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Introduction 

Design of rock slope is one of the major challenges at every stage of open pit mining operations. 

Providing an optimal excavation design based on a robust analysis in terms of safety, ore 

recovery and profit is the ultimate goal of any slope design. The rock slope stability is 

predominantly controlled by the strength and deformation of the rock mass which 

characteristically consists of intact rock materials and discontinuities. Initially, movement of the 

slope occurs due to stress relaxation as a result of removal of rocks which used to provide 

confinement. This behavior of slope can be attributed to linear elastic deformation. In addition to 

this, sliding along discontinuity surfaces and dilation in consequence of formation of cracks can 

occur. Ultimately all these instabilities lead to failure of the slopes. Therefore, formulation of 

slope designs plays critical role in the process of slope stability. In conventional approaches for 

assessing the stability of a homogeneous slope, such as the limit equilibrium method (LEM) and 

shear strength reduction (SSR) method, rock mass strength is usually expressed by the linear 

Mohr-Coulomb (MC) criterion. However, rock mass strength is a non-linear stress function. 

Therefore, the linear MC criterion generally do not agree with the rock mass failure envelope, 

especially for slope stability problems where the rock mass is in a state of low confining stresses 

that make the nonlinearity more dominant.  

With the aim of better understanding the fundamental rock slope failure mechanisms and 

improving the accuracy of the rock slope stability results, this research focuses on the application 

of the Hoek-Brown (HB) criterion, which can ideally represent the non-linear behavior of a rock 

mass, on the rock slope stability analysis. 

There, three major sections are available in the thesis. The first section, from Chapters 1 to 4, 

proposes new methods for estimating the intact rock and rock mass properties, which will be 
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used for slope stability analysis. In the second section studied in Chapter 5, a new non-linear 

shear strength reduction technique is proposed for the analysis of three-dimensional (3D) slope 

modeling. In section three (Chapter 6), novel stability charts are proposed, which have the merit 

of estimating factor of safety (FOS) for a given slope directly from the HB parameters and rock 

mass properties. These charts can provide a quick and reliable assessment of rock slope stability. 

The major research contributions and outcomes of the overall researches are presented in six 

journal publications which are forming the thesis. The titles of Chapters 1 through 6 reflect the 

titles of the journal papers. 

In Chapter 1, laboratory tests conducted on Hawkesbury sandstone obtained from New 

South Wales are carried out to investigate the relationship between the HB constant mi and 

uniaxial compressive strength (UCS) of intact rock. Based on the analysis of the laboratory tests 

and the existing database, a new method that can estimate the HB constant mi values from UCS 

and rock types is proposed. The proposed method can reliably be used in the HB criterion for 

intact rock strength estimation when the triaxial tests are not available.     

In Chapter 2, an analytical solution for estimating the instantaneous MC shear strength from 

the HB failure criterion for highly fractured rock mass is presented. The proposed solution is 

based on the assumption that the HB parameter, s is equal to zero. The proposed solution has the 

merit of producing very accurate shear strength for highly fractured rock mass where the 

Geological Strength Index (GSI) is less than 40. 

In Chapter 3, an analytical solution, which can calculate the shear strength of rock masses 

accurately for the whole range GSI values,  is proposed as an extension to the work in Chapter 2. 

The proposed approach is based on a symbolic regression analysis performed by genetic 

programming (GP). The proposed solution not only can be implemented into the LEM to 
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calculate the instantaneous shear strength of each slice of a failure surface under a specified 

normal stress, but also can be implemented into finite element method performed by SSR 

approach to calculate the instantaneous shear strength of each element under different stress state 

of a slope. 

In Chapter 4, as a part of estimating rock mass strength and elastic properties in the first 

section, the most widely used empirical equations for the estimation of deformation modulus of 

rock masses (Em) are reviewed. Two simplified empirical equations for estimating of Em are also 

presented. The proposed empirical equations use the Rock Mass Rating classification system and 

the deformation modulus of intact rock (Ei) as input parameters. These equations can be used in 

the numerical modelling for slope stability analysis, which is conducted in Chapter 5. 

In Chapter 5, a new non-linear shear strength reduction technique is proposed to analysis the 

stability of 3D rock slopes satisfying the HB failure criterion. The method for estimating the 

instantaneous MC shear strength from the HB criterion described in Chapters 2 and 3 are used to 

estimate shear strength of elements in FLAC3D model. The proposed 3D slope model is used to 

analyse the influence of boundary condition on the calculation of FOS using 21 real open pit 

cases where the values of mi and Em values are calculated from the methods introduced in 

Chapters 1 and 4, respectively. Results show that the values of FOS for a given slope will be 

significantly influenced by the boundary condition, especially the case where the slope angle is 

less than 50°. 

In Chapter 6, extensive slope stability analyses using LEM are carried out. The calculation 

of FOS is based on estimating the instantaneous MC shear strength of slices of a slip surface 

from the HB criterion. Based on the analysis results, novel stability charts are proposed. The 

proposed charts are able to estimate the FOS for a given slope directly from the HB parameters, 



 
 

XIII  
 

slope geometry and rock mass properties. It is suggested that the proposed chats can be used as 

useful tools for the preliminary rock slope stability assessment. 
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Chapter 1   

A New Method for Estimating the Hoek-Brown Constant for 

Intact Rocks 

Abstract 

The constant mi is one of the fundamental parameters required for the Hoek-Brown (HB) 

criterion to estimate the strength of rock materials. In order to calculate mi values a range of 

triaxial tests need to be carried out. However, triaxial tests are time-consuming and expensive, 

and they are not always routinely conducted at the early stage of a project. In this research, we 

investigate five common rock types and propose a simplified method that can estimate mi values 

using the information of rock types and the uniaxial compressive strength (UCS) of intact rocks. 

In order to evaluate the reliability of proposed method, mi values estimated from the proposed 

method are used in the HB criterion to predict intact rock strength. The predicted intact rock 

strength is then tested against experimental intact rock strength using 908 sets of triaxial tests 

together with our laboratory tests. Results from the comparison show that mi values calculated 

from the proposed method can reliably be used in the HB criterion for estimation of intact rock 

strength, with small discrepancies between estimated and experimental strength, when triaxial 

test data are not available. 

1 Introduction 

The Hoek-Brown (HB) criterion (see Eq. 1), which was initially proposed by Hoek and Brown 

(1980) for estimating intact rock strength, requires two intact rock properties, namely, the 
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uniaxial compressive strength (UCS) of the intact rock σci and a constant of the intact rock 

mi.  

0.5

3
1 3 1ci i

ci

m
σσ σ σ
σ

 
= + + 

   

(1) 

Further, it was extended to estimate the rock mass strength by using the Geological Strength 

Index (GSI) and a disturbance factor D to reduce intact rock properties (Hoek et al. 2002). 

Currently, the HB criterion, whose input parameters can be directly estimated from the 

measurement of rock mass fracture characteristics (GSI), disturbance condition (D) and intact 

rock properties (σci  and mi), is widely used in rock engineering (Priest 2005; Jimenez et al. 2008; 

Shen et al. 2012). The details of application and selection of GSI and D can be found in the 

papers by Marinos et al. (2005) and Hoek and Diederichs (2006).  

For the intact properties, the parameter mi depends upon the frictional characteristics of the 

component minerals in the intact rock and it has a significant influence on the rock strength (Hoek 

and Marinos 2000). Regression analysis of triaxial tests over a range of confining stress σ3 can be 

employed to estimate the values of mi. However, triaxial tests require time-consuming testing 

procedures, and they are not always routinely conducted at the early stage of a project (Cai 2010). 

One the other hand, the traditional compressive tests of cylindrical specimens can be carried out 

easily and economically. The value of σci  can also be predicted from the point-load index test 

using unprepared rock cores or non-destructive testing methods, such as the sound velocity tests 

(Karakus and Tutmez 2004; Karakus et al. 2005). Therefore, it is useful to develop a simplified 

method that mi values can be estimated from UCS values in the absence of triaxial tests. Based 

on the analysis of extensive triaxial tests in the database, here, we propose a simplified method 

that can estimate mi values using only UCS and rock types.  
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In this paper, the database and indicators to assess prediction performance of the available 

methods that estimate mi values are introduced in section 2. The existing methods for estimating 

mi values are reviewed in section 3. The proposed method and validation are presented in section 

4. The prediction performance of the proposed and existing methods is compared in section 5.   

2 Database and prediction performance indicators 

We collected an extensive database of triaxial tests for intact rocks from Singh et al. (2011) and 

‘RocData’ (2012). The database compiled by Singh et al. (2011), without the inclusion of tensile 

strength tests, includes 1190 sets of triaxial tests corresponding to 158 groups of data. The 

database we collected from ‘RocData’(2012) includes 908 sets of triaixal and tensile strength 

tests corresponding to 112 groups of data. 

The strategy we used to evaluate the reliability of the existing and proposed methods is that: 

mi values calculated from different methods are used in the HB criterion to estimate the values of 

intact rock strength σ1_est under confining stresses σ3_test for a given group of triaxial test (σ1_test, 

σ3_test) data. The estimated rock strength σ1_est is then compared with that from the experimental 

rock strength σ1_test. The coefficient of determination (R2), discrepancy percentage (Dp) and 

absolute average relative error percentage (AAREP) are adopted as indicators to assess the rock 

strength prediction. Their definitions are shown in Eqs. 2 to 4. 

( )

( )

2

1_ 1_
2 1

2

1_1_
1

1

N
i i

test est
i
N

i
testtest

i

R
σ σ

σ σ
=

=

−
= −

−

∑
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σ σ
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1_ 1_

1 1_

i iN
test est

i
i test

AAREP
N

σ σ
σ=

−

=
∑

 

(4) 

where N is the number of testing data used, σi
1_test and σi

1_est are the intact rock strength, as 

obtained from the experimental data and derived from the HB failure criterion in which mi values 

are calculated from different methods.σ1_test is the mean value of the experimental σ1_test values. 

By definition, the smaller the AAREP is, the more reliable the estimation. Dp is the relative 

difference between predicted and experimental values. 

3 The review of existing methods for estimating mi values  

There are three methods (regression analysis, guidelines and R index) commonly used for 

estimating the Hoek-Brown constant mi values. The most accurate method that can give best rock 

strength estimates is to carry out regression analysis of triaxial test data. In the absences of 

triaxial tests, mi values can also be obtained from guidelines proposed by Hoek and Brown (1980) 

and Hoek (2007).  The R index, the ratio of σci to tensile strength σt, was also suggested by many 

researchers as an alternative way to estimate mi values when triaxial tests are not available.  

There is also another new method proposed by Cai (2010) for the prediction of mi directly from 

the UCS of the intact rock, in which mi values depend on the ratio of crack initiation stress 

obtained using acoustic emission techniques to the peak strength. However, the existing triaxial 

tests in the database do not include the crack initiation stress of rock samples. Therefore, Cai’s 

method will not be adopted for the comparison study in this research.  

3.1 Regression method 

In order to obtain the best rock strength prediction, Hoek and Brown (1997) suggested that the 

values of mi should be calculated over a confining stress σ3 range from 0 to 0.5 σci by using 
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regression methods, and at least five sets of triaxial tests should be included in regression 

analysis. Read and Richards (2011) suggested that the most accurate method of assessing mi 

values is regression analysis (including triaxial, uniaxial compressive and tensile tests) within the 

confining stress range from σt to 0.5σci. 

Given that mi values calculated from statistical analysis, the reliability of the calculated mi 

values depend on the quantity and quality of testing data used in the regression method. Research 

by Singh et al. (2011) indicated that the range of confining stress σ3 can have a significant 

influence on the calculation of mi. Table 1 shows a comparison study on the calculation of mi 

values from different confining stress σ3 for limestone conducted by Schwartz (1964). The values 

of mi calculated using different combinations of data sets are shown in Table 1. For example, if 

the first three data sets are selected mi would be equal to 5.16. However, if all eleven data points 

are used mi value will then be 1.21. The value of T in Table 1 represents the ratio of the 

maximum to the minimum of mi value, for example, T=mi_max/mi_min=5.16/1.21=4.26 in this case. 

T is equal to 1 means there is no variation in the parameter mi, although different sets of data are 

used.  
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Table 1 Estimated mi values by regression analysis using triaxial test data at different confining 

stresses 

Data sets  
(N) 

σ3 [MPa] σ1 [MPa] mi R2 AAREP % 

1 0 44  -  -  - 
2 6.5 66 - - - 
3 13.7 85 5.16  0.52  12.65  

4* 20.3 99 4.63  0.67  10.58  

5 27.9 109 3.53  0.88  7.15  
6 34.4 119 2.97  0.93  6.65  
7 41.2 128.2 2.54  0.94  6.95  
8 48.4 135.1 2.07  0.91  8.30  
9 55.4 141.9 1.68  0.84  11.09  
10 62.3 149.1 1.40  0.77  13.53  

11 68.4 156.5 1.21  0.71  15.17  

T 
  

4.26 
  

*Last test for which σ3≤0.5σci 
 

 

Fig. 1 The Hoek-Brown failure envelopes using different mi values 
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The results show that in this case the value of mi calculated from the regression method over a 

confining stress σ3 range from 0 to 0.8σci (N=6) gives the best rock strength prediction with 

AAREP= 6.65%, compared with the suggested range from 0 to 0.5σci (N=4) which has 

AAREP=10.58%. It should be noted that if all the data points (N=11) are selected where σ3 range 

from 0 to 1.6σci the value of AAREP is up to 15.17%.  

To extend the analysis to other triaxial tests for various rock types, the sensitivity of mi was 

tested using a large database compiled by Singh et al. (2011). Histogram in Fig. 2 shows T values 

distribution for a complete comparison. 

 

Fig. 2 Comparison of sensitivities to the confining stress range employed for mi fitting, as 

indicated by the T parameter 

Based on the assessment of T, the results illustrate that the parameter mi has high sensitivity to 

variations in confining stress σ3. 37.3% of the data sets have T values greater than 2. This 
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statistical analysis indicates that discrepancies in the predicted values of mi using different sets of 

test data can result in reducing confidence in the predicted rock strength values.   

3.2 Guidelines method 

The mi values depend on many factors, such as mineral composition, grain size and cementation 

of rocks. According to some general pattern to the correlation between mi and rock types, Hoek 

and Brown (1980) proposed guidelines mi values for different rock types which can be used for 

preliminary design when triaxial tests are not available. The latest version of guidelines was 

proposed by Hoek (2007), associated with a more detailed lithological classification of rocks 

with the range of mi values which are dependent upon the accuracy of the geological description 

of rock types. The relations between guidelines mi and rock types were extensively evaluated by 

Mostyn and Douglas (2000) for a variety of rock types. Their comparison results showed that the 

correlation between guidelines and calculated mi values is not quite strong; generally the range of 

calculated mi values using the regression analysis has a much great spread than those in the 

guidelines. 

For example, Fig. 3 shows a comparison study between mi from guidelines and that from the 

regression analysis for 63 groups of data from Singh et al. (2011) and ‘RockData’ (2012) for 

sandstone. The results show that compared with the Hoek’s (2007) guidelines, mi =17±4 for 

sandstone, only 35% of data lie in the indicated range. The minimum and maximum values of mi 

are 3.9 and 36.6, respectively. Such a large variation range presents a major challenge for 

researchers and engineers to choose an appropriate mi value for a specific rock type. 
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Fig. 3 Distribution of mi values for sandstone 

3.3 R index method 

The R index, the ratio of σci to tensile strength σt, was also suggested by many researchers 

(Mostyn and Douglas 2000; Douglas 2002; Cai 2010; Read and Richards 2011) as an alternative 

way to assess mi values in the absence of triaxial test data. It is known that direct tensile test is 

not routinely carried out as a standard procedure in many rock testing laboratories because of the 

difficulty in specimen preparation. Therefore, indirect methods, such as Brazilian tests are 

widely used to estimate tensile strength in the literature. The relations between mi and R which 

are calculated from direct and Brazilian tensile tests are compared as shown in Fig. 4. The solid 

diagonal line in the figure represents R=mi. The upper and lower dash lines represent the 6 under-

estimate and over-estimate of the mi values, respectively. It is found that only 4 out of 57 sets of 
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level of confidence. Fig. 4 also shows that the use of direct tensile test does not improve the 

prediction capability of estimating mi values compared with Brazilian tests.   

 

Fig. 4 Correlation between R and mi, after Read and Richards (2011) 

4 Proposed method for estimating mi values 

Considering that the UCS of the intact rock is one of the most important rock properties for rock 

engineering application and can be estimated relatively straightforward in a cost-effective way, 

we proposed a new method to estimate mi values directly from the UCS when triaxial test data 

are not available. The HB criterion can be re-written as follows: 

( )0.5

1 3 3 1ci inmσ σ σ σ= + +
 

(5) 

A 
NOTE:   

     This figure/table/image has been removed  
         to comply with copyright regulations.  
     It is included in the print copy of the thesis  
     held by the University of Adelaide Library. 
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where min =mi/σci, is the normalized mi for the HB criterion. Our analysis of the database showed 

that there is a strong correlation between min and σci (MPa) as shown in Fig. 5.  

 

Fig. 5 Correlation between min and σci for 28 rock types 

* There are 17 rock types included in the ‘Others’ category. 

Most of the data lie along the line which has a trend of decreasing min with the increase of σci. 

By fitting a regression of the curve, Eq. 6 can be used to estimate min values from σci for 

different rock types.  

dm
in c cim mσ=  

(6) 

where mc and md are constants and their values depend on rock types. The best-fit for a general 

or unspecified rock type is obtained for mc=30 and md= -1.2.  

1.230in cim σ −=  
(7) 

The values of normalized mi estimated from σci can be employed to estimate the strength of 

intact rock at different confining stresses σ3 using Eq. 5. The prediction performance of Eq. 7 for 
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general rock types is shown in Fig. 6 which compares estimated rock strength with experimental 

rock strength using 1190 sets of triaxial test data. The values of R2 and AAREP for Eq. 7 are 

0.903 and 13.55%, respectively.  

