External Concepts Reuse in Genetic
Programming

Grégory Seront
gseront@ulb.ac.be
Département d’Informatique
Université Libre de Bruxelles
CP 212
50, av Fr. Roosevelt
1050 Bruxelles
BELGIUM

Abstract
In this paper we show how concepts synthesised
by Genetic Programming to solve a problem can
be reused to solve other ones. This aim is
achieved by the creation of a concepts library.
These concepts can then be injected in a new
population in order to solve a problem that
needs them. We explore the performance of this
approach against the case where the search
starts from a totally random population.

1. Introduction

In its latest book, Koza introduced the concept of
Automatically Defined Function (ADF) [5]. The
goal of ADF is to improve the ability of GP to
reuse already discovered features. The properties of
ADF and the gains it brings during the search have
been studied extensively[3, 5]. But surprisingly,
these studies were limited to the effects of internal
reuse of the Defined Functions. The reuse of the
Defined Functions is termed here as internal,
because it is limited to the course of the run. The
Functions are reused from generation to generation
into different individuals but within the same
population. This can be confronted to external
reuse where the Functions are reused in another
run to solve another problem.

The external reuse might be a good idea. If two
problems are close enough, the concepts evolved to
solve one can be useful to solve the other one.

For example if we try to evolve creatures able to
walk toward some food source, we might first try to
evolve a creature able to walk. And then, restart
the evolution with the last generation population to
make them take the food. This way, the walking
concept will not have to be re-evolved.

In this example, the first problem is included in the
second since a creature able to walk toward food is
also able to walk.

In this paper we will also deal with non included
problems. For example the problem of creature
walking toward food and the problem of creature
walking away from enemies. These problems are

94

From: AAAI Technical Report FS-95-01. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved.

not included in each other since neither of them is
the solution of the other.

In this paper we show how concepts synthesised by
Genetic Programming to solve a problem can be
reused to solve other ones. This aim is achieved by
the creation of a concepts library. These concepts
can then be injected in a new population in order to
solve a problem that needs them as it is
summarised in figure 1.

In the next section we will explain what we mean
by ‘concept’ and how they can be reused. This will
be illustrated by an example where two non
included problems lead to the evolution of similar
concepts. Next, we will prospect how the
information contained in a population can be
retrieved for another use and how libraries of
concepts are created.

Section 4 explains the experiments that have been
conducted.

2. Concepts reuse
2.1 Concepts versus Trees

In this paper, we are talking about concepts reuse
rather than functions, individuals or sub-trees
reuse. The reason for this is that what we are trying
to reuse is not a whole individual or a sub-tree. By
‘concept’ we mean a collection of informations that
are useful for the resolution of a problem.

This has not to be mistaken with the usual

meaning of concept in machine learning.

A function or a sub-tree alone may not be enough
to form a concept in that sense.

For example, if we look at the concept of Stack.

We note that it is constituted by the PUSH, POP
and INIT functions. The POP function by itself is
not sufficient to form the concept. It is the co-
operative use of these three functions that forms
the concept of stack.

2.2 Concepts versus Primitives

One of the main criticism toward GP, is that
usually the set of primitives contains too much
knowledge about the problems to be solved. This
way, claim the detractors of GP, the power is not in
the search algorithm, but rather in the
representation that is too close to the solution.

In addition, the use of too high level primitives
may prevent the discovery of the solution, because
the level of granularity is not sufficient.

In this paper, we will use minimal primitives set.
By solving problems with a minimal set of
primitives one can demonstrate the true power of
GP.

Probl. A GP

Solution

GP Solution

N
)

Probl. B

Figure 1 Outline of the Concept Library System

2.3 Independent discovery of the array index
concept

In this section, we describe two problems leading
to the independent evolution of the same concept:
an array index.

2.3.1 Common context

The two problems share the same context: an array
of integer of a given size (SizeMem) that must be
partially filled with a certain type of information.
This vector is initially filled with all ‘1"

~roet

1 1101}

ek = =4 - - PR |

[Rl s o 4
] ' 1 '

] ' 1 '

- - -

fig. 2 Initial configuration of the array

The two problems share the same terminals and
functions set. This set is minimal in the sense that
it is impossible to remove a terminal or a function
without making the problem impossible to solve.

[-5, ,5] Integer constants
Length the number of positions to
fill

+, - classical arithmetic
Operators.

while(argl, arg2) | evaluate argl then arg2
while argl is> 0

returns the integer at the
position (jargl| modulo
SizeMem) of the array

mem(argl)

assign(argl, arg2) | assign the value of arg2 to
the position (Jargl| modulo
SizeMem) in the vector.

fig 3. Common functions set

fig. 4 Common terminals set

To be complete, we must add that ‘while’ and

‘assign’ return the value of arg2.

As you can see, the terminals set does not include
the notion of variable nor index. These notions will
thus have to be evolved.

