 842.74 100.93 161.35
merge-cpp † 50 60 † 121.87 90.56
s3 152 76 43 14.43 23.46 28.02
uniq 358 72 72 105.18 3.46 7.18
units 572 162 95 1075.16 18778.70 501.54
zune 76 17 29 36.93 28.79 71.49
average 1401.75 755.75 200.33 323.47 2333.82 121.52
w/o units 1242 559 135 229.50 278.20 74.02

Table 5.3: Evaluation of defect repair efficiency at the ASM and ELF level repre-
sentations. “Memory” reports the average max memory required for a repair (as
reported by the Unix top utility). “Runtime” reports the average time per successful
repair in seconds. † Indicates that there were no successful repairs in 5000 fitness
evaluations. Rows with † are excluded when calculating “Memory,” “Runtime,” and
“Expected Fitness Evaluations” averages.

a result the runtime for repair is significantly reduced for the lower levels of

program representation.

Despite the reduced number of fitness evaluations and reduced expression time,

ASM level repairs take longer on average than AST level repairs. This might

be due to an increased likelihood of transformations at the ASM resulting in

ASM ELF
Runtime -21.2% 67.7%
Disk 47.4% 95.2%
Memory 55.0% 89.1%

Table 5.4: Decrease in resource requirements at the ASM and ELF level repre-
sentations compared to the {\sc Cil}-AST level representation. “Runtime” and
“Memory” numbers exclude units as an outlier.
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new bugs, such as infinite loops, which increase the running time of the test

suite.

Disk usage The disk usage during repairs differs dramatically between levels of

representation, as expected. The reduced disk footprint of the ASM and ELF

levels is primarily due to the fact that these lower-level representations do not

need a compiler, or a compiler and linker respectively, to express programs as

executables.

Memory The working memory of the repair process is dominated by the space

required to hold the population of candidate repairs variants. This space is

dictated by the size of individual program representations in memory. The

ASM and ELF level program representations are more space-efficient. Instead

of storing a tree of source-code statements as in the AST level, the lower levels

store a vector of text assembly instructions at the ASM level and a vectors of

byte-sequences at the ELF level.

5.5 Discussion

This chapter described experiments of the ability of the ASM and ELF level pro-

gram representations to repair bugs taken from previous program repair work at the

Cil-AST level. To efficiently perform program repair over these lower level repre-

sentations changes to the program repair process were required, including a lighter

weight stochastic method of fault localization (Section 5.1).

Program repair at these lower levels was found to be as effective as program

repair at the Cil-AST level (Section 5.3) and more efficient in terms of memory

consumption, disk footprint and runtime (Section 5.4).
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Chapter 6

Application: Patching Closed Source

Executables

The ability to manipulate ELF files directly obviates the need for any access to soft-

ware development resources such as source code or build toolchains. This suggests

the possibility of modifying proprietary closed-source applications. An interesting

use case, for example, is repairing security vulnerabilities in closed-source executa-

bles. However, this use case raises new challenges, such as how to conduct automated

program repair without access to a regression test suite. We demonstrate this appli-

cation by repairing multiple security vulnerabilities in the NETGEAR WNDR3700

wireless router.1

Router bugs are a significant issue, ranging from the bug in CISCO’s IOS, which

on February 16th 2009 caused outages in nearly every country worldwide [167], to

security vulnerabilities in home routers like NEGEAR [35] or the recent D-Link

bug [49]. Security bugs are particularly problematic, especially because major soft-

ware vendors commonly delay releasing patches to security exploits. In a study of

1http://www.netgear.com/home/products/networking/wifi-routers/wndr3700.
aspx

http://www.netgear.com/home/products/networking/wifi-routers/wndr3700.aspx
http://www.netgear.com/home/products/networking/wifi-routers/wndr3700.aspx
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high- and medium-risk vulnerabilities in Microsoft and Apple products between 2002

and 2008, for example, about 10% of vulnerabilities were found not to be patched

within 150 days of disclosure, and on any given date about 10 vulnerabilities and

over 20 vulnerabilities were public and un-patched for Microsoft and Apple respec-

tively [54].

In recent years, a variety of automated methods for program repair have success-

fully repaired defects in real software (see Section 2.4). The ELF program repre-

sentation introduced in Chapter 3 allows for the transformation and evaluation of

binary executables without the need for any access to developer resources such as

source code, or built toolchains. In Chapter 5 we described automated repair meth-

ods based on evolutionary computation to repair defects directly in x86 and ARM

ELF files. Chapter 5, however, relies on a regression test suite to define the required

functionality of the program under repair. Here we consider a setting in which nei-

ther source code nor test suites are available, and there is no special information or

cooperation from the vendor.

Software vendors are often slow to respond to security vulnerabilities after exploits

have been discovered. This leads to a dire situation for end users who lack product

source code and must wait for a patch to be released by the vendor. Rather than

waiting for vendor-delivered patches, we present an alternative approach in which

newly discovered exploits drive an automated repair technique capable of patching

vulnerabilities, even without access to source code or special information from the

software vendor. A user-produced patch could be installed temporarily for internal

protection, redistributed with the exploit (reporting an exploit with a patch in hand

has been shown to reduce the total number of attacks [8]), or sent to the software

vendor to reduce development time for the official patch [159].

This Chapter describes how the Genprog repair method can be applied to this

new use case. Extensions to earlier work include: Repairing security vulnerabilities

in router binaries; special processing to handle stripped ELF files; operating without
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fault localization information; operating without a pre-existing regression test suite

to define required program behavior; and the discovery of multiple iterative repairs

in a binary.

We demonstrate the method by repairing two recently discovered exploits in

version 4 of NETGEAR’s WNDR3700 wireless router before NETGEAR released

patches publicly for the exploits (at the time of writing NETGEAR has not publicly

addressed the exploits). Without the use of any regression tests to guide the search,

we find that 80% of the automatically generated repairs for the example vulnerabil-

ities retain program functionality. When user-created tests of required functionality

are incorporated in an interactive process, success quickly increases to 100% of the

proposed repairs.

To encourage reproducibility and to allow others to patch future vulnerabilities,

we provide a companion source repository2 for this Chapter. It contains the in-

structions, source code, and tooling needed to extract, execute and repair the binary

NETGEAR router image vulnerabilities, and to regenerate the analyses, tables, and

figures included in this chapter.

The remainder of the chapter reviews two recent exploits of NETGEAR

WNDR3700 (Section 6.1); demonstrates the feasibility of running the NETGEAR

firmware in a VM sandbox (Section 6.2.1); describes the automated program repair

technique (Sections 6.2.2 and 6.2.3); evaluates effectiveness and quality of repairs

(Section 6.3); and discusses implications and limitations (Section 6.4).

This work is previously unpublished.

2https://github.com/eschulte/netgear-repair

https://github.com/eschulte/netgear-repair
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6.1 Description of Exploits

We describe two current exploits in version 4 of the NETGEAR WNDR3700 wireless

router. The popularity of this router implies that vulnerable systems are currently

widespread. For example, the “shodan"3 device search engine returned hundreds of

vulnerable publicly accessible WNDR3700 routers at the time of writing. Both ex-

ploits exist in the router’s internal web server in a binary executable named net-cgi,

and both are related to how net-cgi handles authentication [35].

The vendor-deployed binary is insecure in at least two ways:

1. Any URL starting with the string “BRS” bypasses authentication.

2. Any URL including the substring “unauth.cgi” or “securityquestions.cgi”

bypasses authentication. This applies even to requests of the form http:

//router/page.html?foo=unauth.cgi, meaning that the vulnerability effec-

tively applies to all internal webpages.

Many administrative pages start with the “BRS” string, providing attackers with

access to personal information such as users passwords, and by accessing the page

http://router/BRS_02_genieHelp.html attackers can disable authentication com-

pletely and permanently across reboots.

6.2 Automated Repair Method

Our repair technique for this vulnerability consists of three stages:

1. Extract the binary executable from the firmware and reproduce the exploit

(Section 6.2.1).
3http://www.shodanhq.com/search?q=wndr3700v4+http

http://router/page.html?foo=unauth.cgi
http://router/page.html?foo=unauth.cgi
http://router/BRS_02_genieHelp.html
http://www.shodanhq.com/search?q=wndr3700v4+http
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2. Use evolutionary techniques to search for repairs by applying random mutations

(and crossover) to the stripped (without symbols or section tables) MIPS ELF

binary (Section 6.2.2).

3. Construct test cases lazily, as needed, to improve the quality of unsatisfactory

candidate repairs (Section 6.2.3).

The first step in repairing the net-cgi executable is to extract it and the router

file system from the firmware image distributed by NETGEAR. Using the extracted

file system and executable we construct a test harness that can exercise the vulner-

abilities in net-cgi. This test harness is used by the repair algorithm to evaluate

candidate repairs and to identify when repairs for the vulnerabilities have been found.

6.2.1 Firmware Extraction and Virtualization

NETGEAR distributes firmware with a full system image for the WNDR3700 router,

which includes the router file system that has the vulnerable net-cgi executable.

We extracted the file system using the binwalk4 firmware extraction tool, which

scans the binary data in the raw monolithic firmware file, searching for signatures

identifying embedded data sections, including squashfs [103] that hold the router’s

file system.