 

Fig. 6 Rock strength prediction performance using Eq. 7 for general rock types 

To produce the correlations for specific rock types, we considered five most common rock 
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Table 2 Best fit mc and md constants to estimate min using σci for specific rock types 

Rock Type 
 Data  Data σci [MPa]   σ3, max

a σ1, max
b
      mc md R2 AAREP 

groups points (min) (max) [MPa] [MPa] 
   

[%] 

Coal  32 208 5.3 92.0 71.4 242.0 120 -1.70 0.92 11.55 

Granite 12 115 82.9 256.0 700.0 2700.0 100 -1.20 0.99 7.88 

Limestone 21 140 46.9 302.4 56.0 566.3 22 -1.15 0.93 8.38 

Marble 15 136 15.8 137.8 165.0 635.0 100 -1.55 0.96 8.84 

Sandstone 32 309 26.0 266.5 150.0 739.3 50 -1.26 0.95 6.95 

Generalc 158 1190 5.3 507.0 3100.0 7610.0 30 -1.20 0.90 13.55 

aσ3, min =0 in all cases. bσ1, min =σci, min in all cases. cTo be used when rock type is unknown or not 

specified. 
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Fig. 7 Correlation between min and σci for specific rock types corresponding to their rock strength 

prediction performances 
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Fig. 7 shows the best-fit regression curve (based on Eq. 6) that we obtained for each specified 

rock type; and it also compares experimental values with those predicted values using σci and the 

best-fit mc and md constants for each rock type.  

The results show that there is a close agreement between estimated and experimental rock 

strength values. The values of R2 are higher than 0.92 for all rock types, and the values of 

AAREP for all rock types are less than 9%, excepting coal with AAREP = 11.55%.  

5 Comparison of the rock strength prediction performance 

Firstly, the prediction performance of the proposed method was compared with that of the 

existing methods using our laboratory tests conducted on Hawkesbury sandstone obtained from 

New South Wales. Our laboratory tests include 32 sets of uniaxial compressive tests, 32 sets of 

Brazilian tensile tests and 39 sets of triaxial compression tests with confining stress σ3 range 

from 2 to 21 MPa. The mean values of σci and σt are 27.20 and 2.02 MPa, respectively. At least 

two sets of triaxial tests were carried out under a specified confining stress σ3 , and the mean 

values of σ1 for a given value of σ3 were taken for the calculation as shown in Fig. 8.  
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Fig. 8 Comparison of experimental rock strength with predicted rock strength using different 

methods  

We provided two lines to show the predictions of our proposed method: one corresponds to mi 

= 15.50 using the general rock type mc=30 and md =-1.2 (see Table 2) and with σci= 27.20MPa; 

the other corresponds to a value of mi = 21.18 that would be obtained for a specific rock type, in 

this case mc=50 and md =-1.26 for sandstone (see Table 2).  We also provided lines for guidelines 

method with mi = 17.0, R index method with mi =13.47 and regression method with mi = 23.67 

which is calculated over a confining stresses σ3 from 0 to 0.2σci and can give the best strength 

prediction. The results of such comparison study on the prediction performance of different 

methods are shown in Table 3.  
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Table 3 Comparison of the prediction perfromance of differernt methods using the sandstone 

laboratory test data 

Test data 
Regression * Guidelines R index 

Proposed 

(general) 

Proposed 

(specific) 

mi=23.67 mi=17.0 mi=13.47 mi=15.50 mi=21.18 

σ3 σ1,obs σ1,est Dp σ1,est Dp σ1,est Dp σ1,est Dp σ1,est Dp 

[MPa] [MPa] [MPa] [%] [MPa] [%] [MPa] [%] [MPa] [%] [MPa] [%] 

0.0 27.2 27.2 0.00 27.2 0.00 27.2 0.00 27.2 0.00 27.2 0.00 

2.0 53.4 47.0 -11.86 42.8 -19.79 40.4 -24.34 41.8 -21.69 45.5 -14.73 

3.0 57.2 54.7 -4.44 49.1 -14.17 45.9 -19.83 47.8 -16.53 52.7 -7.95 

4.0 67.4 61.6 -8.59 54.9 -18.52 51.0 -24.36 53.3 -20.96 59.2 -12.16 

5.0 70.3 67.9 -3.32 60.2 -14.26 55.7 -20.71 58.4 -16.94 65.2 -7.24 

6.0 66.1 73.9 11.73 65.3 -1.24 60.2 -8.93 63.2 -4.43 70.8 7.08 

8.0 86.8 84.8 -2.38 74.6 -14.04 68.6 -21.01 72.1 -16.93 81.1 -6.54 

10.0 90.0 94.7 5.22 83.2 -7.54 76.4 -15.19 80.4 -10.71 90.6 0.67 

15.0 112.7 117.0 3.78 102.6 -8.97 94.0 -16.65 99.0 -12.14 111.9 -0.76 

20.0 139.8 136.7 -2.19 119.9 -14.18 109.8 -21.43 115.8 -17.17 130.7 -6.45 

21.0 136.6 140.4 2.77 123.2 -9.81 112.8 -17.43 118.9 -12.96 134.3 -1.71 

AAREP 
 

5.12% 
 

11.14% 
 

17.26% 
 

13.68% 
 

5.94% 

*mi calculated from regression method (0≤σ3≤0.2σci) 

The results show that the prediction performance of the proposed method is quite acceptable; 

the AAREP value for general rock type relations is 13.68%. The value of AAREP for specific 

rock type relations is equal to 5.94%, which is close to the regression method with 

AAREP=5.12%. This illustrates that the proposed method can provide good estimates of intact 

rock strength based on the information of the UCS of intact rock; and that such estimates can be 

improved with rock specific relations.  

The results presented in Fig. 8 and Table 3 only provide one specific example for a sandstone 

rock. To compare the predictive capabilities of the proposed method with other methods, we 
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conducted a comprehensive study using the 112 groups of data which includes 908 triaixal and 

tensile strength tests for five common rock types as indicated in Table 2. (The intermediate mi 

values were used for the guidelines method; mi values for coal, limestone, granite, marble and 

sandstone are 14.5, 11, 32, 9 and17, respectively.) The mi values calculated from different 

methods are used in the HB criterion for rock strength prediction. For a given of group data, the 

values of AAREP were calculated for different methods. 

Fig. 9 presents the results of such comprehensive analysis, in which we adopted the 

cumulative distribution functions (CDF) of AAREPs values to assess the prediction performance 

of different methods. (The CDF indicates probabilities are calculated by dividing the number of 

cases where the value of AAREP is smaller than a threshold by the total number of cases 

considered.) We included two CDF lines for regression analysis: one for excluding tensile 

strength (0 ≤ σ3≤0.5σci) and one for including tensile strength (σt ≤ σ3≤0.5σci).  
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Fig. 9 Cumulative distribution function (CDF) of prediction errors (AAREP) of different 

methods using five rock types in Table 2 
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the value of CDF within this error by the proposed method is about 75%, slightly lower than that 

from the regression method at 78% and higher than that from R index and guidelines methods 

with AAREP are equal to 70 and 62%, respectively.  

6 Conclusions 

The constant mi is one of the basic input parameters required for the HB failure criterion. Triaxial 

tests, which are time-consuming and expensive, can be employed to calculate mi values using the 

regression analysis. However, at the early stage of many practical applications, we need to 

estimate rock strength without having triaxial test data. In those cases, it is useful to estimate 

rock strength based on simple methods. 

We proposed a simplified method (Eq. 6 together with rock specific relations in Table 2) that 

can estimate mi (or normalized mi) values using only UCS and rock types. In order to present the 

simplified method, we used 112 groups of data for five common rock types in the existing 

database together with our laboratory tests.  

The reliability of the proposed method was evaluated and compared with the existing methods 

(guidelines and R index), which are commonly used for estimating mi values when triaxial data 

are not accessible.  

The results show that the proposed method can reliably be used in the HB criterion to estimate 

intact rock strength, with small discrepancies between estimated and experimental strength. The 

values of R2 are greater than 0.92 for all rock types, and the values of AAREP are less than 9%, 

excluding coal with AAREP = 11.55% (see Fig. 7). Comparison results in Fig. 9 also indicate 

that the proposed equation for specific rock types yield better intact rock strength prediction 

compared with that from the guidelines and R index methods.  



 
 

23 
 

It should be noted that the proposed normalized mi and σci relations for rock types are based on 

the analysis of existing triaxial test data and the reliability of estimation of these relations depend 

on the quality and quantity of triaxial test data. Therefore, the proposed rock specific relations 

are open to further improvement as more triaxial test data become available.  
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Chapter 2 

Determination of Mohr-Coulomb Shear Strength 

Parameters from Generalized Hoek-Brown Criterion for 

Slope Stability Analysis 

1 Introduction 

Rock slope stability is critical for many aspects of mining and civil engineering projects, such as 

open pit mining and large dam construction. One of the most popular approaches for estimating 

the factor of safety (FOS) of a given slope is the limit equilibrium method (LEM) where rock 

mass strength is usually expressed by the linear Mohr-Coulomb (MC) criterion. Currently, a 

widely used criterion to estimate rock mass strength is the non-linear Generalized Hoek-Brown 

failure criterion (GHB) since it is able to estimate the shear strength of various types of intact 

rock and rock masses (Priest 2005).  If the GHB criterion is used in conjunction with LEM for 

analyzing the rock slope, methods are required to determine the equivalent MC shear strength 

parameters cohesion c and angle of friction φ at the specified normal stress σn from the GHB 

criterion. The determination of reliable shear strength values is a critical step in slope design as 

small changes in shear strength parameters can result in significant changes in the value of the 

FOS (Wylle and Mah 2004). In past decades, methods for the determination of shear strength 

from the Hoek-Brown criterion for slope stability analysis were proposed by Hoek (1983), Priest 

and Brown (1983), Londe (1988), Hoek (1990), Hoek and Brown (1997), Kumar (1998), Hoek et 

al.(2002), Carranza-Torres (2004), Priest (2005), Fu and Liao (2010),Yang and Yin (2010). 
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Comprehensive review of the literature of estimating shear strength of the Hoek-Brown criterion 

can be found in the paper by Carranza-Torres (2004). However, as Brown (2008) has noted, 

deriving exact analytical solutions for estimating the shear strength of a rock mass modeled using 

the GHB criterion has proven to be a challenging task due to the complexities associated with 

mathematical derivation. 

In the special case of the Hoek-Brown parameter a=0.5, an analytical solution proposed by 

Bray and reported by Hoek (1983) yields accurate results for intact rock with the Geological 

Strength Index (GSI) is equal to 100. However, in the more general case of a≠0.5 no accurate 

analytical solution is available (Carranza-Torres 2004). In this paper, an approximate analytical 

solution for estimating the equivalent MC parameters for highly fractured rock masses governed 

by the GHB criterion is proposed. The proposed approximate analytical solution yields fairly 

good results when GSI<40 and provides great flexibility for the application of the GHB criterion 

in conjunction with LEM for highly fractured rock mass slope stability analysis. 

2 Equivalent MC parameters for GHB criterion 

The non-linear Hoek-Brown (HB) criterion, originally presented by Hoek and Brown (1983) has 

been successfully used in the field of rock engineering for the past three decades to estimate rock 

mass strength. The latest version is the Generalized Hoek-Brown (GHB) criterion presented by 

Hoek et al. (2002) is: 

3
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mb, s and a are the Hoek-Brown input parameters which can be estimated from the Geological 

Strength Index (GSI) for the rock mass, given by: 
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where, σ1 and σ3 are the major and minor principal stresses, σci is the uniaxial compressive 

strength of the intact rock mass, mi is the Hoek-Brown constant for intact rock mass, D is 

the disturbance factor. 

The GHB criterion Eq. 1 can also be expressed in terms of normal stress σn and shear stress τ 

on the failure plane by using Eqs. 5 and 6 which were proposed by Balmer (1952). 
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(6) 

Taking the derivative of σ1with the respect of σ3 of Eq. 1 and substituting the results into Eqs. (5) 

and (6) respectively, the GHB criterion can be expressed by the following equations 
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Fig. 1 gives a graphical representation of the HB criterion expressed by (a) major and minor 

principal stresses (b) normal and shear stresses. 

 



 
 

32 
 

 

(a)     (b) 

Fig. 1 (a) Major and minor principal stresses for the HB criterion, (b) Normal and shear stresses 

for the HB criterion 

The equivalent MC shear strength parameters can be calculated by locating the tangent of the 

HB envelope with the specified normal stress σn, as illustrated in Fig. 1b. The slope of the 

tangent to the HB failure envelope gives angle of frictionφ and the intercept with the shear stress 

axis gives cohesion c. 

Kumar (1998) proposed the general numerical solution for estimating the equivalent MC 

shear strength parameters from the GHB criterion. Equations are expressed as follows: 
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In the Eqs. 9 to 11, the values of input parameters mb, s, a and σci are known and normal stress 

σn can be estimated by adopting an appropriate stress analysis approach (Hoek and Brown 1997). 

In general case of a≠0.5, in order to calculate the shear strength parameters, firstly Eq. 9 is 

solved iteratively to calculate an angle of friction φ value. Having obtained φ, shear stress τ and 

cohesion c can be calculated from Eqs. (10) and (11) respectively. In special case a=0.5, the 

analytical solution derived by Bray and reported by Hoek (1983) can yield the accurate MC 

shear strength parameters for the Hoek-Brown materials. The equations are expressed as follows: 
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tannc τ σ φ= −  
(16) 

where h and θ are intermediate parameters. 

This method provides great flexibility for the use of the original HB criterion (a=0.5) in rock 

slope stability analysis. However, in the GHB criterion, if Eq. 4 is used to calculate a, the value 

of a can vary from 0.51 when GSI is 40 to 0.5 when GSI is 100. Since the Bray method is based 

on a=0.5, when GSI=100, the equation gives very good results for rock masses where GSI>40. 

On the other hand, when 0<GSI<40 the value of a can vary from 0.666 to 0.51. Clearly, this 

analytical solution can’t yield satisfactory results for a geological condition where the value of 

GSI for a fractured rock mass is relatively low (Priest 2005). Table 1 gives the comparison of 

shear stress values between the Bray method and the numerical method proposed by Priest (2005) 
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for a rock mass: σci =30000kPa, mi=20, σn=3000kPa, D=0.8, 0<GSI<40. The results are also 

plotted in Fig. 2. It is shown that τ values from the Bray method are relatively overestimated 

compared with the Priest method, and with the decrease of the GSI values the discrepancy of τ 

can vary from 2.8% when GSI=40 to 98.1% when GSI=2. 

 

Fig. 2 Shear stress versus GSI  
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Table 1 Shear stresses obtained from Priest and Bray solutions over a range of GSI 

Uniaxial compressive strength, σci (kPa) 30000 

Hoek-Brown constant for intact rock, mi 20 

Geological Strength Index, GSI 2-40 

Normal stress, σn (kPa)  3000 

Disturbance factor, D 0.8 

 Shear stress, τ  (kPa) Discrepancy of 

Bray method (%) GSI Bray  

method 

Priest  

method 

2 965.88 487.58 98.1 

4 1015.50 568.38 78.7 

6 1067.30 652.19 63.6 

8 1121.10 738.29 51.9 

10 1177.20 826.08 42.5 

12 1235.40 915.13 35.0 

14 1296.00 1005.10 28.9 

16 1358.80 1095.80 24.0 

18 1424.00 1187.10 20.0 

20 1491.60 1278.90 16.6 

22 1561.70 1371.20 13.9 

24 1634.20 1464.20 11.6 

26 1709.20 1557.90 9.7 

28 1786.80 1652.50 8.1 

30 1866.90 1748.00 6.8 

32 1949.70 1844.60 5.7 

34 2035.20 1942.50 4.8 

36 2123.40 2041.90 4.0 

38 2214.50 2142.80 3.3 

40 2308.40 2245.60 2.8 
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3 Proposed method  

Based on the numerical method proposed by Kumar (1998) the authors propose a new 

approximate analytical solution for estimating the MC shear strength parameters from the GHB 

criterion for a highly fractured rock mass where 0<GSI<40. The expressions related to the 

derivations are: 

1. After rewriting Eqs. 7 and 9, the angle of friction φ can also be expressed by the following 

equations 
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(18) 

As σ3/σci exists on both sides of Eq. 18, in order to identify an acceptable value for σ3/σci, Eq. 

18 must be solved iteratively. Therefore, with the purpose of presenting an approximate 

analytical solution for estimating the equivalent MC shear strength parameters, the critical 

step is to present an approximate analytical solution for the intermediate parameter σ3/σci 

expressed by mb, s, a and σn/σci. Having obtained σ3/σci, the angle of frictionφ, shear stress τ 

and cohesion c can be directly calculated from Eqs. 17, 10 and 11, respectively. 

2. According to Eq. 3, the value of s < 1.2E-3 when GSI<40. In order to simplify Eq. 18, s is 

assumed to equal zero and Eq. 18 becomes: 
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3.  In order to calculate σ3/σci in terms of mb, a and σn/σci, a linear function is used to replace the 

non-linear function (σ3/σci )
1-a which is part of Eq. 19. 
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σ σ
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(20) 

Hoek and Brown (1997) recommended that a rock mass stress state of the value of σ3/σci should 

be in the range of 0< σ3/σci<0.25 in rock mass slopes. Using the recommended σ3/σci values, the 

values of k and i are estimated by linear regression analysis, the results are k=1.81a+1.31 and 

i=0.78a-0.37.  

4.  Substituting Eq. 20 into Eq. 19, the following expressions are obtained: 
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1.81 1.31k a= +  (24) 

0.78 0.37i a= −  (25) 

Finally, the angle of frictionφ can be calculated from Eq. 17, shear stress τ and cohesion c can 

be directly calculated from Eqs. 10 and 11, respectively. 

4 Validation of the approximate analytical solution 

One thousand random sets of testing data are generated by the strategy described in the following 

section. The value of the absolute average relative error percentage (AAREP) is adopted as an 
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indicator to verify the reliability of the proposed approximate analytical solution. The results 

from the proposed approximate solution are compared with those from the Priest numerical 

method. The smaller AAREP is, the more reliable the solution. If the proposed approximate 

solution has a perfect predictive capacity, the value of AAREP will be zero. 

'
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i i

i i

x x

x
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=

−

=
∑

 

(26) 

where N is the number of testing sets, xi and x’ i are the results from Priest and the proposed 

approximate solutions, respectively. 

The process of generating testing data for validation is as follows: 

1.  Selection of input parameters 

Table 2 gives the values of input parameters for generating the testing data. The selection 

σ3/σci is based on Hoek and Brown’s (1997) suggestion that the values of σ3/σci should be in 

the range of 0< σ3/σci<0.25 in rock mass slopes.  

