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Abstract. This paper suggests dense and switched modular primitives for a 
bond-graph-based GP design framework that automatically synthesizes designs 
for multi-domain, lumped parameter dynamic systems. A set of primitives is 
sought that will avoid redundant junctions and elements, based on pre-
assembling useful functional blocks of bond graph elements and (optionally) 
using a switched choice mechanism for inclusion of some elements.  Motiva-
tion for using these primitives is to improve performance through greater 
search efficiency and thereby to reduce computational effort.  As a proof of 
concept for this approach, an eigenvalue assignment problem, which is to find 
bond graph models exhibiting minimal distance errors from target sets of ei-
genvalues, was tested and showed improved performance for various sets of 
eigenvalues. 

1 Introduction 

Design of interdisciplinary (multi-domain) dynamic engineering systems, such as 
mechatronic systems, differs from design of single-domain systems, such as elec-
tronic circuits, mechanisms, and fluid power systems, in part because of the need to 
integrate the several distinct domain characteristics in predicting system behavior 
(Youcef-Toumi [1]). However, most current research for evolutionary design has 
been optimized for a single domain (see, for example, Koza et. al., [2,3]).  

In order to overcome this limitation and enable open-ended search, the Bond Graph / 
Genetic Programming (BG/GP) design methodology has been developed, based on 
the combination of these two powerful tools (Seo et al.  [4,5] and tested for a few 
applications – an analog filter (Fan et al.  [6]), printer drive mechanism (Fan et. al., 
[7]), and air pump design (Goodman  et al. [8]).  BG/GP worked efficiently for these 
applications. The search capability of this system has been improved dramatically by 
introduction of a new form of parallel evolutionary computation, called Hierarchical 
Fair Competition GP (HFC-GP, Hu, et al., [9]), which can strongly reduce premature 
convergence  and  enable scalability with smaller populations.  



However, two issues still arise: one is the need for much stronger synthesis capability 
arising from the complex nature of multi-domain engineering design, and the other 
is the desire to minimize computational demands.  While we have made inroads in  
improving of GP search by introducing HFC-GP, we want to exploit the notion of 
modularity of GP function primitives to make additional gains. Much useful 
modularity can be discovered during an evolutionary process, as is done, for example, 
by the ADF (Koza [10]). However, in many cases, we believe that explicit 
introduction of higher-level modules as function primitives, based on domain 
knowledge, will yield faster progress than requiring their recognition during the 
evolutionary process.  Some research has been devoted to choice or refinement of the 
function set in GP. Soule and Heckendorn [11] examined how the function set 
influences performance in GP and showed some relationship between performance 
and GP functions sets, but their work was limited to generating simple sine functions 
varying only arithmetic and trigonometric operators (e.g,, +, -, *, /, tan, ….). We will 
try to exploit higher-level function sets, rather than simply choosing different sets at 
the same level.   

In this paper, a generic type of primitive is introduced, and specialized here to 
capture  specific domain knowledge about bond graphs – the dense switched modular 
primitive.  

 
First, we introduce the dense module concept to generate compact bond graph mod-
els with fewer operations. It replaces several operations in the basic (original) set 
with one operation, yielding a smaller tree attainable with less computational effort.   

Second, the switched module concept creates a small function set of elements with 
changeable forms, which can assist in evolving complex functionality, while 
eliminating many redundant bond graph structures evolved if it is not used. Elements 
eliminated include “dangling” junctions that connect to nothing and many one-port 
components (such as resistors, capacitors, inductors, etc.).  Their elimination makes 
the resulting bond graph simpler and the speed of evolution faster. 

 
A careful design of a dense and switched modular primitive should considerably 
increase the efficiency of search and also, for the bond graph case, the efficiency of 
fitness assessment, as is illustrated in this paper.  

As a test class of design problems, we have chosen one in which the objective is to 
realize a design having a specified set of eigenvalues. The eigenvalue assignment 
problem is well defined and has been studied effectively using linear components 
with constant parameters. Section 2 discusses the inter-domain nature, efficient 
evaluation, and graphical generation of bond graphs, including the design methodol-
ogy used in approaching such problems.  Section 3 explains the basic set and redun-
dancy problem and Section 4 describes the dense switched modular primitive set.  
Section 5 presents results for 6-, 10- and 16-eigenvalue design problems, and Section 
6 concludes the paper. 

