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| ntroduction

Design of rock slope is one of the major challergfesvery stage of open pit mining operations.
Providing an optimal excavation design based orolaust analysis in terms of safety, ore
recovery and profit is the ultimate goal of anyps&odesign. The rock slope stability is
predominantly controlled by the strength and deftiam of the rock mass which
characteristically consists of intact rock materiahd discontinuities. Initially, movement of the
slope occurs due to stress relaxation as a resukrooval of rocks which used to provide
confinement. This behavior of slope can be attatub linear elastic deformation. In addition to
this, sliding along discontinuity surfaces and titila in consequence of formation of cracks can
occur. Ultimately all these instabilities lead t@ildire of the slopes. Therefore, formulation of
slope designs plays critical role in the processlope stability. In conventional approaches for
assessing the stability of a homogeneous slopé, asithe limit equilibrium method (LEM) and
shear strength reduction (SSR) method, rock massagth is usually expressed by the linear
Mohr-Coulomb (MC) criterion. However, rock massesigth is a non-linear stress function.
Therefore, the linear MC criterion generally do agree with the rock mass failure envelope,
especially for slope stability problems where tbekrmass is in a state of low confining stresses
that make the nonlinearity more dominant.

With the aim of better understanding the fundamerdek slope failure mechanisms and
improving the accuracy of the rock slope stabilégults, this research focuses on the application
of the Hoek-Brown (HB) criterion, which can ideatigpresent the non-linear behavior of a rock
mass, on the rock slope stability analysis.

There, three major sections are available in tksith The first section, from Chapters 1 to 4,

proposes new methods for estimating the intact muk rock mass properties, which will be
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used for slope stability analysis. In the seconttiee studied in Chapter 5, a new non-linear
shear strength reduction technique is proposethm@nalysis of three-dimensional (3D) slope
modeling. In section three (Chapter 6), novel $itslsharts are proposed, which have the merit
of estimating factor of safety (FOS) for a giveaps directly from the HB parameters and rock
mass properties. These charts can provide a guoitkediable assessment of rock slope stability.

The major research contributions and outcomesebtlerall researches are presented in six
journal publications which are forming the thedike titles of Chapters 1 through 6 reflect the
titles of the journal papers.

In Chapter 1, laboratory tests conducted on Hawkesbury sandstdiained from New
South Wales are carried out to investigate thetioslship between the HB constami and
uniaxial compressive strength (UCS) of intact rd8&sed on the analysis of the laboratory tests
and the existing database, a new method that ¢ama¢s the HB constamh values from UCS
and rock types is proposed. The proposed methodeatably be used in the HB criterion for
intact rock strength estimation when the triaxésits are not available.

In Chapter 2, an analytical solution for estimating the instargous MC shear strength from
the HB failure criterion for highly fractured rockass is presented. The proposed solution is
based on the assumption that the HB parameterequal to zero. The proposed solution has the
merit of producing very accurate shear strength Highly fractured rock mass where the
Geological Strength Index (GSI) is less than 40.

In Chapter 3, an analytical solution, which can calculate theas strength of rock masses
accurately for the whole range GSI values, is psegd as an extension to the work in Chapter 2.
The proposed approach is based on a symbolic sgresnalysis performed by genetic

programming (GP). The proposed solution not onlp &@ implemented into the LEM to
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calculate the instantaneous shear strength of sk of a failure surface under a specified
normal stress, but also can be implemented intdefialement method performed by SSR
approach to calculate the instantaneous sheaggtreheach element under different stress state
of a slope.

In Chapter 4, as a part of estimating rock mass strength aastielproperties in the first
section, the most widely used empirical equatiangtie estimation of deformation modulus of
rock massesH,) are reviewed. Two simplified empirical equatidas estimating ok, are also
presented. The proposed empirical equations usedhk Mass Rating classification system and
the deformation modulus of intact rodk ) as input parameters. These equations can beiused
the numerical modelling for slope stability anasysvhich is conducted in Chapter 5.

In Chapter 5, a new non-linear shear strength reduction techngjpeoposed to analysis the
stability of 3D rock slopes satisfying the HB fa#ucriterion. The method for estimating the
instantaneous MC shear strength from the HB coitedescribedn Chapters 2 and 3 are used to
estimate shear strength of elements in FEA@odel. The proposed 3D slope model is used to
analyse the influence of boundary condition on dhkulation of FOS using 21 real open pit
cases where the values wf and E, values are calculated from the methods introduoed
Chapters 1 and 4, respectively. Results show tietvalues of FOS for a given slope will be
significantly influenced by the boundary conditi@specially the case where the slope angle is
less than 50°.

In Chapter 6, extensive slope stability analyses using LEM aagied out. The calculation
of FOS is based on estimating the instantaneoussh&ar strength of slices of a slip surface
from the HB criterion. Based on the analysis resutiovel stability charts are proposed. The

proposed charts are able to estimate the FOS dorem slope directly from the HB parameters,
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slope geometry and rock mass properties. It isestgd that the proposed chats can be used as

useful tools for the preliminary rock slope stapikssessment.
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Chapter 1

A New Method for Estimating the Hoek-Brown Constant for

| ntact Rocks

Abstract

The constantm is one of the fundamental parameters requiredttier Hoek-Brown (HB)
criterion to estimate the strength of rock matsridh order to calculaten values a range of
triaxial tests need to be carried out. Howeveaxidl tests are time-consuming and expensive,
and they are not always routinely conducted atetimty stage of a project. In this research, we
investigate five common rock types and proposergpldied method that can estimatg values
using the information of rock types and the unibg@mpressive strength (UCS) of intact rocks.
In order to evaluate the reliability of proposedtinoel, m values estimated from the proposed
method are used in the HB criterion to predictahtack strength. The predicted intact rock
strength is then tested against experimental imtaait strength using 908 sets of triaxial tests
together with our laboratory tests. Results from tomparison show that values calculated
from the proposed method can reliably be usedenHB criterion for estimation of intact rock
strength, with small discrepancies between estidhated experimental strength, when triaxial

test data are not available.

1 Introduction

The Hoek-Brown (HB) criterion (see Eq. 1), whichswaitially proposed by Hoek and Brown
(1980) for estimating intact rock strength, regsiitgvo intact rock properties, namely, the

3



uniaxial compressive strength (UCS) of the intamtkroc;and a constant of the intact rock

m.

ci

05
01=03+0ci(m%+1j 1)
Further, it was extended to estimate the rock msaemngth by using the Geological Strength
Index (GSI) and a disturbance factorto reduce intact rock properties (Hoek et al. 2002)
Currently, the HB criterion, whose input parameteen be directly estimated from the
measurement of rock mass fracture characterisB&)( disturbance conditiorDj and intact
rock propertiesd; andmy), is widely used in rock engineering (Priest 200l enez et al. 2008;
Shen et al. 2012). The details of application asléction of GSI and can be found in the
papers by Marinos et al. (2005) and Hoek and Dielgi(2006).

For the intact propertiegshe parametem depends upon the frictional characteristics of the
component minerals in the intact rock and it hasgaificant influence on the rock strength (Hoek
and Marinos 2000Regression analysis of triaxial tests over a rasfgenfining stress; can be
employed to estimate the valuesmf However, triaxial tests require time-consumingtitey
procedures, and they are not always routinely coteduat the early stage of a project (Cai 2010).
One the other hand, the traditional compressivis t&scylindrical specimens can be carried out
easily and economically. The value ®f can also be predictedom the point-load index test
using unprepared rock cores or non-destructivéenggsbethods, such as the sound velocity tests
(Karakus and Tutmez 2004; Karakus et al. 2005)rdthee, it is useful to develop a simplified
method thain values can be estimated from UCS values in theralesof triaxial tests. Based
on the analysis of extensive triaxial tests in dlagabase, here, we propose a simplified method

that can estimaten, values using only UCS and rock types.



In this paper, the database and indicators to sigzesliction performance of the available
methods that estimatg values are introduced in section 2. The existinghows for estimating
m valuesare reviewed in section 3. The proposed methodvahdation are presented in section

4. The prediction performance of the proposed amgtieg methods is compared in section 5.

2 Database and prediction performance indicators

We collected an extensive database of triaxias testintact rocks from Singh et al. (2011) and
‘RocData’ (2012). The database compiled by Singhl.ef2011), without the inclusion of tensile
strength tests, includes 1190 sets of triaxialstestrresponding to 158 groups of data. The
database we collected from ‘RocData’(2012) inclu@ié8 sets of triaixal and tensile strength
tests corresponding to 112 groups of data.

The strategy we used to evaluate the reliabilityhef existing and proposed methods is that:
m values calculated from different methods are useéde HB criterion to estimate the values of
intact rock strengtla;_estunder confining stresses testfor a given group of triaxial testrq test
03 _tes) data. The estimated rock strengihes:is then compared with that from the experimental
rock strengthoy st The coefficient of determinatiorR{), discrepancy percentag®,] and
absolute average relative error percentage (AARE®)xdopted as indicators to assess the rock

strength prediction. Their definitions are showrknfs. 2 to 4.

2
(Jl_test - Jl_est)

R?=1- (2

. 2
(0' i_test —0: 1_test)

M=ip=

1
[y

D = Ul—e#dl—‘e“ x100% 3)

p
Ul_test



%

1_est

N | -
Z Jl_test

i=1 J::._test
N
whereN is the number of testing data uset], s:andd's esrare the intact rock strength, as

(4)

AAREP=

obtained from the experimental data and derivenhfiloe HB failure criterion in which values
are calculated from different methods. sis the mean value of the experimentalesivalues.
By definition, the smaller the AAREP is, the momdiable the estimatiorD, is the relative

difference between predicted and experimental walue

3 Thereview of existing methodsfor estimating m; values

There are three methods (regression analysis, ljwedeandR index) commonly used for
estimating the Hoek-Brown constantvalues. The most accurate method that can giverbels
strength estimates is to carry out regression arsalyf triaxial test data. In the absences of
triaxial testsm values can also be obtained from guidelines pregpbdy Hoek and Brown (1980)
and Hoek (2007). ThR index,the ratio ofo; to tensile strength;, was also suggested by many
researchers as an alternative way to estimatealues when triaxial tests are not available.
There is also another new method proposed by @di0)2for the prediction afny directly from
the UCS of the intact rock, in whiam values depend on the ratio of crack initiatioressr
obtained using acoustic emission techniques tg#ak strength. However, the existing triaxial
tests in the database do not include the craciatioih stress of rock samples. Therefore, Cai’s

method will not be adopted for the comparison stadpis research.

3.1 Regression method
In order to obtain the best rock strength predictidoek and Brown (1997) suggested that the

values ofm should be calculated over a confining stressange from 0 to 0.5 by using



regression methods, and at least five sets ofiatiaests should be included in regression
analysis.Read and Richards (2011) suggested that the moatae method of assessing
values is regression analysis (including triaxigliaxial compressive and tensile tests) within the
confining stress range fromto 0.5;.

Given thatm values calculated from statistical analysis, thiéability of the calculatedn
values depend on the quantityd quality of testing data used in the regressiethod.Research
by Singh et al. (2011) indicated that the rangecarfining stressrz can have a significant
influence on the calculation afi. Table 1 shows a comparison study on the calculadf m
values from different confining stresgfor limestone conducted by Schwartz (1964). THaesa
of m calculated using different combinations of dats see shown in Table 1. For example, if
the first three data sets are seleateavould be equal to 5.16. However, if all elevenadabints
are usedm value will then be 1.21. The value @fin Table 1 represents the ratio of the
maximum to the minimum afy value, for exampleT=m_ma/Mm_min=5.16/1.21=4.26 in this case.
T is equal to 1 means there is no variation in gr@ametem, although different sets of data are

used.



Table 1 Estimatedh values by regression analysis using triaxial desa at different confining

stresses
Da(tl‘z)sets 53[MPa] o, [MPa] m R AAREP %
1 0 44 - - R
2 6.5 66 - - -
3 13.7 85 5.16 0.52 12.65
4 20.3 99 4.63 0.67 10.58
5 27.9 109 3.53 0.88 7.15
6 34.4 119 2.97 0.93 6.65
7 41.2 128.2 2.54 0.94 6.95
8 48.4 135.1 2.07 0.91 8.30
9 55.4 141.9 1.68 0.84 11.09
10 62.3 149.1 1.40 0.77 13.53
11 68.4 156.5 1.21 0.71 15.17
T 4.26
“Last test for whichrs<0.50¢;
m
5.16
200 Test dat ;‘,22
HB envelope 2.97
2.54
160 vl 23
© 1.40
o 1.21
>
— 120
o)
80
40 4 1 1 1 1 1 1

0 10 20 30 40 50 60 70
05 [MPa]

Fig. 1 The Hoek-Brown failure envelopes using défem values



The results show that in this case the valueyafalculated from the regression method over a
confining stresss; range from 0 to O&; (N=6) gives the best rock strength prediction with
AAREP= 6.65%, compared with the suggested rangen ffb to 0.5 (N=4) which has
AAREP=10.58%. It should be noted that if all théadaoints N=11) are selected whesg range

from 0 to 1.6ithe value of AAREP is up to 15.17%.

To extend the analysis to other triaxial testsvarous rock types, the sensitivity of was
tested using a large database compiled by Singh &011). Histogram in Fig. 2 showWwssalues

distribution for a complete comparison.

60
51 T Percentage ~ Cumulative percentage
1 4.4% 4.4%
50 15 32.3% 36.7%
2 25.9% 62.7%
41 25 12.7% 75.3%
40 - 3 5.7% 81.0%
> 3.5 2.5% 83.5%
8 >3.5 16.5% 100.0%
()
S J
= 30 26
o
20
20
10 7 9
4
1 1.5 2 2.5 3 35 >3.5
T ranges

Fig. 2 Comparison of sensitivities to the confinsigess range employed foy fitting, as

indicated by th@ parameter

Based on the assessmentpthe results illustrate that the parametehas high sensitivity to

variations in confining stresss. 37.3% of the data sets haVevalues greater than 2. This



statistical analysis indicates that discrepancidbe predicted values af using different sets of

test data can result in reducing confidence irptieelicted rock strength values.

3.2 Guidelines method

The m values depend on many factors, such as mineral @sitigm, grain size and cementation
of rocks. According to some general pattern todbkelation betweem; and rock types, Hoek
and Brown (1980) proposed guidelimasvalues for different rock types which can be ufed
preliminary design when triaxial tests are not de. The latest version of guidelines was
proposed by Hoek (2007), associated with a morailddt lithological classification of rocks
with the range ofn values which are dependent upon the accuracyeoféblogical description
of rock types. The relations between guidelimeand rock types were extensively evaluated by
Mostyn and Douglas (2000) for a variety of rockegpTheir comparison results showed that the
correlation between guidelines and calculatedalues is not quite strong; generally the range of
calculatedm values using the regression analysis has a musdt gpread than those in the
guidelines.

For example, Fig. 3 shows a comparison study betwe&om guidelines and that from the
regression analysis for 63 groups of data from Isiegal. (2011) and ‘RockData’ (2012) for
sandstone. The results show that compared withHtek’s (2007) guidelinean =17+4 for
sandstone, only 35% of data lie in the indicatedyea The minimum and maximum valueswf
are 3.9 and 36.6, respectively. Such a large vamiatange presents a major challenge for

researchers and engineers to choose an appropyiaéue for a specific rock type.