Table 2 Range of input parameters 

Input parameters Range 

GSI 0-40 

mi 1-35 

D 0-1 

σ3/σci 0-0.25 

2. Calculation of the Hoek-Brown parameters  

For the given values of the input parameters, the Hoek-Brown parameters mb, s and a can be 

calculated from Eqs. 2 to 4, respectively. 
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3.  Calculation of the equivalent MC shear strength parameters and σn/σci 

The values of σn/σci can be calculated from Eq. 18. The angle of frictionφ, shear stress τ and 

cohesion c can be calculated from Eqs. 17, 10 and 11, respectively. 

Once the strategy is established, the steps outlined above are programmed into ‘Matlab’ . The 

programming generates 1000 data sets for testing the reliability of the proposed approximate 

analytical solution. Table 3 gives the one thousand random sets of data employed for the testing 

analysis.  

Table 3 Data for validation of the proposed approximate solution 

 Input parameters  Calculated HB parameters  Output parameters 

No σ3/σci GSI mi D  
mb 

Eq. 2 

s 

Eq. 3 

a 

Eq. 4 
 
σn/σci 

Eq. 18 

φ 

Eq. 17 

τ/σci 

Eq. 10 

c/σci 

Eq. 11 

1 0.004 15 8 1.0  0.022 8.8E-07 0.561  0.006 15.7 0.003 0.001 

2 0.007 20 36 0.7  0.469 1.0E-05 0.544  0.015 39.4 0.017 0.005 

… … … … …  … … ...  … ... ... ... 

1000 0.127 9 26 0.3  0.623 1.6E-05 0.591  0.200 20.0 0.105 0.032 

The performance of the proposed approximate analytical solution is shown in Figs. 3 to 5. The 

solid diagonal line in the figures represents a perfect estimation. Data located under the solid 

diagonal line represents over estimation, and if located above the solid diagonal line represents 

under estimation. 

The results illustrate that there is close agreement between the proposed approximate 

analytical solution and the Priest numerical solution as shown in Figs. 3 to 5. Compared with the 

Priest results, the AAREP of angel of friction φ and shear stress τ/σci are only 2.2% and 0.7%, 

respectively, as shown in Figs. 3 and 4. The proposed approximate analytical solution generates 
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very good results of φ and τ, however, it is interesting that the AAREP of c/σci is 7.1%, as shown 

in Fig. 5. The results show that it is inevitable that Eq. 11 will yield relative large discrepancy of 

cohesion c that is different from the Priest’s results because of error transformation: Eq. 11 

includes a tangent function that tends to increase the difference between the Priest numerical 

solution for c and the proposed approximate solution. Even when there is only a small difference 

in the values of input parameters φ and τ, relatively large discrepancy of c occurs.  

 

Fig. 3 Priest numerical versus proposed approximate analytical value of φ 
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Fig. 4 Priest numerical versus proposed approximate analytical value of τ/σci  
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Fig. 5 Priest numerical versus proposed approximate analytical value of c/σci  

An example of data from the paper by Priest (2005) is used for a final check on the reliability 

of the proposed approximate analytical solution.  The example has the following rock mass 

parameters: σci =30000kPa, mi=16, GSI=15, σn=800kPa, D=0.7. The results of the comparisons 

of the equivalent c, φ and τ are given in Table 4.  

  



 
 

43 
 

Table 4 Comparison results of shear strength parameters with different methods 

Uniaxial compressive strength, σci (kPa) 

Hoek-Brown constant for intact rock, mi 

Geological Strength Index, GSI 

Normal stress, σn (kPa) 

Disturbance factor, D 

30000 

16 

15 

800 

0.7 

Methods Shear Strength Parameters  
Discrepancy  

Percentage (DP)% 

 c (kPa) φ° τ (kPa)  c (kPa) φ° τ (kPa) 

Priest Numerical 151.43 21.86 472.37     

Bray analytical 212.65 26.71 615.15  40.43 22.18 30.23 

Proposed approximate 

analytical 
173.14 20.96 479.54  14.34 -4.12 1.52 

Data in Table 4 show that the proposed approximate analytical method gives slightly different 

results from the Priest numerical method. The discrepancy percentages (Dp) for c, φ and τ 

are14.34%, -4.12% and 1.52%, respectively. Compared with the Priest method, the Bray method 

gives relatively high discrepancy, Dp for c, φ and τ are 40.43%, 22.18% and 30.23%, 

respectively.  The results of the comparisons of the equivalent c, φ and τ over a range of GSI 

(0<GSI<40) are given in Figs. 6 to 8. The results illustrate that the proposed approximate 

analytical method yields slightly different results from the Priest method. The AAREP of φ, c 

and τ are found to be 2.9%,10.8%, and 1.1% respectively. Compared with the Bray methods 

(AAREP of φ, c and τ are 23.8%, 45.4% and 32.3%, respectively) the proposed approximate 

solution generates much better results. 
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Fig. 6 Comparison of angle of friction φ  results 
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Fig. 7 Comparison of cohesion c results 
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Fig. 8 Comparison of shear stress τ results 

5 Conclusions  

In this paper, an approximate analytical solution has been proposed for estimating the equivalent 

Mohr-Coulomb (MC) shear strength parameters from the non-linear Generalized Hoek-Brown 

failure criterion (GHB) for highly fractured rock mass slope stability analysis.  

The proposed approximate analytical solution is based on Eq. 18 to build up an approximate 

analytical function for the intermediate parameter σ3/σci expressed by input parameters mb, a and 

σn /σci. After finding an explicit solution for σ3/σci, the value of the angle of frictionφ , cohesion c 

and shear stress τ can be directly calculated from Eqs. 17 , 11 and 10, respectively. 

The reliability of the proposed approximate analytical solution has been tested against the 

Priest numerical solution using 1,000 random sets of data. The results show that there is close 
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agreement in the values of shear stress τ between the proposed approximate analytical solution 

and the Priest solution as shown in Fig. 4. In addition, an example of data from the paper by 

Priest (2005) has been adopted for a final check on the adequacy of the proposed approximate 

analytical solution. The results show that the proposed approximate analytical solution yields 

slightly different shear stress τ from the Priest method when 0<GSI <40, the AAREP of shear 

stress τ from the proposed approximate analytical solution is only 1.1% (see Fig. 8). This trivial 

difference is, of course, unimportant in a practical sense. Thus, the proposed approximate 

analytical solution provides great flexibility for the application of the GHB criterion in 

conjunction with the limit equilibrium method (LEM) for highly fractured rock mass slope 

stability analysis. 
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Chapter 3 

Direct Expressions for Linearization of Shear Strength 

Envelopes Given by the Generalized Hoek-Brown Criterion 

Using Genetic Programming 

Abstract 

The non-linear Generalized Hoek-Brown (GHB) criterion is one of the most broadly adopted 

failure criteria used to estimate the strength of a rock mass. However, when limit equilibrium and 

shear strength reduction methods are used to analyze rock slope stability, the strength of the rock 

mass is generally expressed by the linear Mohr-Coulomb (MC) criterion. If the GHB criterion is 

used in conjunction with existing methods for analyzing the rock slope, methods are required to 

determine the equivalent MC shear strength from the GHB criterion. Deriving precise analytical 

solutions for the equivalent MC shear strength from the GHB criterion has not proven to be 

straightforward due to the complexities associated with mathematical derivation. In this paper, an 

approximate analytical solution for estimating the rock mass shear strength from the GHB 

criterion is proposed. The proposed approach is based on a symbolic regression (SR) analysis 

performed by genetic programming (GP).The reliability of the proposed GP solution is tested 

against numerical solutions. The results show that shear stress estimated from the proposed 

solution exhibits only 0.97 % average discrepancy from numerical solutions using 2451 random 

sets of data. The proposed solution offers great flexibility for the application of the GHB 

criterion with existing methods based on the MC criterion for rock slope stability analysis.   
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1 Introduction 

The stability of rock slopes is significant for various rock engineering projects, such as open pit 

mining and dam construction. One of the most popular methods for analyzing slope stability is 

the limit equilibrium method (LEM) where rock mass strength is generally expressed in terms of 

the linear Mohr-Coulomb (MC) criterion.  

The principles of LEM can be applied to determine the factor of safety (FOS) of a given slope 

by the method of slices as shown in Fig. 1a. The FOS can be defined as a function of resisting 

force fR divided by driving force fD. The forces of fR and fD can also be expressed in terms of 

shear stress τi and normal stress σn
i acting on the base of an arbitrary element i as shown in Fig. 

1b [1].  

 

 (a)      (b)    

Fig. 1(a) The basic of method of slices, (b) Forces acting on a given slice 

Fig. 2 illustrates the MC failure envelope. The slope of the tangent to the MC envelope gives 

angle of frictionφ and the intercept with the shear stress axis gives cohesion c. The MC criterion 
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is linear, therefore the values of shear strength parameters c and φ are unchanged under various 

normal stress σn values. Traditional LEM only need unique values of c and φ to calculate FOS of 

a given slope. That means, arbitrary slice (as shown in Fig. 1b) with various normal stress σn has 

the same c and φ values. 

  

Fig. 2 The MC criterion showing shear strength defined by angle of friction φ and cohesion c  

The Hoek-Brown (HB) criterion was originally proposed by Hoek and Brown [2]. Over the 

past 30 years the HB criterion has been widely adopted in rock engineering to estimate the 

strength of rock masses. If the HB criterion is used with LEM for assessing rock slope stability, 

it becomes necessary to determine the equivalent MC shear strength for a failure surface under a 

specified normal stress σn in a rock mass governed by the HB criterion. That means, slices (as 

shown in Fig. 1b) with different values of normal stresses σn have various c and φ values. 
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As Brown noted [3], deriving accurate analytical solutions for estimating the equivalent MC 

parameters at a given normal stress from the Generalized Hoek-Brown (GHB) criterion [4] has 

proven to be a challenging task.  

In this research, an approximate analytical solution for estimating the rock mass shear 

strength from the GHB criterion [4] is proposed. The proposed approach is based on a symbolic 

regression (SR) analysis performed by genetic programming (GP).  

Genetic programming [5] is a promising approach which attempts to find an explicit solution 

to explain the relations between the variables. GP is well suited to geotechnical problems and it 

is increasingly used by researchers in geotechnical engineering [6-9]. However, there is no 

evidence in the literature that GP based approaches are used to estimate the rock mass shear 

strength from the HB criterion.  

In this paper, review of existing methods for the determination MC shear strength from the 

HB criterion is described in section 2. The GP approach is introduced in section 3. The GP 

modeling for the GHB criterion is described in section 4. Validation of the GP results is given in 

section 5. 

2 Equivalent shear strength of the HB criterion 

2.1  Introduction of the HB criterion 

The non-linear Hoek-Brown (HB) criterion was initially proposed by Hoek and Brown [2] in 

1980. The latest version is the Generalized Hoek-Brown (GHB) criterion presented by Hoek et al. 

[4] in 2002. The equations are expressed as follows: 
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mb , s and a are the Hoek-Brown input parameters that depend on the degree of fracturing of the 

rock mass [1-4] and can be estimated from the Geological Strength Index (GSI), given by : 
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where, σ1 is the maximum principal stresses, σ3 is the minimum principal stresses, σci is the 

uniaxial compressive strength of the intact rock, mi is the Hoek-Brown constant for intact 

rock, D is the disturbance factor of the rock mass. 

The GHB criterion Eq. 1 is expressed by the relationship between maximum and minimum 

principal stresses. However, it can also be expressed in terms of normal stress σn and shear stress 

τ on the failure plane by using Eqs. 5 and 6 which were proposed by Balmer [10]. 
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Taking the derivative of σ1with the respect of σ3 of Eq. 1 to get Eq. 7  
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Substituting Eq. 7 into Eqs. 5 and 6 respectively, the GHB criterion can be expressed by the 

following equations 
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Fig. 3 shows a graphical representation of the GHB criterion expressed by (a) maximum and 

minimum principal stresses (b) normal and shear stresses. 

 

(a)      (b)  

Fig. 3 (a) Maximum and minimum principal stresses for the GHB criterion, (b) Normal and shear 

stresses for the GHB criterion [27] 

The instantaneous MC shear strength parameters can be estimated by locating the tangent of 

the GHB envelope under a given value of normal stress σn, as shown in Fig. 3b. The slope of the 

tangent to the GHB failure envelope gives instantaneous angle of friction φ and the intercept with 

the shear stress axis gives instantaneous cohesion c.  

2.2 Methods for estimating shear strength from the HB criterion 

The numerical method of determining instantaneous shear strength parameters from the original 

HB criterion [2] for slope stability analysis was initially proposed by Priest and Brown [11]. 
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After that, a great number of attempts were made to estimate the MC shear strength from the 

original HB and GHB criteria [1-4, 12-27]. Comprehensive review of the literature and 

derivation of analytical and numerical solutions for estimating the MC shear strength from the 

HB criterion can be found in the paper by Carranza-Torres [1]. In this paper, the numerical 

methods proposed by Kumar [17] Eqs. (10) to (12) and Carranza-Torres [1] Eqs. (15) and (16) 

will be briefly introduced since these two methods will be used to propose the new approximate 

analytical solution in the following section. 

One of the general numerical methods for the determination of the MC shear strength from 

the HB criterion was proposed by Kumar [17]. Equations are expressed as follows:  
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tannc τ σ φ= −  (12) 

Rewriting Eqs. (8) and (10) the angle of friction φ can also be expressed by the following 

equations [27].  
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In Eqs. (10) to (14), mb , s, a , σci and σn are the input parameters. Deriving a precise closed 

form solution of shear stress τ expressed by mb , s, a , σci and σn is not feasible mathematically. In 

order to calculate τ value, firstly Eq. 14 is solved iteratively to calculate the intermediate 

parameter σ3/σci value. Having obtained σ3/σci, the angle of frictionφ  can be calculated from Eq. 

13, and finally shear stress τ can be directly calculated from Eq. 11 [27].   

Carranza-Torres [1] proposed a generic form of Balmer’s equations [10] to calculate the rock 

mass shear strength from the GHB criterion. The equations are expressed as follows:  
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In order to calculate τ, for the given values of the input parameters mb, s, a ,σci and σn,  Eq. 15 

is solved iteratively to calculate the σ3 value. Having obtained σ3, Eq. 16 can be used to calculate 

shear stress τ, which were implemented with the software ‘Slide’[28] and ‘RocLab’[29]. In this 

research, the numerical method suggested by Carranza-Torres [1] will be used for testing the 

reliability of the proposed approximate analytical solution in the section 5.   

As Brown [3] noted, due to the complexity of the mathematical derivation, an explicit closed 

form solution providing the MC shear strength from the GHB criterion is a challenging task.  

A widely used analytical solution in rock slope engineering was presented by Hoek et al. [4]. 

This solution gives a convenient way for calculating the average MC parameters from the GHB 

criterion. However, it does not provide a direct method for estimating instantaneous MC shear 
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strength parameters [22]. Until now, in the general case of a≠0.5 no accurate analytical solution 

is available to calculate instantaneous MC shear strength of rock masses from the GHB criterion. 

In the special case when a=0.5 and GSI=100 the analytical solution derived by Bray and reported 

by Hoek [12] yield the accurate MC shear strength, however, this analytical solution cannot 

generate satisfactory shear strength of rock masses with low GSI values [27]. An alternative 

approximate analytical solution was proposed by Shen et al. [27], which produces quite 

satisfactory shear strength of highly fractured rock masses where GSI<40.  

In this paper, an approximate analytical solution which provides the shear strength of rock 

masses fairly good for the whole range GSI values was proposed as an extension to the work by 

Shen et al. [27]. The proposed approach is based on a symbolic regression (SR) analysis 

performed by genetic programming (GP).  

3 Overview of genetic programming  

In this section, genetic programming (GP) will briefly be introduced; further information about 

GP can be found from Koza [5]. 

3.1 Basic concepts of GP  

GP was originally proposed by Koza [5]. GP is an extension of genetic algorithm (GA) [30]. GP 

is a method for finding a solution to complex problems via evolutionary algorithms and is 

usually expressed as a tree structure that consists of terminals and functions. Fig.4 is a typical 

tree structure of the function of x*y-sin (z), which contains terminals (x, y, z), and functions (-, * 

and sin). 
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Fig. 4 A typical tree structure of the function of x*y-sin (z) 

3.2 How GP works 

The general flow chart of a GP paradigm is given in Fig. 5.  

 

Fig. 5 A basic flow chart for GP 
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As with GA, in GP the individuals in the initial population are randomly generated. Various 

methods are available to generate the initial population, such as the full method, grow method 

and ramped half-and-half method [31]. Then, the fitness of each individual is calculated. The 

fitness function used in this study is the sum of the absolute difference of the accurate numerical 

data with predicted GP results (see Eq. 17). Lower fitness value indicates that the individual has 

the better structure. 

'

1

N

i i
i

fitness y y
=

= −∑
 

(17) 

where N is the number of individuals, yi and y’ i are the accurate numerical and GP predicted 

values, respectively. Using fitness value as a guide, a number of individuals are chosen randomly 

from the population using appropriate selection methods (such as tournament and roulette wheel 

selections) [5, 9]. The “best” parents have more opportunity to create “better” offspring. After 

that, genetic operators (such as crossover and mutation) in GP are adopted to generate the next 

generation. The most commonly used form of crossover operation is tree crossover [6]. Random 

crossover nodes are chosen in each parent tree. Then it creates the offspring by swapping the 

respective subtree at the crossover node, as illustrated in Fig.6. 
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Fig. 6 Crossover operation in genetic programming 

One of the usually adopted mutation operators is point mutation. A random node is selected 

from the parent tree and is substituted with a newly generated random node having a terminal or 

a function. Fig.7 illustrates a typical mutation operation in GP.  

 

 Fig. 7 Mutation operation in genetic programming 

 

-
x

*
x

y
x

x
x

x
sin

z
x

-
x

*
x

y
x

y
x

exp

z
x

-
x

*
x

y
x

x
x

x
sin

z
x

-
x

*
x

y
x

y
x

exp

z
x

Parent 1: sinxy z− 2Parent 2: zy e−

Offspring 1: zxy e− 2Offspring 2: siny z−

-
x

*
x

y
x

x
x

x
sin

z
x

+
x

*
x

y
x

x
x

x
sin

z
x

Before mutation: sinxy z− After mutation: sinxy z+



 
 

63 
 

The choice of crossover and mutation operation is probabilistic. Often the crossover rate is 

more than 90 percent. However, mutation plays a minor role in GP and, therefore, the mutation 

rate is quite low, typically being in the region of one percent. It can even be disregarded in most 

cases [5]. The GP will run until the termination criterion is satisfied, such as maximum 

generation. Ultimately, the best individual with the lowest fitness will be found. Related GP 

parameters for the training models in this research are summarized in Table 1. 

