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Abstract. This paper suggests dense and switched modulaitipgs for a
bond-graph-based GP design framework that autoatigtisynthesizes designs
for multi-domain, lumped parameter dynamic systefset of primitives is
sought that will avoid redundant junctions and elats, based on pre-
assembling useful functional blocks of bond grajgments and (optionally)
using a switched choice mechanism for inclusiosarshe elements. Motiva-
tion for using these primitives is to improve penfiance through greater
search efficiency and thereby to reduce computatieffort. As a proof of
concept for this approach, an eigenvalue assignprefiiem, which is to find
bond graph models exhibiting minimal distance exrroom target sets of ei-
genvalues, was tested and showed improved perfoentan various sets of
eigenvalues.

1 Introduction

Design of interdisciplinary (multi-domain) dynaméngineering systems, such as
mechatronic systems, differs from design of sirdggrain systems, such as elec-
tronic circuits, mechanisms, and fluid power systein part because of the need to
integrate the several distinct domain charactedsim predicting system behavior
(Youcef-Toumi [1]). However, most current researfoh evolutionary design has

been optimized for a single domain (see, for exaiipbza et. al., [2,3]).

In order to overcome this limitation and enablerspaded search, the Bond Graph /
Genetic Programming (BG/GP) design methodology Itesesh developed, based on
the combination of these two powerful tools ($tal. [4,5] and tested for a few
applications — an analog filter (Fanal. [6]), printer drive mechanism (Fan et. al.,
[7]), and air pump design (Goodmaat al. [8]). BG/GP worked efficiently for these
applications. The search capability of this systexra been improved dramatically by
introduction of a new form of parallel evolutionasgmputation, called Hierarchical
Fair Competition GP (HFC-GP, Hat al, [9]), which can strongly reduce premature
convergence and enable scalability with smaltgrutations.



However, two issues still arise: one is the needrfoch stronger synthesis capability
arising from the complex nature of multi-domain iergring design, and the other
is the desire to minimize computational demandshil&\we have made inroads in
improving of GP search by introducing HFC-GP, wentvd exploit the notion of
modularity of GP function primitives to make addital gains. Much useful
modularity can be discovered during an evolutior@ncess, as is done, for example,
by the ADF (Koza [10]). However, in many cases, believe that explicit
introduction of higher-level modules as functioningtives, based on domain
knowledge, will yield faster progress than requiritheir recognition during the
evolutionary process. Some research has beenedetwthoice or refinement of the
function set in GP. Soule and Heckendorn [11] exemthi how the function set
influences performance in GP and showed some oakltip between performance
and GP functions sets, but their work was limitedé¢nerating simple sine functions
varying only arithmetic and trigonometric operat@®@s,, +, -, *, /, tan, ....). We will
try to exploit higher-level function sets, ratheah simply choosing different sets at
the same level.

In this paper, a generic type of primitive is irdueed, and specialized here to
capture specific domain knowledge about bond gsaptihedenseswitched modular
primitive.

First, we introduce thdensemodule concept to generate compact bond graph mod-
els with fewer operations. It replaces several apens in the basic (original) set
with one operation, yielding a smaller tree atthleavith less computational effort.

Second, theswitchedmodule concept creates a small function set aohefgs with
changeable forms, which can assist in evolving dermgunctionality, while
eliminating many redundant bond graph structuresved if it is not used. Elements
eliminated include “dangling” junctions that contéx nothing and many one-port
components (such as resistors, capacitors, indyatte.). Their elimination makes
the resulting bond graph simpler and the speesadtiton faster.

A careful design of a dense and switched modulémipive should considerably
increase the efficiency of search and also, forbibred graph case, the efficiency of
fithess assessment, as is illustrated in this paper

As a test class of design problems, we have choaserin which the objective is to
realize a design having a specified set of eigersgal The eigenvalue assignment
problem is well defined and has been studied éffeygtusing linear components
with constant parameters. Section 2 discusses riteg-domain nature, efficient
evaluation, and graphical generation of bond grapittuding the design methodol-
ogy used in approaching such problems. SectioxpBias the basic set and redun-
dancy problem and Section 4 describes the dengeh&di modular primitive set.
Section 5 presents results for 6-, 10- and 16-sigele design problems, and Section
6 concludes the paper.



