Skip to main content
Log in

Significant wave height modelling using a hybrid Wavelet-genetic Programming approach

  • Coastal and Harbor Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

In this paper, Genetic Programming (GP) based wavelet transform (WGP) was developed to forecast Significant Wave Height (SWH) in different lead times. The hourly SWH values for two buoy stations located in the North Atlantic Ocean were applied to train and validate the WGP model. For this purpose, the SWH main time series was decomposed into some subseries using wavelet transform and then decomposed time series were imported to GP model to forecast the SWH. Furthermore, GP approach was independently used to the same data set for comparison purposes. Performance of the WGP model was evaluated using correlation coefficient (R), Root Mean Square Error (RMSE), index of agreement (Ia) and Mean Absolute Error (MAE). The analysis proved that the model accuracy is highly depended on the decomposition levels. The obtained results showed that WGP model is able to forecast the SWH with a high reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altunkaynak, A. (2013). “Prediction of significant wave height using geno-multilayer perceptron.” Ocean Engineering, Vol. 58, pp. 144–153, DOI: 10.1016/j.oceaneng.2012.08.005.

    Article  Google Scholar 

  • Altunkaynak, A. and Wang, K. H. (2012). “Estimation of significant wave height in shallow lakes using the expert system techniques.” Expert Systems with Applications, Vol. 39, No. 3, pp. 2549–2559, DOI: 10.1016/j.eswa.2011.08.106.

    Article  Google Scholar 

  • Asma, S., Sezer, A., and Ozdemir, O. (2012). “MLR and ANN models of significant wave height on the west coast of India.” Computers & Geosciences, Vol. 49, pp. 231–237, DOI: 10.1016/j.cageo.2012.05.032.

    Article  Google Scholar 

  • Boggess, A. and Narcowich, F. J. (2009). A First Course in wavelets with Fourier analysis, John Wiley Publications, New Jersey.

    MATH  Google Scholar 

  • Canellas, B., Balle, S., Tintore, J., and Orfila, A. (2010). “Wave height prediction in the western Mediterranean using genetic algorithms.” Ocean Engineering, Vol. 37, No. 8–3, pp. 742–748, DOI: 10.1016/j.oceaneng.2010.02.006.

    Article  Google Scholar 

  • Cheng, H. D., Shi, X. J., Min, R., Hu, L. M., Cai, X. P., and Du, H. N. (2006). “Approaches for automated detection and classification of masses in mammograms.” Pattern Recognition, Vol. 39, No. 4, pp. 646–668, DOI:10.1016/j.patcog.2005.07.006.

    Article  Google Scholar 

  • Danandeh Mehr, A., Kahya, E., and Ozger, M. (2014). “A gene-wavelet model for long lead time drought forecasting.” Journal of Hydrology, Vol. 517, pp. 691–699, DOI: 10.1016/j.jhydrol.2014.06.012.

    Article  Google Scholar 

  • Deka, P. C. and Prahlada, R. (2012). “Discrete wavelet neural network approach in significant wave height forecasting for multistep lead time.” Ocean Engineering, Vol. 43, pp. 32–42, DOI: 10.1016/j.oceaneng.2012. 01.017.

    Article  Google Scholar 

  • Deo, M. C. and Naida, C. S. (1998). “Real time wave forecasting using neural network.” Ocean Engineering, Vol. 26, No. 3, pp. 191–203, DOI: 10.1016/S0029-8018(97)10025-7.

    Article  Google Scholar 

  • Deo, M. C., Jha, A., Chaphekar, A. S., and Ravikant, K. (2001). “Neural networks for wave forecasting.” Ocean Engineering, Vol. 28, No. 7, pp. 889–898, DOI: 10.1016/S0029-8018(00)00027-5.

    Article  Google Scholar 

  • Dixit, P., Londhe, S., and Dandawate, Y. (2015). “Removing prediction lag in wave height forecasting using Neuro-wavelet modelling technique.” Ocean Engineering, Vol. 93, pp. 74–83, DOI: 10.1016/j.oceaneng.2014.10.009.