Table 1 Parameters used in GP analysis 

Parameters Values 

Terminals x1, x2, x3 and x4 

Functions +,-,*, /, power, log, exp, sqrt 

Fitness function type Sum of absolute difference (SAD) 

Selection method Tournament 

Population size 200 

Maximum tree depth 17 

Maximum generation 200 

Recombination probability  Dynamic 

Mutation probability  Dynamic 

4 GP modelling for the GHB criterion 

GP is composed of functions and terminals appropriate to the characteristics of the problem. If 

the functions and terminals selected are not appropriate for the problem, the desired solution 

cannot be achieved [9].Therefore, in order to overcome the limitation of GP and achieve 



 
 

64 
 

satisfactory results, it is crucial to have a deep understanding of the problem to choose the 

appropriate GP model. 

In this research, there are two GP models available for finding a function for τ expressed by 

input parameters mb, s, a and σn/σci. The first model is based on Eq. 14, which builds up a 

function for intermediate parameter σ3/σci expressed by mb, s, a and σn/σci, Having derived the 

approximate analytical solution of σ3/σci, then the angle of frictionφ  can be calculated from Eq. 

13, and finally using Eq. 11 the closed form solution for calculating shear stress τ can be 

achieved. The second model is based on Eq. 10, which directly builds up a function for φ in 

terms of input parameters mb, s, a and σn/σci. Having obtained φ, then τ can be calculated from Eq. 

11. Both GP models were tested in this research. After 100 computer runs with the same 

calculation parameters, it was found that the first model yields better results than the second 

model.  

The first model tries to find an analytical solution for intermediate parameter σ3/σci. The main 

structure of Eq. 13 for calculating φ was preserved, which ensures that the results are as accurate 

as possible. However, the second model ignores the original relationship between φ and the input 

parameters in Eq. 10. Therefore, Eq. 10 yields relatively worse results when compared with the 

first model.  

GPLAB, a Matlab GP software package developed by Silva [31], was adopted to work out a 

relatively precise analytical solution for the GP model based on Eq. 14. Terminals used to drive a 

function for σ3/σci consist of x1, x2, x3 and x4 which correspond to mb, s, a and σn/σci respectively. 

The process of generating data for GP analysis is as follows: 

1.  Selection of input parameters 
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The values of input parameters GSI, mi, D and σ3/σci for generating the training data are 

shown in Table 2. The selection σ3/σci is based on Hoek and Brown’s [16] suggestion that the 

values of σ3/σci should be in the range of 0< σ3/σci<0.25 in rock mass slopes. The selection of 

GSI, mi and D is based on ‘Roclab’ [29]. 

Table 2 Range of input parameters 

Input parameters Minimum Maximum 

GSI 1 100 

mi 1 35 

D 0 1 

σ3/σci 0 0.25 

2. Calculation of the Hoek-Brown parameters  

For the given values of the GSI, mi and D, the parameters mb, s and a can be estimated by 

using Eqs. (2) to (4), respectively. 

3.  Calculation of σn/σci and shear stress τ 

For the given values of the mb, s, a and σ3/σci, the values of σn/σci can be estimated from Eq. 14.  

The instantaneous φ can be calculated from Eq. (13), and shear stress can be calculated from 

Eq. 11. 

The strategy outlined above was coded into ‘Matlab’. The program generated 500 random 

sets of data for the GP training operation. Table 3 indicates 500 random sets of data employed 

for the GP training analysis. Also, 2451 sets of testing data were generated based on Eqs. 15 and 

16 for testing the performance of the proposed approximate analytical solution. 
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Table 3 Data of HB criterion for GP analysis 

 Input parameters Calculated HB parameters Output parameters 

No σ3/σci GSI mi D 
mb 

Eq. 2 

s 

Eq. 3 

a 

Eq. 4 

σn/σci 

Eq. 14 

φ 

Eq. 13 

τ/σci 

Eq. 11 

1 0.034 12 27 0.4 0.469 1.01E-05 0.575 0.060 26.0 0.042 

2 0.053 65 25 1.0 2.241 3.25E-03 0.502 0.120 38.0 0.137 

- - - - - - - - - - - 

500 0.053 33 16 0.0 1.388 5.26E-04 0.518 0.110 33.9 0.107 

In this research, the GP solutions were compared with numerical results [1]. According to Eq. 

18, the smaller the absolute average relative error percentage (AAREP) is, the better the function. 

The best function with a tree structure was converted into a corresponding mathematical formula.  
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(18) 

where N is the number of training sets, xi and x’ i are the results from numerical and GP solutions, 

respectively. 

5 Validation of the GP results 

200 alternative expressions were generated by GP. Given lower AAREP value and the simplicity 

of the function generated, Eq. 19 was selected as the winning function.  
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Substituting Eq. 19 in to Eq. 13, the angle of friction φ can be calculated as follows:  
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Finally, with the help of Eq. 11 the shear stress τ can be expressed as follows: 
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where P is the intermediate parameter. The proposed Eq. 22 differs from the original GHB 

criterion which is expressed by the major and minor principal stresses. Eq. 22 is an alternative 

form of the GHB criterion expressed in terms of normal and shear stresses. So that it can be 

directly used for estimating the instantaneous shear stress of each slice under a specified normal 

stress in the limit equilibrium method for the rock slope stability analysis.  

Carranza-Torres [1] numerical method was used for generating 2451 random sets of testing 

data to verify the reliability of the proposed approximate analytical solution. The performance of 

Eq. 22 is shown in Fig. 8. The solid line in the figures represents a perfect estimation. Data 

located under the solid line represents over estimation, and located above the solid line 

represents under estimation. The results show that there is close agreement between the proposed 

approximate analytical solution and the numerical solution. The AAREP of shear stress τ is only 

0.97%. The maximum discrepancy of τ is 7.97% as shown in Fig. 8. The discrepancy of 84.21% 

sets of data is less than 2% as shown in Fig. 9. The comparison results show that the proposed 

approximate analytical solution gives very good shear stresses results.  
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Fig. 8 Numerical versus GP value of τ/σci 
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Fig. 9 Discrepancy analysis of the proposed analytical solution  

Fig. 10 shows the alternative expression which has the lowest AAREP. The value of 

AAREP=0.72% is slightly lower than Eq. 19 with AAREP=0.97% and the maximum 

discrepancy is 7.19% which is quite close to Eq. 19 with 7.97%, however, the structure of the 

expression is much more complex than Eq. 19. Therefore, finally, Eq. 19 was selected as the 

winning function. 
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Fig. 10 Discrepancy analysis of the analytical solution which has the lowest value of AAREP  

The data from Priest [22] was used to verify the reliability of the proposed Eq. 22. The 

following material parameters were used to generate data set σci =30000kPa, mi=16, GSI=15, 

σn=800kPa, D=0.7. The Hoek-Brown parameters mb, s and a were calculated using Eqs. 2 to 4 

respectively. The value of shear stress τ calculated from Eq. 22 is 476.09 kPa. It is slightly 

different from the Priest numerical results with τ is 472.38 kPa. The discrepancy was found to be 

only 0.78%. Table 4 illustrates shear stresses τ from the proposed approximate analytical and 

numerical solutions over a range of σn. The resulting shear and normal stresses were plotted in 

Fig.11. In all cases, there was found to be a close agreement between the proximate analytical 

and numerical solutions with AAREP=1.0%. 
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Table 4 Shear stresses obtained from numerical and GP analytical solutions over a range of 

normal stresses 

Uniaxial compressive strength, σci (kPa) 30000 
Hoek-Brown constant for intact rock, mi 16 
Geoligical strength Index, GSI 15 
Normal stress, σn (kPa)  30-20430 
Disturbance factor, D 0.7 
σn /σci σn (kPa) Shear stress, τ  (kPa) Discrepancy 

(%)    GP analytical Numerical 
1.00E-03 30 48.92 45.62 7.23 
2.10E-02 630 405.79 401.31 1.12 
4.10E-02 1230 633.07 631.19 0.30 
6.10E-02 1830 821.15 821.36 -0.03 
8.10E-02 2430 986.97 988.71 -0.18 
1.01E-01 3030 1137.80 1140.60 -0.25 
1.21E-01 3630 1277.50 1280.90 -0.27 
1.41E-01 4230 1408.70 1412.30 -0.25 
1.61E-01 4830 1532.90 1536.40 -0.23 
1.81E-01 5430 1651.20 1654.40 -0.19 
2.01E-01 6030 1764.70 1767.30 -0.15 
2.21E-01 6630 1873.90 1875.60 -0.09 
2.41E-01 7230 1979.50 1980.00 -0.03 
2.61E-01 7830 2081.70 2080.90 0.04 
2.81E-01 8430 2181.10 2178.70 0.11 
3.01E-01 9030 2277.80 2273.60 0.18 
3.21E-01 9630 2372.20 2366.00 0.26 
3.41E-01 10230 2464.50 2456.00 0.35 
3.61E-01 10830 2554.90 2543.80 0.44 
3.81E-01 11430 2643.40 2629.70 0.52 
4.01E-01 12030 2730.40 2713.70 0.62 
4.21E-01 12630 2815.90 2795.90 0.72 
4.41E-01 13230 2900.10 2876.60 0.82 
4.61E-01 13830 2983.10 2955.70 0.93 
4.81E-01 14430 3064.90 3033.40 1.04 
5.01E-01 15030 3145.80 3109.80 1.16 
5.21E-01 15630 3225.80 3184.80 1.29 
5.41E-01 16230 3305.00 3258.70 1.42 
5.61E-01 16830 3383.60 3331.50 1.56 
5.81E-01 17430 3461.70 3403.20 1.72 
6.01E-01 18030 3539.50 3473.80 1.89 
6.21E-01 18630 3617.00 3543.40 2.08 
6.41E-01 19230 3694.60 3612.20 2.28 
6.61E-01 19830 3772.60 3680.00 2.52 
6.81E-01 20430 3851.40 3746.90 2.79 
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Fig. 11 Hoek-Brown shear strength envelope in shear stress/normal stress space 

Fig. 12 illustrates the comparison of shear stress τ from the proposed analytical solution and 

Shen et al. solution [27] with that from numerical solution [1] for rock mass: σci =25000kPa, 

σn=5000kPa, mi=15, D=0 and the range of GSI from 0 to 100. The results show that there is a 

close agreement between the proposed analytical solution and the numerical solution for the 

whole range of GSI values. The AAREP of τ is found to be 0.63%. Compared with Shen et al. 

solution with AAREP=3.99%, the proposed solution produce better results. 
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Fig. 12 Comparison of shear stress τ results 

6 Conclusions  

Existing numerical methods in conjunction with symbolic regression (SR) analysis preformed by 

genetic programming (GP) have been used to derive analytical solutions for estimating the 

Mohr-Coulomb (MC) shear strength of rock masses from the non-linear Generalized Hoek-

Brown (GHB) criterion.  

The reported research used Eq. 14 to build a GP model as the basis for calculating the 

intermediate parameter σ3/ σci expressed by input parameters mb, s, a and σn /σci. After obtaining   

analytical solution Eq. 19 for σ3/ σci, closed form solution Eq. 22 has been derived for estimating 

shear stress τ.   
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The performance of the proposed approximate analytical solution has been tested against 

Carranza-Torres numerical solution using 2451 random sets of data. The results show that there 

is a close agreement between the proposed approximate analytical and numerical solutions. 

Shear stress τ calculated from the proposed approximate analytical solution exhibits only 0.97 % 

average absolute discrepancy from numerical solutions as shown Fig. 8, and the discrepancy of 

84.21% sets of data range is less than 2% as shown in Fig. 9. In a practical sense, this small 

difference is acceptable.  

The proposed approximate analytical solutions is an alternative form of the GHB criterion, 

which can be implemented into both limit equilibrium method and shear strength reduction 

methods for analyzing rock mass slopes.  
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Chapter 4 

A Comparative Study for Empirical Equations in Estimating 

Deformation Modulus of Rock Masses 

Abstract 

The deformation modulus of rock masses (Em) is one of the significant parameters required to 

build numerical models for many rock engineering projects, such as open pit mining and tunnel 

excavations. In the past decades, a great number of empirical equations were proposed for the 

prediction of the rock mass deformation modulus. Existing empirical equations were in general 

proposed using statistical technique and the reliability of the prediction relies on the quantity and 

quality of the data used. In this paper, existing empirical equations using both the Rock Mass 

Rating (RMR) and the Geological Strength Index (GSI) are compared and their prediction 

performances are assessed using published high quality in-situ data. Simplified empirical 

equations are proposed by adopting Gaussian function to fit the in-situ data. The proposed 

equations take the RMR and the deformation modulus of intact rock (Ei) as input parameters. It 

has been demonstrated that the proposed equations fit well to the in-situ data compared with the 

existing equations. 

1 Introduction 

The deformation modulus (Em) is the most representative parameter of the mechanical behavior 

of rock masses. It is widely used in numerical modeling, such as finite element modeling, of rock 
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engineering projects where the analysis of displacement and stress distribution are required to 

characterize the rock mass behavior. 

Commonly used approaches to estimate Em includes: laboratory tests, in-situ loading tests and 

prediction by empirical equations. However, laboratory tests on limited size rock samples 

containing discontinuities cannot measure reliably values of Em due to the limitation of size of 

the testing equipment (Palmström 1996). In-situ tests can provide direct information on the 

deformability of rock masses, however, as Bieniawski (1973) noted, it is difficult to rely on one 

in-situ test alone as different results may be obtained even in a fairly uniform and good quality 

rock mass condition. Therefore, in order to obtain reliable results multi-tests are necessary which 

are expensive and time consuming.  

Due mainly to the above mentioned difficulties encountered in laboratory and in-situ testing, 

the estimation of Em values using empirical equations becomes a very attractive and commonly 

accepted approach among rock engineers.  

In the past decades, a great number of empirical equations were proposed for the estimation of 

the isotropic rock mass deformation modulus using various rock mass classification systems, 

such as the Rock Mass Rating (RMR), the Geological Strength Index (GSI) (see Table 1), the 

Tunneling Quality Index (Q) (Barton 1987, 1996, 2002) and the Rock Mass Index (RMi) 

(Palmström 1996, Palmström and Singh 2001). Other authors proposed equations on the basis of 

parameters which define the quality of the rock masses, such as the Rock Mass Quality 

Designation (RQD) (Zhang and Einstein 2004) and the Weathering Degree (WD) (Gokceoglu et 

al. 2003, Kayabasi et al. 2003).  

Existing empirical equations were in general derived using statistical methods, such as the 

regression analysis, and the reliability of estimation of these equations depends on the quantity 
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and quality of data used in the statistical analysis. As a consequence, large discrepancies in the 

predicted values using different empirical relations can be experienced which reduce the 

confidence in the predicted values. For example, for a rock mass with the following properties: 

GSI=70, the disturbance factor, D=0 and the intact rock deformation modulus, Ei=50GPa, the 

values of Em calculated from the empirical equations proposed by Carvalho (2004), Sonmez et al. 

(2004) and Hoek and Diederichs (2006) (see Group 4 in Table 1) are 21.7 GPa, 25.6 GPa and 

36.6 GPa, respectively. Clearly the reliability of the prediction of these empirical equations needs 

to be assessed.  

In this research, existing empirical equations using the RMR and the GSI classification 

systems are evaluated. The prediction performance of these equations is tested by using high 

quality well publicized in-situ data from Bieniawski (1978), Serafim and Pereira (1983) and 

Stephens and Banks (1989). These data are from high quality tests and are commonly 

acknowledged as reliable data sources (Hoek and Diederichs 2006). New simplified empirical 

equations are proposed by adopting Gaussian function to fit these in-situ data. The proposed 

equations take the RMR classification system and the deformation modulus of intact rock (Ei) as 

input parameters. It has been demonstrated that the proposed equations fit well to the mentioned 

in-situ data compared with the existing equations. 

In this paper, the strategy of evaluation of existing equations for predicting Em is described in 

section 2. The performance of existing equations using the RMR and GSI classification systems 

is assessed in section 3. The proposed simplified empirical relationships between Em and the 

RMR system are described in section 4.  
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2 The strategy of evaluation of existing empirical equations 

2.1 Category 

In this research, we focus only on the empirical equations which contain the RMR and GSI as 

input parameters. According to different input parameters, the existing empirical equations using 

the RMR and GSI classification systems can be divided into five groups (see Table 1). 
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Table 1 Empirical equations using RMR and GSI for predicting Em 

Input Parameters 
 

Empirical  Equations 
 

Group 1 
RMR 

Bieniawski (1978) 2 100, 50mE RMR RMR= − >  

Serafim and Pereira (1983) ( )10 4010RMR
mE −=  

Mehrotra (1992) ( )20 3810RMR
mE −=  

Read et al. (1999) ( )3
0.1 10mE RMR=  

Group 2 
RMR and Ei 

Nicholson and Bieniawski (1990) 2 22.830.01 0.0028 0.9
RMR

m iE E RMR e
 

= + 
   

Mitri et al. (1994) ( )( )( )0.5 1 cos /100m iE E RMRπ = −   

Sonmez et al. (2006) ( )( )( ) ( )( )100 100 4000exp 10010 RMR RMR RMR

m iE E − − −=  

Group 3 
GSI and D 

Hoek et al. (2002) ( )
10

401 0.5 10 , 100
GSI

m ciE D MPaσ
− 

 
 = − >

 

Hoek and Diederichs (2006) ( ) ( )( )
5

75 25 11

1 0.5
10

1
m D GSI

D
E MPa

e + −

− =  +   

Group 4 
GSI, D and Ei 

Carvalho (2004) ( )0.25 100
, exp

9 3m i

GSI
E E s s

D

− = =  −   

Sonmez et al. (2004) 
( )

( )

0.4

/15 20/3

100
, exp

9 3

1
0.5

6

a
m i

GSI

GSI
E E s s

D

a e e− −

− = =  − 

= + −
 

Hoek and Diederichs (2006) ( )( )60 15 11

1 0.5
0.02

1
m i D GSI

D
E E

e + −

− = + +   

Group 5 
GSI, D  and σci 

Hoek and Brown (1997) 
10

40 10
100

GSI

ci
mE

σ − 
 
 =

 

Hoek et al. (2002) ( )
10

401 0.5 10 , 100
100

GSI

ci
m ciE D MPa

σ σ
− 

 
 = − ≤

 

Beiki et al. (2010) ( )( )2
3=tan 1.56+ lnm ciE GSI σ 

 
   
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2.2 Testing Data  

In-situ data from Bieniawski (1978), Serafim and Pereira (1983) and Stephens and Banks (1989) 

are from high quality tests and are commonly acknowledged as reliable data sources (Hoek and 

Diederichs 2006). These data also were widely used by many researchers (Barton 1996; 

Palmström and Singh 2001; Sonmez et al. 2006; Hoek and Diederichs 2006) to assess the 

reliability of their proposed equations. Therefore, in this research, 43 of the 76 sets of these data 

were used for assessing the prediction performance of equations in Groups 1, 3 and 5. The other 

33 sets of data which contain Ei as input parameter were used to test the prediction performance 

of equations in Groups 2 and 4. 