The router runs on a big-endian MIPS architecture, requiring emulation on most

desktop systems to safely reproduce the exploit and evaluate candidate repairs.

We used the QEMU system emulator [15] to emulate the MIPS architecture in a

lightweight manner with Debian Linux also run in emulation. The extracted router

file system is copied into the emulated MIPS Linux system. A number of special

directories (e.g., /proc/, /dev/) are mounted inside the extracted file system and

bound to the corresponding directories on the virtual machine. At this point, com-

4http://binwalk.org

http://binwalk.org
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mands can be executed in an environment that closely approximates the execution

environment of the NETGEAR router by using the chroot command to confine ex-

ecutable access to within the extracted NETGEAR file system. Additional minor

adjustments are described in the reproduction documentation.5

At this point the NETGEAR router can be run under virtualization. In particu-

lar, the router’s web interface can be accessed either using an external web browser

or the net-cgi executable can be called directly from the command line.

6.2.2 Automated Program Repair and ELF Files

The repair algorithm constructs a population of 512 program variants, each with

one or more random mutations (Chapter 3). This population is evolved through an

iterated process of evaluation, selection, mutation, and crossover until a version of

the original program is found that repairs the bug. “Repair” in this context is defined

to mean that it avoids the buggy behavior and does not break required functionality.

In Chapter 5, execution traces were collected during program execution and used

as a form of fault localization to bias random mutations towards the parts of the

program most likely to contain the bug. Our decision not to use fault localization is

explained in Section 6.3.2.2.

The basic Genprog repair algorithm was modified in several ways to address the

unique scenario of a user repairing a faulty binary executable, without access to a

regression test suite (Section 6.2.3), and without the fault localization optimization.

6.2.2.1 Challenge: Mutating Stripped Binaries

Executable programs for Unix and embedded system are commonly distributed as

ELF [32] files. Each ELF file contains a number of headers and tables containing

5http://eschulte.github.io/netgear-repair/INSTRUCTIONS.html

http://eschulte.github.io/netgear-repair/INSTRUCTIONS.html
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ELF Header
Section Table

...
Section Data

...

Program Table

Linker

Memory

Figure 6.1: Sections and their uses in an ELF file.

administrative data, and sections holding program code and data. The three main

administrative elements of an ELF file are the ELF header, the section table and the

program table (see Figure 6.1). The ELF header points to the section table and the

program table, the section table holds information on the layout of sections in the

ELF file on disk, and the program table holds information on how to copy sections

from disk into memory for program execution.

Although the majority of ELF files include all three of the elements shown in

Figure 6.1, only the ELF Header is guaranteed to exist in all cases. In executable

ELF files, the program table is also required, and similarly, in linkable files the section

table is required.

We extend Chapter 5, which repaired unstripped Intel and ARM files [141]. In

that work the .text section of the ELF file was modified by the mutation and

crossover operations, but in this case net-cgi does not include key information

on which the earlier work relied, namely the section table and section name string

table. This information was used to locate the .text section of the ELF file where

program code is normally stored. The data in the .text section were then coerced

into a vector of assembly instructions (the genome) on which the mutation operations

were defined. Our extension removes this dependence by concatenating the data of
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Replace Delete

0x0

Swap

One Point Crossover

Figure 6.2: Mutation and Crossover operations for stripped MIPS ELF files. The
program data are represented as a fixed length array of single-word sections. These
operators change these sections maintaining length and offset in the array.

every section in the program table that has a “loadable” type to produce the genome.

These are the sections whose data are loaded into memory during program execution.

Mutation operations must change program data without corrupting the structure

of the file or breaking the many addresses hard coded into the program data itself

(e.g., as destinations for conditional jumps). In general, it is impossible to distinguish

between an integer literal and an address in program data, so the mutation operations

are designed to preserve operand absolute sizes and offsets within the ELF program

data. This requirement is easily met because every argumented assembly instruction

in the MIPS RISC architecture is one word long [61]. “Single point crossover” is used

to recombine two ELF files. An offset in the program data is selected, then bytes

from one file are taken up to that offset and bytes from the other file taken after

that offset. This form of crossover works especially well because all ELF files will

have similar total length and offsets. The mutation and crossover operations used to

modify stripped MIPS ELF files are shown in Figure 6.2.
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6.2.3 On-Demand Regression Testing

Our approach to program repair relies on the ability to assess the validity of program

variants. The mutations are random in the sense that they do not take into account

or preserve the semantics of the program. They are more likely to create new bugs or

vulnerabilities than they are to repair undesired behavior, and the method requires

an evaluation scheme to distinguish between these cases.

Instead of relying on a pre-existing regression test suite, we assume only that a

demonstration of the exploit provides a single available failing test. By mutating

programs without the safety net of a regression test suite, the evolved “repairs” often

introduce significant regressions. However, by applying a strict minimization process

after the primary repair is identified, these regressions are usually removed (as in

the Genprog technique described in Section 2.4). The minimization reduces the

difference between the evolved repair and the original program to as few edits as

possible using delta debugging6. The interactive phase of the repair algorithm asks

the user to identify any regressions that remain after the delta debugging step. In

the case of the NETGEAR router bug, repaired versions of the net-cgi executable

web-server are run in simulation and a user uses a web browser to manually use the

web server. High-level pseudocode for the repair algorithm is show in Figure 6.3.

Our method is thus an interactive repair process in which the algorithm searches

for a patch that passes every available test (starting with only the exploit), and then

minimizes it using delta debugging. In a third step, the user evaluates its suitability.

If the repair is accepted, the process terminates. Otherwise, the user supplies a new

regression test that the repair fails (a witness to its unsuitability) and the process

repeats. In Section 6.3 we find that 80% of our attempts to repair the NETGEAR

WNDR3700 exploits did not require any user-written regression tests.

6https://github.com/eschulte/delta-debug

https://github.com/eschulte/delta-debug
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Input: Vulnerable Program, original : ELF
Input: Exploit Tests, exploits : [ELF → Fitness]
Input: Interactive Check, goodEnough : ELF → [ELF → Fitness]
Output: Patched version of Program
1: let new ← null
2: let fitness← null
3: let suite← exploits
4: repeat
5: let full← evolSubroutine(original, suite)
6: new ← minimize()
7: let newRegressionTests← goodEnough(new)
8: suite← suite ++newRegressionTests
9: until length(newRegressionTests)(−1cm : 1.5cm)circle(1cm)0

10: return new

Figure 6.3: High-level Pseudocode for interactive lazy-regression-testing repair algo-
rithm.

The evolSubroutine in Figure 6.3 is organized similarly to previous work [96],

but it uses a steady state evolutionary algorithm (Section 2.2.2). Figure 6.4 gives the

high-level pseudocode.

Note that every time the user rejects the solution returned by evolSubroutine,

the evolved and minimized solution is discarded and a new population is generated

by recopying the original in evolSubroutine.

6.3 Repairing the NETGEAR Exploits

We first describe the experimental setup used to test the repair technique on the

NETGEAR WNDR3700 vulnerability (Section 6.3.1). We then analyze the results

of ten repair attempts (Section 6.3.2).
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Input: Vulnerable Program, original : ELF
Input: Test Suite, suite : [ELF → Fitness]
Parameters: populationSize, tournamentSize, crossRate
Output: Patched version of Program
1: let fitness← evaluate(original, suite)
2: let pop← populationSize copies of 〈original, fitness〉
3: repeat
4: if Random() < CrossRate then
5: let p1 ← crossover(tournament(pop, tounamentSize,+))
6: let p2 ← crossover(tournament(pop, tounamentSize,+))
7: let p← crossover(p1, p2)
8: else
9: p← tournament(pop, tounamentSize,+)

10: end if
11: let p′ ← Mutate(p)
12: let fitness← evaluate(suite, p′)
13: incorporate(pop, 〈p′,Fitness(Run(p′))〉)
14: if length(pop) > maxPopulationSize then
15: evict(pop, tournament(pop, tounamentSize,−))
16: end if
17: until fitness > length(suite)
18: return p′

Figure 6.4: High-level Pseudocode for the steady state parallel evolutionary repair
subroutine.

6.3.1 Methodology

All repairs were performed on a server-class machine with 32 physical Intel Xeon

2.60GHz cores, Hyper-Threading and 120 GB of Memory. We used a test harness to

assess the fitness of each program variant (Section 3.2) and report parameters used

in the experiments (Section 6.3.1.2). An overview of the experimental configuration

is provided in Figure 6.5.

6.3.1.1 Fitness Evaluation

We used 32 QEMU virtual machines, each running Debian Linux with the NET-

GEAR router firmware environment available inside of a chroot. The repair algo-
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Figure 6.5: A high level view of the tooling used to repair a closed source router bug.

rithm uses 32 threads for parallel fitness evaluation. Each thread is paired with a

single QEMU VM on which it tests fitness.

The test framework includes both a host and a guest test script. The host script

runs on the server performing repair and the guest script runs in a MIPS virtual

machine. The host script copies a variant of the net-cgi executable to the guest

VM where the guest test script executes net-cgi the command line and reports a

result of Pass, Fail, or Error for each test. These values are then used to calculate

the variant’s scalar fitness as shown in Equation 6.1.

fitness =
∑

t∈Test Suite


2 if PASS

1 if FAIL

0 if ERROR

(6.1)

Pass indicates that the program completed successfully and produced the correct

result, Fail indicates that the program completed successfully but produced an

incorrect result, and Error indicates that the program execution did not complete
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successfully due to early termination (e.g., because of a segfault) or by a non-zero

ERRNO exit value.