Those two problems were run with 3 ADF’s, with
respectively 0, 1 and 2 arguments.

2.3.2 Problem 1: Zeroes

The first problem called ‘Zeroes’ is the following:
to find a program that fills the array, with ‘Length’
consecutive zeroes, starting from the first position
in the vector.

The solution must be general for all possible value
of Length.

The fitness is defined by the following formula:

Fitness= NbAssign+3. NbCorrect + 10 ~ NbDestroyed
TreeSize
Where,

NbAssign is the number of positions different from
‘1’ in the area [0, Length-1]

TreeSize is the size of the Tree.

NbDestroyed is the number of positions different
from 1’ in the area [Length, SizeMem].

NbCorrect is the number of ‘0’ in the wanted area.
NbCorrect for the ‘Grow’ problem is the number of
positions in the wanted area that are greater than
the preceding one (ex: 4, 8).

The figure 5 shows a solution for this problem.

2.3.3 Problem 2: Grow

The second problem called ‘Grow’ is very close;
fill the array of integers with an increasing suite of
consecutive numbers of a given ‘Length’ (ex: 4, 7,
10, 45, 48, ...).

The fitness is the same as it is for ‘Zeroes’ except
that NbCorrect is the number of positions in the
wanted area that are greater than the preceding one
(ex: 4, 8, 3, 5 gives NbCorrect =2).

The figure 6 shows a solution for this problem.

2.3.4 Discussion

We see that we have two common concepts
evolved: the decrease and the consultation of an
array index. This concept is build upon very low
level operators.

Consultation Increase

(mem length) (= length ADF0)
ADFO:
(+ (mem length) 1)

The usual solution for this problem would have
been to put an ‘inc’ and ‘dec’ operator.

Teller showed in [6, 7], that the power of GP is
greatly improved by the use of indexed memory
and that its mastering is of great importance for the
future of GP.

By this example, we show that GP is able to evolve
the needed concepts for indexed memory treatment
from very low level operators.

It is noticeable that the notion of index have been
discovered and expressed in both cases in a very
similar form.

The fact that close problems often involve the
evolution of concepts close syntactically grounds
our work on External concepts reuse. If these
concepts could be transferred from one problem to
another, without having to be rediscovered,
considerable time may be gained.

RPB:

(while (ADF2 ADFO -1)
(= (mem length) 0))

ADFO:

(+ (mem length) 1)

ADF1:

-1

ADF2:

(= length ADFO)

fig.5 a solution for ‘Zeroes’

96

RPB:
(= (ADF1 (while (= -3 ADF0)
(= ADFO0
(mem 3)))) 3)
ADFO:

(- (mem (= (mem 3)
(mem 3))) -1)

ADFI:

3

ADF2;

ARG1

fig. 6 a solution for ‘Grow’

2.4 Concepts library and concepts storing

As mentioned in the previous section, close
problems may involve the evolution of similar
concepts.

The idea here, is to create a library that would
contain those evolved concepts.

In order to create a real library, we must know at
which level of granularity we have to pick the
concepts up. Obviously, they are included in the
population and since in the traditional GP model,
there is no co-operative behaviour among the
individuals, we can assume that an individual able
to solve a problem contains the concepts needed.
As it is impossible to know which parts of the
individual contain interesting concepts, the proper
granularity for concept storing seems to be the
individual.

For the sake of diversity, our library of concepts
will be constituted by a collection of individuals.

2.5 Concept sampling

Now that we know how to store them, we have to
decide when to pick them up. Should we take them
when a totally fit individual has been found, or
before?

Intuition tells us that concepts held in a totally fit
individual might be overadapted to the problem
they are helping to solve, and thus lack some
generality.

The question of when and which individual to take
remains an open question that will be explored in
next papers.

For the moment we will build our library by taking
a copy of the whole population when some
statistical indexes are reached (see section 4.2).

3. Library Exploitation System

Now that we have our library, we must know how
to use it in order to solve other problems.

Various options present themselves. The most
obvious one is to use the library to create the initial
population ‘seeded’ with the concepts and
thereafter to perform a normal GP run.

We present here two seeding methods (Inject and
Shake), and another one that inject the concepts
during the run.

3.1. Inject

This method generates the new population by
choosing randomly a given number of individuals
from the library, and by filling the rest of the
population with totally random individuals.

The only parameter for this method is the number
of individuals to inject.

3.2 Shake

This method is less direct. The new population is
created by performing totally random cross-overs
and mutations on the library for a given number of
generations. By totally random we mean that the
candidate individuals for genetic operations are
chosen with uniform probability.

The parameters for this method are the number of
generation, and the probability of the different
operators.

The rationale behind this methods is that the
individuals taken from the library are often more
fit to the new problem than the totally random one.
So after a few generations, they might overcrowded
the random ones, which would lead to a loss of
diversity.