10
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Fig. 3 Distribution oim values for sandstone

3.3Rindex method

The R index, the ratio ofo; to tensile strengtly;, was also suggested by many researchers
(Mostyn and Douglas 2000; Douglas 2002; Cai 20kzdRand Richards 2011) as an alternative
way to assessy values in the absence of triaxial test data. knewn that direct tensile test is
not routinely carried out as a standard proceduraany rock testing laboratories because of the
difficulty in specimen preparation. Therefore, mdit methods, such as Brazilian tests are
widely used to estimate tensile strength in therditure. The relations betweenandR which

are calculated from direct and Brazilian tensilgtdeare compared as shown in Fig. 4. The solid
diagonal line in the figure represe®sm. The upper and lower dash lines represent thelérun
estimate and over-estimate of tievalues, respectively. It is found that only 4 oti67 sets of

data fall out the lineny =Rt6, which suggested that the absolute erromois +6 with a high

11



level of confidence. Fig. 4 also shows that the use of direct tensile test does not improve the

prediction capability of estimating; values compared with Brazilian tests.

NOTE:
This figure/table/image has been removed
to comply with copyright regulations.
It is included in the print copy of the thesis
held by the University of Adelaide Library.

Fig. 4 Correlation betwedR andm, after Read and Richards (2011)

4 Proposed method for estimating m; values

Considering that the UCS of the intact rock is one of the most important rock properties for rock
engineering application and can be estimated relatively straightforward in a cost-effective way,
we proposed a new method to estimatevalues directly from the UCS when triaxial test data

are not available. The HB criterion can be re-written as follows:

0-1 = 0-3 +Uci (mnO-S +1)0.5 (5)

12



wheremy,, =m/og;, is the normalizedy for the HB criterion. Our analysis of the databssewed

that there is a strong correlation betwegnands.; (MPa) as shown in Fig. 5.

4 ‘
. © Coal
35 o Dolomite
+ Diorite
3r & Gneiss
e Granite
2,51 o Granodiorite |
- A Limestone
g 2 = Marble
15k0 ¢ Quartzites
' * Sandstone
10, % *Shales
\ * Others
0.5+ .
0 50 100 150 200 250 300 350

(o [MPa]

Fig. 5 Correlation betweam, ando; for 28 rock types

" There are 17 rock types included in the ‘Others2gary.

Most of the data lie along the line which has adref decreasing min with the increasergf
By fitting a regression of the curve, Eq. 6 canused to estimate min values frarg for
different rock types.
m, = mag’ (6)
wherem. andmy are constants and their values depend on rock tjipesbest-fit for a general
or unspecified rock type is obtained fag=30 andmy= -1.2.
m, =300."* 7)

The values of normalizenh estimated fronw.; can be employed to estimate the strength of

intact rock at different confining stressgsusing Eq. 5. The prediction performance of Eqof7 f

13



general rock types is shown in Fig. 6 which compastimated rock strength with experimental

rock strength using 1190 sets of triaxial test datee values o and AAREP for Eq. 7 are

0.903 and 13.55%, respectively.

10—
- © R2=0.903 AAREP=13.55% @g@
o |
&
L (@]
Q,
10% @@@ 1
[ @O
T
o
=3
B, 2 o
bo] 10* O _
3 i
g ®
@ o
S0
10' 7 ]
0
10 L N | Ll L MR | L N
10° 10" 10° 10° 10*

Experimental ol[M Pa]

Fig. 6 Rock strength prediction performance usiqgEfor general rock types

To produce the correlations for specific rock types considered five most common rock
types from the database in the ‘RocData’ (2012)vimch there are at least 12 groups of data
with 115 triaxial tests available. Table 2 liste thumber of groups and triaxial tests available, as
well as the ranges @k, o; andog; of tests for each rock type. It also presentsbis-fit of m.

andmy that can be used with Eqg. 6 to estimatefor each rock type, corresponding to their rock

strength prediction performance (as indicated®bgnd AAREP values).

14



Table 2 Best filn. andmy constants to estimata,, usingo.; for specific rock types

Data  Data o [MPa] Oama’ OLma M my R AAREP
Rock Type

groups  points  (min) (max) [MPa] [MPa] [%6]
Coal 32 208 5.3 92.0 714 2420 120 -1.70 0.92 538.1.
Granite 12 115 82.9 256.0 700.0 2700.0 100 -1.20990. 7.88
Limestone 21 140 46.9 302.4 56.0 566.3 22 -1.15 30.98.38
Marble 15 136 15.8 137.8 165.0 635.0 100 -1.55 0.963.84
Sandstone 32 309 26.0 266.5 150.0 739.3 50 -1.2695 0. 6.95
Generdl 158 1190 5.3 507.0 31000 76100 30 -1.20 0.90 5513.

353, min=0 in all cases’oy. min=cci, min in all cases‘To be used when

specified.

15
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Fig. 7 Correlation betweam, ando; for specific rock types corresponding to theirkrstrength

prediction performances
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Fig. 7 shows the best-fit regression curve (baseBa 6) that we obtained for each specified
rock type; and it also compares experimental vali#s those predicted valuesingo. and the
best-fitm. andmy constants for each rock type.

The results show that there is a close agreemdntebe estimated and experimental rock
strength values. The values Bf are higher than 0.92 for all rock types, and takies of

AAREP for all rock types are less than 9%, exceptioal with AAREP= 11.55%.

5 Comparison of therock strength prediction performance

Firstly, the prediction performance of the proposedthod was compared with that of the
existing methods using our laboratory tests coretlion Hawkesbury sandstone obtained from
New South Wales. Our laboratory tests include 38 stuniaxial compressive tests, 32 sets of
Brazilian tensile tests and 39 sets of triaxial pogssion tests with confining stregs range
from 2 to 21 MPa. The mean valuesogfands;are27.20 and 2.02 MPa, respectively. At least
two sets of triaxial tests were carried out undeapeacified confining stress; , and the mean

values ofo; for a given value ofswere taken for the calculation as shown in Fig. 8.
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Fig. 8 Comparison of experimental rock strengtthwitedicted rock strength using different

methods

We provided two lines to show the predictions of ptoposed method: one correspondsito
= 15.50 using the general rock type=30 andmy =-1.2 (see Table 2) and withi= 27.20MPa;
the other corresponds to a valuenpf= 21.18 that would be obtained for a specific roge, in
this casen:=50 andmy =-1.26 for sandstone (see Table 2). We also gealiines for guidelines
method withm = 17.0,R index method withmy =13.47 and regression method with= 23.67
which is calculated over a confining stressg$rom 0 to 0.2; and can give the best strength
prediction. The results of such comparison studytlen prediction performance of different

methods are shown in Table 3.
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Table 3 Comparison of the prediction perfromancditbéérernt methods using the sandstone

laboratory test data

Proposed Proposed
Regression Guidelines R index
Test data (general) (specific)
m=23.67 m=17.0 m=13.47 m=15.50 m=21.18
03 O1,0bs 01 ,est Dp 01 ,est Dp 01 ,est Dp 01,est Dp 01,est Dp

[MPa] [MPa] [MPa] [%] [MPa] [%] [MPa] [%] [MPa] [%] [MPa] [%]

0.0 27.2 27.2 0.00 27.2 0.00 27.2 0.00 27.2 0.00 .227 0.00

2.0 53.4 470 -11.86 428 -19.79 40.4 -24.34 41.821.69 455 -14.73
3.0 57.2 54.7 -4.44 49.1 -14.17 45.9 -19.83 478 6.53  52.7 -7.95
4.0 67.4 61.6 -8.59 54.9 -18.52 51.0 -24.36 53.3 092 59.2 -12.16
5.0 70.3 67.9 -3.32 60.2 -14.26 55.7 -20.71 584 6.94 652 -7.24
6.0 66.1 73.9 11.73 65.3 -1.24 60.2 -8.93 63.2 34.4 70.8 7.08

8.0 86.8 84.8 -2.38 74.6 -14.04 68.6 -21.01 72.1 693 811 -6.54
10.0 90.0 94.7 5.22 83.2 -7.54 76.4 -15.19 80.4 .70 90.6 0.67
15.0 112.7 117.0 3.78 102.6 -8.97 94.0 -16.65 99.012.14 1119 -0.76
20.0 139.8 136.7 -2.19 1199 -14.18 109.8 -21.43 5.81 -17.17 130.7 -6.45
21.0 136.6 140.4 2.77 123.2 -9.81 112.8 -17.43 918.-12.96 1343 -1.71

AAREP 5.12% 11.14% 17.26% 13.68% 5.94%

"m calculated from regression methoe4g<0.25.))

The results show that the prediction performancehnefproposed method is quite acceptable;
the AAREP value for general rock type relationd$68%. The value of AAREP for specific
rock type relations is equal to 5.94%, which isseloto the regression method with
AAREP=5.12%. This illustrates that the proposedhmétcan provide good estimates of intact
rock strength based on the information of the U€Bitact rock; and that such estimates can be
improved with rock specific relations.

The results presented in Fig. 8 and Table 3 ordyide one specific example for a sandstone

rock. To compare the predictive capabilities of greposed method with other methods, we

19



conducted a comprehensive study using the 112 grofigata which includes 908 triaixal and
tensile strength tests for five common rock typgsnadicated in Table 2. (The intermediate
values were used for the guidelines methodyalues for coal, limestone, granite, marble and
sandstone are 14.5, 11, 32, 9 and17, respectivEhe)m values calculated from different
methods are used in the HB criterion for rock sitkrprediction. For a given of group data, the
values of AAREP were calculated for different metho

Fig. 9 presents the results of such comprehensnadysis, in which we adopted the
cumulative distribution functions (CDF) of AAREPalues to assess the prediction performance
of different methods. (The CDF indicates probaletitare calculated by dividing the number of
cases where the value of AAREP is smaller thanreskiold by the total number of cases
considered.) We included two CDF lines for reg@ssanalysis: one for excluding tensile

strength (X 63<0.50;) and one for including tensile strength < 63<0.50)).
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Fig. 9 Cumulative distribution function (CDF) ofaualiction errors (AAREP) of different

methods using five rock types in Table 2

Results indicate that the regression analysispafse, gives best rock strength prediction. It
is also found that the inclusion of tensile stréngtthe regression analysis to calculae/alues
does not improve the capability of the predictidrraxk strength, as shown in Fig. 9. For the
proposed method, when no rock specific informai®mcluded, the AAREP for 88% of the
data sets is less than 25%. However, when rockifgpedormation is included, the proposed
method provides the good predictive capabiliti¢tse CDF curve is close to the regression
method, and the prediction performance is obviobsiyer than guidelines method. Although
index method gives higher CDF values when AAREP {%)our proposed method outperforms

R index method when 7<AAREP (%) <30. For exampléhéf permissible AAREP is 10%, then

21



the value of CDF within this error by the proposeethod is about 75%, slightly lower than that
from the regression method at 78% and higher thahftomR index and guidelines methods

with AAREP are equal to 70 and 62%, respectively.

6 Conclusions

The constant is one of the basic input parameters requiredhfeHB failure criterion. Triaxial
tests, which are time-consuming and expensivepeaamployed to calculata values using the
regression analysis. However, at the early stagenafiy practical applications, we need to
estimate rock strength without having triaxial tdata. In those cases, it is useful to estimate
rock strength based on simple methods.

We proposed a simplified method (Eq. 6 togethehwack specific relations in Table 2) that
can estimaten (or normalizedn) values using only UCS and rock types. In ordepresent the
simplified method, we used 112 groups of data fee tommon rock types in the existing
database together with our laboratory tests.

The reliability of the proposed method was evaldated compared with the existing methods
(guidelines andR index), which are commonly used for estimatingvalues when triaxial data
are not accessible.

The results show that the proposed method carbheliee used in the HB criterion to estimate
intact rock strength, with small discrepancies leetwestimated and experimental strength. The
values ofR? are greater than 0.92 for all rock types, andvidlees of AAREP are less than 9%,
excluding coal with AARER= 11.55% (see Fig. 7). Comparison results in Figls® indicate
that the proposed equation for specific rock typiedd better intact rock strength prediction

compared with that from the guidelines dthdex methods.
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It should be noted that the proposed normalimeando;irelations for rock types are based on
the analysis of existing triaxial test data andré&bility of estimation of these relations degden
on the quality and quantity of triaxial test datderefore, the proposed rock specific relations

are open to further improvement as more triaxistl data become available.
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Chapter 2

Deter mination of M ohr-Coulomb Shear Strength
Parameter s from Generalized Hoek-Brown Criterion for

Slope Stability Analysis

1 Introduction

Rock slope stability is critical for many aspectsyning and civil engineering projects, such as
open pit mining and large dam construction. Onghefmost popular approaches for estimating
the factor of safety (FOS) of a given slope is lihet equilibrium method (LEM) where rock
mass strength is usually expressed by the lineadnrdMoulomb (MC) criterion. Currently, a
widely used criterion to estimate rock mass stiemngtthe non-linear Generalized Hoek-Brown
failure criterion (GHB) since it is able to estimahe shear strength of various types of intact
rock and rock masses (Priest 2005). If the GHBegadn is used in conjunction with LEM for
analyzing the rock slope, methods are requiredeterthine the equivalent MC shear strength
parameters cohesianand angle of frictionp at the specified normal stress from the GHB
criterion. The determination of reliable shear rsiith values is a critical step in slope design as
small changes in shear strength parameters calt iresignificant changes in the value of the
FOS (Wylle and Mah 2004). In past decades, methadthe determination of shear strength
from the Hoek-Brown criterion for slope stabilitpalysis were proposed by Hoek (1983), Priest
and Brown (1983), Londe (1988), Hoek (1990), Hoe#t Brown (1997), Kumar (1998), Hoek et

al.(2002), Carranza-Torres (2004), Priest (200%),aRd Liao (2010),Yang and Yin (2010).
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Comprehensive review of the literature of estingBhear strength of the Hoek-Brown criterion
can be found in the paper by Carranza-Torres (208dyvever, as Brown (2008) has noted,
deriving exact analytical solutions for estimatthg shear strength of a rock mass modeled using
the GHB criterion has proven to be a challengirgk tdue to the complexities associated with
mathematical derivation.

In the special case of the Hoek-Brown paramatd).5, an analytical solution proposed by
Bray and reported by Hoek (1983) yields accuraseilte for intact rock with the Geological
Strength Index (GSI) is equal to 100. However,ha more general case @0.5 no accurate
analytical solution is available (Carranza-Torr@94). In this paper, an approximate analytical
solution for estimating the equivalent MC paramgfer highly fractured rock masses governed
by the GHB criterion is proposed. The proposed @xiprate analytical solution yields fairly
good results when GSI<40 and provides great fléwildor the application of the GHB criterion

in conjunction with LEM for highly fractured rockass slope stability analysis.