6.3.1.2 Repair Parameters

Repair uses the following parameters. The maximum population size is 29 individ-

uals, selection is performed using a tournament size of two.7 When the population

overflows the maximum population size, an individual is selected for eviction using a

“negative” tournament in which the lowest fitness individual is selected for eviction.

Newly generated individuals undergo crossover two-thirds of the time.

These parameters differ significantly from those used in previous evolutionary

repair algorithms (e.g., [50, 95, 97]). Specifically, we use larger populations (512

instead of 40 individuals), running for many more fitness evaluations (≤100,000 in-

stead of ≤400). However, the parameters used here are in line with those used in

other evolutionary program repair publications given the size of the net-cgi binary,

and they help compensate for the lack of fault localization information.

The increased memory required by the larger population size is offset by the use

of a steady state evolutionary algorithm (Section 2.2.2), and the increased computa-

tional demand of the greater number of fitness evaluations is offset by parallelization

of fitness evaluation.

7When the fitness of all variants in the population has been evaluated, the fitness values
are used to select one individual for subsequent modifications in the next generation. We use
tournament selection where each tournament chooses a subset of two (the tournament size)
randomly from the population and the individual with higher fitness wins the tournament
and is copied into the population.
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6.3.2 Experimental Results

We report results for the time typically taken to generate a repair (Section 6.3.2.1),

the effect of eliminating fault localization (Section 6.3.2.2), and the impact of the

minimization process (Section 6.3.2.3), both with respect to the size of the repair in

terms of byte difference from the original and in terms of the fitness improvement.

6.3.2.1 Repair Runtime

In 8 of the 10 runs of the algorithm (with random restarts), the three exploit tests

alone were sufficient to generate a satisfactory repair (determined using a withheld

regression test suite hand-written by the authors8), and the third phase of user-

generated tests was not required.

In these cases the repair process took an average of ~36,000 total fitness evalu-

ations requiring on average 86.6 minutes to find a repair using 32 virtual machines

for parallelized fitness evaluation.

6.3.2.2 Repair without Fault Localization

In the NETGEAR scenario we do not use any form of fault localization. While

this might reduce the efficiency of repair, it is a benefit in cases where the use of

fault localization would over-constrain the search operators. The limitation, as in

Genprog, of program transformations to only those portions of a program exercised

by the failing program inputs prevents valid repairs from being found if they require

modification to statements outside of those executed by the failing input (in e.g.,

type definitions, global variables, or data sections in an ELF file).

8https://github.com/eschulte/netgear-repair/blob/master/bin/test-cgi

https://github.com/eschulte/netgear-repair/blob/master/bin/test-cgi


Chapter 6. Application: Patching Closed Source Executables 98

0

50000

100000

150000

200000

250000

300000

350000

400000

3 4 5 6 7 8O
ffs
et

in
P
ro
ce
ss

M
em

or
y
A
dd

re
ss

R
an

ge

Execution Runtime (Sec.)

Modified Locations vs. Execution Trace Locations

Execution Traces
Minimized Patch Location

Figure 6.6: Fixes occur in different locations from execution traces: The location
of every edit in a minimized successful repair is plotted as a horizontal line. Each
vertical column shows points of execution traces from one test suite. Test suites
shown from left to right are 3 tests (exploit tests only), 4, 7, and 11 tests (exploit and
author-generated regression tests), with 330, 399, 518, and 596 sampled execution
locations respectively. Code modifications occur in different locations from execution
traces

One of the NETGEAR exploits exemplifies this issue. As shown in Figure 6.6,

fault localization might have prevented the repair process from succeeding. The

figure shows that many of the program edit locations for successful repairs were not

visited by the execution trace. In fact, only 2 of the 22 program locations modified

by successful repairs were within 3 instructions of the execution traces. Although

surprising, this result suggests that earlier work, which confines edit operations to

execution traces, would likely be unable to repair the NETGEAR bugs.

6.3.2.3 The impact of Minimization

In some cases the initial suggested repair, known as the primary repair, was not satis-

factory. For example, suggested repairs sometimes worked when net-cgi was called
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directly on the command line but not through the embedded uHTTPd webserver,9

or the repaired file failed to serve pages not used in the exploit test. However, Ta-

ble 6.1 shows that in most cases the minimized version of the repair was satisfactory,

successfully passing all hand-written regression tests, even those not used during the

repair process.

Run Fit Evals Full Diff Min Diff Full Fit Min Fit
0 90405 500 2 8 22
1 17231 134 3 22 22
2 26879 205 2 21 22
3 23764 199 2 19 22
4 47906 319 2 6 6
5 13102 95 2 16 22
6 76960 556 3 17 22
7 11831 79 3 20 22
8 2846 10 1 14 14
9 25600 182 2 21 22

mean 33652.4 227.9 2.2 16.4 19.6

Table 6.1: The evolved repair before and after minimization. In these columns “Full”
refers to evolved solutions before minimization and “Min” refers to solutions after.
Columns labeled “Diff” report the number of diff hunks against the original program
data. The columns labeled “Fit” report fitness as measured with a full regression test
suite, including the exploit tests. The maximum possible fitness score is 22 (using
the fitness function in Equation 6.1 with all 11 tests), indicating a successful repair.

As shown in Table 6.1, the initial evolved repair differed from the original at over

200 locations10 on average in the ELF program data, while the minimized repairs

differed at only 1–3 locations on average. This great discrepancy is due to the

accumulation of candidate edits in non-tested portions of the program data. Since

these portions of the program were not tested, there was no evolutionary pressure to

purge the harmful edits. Delta debugging eliminates these edits.

9http://wiki.openwrt.org/doc/uci/uhttpd
10The number of difference locations are counted as the number of unified diff hunks

calculated using the diff command with the -u option.

http://wiki.openwrt.org/doc/uci/uhttpd
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6.4 Discussion

The results presented here open up the possibility that end users could repair software

vulnerabilities in closed source software without special information or aid from the

software vendor. We hope that the tooling published with this work,11 encourages

users to patch important vulnerabilities quickly and researchers to release patches

simultaneously with exploit announcements.

There are several caveats associated with this initial work. First, we demonstrated

repair on a single executable, and it is possible that the success in the absence of

regression test suite will not generalize. However, our results do not appear to be

based on any property unique to the NETGEAR exploits. We conjecture that our

success at finding functional repairs in this setting is due to the beneficial impact of

minimization and to software mutational robustnesss (Section 3.3). Although we did

not test our repairs on physical NETGEAR WNDR3700 hardware, we are confident

that they would have the same effect on hardware as they do in emulation.

Whenever a patch is distributed there a risk of someone reverse-engineering an

exploit from the patch text [22]. As shown in Table 6.1 our technique sometimes

generates patches that are not directly relevant to the repaired vulnerability. It may

be possible to avoid this risk by generating obfuscated patches in cases where a

regression test suite is available and minimization is not performed.

11https://github.com/eschulte/netgear-repair

https://github.com/eschulte/netgear-repair
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Chapter 7

Application: Optimizing

Nonfunctional Program Properties

The applications presented in prior chapters have considered only functional prop-

erties of software. This chapter describes an application of evolutionary exploration

of neutral networks to the optimization of nonfunctional software properties, and

find the fitness landscapes defined by these nonfunctional properties to be suitable

for evolutionary guided search (as predicted in Section 3.6.4). We present a general

Genetic Optimization Algorithm (GOA),1 and demonstrate its effectiveness.

Runtime requirements for software are increasingly dominated by complex non-

functional properties. In some server environments memory footprint and the resul-

tant impact on concurrently running processes is of utmost importance [105], while

in other settings minimizing off-chip communication is paramount. At the extremes

of very small embedded systems and very large data-centers minimizing energy min-

imization is more important that runtime efficiency [21]. Data-centers are estimated

to have consumed over 1% of the global electricity production in 2010 [88], so tech-

niques for minimizing the energy consumption of software could have immediate

1https://github.com/eschulte/goa

https://github.com/eschulte/goa
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global impact. Despite the pressing need, existing compilers do not target energy

consumption. For example a 2010 bug report against the LLVM compiler suite re-

questing an -OE flag to minimize energy consumption2 was marked as invalid with a

note to use runtime minimization.3

Runtime properties such as energy consumption are often the result of complex

interactions with the particulars of the hardware and environment in which the soft-

ware is running, limiting the effectiveness of general techniques. Given the wealth of

complex runtime properties of software, the large number of available hardware plat-

forms and configurations, and the impact of innocuous environmental factors such

as environment variables [115], the resulting cross-product of potential optimizations

(each of which may require individual program transformation, implementation or

configuration) far exceeds the resources of compiler developers.

This chapter describes GOA, which is a post-compilation optimization technique

leveraging evolutionary search to automatically find machine-, environment- and

workload-specific optimizations in the space of assembler code programs. The re-

mainder of this chapter introduces GOA (Section 7.1). Its effectiveness is evaluated

by reducing energy consumption for the PARSEC [17] benchmark applications on

two different hardware platforms. GOA finds both hardware- and workload-specific

optimizations, and reduce energy consumption of the PARSEC benchmarks by 20%

on average as compared to the most efficient available compiler optimizations (Sec-

tion 7.2).