These in-situ data, however, are quantified on the basis of the RMR classification system. In 

order to use these data to evaluate the reliability of the empirical equations using the GSI system, 

the relationship between RMR and GSI will have to be used to transform RMR to GSI. Hoek and 

Diederichs (2006) suggested GSI equal to RMR if the RMR data were obtained before 1990. 

Therefore, for the in-situ data which were collected before1989, the relationship of RMR = GSI 

is used in this research. 

2.3 Indicators to assess the prediction performance of empirical equations  

The value of Root Mean Square Errors (RMSE) (Eq. 1) and R-square (R2) (Eq. 2) are adopted in 

this research as indicators to assess the reliability of prediction by empirical equations:  

( )2'

1

1 N
i i
m m

i

RMSE E E
N =

= −∑
 

(1) 

( )2'

2 1
2

1

1

N
i i
m m

i

N
i
m m

i

E E
R

E E

=

−

=

−
= −

 − 
 

∑

∑
 

(2) 
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where N is the number of testing data used, Ei
m and Ei’

m are deformation modulus of rock masses 

obtained from the observed in-situ data and derived from the empirical equations respectively. 

��
���� is the mean value of Em.  

RMSE as defined is effectively the standard deviation of the errors associated with the 

estimation if it is unbiased. Clearly, the smaller the RMSE, the more reliable the estimation. The 

value of R2 generally ranges from 0 to 1. For exact prediction, i.e., estimation with no error, the 

value of R2 will be one. On the other hand, R2 trends to zero for poor estimations. It should be 

noted that R2 can be negative if the quality of the estimation is extremely poor. 

3 The evaluation of existing empirical equations 

3.1 Relations between Em and RMR  

Various attempts have been made to develop empirical equations taking the RMR as the input 

parameter to estimate Em. These equations can be divided into two groups according to input 

variables as shown in Table 1. 

3.1.1 Group 1 Input parameter: RMR   

The first empirical equation for predicting the rock mass deformation modulus using the RMR 

system was proposed by Bieniawski (1978), which was followed by other equations proposed by 

various researchers. The prediction performance of these equations is illustrated in Fig. 1.   
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Fig. 1 Empirical equations in Group 1 for estimating Em compared with in-situ data 

Based on the assessment of R2 and RMSE, the curve that best fits the in-situ data is the one 

proposed by Serafim and Pereira (1983) with the values of R2 and RMSE equal to 0.915 and 

5.317 respectively. The same equation, however, gives poor prediction for massive rock masses 

when RMR is approaching 100 where the predicted Em value is unrealistically high. The third 

power function proposed by Read et al. (1999) (R2=0.901, RMSE=5.749) overcomes the 

limitation of Serafim and Pereira’s equation as it can give reasonable estimation of the value of 

Em for massive rock masses. The equation proposed by Mehrotra (1992) generally produces Em 

values lower than in-situ data when RMR>60. 
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Bieniawski (1978)
R2=0.869 RMSE=6.517
Serafim and Pereira (1983)
R2=0.915 RMSE=5.317
Mehrotra (1992)
R2=0.685 RMSE=10.268
Read et al. (1999)
R2=0.901 RMSE=5.749
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3.1.2 Group 2 Input parameter: RMR and Ei  

One major limitation of the equations listed in Group 1 is that the deformation modulus of intact 

rock (Ei) is not considered. As pointed out by Sonmez et al. (2006), for high quality rock masses 

composed of softer intact rock, the value of deformation modulus of rock masses is mostly 

controlled by the properties of intact rock rather than by those of the discontinuities. To account 

for this situation, Nicholson and Bieniawski (1990), Mitri et al. (1994) and Sonmez et al. (2006) 

introduced Ei into their empirical equations for the estimation of Em.  Fig. 2 gives the prediction 

performance of these equations (Group 2). 

 

Fig. 2 Empirical equations in Group 2 for estimating Em / Ei compared with in-situ data 

The values of R2 and RMSE in Fig. 2 demonstrate that the Sonmez et al.’s equation (2006) 

(R2=0.925, RMSE=0.052) gives the best estimation within the group.  The equation presented by 
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Nicholson and Bieniawski (1990)
R2=0.880 RMSE=0.066
Mitri et al. (1994)
R2=-3.287 RMSE=0.396
Sonmez et al. (2006)
R2=0.925 RMSE=0.052
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Nicholson and Bieniawski (1990) has R2=0.880, RMSE=0.066, respectively. The performance of 

the Mitri et al.’s equation (1994) is the poorest as the estimated Em values are significantly higher 

than observed data values across the whole range.  

3.2 Relations between Em and GSI 

The empirical equations using the GSI classification system as the input parameter to estimate 

the rock mass deformation modulus can be divided into three groups according to the input 

variables as given in Table 1.    

3.2.1 Group 3 Input parameter: GSI and D  

In this group, the empirical equation proposed by Hoek and Brown (1997) was modified by 

Hoek et al. (2002) to take into account the effect of disturbance factor D. The limitation of the 

modified equation is that it is only applicable when the value of uniaxial compressive strength of 

the intact rock, σci is greater than 100MPa. This limitation was later overcome by Hoek and 

Diederichs (2006). The prediction performance of the equations in Group 3 is shown in Fig. 3.  
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Fig. 3 Empirical equations in Group 3 for estimating Em compared with in-situ data 

Fig. 3 indicates that the value of D has a great influence on the value of Em. The value of D, 

however, can vary in value from 0 for undisturbed in-situ rock masses to 1 for highly disturbed 

rock masses to reflect the effects of heavy blast damage as well as stress relief due to removal of 

the overburden. Hoek et al. (2002) proposed a descriptive guideline on how to choose an 

appropriate D value for a variety of different engineering practices. 

The best fit equation in this group is the one proposed by Hoek et al. (2002) when D=0 

(undisturbed conditions), which gives values of R2 and RMSE at 0.915 and 5.317, respectively. 

The same equation, however, gives too high estimate for Em when RMR is greater than 90. The 

sigmoid function proposed by Hoek and Diederichs (2006) has R2=0.908 and RMSE=5.549, 

which can yield reasonable estimate for Em even when RMR is greater than 90.  
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Hoek and Diederichs (2006)
D=0 R2=0.908 RMSE=5.549
Hoek and Diederichs (2006)
D=0.5 R2=0.168 RMSE=16.708
Hoek and Diederichs (2006)
D=1 R2=-0.841 RMSE=24.859
Hoek et al. (2002)
D=0 R2=0.915 RMSE=5.317
Hoek et al. (2002)
D=0.5 R2=0.795 RMSE=8.284
Hoek et al. (2002)
D=1 R2=0.382 RMSE=14.399
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3.2.2 Group 4 Input parameter: GSI, D and Ei  

Carvalho (2004), Sonmez et al. (2004) and Hoek and Diederichs (2006) proposed empirical 

equations taking GSI, D and Ei as input variables. The empirical equation proposed by Carvalho 

(2004) and Sonmez et al. (2004) rely on an approach which assumes the modulus ratio of the 

rock mass (Em/σcm) is equal to that of the intact rock (Ei/σci) when GSI=100. The equation by 

Hoek and Diederichs (2006) is proposed based on the in-situ data collected from areas in China 

and Taiwan. The prediction performance of these equations (Group 4) is shown in Fig. 4. 

 

Fig. 4 Empirical equations in Group 4 for estimating Em / Ei compared with in-situ data 

From Fig. 4 it is clear that Em values predicted from the equations proposed by Carvalho 

(2004) and Sonmez et al. (2004) are not dependent on the disturbance factor D when RMR=100, 

while the value of D has a great influence on Em predicted from Hoek and Diederichs’ proposed 
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Carvalho (2004)                          D=0 R2=0.548 RMSE=0.128

Sonmez et al. (2004)                  D=0 R2=-0.037 RMSE=0.195

Hoek and Diederichs (2006)     D=0 R2=-1.339 RMSE=0.292

Carvalho (2004)                          D=0.5 R2=0.813 RMSE=0.082

Sonmez et al.(2004)                   D=0.5 R2=0.484 RMSE=0.137

Hoek and Diederichs (2006)     D=0.5 R2=0.825 RMSE=0.079

Carvalho (2004)                          D=1 R2=0.853 RMSE=0.073

Sonmez et al.(2004)                   D=1 R2=0.824 RMSE=0.080

Hoek and Diederichs (2006)     D=1 R2=0.559 RMSE=0.127      
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(2006) equation. For D=0, the best fit equation is the one proposed by Carvalho (2004) 

(R2=0.548, RMSE=0.128).  

3.2.3 Group 5 Input parameter: GSI, D and σci  

The empirical equation proposed by Serafim and Pereira (1983) was modified by Hoek and 

Brown (1997) to incorporate the uniaxial compressive strength of the intact rock, σci. Hoek et al. 

(2002) updated the Hoek and Brown’s equation (1997) by considering a disturbance effect factor 

D in the rock mass for σci<100MPa. Beiki et al. (2010) adopted the genetic programming to 

determine Em. Their proposed equation, however, has some limitations that the value of Em 

becomes negative for case of GSI<20 or GSI>90. The performance of the equations in Group 5 

is shown in Fig. 5  

 

Fig. 5 Empirical equations in Group 5 for estimating Em compared with in-situ data, σci=80MPa 
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Hoek and Brown (1997)
R2=0.901 RMSE=5.772
Hoek et al. (2002)
D=0 R2=0.901 RMSE=5.772
Beiki et al.(2010)
R2=0.393 RMSE=14.270
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As seen from Fig. 5, Hoek et al.’s (2002) equation gives the same Em values as Hoek and 

Brown’s (1997) equation when D is assumed to be zero, and it gives the best fit to the data with 

R2=0.901, RMSE=5.772, respectively. The equation proposed by Beiki et al. (2010) generally 

produces values of Em lower than the measured data when GSI is greater than 55. 

4 Proposed equations and their validations 

Gaussian function (see the general form in Eq. 3) was used to fit empirical equations based on 

the in-situ data (Bieniawski 1978; Serafim and Pereira 1983; Stephens and Banks 1989).  

2
x b

cy ae
− − 

 =  
(3) 

where a, b and c are constants. 

The proposed empirical equation is based on Gaussian function and use the RMR 

classification system as input parameters. The least square fitting based on the data used in this 

research gives the following equation: 

2110

37110
RMR

mE e
− − 

 =  
(4) 

Fig. 6 demonstrates that the prediction performance of the proposed equation (R2=0.932, 

RMSE=4.772) was improved compared to Read et al.’s (1999) equation and Hoek and 

Diederichs’ (2006) equation which are considered to be the best fit equation for the RMR and 

GSI category in Groups 1 and 3, respectively. 
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Fig. 6 Plot the Eq. 4 for the in-situ data 

The comparison between the observed and estimated values calculated from the proposed Eq. 

4 is shown in Fig. 7. The solid diagonal line in the figure represents a perfect prediction. The 

upper and lower dash lines represent the 10 GPa over-estimate and under-estimate of the true 

values respectively.  Most of the predictions fall between these two lines, which suggests that the 

absolute error of Eq.4 is ±10 GPa with a high level of confidence.  
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Stephens and Banks (1989)
Read et al. (1999)
R2=0.902 RMSE=5.749
Hoek and Diederichs (2006)
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Fig. 7 Estimated Em values from Eq. 4 versus in-situ data 

To derive an equation which takes the RMR and Ei as input parameters Eq. 3 is adopted again 

to fit the data used in this research and the following best-fit equation is obtained: 

2116

411.14
RMR

m iE E e
− − 

 =  
(5) 

The comparison of the prediction performances between Eq. 5 and the existing equations is 

shown in Fig. 8. As discussed in section 2, Sonmez et al.’s (2006) equation and Carvalho’s (2004) 

equation perform the best among the existing equations for the RMR and GSI category in 

Groups 2 and 4, respectively. They are, however, over-performed by Eq. 5 which gives R2=0.936 

and RMSE=0.048. 
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Fig. 8 Plot the Eq. 5 for the in-situ data 

The comparison between the observed data and the estimated values calculated from Eq. 5 is 

given in Fig. 9, where the two dash lines represent error range of ±0.1Em/Ei . Most of the 

predictions from Eq. 5 fall between these two lines which suggests that accuracy of Eq. 5 is 

acceptable with the confidence interval of ±0.1 Em/Ei. 
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Fig. 9 Estimated Em / Ei values from Eq. 5 versus in-situ data 

As a further test of the prediction performance of Eqs. (4) and (5), their predicted values have 

been compared to measured field data reported in Hoek and Diederichs (2006). These data are 

generally regarded as the best collection of quality field data which can be used for any research. 

All of these GSI data are collected after 1989 and therefore the relationship of RMR= GSI-5 is 

used to calculate RMR from GSI needed for the equations.  

Scatter in the data in Fig. 10 represents inherent scatter in the values of GSI, rock mass 

properties Em, and the effects of disturbance factor D due to blasting as well as stress relief. 
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Fig. 10 clearly demonstrates that the range of possible values of Em is correctly predicted by 

Eq. 4, indicated by the envelope bounded by D=0 (upper bound). Fig. 11 illustrates that Eq. 5 

gives a good prediction of the field data.  

 

Fig. 10 Em values estimated from Eq. 4 compared with Hoek and Diederichs (2006) in-situ data 
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Fig. 11 Em /Ei values estimated from Eq. 5 compared with Hoek and Diederichs (2006) in-situ 

data 

5 Conclusions 

In this paper, the most widely used empirical equations for the estimation of deformation 

modulus of rock masses based on the Rock Mass Rating (RMR) and the Geological Strength 

Index (GSI) classification systems have been reviewed. These equations were grouped according 

to the required input variables and their prediction performance were assessed using well 

acknowledged published in-situ data (Bieniawski 1978; Serafim and Pereira 1983; Stephens and 

Banks1989). 
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Comparison analyses of existing equations show that in the category which does not involve 

the deformation modulus of intact rock (Ei) the equations proposed by Read et al. (1999) and 

Hoek and Diederichs (2006) give the best prediction for the RMR and GSI category respectively, 

as shown in Figs. 1 and 3. In the category where the deformation modulus of intact rock is 

considered, the equations proposed by Sonmez et al. (2006) and Carvalho (2004) performed the 

best for the RMR and GSI category respectively, as shown in Figs. 2 and 4. 

Two simplified empirical equations have been proposed in this research using Gaussian 

function. The proposed empirical equations use the RMR classification system and the 

deformation modulus of intact rock (Ei) as input parameters. In absolute terms, it can be claimed 

with high level of confidence that the values of Em predicted from Eq. 4 are accurate within ±10 

GPa, and the values of Em predicted from Eq. 5 are accurate within a ±0.1 Em/Ei. 

As for all empirical relationships, the proposed empirical equations are open to further 

improvement as more in-situ data become available. At the time of writing, however, the 

proposed equations fit well to the in-situ data compared with existing equations based on the 

analyses presented in this paper (see Figs. 6 and 8). 
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Chapter 5 

Three-Dimensional Numerical Analysis for Rock Slope 

Stability Using Non-linear Shear Strength Reduction 

Method   

Abstract 

Existing numerical modeling of three-dimensional (3D) slopes is mainly performed by the shear 

strength reduction (SSR) technique based on the linear Mohr-Coulomb (MC) criterion, whereas 

the non-linear failure criterion for rock slope stability is seldom used in slope modeling. 

However, it is known that rock mass strength is a non-linear stress function and that, therefore, 

the linear MC criterion does not agree with the rock mass failure envelope very well. In this 

current research, therefore, a non-linear SSR technique is proposed that can use the Hoek-Brown 

(HB) criterion to represent the non-linear behavior of a rock mass in FLAC3D program to analyze 

3D slope stability. Extensive case studies are carried out to investigate the influence of 

convergence criterion and boundary conditions on 3D slope modeling. Results show that the 

convergence criterion used in the 3D model plays an important role, not only in terms of the 

calculation of the factor of safety (FOS), but also in terms of the shape of the failure surface. The 

case studies also demonstrate that the value of the FOS for a given slope will be significantly 

influenced by the boundary condition when the slope angle is less than 50°.  
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1 Introduction 

Rock slope stability is one of the major challenges of rock engineering projects, such as open pit 

mining. Rock slope failure can affect mining operations and result in costly losses in terms of 

time and productivity. Therefore, the evaluation of the stability of rock slopes is a critical 

component of open pit design and operation (Naghadehi et al. 2013).  