2 Equivalent M C parametersfor GHB criterion

The non-linear Hoek-Brown (HB) criterion, originalbresented by Hoek and Brown (1983) has
been successfully used in the field of rock engingefor the past three decades to estimate rock
mass strength. The latest version is the Genedatimek-Brown (GHB) criterion presented by
Hoek et al. (2002) is:

0, =0, +0, (M + s] 1)

cl

m,, Sanda are the Hoek-Brown input parameters which candtienated from the Geological

Strength Index (GSI) for the rock mass, given by:
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M @

oo o ®
Savey

a=0.5+ Q @

where, s, and o3 are the major and minor principal stressegjs the uniaxial compressive
strength of the intact rock mags, is the Hoek-Brown constant for intact rock maSsis
the disturbance factor.

The GHB criterion Eqg. 1 can also be expressedrimgeof normal stress,and shear stress

on the failure plane by using Eqgs. 5 and 6 whichevpgoposed by Balmer (1952).

0,=0,+AB%)_ )
dg,/00,+1

r=(0,-0,)./00,/00, (6)

Taking the derivative af;with the respect of; of Eg. 1 and substituting the results into Egs. (5

and (6) respectively, the GHB criterion can be ezped by the following equations

Uci ( rno0-3 + S]
g, =0, + %a — (7)
2+am, (m"ai“ + SJ
a-1
r=(o, —03)\/1+ am)(aﬂag s] (8)

Fig. 1 gives a graphical representation of the HE:igon expressed by (a) major and minor

principal stresses (b) normal and shear stresses.
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Fig. 1 (a) Major and minor principal stresses fa HB criterion, (b) Normal and shear stresses

for the HB criterion

The equivalent MC shear strength parameters camalbalated by locating the tangent of the
HB envelope with the specified normal stress as illustrated in Fig. 1b. The slope of the
tangent to the HB failure envelope gives anglerictibngand the intercept with the shear stress
axis gives cohesioa

Kumar (1998) proposed the general numerical solufar estimating the equivalent MC

shear strength parameters from the GHB criteriguaions are expressed as follows:

(1-2) e . \(1-a)
i(”’l;ﬂ+ sj = (1 .smqo) (1+ smqoj 9)
m,a (o sing a
— aci COS(D an :
=G0y %ve w0)
2(1+ awj ¢

c=71-0,tang (11)
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In the Egs. 9 to 11, the values of input parameters, a ando; are known and normal stress
on can be estimated by adopting an appropriate stresysis approach (Hoek and Brown 1997).
In general case adé#0.5, in order to calculate the shear strength perars, firstly Eq. 9 is
solved iteratively to calculate an angle of frictipvalue. Having obtaineq; shear stressand
cohesionc can be calculated from Egs. (10) and (11) respagti In special casa=0.5, the
analytical solution derived by Bray and reported Hiyek (1983) can yield the accurate MC

shear strength parameters for the Hoek-Brown nadsefThe equations are expressed as follows:

h=1+ 16( mo, + sn'ci) (12)
3nf0-ci
6= 1( 0+ arctan—j (13)
vh’=1
1
Y= arctan— (14)
Vdhcog 9-
7 =(cotg- cosp) m"8 - (15)
c=r-0,tang (16)

whereh andé are intermediate parameters.

This method provides great flexibility for the uskthe original HB criteriong=0.5) in rock
slope stability analysis. However, in the GHB arda, if EqQ. 4 is used to calculate the value
of a can vary from 0.51 when GSl is 40 to 0.5 when {S3SI00. Since the Bray method is based
on a=0.5, when GSI=100, the equation gives very goodlte$or rock masses where GSI>40.
On the other hand, when 0<GSI<40 the valua @fin vary from 0.666 to 0.51. Clearly, this
analytical solution can't yield satisfactory resufor a geological condition where the value of
GSI for a fractured rock mass is relatively lowiéBt 2005). Table 1 gives the comparison of

shear stress values between the Bray method amditherical method proposed by Priest (2005)
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for a rock masso; =30000kPam=20, 0,=3000kPa,D=0.8, 0<GSI<40. The results are also
plotted in Fig. 2. It is shown thatvalues from the Bray method are relatively ovenested
compared with the Priest method, and with the demref the GSI values the discrepancy of

can vary from 2.8% when GSI=40 to 98.1% when GSI=2.

2400 \ \ \

— Priest numerical method
2200+ | + Bray analytical method v /

2000+ + .

1800 +

1600 + .

1400 . .

1200 ot .

Shear Stress 1 KPa

1000  +* .

800+ .

600

4000 5 10 15 20 25 30 35 40

GSI

Fig. 2 Shear stress versus GSI
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Table 1 Shear stresses obtained from Priest anddBtations over a range of GSI

Uniaxial compressive strengtty, (kPa) 30000
Hoek-Brown constant for intact rocky 20
Geological Strength IndexzSI 2-40
Normal stressgy (kPa) 3000
Disturbance facto) 0.8

Shear stress, (kPa) Discrepancy of
GSl Bray Priest Bray method (%)

method method

2 965.88 487.58 98.1

4 1015.50 568.38 78.7

6 1067.30 652.19 63.6

8 1121.10 738.29 51.9

10 1177.20 826.08 42.5

12 1235.40 915.13 35.0

14 1296.00 1005.10 28.9

16 1358.80 1095.80 24.0

18 1424.00 1187.10 20.0

20 1491.60 1278.90 16.6

22 1561.70 1371.20 13.9

24 1634.20 1464.20 11.6

26 1709.20 1557.90 9.7

28 1786.80 1652.50 8.1

30 1866.90 1748.00 6.8

32 1949.70 1844.60 5.7

34 2035.20 1942.50 4.8

36 2123.40 2041.90 4.0

38 2214.50 2142.80 3.3

40 2308.40 2245.60 2.8
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3 Proposed method

Based on the numerical method proposed by Kuma®8)1%e authors propose a new
approximate analytical solution for estimating M€ shear strength parameters from the GHB
criterion for a highly fractured rock mass whereGB{<40. The expressions related to the

derivations are:

1. After rewriting Eqs. 7 and 9, the angle of fioct ¢ can also be expressed by the following

equations
g=arcsin 2 — 17)
2+am, s m+ s
Jci
95 _9n _ i (18)

Uci aci o
2+am, (moa?, + sj

ci

As o3/og; exists on both sides of Eq. 18, in order to idgrdh acceptable value fet/o.i, EQ.
18 must be solved iteratively. Therefore, with {hepose of presenting an approximate
analytical solution for estimating the equivalenCMhear strength parameters, the critical
step is to present an approximate analytical smiufor the intermediate parameteyo.;
expressed byn, s, a anday/o. Having obtainedrs/og, the angle of frictiom shear stress
and cohesiog can be directly calculated from Eqgs. 17, 10 andddpectively.

2. According to Eq. 3, the value sef< 1.2E-3 when GSI<40. In order to simplify Eq. %8s

assumed to equal zero and Eq. 18 becomes:
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a

gy = & 1+ —rnol—a (19)
o. 0.
ci ci 2(%) +a

..

Cl

3. In order to calculates/og in terms ofmy,, a anday/o, a linear function is used to replace the
non-linear functiondy/a. )**which is part of Eq. 19.

1-a
g, g,

ci ci

Hoek and Brown (1997) recommended that a rock retasss state of the value &fs.; should
be in the range of 0s3/0:i<0.25 in rock mass slopes. Using the recommengdled values, the
values ofk andi are estimated by linear regression analysis, ¢salts are&k=1.81a+1.31 and
i=0.78-0.37.

4. Substituting Eq. 20 into Eq. 19, the followiexpressions are obtained:

_0,-p=a+y(p+ a-0,) +49, @)
g, = 5
— gsm’ (22)
P 2k
- 2i0-(:i +aaci (23)
2k
k=1.81a+1.3: (24)
i =0.7& - 0.37 (29)

Finally, the angle of frictiopcan be calculated from Eq. 17, shear stressd cohesion can

be directly calculated from Eqgs. 10 and 11, respelgt

4 Validation of the approximate analytical solution

One thousand random sets of testing data are deddrathe strategy described in the following

section. The value of the absolute average relaiver percentage (AAREP) is adopted as an
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indicator to verify the reliability of the proposegbproximate analytical solution. The results
from the proposed approximate solution are compaviéd those from the Priest numerical
method. The smaller AAREP is, the more reliable sb&ution. If the proposed approximate

solution has a perfect predictive capacity, thei@af AAREPwill be zero.

(%~ %
2 x| (26)
N

AAREP=-
whereN is the number of testing setg,and x’; are the results from Priest and the proposed

approximate solutions, respectively.

The process of generating testing data for valitais as follows:

1. Selection of input parameters
Table 2 gives the values of input parameters foregating the testing data. The selection
o3log is based on Hoek and Brown’s (1997) suggestiohttievalues obs/o should be in

the range of 0€3/0:<0.25 in rock mass slopes.

Table 2 Range of input parameters

Input parameters Range
GSlI 0-40
m 1-35
D 0-1
o3loci 0-0.25

2. Calculation of the Hoek-Brown parameters
For the given values of the input parameters, thek-Brown parametensy, s anda can be
calculated from Eqgs. 2 to 4, respectively.
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3. Calculation of the equivalent MC shear stremgttameters anel/o.i
The values oby/o.i can be calculated from Eqg. 18. The angle of bigfi shear stressand

cohesiorc can be calculated from Eqgs. 17, 10 and 11, reispéct

Once the strategy is established, the steps odthbeve are programmed irfdatlab’. The
programming generates 1000 data sets for testiagdimability of the proposed approximate

analytical solution. Table 3 gives the one thousamtlom sets of data employed for the testing

analysis.
Table 3 Data for validation of the proposed appraate solution
Input parameters Calculated HB parameters Output parameters
My s a oo ) tlog clog
No oioi GSI m D
Eq. 2 Eqg. 3 Eq. 4 Eqg. 18 Eq. 17 Eg. 10 Eq. 11

1 0.004 15 8 1.0 0.022 8.8E-07 0.561 0.006 15.7.003 0.001

2 0.007 20 36 0.7 0.469 1.0E-05 0.544 0.015 39@017 0.005

1000 0.127 9 26 03 0.623 1.6E-05 0.591 0.200 0 200.105 0.032

The performance of the proposed approximate acalydolution is shown in Figs. 3to 5. The
solid diagonal line in the figures represents dgutrestimation. Data located under the solid
diagonal line represents over estimation, anddéted above the solid diagonal line represents
under estimation.

The results illustrate that there is close agreénietween the proposed approximate
analytical solution and the Priest numerical solutas shown in Figs. 3 to 5. Compared with the
Priest results, the AAREP of angel of frictignand shear stres#s;; are only 2.2% and 0.7%,

respectively, as shown in Figs. 3 and 4. The pregp@pproximate analytical solution generates
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very good results opandz, however, it is interesting that the AAREPals; is 7.1%, as shown
in Fig. 5. The results show that it is inevitaattEqg. 11 will yield relative large discrepancy of
cohesionc that is different from the Priest’s results beeaa$ error transformation: Eq. 11
includes a tangent function that tends to increhsedifference between the Priest numerical
solution forcand the proposed approximate solution. Even wheretis only a small difference

in the values of input parametepandz, relatively large discrepancy ofoccurs.

70 T T T
| * AAREP=2.2%|

] ) I (&) [9)]
=] Q =] (=] =]
T T T T T

*
I 1 1 I

Proposed approximate analytical ¢

—
(=]
T
1

0 10 20 30 40 50 80 70
Priest numerical ¢

Fig. 3 Priest numerical versus proposed approximagédytical value ofp
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An example of data from the paper by Priest (209%j)sed for a final check on the reliability
of the proposed approximate analytical solutionhe Example has the following rock mass
parameterss.; =30000kPam=16, GSI=15,,=800kPa,D=0.7. The results of the comparisons

of the equivalent, gandr are given in Table 4.
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Table 4 Comparison results of shear strength paeaswith different methods

Uniaxial compressive strengtty, (kPa)

Hoek-Brown constant for intact rockqy

Geological Strength Index, GSI

Normal stressg, (kPa)

Disturbance factoD

30000

16

15

800

0.7

Discrepancy

Methods Shear Strength Parameters
Percentagelip)%
c (kPa) ¢ 7 (kPa) c (kPa) ¢ 1 (kPa)
Priest Numerical 15143 21.86 472.37
Bray analytical 212.65 26.71  615.15 40.43 22.18 30.23
Proposed approximate
173.14 20.96  479.54 1434 -4.12 1.52

analytical

Data in Table 4 show that the proposed approxirmasdytical method gives slightly different

results from the Priest numerical method. The disancy percentage®) for c, ¢ and ¢

arel4.34%, -4.12% and 1.52%, respectively. Comparedthe Priest method, the Bray method
gives relatively high discrepancyp, for ¢, ¢ and r are 40.43%, 22.18% and 30.23%,
respectively. The results of the comparisons efdhfuivalent, ¢ andz over a range of GSI

(0<GSI<40) are given in Figs. 6 to 8. The resulgsirate that the proposed approximate

analytical method vyields slightly different resuftem the Priest method. The AARER ¢ c

andr are found to be 2.9%,10.8%, and 1.1% respectivegmpared with the Bray methods

(AAREP of ¢ c andz are 23.8%, 45.4% and 32.3%, respectively) the qgeg approximate

solution generates much better results.
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5 Conclusions

In this paper, an approximate analytical solutias heen proposed for estimating the equivalent
Mohr-Coulomb (MC) shear strength parameters fromribn-linear Generalized Hoek-Brown
failure criterion (GHB) for highly fractured rockass slope stability analysis.

The proposed approximate analytical solution iedasn Eqg. 18 to build up an approximate
analytical function for the intermediate parametgs. expressed by input parametess a and
on logi. After finding an explicit solution foss/ag;, the value of the angle of frictign cohesiorc
and shear stregan be directly calculated from Eqgs. 17 , 11 ahdrdspectively.

The reliability of the proposed approximate anabftisolution has been tested against the

Priest numerical solution using 1,000 random sédata. The results show that there is close
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agreement in the values of shear strebstween the proposed approximate analytical swluti
and the Priest solution as shown in Fig. 4. In @olddj an example of data from the paper by
Priest (2005) has been adopted for a final checkheradequacy of the proposed approximate
analytical solution. The results show that the psgu approximate analytical solution yields
slightly different shear stressfrom the Priest method when 0<GSI <40, the AARERI®ar
stresst from the proposed approximate analytical solutgonly 1.1% (see Fig. 8). This trivial
difference is, of course, unimportant in a pradtisanse. Thus, the proposed approximate
analytical solution provides great flexibility fathe application of the GHB criterion in
conjunction with the limit equilibrium method (LEMpr highly fractured rock mass slope

stability analysis.
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Chapter 3

Direct Expressionsfor Linearization of Shear Strength
Envelopes Given by the Generalized Hoek-Brown Criterion

Using Genetic Programming

Abstract

The non-linear Generalized Hoek-Brown (GHB) criteriis one of the most broadly adopted
failure criteria used to estimate the strength aick mass. However, when limit equilibrium and
shear strength reduction methods are used to anedgk slope stability, the strength of the rock
mass is generally expressed by the linear Mohr-@ohl(MC) criterion. If the GHB criterion is
used in conjunction with existing methods for aaalg the rock slope, methods are required to
determine the equivalent MC shear strength fromGHE criterion. Deriving precise analytical
solutions for the equivalent MC shear strength frii GHB criterion has not proven to be
straightforward due to the complexities associatgd mathematical derivation. In this paper, an
approximate analytical solution for estimating tteek mass shear strength from the GHB
criterion is proposed. The proposed approach isdhas a symbolic regression (SR) analysis
performed by genetic programming (GP).The religpitif the proposed GP solution is tested
against numerical solutions. The results show #hegtar stress estimated from the proposed
solution exhibits only 0.97 % average discrepamoynfnumerical solutions using 2451 random
sets of data. The proposed solution offers greatilility for the application of the GHB

criterion with existing methods based on the M@ecion for rock slope stability analysis.
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1 Introduction

The stability of rock slopes is significant for i@rs rock engineering projects, such as open pit
mining and dam construction. One of the most papwiethods for analyzing slope stability is
the limit equilibrium method (LEM) where rock mastsength is generally expressed in terms of
the linear Mohr-Coulomb (MC) criterion.