This work appeared in ASPLOS 2014 [142].

2http://llvm.org/bugs/show_bug.cgi?id=6210
3The LLVM compiler still does not provide any option for energy minimization.

http://llvm.org/bugs/show_bug.cgi?id=6210
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Figure 7.1: Overview of the genetic optimization algorithm.

7.1 Genetic Optimization Algorithm

GOA is a post-compilation, workload-driven optimization technique. GOA takes as

input the assembler code produced by an optimizing compiler such as GCC. This input

is parsed into an ASM-level representation (Section 3.1). GOA uses workloads pro-

vided by the software developer to exercise candidate optimizations both to evaluate

candidate optimizations both for functionality and to measure runtime properties.

An overview of GOA is given in Figure 7.1.

The ASM-level representation of the original program is extracted from the build

process, assigned a fitness (illustrated in steps 4, 5, 6 of Figure 7.1) and used to seed

a population of program variants. An evolutionary computation algorithm (Sec-

tion 7.1.2) then searches for candidate program optimizations. Every iteration of

the main search loop: (1) selects a candidate optimization from the population, (2)

transforms it (Section 3.1.2), (3) links the result into an executable (Section 3.2.1),

(4) runs the resulting executable against the supplied workload (as in Section 3.2.2),

(5) collects performance information for programs that correctly process the work-
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load, (6) combines the profiling information into a scalar fitness score using the fitness

function, and (7) reinserts the optimization and its fitness score into the population.

The process continues until either a desired optimization target is reached or a prede-

termined time budget is exceeded. When the algorithm completes, a post-processing

step (8) takes the best individual found in the search and minimizes it with respect

to the original program (as in Section 6.3.2.3). GOA returns an assembler diff which

may be either manually reviewed or applied to the original program to produce an

optimized version of the program.

7.1.1 Inputs

As shown in Figure 7.1, GOA requires three inputs from the developer, the assembly

code of the program to be optimized, a regression test suite that captures required

functionality, and a measurable optimization target.

The program to be optimized is presented as a single assembly file, which can

either be extracted from the build process, e.g., using gcc’s “–combine” flag for C or in

other cases, manual concatenation of multiple .s assembler files may be required. In

practice this was straightforward. Only visible assembler code included in the input

will be available to be optimized, so performance-critical library functions must be

included inline.

The input workload serves as an implicit specification of correct behavior; a can-

didate optimization that generate the correct result on this input is assumed to

retain all required functionality. Of course there is a risk that optimizations inade-

quately evaluated by the workload break program behavior, which we address in Sec-

tion 7.2.2. A post-processing minimization step (implemented as in Section 6.3.2.3)

removes most harmful mutations which are not caught by the test suite.
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Input: Original Program, P : Program
Input: Workload, Run : Program→ ExecutionMetrics
Input: Fitness Function, Fitness : ExecutionMetrics→ R
Parameters: PopSize, CrossRate, TournamentSize, MaxEvals
Output: Program that optimizes Fitness
1: let Pop← PopSize copies of 〈P,Fitness(Run(P ))〉
2: let EvalCounter ← 0
3: repeat
4: let p← null
5: if Random() < CrossRate then
6: let p1 ← Tournament(Pop, TournamentSize,+)
7: let p2 ← Tournament(Pop, TournamentSize,+)
8: p← Crossover(p1, p2)
9: else
10: p← Tournament(Pop, TournamentSize,+)
11: end if
12: let p′ ← Mutate(p)
13: AddTo(Pop, 〈p′,Fitness(Run(p′))〉)
14: EvictFrom(Pop,Tournament(Pop, TournamentSize,−))
15: until EvalCounter ≥MaxEvals
16: return Minimize(Best(Pop))

Figure 7.2: High-level pseudocode for the main loop of GOA.

Finally, the developer must supply a fitness function which GOA will attempt

to optimize (usually minimize). In the current implementation this function must

produce a single scalar fitness value. In our demonstration example the fitness func-

tion estimates energy consumption from profile data collected during the execution

of candidate optimizations. However, any function producing a scalar value could

be used, e.g., a valid fitness function could eschew profile data and simply measure

the size of the executable. We view the generality of possible fitness functions as a

strength of this technique.

7.1.2 The GOA Algorithm
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GOA uses a steady state evolutionary algorithm (shown in Figure 7.2). This dif-

fers from previous applications of evolutionary computation techniques to real-world

software (e.g., Genprog) which typically use generational genetic algorithms [95, 96].

Instead of replacing the population in discrete steps (generations), steady state evo-

lutionary algorithms operate on single individual candidate optimizations performing

the selection, transformation, evaluation and insertion (steps 1, 2, 4 5 6, and 7 in

Figure 7.1 respectively) on single individuals in turn. The benefits of steady state

genetic algorithms are presented in Section 2.2.2.

High-level pseudocode for the GOA algorithm is given in Figure 7.2. The

main loop is parallelized across multiple threads. Synchronization between threads

is only required during access to the population Pop and the evaluation counter

EvalCounter.

The population is initialized with a number of copies of the original program

(line 1). In every iteration of the main loop (lines 3–15) the search space of possible

optimizations is explored by transforming the program using random mutation and

crossover operations (described in the next subsection). The probability CrossRate

controls the application of the crossover operator (lines 6–8). If a crossover is to be

performed, two high-fitness parents are chosen from the population via tournament

selection [130, Section 2.3] and combined to form one new optimization (line 8).

Otherwise, a single high-fitness optimization is selected. In either case, the candidate

optimization is mutated (line 12), its fitness is calculated (by linking it and running

it on the test suite, see Section 3.2), and it is reinserted into the population (line 13).

The steady state algorithm then selects a member of the population for eviction using

a “negative” tournament to remove a low-fitness candidate and keep the population

size constant (line 14). The Fitness function in Figure 7.2 penalizes those variants that

fail any test case with an infinitely bad fitness value, and they are quickly purged

from the population. Eventually, the fittest candidate optimization is identified,
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minimized to remove unnecessary or redundant changes (Section 6.3.2.3), and is

returned as the result.

7.2 Evaluation

We empirically evaluate both the ability of GOA to reduce energy consumption

across multiple population benchmark applications and hardware platforms, and we

evaluate the degree to which these optimizations retain program functionality.

We evaluate the effectiveness of GOA against the popular PARSEC benchmark

applications (Section 7.2.1). In addition to the program assembler, GOA requires a

fitness function and characteristic test suite. We develop an energy model which is

appropriate for use as a fitness function (Section 7.2.3). The PARSEC applications

include multiple tests, from which we choose the smallest test which produces a

runtime of at least one second on each hardware platform. After running GOA, we

evaluate the evolved optimizations using physical wall-plug energy measurements.

7.2.1 Benchmarks

Program C/C++ LOC ASM LOC Description
blackscholes 510 7,932 Finance modeling
bodytrack 14,513 955,888 Human video tracking
ferret 15,188 288,981 Image search engine
fluidanimate 11,424 44,681 Fluid dynamics animation
freqmine 2,710 104,722 Frequent itemset mining
swaptions 1,649 61,134 Portfolio pricing
vips 142,019 132,012 Image transformation
x264 37,454 111,718 MPEG-4 video encoder
total 225,467 1,707,068

Table 7.1: Selected PARSEC benchmark applications.
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We use the PARSEC [17] benchmark suite of programs representing “emerging

workloads.” We evaluate GOA on all of the PARSEC applications that produce

testable output and include more than one input set. Testable output is required

to ensure that the optimizations retain required functionality. Multiple input sets

are required because we use one (training) input set during the GOA optimization

and separate held-out (“testing”) inputs to test after GOA completes its optimiza-

tion (Section 7.2.2). The eight applications satisfying these requirements are shown

with their sizes and brief descriptions in Table 7.1. Two PARSEC applications were

excluded because they did not support this experimental design: raytrace which

does not produce any testable output, and facesim which does not provide multiple

input sets.

We evaluate on Intel Core i7 and AMD Opteron machines. The Intel system

has 4 physical cores, Hyper-Threading, and 8 GB of memory, and it is indicative of

desktop or personal developer hardware. The AMD system has 48 cores and 128 GB

of memory, and is representative of more powerful server-class machines.

We compare the performance of GOA’s optimized executables to the original

executable compiled using the PARSEC tool with its built-in optimization flags or

the gcc “–Ox” flag that has the least energy consumption.

7.2.2 Held-Out Tests

We use a large held-out test suite to evaluate the degree to which the optimizations

found by GOA customize the program semantics to the training test and therefore

lose generality. For each benchmark besides blackscholes, we randomly generate

100 sets of command-line arguments from the valid flags accepted by the program.

The blackscholes application accepts no flags, but does read an input file containing

a number of financial records. We generated 100 test input files for blackscholes
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by randomly sampling between 214 and 220 records from the set of all records that

appear in the multiple PARSEC blackscholes tests.

Each test was run using the original program and its output as an oracle to

validate the output of the optimized program. We only use combinations of flags

which are accepted by the original program, and for which the original program

consistently generates the same output.