In most of the geotechnical applications two-dimensional (2D) plain strain analysis are 

commonly used to simulate stability of earth structures (Basarir et al. 2005; Karakus et al. 2007; 

Kurakus 2007; Eid 2010; Tutluoglu et al. 2011). The majority of rock slope analyses in practical 

projects are still performed using 2D limit equilibrium or plane strain analysis because 2D 

analysis is relative simple and yields a conservative factor of safety (FOS) compared with three-

dimensional (3D) analysis (Griffiths and Marquez 2007). However, it is known that 3D analysis 

provides the more realistic model because it can take into account the appropriate geometry and 

boundary conditions. Therefore, the development of 3D slope analysis has become a popular 

research topic in geotechnical engineering in recent years. A list of 3D slope stability papers 

published in the last seven years is shown in Table 1.  
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Table 1 3D slope stability analysis using different methods 

Authors  Methods 

Cheng and Yip (2007) LEM 

Griffiths and Marquez (2007) SSR 

Frazaneh et al. (2008) LAM 

Li et al. (2009) LAM  

Michalowski and Drescher (2009) LAM 

Wei et al. 2009 SSR/LEM 

Li et al. (2010) LAM  

Michalowski (2010) LAM 

Detournay (2011) SSR 

Stianson et al. (2011) SSR 

Gharti et al. (2012) SSR 

Zheng (2012) LEM 

Nian et al. (2012) SSR 

Michalowski  and Nadukuru (2013) LAM 

Nadukuru and Michalowski (2013) LAM 

Zhang et al. (2013) SSR 

 

Commonly used approaches for 3D slope stability analysis include: the limit equilibrium 

method (LEM), limit analysis method (LAM), and numerical modeling performed by shear 

strength reduction technique (SSR), such as the finite element method (FEM) and finite 

difference method (FDM). The 3D LEM model involves various assumptions about the internal 
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force distribution, and it is difficult to locate the critical failure surface, as is well documented in 

the literature (Griffiths and Marquez 2007; Wei et al. 2009; Zhang et al. 2013). The 3D LAM 

model has been used for slope with simple geometry. However, the construction of the 3D 

failure mechanism for LAM is not straightforward for complicated slope models, which leads to 

this method being seldom used for complex conditions (Wei et al. 2009).  

Currently, 3D numerical modeling performed by the SSR technique is a very attractive and 

commonly accepted approach among geotechnical researchers and engineers because it not only 

can automatically locate the critical failure surface, but can also simulate the stress-strain 

behavior and give the progressive shear failure of the slope in complex geometry and loading 

conditions.  

Although the SSR technique has the above merits, however, we still must take into account its 

limitations in order to use it for the analysis of 3D isotropic rock slopes, as follows: (1) the 

existing 3D SSR technique is mainly based on the linear Mohr-Coulomb (MC) criterion. It is 

known that rock strength is non-linear, and many researches (Priest 2005; Li et al. 2008; Jimenez 

2008; Shen et al. 2012a) showed that the MC criterion generally can not represent rock mass 

behavior very well, especially for slope stability problems where the rock mass is in a state of 

low confining stresses that make the non-linearity more obvious; (2) the selection of appropriate 

convergence criterion is not easy for a 3D SSR model because the value of the FOS for a given 

slope can be considerably influenced by the convergence criterion; (3) boundary conditions play 

an important role in the distribution of internal stresses in the slope model and can affect the 

simulation results.  

With the aim of better understanding the fundamental rock slope failure mechanisms and 

improving the accuracy of the rock slope stability results of 3D numerical models, in the current 
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research a new non-linear SSR technique is proposed to be used with the Hoek-Brown (HB) 

criterion, which can ideally represent the non-linear behavior of a rock mass, in FLAC3D 

program in order to analyze 3D slope stability. Extensive case studies are carried out to 

investigate the influence of the convergence criterion and boundary conditions on the numerical 

results, which include rock mass shear strength, the shape of the failure surface, as well as the 

FOS values.  

2 Instantaneous shear strength of the HB criterion  

The non-linear HB criterion, initially proposed by Hoek and Brown (1980), has been widely used 

for predicting intact rock and rock mass strength in rock engineering for several decades. The 

latest version of the HB criterion presented by Hoek et al. (2002), is expressed as: 

3
1 3

a

ci b
ci

m s
σσ σ σ
σ

 
= + + 

   
 (1) 

where σ1 and σ3 are the maximum and minimum principal stresses, σci is the uniaxial compressive 

strength (UCS) of the intact rock, mb, s and a are the Hoek-Brown input parameters which can be 

estimated from the Geological Strength Index (GSI), disturbance factor D and intact rock 

constant mi.  
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 (4) 

In order to use the HB criterion in conjunction with SSR methods for calculating the FOS of 

rock slopes, methods are required to determine the instantaneous MC shear strength parameters 

of cohesion c and angle of frictionφ from the HB criterion (Fu and Liao 2010). The HB criterion 
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(see Eq. 1) is expressed by the relationship between maximum and minimum principal stresses. 

However, it can also be expressed in terms of normal stress σn and shear stress τ on the failure 

plane as shown in Fig. 1. The instantaneous cohesion c and angle of friction φ can be calculated 

by locating the tangent of the HB envelope under a given value of normal stress σn, as illustrated 

in Fig. 1. The intercept with the τ axis gives the c value, and the slope of the tangent to the HB 

failure envelope yields the φ value. 

 

Fig. 1 Instantaneous MC envelope of the HB criterion in the normal and shear stress plane 

Fig. 1 also illustrates the stress state of an element where the strength can be defined by the 

MC criterion. If the stress state (σ1, σ3) of an element is known, the corresponding instantaneous 

c and φ values can be calculated using Eqs. 5 to 8 proposed by Shen et al. (2012b).  
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 (7) 

tannc τ σ φ= −   (8) 

The numerical slope model can be divided into numbers of elements using mesh techniques. 

When the slope is modeled under the loading condition, the stress states of the elements in the 

model will vary, which leads to the elements having different values of c and φ.  

An example can be used to show the relationship between instantaneous c, φ and minimum 

principal stress σ3, as shown in Fig. 2. The following parameters were used for the calculation: 

σci=25 MPa, GSI=80, mi=15, D=0.5; the values of σ3 range from 0 to 25 MPa. Fig. 2 illustrates 

that the values of instantaneous c increase and φ decrease with the increase of σ3 values, which 

reflects the non-linear behavior of the HB criterion. 
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Fig. 2 The correlations between MC parameters and σ3 

3 Non-linear SSR method for the HB criterion 

The calculation of the FOS using the SSR technique is based on reducing the MC shear strength 

parameters c and φ  until the slope collapse, and then the value of the FOS can be defined as the 

ratio of the actual shear strength to the minimum shear strength of the rock or soil materials that 

is required to prevent failure (Duncan 1996). The reduced shear strength parameters cf and φf are 

given by:  

f
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 (10) 

where RF is a reduction factor, and the value of RF is equal to the FOS when slope failure occurs. 

One of the most promising ways to use the HB criterion in conjunction with SSR techniques 

is to estimate the instantaneous MC shear strength parameters c and φ for elements in the slope. 

The details of the application of this non-linear SSR technique for 2D FEM slope analysis can be 
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found the paper by Fu and Liao (2010). Kumar’s (1998) solution was used by Fu and Liao 

(2010) to calculate the instantaneous φ values, which requires Newton’s iteration formula to 

calculate the φ values. It should be noted that Eqs. 5-8 are an alternative form of Kumar’s (1998) 

solution. However, the equations offer the benefit of being able to calculate the instantaneous c 

and φ of an element from its’ stress state (σ1, σ3) without the need of iteration analysis.  

In the current research, the non-linear SSR strategy, together with Eqs. 5-8, was used to 

implement the HB criterion in FLAC3D for 3D rock slope stability analysis. Fig. 3 is a flow chart 

showing the steps of implementing the HB criterion in the FLAC3D
 slope model, as follows: Step 

1: Build the slope model according to slope geometry, rock mass properties, loading and 

boundary conditions. Mesh techniques are used to generate the grid elements for a slope. Step 2: 

Carry out the elastic stress analysis to determine the stress state of each element in the slope 

model. Step 3: Use Eqs. 5 to 8 to calculate the cohesion c as well as the angle of friction φ for 

each element. Step 4: Reduce the c and φ values of all elements by a reduction factor RF. Step 5: 

Use the reduced cf and φf for the elasto-plastic analysis using the MC constitutive model. Step 6: 

Repeat steps 2 to 5 when a new reduction factor RF is generated until slope failure. Finally, the 

value of the FOS of a given slope is equal to the reduction factor RF. 
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Fig. 3 Flow chart of the application of HB criterion into FLAC3D using non-linear SSR technique  

* The values of RF can be adjusted using the bracketing approach proposed by Dawson et al. 

(1999).  Flow and Fup are the lower and upper bracket values of FOS. FDiff  is the difference 

between upper and lower FOS values. 
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4 Convergence criterion in the 3D models  

Research by Wei et al. (2009) demonstrated that the value of the factor of safety of the 3D SSR 

model can be significantly influenced by the selection of the convergence criterion. Therefore, it 

is necessary to carry out some trial and error analysis to select an appropriate convergence 

criterion for a slope model.  

The convergence criterion in FLAC3D is the nodal unbalanced force ratio R, and the user must 

specify a number of calculation steps N to bring the model to a state of equilibrium. An example 

of data from the paper by Hammah et al. (2005) can be used to check the influence of the 

convergence criterion on the 3D slope model. The example has the following slope geometry and 

rock mass properites: slope height H=10m, slope angle β=45°, σci =30MPa, mi=2, GSI=5, D=0, 

unit weight γ =25 kN/m3, Deformation modulus Em=5000MPa and Poisson’s ratio ν =0.3.  

The model has 475 elements and the analyses were carried out using 1m unit width. The 

boundary conditions for the slope are: x-direction displacement at the front and back faces of the 

slope model are fixed; x, y and z direction displacement at the base face of the slope model are 

fixed; and y-direction displacement of the end faces of the slope model are fixed (see Fig. 4).  
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Fig. 4 Boundary conditions for a slope model 

Table 2 compares the failure surfaces corresponding to the FOS values using various 

convergence criteria in the slope model. The results show that when the convergence criteria 

change, the values of the FOS vary from 1.01 to 1.90. The results indicate a clear trend for the 

FOS to increase with the increase of R. For example, when R values are increased from 1E-5 to 

1E-3, N=1000, the values of the FOS increase from 1.04 to 1.82. Calculation step N only has a 

slight effect on the FOS when N is more than 1000. For example, when R=1E-3, the values of the 

FOS are equal to 1.82 for N=1000 and increase to 1.90 for N=2000.  
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Table 2 Comparison of failure surfaces corresponding to FOS values using different convergence 

criteria   

 

We ran several case studies, finding similar results each time. As shown in Table 2, the slope 

model will produce the appropriate failure surface, and the FOS value tends to stabilize when the 

convergence criterion is R=1E-4 and the value of N is more than 1000.  

The choice of the mesh techniques can also influence the FOS results in the SSR analysis. A 

comprehensive study of the influence of different mesh techniques and mesh elements on the 

calculation of the FOS using FLAC3D models has been conducted by Zhang et al. (2013). Fig. 5 

compares the different mesh sizes for the calculation of the FOS. The results show that when the 
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mesh size is more than 1400, the value of the FOS tends to equal 1.16, which is close to 

Hammah et al.’s (2005) result of a FOS of 1.15. 

 

Fig. 5 Plot of FOS values versus mesh elements 

5 Boundary conditions in 3D models 

The choice of appropriate boundary conditions is important for 3D slope stability analysis as 

boundary conditions play an important role in the development of internal stresses in a slope, 

which will change the shape of failure surface corresponding to the value of the FOS. 

The commonly used boundary conditions for a 3D slope model (see Fig. 4) are: fixing the x-

direction displacement (u=0) at the front and back faces of slope model; fixing the x, y and z 

direction displacement (v=u=w=0) at the base of slope model. For the end faces, there are three 

types of boundary conditions as suggested by Chugh (2003). Condition 1:  fixing the y-direction 

displacement (v=0), which represents contact with a rigid, smooth abutment that can provide a 

reacting thrust but no in-plane shear restraint; Condition 2: fixing the x, y direction displacement 
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(u=v=0), which represents a contact that provides side shear resistance; Condition 3: fixing the x, 

y, z direction displacement (u=v=w=0), which is used to characterize contacts with no movement.  

An example (see Table 3) was used to analyze the influence of boundary conditions on slope 

stability. Table 4 compares the slope failure surfaces corresponding to the FOS values, as well as 

the contours of instantaneous cohesion and angle of friction in a given slope under different 

boundary conditions.  

Table 3 Input parameters of a slope case 

Input parameters Values 

H, m 20 

β, ° 60 

γ, kN/m3 27 

σci, MPa 5 

GSI 40 

mi 12 

D 0.7 
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Table 4 Comparison of failure surfaces, contours of c and φ  and FOS of a slope model under 

various boundary conditions  

 

The contours of the instantaneous c and φ shown in Table 4 are calculated using Eqs. 5 to 8 

together with the final stress states of each element when the slope failures, which can be used to 

illustrate the failure mechanics performed by the non-linear SSR technique. For boundary 

conditions 1 and 2, where the z-direction displacement of the end faces is not fixed, the slope 

surfaces have relatively higher φ values and lower c values compared with the values at the 

bottom of the slope. This disparity is a result of the fact that the stress state of the elements at the 

bottom of the slope is greater than the stress state of the elements near the slope surface; and the 
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values of instantaneous c increase and φ decrease with the increase of σ3 values as shown in Fig. 

2.  

For boundary condition 3, where x,y, z-direction displacement of the end faces is fully fixed, 

the contours of c and φ are obviously different from those of conditions 1 and 2. This can be 

explained by the fact that the stress state in the slope under boundary condition 3 is different 

from the stress state in the slope under boundary conditions 1 and 2. Therefore, the values of 

instantaneous c and φ will change, which leads to the change of the shape of the failure surface, 

as well as the FOS values.  

The value of the FOS for boundary condition 1 is equal to 1.883, which is lower than the FOS 

for boundary conditions 2 and 3, where the FOS is equal to 2.502 and 2.057, respectively. In 

order to investigate the possible correlation of the FOS under different boundary conditions, we 

proposed a boundary weighting factor, fB, as shown in Table 4, which represents the ratio of the 

FOS from boundary conditions 2 and 3 to boundary condition 1. In this case, 

fB,xy=2.502/1.883=1.329 and fB,xyz =2.057/1.883=1.092. 

Table 5 compares the FOS values under different boundary conditions for the slope (see Table 

3), with the slope angle β varying from 30° to 90°. The correlations between fB and β in Table 5 

are plotted in Fig. 6. The figure demonstrates that the boundary weighting factor fB decreases as 

the slope angle increases when β <50°. However, fB tends to reach stable values (fB,xy=1.4 and 

fB,xyz=1.1 ) when β >50°. 
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Table 5 The results of FOS and fB of the slope with different slope angle 

Slope 

angle β ° 

Boundary condition used at end faces 

of slope model  

Boundary weighting 

factor, fB 

FOSy FOSxy FOSxyz 
 

fB,xy fB,xyz 

30 2.11 3.75 3.42 1.78 1.62 

45 2.06 2.97 2.52 1.44 1.22 

60 1.88 2.50 2.06 1.33 1.09 

75 1.57 2.11 1.73 1.34 1.10 

90 1.29 1.69 1.43 1.31 1.11 

 

 

Fig. 6 The correlations between fB and β under different boundary conditions for a slope case 

Results presented in Fig. 6 and Table 5, however, provide only one example for a specific 

rock property and slope height. To further check the correlation between fB and β, we conducted 

a comprehensive study using 21 real cases collected from Douglas (2002) and Taheri and Tani 

(2010), with various slope geometries and rock mass properties as indicated in Table 6.  
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Our analysis of the database showed that there is a strong correlation between fB and β as 

shown in Fig. 7. Most of the data lie along the lines which have a trend of decreasing fB with the 

increase of β when β <50°. When β >50°, fB tends to achieve constant values. The results that 

were presented demonstrate that the effects of boundary conditions on the values of the FOS are 

more obvious for a slope with a low angle than a steep slope. The values of fB,xy and fB,xyz will go 

up to 1.7 and 1.5 when the slope angle is less than 35°. On the other hand, when the slope angle 

is more than 50°, the values of fB,xy and fB,xyz tend to equal 1.4 and 1.1, respectively.  
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Table 6 The results of FOS and fB of real slope cases 

Cases 
H 

(m) 
β  
 (°) 

γ 
(kN/m3) 

σci 
(MPa) 

GSI mi
a D b FOSy FOSxy FOSxyz fB,xy fB,xyz 

1 184 55 27 153 47 9 0.9 2.67 3.67 3.04 1.38 1.14 

2 140 34 26 50 28 8 0.7 1.52 2.52 2.27 1.66 1.49 

3 220 45 27 65 44 17 0.8 2.48 3.54 2.97 1.43 1.20 

4 135 65 27 172 58 9 0.9 4.16 5.70 4.92 1.37 1.18 

5 70 50 27 29 41 7 0.8 1.83 2.59 2.19 1.42 1.20 

6 110 45 26.5 50 25 10 0.7 1.60 2.28 1.96 1.43 1.23 

7 270 45 27 109 39 18 0.9 2.21 3.18 2.68 1.44 1.21 

8 170 55 30 104 48 7 0.7 2.63 3.63 3.01 1.38 1.15 

9 60 60 27 65 44 13 1 2.53 3.44 2.80 1.36 1.11 

10 35 67 27 109 28 12 1 1.93 2.61 2.14 1.35 1.11 

11 63 35 27 109 28 12 1 2.04 3.15 2.78 1.55 1.37 

12 70 49 27 3 49 24 1 1.20 1.72 1.46 1.44 1.22 

13 58 50 27 5 55 22 1 1.80 2.53 2.12 1.41 1.18 

14 60 48 27 5 54 22 1 1.75 2.48 2.11 1.42 1.20 

15 60 52 27 5 56 22 1 1.83 2.50 2.09 1.37 1.14 

16 40 71 27 50 33 14 1 1.70 2.29 1.87 1.35 1.10 

17 110 50 27 50 25 14 1 1.05 1.48 1.26 1.40 1.20 

18 41 50 27 3 46 24 1 1.34 1.90 1.62 1.42 1.21 

19 41 55 27 3 49 24 1 1.42 1.96 1.64 1.38 1.16 

20 46 55 27 3 50 24 1 1.40 1.93 1.62 1.38 1.16 

21 57 49 27 3 48 24 1 1.26 1.81 1.55 1.44 1.23 

22c 57 37 27 3 48 24 1 1.36 2.13 1.88 1.56 1.38 

23 c 57 40 27 3 48 24 1 1.33 2.03 1.79 1.52 1.34 

24 c 57 42 27 3 48 24 1 1.32 1.97 1.72 1.49 1.30 

a The values of mi are estimated based on the information of uniaxial compressive strength for 

general rock type (Shen and Karakus 2013) 

b By considering the excavation methods for cases 9 and10 were poor and the cases 11- 21 were 

obtained from open pit mines (the excavation method was assumed to be production blasting), 

therefore, according to the guidelines by Hoek et al. (2002), D was assumed to be 1 for all cases.  

c Cases 22- 24 are additional cases which have the same rock mass properties as case 21 except 

slope angle. 
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Fig. 7 The correlations between fB and β under different boundary conditions for open pit cases 

The possible connections between fB and other parameters (H, σci, GSI and mi) were also 

investigated as shown in Fig. 8. No strong relationship was observed between fB and these 

parameters.  
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Fig. 8 The correlations between fB,xy and H, σci, GSI, mi 
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6 Conclusions 

A new non-linear SSR method has been proposed to analyse the stability of 3D rock slopes 

satisfying the HB failure criterion. This method is based on estimating the instantaneous MC 

shear strength parameter c and φ values from the HB criterion for elements in a FLAC3D model. 