The principles of LEM can be applied to determime flactor of safety (FOS) of a given slope
by the method of slices as shown in Fig. 1la. Th& E@n be defined as a function of resisting
force fr divided by driving forcdp. The forces ofg andfp can also be expressed in terms of
shear stresg and normal stress, acting on the base of an arbitrary eleniess shown in Fig.

1b [1].

P u— \U

L f
7
Slip surface
() (b)

Fig. 1(a) The basic of method of slices, (b) Fomesg on a given slice

Fig. 2 illustrates the MC failure envelope. Thepgl®f the tangent to the MC envelope gives

angle of frictiorpand the intercept with the shear stress axis giobgsiorc. The MC criterion
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is linear, therefore the values of shear strengtiampeters and gareunchanged under various
normal stress;, values. Traditional LEM only need unique values ahd gto calculate FOS of
a given slope. That means, arbitrary slice (as showig. 1b) with various normal stregshas

the same and gvalues.

MC envelope

Y

< @

Shear stress

@

V

O-I’]
Normal stressr,

Fig. 2 The MC criterion showing shear strengthmedi by angle of frictiogpand cohesion

The Hoek-Brown (HB) criterion was originally progasby Hoek and Brown [2]. Over the
past 30 years the HB criterion has been widely satbjin rock engineering to estimate the
strength of rock masses. If the HB criterion iscliséth LEM for assessing rock slope stability,
it becomes necessary to determine the equivalensMi@r strength for a failure surface under a
specified normal stress, in a rock mass governed by the HB criterion. Tinaans, sliceg¢as

shown in Fig. 1b) with different values of normaksses,, have varioug andgvalues.
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As Brown noted [3], deriving accurate analyticalusons for estimating the equivalent MC
parameters at a given normal stress from the GirestaHoek-Brown (GHB) criterion [4] has
proven to be a challenging task.

In this research, an approximate analytical sotutior estimating the rock mass shear
strength from the GHB criterion [4] is proposedeTgroposed approach is based on a symbolic
regression (SR) analysis performed by genetic aragring (GP).

Genetic programming [5] is a promising approachohtattempts to find an explicit solution
to explain the relations between the variables.i$oRell suited to geotechnical problems and it
is increasingly used by researchers in geotechmngineering [6-9]. However, there is no
evidence in the literature that GP based approaalesised to estimate the rock mass shear
strength from the HB criterion.

In this paper, review of existing methods for theteimination MC shear strength from the
HB criterion is described in section 2. The GP apph is introduced in section 3. The GP
modeling for the GHB criterion is described in s&ctd. Validation of the GP results is given in

section 5.
2 Equivalent shear strength of the HB criterion

2.1 Introduction of the HB criterion
The non-linear Hoek-Brown (HB) criterion was inilyaproposed by Hoek and Brown [2] in
1980. The latest version is the Generalized Hoekaar(GHB) criterion presented by Hoek et al.

[4] in 2002. The equations are expressed as follows

cl

0, =0,%04 {”L% +Sj (1)
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m, , Sanda are the Hoek-Brown input parameters that depenth@megree of fracturing of the

rock mass [1-4] and can be estimated from the @gzdbStrength Index (GSI), given by :

m =m £28—_14D) 2)

s=d o) (3)
=) _ [P

a=0.5+ % (4)

where, o1 is the maximum principal stresses, is the minimum principal stresses, is the
uniaxial compressive strength of the intact roek,s the Hoek-Brown constant for intact
rock, D is the disturbance factor of the rock mass.

The GHB criterion Eq. 1 is expressed by the refadiop between maximum and minimum
principal stresses. However, it can also be expressterms of normal stressand shear stress

7 on the failure plane by using Egs. 5 and 6 whichevggoposed by Balmer [10].

g, =0 +—(Ul_a3) 5
" 7% 90,/00,+1 ()

1=(0,~0,)y00,/00, (6)

Taking the derivative of,with the respect of; of Eq. 1 to get Eq. 7

ALY
00, o,

Substituting Eqg. 7 into Egs. 5 and 6 respectiviétg, GHB criterion can be expressed by the
following equations

a
g.
a-ci(nl) 3+Sj
a.
+

Cl

a-1
2+am, (m’% + SJ

Cl

0,=0,

(8)
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r=(o, —03)\/1+ am{%aﬁ s] (9)

Cl

Fig. 3 shows a graphical representation of the @GHtrion expressed by (a) maximum and

minimum principal stresses (b) normal and sheasseés.

§ A A
2 2
7 o
s = MC envelope
@
2 3 ’
) (&)
£ =
S wn
=
g GHB envelop
&
=
\/
7 O_n
Minimum principal stressr, Normal stressr,
(a) (b)

Fig. 3 (a) Maximum and minimum principal stressasthe GHB criterion, (b) Normal and shear

stresses for the GHB criterion [27]

The instantaneous MC shear strength parameterbecastimated by locating the tangent of
the GHB envelope under a given value of normabkstg as shown in Fig. 3b. The slope of the
tangent to the GHB failure envelope gives instamtars angle of frictiogpand the intercept with

the shear stress axis gives instantaneous cohesion

2.2 Methods for estimating shear strength fromHBecriterion
The numerical method of determining instantanedesusstrength parameters from the original

HB criterion [2] for slope stability analysis wasitially proposed by Priest and Brown [11].
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After that, a great number of attempts were madestonate the MC shear strength from the
original HB and GHB criteria [1-4, 12-27]. Comprelseve review of the literature and
derivation of analytical and numerical solutions &stimating the MC shear strength from the
HB criterion can be found in the paper by Carrahaaes [1]. In this paper, the numerical
methods proposed by Kumar [17] Egs. (10) to (12) @arranza-Torres [1] Egs. (15) and (16)
will be briefly introduced since these two methedl be used to propose the new approximate
analytical solution in the following section.

One of the general numerical methods for the detertion of the MC shear strength from

the HB criterion was proposed by Kumar [17]. Equiadi are expressed as follows:

(1-a) . . (1-a)
2 o 1-sin sin
—(mo o Sj - . 7) (1+ ¢j (10)
mal o, sing a
e LTS
2(1+ S'”‘/’j (11)
a
c=r-o,tang (12)

Rewriting Egs. (8) and (10) the angle of frictigncan also be expressed by the following

equations [27].

p=arcsin 02 — (13)
2+am| —>m+ s
rT‘!)(O-d nB j
== i’ (14)
— = = 14
o. O, !
ci ci 2+arn)(n‘1)0'3 + S}
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In Egs. (10) to (14)my, S, a, ociandoy, are the input parameters. Deriving a precise dlose
form solution of shear stresexpressed by, s, a, ac;anda, is not feasible mathematically. In
order to calculater value, firstly Eq. 14 is solved iteratively to calate the intermediate
parameteps/og value. Having obtaineak/o., the angle of frictiop can be calculated from Eq.
13, and finally shear stresgan be directly calculated from Eq. 11 [27].

Carranza-Torres [1] proposed a generic form of Balsnequations [10] to calculate the rock

mass shear strength from the GHB criterion. Thextgus are expressed as follows:

. ( £+ ja—l
M M =*s

ci

a-1 (15)
omfn

ci

a-1
a\/1+arn)(na03+%
o
| M—*S

r=0 a-1
o,
2+a —2+s

ci

— Jci 03 :
0'“—0'34'7 mDU—+S 1-

ci

(16)

ci

In order to calculate, for the given values of the input parametess, a ,o.; ando,, EQ. 15
is solved iteratively to calculate tag value. Having obtaineak, Eq. 16 can be used to calculate
shear stress which were implemented with the softwafitde[28] and ‘RocLalj29]. In this
research, the numerical method suggested by CarBmizes [1] will be used for testing the
reliability of the proposed approximate analytisalution in the section 5.

As Brown [3] noted, due to the complexity of theth@amatical derivation, an explicit closed
form solution providing the MC shear strength friva GHB criterion is a challenging task.

A widely used analytical solution in rock slope ewgring was presented by Hoek et al. [4].
This solution gives a convenient way for calculgtthe average MC parameters from the GHB

criterion. However, it does not provide a directtinoel for estimating instantaneous MC shear
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strength parameters [22]. Until now, in the geneesle 0a#0.5 no accurate analytical solution
is available to calculate instantaneous MC sheangth of rock masses from the GHB criterion.
In the special case whex0.5 and GSI=100 the analytical solution derivedlogy and reported
by Hoek [12] yield the accurate MC shear strengitwever, this analytical solution cannot
generate satisfactory shear strength of rock masgbslow GSI values [27]. An alternative
approximate analytical solution was proposed bynSke al. [27], which produces quite
satisfactory shear strength of highly fractureckno@asses where GSI<40.

In this paper, an approximate analytical solutiomol provides the shear strength of rock
masses fairly good for the whole range GSI valuas proposed as an extension to the work by
Shen et al. [27]. The proposed approach is base@d @ymbolic regression (SR) analysis

performed by genetic programming (GP).

3 Overview of genetic programming

In this section, genetic programming (GP) will figebe introduced; further information about

GP can be found from Koza [5].

3.1 Basic concepts of GP

GP was originally proposed by Koza [5]. GP is atergion of genetic algorithm (GA) [30]. GP
is a method for finding a solution to complex pehk via evolutionary algorithms and is
usually expressed as a tree structure that corsfigegminals and functions. Fig.4 is a typical
tree structure of the function &fy-sin(z), which contains terminalx,(y, 3, and functions (-, *

andsin).
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“Terminal

Fig. 4 A typical tree structure of the functionxdf/-sin (2)

3.2 How GP works

The general flow chart of a GP paradigm is giveRim 5.

Generate initial populatic

Evaluate the fithess of ea

individual in the populatio

Gen=Gen+! N . . Yes
Termination criteria satisfie

Apply genetic operations
Reproduction, Crossover and Mutat

New populatior

Fig. 5 A basic flow chart for GP
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As with GA, in GP the individuals in the initial polation are randomly generated. Various
methods are available to generate the initial papan, such as the full method, grow method
and ramped half-and-half method [31]. Then, theeBs of each individual is calculated. The
fitness function used in this study is the sumhef &bsolute difference of the accurate numerical
data with predicted GP results (see Eq. 17). Lditmess value indicates that the individual has

the better structure.

N
fithess= ;‘ y- )4 (17)
whereN is the number of individualg; andy’; are the accurate numerical and GP predicted
values, respectively. Using fitness value as agyuachumber of individuals are chosen randomly
from the population using appropriate selectionhods (such as tournament and roulette wheel
selections) [5, 9]. The “best” parents have morpaofunity to create “better” offspring. After
that, genetic operators (such as crossover andtionjtan GP are adopted to generate the next
generation. The most commonly used form of crogsoperation is tree crossover [6]. Random
crossover nodes are chosen in each parent tree. iTlkesates the offspring by swapping the

respective subtree at the crossover node, agdtaestin Fig.6.
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Offspring 1:xy - € Offspring 2:y* — sinz
Fig. 6 Crossover operation in genetic programming
One of the usually adopted mutation operators istpoutation.A random node is selected
from the parent tree and is substituted with a yeyeherated random node having a terminal or

a function. Fig.7 illustrates a typical mutatioreogtion in GP.

Before mutationxy— sirz After mutation:xxy+ sinz

Fig. 7 Mutation operation in genetic programming
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The choice of crossover and mutation operationradabilistic. Often the crossover rate is
more than 90 percent. However, mutation plays admiale in GP and, therefore, the mutation
rate is quite low, typically being in the regionarie percent. It can even be disregarded in most
cases [5]. The GP will run until the terminationtemion is satisfied, such as maximum
generation. Ultimately, the best individual withetfowest fithess will be found. Related GP

parameters for the training models in this researelrsummarized in Table 1.

Table 1 Parameters used in GP analysis

Parameters Values
Terminals X1, X2, Xz andxy
Functions +,-,*, /, power, log, exp, sqrt
Fitness function type Sum of absolute differeno&p
Selection method Tournament
Population size 200
Maximum tree depth 17
Maximum generation 200
Recombination probability Dynamic
Mutation probability Dynamic

4 GP modelling for the GHB criterion

GP is composed of functions and terminals apprtgtia the characteristics of the problem. If
the functions and terminals selected are not apjatepfor the problem, the desired solution

cannot be achieved [9].Therefore, in order to owere the limitation of GP and achieve
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satisfactory results, it is crucial to have a desplerstanding of the problem to choose the
appropriate GP model.

In this research, there are two GP models availflénding a function forr expressed by
input parametersn,, S, a anday/o.. The first model is based on Eq. 14, which builgsa
function for intermediate parameteyo. expressed by, s, a anday/o, Having derived the
approximate analytical solution e#/o¢j, then the angle of frictiap can be calculated from Eq.
13, and finally using Eqg. 11 the closed form salntifor calculating shear stregscan be
achieved. The second model is based on Eq. 10 hwdirectly builds up a function fogin
terms of input parametens,, s, a andoy/o.i. Having obtainedy thenz can be calculated from Eq.
11. Both GP models were tested in this researcher AI0O0 computer runs with the same
calculation parameters, it was found that the fingtdel yields better results than the second
model.

The first model tries to find an analytical solutifor intermediate parametey/o.. The main
structure of Eq. 13 for calculatingwas preserved, which ensures that the resultssaaecurate
as possible. However, the second model ignoresrigmal relationship betweepand the input
parameters in Eq. 10. Therefore, Eq. 10 yieldgivelly worse results when compared with the
first model.

GPLAB a Matlab GP software package developed by S8t was adopted to work out a
relatively precise analytical solution for the GBdel based on Eq. 14. Terminals used to drive a
function foros/oci consist of;, %, X3 andxs which correspond tow, S, a andoy/o. respectively.

The process of generating data for GP analysis fslews:

1. Selection of input parameters
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The values of input parameters G81, D and o3/o; for generating the training data are
shown in Table 2. The selectie#lo; is based on Hoek and Brown’s [16] suggestion tiat
values ofas/a; should be in the range of @s/0,<0.25 in rock mass slopes. The selection of

GSI,m andD is based onRoclab [29].