2 Evolutionary Bond Graph Synthesisfor Engineering Design

2.1 TheBG/GP Design Methodol ogy

There is a strong need for a unified design toble @0 be applied across energy
domains — electrical, mechanical, hydraulic, etosidesign tools or methodologies
require user interaction, so users must make manigidns during the design proc-
ess. This makes the design procedure more compigoften introduces the need
for trial-and-error iterations. Automation of thisocess — so the user sets up the
specifications and “pushes a button,” then receteeslidate design(s) — is also im-
portant.

A design methodology that combines bond graphs geretic programming can
serve as an automated and unified approach (FigHg. proposed BG/GP (Bond
Graph with Genetic Programming) design methodologuires only an embryo
model and fitness (performance) definition in i#ial stage; the remaining proce-
dures are automatically executed by genetic progriaug search. However, due to
the complexity of the engineering design problehe heed for efficiency in the
design search is very high. It is this problent fkaddressed here.
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Fig. 1. Key features of the BG/GP design methodology

2.2 Bond Graphs

Topologically, bond graphs consist etementsand bonds Relatively simple
systems include passive one-port elements C, |,Rynactive one-port elementg S
and § and two-port elements TF and GY (transformers gpcators). These
elements can be attacheddto(or 1-) junctionswhich are multi-port elements, using
bonds. The middle of Figure 2 consists gf Sjunction, C, I, and R elements, and
that same bond graph represents, for example reitingechanical mass, spring and
damper system(left), or an RLC electrical circu&, corresponds with force in me-
chanical systems, or voltage in electrical (rigfithe 1-junction implies a common
velocity for 1) the force source, 2) the end of #ipeing, 3) the end of the damper,
and 4) the mass in the mechanical system, or is\phiat the current in the RLC
loop is common. The R, I, and C represent the daipertia (of a mass), and



spring in the mechanical system, or the resistmyctor, and capacitor in the elec-
trical circuit.
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Fig. 2. The same bond graph model for two different dommai

3. Basic Set and Redundancy

The initial BG/GP system used GP functions and iteals for bond graph
construction as follows. There are four typesuafctions: add functions that can be
applied only to a junction and which add a C, IRoelement;insert functions that
can be applied to a bond and which insert a O-janabr 1-junction into the bond,;
replace functions that can be applied to a node and wisa change the type of
element and corresponding parameter values for @, R elements; andrithmetic
functions that perform arithmetic operations andh d@ used to determine the
numerical values associated with components (Tapl®etails of function defini-
tions are illustrated in Sex al. [5].

Table 1. Functions and terminals in Basic set

Name Description

add _C Add a C element to a junction

add_| Add an | element to a junction

add R Add an R element to a junction
insert_JO Insert a O-junction in a bond

insert_J1 Insert a 1-junction in a bond

replace_C Replace current element with C element]
replace_ | Replace current element with | element
replace_ R Replace current element with R element]
+ Sum two ERCs

- Subtract two ERCs

endn End terminal for add element operation
endb End terminal for insert junction operation
endr End terminal for replace element operatipn
erc Ephemeral random constant (ERC)




Many redundant or unnecessary junctions and elemeate observed in experi-
ments with this basic set. Such unnecessary elsnoam be generated by the free
combinatorial connection of elements, and, whileythan be removed without any
change in the physical meaning of the bond gramdir processing reduces the effi-
ciency of processing and of search. At the same,tsuch a “universal” set guaran-
tees that all possible topologies can be generatiesvever, many junctions “dangle”
without further extension and many arrangementsnefport components (C, I, R)
that can be condensed are generated. Figure 3rédlles redundancies that are
marked with dotted circles in the example. Firsg tlangling 0- and 1-junctions in
the left-hand figure can be eliminated, and thewrdlC, I, and R elements can be
joined together at one 1-junction. Furthermore, Rvelements attached to neighbor-
ing O-junctions can be merged to a single equitafenAvoiding these redundant
junctions and elements improves search efficiergnyifcantly.
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Fig. 3. Example of redundant 0- and 1-junctions and Rields (left) in gener-
ated bond graph model, and equivalent model aiftgplgication (right). The dotted
lines represent the boundary of the embryo.