The reliability of the proposed 3D slope model has been tested using an example from 

Hammah et al. (2005). The value of the FOS calculated by the proposed slope model (fine mesh) 

is equal to 1.16, which is close to Hammah et al.’s results with FOS=1.15. However, it was 

found that the convergence criterion used in the model plays an important role not only in the 

calculation of the FOS, but also in locating the failure surface as shown in Table 2.  

Then, the proposed 3D slope model has been used to analyse the influence of the boundary 

condition on the calculation of the FOS using 21 real open pit cases with various slope 

geometries and rock mass properties as indicated in Table 6. We have proposed a boundary 

weighting factor, fB, to investigate the possible correlation of the FOS under different boundary 

conditions. 

Our analysis demonstrates that there is a strong correlation between fB and slope angle β as 

shown in Fig. 7. The value of fB will decrease with the increase of the slope angle when β is less 

than 50°. However, fB tends to reach stable values (fB,xy=1.4 and fB,xyz=1.1 ) when β >50°.  

Therefore, great care should be taken to select appropriate boundary conditions when the 

researchers perform 3D numerical analysis of slope with low slope angle.   
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Chapter 6  

Chart-Based Slope Stability Assessment Using the 

Generalized Hoek-Brown Criterion 

Abstract  

Slope stability charts are used extensively in practical application to meet the need of quick 

assessment of rock slope design. However, rock slope stability charts based on the Generalized 

Hoek-Brown (GHB) criterion, which is one of the most widely adopted failure criteria to 

estimate rock mass strength in rock engineering, are considerably limited. This paper presents 

new stability charts for the analysis of rock mass slopes satisfying the GHB criterion. Firstly, 

charts for calculating the factor of safety (FOS) of a slope for a specified slope angle β = 45° are 

proposed. Secondly, a disturbance weighting factor fD is introduced to illustrate the effect of 

disturbance factor D upon the stability of rock slopes. Thirdly, a slope angle weighting factor fβ is 

proposed to show the influence of slope angle β on slope stability. Combined with stability 

charts based on β = 45°, the weighting factors fD  and fβ allow the calculation of the FOS of a 

slope assigned various slope angle under different blasting damage and stress relief conditions. 

The reliability of the proposed charts is tested against numerical solutions. The results show that 

FOS from the proposed charts exhibits only 3.1 % average discrepancy from numerical solutions 

using 1680 sets of data. The proposed charts are simple and straightforward to use and can be 

adopted as useful tools for the preliminary rock slope stability analysis. 
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1 Introduction  

Determining the stability of rock mass slopes is an important task in many areas of civil and 

mining engineering, such as open pit excavation and large dam construction. Most slope stability 

analysis is based on seeking the factor of safety (FOS), which is a traditional measure of the 

safety margin of a given slope [1]. Having the merit of quick assessment of preliminary slope 

design, stability charts have been extensively used to estimate the stability of a slope in practical 

applications. The most common charts widely used in slope engineering is the Taylor’s stability 

charts [2], which require the Mohr-Coulomb (MC) shear strength parameters cohesion c and 

angle of frictionφ to estimate the FOS of a slope. However, rock mass strength is a non-linear 

stress function, therefore, the linear MC criterion generally do not agree with the rock mass 

failure envelope [3- 6], especially for slope stability problems where the rock mass is in a state of 

low confining stresses that make the nonlinearity more obvious.   

Currently, the Hoek-Brown (HB) [7] criterion is one of the most broadly adopted failure 

criteria to estimate rock mass strength in rock engineering. Over the past 30 years the HB 

criterion has been applied successfully to a wide range of intact and fractured rock types. The 

latest version is the Generalized Hoek-Brown (GHB) criterion presented by Hoek et al. [8]. The 

equations are expressed as follows: 

3
1 3

a

b
ci

ci

m
s

σσ σ σ
σ

 
= + + 

   
(1) 

mb, s and a are the Hoek-Brown input parameters that depend on the degree of fracturing of the 

rock mass and can be estimated from the Geological Strength Index (GSI), given by: 

100

28 14

GSI

D
b im m e

− 
 − =  

(2) 

100

9 3

GSI

Ds e
− 

 − =  (3) 



 
 

139 
 

20

15 3

0.5
6

GSI

e e
a

− −   
   
   −= +

 
(4) 

where, σ1 is the maximum principal stresses, σ3 is the minimum principal stresses, σci is the 

uniaxial compressive strength of the intact rock, mi is the Hoek-Brown constant of the 

intact rock, and D is the disturbance factor of the rock mass. The input parameters of the GHB 

criterion can be achieved directly from mineralogical assessment, uniaxial compressive testing of 

rock materials, and measurement of discontinuities characteristic of rock masses [9]. Therefore, a 

great advance in the field of rock slope stability assessment could be achieved if suitable stability 

charts could be developed to estimate the FOS directly from the GHB criterion.  

Development of rock slope stability charts based on the GHB criterion, however, is a 

challenging task since there are at least six input parameters (GSI, mi, σci, γ, β, H) involved to 

calculate the FOS for a given dry slope with D = 0, where, γ  is the unit weight of the rock mass, 

β is the slope angle, and H is the slope height. Based on our literature review, charts for the 

estimation of FOS directly from the GHB criterion is still a under research area and very few 

charts are available in the literature.  

In the current research, we propose new charts which can be used to estimate the FOS of a 

slope directly from the Hoek-Brown parameters (GSI, mi and D), slope geometry (β and H) and 

rock mass properties (σci and γ). The proposed charts are straightforward to use and can be 

adopted as useful tools for the preliminary rock slope stability assessment. 

In this paper, the existing rock slope stability charts related to the HB criterion are briefly 

reviewed in section 2. The proposed stability charts are presented in section 3. Charts application 

to slope cases is presented in section 4.  



 
 

140 
 

2 Review of existing rock slope stability charts based on the HB 

criterion   

Since Taylor [2] proposed a set of stability charts for soil slopes, chart solutions have been 

presented by many researchers [1, 10-21] and are still widely used as design tools in slope 

engineering. At present, rock slope stability charts, such as Hoek and Bray’s [11], often need to 

use the equivalent MC shear strength parameters cohesion c and angle of friction φ, which can be 

estimated from software RocData [22] as shown in Fig. 1. The equivalent fitting MC envelope is 

a straight line. The slope of the tangent to the MC envelope gives the value of φ, and the 

intercept with the shear stress axis gives the value of c. However, this conversion has been found 

to yield inconsistent estimates of the FOS of a slope, with a discrepancy between the HB and 

equivalent MC envelopes of up to 64% [13].  
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Fig. 1 Relationship between HB and equivalent MC envelopes 

Until now, the slope stability charts by Carranza-Torres [12] and Li et al. [13-15] have been 

among the few charts that can be used to estimate the FOS directly from the HB criterion. 

Carranza-Torres [12] proposed a solution for estimating the shear strength of rock masses from 

the HB criterion, which was incorporated in the Bishop simplified method [23] for the analysis 

of rock slope stability. Carranza-Torres [12] revealed that when the Hoek-Brown parameter a = 

0.5, the FOS of a given slope only depends on the three independent variables,γH , s/mb
2 and β . 
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In order to estimate the FOS of a slope with a given geometry (β and H), rock mass properties 

(γ and σci) and Hoek-Brown parameters (GSI, mi and D), firstly, the values of mb and s can be 
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calculated using Eqs. (2) and (3), respectively. Thereafter, the values of the dimensionless 

parametersγH and s/mb
2 can be calculated. Finally, the FOS can be directly estimated from the 

chart as shown in Fig. 2. 

 

Fig. 2 Slope stability chart (β=45°, a=0.5) [12] 

While Carranza-Torres [12] proposed a chart is based on a=0.5 with only a single slope angle, 

β  =  45°, the current research proposed a slope angle weighting factor fβ to illustrate the 

influence of slope angle β on slope stability, to be discussed in section 3. Combined with the Fig. 

2 based on β = 45°, the slope angle weighting factor chart (as shown in Fig. 11) can be used for 

estimating the FOS of a slope assigned various angles. 

Stability charts for estimating rock mass slopes directly from the Hoek-Brown parameters 

GSI, mi and D were originally proposed by Li et al. [13] using limit analysis (LA). Li et al.’s [13] 

charts are based on the assumption D = 0, which means that the rock slope is undisturbed. 
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Similar stability charts utilizing D = 0.7 and D = 1.0 were also proposed by Li et al. [14] in order 

to examine the effects of these rates of disturbance on rock slope stability. Seismic stability 

charts were also proposed by Li et al. [15] to account for seismic effects on rock slope stability. 

The current research, however, focuses on static slope stability analysis, and seismic charts were 

not discussed in detail here.  

Fig. 3 shows typical stability charts with a slope angle of β = 45°. N is the non-dimensional 

stability number, defined as:  

ci

LA

N
HFOS

σ
γ

=
 

(6) 

  

(a)     (b)    (c) 

Fig. 3 (a) Slope stability chart with D=0 [13], (b) Slope stability chart with D=0.7[14], (c) Slope 

stability chart with D=1.0 [14] 

Because the upper and lower boundary results bracket a narrow range of N within ±9% or 

better , Li et al. [13, 14] adopted the average value limit solution to generate the charts in order to 

keep their calculations simple. The use of these charts is quite easy. Firstly, the stability number 

N can be calculated using the values of GSI and mi from an appropriate chart according to a 
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specified D value (D = 0, 0.7 and 1) as shown in Fig. 3. Having obtained the value of N, Eq. 6 

can be used to calculate the FOSLA. 

As noted by Li et al. [24], the definition of factor of safety for Eq. 6 is different from that of 

FOS obtained from the limit equilibrium method (LEM) which was defined as a function of 

resisting force fR divided by driving force fD, FOSLEM=fR / fD. Therefore, the values of FOSLA 

obtained from Eq. 6 are generally not equal to FOSLEM. Such variations can be illustrated using 

four examples in Table 1. 
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Table 1 Comparison of the factor of safety estimated from different stability charts 

Input parameters Example 1[12] Example 2[14] Example 3 Example 4 

σci, MPa 0.75 10 13.5 5.4 

GSI 100 30 30 20 

mi 10 8 5 20 

D 0 1 0.7 0.7 

γ, kN/m3 25 23 27 27 

H, m 27 50 50 25 

β, ° 45 60 45 45 

Calculated parameters 

mb 10 0.054 0.107 0.247 

s 1 8.57E-06 3.93E-05 9.22E-06 

a 0.5 0.522 0.522 0.544 

s/mb
2 0.0100 0.0030 0.0034 0.0002 

γH 0.10 2.13 0.94 0.51 

σci/(γH) 1.11 8.70 10 8 

N 0.08 50 10 6 

Factor of safety 

Carranza-Torres 

Chart (LEM) 
3.14 0.44* 1.00 1.20 

Li et al. Chart (LA) 13.89 0.17 1.00 1.33 

* FOS of example 2 is calculated from Fig. 2 together with Fig. 11. 
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Considering that the LEM is still the most widely used methods for slope stability analysis, 

we proposed an alternative stability chart based on the LEM. The proposed charts are able to 

estimate the FOS of a slope directly from the Hoek-Brown parameters (GSI, mi and D), slope 

geometry (β and H) and rock mass properties (σci and γ). 

3 Proposed stability charts for rock mass slopes  

The work outlined here required hundreds of runs on a microcomputer, analyzing the stability of 

various slopes having different geometries and rock mass properties. The slope models were 

analyzed using Slide 6.0 [25]. Details of the slope model settings are shown in Table 2. 

Table 2 Slope modeling setting in Slide 6.0 

Modeling setting summary 

Analysis method Bishop simplified 

Number of slides 25 

Search method Auto grid search 

Rock strength type Generalized Hoek-Brown 

Ground water None 

Failure surface type Circular toe failure 

Disturbance factor 0-1 

The competency factor, the ratio of the uniaxial compressive strength σci to the pressure of the 

overburden γH of tunnels, proposed by Muirwood [26] was used in current study. For rock slope 

application, γH can represent the vertical stress of the rock slope, in this paper, σci /(γH) was 

termed the strength ratio (SR) of a rock slope. We interested the stability number N proposed by 

Li et al. [13], which contains SR as shown Eq. 6. The use of SR is a significant innovation for the 
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rock slope stability analysis because when the values of the input parameters GSI, mi, D and β 

are determined, the FOS is related only to the SR of that slope.  

In this section, the derivation of the theoretical relationship between the SR and FOS of a 

given slope slip surface will be explained in detail. In the next stage, based on the relationship 

between the SR and FOS, charts for calculating the FOS45° when β = 45°, D=0 are proposed. A 

disturbance weighting factor fD is then introduced to illustrate the effect of disturbance D upon 

the stability of rock mass slopes. Finally, a slope angle weighting factor fβ is proposed to 

illustrate the influence of the slope angle β on slope stability. Combined with stability charts 

based on β = 45°, the weighting factors fβ and fD allow for the calculation of the FOS of slopes 

exhibiting various angle under different blast damage and stress relief conditions. Also, some 

slope examples are presented to illustrate the use of the proposed charts.  

3.1 Theoretical relationship between SR and FOS 

Combined with a generic form of Balmer’s equations [12], the GHB criterion was input into 

Slide 6.0 in order to calculate the instantaneous shear stress τ of each slice of a failure surface 

under a specified normal stress σn. The generic form of Balmer’s equations are expressed as 

follows:  
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For a generic case a≠0.5, in order to calculate shear stress τ, for the given values of the input 

parameters mb, s, a , σci and σn, Eq. 7 is solved iteratively to calculate the σ3 value [27]. Having 

obtained σ3, Eq. 8 can be used to calculate shear stress τ, therefore, σ3/σci can be expressed as 

follows: 

3
1 , , ,n

b
ci ci

f m s a
σ σ
σ σ

 
=  

   
(9) 

Also, τ/σci can be expressed as follows: 

2 , , ,n
b

ci ci

f m s a
στ

σ σ
 

=  
   

(10) 

The FOS can be defined as a function of resisting force fR divided by driving force fD as 

shown in Fig. 4a. The forces of fR and fD can also be expressed in terms of τ and σn
 acting on the 

base of an arbitrary slice i as shown in Fig. 4b. Resisting shear stress τR
i of the rock mass is 

governed by Eq. 10, and driving shear stress τD
i will depend on the weight of the slice γhi as 

indicated in Fig. 4b.  

 

 (a)      (b) 

Fig. 4 (a) The basic of method of slices, (b) Stresses acting on a given slice 
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Therefore, with the help of Eq. 10, the FOS can be expressed as follows: 

3 3 2 , , ,ci n
b

ci

FOS f f f m s a
h h

σ στ
γ γ σ

   = =    
      

(11) 

The value of σn of arbitrary slice depends on the weight of slice γh, which in turn depends on the 

characteristic stress γH and slope angle β [12]. Eq. 11, therefore, can be transformed into Eq. 12. 

5 4 , , , ,ci
b

ci

H
FOS f f m s a

H

σ γ β
γ σ
  

=   
    

(12) 

The parameters mb, s and a in Eq. 12 can be calculated from Eqs. 2 to 4, respectively. Finally, the 

FOS can be expressed as Eq. 13 

( )6 6, , , , , , , ,ci
i iFOS f GSI m D f SR GSI m D

H

σ β β
γ
 = = 
   

(13) 

Eq. 13 illustrates the fact that when the values of GSI, mi and D are given in a homogeneous 

slope, along with the slope angle β, the FOS of a slip surface for a particular method of slices is 

uniquely related to the dimensionless parameter SR regardless of the magnitude of individual 

parameters σci, γ and H. 

Table 3 shows three different groups of σci, γ and H associated with the same SR value for a 

slope that has the same values of GSI, mi, D and β. The values of FOS were calculated using four 

limit equilibrium methods in Slide 6.0 [25], with finite element method (FEM) conducted using 

the program Phase2 8.0 [28].  
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Table 3 Comparison of the FOS of a given slope with the same value of SR 

Input parameters Group 1 [13] Group 2 Group 3 

GSI 30 30 30 

mi 8 8 8 

D 0 0 0 

β, ° 60 60 60 

σci, MPa 20 25 250 

γ, kN/m3 23 28.75 23.96 

H, m 25 25 300 

σci/(γH) 34.783 34.783 34.783 

Factor of safety 

Bishop simplified 2.026 2.026 2.026 

Janbu simplified 1.934 1.934 1.934 

Spencer 2.032 2.032 2.032 

Morgenstern-Price 2.027 2.027 2.027 

Phase2 8.0 (FEM) 2.000 2.040 2.030 

The results show that FOS values for all three groups are exactly the same. Results of the 

comparison of the FOS calculated for the three groups over a range of GSI and mi are shown in 

Table 4. Again, the results reveal that the FOS of a slope depends only on the magnitude of SR 

when the values of β, GSI, mi and D are the same. Based on the relationship between the SR and 

FOS, the number of independent parameters for calculating the FOS can be reduced to four (SR, 

GSI, mi and β ) when D = 0. In the next stage, we will propose the rock slope stability charts 

based on the SR, GSI and mi for slopes with β = 45°, D = 0. 
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Table 4 Comparison of the FOS of a given rock slope with various Hoek-Brown parameters. 