Table 2 Range of input parameters

Input parameters ~ Minimum  Maximum

GSI 1 100
m 1 35
0 1

o3logi 0 0.25

2. Calculation of the Hoek-Brown parameters
For the given values of the GS$h andD, the parametersy, s anda can be estimated by
using Egs. (2) to (4), respectively.

3. Calculation oby/oc and shear stress
For the given values of thm,, s, a andss/a., the values oéy/o; can be estimated from Eq. 14.

The instantaneougcan be calculated from Eq. (13), and shear stasde calculated from

Eqg. 11.

The strategy outlined above was coded imMatlab’. The program generated 500 random
sets of data for the GP training operation. Tabladscates 500 random sets of data employed
for the GP training analysis. Also, 2451 sets sfitgy data were generated based on Eqgs. 15 and

16 for testing the performance of the proposed@pprate analytical solution.
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Table 3 Data of HB criterion for GP analysis

Input parameters Calculated HB parameters Outpratnpeters

my S a onloi @ tlogi

No o3loi GSI m D
Eq. 2 Eq. 3 Eq. 4 Eq. 14 Eq. 13 Eq. 11

1 0.034 12 27 040469 1.01E-05 0575 0.060 26.0 0.042

2 0.053 65 25 1.02241 3.25E-03 0.502 0.120 38.0 0.137

500 0.053 33 16 0.01.388 5.26E-04 0518 0.110 339 0.107

In this research, the GP solutions were compar#d mvimerical results [1]. According to Eq.
18, the smaller the absolute average relative @eorentage (AAREP) is, the better the function.

The best function with a tree structure was comekimto a corresponding mathematical formula.

i X =%
AAREP= -2 N‘ (18)

whereN is the number of training setsandx’; are the results from numerical and GP solutions,

respectively.

5Validation of the GP results

200 alternative expressions were generated by @&@nGower AAREP value and the simplicity
of the function generated, Eq. 19 was selectetiewinning function.

an
o, _ o

% \/a(1+\/%)—g:

Substituting Eg. 19 in to Eq. 13, the angle oftfois ¢can be calculated as follows:

(19)
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a-1
P=2+am(m%+% (20)

ci

. 2
Q= arcsu'( 1_5] (22)

Finally, with the help of Eq. 11 the shear stresan be expressed as follows:

s
m,—"-+s
B e (22)
P (Pa+P—2)
aP

where P is the intermediate parameter. The proposed Eqdif@rs from the original GHB
criterion which is expressed by the major and mimancipal stresses. Eq. 22 is an alternative
form of the GHB criterion expressed in terms ofmal and shear stresses. So that it can be
directly used for estimating the instantaneous iskgass of each slice under a specified normal
stress in the limit equilibrium method for the ragdkpe stability analysis.

Carranza-Torres [1] numerical method was used émegating 2451 random sets of testing
data to verify the reliability of the proposed amgmate analytical solution. The performance of
Eq. 22 is shown in Fig. 8. The solid line in thguiies represents a perfect estimation. Data
located under the solid line represents over esibmaand located above the solid line
represents under estimation. The results showtliea¢ is close agreement between the proposed
approximate analytical solution and the numericélitton. The AAREP of shear stress only
0.97%. The maximum discrepancyk 7.97% as shown in Fig. 8. The discrepancy o2 B%
sets of data is less than 2% as shown in Fig. 8.cmparison results show that the proposed

approximate analytical solution gives very goodastsresses results.
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Fig. 8 Numerical versus GP valuewd;;
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Fig. 9 Discrepancy analysis of the proposed aralysolution

Fig. 10 shows the alternative expression which ties lowest AAREP. The value of
AAREP=0.72% is slightly lower than Eqg. 19 with AAREO0.97% and the maximum
discrepancy is 7.19% which is quite close to Eqwii® 7.97%, however, the structure of the
expression is much more complex than Eq. 19. Toeefinally, Eq. 19 was selected as the

winning function.
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Fig. 10 Discrepancy analysis of the analytical Botuwhich has the lowest value of AAREP

The data from Priest [22] was used to verify thiabdity of the proposed Eq. 22. The

following material parameters were used to genedata setr,; =30000kPam=16, GSI=15,

0,=800kPa,D=0.7. The Hoek-Brown parametars, s anda were calculated using Egs. 2 to 4

respectively. The value of shear stressalculated from Eq. 22 is 476.09 kPa. It is slightl

different from the Priest numerical results witis 472.38 kPa. The discrepancy was found to be

only 0.78%. Table 4 illustrates shear stressé®m the proposed approximate analytical and

numerical solutions over a range @f The resulting shear and normal stresses wereeglat

Fig.11. In all cases, there was found to be a chapeement between the proximate analytical

and numerical solutions with AAREP=1.0%.
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Table 4 Shear stresses obtained from numericaG&hdnalytical solutions over a range of

normal stresses

Uniaxial compressive strengio. (kPa 3000(
Hoek-Brown constant for intact rocm 16
Geoligical strength Inde GSI 15
Normal stresse, (kPa 30-2043(
Disturbance factoiD 0.7
onloc on(kPa Shear stresz (kPa Discrepanc
GP analytice Numerica (%)
1.00E-03 3C 48.9: 45.62 7.2:%
2.10E-02 63C 405.7¢ 401.3: 1.12
4.10E-02 123( 633.0" 631.1¢ 0.3C
6.10E-02 183( 821.1¢ 821.3¢ -0.0¢
8.10E-02 243( 986.9" 988.7: -0.1¢
1.01E-01 303( 1137.8( 1140.6( -0.2¢
1.21E-01 363( 1277.5( 1280.9( -0.27%
1.41E-01 423( 1408.7( 1412.3( -0.2¢
1.61E-01 483( 1532.9( 1536.4( -0.2%
1.81E-01 543( 1651.2( 1654.4( -0.1¢
2.01E-01 603( 1764.7( 1767.3( -0.1¢
2.21E-01 663( 1873.9( 1875.6( -0.0¢
2.41E-01 723( 1979.5( 1980.0( -0.02
2.61E-01 783( 2081.7( 2080.9( 0.04
2.81E-01 843( 2181.1( 2178.7( 0.11
3.01E-01 903( 2277.8( 2273.6( 0.1¢
3.21E-01 963( 2372.2( 2366.0( 0.2¢€
3.41E-01 1023( 2464.5( 2456.0( 0.3t
3.61E-01 1083( 2554.9( 2543.8( 0.44
3.81E-01 1143( 2643.4( 2629.7( 0.52
4.01E-01 1203( 2730.4( 2713.7( 0.62
4.21E-01 1263( 2815.9( 2795.9( 0.7z
4.41E-01 1323( 2900.1( 2876.6( 0.82
4.61E-01 1383( 2983.1( 2955.7( 0.9:
4.81E-01 1443( 3064.9( 3033.4( 1.0¢
5.01E-01 1503( 3145.8( 3109.8( 1.1¢
5.21E-01 1563( 3225.8( 3184.8( 1.2¢
5.41E-01 1623( 3305.0( 3258.7( 1.42
5.61E-01 1683( 3383.6( 3331.5( 1.5¢€
5.81E-01 1743( 3461.7( 3403.2( 1.72
6.01E-01 1803( 3539.5( 3473.8( 1.8¢
6.21E-01 1863( 3617.0( 3543.4( 2.0¢
6.41E-01 1923( 3694.6( 3612.2( 2.2¢
6.61E-01 1983( 3772.6( 3680.0( 2.52
6.81E-01 2043( 3851.4( 3746.9( 2.7¢
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Normal stress MPa

Fig. 11 Hoek-Brown shear strength envelope in skigass/normal stress space

Fig. 12 illustrates the comparison of shear strefssm the proposed analytical solution and
Shen et al. solution [27] with that from numericalution [1] for rock masss.; =25000kPa,
0,=5000kPam=15, D=0 and the range of GSI from 0 to 100. The resshiswv that there is a
close agreement between the proposed analyticati@oland the numerical solution for the
whole range of GSI values. The AARBIPz is found to be 0.63%. Compared with Shen et al.

solution with AAREP=3.99%, the proposed solutioaduce better results.
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Fig. 12 Comparison of shear stresgsults

6 Conclusions

Existing numerical methods in conjunction with syt regression (SR) analysis preformed by
genetic programming (GP) have been used to demadytecal solutions for estimating the
Mohr-Coulomb (MC) shear strength of rock massesnfithe non-linear Generalized Hoek-
Brown (GHB) criterion.

The reported research used Eqg. 14 to build a GPelmasl the basis for calculating the
intermediate parametet/ o expressed by input parametens s, a andoy, /o.i. After obtaining
analytical solution Eq. 19 fars/ ¢, closed form solution Eqg. 22 has been derivec&imating

shear stress
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The performance of the proposed approximate awcalysolution has been tested against
Carranza-Torres numerical solution using 2451 randets of data. The results show that there
is a close agreement between the proposed appraxiaralytical and numerical solutions.
Shear stresscalculated from the proposed approximate analysohition exhibits only 0.97 %
average absolute discrepancy from numerical saoistas shown Fig. 8, and the discrepancy of
84.21% sets of data range is less than 2% as showig. 9. In a practical sense, this small
difference is acceptable.

The proposed approximate analytical solutions isléernative form of the GHB criterion,
which can be implemented into both limit equilibiumethod and shear strength reduction

methods for analyzing rock mass slopes.

Acknowledgement

PhD Scholarship provided by China Scholarship Coy@&C) is gratefully acknowledged. The
sections land 2 of the manuscript were developéu Rriof. Stephen Priest as co-author. Thus,
many thanks go to Prof. Stephen Priest for hisrdmutton. The authors also would like to

express their gratitude to anonymous reviewerghi@r constructive comments on the paper.

References

[1] Carranza-Torres C. Some comments on the apigicaf the Hoek—Brown failure criterion
for intact rock and rock masses to the solutiotuoihel and slope problems. In: Barla G,
Barla M, editors, MIR 2004 — X Conference on rocid @&ngineering mechanics, Torino,
Italy, Patron Editore, Bologna; 24—-25 November 2G04£85-326. [Chapter 10].

[2] Hoek E, Brown ET. Underground excavations inkioLondon: Instn Min Metall; 1980. p.
527.

74



[3] Brown ET. Estimating the mechanical propertiégock masses. In: Proceedings of the 1st
southern hemisphere international rock mechaniasapsgium: SHIRMS 2008, Perth,
Western Australia, vol. 1; 2008. p. 3-21.

[4] Hoek E, Carranza-Torres C, Corkum B. Hoek—Brofaiure criterion-2002 edition. In:

Proceedings of the North American rock mechanicgesp meeting, Toronto; July 2002.

[5] Koza JR. Genetic programming: on the prograngmii computers by means of natural
selection. Cambridge, MA: MIT press; 1992. p. 819.

[6] Johari A, Habibagahi G, Ghahramani A. Predictaf soil-water characteristic curve using

genetic programming. J Geotech Geoenviron Eng 23265):661-5.

[7] Javadi AA, Rezania M, Nezhad MM. Evaluation dfuefaction induced lateral

displacements using genetic programming. Computé&abd®006;33(4— 5):222-33.

[8] Cabalar AF, Cevik A. Genetic programming-basgiénuation relationship: an application of

recent earthquakes in turkey. Comput Geosci 2009)3884—-96.

[9] Karakus M. Function identification for the imsic strength and elastic properties of granitic

rocks via genetic programming (GP). Comput Geo8&il237:1318-23.

[10] Balmer G. A general analytical solution for Mt envelope. Am Soc Test Mater
1952;52:1269-71.

[11] Priest SD, Brown ET. Probabilistic stabilithalysis of variable rock slopes. Trans Instn
Min Metall 1983;92:A1-A12.

[12] Hoek E. Rankine lecture: strength of jointedk masses. Géotechnique 1983;33:187-223.

[13] Ucar R. Determination of the shear stressufailin rock masses. ASCE J Geotech Eng Div
1986;112(3):303-15.

[14] Londe P. Discussion on the paper ‘determimatbthe shear stress failure in rock masses’,
by R. Ucar (Paper 20431), March, 1986, vol. 112, 80 J Geotech Eng Div
1988;114(3):374-6.

[15] Hoek E. Estimating Mohr—Coulomb friction andhesion values from the Hoek—Brown
failure criterion. Int J Rock Mech Min Sci Geomekbstr 1990;27(3):227-9.

75



[16] Hoek E, Brown ET. Practical estimates of ronkss strength. Int J Rock Mech Min Sci
1997;34(8):1165-86.

[17] Kumar P. Shear failure envelope of Hoek—Brogviterion for rockmass. Tunn Undergr
Space Technol 1998;13(4):453-8.

[18] Serrano A, Olalla C, Gonzalez J. Ultimate begrcapacity of rock masses based on the
modified Hoek—Brown criterion. Int J Rock Mech Migi Sci 2000;37:1013-8.

[19] Sofianos Al, Halakatevakis N. Equivalent tulimg Mohr—Coulomb strength parameters for
given Hoek—Brown ones. Int J Rock Mech Min Sci 23921):131-7.

[20] Sofianos Al. Tunnelling Mohr—Coulomb strengtarameters for rock masses satisfying the
generalized Hoek—Brown failure criterion. Int J Rddech Min Sci 2003;40(3):435-40.

[21] Carranza-Torres C. Elasto-plastic solutiontusfnel problems using the generalized form of
the Hoek—Brown failure criterion. Int J Rock MechnVBci 2004; 41(3):480-1 [In: Hudson
JA, Feng X-T, editors. Proceedings of the ISRM SRMILK 2004 symposium].

[22] Priest SD. Determination of shear strength #m@e-dimensional yield strength for the
Hoek—Brown criterion. Rock Mech Rock Eng 2005;3&49-327.

[23] Sofianos Al, Nomikos PP. Equivalent Mohr—Caulm and generalized Hoek—Brown
strength parameters for supported axisymmetricdlsnim plastic or brittle rock. Int J Rock
Mech Min Sci 2006;43:683—-704.

[24] Jimenez R, Serrano A, Olalla C. Linearizatajrthe Hoek and Brown rock failure criterion
for tunnelling in elasto-plastic rock masses. IRatk Mech Min Sci 2008;45:1153-63.

[25] Yang XL, Yin JH. Slope equivalent Mohr—Coulorstrength parameters for rock masses
satisfying the Hoek—Brown criterion. Rock Mech Ra&okg 2010;43:505-11.

[26] Fu W, Liao Y. Non-linear shear strength reduettechnique in slope stability calculation.
Comput Geotech 2010;37:288-98.

[27] Shen J, Priest SD, Karakus M. DeterminatiotMohr—Coulomb shear strength parameters
form generalized Hoek—-Brown criterion for slopebdity analysis. Rock Mech Rock Eng
2012;45:123-9.

[28] Rocscience, Slide, Rocscience. <http://wwwsodence.com>, Toronto.

76



[29] Rocscience, Roclab. <http://www.rocscience.epiforonto.

[30] Holland JH. Adaptation in natural and artiicisystems. Ann Arbor: The University of
Michigan Press; 1975.