4. Construction of Dense Switched Modular Primitives

The redundancy problem is closely related with gegformance and computational
effort in the evolutionary process. The search ggewill be hastened by eliminating
the redundancy, and it is hypothesized that thi8 khéappen without loss of
performance of the systems evolved. It is obvidws tomputational resources can
be saved by removal of the redundancy. To redueedtiundancy noted above and
to utilize the concept of modularity, a new typeG® function primitives has been
devised — thelenseswitchedmodular primitives (“DSMP”).Roughly speaking, a
denserepresentation (eliminating redundant componenfsrections, guaranteeing
causally well-posed bond graphs, and avoiding &djainctions of the same type)
will be combined with &witchedstructure (allowing components that do not impact
causal assignment at a junction to be presentsemaldlepending on a binary switch).
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Fig. 4. The dense modular primitive

The major features of the modular primitives arefadi®ws. First, a single dense
function replaces all add, insert, and replacetfons of the basic set. This concept
is explained in Figure 4, in which mix@aes andadd operations can be merged into
one operation. Therefore, a GP tree that represecdstain bond graph topology can
be much smaller than attainable with the basic Sgtis dense function not only
incorporates multiple operations, but also refla¢sign knowledge of the bond
graph domain, such as causality (discussed later).

Second, any combination of C, I, and R componeartshe instantiated according to
the values of a set of on/afivitch settings that are evolved by mutation. This modu-
larity also helps to relieve the redundancy of Carid R components, giving them
fewer places to proliferate that appear to be wiffe but are functionally equivalent.
This new set introduces further modularity throagbontrollable switching function
for selection of C, I, R combinations (Figure 5heTfunction set of the dense
switched modular primitives is shown in Table 2cénsists of two functions that
replace alins, add, andreplacefunctions in the basic set (Table 1).

Table2. New functions in the switched modular primitiet s

Name Description

insert_JPair_SWElements Insert a 0-1 (or 1-0) junction pair in a bond and
attach switched C, |, R elements to each joncti
add_J_SWElements Add a counter-junction to a junction and

attach switched C, I, R elements

» C
- on/off
0, 1“\\‘ I switches
R

Fig. 5.. Switched modular primitive



Third, the proper typing of O-junctions and 1-juons is determined by an implicit
genotype-phenotype mapping, considering the neigjuipation to which the primi-
tive is attached. This allows insertion of onlydper pairs” of junctions on bonds,
preventing generation of consecutive junctionshef $ame type that are replaceable
by a single one.

Fourth, we insure that we generate only feasibiéviduals, satisfying the causally
well-posed property, so automatic state equatiomditation is simplified considera-
bly. One of the key advantages of BG/GP desigméseifficiency of the evaluation.
The evaluation stage is composed of two stepsadsality analysis, and, when mer-
ited, 2) dynamic simulation. The first, causal gs&l, allows rapid determination of
feasibility of candidate designs, thereby sharpjucing the time needed for analy-
sis of designs that are infeasible. In most casébponds in the graph will have been
assigned a causal stroke (determining which veetablrre assigned values at that
point, rather than bringing to it pre-assigned ga)uwsing only integral causality of
C or | and extension of causal implication. Somelel® can have all causality as-
signed without violation — the causally satisfiease. Other models are assigned
causality, but with violations — the causally vielé case. If one has to continue to
use an arbitrary causality of an R, it means tbatesalgebraic relationships must be
solved if the equations are to be put into standaurd. This case can be classified as
causally undetermined. Detail causality analysetscribed in Karnopet al [12].

The dense switched modular primitives with impliggnotype-phenotype mapping
and the guaranteed feasibility of the resultingsedly well-posed bond graphs can
speed up the evolution process significantly.

5. Experimentsand Analysis

To evaluate and compare the proposed approachtiétiprevious one, the eigen-
value assignment problem, for which the designativje is to find bond graph mod-

els with minimal distance errors from a targetdfetigenvalues, is used. The prob-
lem of eigenvalue assignment has received a gesdtafl attention in control system

design. Design of systems to avoid instability dodprovide specified response
characteristics as determined by their eigenvabiefien an important and practical
problem.