Hoek-Brown parameters Group 1 Group 2 Group 3 

GSI mi FOS FOS FOS 

10 5 0.958 0.958 0.958 

10 15 1.326 1.326 1.326 

10 25 1.547 1.547 1.548 

10 35 1.705 1.705 1.706 

40 5 2.532 2.532 2.532 

40 15 2.819 2.819 2.819 

40 25 3.043 3.043 3.043 

40 35 3.227 3.227 3.227 

100 5 46.854 46.854 46.856 

100 15 30.840 30.840 30.842 

100 25 25.540 25.540 25.542 

100 35 22.753 22.753 22.755 

3.2 Slope stability charts based on slope angle β = 45° 

The examination of 54 slope case histories [20] from Iran and Australia shows that the average 

slope angle is 46.3°. Therefore, firstly, the proposed stability charts for the current study were 

based on the GHB criterion from a range of SR, GSI and mi, but with a specified slope angle β = 

45° and D = 0 as shown in Fig. 5.  
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(c) 

 

 

(d) 
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(g) 

Fig. 5 Proposed stability charts for rock mass slope, β=45°, D=0 (5≤mi≤35) 

Fig. 5 indicates that there is a clear trend of the increase of FOS with the increase of GSI and 

SR. For example, increasing GSI values from 10 to 100 when SR=1, the values of FOS increase 

from 0.45 to 2.80 as shown in Fig. 5a. It is also found that SR has a considerable effect on the 

FOS, especially, under the state of high GSI values. For example, when GSI=90, the values of 

FOS are equal to 3.1 for SR=2 and increase to 5.7 for SR=5 in Fig. 5a. On the other hand, under 

the state of low GSI values, there is a moderate increase of FOS with the increase of SR. For 

instance, when GSI=10, the value of FOS is equal to 1for SR=15, and FOS increase to 1.4 for 

SR=40 as shown in Fig. 5a.    

Alternative form of stability charts are shown in Fig. 6. We can see that, overall, the FOS 

increase with the increase of mi values. However, at the state of high GSI and SR values, the 

FOS decrease with the increase of mi values as shown in Fig. 6 (c) and (d). This phenomenon can 

be explained by Fig. 7 [29], which illustrates the relationship between the Mohr-Coulomb shear 

strength parameters and Hoek-Brown parameters GSI and mi values. It is clear that the values of 
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cohesion decrease with the increase of mi values when 60< GSI <90. Therefore, the resisting 

shear strength will decrease, which leads to the decrease of FOS, when mi values increase in 

these specified cases. 

 

(a)        (b) 

 

(c)        (d) 

Fig. 6 Proposed stability charts for rock mass slope, β=45°, D=0 (SR=0.1, 1, 10, 40) 
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(a)       (b) 

Fig. 7 (a) Relationship between c/σci and GSI for different mi values [29], (b) Relationship 

between φ and GSI for different mi values [29] 

Fig. 8 is an alternative form of Fig. 6a using the stability number N proposed by Li et al. [13]. 

It should be noted that the values of N obtained from Fig. 8 are different from Fig. 3a, as the FOS 

calculated from limit equilibrium method are generally not equal to those from limit analysis 

[24].  
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Fig. 8 Alternative form of Fig. 6b using the stability number N 

3.3 The disturbance weighting factor fD   

Practical experience in the design of large open pit slopes has demonstrated that the estimation of 

rock mass properties from the HB criterion are too optimistic when D = 0 because of the realities 

of rock mass disturbance. Therefore, Hoek et al. [8] introduced the disturbance factor D, which 

can vary from zero for undisturbed in situ rock masses to one for highly disturbed rock masses, 

to consider the effects of heavy blast damage as well as stress relief result in disturbance of the 

rock mass. 

It is not easy to determine the exact value of D as various factors can influence the degree of 

disturbance in the rock mass. Hoek et al. [8], Hoek and Diederichs [30] and Hoek [31], therefore, 

presented a number of slope cases to illustrate how to choose an appropriate D value for practical 

application. In civil engineering, small scale rock slope blasting results in modest rock mass 
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damage, D=1.0 and 0.7 were recommended under poor blasting and good blasting, respectively. 

For folded sedimentary rocks in a carefully excavated road cutting, D = 0.3 is suggested since the 

disturbance is relatively shallow. In mining engineering, large scale open pit mine slopes suffer 

significant disturbance under heavy production blasting, and D = 1.0 is the suggested value. For 

softer rocks under mechanical excavation, D is assumed to equal to 0.7.  However, these 

guidelines are based on a limited number of case histories, and it can be argued that they should 

be extended and modified by considering more cases obtained from practical applications [32].  

Thus, in order to understand the real influence of D upon the stability of rock mass slopes, it 

is critical that researchers and engineers perform studies of a range of D values rather rely on the 

results from a single D analysis. As noted by Hoek and Diederichs [30], the sensitivity analysis 

of a design is probably more significant in judging the acceptability of the design than a single 

calculated FOS.  

The current study, therefore, proposes a disturbance weighting factor fD to use in refining the 

influence of D upon the stability of rock mass slopes. The first step in proving the importance of 

factor fD in determining the influence of D in calculating the FOS is to assume a disturbance 

factor D from 0 to 1, using the same values of GSI, mi, SR and β as those found in the slope 

models in section 3.2 with D = 0. Fig. 9 illustrates the relationship between D and fD for a slope 

with SR = 10 and β = 45°. It is found that the minimum value of mi = 5 and the maximum value 

of mi = 35 generates a narrow range of fD, which indicates that the value of mi has an 

insignificant influence upon the estimation of fD. For example, for a slope with GSI = 10, SR = 

10, β = 45°, D = 0.7, increasing mi from5 to 35 only results in an increase in fD from 0.42 to 0.48.  
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Fig. 9 Chart for estimating disturbance weighting factor fD , SR=10, β=45° 

By considering the limit influence of mi on the estimation of fD, charts representing the 

relationship between fD and D based on mi = 5, 15, 25 and 35 were proposed, as shown in Fig. 10. 

The use of Fig. 10 to calculate the value of fD is easy. For example, for a given slope with 

GSI=90, D=0.7, SR=10 and mi=5, the value of fD is equal to 0.88 as shown in Fig. 10a.  
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(b) 
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(c) 
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(d) 

Fig. 10 Chart for estimating disturbance weighting factor, fD (mi=5, 15, 25, 35) 

3.4 The slope angle weighting factor fβ 

The values of FOS45° estimated directly from the data in Fig. 5 are based on a slope angle β = 45°. 

In order to examine the influence on the FOS of the slope angle, it was necessary to test the slope 

models using angles of different values. Slope angle β was assigned values ranging from 30° to 

75° while the values of the GSI, mi, D and SR are the same as slope models with β = 45°.   
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After hundreds of computer runs using a wide range of rock mass properties and slope 

geometry, a chart representing the relationship between the slope angle weighting factor fβ and 

the slope angle β was proposed based on the data 0<FOS<4, which will be applicable for most 

civil and mining slope cases, as shown in Fig. 11. By adopting a curve fitting strategy, a 

simplified equation was developed, as shown in Eq. 14. 

0.0222.66f e β
β

−=
 (14) 

 

Fig. 11 Slope angle weighting factor chart 

Combined with the stability charts (Figs. 5 and 10), the slope angle weighting factor chart or Eq. 

14 can be used for estimating the FOS of a slope with various given slope angle β estimated from 

real cases.   
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Compared with the values calculated in Slide 6.0, the values of the FOS estimated from Fig. 

11 show some discrepancy. The prediction performance of Fig. 11 was tested using 1680 sets of 

data. The discrepancy result shows that 78.6% of the data is lower than ±5%, while the absolute 

average relative error percentage (AAREP) is 3.1%, and the maximum discrepancy percentage 

(DPMax) is -18.9% as shown in Fig. 12. It was also found that the data with a discrepancy greater 

than ±10% appears when GSI>90.   

 

Fig. 12 Discrepancy analysis of the proposed rock slope stability charts 

Fig. 11 can also be used in conjunction with the Carranza-Torres [12] slope stability chart 

shown in Fig. 2 ,which is based on β = 45°, for estimating the FOS of a slope with slope angles 

other than 45º. Example 2 [14] in Table 1, therefore, was reanalyzed using the chart from Fig. 2 

together with fβ  from Fig. 11. Using the Fig. 2, results in the FOS45° = 0.62. Using the data from 
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Fig. 11, the slope angle weighting factor fβ = 0.72. Finally, the FOS = fβ ×FOS45° = 0.72×0.62 = 

0.446, which is slightly different from the FOS = 0.489 calculated using Slide 6.0. 

3.5 The use of the proposed stability charts 

The use of the proposed rock slope stability charts to calculate the FOS of a given slope is 

quite straightforward. Firstly, for given values of SR, GSI and mi, the value of FOS45° can be 

obtained using the stability charts (Fig.5). Secondly, for any given disturbance factor D, the 

disturbance weighting factor fD  can be obtained from Fig. 10. Thirdly, for the given slope angleβ, 

the slope angle weighting factor fβ  can be calculated from Eq. 14 or obtained from Fig. 11. 

Finally, the FOS can be calculated as, FOS = fβ× fD ×FOS45° 

Example 2 [14] in Table 1 was again adopted to illustrate the use of the proposed charts. The 

calculation steps are as follows: Firstly, mi = 5 from Fig. 5a and mi = 10 from Fig. 5b were used 

to estimate the average value of the FOS for mi = 8. The values of FOS45° for mi = 5 and mi = 10 

are 1.5 and 1.8, respectively. Therefore, the average value of FOS45° for mi = 8 was assumed to 

equal to 1.65. Then, mi = 5 from Fig. 10a and mi = 15 from Fig. 10b were used to estimate the 

average value of fD for mi = 8. The values of fD for mi = 5 and mi = 15 are 0.39 and 0.44, 

respectively. Thus, the value of fD for mi = 8 should be located between 0.39 and 0.44. Thirdly, 

slope angle weighting factor fβ for β = 60° was estimated using the chart (Fig.11) or Eq. 14, with 

the result fβ = 0.72. Finally, the lower and upper values of the FOS can be calculated. The results 

were FOSLower =  fβ× fD-Lower ×FOS45° =  0.72×0.39×1.65  =  0.463 and FOSUpper =  fβ× fD-Upper 

×FOS45°  =  0.72×0.44×1.65  =  0.522. The result provided by Slide 6.0 was FOS = 0.489.   
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4 Case studies for the proposed charts  

The following three examples with a wide range of rock properties and slope geometry were 

used to illustrate the practical application of the proposed rock slope stability charts. The results 

are shown in Table 5.  

Example 1: A small slope consisting of highly fractured rock masses with the following input 

parameters: σci = 2.7MPa, GSI = 10, mi = 5, γ = 27kN/m3, H = 5m and β = 30°, D = 0.5. Example 

2: A medium slope consisting of good quality rock masses with the following input parameters: 

σci = 0.625MPa, GSI = 80, mi = 15, γ = 25kN/m3, H = 25m and β = 75°, D = 0.3. Example 3: A 

large open pit slope consisting of blocky rock masses with the following input parameters: σci = 

46MPa, GSI = 50, mi = 35, γ = 23kN/m3, H = 250m and β = 60°, D = 1.0. The results show that 

there is close agreement between the proposed stability chart and the Slide 6.0 results. The 

discrepancy percentages for examples 1 to 3 are -3.84%, 1.27% and 0.78%, respectively.  
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Table 5 Three slope examples analyzed using the proposed stability charts. 

Input parameters Example 1 Example 2 Example 3 

σci, MPa 2.7 0.625 46 

GSI 10 80 50 

mi 5 15 35 

γ, kN/m3 27 25 23 

H, m 5 25 250 

β, ° 30 75 60 

D 0.5 0.3 1 

Calculated data 

SR: σci/γH 20 1 8 

FOS45° 1.1 2.08 3.3 

fD 0.64 0.96 0.59 

fβ 1.4 0.53 0.72 

Factor of safety 

Proposed charts 0.986 1.058 1.402 

Slide 6.0 1.025 1.045 1.391 

Discrepancy -3.84% 1.27% 0.78% 
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5 Conclusions 

New rock slope stability charts for estimating of the stability of rock mass slopes satisfying the 

GHB criterion have been proposed. The proposed charts can be used to calculate the FOS of a 

slope directly from the Hoek-Brown parameters (GSI, mi and D), slope geometry (β and H) and 

rock mass properties (σci and γ). 

Firstly, the theoretical relationship between the strength ratio (SR), σci/(γH) and the FOS has 

been demonstrated. It is found that when the values of β, GSI, mi and D in a homogeneous slope 

are given, the FOS of a slip surface for a particular method of slices is uniquely related to the 

parameter SR regardless of the magnitude of the individual parameters σci, γ and H. Based on the 

relationship between the SR and FOS, stability charts as shown in Fig. 5 for calculating the FOS 

of a slope with specified slope angle β = 45°, D = 0 have been proposed.   

Secondly, while the disturbance factor D has great influence upon the stability of rock mass 

slopes, it is, nevertheless, difficult to determine its exact value. Yet a sensitivity analysis of D is 

probably more significant in judging the acceptability of a slope design than a single calculated 

FOS with specified D values estimated from the guidelines by [8, 30, 31]. We proposed a 

disturbance weighting factor fD as shown in Fig. 10 to show the influence of a range of values of 

D upon the stability of rock mass slopes. 

Thirdly, a slope angle weighting factor fβ has been proposed to show the influence of the slope 

angle β on slope stability. It should be noted that the chart, as shown in Fig. 11, representing the 

relationship between fβ and β was proposed based on the data 0<FOS<4, however, it will be 

applicable for most civil and mining slope cases. 
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Combined with stability charts based on β = 45°, the values of fβ  and fD can be used for 

estimating the FOS of slopes with various angles in a variety of blast damage and stress relief 

conditions. The reliability of the proposed charts has been tested against results from Slide 6.0 

using 1680 sets of data representing a wide range of rock mass properties and slope geometries. 

The results show that there is good agreement between the values of the FOS as calculated from 

the charts and those produced by Slide 6.0, as shown in Fig. 12. The discrepancy of 78.6% of 

data is lower than ±5%, and the absolute average relative error percentage (AAREP) is 3.1%. In 

addition, it is found that the data with a discrepancy of more than ±10% appear when GSI>90. 

The proposed charts are quite simple and straightforward to use and can be adopted as a 

useful tool for the preliminary rock slope stability analysis. 
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Chapter 7 

Conclusions and Recommendations for Further Work 

Rock slope stability is one of the major challenges of rock engineering projects, such as open pit 

mining. Rock slope failure can affect mining operations and result in costly losses in terms of 

time and productivity. Therefore, the evaluation of the stability of rock slopes is a critical 

component of open pit design and operation. The rock slope stability is predominantly controlled 

by the rock mass strength which is a non-linear stress function. However, when limit equilibrium 

method (LEM) and shear strength reduction (SSR) method are used to analyze rock slope 

stability, the strength of the rock mass is generally expressed by the linear Mohr-Coulomb (MC) 

criterion. It is known that the MC criterion is linear, therefore, it does not agree with the rock 

mass failure envelope very well. 

This research focuses on the application of the Hoek-Brown (HB) criterion, which can ideally 

represent the non-linear behavior of a rock mass and has been successfully applied in the field of 

rock mechanics for over 30 years, on the rock slope stability analysis. The major research 

contributions and outcomes of the thesis are listed as follows: 

• A new method that can estimate the HB constant mi values using only UCS and rock 

types has been proposed. The reliability of the proposed method has been evaluated using 

908 sets of triaxial tests together with our laboratory tests for five common rock types. 

Results from the comparison have shown that mi values calculated from the proposed 

method can reliably be used in the HB criterion for predicting intact rock strength without 

triaxial test data which require expensive and time-consuming testing procedures. 

Simplified empirical equations for estimating deformation modulus of rock mass Em also 
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have been proposed by adopting Gaussian function to fit the in-situ data. It has been 

demonstrated that the proposed equations fit well to the in-situ data compared with the 

existing equations.  

• Analytical solutions that can be used to estimate the instantaneous MC parameters angle 

of friction φ and cohesion c from the HB input parameters (GSI, mi, D, σci) have been 

proposed. The proposed solutions can be implemented into the LEM to calculate the 

instantaneous shear strength of each slice of a failure surface under a given normal stress. 

It also can be used in conjunction with numerical modeling performed by SSR technique 

to calculate the instantaneous shear strength of elements under various stress states.  

• A new non-linear SSR method has been proposed to analysis the stability of 3D rock 

slopes satisfying the HB failure criterion. This method is based on estimating the 

instantaneous MC shear strength parameter c and φ values from the HB criterion for 

elements in FLAC3D model. Then, the proposed 3D slope model has been used to analyse 

the influence of boundary condition on the calculation of FOS using 21 real open pit 

cases having various slope geometries and rock mass properties. A boundary weighting 

factor, fB has been introduced to investigate the correlation of FOS under different 

boundary conditions. Results have illustrates that the effect of boundary conditions on the 

FOS values are more obvious for the slope with low slope angle than steep slope. The 

values of fB,xy  and  fB,xyz  will go up to 1.7 and 1.5 when slope angle is less than 35°. On 

the other hand, when the slope angle is more than 50° fB,xy  and  fB,xyz  values tend to equal 

to 1.4 and 1.1, respectively.  

• 2D slope stability analysis using LEM has been carried out. The value of FOS for a given 

slope is calculated based on estimating the instantaneous shear strength of slices of a slip 
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surface from the HB criterion. By analyzing the stability of various slopes having 

different geometries and rock mass properties, novel stability charts for assessing the 

stability of rock mass slopes have been proposed. The proposed charts are able to 

estimate the FOS for a slope directly from the HB parameters (GSI, mi and D), slope 

geometry (β and H) and rock mass properties (σci and γ). The proposed charts are simple 

and straightforward to use and can be adopted as useful tools for the preliminary rock 

slope stability analysis. 

It should be noted that there are some limitations in the current research and further research 

recommendation are described as follows: 

• The proposed empirical equations for predicting mi and Em values are based on the 

analysis of existing database and the reliability of estimation of these empirical equations 

depends on the quality and quantity of laboratory data. Therefore, the proposed empirical 

equations are open to further improvement as more testing data become available.  

• The current 3D slope stability study is based on simple slope geometry. However, it is 

known that the slope geometry is more complex in reality. For example, the natural slope 

often has curvature, and round surface often appeared in open-pit mining design. 

Therefore, future work is required to consider the effect of complex geometries on 3D 

numerical model. 

• The proposed 2D stability charts do not account for ground water conditions and seismic 

effects on the slope stability. In some situations, ground water level on the slope and 

earthquakes can be major factors for slope instability. Thus, further studies needs be 

conducted to investigate the effects of ground water and seismicity on the slope stability.  
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