3.3. Mutation

Another method would be to start from a random
population, and to inject the concepts during the
course of the run. The injection could be
materialised by a special mutation operator
replacing subtrees in the population by subtrees
taken from the library.

This method is not tested in this paper.

4. The experiments
4.1 Performance Index

The measure of performance used is the Effort as
defined by Koza in [5]. The Effort is the expected
number of individuals to evaluate, to have a
probability z to find the solution. This effort was
computed for z =0.99 by performing 20 runs of the
same problem with different random seeds.

Here we consider that we have a solution if the
fitness is superior to 580 on values of Length
different from the training set. Since the solution is

97

tested on out of sample data, this will insure the
generality.

4.2 The problems set

The problems set for the experiments is the one
described in section 2.3. Here, we tried to evolve
solution for the problem ‘Grow’ by reusing the
concepts evolved during the run of the problem
‘Zeroes’.

The number of operations that the program is
allowed to execute before the fitness evaluation, is
10*Length.

The raw fitness is the sum of 5 fitnesses obtained
by the formula in section 2.3 for 5 different values
of Length.

4.3 Results

The experiments were conducted with a population
of 500 individuals. The selection method was a
tournament of size 7.

The figure 7 shows the results summarized in a bar
graph. The first two bars represent respectively the
the effort for the problem ‘Grow’ and ‘Zeroes’.

The other bars are the efforts for the different the
‘Shake’ and ‘Inject’ Library Exploitation Systems
with different parameters.

For the ‘Shake’ method, the parameter is the
number of generations of random application of the
genetic operators. Shake = 3 means that the genetic
operators are applied totally randomly for 3
generations.

For the ‘Inject’ method, the parameter is the
percentage of individuals coming from the library
in the initial population.

The first conclusion we can draw from these results
is that the « Concept Reuse » works. The effort
needed in the worst case to find a solution has been
divided by five.

The effect of the different parameters are not clear
yet. We can just notice that if the number of
generations for ‘Shake’ is too high, the results
become close to those obtained with a totally
random initial population.

Further experiments will have to be conducted to
determine the most efficient method and to
measure the effects of the different parameters. (
see Section 6: Future work).

Grow and Zeroes with different reuse

schemes

180000

160000 B Grow, Random Pop
140000 b3 B Zer, Random Pop
120000 4 0O Grow, Shake =1
00000 B Grow, Shake =2
e W Giow, Shake =5
LG 80000

£ Grow, Shake =50
60000 1 B Grow, Inject = 3%
40000 1 £ Grow, Inject = 5%

1 Grow, lnject = 10%

fig. 7 Experiments results
5. Conclusions

In this paper we introduced a new way of using the
GP paradigm. In our approach, the problem
solving does not have to start from scratch each
time. Libraries of concepts can be created and
reused just as it is done in the classical
programmatic paradigm. In this way, the
computation time usually wasted to re-discover
concepts previously evolved, can be used to solve
more complex problems. Successive layers of
increasingly complex concepts libraries can be
build from low level operators.

We showed that concepts reuse works and saves a
considerable amount of time.

6. Future Work

Several points must still be explored:

a) What is the comportment of concepts reuse on
more complicated concepts involving larger trees?
b) Which are the relative performances of the
Shake and Inject methods?

¢) Which are the effects of the different parameters
of these methods?

Those points are under study and will be the
subject of further reports.

7. Acknowledgments

I would like to thank Stefan Langerman for those
valuable hours of discussion, and Anna Shotton for
the spelling corrections.

8. References

[1] Angeline P.J., and Pollack J.B. (1993)
« Evolutionnay Module Acquisition », in

98

Proceeedings of the second Annual Conference on
Evolutionnary Programming, La Jolla, CA:
Evolutionnary Programming Society.

[2] Collins R.J., Jefferson D.R.(1992) Antfarm:
Toward simulated evolution, in Artificial Life II,
Proceedings of the Workshop on Artificial Life
Addison-Wesly, Reading, MA

[3] Kinear K.E. Jr. (1994) Alternative in
Automatic Function Definition in Advance in
Genetic Programming Cambridge MA: The MIT
Press.

[4] Kinear K.E. Jr. (1993) Generality and difficulty
in Genetic Programming: Evolving a Sort in
Proceedings of the fifth international conference
on Genetic Algorithms, S. Forest, Ed. San Mateo,
CA Morgan Kaufmann.

[5] Koza, J. R. (1994) Genetic Programming I1.
Cambridge MA: The MIT Press.

[6] Teller A. (1994), The Evolution of Mental
Models, in Advance in Genetic Programming
Cambridge MA: The MIT Press.

[7] Teller A. (1994), Turing Completeness in the
Language of Genetic Programming with Indexed
Memory, in Proceedings of The First IEEE
Conference On Evolutionary Computation