5.1 Problem Definition

In the example that follows, a set of target eigdnes is given and a bond graph
model with those eigenvalues must be generateal classic “inverse” problem. The
following sets (consisting of various 6-, 10- an@leigenvalue target sets, respec-
tively) were used for the genetic programming runs:



« Eigenvalue sets used in experiments:

1) {-1%2j, -24j, -30.5]}

2) {104, -1£10j, -33j }

3) {-204, -1+20j, -77j}

4) {1,-2,-3,-4,-5, -6}

5) {-20%j, -1+20j, -77j, -12+4j, -4+12j }

6) {1,-2, -3, -4,-5,-6,-7, -8, -9, -10}

7)  {-20%1j, -1+20j, -77j, -12¢4j, -4+12j, -15+2j, -9£5], -5+9j}

The fitness function is defined as follows: paicle target eigenvalue one:one with
the closest one in the solution; calculate the sidirdistance errors between each
target eigenvalue and the solution’s correspondiggnvalue, divide by the order,
and perform hyperbolic scaling as follows. Relattlistance error (normed by the
distance of the target from the origin) is used.

FitnesgEigenvalup= 05+ %2+2Error/0rder)

We used a strongly-typed version (Luke, [13]) ¢gpi (Zongker and Punch [14])
with HFC (Hierarchical Fair Competition, Hat al, [9]) GP to generate bond graph
models. These examples were run on a single Penltul8GHz PC with 512MB
RAM. The GP parameters were as shown below.

Number of generations : 500

Population sizes : 100 in each of ten subpopulationmultiple population runs
Initial population: half_and_half

Initial depth : 3-6

Max depth : 12 (with 800 max_nodes)

Selection : Tournament (size=7)

Crossover : 0.9

Mutation : 0.1

The tabular results of 6- and 10-eigenvalue rurspapvided in Tables 3-4, with
statistics including mean relative distance erenrefaged across each target eigen-
value) and mean tree size, for each set of 10 erpats.

Table 3 illustrates the comparison between thecbast and the DSMP (dense
switched modular primitive) set on typical compleonjugate and real six-
eigenvalue target sets. In the first setH2]l -2+j, -3+0.5j}, the average error of the
basic set (0.151) is larger than that of the DSMIP(8.043). The second and third
sets, for two different target eigenvalue sets tiaite larger norms from the origin,
show average distance errors of the basic setateatlso larger. The numbers in
parentheses regarding distance error of the DSMPepeesent their ratio to the
basic set distance errors.



In a fourth example, an all-real set of target eigdues {-1, -2, -3, -4, -5, -6} is
tested and shows that the ratio of errors betwhenapproaches is more than ten
(0.144 for the basic set vs. 0.009 for the DSMP @ely 6% of the basic set error).
Also, mean tree sizes of all basic set runs arenntarger than those of DSMP set.

Table 3. Results for 6 eigenvalues

6-Eigenvalue Placement Problem (10 runs)
Basic set DSMP set
Eigenvalue set Dist error | Tree Sizg Dist error Tree Size
{-1+2j, -24j, -3+0.5j} 0.151 513.6 | 0.043(28%) 237.1
{-10+1j, -1+10j, -3t3j} 0.068 451.8 0.026(38%) 296.8
{-20+1j, -1+20j, -77j} 0.056 399.4 0.021(37%) 285.6
{-1, -2, -3, -4, -5, -6} 0.144 4457  0.009(6%) 70

Results for a 10-eigenvalue assignment problemslhosvn in Table 4. The results
for a complex conjugate 10-eigenvalue s@0£1j, -1+20j, -77j, -12+4j, -4+12j} show
that the average error of the basic set (0.21@)rise times larger than that of the
DSMP set (0.064). The results for a real 10-eigkrevaet also show the average
error of the basic set (0.267) is more than teresitarger than that of the DSMP set
(0.023). As with 6 eigenvalues, the mean tree sifdhe basic set are larger than
those of the DSMP set.