We evaluate optimized programs in Section 7.2.5 by comparing their outputs

against the oracle output. In most cases, we used a binary comparison between out-

put files. However, for x264 tests producing video output, we find binary exactness

overly constraining and instead use manual visual comparison to determine output

correctness.

7.2.3 Energy Model

Our fitness function uses a linear energy model based on process-specific hardware

counters similar to that developed by Shen et al. [150]. We simplify their model in

that we:

• We do not build workload-specific power models. Instead, we develop one

power model per machine trained to fit multiple workloads and use this single

model for every benchmark on that machine.

• We do not consider shared resources, instead we only augment performance-

based terms with a single constant base Cconst energy draw for the machine.

The linear energy model shown in Equation 7.1 combines the hardware counters

described in Table 7.2 into a scalar estimate of energy consumption.
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(7.1)

The trained values for the model coefficients are given in Table 7.2. They were

obtained empirically for each target architecture, using data collected across multiple

execution of each PARSEC benchmark, the SPEC CPU benchmark suite, and the

sleep UNIX utility. For each program, we collected the performance counters as

well as the average Watts consumed, as measured by a physical wall plug meter.

We combined these data in a linear regression to determine the coefficients shown in

Table 7.2.

Intel AMD
Coefficient Description (4-core) (48-core)
Cconst constant power draw 31.530 394.74
Cins instructions 20.490 -83.68
Cflops floating point ops. 9.838 60.23
Ctca cache accesses -4.102 -16.38
Cmem cache misses 2962.678 -4209.09

Table 7.2: Power model coefficients.

The coefficients we obtained differ significantly between the two architectures.

The disparity between the AMD and Intel coefficients is likely explained by significant

differences in the size and class of the two machines. For example, the 13× increase

in idle power of the AMD machine as compared to the Intel machine is reasonable

given the presence of 12 times as many cores, and 15 times as much memory.

Even without our simplifications, the predictive power of linear models is rarely

perfect. McCullough et al. note that on a simple multi-core system, CPU-prediction

error is often 10–14% with 150% worst case error prediction [109]. We checked for

the presence of overfitting using 10-fold cross-validation and found a 4–6% difference

in the average absolute error, which is sufficiently accurate to guide our evolutionary

search.
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Program Changes Energy Reduction Runtime Reduction
Code Edits Binary Size Training Held-out Held-out

Program AMD Intel AMD Intel AMD Intel AMD Intel AMD Intel
blackscholes 120 3 -8.2% 0% 92.1% 85.5% 91.7% 83.3% 91.7% 81.3%
bodytrack 19656 3 -38.7% 0% 0% 0% 0.6% 0% 0.3% 0.2%
ferret 11 1 84.8% 0% 1.6% 0% 5.9% 0% -7.9% -0.1%
fluidanimate 27 51 -3.3% 11.4% 10.2% 0% — — — —
freqmine 14 54 18.7% 34.9% 3.2% 0% 3.3% -1.6% 3.2% 0.1%
swaptions 141 6 27.0% 18.5% 42.5% 34.4% 41.6% 36.9% 42.0% 36.6%
vips 57 66 -52.8% 0% 21.7% 20.3% 21.3% — 29.8% —
x264 34 2 0% 0% 8.3% 0% 9.2% 0% 9.8% 0%
average 2507.5 23.3 3.4% 8.1% 22.5% 17.5% 24.8% 19.8% 24.1% 19.7%

Table 7.3: GOA energy-optimization results on PARSEC applications.

We find that our models have an average of 7% absolute error relative to the

wall-socket measurements. The overhead of collecting hardware counter values has

no noticeable impact on our test suite run time. Thus, our power model is both

sufficiently efficient and accurate to serve as our fitness function.

The Intel Performance Counter Monitor (PCM) counter can also be used to es-

timate energy consumption. We did not use this counter because the model used by

the PCM to estimate energy is not public, and because it estimates energy consump-

tion for an entire socket and does not provide the per-process energy consumption

required by our technique.

7.2.4 Energy Reduction Results

The results of our energy consumption minimization are shown in Table 7.3. The

“Code Edits” column shows the number of unified diffs (as calculated using the GNU

diffutils package4) between the original and optimized versions of the assembly pro-

gram. “Binary Size” indicates the change in size of the compiled executable. The

“Energy Reduction” columns report the physically measured energy reduction com-

pared to the original required to run the tests in the fitness function (“Training

4http://www.gnu.org/software/diffutils/

http://www.gnu.org/software/diffutils/
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Workload”) or to run all other PARSEC workloads for that benchmark (“Held-Out

Workloads”). For example, if the original program requires 100 units and the op-

timized version requires 20, that corresponds to an 80% reduction. The “Runtime

Reduction” columns report the decrease in runtime compared to the original. In

some cases, the measured energy reduction is statistically indistinguishable from

zero (p > 0.05). Note that for some benchmarks (e.g., bodytrack), although there is

no measured improvement, the minimization algorithm maintains modeled improve-

ment, resulting in a new binary. We do not report energy reduction on workloads for

which the optimized variant did not pass the associated tests (indicated by dashes).

GOA found optimizations that reduced energy consumption in many cases,

with the overall reduction on the supplied workloads averaging 20%. Although in

some cases—such as in bodytrack on AMD or bodytrack, ferret, fluidanimate,

freqmine and x264 on Intel—GOA failed to find optimizations that reduced energy

consumption, it found optimizations that reduce energy consumption by an order of

magnitude for blackscholes and by almost half for swaptions on both systems.

We find that CPU-bound programs are more amenable to improvement than those

that perform large amounts of disk IO. This result suggests that GOA is likely better

at generating efficient sequences of executing assembly instructions than at improv-

ing patterns of memory access. Overall, when considering only those programs with

non-zero improvement, average energy reduction was 39%. The increased improve-

ment on held-out workloads compared to training workloads was expected given the

increased comparative size and runtime of most held-out workloads reducing the

impact of startup time on total energy consumption.

In most benchmark programs energy reduction is very similar to runtime reduc-

tion (see Columns “Energy Reduction” and “Runtime Reduction”, Table 7.3). This

is not surprising given the important role of time in our energy model. However, in

some cases (e.g., ferret) energy was reduced despite an increase in runtime, and
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in other cases (e.g., vips) energy consumption decreased significantly more than

runtime.

Although some optimizations are easily analyzed through inspection of assembly

patches (e.g., the deletion of “call im_region_black” from vips skipping unneces-

sary zeroing of a region of data), many optimizations produce unintuitive assembly

changes that are most easily analyzed using profiling tools. Such inspection reveals

optimizations (Section 7.2.6) that run the gamut from removing explicit semantic

inefficiencies in blackscholes, to re-organizing assembly instructions in swaptions

in such a way as to decrease the rate of branch mispredictions, to exploring trade

offs between re-calculating values or looking them up in memory in vips. The AMD

versions of fluidanimate and x264 seem to improve performance by reducing idle

cycles spent waiting for off-chip resources.

7.2.5 Program Correctness Results

Functionality on
Held Out Tests

Program AMD Intel
blackscholes 100% 100%
bodytrack 92% 100%
ferret 100% 100%
fluidanimate 6% 31%
freqmine 100% 100%
swaptions 100% 100%
vips 100% 100%
x264 27% 100%
average 78.1% 91.4%

Table 7.4: GOA correctness of optimized programs on held out test suites.

Strengths of GOA include its ability to change program semantics and to cus-

tomize programs to the training machine, environment and workload. Unfortunately

these abilities raise the possibility that program optimizations may change program
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semantics to over-fit the training workload and break program behavior on held-out

workloads. We experimentally investigate the severity of this threat by running our

optimized program variants against large suites of held-out tests (Section 7.2.2). The

results are given in Table 7.4.

We find that the majority of the discovered optimizations fully preserve program

behavior across the entire suite of held-out tests. We believe that the post-processing

minimization step is largely responsible for this surprising protection of un-tested

behavior. This is because the minimization removes all mutations which do not

directly benefit the runtime properties of the program on the training workload,

having the result of removing most mutations occurring in unexercised portions of

the program.

7.2.6 Case Studies

This section describes three examples illustrating different types of energy optimiza-

tions found by GOA.

blackscholes implements a partial differential-equation model of a financial mar-

ket. Because the model runs so quickly, the benchmark artificially adds an outer

loop that executes the model multiple times. These redundant calculations are not

detected by standard static compiler analyses. The validated blackscholes opti-

mization returned by GOA discovered and removed the redundant calculation on

both AMD and Intel hardware. However, the optimization strategy differed between

the two architectures. In the Intel case, a “subl” instruction was removed, preventing

multiple executions of a loop, while in the AMD case a similar effect was obtained

by inserting a literal address which (due to the density of valid x86 instructions in

random data [12]) is interpreted as valid x86 code to jump out of the loop, skipping

redundant calculations.
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GOA also finds hardware-specific optimizations in swaptions; a benchmark

which prices portfolios. On AMD systems, GOA reduces the total swaptions energy

consumption by 42%. We believe this improvement is mostly due to the reduction in

the rate of branch miss-prediction. Although it is not practical for general compil-

ers to reason about branch prediction strategies for every possible processor, GOA

naturally finds such environment-specific specialized adaptations.