 



2 Evolutionary Bond Graph Synthesis for Engineering Design 

2.1   The BG/GP Design Methodology 

There is a strong need for a unified design tool, able to be applied across energy 
domains – electrical, mechanical, hydraulic, etc. Most design tools or methodologies 
require user interaction, so users must make many decisions during the design proc-
ess. This makes the design procedure more complex and often introduces the need 
for trial-and-error iterations.  Automation of this process – so the user sets up the 
specifications and “pushes a button,” then receives candidate design(s) – is also im-
portant.  
A design methodology that combines bond graphs and genetic programming can 
serve as an automated and unified approach (Fig.1). The proposed BG/GP (Bond 
Graph with Genetic Programming) design methodology requires only an embryo 
model and fitness (performance) definition in its initial stage; the remaining proce-
dures are automatically executed by genetic programming search. However, due to 
the complexity of the engineering design problem, the need for efficiency in the 
design search is very high.  It is this problem that is addressed here. 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 1.  Key features of the BG/GP design methodology 

2.2   Bond Graphs  

Topologically, bond graphs consist of elements and bonds.  Relatively simple 
systems include passive one-port elements C, I, and R, active one-port elements Se 
and Sf, and two-port elements TF and GY (transformers and gyrators).  These 
elements can be attached to 0- (or 1-) junctions, which are multi-port elements, using 
bonds.  The middle of Figure 2 consists of Se, 1-junction, C, I, and R elements, and 
that same bond graph represents, for example, either a mechanical mass, spring and 
damper system(left), or an RLC electrical circuit.  Se corresponds with force in me-
chanical systems, or voltage in electrical (right). The 1-junction implies a common 
velocity for 1) the force source, 2) the end of the spring, 3) the end of the damper, 
and 4) the mass in the mechanical system, or implies that the current in the RLC 
loop is common. The R, I, and C represent the damper, inertia (of a mass), and 
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spring in the mechanical system, or the resistor, inductor, and capacitor in the elec-
trical circuit.  

 

  
Fig. 2.  The same bond graph model for two different domains 

3. Basic Set and Redundancy 
The initial BG/GP system used GP functions and terminals for bond graph 
construction as follows.  There are four types of functions:  add functions that can be 
applied only to a junction and which add a C, I, or R element;  insert functions that 
can be applied to a bond and which insert a 0-junction or 1-junction into the bond; 
replace functions that can be applied to a node and which can change the type of 
element and corresponding parameter values for C, I, or R elements; and arithmetic 
functions that perform arithmetic operations and can be used to determine the 
numerical values associated with components (Table 1). Details of function defini-
tions are illustrated in Seo et al. [5]. 

 
Table 1.  Functions and terminals in Basic set 

 

Name Description 
 add_C 
 add_I 
 add_R 
 insert_J0 
 insert_J1 
 replace_C 
 replace_ I 
 replace_ R 
 + 
 - 
 endn 
 endb 
 endr 
 erc 

 Add a C element to a junction 
 Add an I element to a junction 
 Add an R element to a junction 
 Insert a 0-junction in a bond 
 Insert a 1-junction in a bond 
 Replace current element with C element  
 Replace current element with I element  
 Replace current element with R element  
 Sum two ERCs 
 Subtract two ERCs  
 End terminal for add element operation 
 End terminal for insert junction operation 
 End terminal for replace element operation 
 Ephemeral random constant (ERC) 
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Many redundant or unnecessary junctions and elements were observed in experi-
ments with this basic set.  Such unnecessary elements can be generated by the free 
combinatorial connection of elements, and, while they can be removed without any 
change in the physical meaning of the bond graph, their processing reduces the effi-
ciency of processing and of search.  At the same time, such a “universal” set guaran-
tees that all possible topologies can be generated.  However, many junctions “dangle” 
without further extension and many arrangements of one-port components (C, I, R) 
that can be condensed are generated. Figure 3 illustrates redundancies that are 
marked with dotted circles in the example. First, the dangling 0- and 1-junctions in 
the left-hand figure can be eliminated, and then three C, I, and R elements can be 
joined together at one 1-junction. Furthermore, two R elements attached to neighbor-
ing 0-junctions can be merged to a single equivalent R. Avoiding these redundant 
junctions and elements improves search efficiency significantly.  
 