[31] Silva S. A genetic programming toolbox for MBAB: Version 3, 2007. <http://

www.switch.dl.sourceforge.net/sourceforge/gplab/>.

77



78



Statement of Authorship of Journal paper 4

A Comparative Study for Empirical Equationsin Estimating

Deformation M odulus of Rock M asses

Jiayi Shen, Murat Karakus* & Chaoshui Xu
School of Civil, Environmental and Mining Engineering, The University of Adelaide
Adelaide, South Australia, 5005, Australia

Tunnelling and Under ground Space Technology 2012, 32: 245-250.

By signing the Statement of Authorship, each author certifies that their stated
contribution to the publication is accurate and that permission is granted for the

publication to be included in the candidate’s thesis.

Jayi Shen
Performed the analysis and wrote the manuscript.
Signature: Date: 9May 2013

Dr. Murat Karakus
Supervised development of work, manuscript evaluation and acted as corresponding author.
Signature: Date:#May 2013

Associate Prof. Chaoshui Xu
Supervised development of work and manuscript evaluation.
Signature: Date: #May 2013

79



80



Chapter 4

A Comparative Study for Empirical Equationsin Estimating

Deformation M odulus of Rock M asses

Abstract

The deformation modulus of rock massEg)(is one of the significant parameters required to
build numerical models for many rock engineeringjgets, such as open pit mining and tunnel
excavations. In the past decades, a great numbempirical equations were proposed for the
prediction of the rock mass deformation modulusisting empirical equations were in general
proposed using statistical technique and the rétiabf the prediction relies on the quantity and
quality of the data used. In this paper, existingpeical equations using both the Rock Mass
Rating (RMR) and the Geological Strength Index (G&le compared and their prediction
performances are assessed using published hightyqumdsitu data. Simplified empirical
equations are proposed by adopting Gaussian fumd¢tofit the in-situ data. The proposed
equations take the RMR and the deformation mododustact rock E) as input parameters. It
has been demonstrated that the proposed equaittiovelifto thein-situ data compared with the

existing equations.

1 Introduction

The deformation modulugkf) is the most representative parameter of the nmechlabehavior

of rock masses. It is widely used in numerical niodg such as finite element modeling, of rock
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engineering projects where the analysis of disphereg and stress distribution are required to
characterize the rock mass behavior.

Commonly used approaches to estinatancludes: laboratory testsi-situ loading tests and
prediction by empirical equations. However, laborattests on limited size rock samples
containing discontinuities cannot measure reliatdiues ofEn, due to the limitation of size of
the testing equipment (Palmstrom 199B)-situ tests can provide direct information on the
deformability of rock masses, however, as BieniaW873) noted, it is difficult to rely on one
in-situ test alone as different results may be obtainesh éw a fairly uniform and good quality
rock mass condition. Therefore, in order to obtairable results multi-tests are necessary which
are expensive and time consuming.

Due mainly to the above mentioned difficulties emnuered in laboratory and-situ testing,
the estimation ok, values using empirical equations becomes a vérgctive and commonly
accepted approach among rock engineers.

In the past decades, a great number of empiricateans were proposed for the estimation of
the isotropic rock mass deformation modulus usiagous rock mass classification systems,
such as the Rock Mass Rating (RMR), the Geolodita#ngth Index (GSI) (see Table 1), the
Tunneling Quality Index (Q) (Barton 1987, 1996, 2P@&nd the Rock Mass Index (RMi)
(Palmstrom 1996, Palmstrém and Singh 2001). Oth#roas proposed equations on the basis of
parameters which define the quality of the rock seas such as the Rock Mass Quality
Designation (RQD) (Zhang and Einstein 2004) andwieathering Degree (WD) (Gokceoglu et
al. 2003, Kayabasi et al. 2003).

Existing empirical equations were in general detiusing statistical methods, such as the

regression analysis, and the reliability of estiorabf these equations depends on the quantity
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and quality of data used in the statistical analy8is a consequence, large discrepancies in the
predicted values using different empirical relatiooan be experienced which reduce the
confidence in the predicted values. For exampleafoock mass with the following properties:
GSI=70, the disturbance factdd=0 and the intact rock deformation modul&s;50GPa, the
values ofE, calculated from the empirical equations propose@arvalho (2004), Sonmez et al.
(2004) and Hoek and Diederichs (2006) (see Group Bable 1) are 21.7 GPa, 25.6 GPa and
36.6 GPa, respectively. Clearly the reliabilitytioé¢ prediction of these empirical equations needs
to be assessed.

In this research, existing empirical equations gisihe RMR and the GSI classification
systems are evaluated. The prediction performandbese equations is tested by using high
quality well publicizedin-situ data from Bieniawski (1978), Serafim and Pereikt@83) and
Stephens and Banks (1989). These data are from dughity tests and are commonly
acknowledged as reliable data sources (Hoek andebDahs 2006). New simplified empirical
equations are proposed by adopting Gaussian funétidit thesein-situ data. The proposed
equations take the RMR classification system aedigformation modulus of intact rodk) as
input parameters. It has been demonstrated thairtdposed equations fit well to the mentioned
in-situ data compared with the existing equations.

In this paper, the strategy of evaluation of ergtequations for predicting,, is described in
section 2. The performance of existing equatiomsgute RMR and GSI classification systems
is assessed in section 3. The proposed simplifiedirecal relationships betwees,, and the

RMR system are described in section 4.
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2 The strategy of evaluation of existing empirical equations

2.1 Category
In this research, we focus only on the empiricalagipns which contain the RMR and GSI as
input parameters. According to different input paeters, the existing empirical equations using

the RMR and GSI classification systems can be duvidto five groups (see Table 1).
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Table 1 Empirical equations using RMR and GSI fedgctingEn,

Input Parameters

Empirical Equations

Bieniawski (1978) E,, = 2RMR-100, RMR> 5(
Group1  Serafimand Pereira (1983)  E, =109
RMR Mehrotra (1992) E_=1gfR20/%
Read et al. (1999) E,, = 0.1 RMR/10)’
Nicholson and Bieniawski (1990, = 0.01Ei[0.0025RMF? + O.W]
Group 2
RMR andg;  Mitri et al. (1994) E, = E[0.5(1-( cog 7RMR /10})) |
Sonmez et al. (2006) E = Eld(RMMO@(m RMR)/( 4000exp- RMR 10p
(gGSI—lO
Hoek et al. (2002) E,=(1-0.5D)1 o, > 100MPa
Group 3
GSl andD 1-0.9
Hoek and Diederichs (2006)  E,(MPa) :105(1Jr e mj
GSI-100
E,=FE = exp[—j
Carvalho (2004) (s P
E,=E( §)0'4 s= eXp{_GSI—lOOj
Group 4 Sonmez et al. (2004) 9-3D
GSI, D andE; a=0.5+ é( ~GSI/15 _ e—20/3)
. . 0.02 1-0.D
Hoek and Diederichs (2006) Em E +w
GSI 10
Hoek and Brown (1997) e 10(
Group 5 E, = (1-0.5D) / o 1365] “) 4. < 100P2
GSI.D ando Hoek et al. (2002) P
Beiki et al. (2010) Em=tan(\/ 1.564 |r(<3s,|))2j§/aci
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2.2 Testing Data

In-situ data from Bieniawski (1978), Serafim and Pereli28@) and Stephens and Banks (1989)
are from high quality tests and are commonly ackadged as reliable data sources (Hoek and
Diederichs 2006). These data also were widely usgdmany researchers (Barton 1996;
Palmstrom and Singh 2001; Sonmez et al. 2006; Hwoek Diederichs 2006) to assess the
reliability of their proposed equations. Therefdrethis research, 43 of the 76 sets of these data
were used for assessing the prediction performaheguations in Groups 1, 3 and 5. The other
33 sets of data which contatias input parameter were used to test the predipgoformance

of equations in Groups 2 and 4.

Thesein-situ data, however, are quantified on the basis oRNHR classification system. In
order to use these data to evaluate the relialfithe empirical equations using the GSI system,
the relationship between RMR and GSI will haved¢aubed to transform RMR to GSI. Hoek and
Diederichs (2006) suggested GSI equal to RMR if RMR data were obtained before 1990.
Therefore, for then-situ data which were collected before1989, the relatignof RMR = GSI

is used in this research.

2.3 Indicators to assess the prediction performahegnpirical equations
The value of Root Mean Square Errors (RMSE) (Eqr R-squareRf) (Eq. 2) are adopted in

this research as indicators to assess the retiabflprediction by empirical equations:

RMSE:\/%Z::( e E)f (1)
R =1 —Z(E%_E:n)z

SR @)
EESY

86



whereN is the number of testing data usEt}, andE' ,, are deformation modulus of rock masses
obtained from the observed-situ data and derived from the empirical equations eetsyely.
E,, is the mean value @&,

RMSE as defined is effectively the standard deviationtiod errors associated with the
estimation if it is unbiased. Clearly, the smatle® RMSE, the more reliable the estimation. The
value of R?generally ranges from O to 1. For exact predictian, estimation with no error, the

value of R? will be one. On the other hanB’ trends to zero for poor estimations. It should be

noted thaR? can be negative if the quality of the estimatimextremely poor.
3 The evaluation of existing empirical equations

3.1 Relations betwedf, and RMR

Various attempts have been made to develop emipegqations taking the RMR as the input
parameter to estimatg,. These equations can be divided into two groug®rding to input
variables as shown in Table 1.

3.1.1 Group 1 Input parameter: RMR

The first empirical equation for predicting the kamass deformation modulus using the RMR
system was proposed by Bieniawski (1978), which follswed by other equations proposed by

various researchers. The prediction performandbesfe equations is illustrated in Fig. 1.
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120

Bieniawski (1978)
R?=0.869 RMSE=6.517
100l . Serafim and Pereira (1983)
R?=0.915 RMSE=5.317
Mehrotra (1992)
R?=0.685 RMSE=10.268
80r  Read et al. (1999) YA
R?=0.901 RMSE=5.749

m

Deformation modulus E_,GPa

100

Fig. 1 Empirical equations in Group 1 for estimgtit, compared withn-situ data

Based on the assessmentRbfand RMSE the curve that best fits the-situ data is the one
proposed by Serafim and Pereira (1983) with thelesmlofR? and RMSEequal to 0.915 and
5.317 respectively. The same equation, howeveesgpoor prediction for massive rock masses
when RMR is approaching 100 where the predi&gdsalue is unrealistically high. The third
power function proposed by Read et al. (1998§=0.901, RMSE=5.749) overcomes the
limitation of Serafim and Pereira’s equation asah give reasonable estimation of the value of
En, for massive rock masses. The equation proposeddbyotra (1992) generally producEs

values lower tham-situ data when RMR>60.

88



3.1.2 Group 2 Input parameter: RMR and E

One major limitation of the equations listed in Gpdl is that the deformation modulus of intact
rock () is not considered. As pointed out by Sonmez gR806), for high quality rock masses
composed of softer intact rock, the value of deftion modulus of rock masses is mostly
controlled by the properties of intact rock rattiean by those of the discontinuities. To account
for this situation, Nicholson and Bieniawski (199W)tri et al. (1994) and Sonmez et al. (2006)
introducedE; into their empirical equations for the estimatafrE,,. Fig. 2 gives the prediction

performance of these equations (Group 2).

1 T T
___Nicholson and Bieniawski (1990)
0.9 R?=0.880 RMSE=0.066

Mitri et al. (1994)

R®=-3.287 RMSE=0.396

0.8F Sonmez et al. (2006)
R?=0.925 RMSE=0.052

0.7+

0.6+

100

Fig. 2 Empirical equations in Group 2 for estimgtif, / E; compared withn-situ data

The values o and RMSE in Fig. 2 demonstrate that the Sonmez et aflsation (2006)

(R?=0.925, RMSE=0.052) gives the best estimation withe group. The equation presented by
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Nicholson and Bieniawski (1990) hé=0.880, RMSE=0.066, respectively. The performarfce o
the Mitri et al.’s equation (1994) is the poorestlae estimateH,, values are significantly higher

than observed data values across the whole range.

3.2 Relations betweds, and GSI
The empirical equations using the GSI classificasgstem as the input parameter to estimate
the rock mass deformation modulus can be divideéd ihree groups according to the input

variables as given in Table 1.

3.2.1 Group 3 Input parameter: GSl and D

In this group, the empirical equation proposed ek and Brown (1997) was modified by
Hoek et al. (2002) to take into account the effdatlisturbance factoD. The limitation of the
modified equation is that it is only applicable whbe value of uniaxial compressive strength of
the intact rockg.i is greater than 100MPa. This limitation was lateercome by Hoek and

Diederichs (2006). The prediction performance efequations in Group 3 is shown in Fig. 3.
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____Hoek and Diederichs (2006) /
160" D=0 R%=0.908 RMSE=5.549 i
____Hoek and Diederichs (2006) !
D=0.5 R?>=0.168 RMSE=16.708 ,'"
140+ Hoek and Diederichs (2006) ," B
D=1 R?=-0.841 RMSE=24.859 ]
_____ Hoek et al. (2002) [
120 D=0 R%=0.915 RMSE=5.317 i
_____ Hoek et al. (2002) [
D=0.5 R?>=0.795 RMSE=8.284
100 Hoek et al. (2002)

D=1 R?=0.382 RMSE=14.399

m

80r

60+

Deformation modulus E ,GPa

40+

20r

0o 20 40 60 80 100

Fig. 3 Empirical equations in Group 3 for estimgtity, compared withn-situ data

Fig. 3 indicates that the value Dfhas a great influence on the valueEgf The value oD,
however, can vary in value from 0 for undisturlieeitu rock masses to 1 for highly disturbed
rock masses to reflect the effects of heavy blastabe as well as stress relief due to removal of
the overburden. Hoek et al. (2002) proposed a gése guideline on how to choose an
appropriateD value for a variety of different engineering piees.

The best fit equation in this group is the one pemu by Hoek et al. (2002) whé&w=0
(undisturbed conditions), which gives valuesRbfand RMSEat 0.915 and 5.317, respectively.
The same equation, however, gives too high estifoatgé,, when RMR is greater than 90. The
sigmoid function proposed by Hoek and Diederich806) hasR’=0.908 and RMSE=5.549,

which can yield reasonable estimateEgreven when RMR is greater than 90.
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3.2.2 Group 4 Input parameter: GSI, D and E

Carvalho (2004), Sonmez et al. (2004) and Hoek Rrtdlerichs (2006) proposed empirical
equations taking GSD andE; as input variables. The empirical equation progdse Carvalho
(2004) and Sonmez et al. (2004) rely on an appreddbh assumes the modulus ratio of the
rock mass Eq/ocm) is equal to that of the intact rocKifs.;) when GSI=100. The equation by
Hoek and Diederichs (2006) is proposed based omikitu data collected from areas in China

and Taiwan. The prediction performance of thesagops (Group 4) is shown in Fig. 4.