We found that no single edit (or small subset of edits) accounted for this im-

provement. Rather, many edits distributed throughout the swaptions program col-

lectively reduced mispredictions. Typical edits included insertions and deletions of

.quad, .long, .byte, etc., all of which change the absolute position of the executing

code. Absolute position affects branch prediction when the value of the instruction

pointer is used to index into the appropriate predictor. For example, AMD [70,

Section 6.2] advocates inserting REP before returns in certain scenarios.

Finally, GOA finds unintuitive optimizations. In the vips image processing pro-

gram, it found an optimization that reduced the total energy used by 20.3% on the

Intel system. The optimization actually increased cache misses by 20× but decreased

the number of executed instructions by 30%, in effect trading increased off-chip com-

munication for decreased computation. This sort of trade-off in resource consumption

is something an experienced developer might attempt, and it is encouraging that our

technique is able to find an instance of such a trade-off automatically.

7.3 Discussion

This chapter describes Genetic Optimization Algorithm (GOA), an application that

searches within the neutral networks defined by functional program properties in

order to optimize nonfunctional program properties. GOA is powerful, significantly

reducing energy consumption beyond the best available compiler optimizations and
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capable of customizing software to a target execution environment; simple, lever-

aging widely available tools such as compilers and profilers and requiring no code

annotation or technical expertise; and general, using generic program transforma-

tions (Section 3.1) to target multiple measurable objective functions and applicable

to any program that compiles to x86 assembly code.

One notable aspect of the optimizations found by GOA is the size of the opti-

mizations in terms of mutational distance (as shown in Section 3.5) from the original

program (e.g., the swaptions optimization reviewed in Section 7.2.6 requires hun-

dreds of disparate edits). In contrast, the absolute size of program modifications

resulting from the evolutionary applications presented in Chapters 5 and 6, and

prior work such as Genprog is very small. Minimized repairs in Chapter 6 typically

are only differ from the original in two bytes. In a review of the repairs found by

Genprog in a large systematic study [95], all repairs could be reduced to at most two

mutation operations.

This difference may suggest a connection between continuous fitness landscapes,

which provide continual feedback to the evolutionary search technique as described

in Section 3.6.4, and the power of evolutionary techniques. If such a connection holds

for functional properties of real-world software, it may motivate the use of automated

techniques of “smoothing” the fitness landscapes defined by existing test suites such

as those described in Section 8.2.2.
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Chapter 8

Future Directions and Conclusion

This dissertation describes an empirical investigation of the robustness of real-world

software in the face of randomized mutations, and characterizes the resulting large

neutral networks of in program space. This robustness is both the result of the

evolutionary development of the current software development ecosystem and an

indication that existing software is amenable to the use of evolutionary tools for

software maintenance and improvement.

Techniques were demonstrated that automatically improve software robustness,

correctness, and efficiency. This work however only begins to probe the horizon of

potential automated evolutionary software engineering techniques. In the long term,

our aim is the fulfillment of the ultimate goals of both the software engineering and

the evolutionary computation communities: the full automation of most software

development tasks.

Such an ambitious long-term goal is very distant from the present state of the

art. The remainder of this chapter highlights some challenges and opportunities for

near-term work in this area.
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8.1 Challenges

Before evolutionary techniques can become a regular part of the software develop-

ment work-flow, change is needed both in the applications themselves and in the

culture and expectations of the developers. While the tools presented herein demon-

strate a wide range of applicability and power of transformation they are lacking in

two essential areas.

Developer interface: This includes the related areas of semantics preservation,

communicating development goals to evolutionary processes, and integration into the

software development life-cycle.

• This dissertation does not address issues of rigorously limiting the potential

impact of program transformations on program behavior. Wide spread use of

these applications might require additional techniques for providing guarantees

ensuring the protection of certain program properties or semantics.

• Communicating goals to evolutionary program improvement techniques. This

challenge is being addressed by the software testing community. Advances

in software testing allowing developers to more easily and rigorously enforce

desired program properties through tests will directly transfer to test-driven

evolutionary techniques.

• Presentation automatically generated transformation to developers and incor-

porating evolved transformations into the life-cycle of software. Put another

way, collaboration between human and evolutionary drivers of software evolu-

tion is not currently supported. This depends on the program representation

used and is discussed in greater length in Section 3.6.3.

Novel functionality: This dissertation focuses on the improvement of exist-

ing software functionality, either through patching defects and vulnerabilities or by
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changing nonfunctional runtime properties. Although neutral networks are hypoth-

esized to enable the evolution of new functionality in biological systems, the results

presented herein do not yet demonstrate the evolution of truly significant novel func-

tionality in software systems.

8.2 Opportunities

There are a number of “next steps” for this work in a variety of directions, some of

which address the specific challenges presented in the previous section. This section

details a number of these opportunities for future work.

8.2.1 Verification

Amajor hurdle to the incorporation of evolutionary techniques into standard software

development work-flows is the lack of formal verification of the effects or the limits

of evolutionary program transformations. There are a number of options for work

in this area, incorporating both emerging and long standing tools. Any of these

options could be applied to the applications presented in this work either as a post-

processing verification step (for processes with longer running times) or as part of

the fitness function used by the evolutionary algorithm (for processes which require

less execution time). The remainder of this section touches upon possible candidate

tools and techniques broken out by the type of analysis performed; diff analysis,

static analysis, and dynamic analysis.

8.2.1.1 Diff analysis

The evolutionary transformations presented in this work are typically presented as

standard diffs at the source code, assembler or binary level for the AST, ASM and
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ELF representations respectively. There are existing techniques for analyzing diffs

for their impact on program semantics [149, 160, Section IV.B].

A potential weakness of the optimization technique presented in Chapter 7 is

the possibility of changing the semantics of the optimized program. This weakness

could be addressed by developing a tool that iterates through every hunk in the

assembler diff, rejecting those that can not be formally proven to preserve semantics.

Depending on the efficiency, such a tool could be applied after every mutation during

the execution of GOA, or it could be saved and run once as a post-processing step.

There are a number of emerging techniques and models for proving important

properties of assembler code [73, 78, 149] some of which can be directly applicable to

proving semantic equivalence between sequences of assembler code [137, Section 4.1].

8.2.1.2 Static analysis

Automated tools for the static analysis of software source code or assembler code are

widely in research and by software developers. Programs to assess software quality

have been in use for decades, for example Stephen Johnson’s lint [76], which flagged

suspicious source code likely to contain bugs, emerged not long after the creation

of the first portable C compiler. Modern static analysis tools include commercial

products [44], and open source tools [93], looking for bugs in commonly misused

patterns [65, 16] or in the flow of data through a program [6, 11]. In addition,

code complexity metrics commonly used in industrial settings can be automatically

computed from source code [108].

Such tools could be incorporated into evolutionary techniques, either as compo-

nents of the fitness function or as a final post-process step. In these roles, such tools

would ensure that metrics of code quality or complexity improve over the course of

a run, or they would provide guarantees of minimum quality scores at the end of a

run respectively.
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8.2.1.3 Dynamic analysis

In addition to simply testing program output, more sophisticated methods of dy-

namically assessing software behavior could provide increased confidence in evolved

program variants. To select just one example, invariant detection systems such as

Daikon [46] could be used to ensure that invariants found in the original program

are maintained in evolved variants.

8.2.2 Continuous Functional Evaluation

As discussed in Sections 3.2.2 and 3.6.4, the lack of smooth gradients in the func-

tional fitness landscapes (defined by boolean PASS or FAIL valued tests) used in this

dissertation may be limiting the effectiveness of evolutionary search techniques. The

evolution of truly novel functionality might require new fitness functions describing

continuous functional fitness landscapes.

This section describes methods for automatically smoothing fitness landscapes to

provide guidance to evolutionary search technique along flat portions of the fitness

landscape. The promise of fitness functions with increased granularity is demon-

strated in Chapter 6, in which ternary PASS, FAIL, or ERROR vulnerability tests

compensate for the lack of a regression test suite.

The following two examples illustrate how we might automatically convert exist-

ing test suites from boolean PASS or FAIL valued functions into continuous functions

with gradients capable of guiding evolutionary search. An empirical investigation of

their feasibility, practical, and impact on performance would be informative.

1. Many test cases evaluate success by computing a diff between program output

and oracle output. Such tests typically return a boolean indicating if the results

are identical or different. Tests of this form could easily and automatically be
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converted to return the degree of difference, e.g., in terms of edit distance or

possibly domain-specific metrics such as numeric difference for numeric output

(e.g., using tools such as numdiff1).

2. In many cases, the output from a test is either successful exit (ERRNO equal

to 0) or crashing. An alternative would be to compute the number of unique

values taken by the program counter during the course of test execution, which

might provide an informative gradient to the fitness landscape. Such a metric

would indicate how “far” the program gets before crashing, and by limiting the

count to unique values of the program counter this test would avoid incorrectly

assigning higher fitness infinite loops.

Although these ideas seem to hold promise, they need to be implemented and

evaluated. There currently exist large benchmark suites of software defects which

are not repairable using the current state of the art automated program repair tech-

niques [95]. Improving the performance of automated repair techniques against such

benchmarks would provide a useful metric of the efficacy of these sorts of automated

test suite enhancements.