 
 
 
 

 
Fig. 3.  Example of redundant 0- and 1-junctions and R elements (left) in gener-

ated bond graph model, and equivalent model after simplification (right). The dotted 
lines represent the boundary of the embryo.  

4. Construction of Dense Switched Modular Primitives 

The redundancy problem is closely related with the performance and computational 
effort in the evolutionary process. The search process will be hastened by eliminating 
the redundancy, and it is hypothesized that this will happen without loss of 
performance of the systems evolved. It is obvious that computational resources can 
be saved by removal of the redundancy. To reduce the redundancy noted above and 
to utilize the concept of modularity, a new type of GP function primitives has been 
devised –  the dense switched modular primitives (“DSMP”). Roughly speaking, a 
dense representation (eliminating redundant components at junctions, guaranteeing 
causally well-posed bond graphs, and avoiding adjacent junctions of the same type) 
will be combined with a switched structure (allowing components that do not impact 
causal assignment at a junction to be present or absent depending on a binary switch).   
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Fig. 4.  The dense modular primitive 
 

The major features of the modular primitives are as follows. First, a single dense 
function replaces all add, insert, and replace functions of the basic set. This concept 
is explained in Figure 4, in which mixed ins and add operations can be merged into 
one operation. Therefore, a GP tree that represents a certain bond graph topology can 
be much smaller than attainable with the basic set.  This dense function not only 
incorporates multiple operations, but also reflects design knowledge of the bond 
graph domain, such as causality (discussed later).  
 
Second, any combination of C, I, and R components can be instantiated according to 
the values of a set of on/off switch settings that are evolved by mutation.  This modu-
larity also helps to relieve the redundancy of C, I, and R components, giving them 
fewer places to proliferate that appear to be different, but are functionally equivalent. 
This new set introduces further modularity through a controllable switching function 
for selection of C, I, R combinations (Figure 5). The function set of the dense 
switched modular primitives is shown in Table 2. It consists of two functions that 
replace all ins, add, and replace functions in the basic set (Table 1). 
 

Table 2.  New functions in the switched modular primitive set 
 

Name Description 
insert_JPair_SWElements  
  
add_J_ SWElements 

 

Insert a 0-1 (or 1-0) junction pair in a bond and 
    attach switched C, I, R elements to each junction 

Add a counter-junction to a junction and  
    attach  switched C, I, R elements  

 

 

 

 

 

 
 
 
 
 

Fig. 5.. Switched modular primitive 
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Third, the proper typing of 0-junctions and 1-junctions is determined by an implicit 
genotype-phenotype mapping, considering the neighbor junction to which the primi-
tive is attached.  This allows insertion of only “proper pairs” of junctions on bonds, 
preventing generation of consecutive junctions of the same type that are replaceable 
by a single one.   
 
Fourth, we insure that we generate only feasible individuals, satisfying the causally 
well-posed property, so automatic state equation formulation is simplified considera-
bly. One of the key advantages of BG/GP design is the efficiency of the evaluation. 
The evaluation stage is composed of two steps: 1) causality analysis, and, when mer-
ited, 2) dynamic simulation. The first, causal analysis, allows rapid determination of 
feasibility of candidate designs, thereby sharply reducing the time needed for analy-
sis of designs that are infeasible. In most cases, all bonds in the graph will have been 
assigned a causal stroke (determining which variables are assigned values at that 
point, rather than bringing to it pre-assigned values) using only integral causality of 
C or I and extension of causal implication. Some models can have all causality as-
signed without violation – the causally satisfied case. Other models are assigned 
causality, but with violations – the causally violated case. If one has to continue to 
use an arbitrary causality of an R, it means that some algebraic relationships must be 
solved if the equations are to be put into standard form. This case can be classified as 
causally undetermined. Detail causality analysis is described in Karnopp et al. [12]. 
 
The dense switched modular primitives with implicit genotype-phenotype mapping 
and the guaranteed feasibility of the resulting causally well-posed bond graphs can 
speed up the evolution process significantly. 
 

 

5. Experiments and Analysis 

To evaluate and compare the proposed approach with the previous one, the eigen-
value assignment problem, for which the design objective is to find bond graph mod-
els with minimal distance errors from a target set of eigenvalues, is used.  The prob-
lem of eigenvalue assignment has received a great deal of attention in control system 
design.  Design of systems to avoid instability and to provide specified response 
characteristics as determined by their eigenvalues is often an important and practical 
problem.  