1 T T T P
Carvalho (2004) D=0 R%=0.548 RMSE=0.128 -
+  Sonmezetal. (2004) D=0 R?=-0.037 RMSE=0.195 R
0.9F Hoek and Diederichs (2006) D=0 R?=-1.339 RMSE=0.292 4 /)]
Carvalho (2004) D=0.5 R?=0.813 RMSE=0.082
Sonmez et al.(2004) D=0.5 R?=0.484 RMSE=0.137
0.8- Hoek and Diederichs (2006) D=0.5 R°=0.825 RMSE=0.079
Carvalho (2004) D=1 R?=0.853 RMSE=0.073
+  Sonmez et al.(2004) D=1 R?=0.824 RMSE=0.080
0.7 - Hoek and Diederichs (2006) D=1 R?=0.559 RMSE=0.127 ]
0.6 :
ui™
~ O 5 [ -
S
L
0.4+ 8
0.3F 8
+F
O . 2 r +++"‘++ _
+"+++
+"’++ et
+“+++ i
L + _
O 1 T‘”‘/ +-b+’+#
,,,++j-!‘f"
N 5
O --_----\---—O | | |
0 20 40 60 80 100

Fig. 4 Empirical equations in Group 4 for estimgti, / E; compared withn-situ data

From Fig. 4 it is clear thaE, values predicted from the equations proposed hyalleo
(2004) and Sonmez et al. (2004) are not dependetiteodisturbance fact@ when RMR=100,

while the value oD has a great influence @, predicted from Hoek and Diederichs’ proposed
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(2006) equation. FoD=0, the best fit equation is the one proposed byvalao (2004)

(R?=0.548, RMSE=0.128).

3.2.3 Group 5 Input parameter: GSI, D ang

The empirical equation proposed by Serafim and iRe(@983) was modified by Hoek and
Brown (1997) to incorporate the uniaxial compresstrength of the intact rocks. Hoek et al.
(2002) updated the Hoek and Brown’s equation (1897)onsidering a disturbance effect factor
D in the rock mass fo#;<100MPa. Beiki et al. (2010) adopted the genetmgmmming to
determineE.. Their proposed equation, however, has some liioits that the value oOEn,
becomes negative for case of GSI<20 or GSI>90.pErormance of the equations in Group 5

is shown in Fig. 5

160 ‘ ‘
___Hoek and Brown (1997)
R2=0.901 RMSE=5.772
140 Hoek et al. (2002) 1
D=0 R?=0.901 RMSE=5.772
1201 Beiki et al.(2010) i
R?=0.393 RMSE=14.270
£ 100/ .

Deformation modulus E_,GPa

100

Fig. 5 Empirical equations in Group 5 for estimgtit, compared withn-situ data,c.;=80MPa
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As seen from Fig. 5, Hoek et al.’s (2002) equatjpres the samé&,, values as Hoek and
Brown’s (1997) equation wheD is assumed to be zero, and it gives the besi fihe data with
R’=0.901, RMSE=5.772, respectively. The equation psed by Beiki et al. (2010) generally

produces values d&,, lower than the measured data when GSl is greaaer 35.

4 Proposed equations and their validations

Gaussian function (see the general form in Eq. & wsed to fit empirical equations based on

thein-situ data (Bieniawski 1978; Serafim and Pereira 1988pl&ns and Banks 1989).

(XTbJZ 3)
y=ae
wherea, b andc are constants.
The proposed empirical equation is based on Gaushiaction and use the RMR
classification system as input parameters. Thd kgsare fitting based on the data used in this

research gives the following equation:

E, =110

(RMR—llO)Z
37

4)
Fig. 6 demonstrates that the prediction performanfcéne proposed equatiofR?€0.932,

RMSE=4.772) was improved compared to Read et #L%99) equation and Hoek and
Diederichs’ (2006) equation which are considerethéahe best fit equation for the RMR and

GSI category in Groups 1 and 3, respectively.
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o Bieniawski (1978)

o Serafim and Pereira (1983)
» Stephens and Banks (1989)

100~ ___Readetal. (1999) /

R?=0.902 RMSE=5.749

g Hoek and Diederichs (2006)
O  gotb R?=0.908 RMSE=5.549 4
wf | Proposed Eq.4
8 R?=0.932 RMSE=4.772
3
2 60 .
c
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T
£
S 40r .
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20F .

0
0 100

RMR
Fig. 6 Plot the Eq. 4 for the-situ data
The comparison between the observed and estimatads/calculated from the proposed Eq.
4 is shown in Fig. 7. The solid diagonal line ire thgure represents a perfect prediction. The
upper and lower dash lines represent the 10 GPaestenate and under-estimate of the true
values respectively. Most of the predictions fetween these two lines, which suggests that the

absolute error of Eq.4 is £10 GPa with a high lexfetonfidence.
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Fig. 7 EstimatedE, values from Eq. 4 versus-situ data

To derive an equation which takes the RMR Bnds input parameters Eq. 3 is adopted again

to fit the data used in this research and theiotig best-fit equation is obtained:

_( RMR—llsz

E,=1.14Ee* * (5)

The comparison of the prediction performances betweg. 5 and the existing equations is
shown in Fig. 8. As discussed in section 2, Soneted.’s (2006) equation and Carvalho’s (2004)
equation perform the best among the existing egustfor the RMR and GSI category in
Groups 2 and 4, respectively. They are, howevest-performed by Eq. 5 which givé&=0.936

and RMSE=0.048.
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Fig. 8 Plot the Eq. 5 for the-situ data

The comparison between the observed data and tineat=d values calculated from Eq. 5 is

given in Fig. 9, where the two dash lines represandr range of +OH./E; .

Most of the

predictions from Eg. 5 fall between these two lingsich suggests that accuracy of Eq. 5 is

acceptable with the confidence interval of +B.JE;.
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Fig. 9 Estimatedk, / E; values from Eq. 5 versus-situ data

As a further test of the prediction performancégs. (4) and (5), their predicted values have
been compared to measured field data reported ektod Diederichs (2006). These data are
generally regarded as the best collection of quéétd data which can be used for any research.
All of these GSI data are collected after 1989 dratefore the relationship of RMR= GSI-5 is
used to calculate RMR from GSI needed for the egust

Scatter in the data in Fig. 10 represents inheseatter in the values of GSI, rock mass

propertiesE, and the effects of disturbance fadibdue to blasting as well as stress relief.
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Fig. 10 clearly demonstrates that the range ofiplessalues ofE,, is correctly predicted by
EqQ. 4, indicated by the envelope boundedDs0 (upper bound). Fig. 11 illustrates that Eq. 5

gives a good prediction of the field data.

120 T T T

+ Hoek and Diederichs (2006) in-situ data
—Proposed Eq.4

100+

80

m

60

40

Deformation modulus E_,GPa

20+

0 20 40 60 80 100
GSI

Fig. 10E,, values estimated from Eq. 4 compared with HoekRiederichs (2006n-situ data
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0.2

Fig. 11E,, /E; values estimated from Eq. 5 compared with Hoekiederichs (2006)n-situ

data

5 Conclusions

In this paper, the most widely used empirical eiguat for the estimation of deformation
modulus of rock masses based on the Rock MassR@INR) and the Geological Strength
Index (GSI) classification systems have been resteWwhese equations were grouped according
to the required input variables and their predictigerformance were assessed using well
acknowledged published-situ data (Bieniawski 1978; Serafim and Pereira 1988plstns and

Banks1989).
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Comparison analyses of existing equations showithteiie category which does not involve
the deformation modulus of intact rock)Y the equations proposed by Read et al. (1999) and
Hoek and Diederichs (2006) give the best predictiorthe RMR and GSI category respectively,
as shown in Figs. 1 and 3. In the category wheeedigformation modulus of intact rock is
considered, the equations proposed by Sonmez @04l6) and Carvalho (2004) performed the
best for the RMR and GSI category respectivelyghasvn in Figs. 2 and 4.

Two simplified empirical equations have been pragos this research using Gaussian
function. The proposed empirical equations use RMR classification system and the
deformation modulus of intact rock;} as input parameters. In absolute terms, it cacldesed
with high level of confidence that the valueskf predicted from Eq. 4 are accurate within £10
GPa, and the values Bf, predicted from Eq. 5 are accurate within a HB1E;.

As for all empirical relationships, the proposedpamal equations are open to further
improvement as morén-situ data become available. At the time of writing, lever, the
proposed equations fit well to the in-situ data pared with existing equations based on the

analyses presented in this paper (see Figs. 6)and 8
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Chapter 5

Three-Dimensional Numerical Analysisfor Rock Slope
Stability Using Non-linear Shear Strength Reduction

M ethod

Abstract

Existing numerical modeling of three-dimensiondD)3lopes is mainly performed by the shear
strength reduction (SSR) technique based on tleadiMohr-Coulomb (MC) criterion, whereas
the non-linear failure criterion for rock slope lstdy is seldom used in slope modeling.
However, it is known that rock mass strength ioa-linear stress function and that, therefore,
the linear MC criterion does not agree with thekrotass failure envelope very well. In this
current research, therefore, a non-linear SSR tquhns proposed that can use the Hoek-Brown
(HB) criterion to represent the non-linear behawiba rock mass in FLA¥ program to analyze
3D slope stability. Extensive case studies areiezhrpout to investigate the influence of
convergence criterion and boundary conditions onsBipe modeling. Results show that the
convergence criterion used in the 3D model playsngortant role, not only in terms of the
calculation of the factor of safety (FOS), but alsterms of the shape of the failure surface. The
case studies also demonstrate that the value ofF@ for a given slope will be significantly

influenced by the boundary condition when the slapgle is less than 50°.

107



1 Introduction

Rock slope stability is one of the major challengésock engineering projects, such as open pit
mining. Rock slope failure can affect mining openas and result in costly losses in terms of
time and productivity. Therefore, the evaluationtbé stability of rock slopes is a critical
component of open pit design and operation (Naghasteal. 2013).

In most of the geotechnical applications two-dinenal (2D) plain strain analysis are
commonly used to simulate stability of earth swoes (Basarir et al. 2005; Karakus et al. 2007,
Kurakus 2007; Eid 2010; Tutluoglu et al. 2011). Thajority of rock slope analyses in practical
projects are still performed using 2D limit equillbon or plane strain analysis because 2D
analysis is relative simple and yields a conseveattactor of safety (FOS) compared with three-
dimensional (3D) analysis (Griffiths and Marque®?2)) However, it is known that 3D analysis
provides the more realistic model because it cke tiato account the appropriate geometry and
boundary conditions. Therefore, the developmenB8Dfslope analysis has become a popular
research topic in geotechnical engineering in regears. A list of 3D slope stability papers

published in the last seven years is shown in Table
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Table 1 3D slope stability analysis using differerdthods

Authors Methods
Cheng and Yip (2007) LEM
Griffiths and Marquez (2007) SSR
Frazaneh et al. (2008) LAM
Li et al. (2009) LAM
Michalowski and Drescher (2009) LAM
Wei et al. 2009 SSR/LEM
Li et al. (2010) LAM
Michalowski (2010) LAM
Detournay (2011) SSR
Stianson et al. (2011) SSR
Gharti et al. (2012) SSR
Zheng (2012) LEM
Nian et al. (2012) SSR
Michalowski and Nadukuru (2013) LAM
Nadukuru and Michalowski (2013) LAM
Zhang et al. (2013) SSR

Commonly used approaches for 3D slope stabilitylyais include: the limit equilibrium
method (LEM), limit analysis method (LAM), and numtal modeling performed by shear
strength reduction technique (SSR), such as thie fielement method (FEM) and finite

difference method (FDM). The 3D LEM model involvesrious assumptions about the internal
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force distribution, and it is difficult to locatéé critical failure surface, as is well documented
the literature (Griffiths and Marquez 2007; Weiakt 2009; Zhang et al. 2013). The 3D LAM
model has been used for slope with simple geométowever, the construction of the 3D
failure mechanism for LAM is not straightforward fromplicated slope models, which leads to
this method being seldom used for complex condstiMiei et al. 2009).

Currently, 3D numerical modeling performed by tHeRStechnique is a very attractive and
commonly accepted approach among geotechnicalrobssa and engineers because it not only
can automatically locate the critical failure seda but can also simulate the stress-strain
behavior and give the progressive shear failuréhefslope in complex geometry and loading
conditions.

Although the SSR technique has the above meritgeher, we still must take into account its
limitations in order to use it for the analysis 3D isotropic rock slopes, as follows: (1) the
existing 3D SSR technique is mainly based on theali Mohr-Coulomb (MC) criterion. It is
known that rock strength is non-linear, and marsgaeches (Priest 2005; Li et al. 2008; Jimenez
2008; Shen et al. 2012a) showed that the MC aritegenerally can not represent rock mass
behavior very well, especially for slope stabilgyoblems where the rock mass is in a state of
low confining stresses that make the non-linearitre obvious; (2)he selection of appropriate
convergence criterion is not easy for a 3D SSR mibeleause the value of the FOS for a given
slope can be considerably influenced by the corererg criterion; (3) boundary conditions play
an important role in the distribution of internatesses in the slope model and can affect the
simulation results.

With the aim of better understanding the fundanmerdek slope failure mechanisms and

improving the accuracy of the rock slope stabilégults of 3D numerical models, in the current
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research a new non-linear SSR technique is proptsdég used with the Hoek-Brown (HB)
criterion, which can ideally represent the nondindehavior of a rock mass, in FLAC
program in order to analyze 3D slope stability. disive case studies are carried out to
investigate the influence of the convergence ¢ateand boundary conditions on the numerical
results, which include rock mass shear strength sttape of the failure surface, as well as the

FOS values.

2 Instantaneous shear strength of the HB criterion

The non-linear HB criterion, initially proposed Bpek and Brown (1980), has been widely used
for predicting intact rock and rock mass strengthrack engineering for several decades. The

latest version of the HB criterion presented by IHeeal. (2002), is expressed as:

ci

0,=0,+0, m)ﬁ+ S 1

1 3 ci o ( )
whereos; andozare the maximum and minimum principal stressgss the uniaxial compressive
strength (UCS) of the intact roaky, s anda are the Hoek-Brown input parameters which can be

estimated from the Geological Strength Index (G&Bturbance factdd and intact rock

constantm.
GSi-100
m, = me2® 2)
e, 0
-esl) (=20
a:o.s+&6‘€[3j (4)

In order to use the HB criterion in conjunction lvBSR methods for calculating the FOS of
rock slopes, methods are required to determinengtantaneous MC shear strength parameters
of cohesiorc and angle of frictiopfrom the HB criterion (Fu and Liao 2010). The Hi&terion
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(see Eqg. 1) is expressed by the relationship betwesximum and minimum principal stresses.
However, it can also be expressed in terms of nbstn@sss, and shear stresson the failure
plane as shown in Fig. 1. The instantaneous cohesamd angle of frictionpcan be calculated
by locating the tangent of the HB envelope undgivan value of normal stress, as illustrated
in Fig. 1. The intercept with theaxis gives the value, and the slope of the tangent to the HB

failure envelope yields thgvalue

A Instantaneous MC envelo

Shear stress

el / 1

\%

Normal stressr,

Fig. 1 Instantaneous MC envelope of the HB critefiothe normal and shear stress plane

Fig. 1 also illustrates the stress state of an eferwhere the strength can be defined by the
MC criterion. If the stress statei( g3) of an element is known, the corresponding insta@bus
c andgvalues can be calculated using Eqgs. 5 to 8 propog&hen et al. (2012b).
MIs 4 o
— 03 Uci
=3+
.

a-1
© 2+am, (m’a?’ + s)

Cl

(5)

Jn
Jci
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p=arcsin 2 (6)

a-1
(o

ci

r=—J2aC0% (moﬂ+ sj

2(1+5i”4”j Ty (7)
a
c=7r-0,tang @8)

The numerical slope model can be divided into nusoé elements using mesh techniques.
When the slope is modeled under the loading canditihe stress states of the elements in the
model will vary, which leads to the elements hawlifterent values o€ andg

An example can be used to show the relationshiwd®t instantaneous @ and minimum
principal stresss, as shown in Fig. 2. The following parameters wesed for the calculation:
0=25 MPa, GSI=80m=15, D=0.5; the values aof; range from 0 to 25 MPa. Fig. 2 illustrates
that the values of instantanecuigicrease an@ decrease with the increaseagfvalues, which

reflects the non-linear behavior of the HB critario
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Fig. 2 The correlations between MC parameterssgnd

3 Non-linear SSR method for the HB criterion

The calculation of the FOS using the SSR technigimased on reducing the MC shear strength
parameterg and ¢ until the slope collapse, and then the valuhefROS can be defined as the
ratio of the actual shear strength to the minimieas strength of the rock or soil materials that

is required to prevent failure (Duncan 1996). Téduced shear strength parameteend g are

given by:
_C

“"RF ©)
- arct tang

@, =arc anE (10)

where RF is a reduction factor, and the value offR¥gual to the FOS when slope failure occurs.
One of the most promising ways to use the HB ¢otein conjunction with SSR techniques
is to estimate the instantaneous MC shear strggggtiimeters and g for elements in the slope.