    Article  Google Scholar 

  • Gaur, S. and Deo, M. C. (2008). “Real-time wave forecasting using genetic programming.” Ocean Engineering, Vol. 35, No. 1, pp. 1–12, pp. 1166–1172, DOI: 10.1016/j.oceaneng.2008.04.007.

    Article  Google Scholar 

  • Günaydýn, K. (2008). “The estimation of monthly mean significant wave heights by using artificial neural network and regression methods.” Ocean Engineering, Vol. 35, No. 14–3, pp. 1406–1415, DOI: 10.1016/j.oceaneng.2008.07.008.

    Article  Google Scholar 

  • Jain, P. and Deo, M. C. (2007). “Real-time wave forecasts off the western Indian coast.” Applied Ocean Research, Vol. 29, No. 1–3, pp. 72–79, DOI: 10.1016/j.apor.2007.05.003.

    Article  Google Scholar 

  • Kamranzad, B., Shahidi, A. E., and Kazeminezhad, M. H. (2011). “Wave Height forecasting in Dayyer, the Persian Gulf.” Ocean Engineering, Vol. 38, No. 1, pp. 248–255, DOI: 10.1016/j.oceaneng. 2010.10.004.

    Article  Google Scholar 

  • Kazeminezhad, M. H., Etemad-Shahidi, A., and Mousavi, A. (2005). “Application of fuzzy inference system in the prediction of wave parameters.” Ocean Engineering, Vol. 32, No. 14–3, pp. 1709–1725, DOI: 10.1016/j.oceaneng.2005.02.001.

    Article  Google Scholar 

  • Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection, MIT press, Cambridge, MA, USA.

    MATH  Google Scholar 

  • Mahjoobi, J. and Mosabbeb, E. A. (2009). “Prediction of significant wave height using regressive support vector machines.” Ocean Engineering, Vol. 36, No. 5, pp. 339–347, DOI: 10.1016/j.oceaneng. 2009.01.001.

    Article  Google Scholar 

  • Makarynskyy, O., Pires-Silvab, A. A., Makarynska, D., and Ventura-Soaresc, S. (2005). “Artificial neural networks in wave predictions at the west coast of Portugal.” Computers & Geosciences, Vol. 31, No. 4. pp. 415–424, DOI: 10.1016/j.cageo.2004.10.005.

    Article  Google Scholar 

  • Mallat, S. (1998). A wavelet tour of signal processing, CA: Academic press, San Diego.

    MATH  Google Scholar 

  • Misiti, M., Misiti, Y., Oppenheim, C., and Poggi, J. (2000). Wavelet Toolbox: For use with MATLAB, The MathWorks. Natick, Mass.

    MATH  Google Scholar 

  • Muraleedharan, G., Rao, A. D., Kurup, P. G., Unnikrishnan, N. N., and Sinha, M. (2007). “Modified Weibull distribution for maximum and significant wave height simulation and prediction.” Coastal Engineering, Vol. 54, No. 8, pp. 630–638, DOI: 10.1016/j.coastaleng.2007.05.001.

    Article  Google Scholar 

  • Nitsure, S. P., Londhe, S. N., and Khare, K. C. (2012). “wave forecasts using wind information and genetic programming.” Ocean Engineering, Vol. 54, pp. 61–69, DOI: 10.1016/j.oceaneng.2012.07.017.

    Article  Google Scholar 

  • Nitsure, S. P., Londhe, S. N., and Khare, K. C. (2014). “Prediction of sea water levels using wind information and soft computing techniques.” Applied ocean Research, Vol. 47, pp. 344–351, DOI: 10.1016/j.apor.2014.07.003.

    Article  Google Scholar 

  • Nourani, V., Hosseini, B., Adamowski, J., and Kisi, O. (2014). “Application of hybrid artificial-intelligence models in hydrology. A review.” Journal of Hydrology, Vol. 514, pp. 358–377, DOI: 10.1016/j.jhydrol.2014.03.057.