8.2.3 Heterologous Crossover

The re-use of existing software in new projects or contexts is a long standing staple

of software development [90, 80]. Moving functionality between different pieces of

software is an important intermediate (and arguably sufficient alternative) to the

evolution of novel functionality [9]. Crossover is the evolutionary operation respon-

sible for exchanging genetic material between individuals. This section describes

extension of the crossover used in this dissertation to allow for genetic material to

be shared between heterogeneous software projects.

1http://www.nongnu.org/numdiff

http://www.nongnu.org/numdiff
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Homologous Crossover

(a) Homologous Crossover

Heterologous Crossover

∼

(b) Heterologous Crossover

Figure 8.1: Homologous and heterologous crossover.

Existing techniques use homologous crossover [52], meaning when crossover is

performed a single location is selected and is used between each parent (Figure 8.1

Panel a). This works in homogeneous populations which share a common ancestor

and which tend to have equivalent functionality at each location. However, it is not an

appropriate technique for sharing functionality between heterogeneous individuals,

including; assembler representations compiled using different compiler flags (e.g., gcc

-S and gcc -fast), different major versions of a program, different implementations

of a program or even entirely unrelated programs. Therefore an important area

of future work is the evolution of a heterogeneous crossover operation capable of

transferring functionality between heterogeneous software.

One possible approach would replace the use of crossover points at offsets in the

genome, with a search for crossover locations in each parent that share a similar

syntactic context (Figure 8.1 Panel b). Some initial work on related techniques in

the evolutionary computation community shows promise (e.g., through the use of

common sub-sequences between parents as crossover points [68]). Effective heterol-

ogous crossover techniques could lead to the sharing optimizations and functionality

between different compiler optimizations for a single software project, or even sharing

information between different software projects.



Chapter 8. Future Directions and Conclusion 124

Evolution Threads
Fuzz Tester
e.g., Klee, S2E

Population of
Program Variants

Test Suite

• regression
tests

• fuzz test 1

• fuzz test 2

• etc.

Tournament
Selection

Fitness
Evaluation

Program p
Passing all
Tests

Fuzz Test
Failing
Program p

Figure 8.2: Overview of a proposed system for hardening software through the iter-
ative execution of an automated technique for exploit generation and an automated
evolutionary technique for defect repair.

8.2.4 Evolutionary Hardening

Binary executables of unknown or proprietary provenance can place significant holes

in otherwise secure or trusted validated computer systems. Even on unvalidated

platforms such as desktop machines, binary drivers often open significant security

vulnerabilities.

Recent advances in symbolic and concolic execution have produced multiple tools

for the automated testing of software [26], and even testing of black-box binary ex-

ecutables without access to the source code [29]. Such tools can be used to auto-

matically find tests indicating vulnerabilities in black-box binaries. A system which

pairs such an automated test generation tool, with an automated program repair

tool such as the ELF-level evolutionary program repair (Chapter 5) could be used

for hardening of black-box binary executables.
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Figure 8.2 presents a schematic for how such a tool would operate. In this sce-

nario, the technique would begin with a (possibly empty) regression test suite. The

binary executable would then iteratively pass between the test generation engine

(labeled “Fuzz Tester” in Figure 8.2) yielding a new test indicating a vulnerability

in the program, which would then be added to the test suite augmenting the fitness

function of the continually running evolutionary program repair process (represented

as a dotted box in Figure 8.2). Whenever a version of the program is found that

passes all tests, this “repaired” version would be passed back to the test generation

engine and the process iterated.

Using such a process to automatically harden black-box executables to the limits

of the test generation or program repair engine could greatly improve the security and

robustness of many software systems. Initial experiments using simple fuzz testing

engines show promise.2

8.3 Conclusion

Over the past fifty years software developers have been selecting, reusing and modify-

ing software development tools, code, and design patterns. This history of technolog-

ical development, through a process mirroring natural selection, may have produced

software with the surprisingly biological features that were illuminated in this work,

including software mutational robustness, large software neutral networks, and the

amenability of extant software to improvement through automated evolutionary pro-

cesses.

This work establishes that real-world software is amenable to modification

through randomized program transformations. This discovery may help explain the

recent success of evolutionary software repair techniques (cf. Genprog [96]), and it

2https://github.com/eschulte/fuzz-hardening

https://github.com/eschulte/fuzz-hardening
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contradicts many of the assumptions of the most closely related prior work in this

area (cf. mutation testing [74]). This discovery opens the door to the application of

evolutionary techniques to the automation of many common software development

tasks, including the examples given in Chapters 4, 5, and 7, which improve software

robustness, correctness and performance. The tools, techniques, and analysis devel-

oped to support this work will hopefully establish the foundation for further practical

work, unify the fields of evolutionary computation and software engineering, and lead

towards the eventual fulfillment of their mutual goal: the increased automation of

software development.
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Appendix A

Software Tools

This chapter describes the software tools used in this work in enough detail to support

reproduction and extension of our results [23, 110]. All software developed as part of

this dissertation is freely available under open-source licensing. Section A.1 describes

the original Genprog software used in Chapters 3, 4, and 5. Section A.2 describes the

software evolution library used in Chapters 3, 6, and 7, and describes command line

drivers for mutation at the Cil, Clang and LLVM levels. Section A.3 describes the

tooling used to patch the closed source NETGEAR binary in Chapter 6. Section A.4

describes the GOA implementation, used in Chapter 7.

A.1 Genprog

An implementation of the Genprog automated evolutionary software repair technique

is available online.1 Genprog version 1.0 was used for the initial mutational robust-

ness experiments presented in Chapter 3. Instructions for usage should are available

alongside the source. My early work on the ASM and ELF program representations

(Chapter 5 and Sections 3.3.2.1 through 3.3.2.4, and 3.4.1) was implemented within
1http://dijkstra.cs.virginia.edu/genprog

http://dijkstra.cs.virginia.edu/genprog
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this software framework. However, later work (Sections 3.3.2.5, and 6 and Chapter 7)

uses the software evolution library described in Section A.2.

A.2 Software Evolution Library

The SOFTWARE-EVOLUTION library enables the programmatic modification and

evaluation of extant software. The library defines a generic API which abstracts

over multiple program representation backends, and provides higher-level functions

for evolutionary program modification which make use of this API. The library is

implemented in common lisp and should be adaptable to any ANSI common lisp

implementation [4]. The library was tested and is known to work with Steel Bank

Common Lisp (SBCL) and clozure Common Lisp (CCL). Documentation is provided

in the software evolution manual [139], which is available online.2 The implemen-

tation is available online,3 and can be installed using the QuickLisp4 Common Lisp

package management system.

The structure of the SOFTWARE-EVOLUTION library is shown in Figure A.1.

A common interface defines an abstraction over multiple software representations

and provides a uniform set of methods for program transformation and evaluation.

Methods supporting program modification are implemented on top of these gen-

eral methods including both evolutionary and Markov Chain Monte Carlo (MCMC)

search techniques. MCMC techniques have found recent use in automated techniques

of software optimization [137].

The SOFTWARE-EVOLUTION library requires the following dependencies

which were also implemented as part of this dissertation. The ELF library for the

2http://eschulte.github.io/software-evolution
3https://github.com/eschulte/software-evolution
4http://www.quicklisp.org/beta

http://eschulte.github.io/software-evolution
https://github.com/eschulte/software-evolution
http://www.quicklisp.org/beta
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population functions
global variables --------------------
---------------- +------------------+ incorporate
*population* | *population* | evict
*max-population-size* |------------------| tournament
*tournament-size* | list of | mutate
*fitness-predicate* | software objects | new-individual
*cross-chance* +------------------+ evolve
*fitness-evals* | mcmc
*running* +-+-+

| | | software functions
+------------------+ --------------

evolve arguments | software object | genome
---------------- |------------------| phenome
max-evals | edits, | copy
max-time | fitness | pick-good
target | ... | pick-bad
period +------------------+ mutate
period-func | crossover
filter |

+---------------+---+------------+----------------+
| | | |

+---------------+ +-------------+ +-------------+ +------------+
| AST | | ELF | | lisp | | asm |
|---------------| |-------------| |-------------| |------------|
| Abstract | | Executable | | lisp source | | assembly |
| Syntax Tree | | Linkable | +-------------+ | code |
+---------------+ | Format | +------------+

| +-------------+ |
+--------------+-------------------+ +------------------+
| | | | asm-range |

+-------+ +----------------+ +----------+ |------------------|
| Clang | | CIL | | LLVM | | memory efficient |
|-------| |----------------| |----------| +------------------+
| C AST | | C Intermediate | | LLVM IR |
+-------+ | Language | +----------+

+----------------+

Figure A.1: High-level design of the software evolution library.

programmatic manipulation of ELF files.5 The DELTA-DEBUG library for program-

matic and command line delta debugging.6

Optional external command line drivers are used for the Cil, CLang, and LLVM

program representations, these are listed in Table A.1. These drivers provide uniform

interfaces to these diverse external tools.

5https://github.com/eschulte/elf
6https://github.com/eschulte/delta-debug

https://github.com/eschulte/elf
https://github.com/eschulte/delta-debug
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Tool URL
Cil [116] https://github.com/eschulte/cil-mutate

CLang [92] https://github.com/eschulte/clang-mutate
LLVM [93] https://github.com/eschulte/llvm-mutate

Table A.1: Command line executables implementing program mutation.