Table4. Results for 10 eigenvalues

10-Eigenvalue Placement Problem (10 runs)

Basic set DSMP set
Eigenvalue set Dist error | Tree size Dist error Tree size

{-20+1j, -1+20j, -7£7j, -12+4j, -4£12j} | 0.210 564.9 0.064 (30% 385.6
{-1,-2,-3, -4, -5, -6, -7, -8, -9, -10} | 0.267 564.5 0.023 (9% 425.8

Results for a 16-eigenvalue assignment problenmueh more difficult problem —
are shown in Table 5. The results for a complejugate 16-eigenvalue set2fx1;,
-1420j, -7+7]), -124j, -4+12j, -15+2j, -945j, -5+9j} show that the average error of the
basic set (0.279) is twice as large as that oDX8BIP set (0.132). Mean size of the
GP tree, BG size, and computation time are alsergin Table 5. BG size represents
the mean number of junctions and C, |, R elementsach individual. All mean tree
sizes, BG sizes, and computation times of the DSktRare less, respectively, than
their basic set counterparts. These three indieesimilar to those of the 6- and 10-
eigenvalue experiments.



Although the experiments run to date are not gefiicto allow making strong
statistical assertions, it appears that the sezaphbility of the DSMP set is superior
to that of the basic set for bond graph design. Superiority of the DSMP set seems
very clear. Although the difference may be not sémrge, it is very significant con-
sidering that the results of the basic set runsatmeady taking advantage of HFC

(Hierarchical Fair Competition, Het al, [9]).

Table5. Results for 16 eigenvalues

16-Eigenvalue Placement Problem (10 runs)
{-20%1j, -120j, -7+7j, -12+4j, -4+12j, -1522j, -Bj, -529j}

Basic set DSMP set
Dist Mean Compu. Mean Compu.
Tree BG Size| Time Dist error Tree BG Size| Time
error . . . .
Size (min) Size (min)
0.279 663.1 62.2 72.4 0.132 (47%) 592]6 37 56{1

Distance Error

Distance Error

. I I | . I I .
50 100 150 200 250 300 350 400 450 50 5‘0 160 15‘0 260 2;0 300
Generation Generation

Fig. 6. Distance error for 16 eigenvalues

The distance errors (vs. generation) in 10 runghef 16-eigenvalue problem are
shown in Figure 6. The distance errors of the DS3Pin Figure 6 have already
decreased rapidly within 50 generations, becaueaasally feasible (well-posed)

individuals appear in the population. Figure 7egithe mean tree sizes for each
approach on the 16-eigenvalue problem. The DSMRIlsarly obtains better per-

formance using smaller trees. This bodes weltHferscalability of the approach.
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Fig. 7. Mean tree size for 16 eigenvalues

7. Conclusion

This paper has introduced the dense switched mogtiaitive for bond graph/GP-
based automated design of multi-domain, lumped rpater dynamic systems. A
careful combination is made ofdenserepresentation (eliminating redundant com-
ponents at junctions, guaranteeing causally wedkegobond graphs, and avoiding
adjacent junctions of the same type) anslhvéchedstructure (allowing components
that do not impact causal assignment at a jun¢tidre present or absent depending
on a binary switch). The use of these primitivessiderably increases the efficiency
of fitness assessment and the search performargangration of bond graph models,
to solve engineering problems with less computatieffort.

As a proof of concept for this approach, the eigéun assignment problem, which is
to synthesize bond graph models with minimum distaerrors from pre-specified
target sets of eigenvalues, was used. Results shbetger performance for various
eigenvalue sets when the new primitives were uskus tends to support the con-
jecture that a carefully tailored, problem-specifpresentation and operators that
generate only feasible solutions with smaller ant®wh redundancy and fewer geno-
types that map to the same effective phenotype imiirove the efficiency of GP
search. This, in turn, offers promise that much emmmplex multi-domain systems
with more detailed performance specifications candbsigned efficiently. Further
study will aim at extension and refinement of thé @presentations for the bond-
graph/genetic programming design methodology, @ndemonstration of its appli-
cability to design of more complex systems.
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