    Article  Google Scholar 

  • Nourani, V., Komasi, M., and Alami, M. T. (2012). “Hybrid waveletgenetic programming approach to optimize ANN modelling of rainfall-runoff process.” Journal of Hydrologic Engineering, Vol. 17, No. 6, pp. 724–741, DOI: 10.1061/(ASCE)HE.1943-5584.0000506.

    Article  Google Scholar 

  • Ozger, M. (2010). “Significant wave height forecasting using wavelet fuzzy logic approach.” Ocean Engineering, Vol. 37, No. 16, pp. 1443–1451, DOI: 10.1016/j.oceaneng.2010.07.009.

    Article  Google Scholar 

  • Ozger, M. and Sen, Z. (2007). “Prediction of wave parameters by using fuzzy logic approach.” Ocean Engineering, Vol. 34, No. 3–3, pp. 460–469, DOI: 10.1016/j.oceaneng.2006.03.003.

    Article  Google Scholar 

  • Prahlad, R. and Deka, P. C. (2015). “Forecasting of time series significant wave height using a wavelet decomposed neural network.” Int. conference on water resources, coastal and ocean engineering (ICWRCOE 2015), Aquatic Proc., Vol. 4, pp. 540–547, DOI: 10.1016/j.aqpro.2015.02.070.

    Google Scholar 

  • Scotto, M. G. and Soares, C. G. (2000). “Modelling the long-term time series of significant wave height with non-linear threshold models.” Coastal Engineering, Vol. 40, No. 4, pp. 313–327, DOI: 10.1016/S0378-3839(00)00016-8.

    Article  Google Scholar 

  • Scotto, M. G. and Soares C. G. (2007). “Bayesian inference for longterm prediction of significant wave height.” Coastal Engineering, Vol. 54, No. 5, pp. 393–400, DOI: 10.1016/j.coastaleng.2006.11.003.

    Article  Google Scholar 

  • Seo, Y., Kim, S., and Singh, V. P. (2015). “Multistep-Ahead flood forecasting using wavelet and data-driven methods.” KSCE Journal of Civil Engineering, Vol. 19, No. 2, pp. 401–417, DOI: 10.1007/s12205-015-1483-9.

    Article  Google Scholar 

  • Shahabi, S. and Khanjani, M. J. (2015). “Modelling of significant wave height using wavelet and GMDH.” Proc., 36th Int. IAHR World Congress., IAHR,Hague, Netherlands.

    Google Scholar 

  • Shahabi, S., Khanjani, M. J., and Kermani, M. H. (2016). “Hybrid wavelet-GMDH model to forecast significant wave height.” Water Science and Technology: Water Supply, Vol. 16, No. 2, pp. 453–459, DOI: 10.2166/ws.2015.151.

    Google Scholar 

  • Soares, C. G. and Cunha, C. (2000). “Bivariate autoregressive models for the time series of significant wave height and mean period.” Coastal Engineering, Vol. 40, No. 4, pp. 297–311, DOI: 10.1016/S0378-3839(00)00015-6.

    Article  Google Scholar 

  • Soares, C. G. and Ferreira, A. M. (1996). “Representation of non-stationary time series of significant wave height with autoregressive models.” Probabilistic Engineering Mechanics, Vol. 11, No. 3, pp. 139–148, DOI: 10.1016/0266-8920(96)00004-5.

    Article  Google Scholar 

  • Soares, C. G., Ferreira, A. M., and Cunha, C. (1996). “Linear models of the time series of significant wave height on the southwest Coast of Portugal.” Coastal Engineering, Vol. 29, No. 1–3, pp. 149–167, DOI: 10.1016/S0378-3839(96)00022-1.

    Article  Google Scholar 

  • US Army (1984). Shore Protection manual, Coastal Engineering Research Center. Washington, D.C: USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Shahabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahabi, S., Khanjani, MJ. & Kermani, MR.H. Significant wave height modelling using a hybrid Wavelet-genetic Programming approach. KSCE J Civ Eng 21, 1–10 (2017). https://doi.org/10.1007/s12205-016-0770-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-0770-4

Keywords

Navigation