5.1 Problem Definition 

In the example that follows, a set of target eigenvalues is given and a bond graph 
model with those eigenvalues must be generated, in a classic “inverse” problem.  The 
following sets (consisting of various 6-, 10- and 16-eigenvalue target sets, respec-
tively) were used for the genetic programming runs:  



 
• Eigenvalue sets used in experiments: 

1) {-1±2j, -2±j, -3±0.5j} 
2) {-10±j, -1±10j, -3±3j } 
3) {-20±j, -1±20j, -7±7j} 
4) {-1, -2, -3, -4, -5, -6} 
5) {-20±j, -1±20j, -7±7j, -12±4j, -4±12j } 
6) {-1, -2, -3, -4, -5, -6, -7, -8, -9, -10} 
7) {-20±1j, -1±20j, -7±7j, -12±4j, -4±12j, -15±2j, -9±5j, -5±9j} 

 
The fitness function is defined as follows:  pair each target eigenvalue one:one with 
the closest one in the solution; calculate the sum of distance errors between each 
target eigenvalue and the solution’s corresponding eigenvalue, divide by the order, 
and perform hyperbolic scaling as follows. Relative distance error (normed by the 
distance of the target from the origin) is used.  

)/2(
15.0)(

OrderError
EigenvalueFitness �

++=  

We used a strongly-typed version (Luke, [13]) of lilgp (Zongker and Punch [14]) 
with HFC (Hierarchical Fair Competition, Hu, et al., [9]) GP to generate bond graph 
models. These examples were run on a single Pentium IV 2.8GHz PC with 512MB 
RAM.  The GP parameters were as shown below. 

 
Number of generations : 500  
Population sizes : 100 in each of ten subpopulations for multiple population runs 
Initial population: half_and_half 

     Initial depth : 3-6  
Max depth : 12 (with 800 max_nodes) 
Selection : Tournament (size=7) 
Crossover : 0.9 
Mutation : 0.1 
 

The tabular results of 6- and 10-eigenvalue runs are provided in Tables 3-4, with 
statistics including mean relative distance error (averaged across each target eigen-
value) and mean tree size, for each set of 10 experiments.  
 
Table 3 illustrates the comparison between the basic set and the DSMP (dense 
switched modular primitive) set on typical complex conjugate and real six-
eigenvalue target sets. In the first set, {-1±2j, -2±j, -3±0.5j}, the average error of the 
basic set (0.151) is larger than that of the DSMP set (0.043). The second and third 
sets, for two different target eigenvalue sets that have larger norms from the origin, 
show average distance errors of the basic set that are also larger. The numbers in 
parentheses regarding distance error of the DSMP set represent their ratio to the 
basic set distance errors. 
 



In a fourth example, an all-real set of target eigenvalues {-1, -2, -3, -4, -5, -6} is 
tested and shows that the ratio of errors between the approaches is more than ten 
(0.144 for the basic set vs. 0.009 for the DSMP set, only 6% of the basic set error). 
Also, mean tree sizes of all basic set runs are much larger than those of DSMP set. 

 
Table 3.  Results for 6 eigenvalues  

 

6-Eigenvalue Placement Problem  (10 runs) 

 Basic set DSMP set  

Eigenvalue set  Dist error Tree Size    Dist error  Tree Size 
{-1±2j, -2±j, -3±0.5j}    0.151         513.6   0.043(28%)         237.0 

{-10±1j, -1±10j, -3±3j} 0.068 451.8  0.026(38%) 296.8 
{-20±1j, -1±20j, -7±7j} 0.056 399.4  0.021(37%) 285.6 
 {-1, -2, -3, -4, -5, -6} 0.144 445.7  0.009(6%) 307.1 

 
Results for a 10-eigenvalue assignment problem are shown in Table 4. The results 
for a complex conjugate 10-eigenvalue set {-20±1j, -1±20j, -7±7j, -12±4j, -4±12j} show 
that the average error of the basic set (0.210) is three times larger than that of the 
DSMP set (0.064). The results for a real 10-eigenvalue set also show the average 
error of the basic set (0.267) is more than ten times larger than that of the DSMP set 
(0.023). As with 6 eigenvalues, the mean tree sizes of the basic set are larger than 
those of the DSMP set. 
 