A.3 NETGEAR Repair

Full reproduction instructions,7 code, and tooling used to perform the NETGEAR

binary repair are available online.8 These tools can be used to automatically change

the behavior of other binary ELF executables, making it possible to customize and

alter binary executables independent of the software’s developer.

A.4 Genetic Optimization Algorithm

The implementation of the Genetic Optimization Algorithm (GOA) introduced in

Chapter 7 is available online.9 The implementation can be compiled to a command

line executable capable of optimizing user-specified nonfunctional fitness functions.

Detailed installation and usage instruction are provided with the program source and

in the README.md file in the source code repository.

GOA is implemented using the SOFTWARE-EVOLUTION library (Section A.2).

7http://eschulte.github.io/netgear-repair/INSTRUCTIONS.html
8https://github.com/eschulte/netgear-repair
9https://github.com/eschulte/goa — the now outdated version used to generate

the experimental results presented in Chapter 7 is preserved at https://github.com/
eschulte/goa/tree/asplos2014

https://github.com/eschulte/cil-mutate
https://github.com/eschulte/clang-mutate
https://github.com/eschulte/llvm-mutate
http://eschulte.github.io/netgear-repair/INSTRUCTIONS.html
https://github.com/eschulte/netgear-repair
https://github.com/eschulte/goa
https://github.com/eschulte/goa/tree/asplos2014
https://github.com/eschulte/goa/tree/asplos2014
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Appendix B

Data Sets

The experiments described in this work make use of a number of suites of benchmark

programs. This Appendix lists the benchmark programs used in this work, with links

at which they can be obtained and pointers to where they were used herein.

• A benchmark collection of open source systems programs is available online.1

These benchmark programs are used in Section 3.3 and in Chapter 4. The raw

experimental data presented in Chapter 3.3 is also available.2

• The Siemens Software-artifact Infrastructure Repository3 is used in experi-

ments in Section 3.3.

• Multiple sorting algorithms originally from Rosetta Code4 are available on-

line5 along with a complete test suite and source code required to reproduce a

number of experiments. These sorting algorithms are used in Chapter 3.

1https://cs.unm.edu/~eschulte/repro/robustness.tar.bz2
2https://cs.unm.edu/~eschulte/repro/robustness-results.tar.bz2
3http://sir.unl.edu
4http://rosettacode.org
5https://github.com/eschulte/sorters

https://cs.unm.edu/~eschulte/repro/robustness.tar.bz2
https://cs.unm.edu/~eschulte/repro/robustness-results.tar.bz2
http://sir.unl.edu
http://rosettacode.org
https://github.com/eschulte/sorters


Appendix B. Data Sets 133

• Embedded Repair benchmark programs used in Chapter 5 are available online.6

The raw experimental data presented in Chapter 5 is also available.7

• The NETGEAR firmware used in Chapter 6 can be downloaded directly from

the NETGEAR website,8 however an archived version is also available.9

• The PARSEC 3.0 benchmark applications used in Chapter 7 are available on-

line.10 Additionally, the tooling used to perform the experiments described

in Chapter 7, including downloading and unpacking benchmarks, is available

online.11

6https://cs.unm.edu/~eschulte/repro/embedded.tar.bz2
7https://cs.unm.edu/~eschulte/repro/embedded-results.tar.bz2
8http://www.downloads.netgear.com/files/GDC/WNDR3700V4/WNDR3700V4_V1.0.1.

42.zip
9https://github.com/eschulte/netgear-repair/blob/master/stuff/WNDR3700V4_

V1.0.1.42.zip
10http://parsec.cs.princeton.edu/
11https://github.com/eschulte/goa/tree/asplos2014

https://cs.unm.edu/~eschulte/repro/embedded.tar.bz2
https://cs.unm.edu/~eschulte/repro/embedded-results.tar.bz2
http://www.downloads.netgear.com/files/GDC/WNDR3700V4/WNDR3700V4_V1.0.1.42.zip
http://www.downloads.netgear.com/files/GDC/WNDR3700V4/WNDR3700V4_V1.0.1.42.zip
https://github.com/eschulte/netgear-repair/blob/master/stuff/WNDR3700V4_V1.0.1.42.zip
https://github.com/eschulte/netgear-repair/blob/master/stuff/WNDR3700V4_V1.0.1.42.zip
http://parsec.cs.princeton.edu/
https://github.com/eschulte/goa/tree/asplos2014
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Glossary

ARM Family of reduced instruction set architectures developed by the British com-

pany “ARM Holdings” 85

ASE Automated Software Engineering 4, 75

ASM assembler 9, 12, 17, 18, 20–23, 25, 27, 29, 31, 37, 39–42, 46, 51, 53–55, 57–60,

66, 74, 75, 78–83, 103, 119, 128

ASPLOS Architectural Support for Programming Languages and Operating Sys-

tems 4, 75, 102

AST Abstract Syntax Tree 10, 15, 17–20, 22, 25, 27, 31–33, 37, 38, 41, 51, 52, 54,

55, 65, 66, 70, 74, 75, 78–83, 119

CCL clozure Common Lisp 129

Cil C Intermediate Language 15, 18, 20, 25, 27, 31, 40, 41, 52, 66, 70, 74, 78–81,

83, 130, 131

CISC Complex Instruction Set Computer 21, 55

CLang C Language family frontend for LLVM 18, 19, 25, 27, 40, 41, 65, 130, 131

crossover Genetic transformation combining the genetic material from two geno-

types to produce at least one new genotype. 10, 17, 18, 21, 23, 88–91, 96, 106,

122, 123
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delta debugging a technique of systematically narrowing down a set while main-

taining a specified property. Initially developed to isolate a minimal failure-

inducing input to identify bugs in software. 16, 92, 99, 130

drift the change in genetic material in a population under random sampling 8, 43,

46

ELF Executable and Linkable Format 9, 18, 21, 22, 25, 27, 40, 41, 66, 74, 75, 78–81,

83–85, 88–91, 97, 99, 120, 124, 128, 130

environmental robustness Robustness of phenotype to changes in the environ-

ment 6

fault localization the process of determining the location of program faults 74, 75,

77, 83, 89, 97, 98

fitness landscape A space used to visualize multiple genotypes and their associated

fitness 7, 11, 18, 62, 67, 101, 116, 121, 122

functional Functionality of software as a function from inputs to behavior and

outputs 27–29, 67, 101, 115, 116, 121

GECCO the conference on Genetic and Evolutionary Computation 16

Genprog Automated evolutionary program repair technique 14–16, 85, 89, 92, 97,

106, 116, 125, 128

GOA Genetic Optimization Algorithm 101–108, 112–116, 120, 128, 131

GPEM Genetic Programming and Evolvable Machines 3, 4, 18, 69

ICSE the International Conference on Software Engineering 16

IR Intermediate Representation 12, 13, 17, 18, 20, 22, 23, 25, 51, 66
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ISA Instruction Set Architecture 21

LLVM Low Level Virtual Machine 18–20, 22, 23, 25, 27, 40, 41, 51, 55, 66, 102,

130, 131

MCMC Markov Chain Monte Carlo 129

MIPS Family of reduced instruction set architectures, originally an acronym for

“Interlocked Pipeline Stages”. 21, 53, 88, 91, 95

mutation A random transformation of genetic material 1, 6–8, 10, 18, 21, 23, 32,

34, 42, 43, 45–48, 50, 57, 61, 65, 66, 70, 80, 88, 89, 92, 104, 114, 117

mutation testing Test suite coverage metric based on the ability to detect program

variants (mutants). 14, 62, 63, 65, 72, 73, 126

mutational robustness Robustness of phenotype to changes in the genotype 2, 4,

6, 8, 17, 34, 43, 74

natural selection Process by which genetic traits become more or less frequent in

a population as a function of their phenotypic effects on reproduction 1, 2, 8,

10, 61, 125

neutral network Connected network in program space. Nodes in this network are

neutral variants, nodes are connected by an edge if one may be reachable by

applying a single mutation to the other 1, 2, 4, 7, 8, 17, 18, 45, 60, 61, 68–70,

115, 117, 119, 125

neutral variant A variant which retains required phenotypic functionality present

in an original ancestor 29, 45, 54, 60, 64, 65, 68–70, 72

nonfunctional Runtime properties of software execution not directly specified by

functional properties 28, 29, 67, 101, 115, 119, 131
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program space The space of possible programs defined by a program representa-

tion and transformations 47, 48, 51, 52, 54, 55

RISC Reduced Instruction Set Computer 21

SBCL Steel Bank Common Lisp 129

SBST Search-Based Software Testing 16

software mutational robustness Mutational robustness of software 1, 18, 29, 30,

32, 34, 40, 41, 43, 54, 60, 100, 125

specification Requirements of program execution and behavior. Specifications may

be written or implied and may be either formally stated in mathematical or

programmatic terms or informally stated. 1, 4, 22, 28, 29, 37–39, 65, 104

SSA Static Single Assignment 20

steady state an variation of the traditional genetic algorithm in which no explicit

generations are used 10, 93, 96, 106

variant An instance of software which has been changed through the application

mutation operations to some original program 15, 28–33, 38, 39, 42–44, 46, 66,

68–71, 83, 89, 92, 106

x86 Family of complex instruction set architectures based on the Intel 8086 CPU.

9, 21, 22, 85, 114, 116
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