 
Table 4.   Results for 10 eigenvalues 

 

10-Eigenvalue Placement Problem  (10 runs) 

 Basic set DSMP set  

Eigenvalue set Dist error  Tree size   Dist error  Tree size   
{ -20±1j, -1±20j, -7±7j, -12±4j, -4±12j} 0.210 564.9 0.064 (30%) 385.6 

{-1, -2, -3, -4, -5, -6, -7, -8, -9, -10} 0.267 564.5 0.023 (9%) 425.8 
 

Results for a 16-eigenvalue assignment problem – a much more difficult problem – 
are shown in Table 5. The results for a complex conjugate 16-eigenvalue set {-20±1j, 
-1±20j, -7±7j, -12±4j, -4±12j, -15±2j, -9±5j, -5±9j} show that the average error of the 
basic set (0.279) is twice as large as that of the DSMP set (0.132).  Mean size of the 
GP tree, BG size, and computation time are also given in Table 5. BG size represents 
the mean number of junctions and C, I, R elements in each individual. All mean tree 
sizes, BG sizes, and computation times of the DSMP set are less, respectively, than 
their basic set counterparts. These three indices are similar to those of the 6- and 10-
eigenvalue experiments.   
 



Although the experiments run to date are not sufficient to allow making strong 
statistical assertions, it appears that the search capability of the DSMP set is superior 
to that of the basic set for bond graph design. The superiority of the DSMP set seems 
very clear. Although the difference may be not seem large, it is very significant con-
sidering that the results of the basic set runs are already taking advantage of HFC 
(Hierarchical Fair Competition, Hu, et al., [9]).     

 
 

Table 5.   Results for 16 eigenvalues 
 

16-Eigenvalue Placement Problem  (10 runs) 
{-20±1j, -1±20j, -7±7j, -12±4j, -4±12j, -15±2j, -9±5j, -5±9j} 

Basic set DSMP set  

 Dist  
error 

 Mean 
 Tree  
Size 

  BG Size  
Compu. 
Time 

  (min) 
Dist error 

 Mean   
 Tree  
Size 

  BG Size 
Compu. 
Time 
(min) 

0.279 663.1 62.2 72.4 0.132 (47%) 592.6 37 56.1 

 
 

 
Fig. 6.  Distance error for 16 eigenvalues 

 
 
 

The distance errors (vs. generation) in 10 runs of the 16-eigenvalue problem are 
shown in Figure 6. The distance errors of the DSMP set in Figure 6 have already 
decreased rapidly within 50 generations, because only causally feasible (well-posed) 
individuals appear in the population.  Figure 7 gives the mean tree sizes for each 
approach on the 16-eigenvalue problem.  The DSMP set clearly obtains better per-
formance using smaller trees.  This bodes well for the scalability of the approach. 
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Fig. 7.  Mean tree size for 16 eigenvalues 
 

7. Conclusion 

This paper has introduced the dense switched modular primitive for bond graph/GP-
based automated design of multi-domain, lumped parameter dynamic systems. A 
careful combination is made of a dense representation (eliminating redundant com-
ponents at junctions, guaranteeing causally well-posed bond graphs, and avoiding 
adjacent junctions of the same type) and a switched structure (allowing components 
that do not impact causal assignment at a junction to be present or absent depending 
on a binary switch).  The use of these primitives considerably increases the efficiency 
of fitness assessment and the search performance in generation of bond graph models, 
to solve engineering problems with less computational effort. 
 
As a proof of concept for this approach, the eigenvalue assignment problem, which is 
to synthesize bond graph models with minimum distance errors from pre-specified 
target sets of eigenvalues, was used. Results showed better performance for various 
eigenvalue sets when the new primitives were used.  This tends to support the con-
jecture that a carefully tailored, problem-specific representation and operators that 
generate only feasible solutions with smaller amounts of redundancy and fewer geno-
types that map to the same effective phenotype will improve the efficiency of GP 
search. This, in turn, offers promise that much more complex multi-domain systems 
with more detailed performance specifications can be designed efficiently. Further 
study will aim at extension and refinement of the GP representations for the bond-
graph/genetic programming design methodology, and at demonstration of its appli-
cability to design of more complex systems. 

Basic DSMP 
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