The details of the application of this non-line&RStechnique for 2D FEM slope analysis can be
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found the paper by Fu and Liao (2010). Kumar's @)99olution was used by Fu and Liao
(2010) to calculate the instantaneagwalues, which requires Newton’s iteration formuta t
calculate thgpvalues. It should be noted that Egs. 5-8 are t@nnative form of Kumar’s (1998)

solution. However, the equations offer the beneffibeing able to calculate the instantaneous
andgof an element from its’ stress statg §3) without the need of iteration analysis.

In the current research, the non-linear SSR styateggether with Eqgs. 5-8, was used to
implement the HB criterion in FLA® for 3D rock slope stability analysis. Fig. 3 ifl@v chart
showing the steps of implementing the HB criteriothe FLACP slope model, as follows: Step
1: Build the slope model according to slope geowetock mass properties, loading and
boundary conditions. Mesh techniques are usednergée the grid elements for a slope. Step 2:
Carry out the elastic stress analysis to deterrtiieestress state of each element in the slope
model. Step 3: Use Egs. 5 to 8 to calculate theesiohc as well as the angle of frictiopfor
each element. Step 4: Reduce trend gvalues of all elements by a reduction factor REpS:
Use the reduced and g for the elasto-plastic analysis using the MC cduttie model. Step 6:
Repeat steps 2 to 5 when a new reduction factas B€nerated until slope failure. Finally, the

value of the FOS of a given slope is equal to duriction factoRF.
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Step Slope modeling
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RF :( Flow + Fup)/2

v

Elastic stress analysig
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»| Getthe stresses(, g;) of each element
Fup =RF Fiow =RF
c | | d f h low™ Flow up: up
alculatec and gof eac
@ 7| elementusing Egs. (5) to (8] 4 A
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N >1000
R<1.0e-4
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FDiff: Fup - F|0W<0.01

RF=( Fiow +Fup)/2

4
END

Fig. 3 Flow chart of the application of HB critemiinto FLAC®® using non-linear SSR technique

" The values oRF can be adjusted using the bracketing approachopezpby Dawson et al.
(1999). Fow andF,p are the lower and upper bracket values of FBEs: is the difference

between upper and lower FOS values.
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4 Convergencecriterion in the 3D models

Research by Wei et al. (2009) demonstrated thatdahes of the factor of safety of the 3D SSR
model can be significantly influenced by the setetbf the convergence criterion. Therefore, it
is necessary to carry out some trial and erroryarsalto select an appropriate convergence
criterion for a slope model.

The convergence criterion in FLABis the nodal unbalanced force ra®pand the user must
specify a number of calculation steg@go bring the model to a state of equilibrium. Ammple
of data from the paper by Hammah et al. (2005) loarused to check the influence of the
convergence criterion on the 3D slope model. Tteargte has the following slope geometry and
rock mass properites: slope height10m, slope anglg=45°, o.; =30MPa,m=2, GSI=5,D=0,
unit weighty=25 kN/nt, Deformation modulu&,=5000MPa and Poisson’s ratic=0.3.

The model has 475 elements and the analyses waiedcaut using 1m unit width. The
boundary conditions for the slope axedirection displacement at the front and back faufate
slope model are fixek, y andz direction displacement at the base face of thpestaodel are

fixed; andy-direction displacement of the end faces of thpeslmodel are fixed (see Fig. 4).
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Fig. 4 Boundary conditions for a slope model

Table 2 compares the failure surfaces correspontinghe FOS values using various
convergence criteria in the slope model. The resshiow that when the convergence criteria
change, the values of the FOS vary from 1.01 t0.1T®e results indicate a clear trend for the
FOS to increase with the increaseRoffFor example, wheR values are increased from 1E-5 to
1E-3,N=1000, the values of the FOS increase from 1.04.88. Calculation stepl only has a
slight effect on the FOS whehis more than 1000. For example, whlE-3, the values of the

FOS are equal to 1.82 fdi=1000 and increase to 1.90 fé¢+2000.
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Table 2 Comparison of failure surfaces correspanthn=OS values using different convergence

criteria

R=1E-3 R=1E-4 R=1E-5

FOS=1.1(

N=500

FOS=1.0¢

N=1000

FOS=1.8¢ FOS=1.07

FOS=1.3¢

N=1500

FOS=1.9( FOS=1.4(

N=2000

10 11

We ran several case studies, finding similar resedich time. As shown in TabletBe slope
model will produce the appropriate failure surfameg the FOS value tends to stabilize when the
convergence criterion B=1E-4 and the value & is more than 1000.

The choice of the mesh techniques can also infli¢gne FOS results in the SSR analysis. A
comprehensive study of the influence of differerdgsin techniques and mesh elements on the
calculation of the FOS using FLAEmodels has been conducted by Zhang et al. (2G1g)5

compares the different mesh sizes for the calaratf the FOS. The results show that when the
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mesh size is more than 1400, the value of the FéfIst to equal 1.16, which is close to

Hammah et al.’s (2005) result of a FOS of 1.15.

1.5

1.4 |

13

FOS

1.2

l 1 1 1 1
0 700 1400 2100 2800

Number of elements

Fig. 5 Plot of FOS values versus mesh elements

5 Boundary conditionsin 3D models

The choice of appropriate boundary conditions ipartant for 3D slope stability analysis as
boundary conditions play an important role in tlevelopment of internal stresses in a slope,
which will change the shape of failure surface esponding to the value of the FOS.

The commonly used boundary conditions for a 3D esloydel (see Fig. 4) are: fixing the
direction displacementu€0) at the front and back faces of slope modeln@ixihex, y andz
direction displacemenvfu=w=0) at the base of slope model. For the end fabese tare three
types of boundary conditions as suggested by C(2@D3). Condition 1: fixing thg-direction
displacementv=0), which represents contact with a rigid, smodihtaent that can provide a

reacting thrust but no in-plane shear restrainpditeon 2: fixing thex, y direction displacement
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(u=v=0), which represents a contact that provides didarsresistance; Condition 3: fixing the
y, z direction displacement£v=w=0), which is used to characterize contacts witmoyement.

An example (see Table 3) was used to analyze theente of boundary conditions on slope
stability. Table 4 compares the slope failure ste$acorresponding to the FOS values, as well as
the contours of instantaneous cohesion and angfectibn in a given slope under different

boundary conditions.

Table 3 Input parameters of a slope case

Input parameters Values
H, m 20
B, ° 60
y, kKN/m® 27
o, MPa 5
GSI 40
m 12
D 0.7
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Table 4 Comparison of failure surfaces, contoursarid ¢ and FOS of a slope model under

various boundary conditions

Boundary condition used at the end faces of then®dels

Condition 1 Condition 2 Condition 3
(Fixy) (Fix X, y) (Fixx,y,)
Failure surface ’

Contour of
Cohesion

Contour of E
angle of friction

FOS 1.883 2.502 2.057
fg fp.y=1.329 f5.0,=1.092

The contours of the instantaneauand g shown in Table 4 are calculated using Egs. 5 to 8
together with the final stress states of each ai¢mvben the slope failures, which can be used to
illustrate the failure mechanics performed by thmn-hinear SSR technique. For boundary
conditions 1 and 2, where tlzedirection displacement of the end faces is naédixthe slope
surfaces have relatively highervalues and lowec values compared with the values at the
bottom of the slope. This disparity is a resultha fact that the stress state of the elementseat t

bottom of the slope is greater than the stress sfathe elements near the slope surface; and the
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values of instantaneousincrease angpdecrease with the increasedaivalues as shown in Fig.
2.

For boundary condition 3, whergy, zdirection displacement of the end faces is fuiked,
the contours ot and g are obviously different from those of conditionsadd 2. This can be
explained by the fact that the stress state instbpe under boundary condition 3 is different
from the stress state in the slope under boundamgitons 1 and 2. Therefore, the values of
instantaneous and g will change, which leads to the change of the shafithe failure surface,
as well as the FOS values.

The value of the FOS for boundary condition 1 isado 1.883, which is lower than the FOS
for boundary conditions 2 and 3, where the FOSgisakto 2.502 and 2.057, respectively. In
order to investigate the possible correlation ef HOS under different boundary conditions, we
proposed a boundary weighting factiaf,as shown in Table 4, which represents the ratihef
FOS from boundary conditions 2 and 3 to boundarynditmon 1. In this case,
fg4~=2.502/1.883=1.329 arfd,y,=2.057/1.883=1.092.

Table 5 compares the FOS values under differemidiemy conditions for the slope (see Table
3), with the slope anglg varying from 30° to 90°. The correlations betwégand S in Table 5
are plotted in Fig. 6. The figure demonstrates thatboundary weighting factés decreases as
the slope angle increases wh8r’50°. Howeverfg tends to reach stable valuds,(=1.4 and

fay=1.1) whenB>50°.
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Table 5 The results of FOS afybf the slope with different slope angle

Slope Boundary condition used at end faces  Boundary weighting
of slope model factor,fg
angles®
FOS/ FOS(y FOS(yz fB,xy fB,xyz
30 2.11 3.75 3.42 1.78 1.62
45 2.06 2.97 2.52 1.44 1.22
60 1.88 2.50 2.06 1.33 1.09
75 1.57 2.11 1.73 1.34 1.10
90 1.29 1.69 1.43 1.31 1.11
2
m
S 1.8
s}
S 1.6
(@)
£ 14} N
= a = tI
'g 1.2 ¢ .
> 1 -
=
o —A- B, xy - B,xyz'
m 0.6 |
0.4 : :
30 50 70 90
Slope anglef°

Fig. 6 The correlations betweé&nandS under different boundary conditions for a slopseca

Results presented in Fig. 6 and Table 5, howevewige only one example for a specific
rock property and slope height. To further cheakdbrrelation betweefa and 5, we conducted
a comprehensive study using 21 real cases colléaied Douglas (2002) and Taheri and Tani

(2010), with various slope geometries and rock npasperties as indicated in Table 6.
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Our analysis of the database showed that theresisoag correlation betwee and S as
shown in Fig. 7. Most of the data lie along theedirwhich have a trend of decreadiggvith the
increase off when £ <50°. Wheng >50°, fg tends to achieve constant values. The results that
were presented demonstrate that the effects ofdawyrconditions on the values of the FOS are
more obvious for a slope with a low angle thanegstslope. The values fafyy andfg xy,will go
up to 1.7 and 1.5 when the slope angle is less3banOn the other hand, when the slope angle

is more than 50°, the valuesfgf,andfg xy.tend to equal 1.4 and 1.1, respectively.
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Table 6 The results of FOS afybf real slope cases

cases I ff) () (Mo OGS m' D' FOS  FOS,  FOS.  fay fam:
1 184 55 27 153 47 09 267 367 304 138 114
2 140 34 26 50 28 07 152 252 227 166 149
3 220 45 27 65 44 17 08 248 354 297 143 120
4 135 65 27 172 58 09 416 570 492 137 118
5 70 50 27 29 4 08 183 259 219 142 120
6 110 45 265 50 25 10 07 160 228 196 143 123
7 210 45 27 109 3 18 09 221 318 268 144 121
8 170 55 30 104 48 7 07 263 363 301 138 115
o 60 60 27 65 44 13 1 253 344 280 136 111
10 3 67 27 109 28 12 1 183 261 214 135 111
1 63 3 27 109 28 12 1 204 315 278 155 137
12 70 49 27 3 49 24 1 120 172 146 144 122
13 58 50 27 5 55 22 1 180 253 212 141 118
14 60 48 27 5 54 22 1 175 248 211 142 120
15 60 52 27 5 86 22 1 18 250 209 137 114
16 40 71 27 50 33 14 1 170 229 187 135 110
17 110 50 27 50 25 14 1 105 148 126 140 120
18 41 50 27 3 46 24 1 134 190 162 142 121
19 41 55 27 3 49 24 1 142 196 164 138 116
20 46 55 27 3 50 24 1 140 193 162 138 116
21 57 49 27 3 48 24 1 126 181 155 144 123
2 57 37 27 3 48 24 1 13 213 188 156 138
23° 57 40 27 3 48 24 1 133 203 179 152 134
24° 57 42 27 3 48 24 1 132 197 172 149 130

% The values ofm are estimated based on the information of unisceahpressive strength for
general rock type (Shen and Karakus 2013)

P By considering the excavation methods for casasdl0 were poor and the cases 11- 21 were
obtained from open pit mines (the excavation metlvad assumed to be production blasting),
therefore, according to the guidelines by Hoel.€2802),D was assumed to be 1 for all cases.

¢ Cases 22- 24 are additional cases which haveatine sock mass properties as case 21 except

slope angle.
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Fig. 7 The correlations betwe&nandf under different boundary conditions for open pi$&s

The possible connections betwekgrand other parameters$i (o, GSI andm) were also
investigated as shown in Fig. 8. No strong relaiom was observed betwedmnand these

parameters.
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6 Conclusions

A new non-linear SSR method has been proposed atysthe stability of 3D rock slopes
satisfying the HB failure criterion. This method based on estimating the instantaneous MC
shear strength parameteand gvalues from the HB criteriofor elements in a FLAZ model.

The reliability of the proposed 3D slope model heeen tested using an example from
Hammah et al. (2005). The value of the FOS caledlaly the proposed slope model (fine mesh)
is equal to 1.16, which is close to Hammah et absults with FOS=1.15. However, it was
found that the convergence criterion used in thelehplays an important role not only in the
calculation of the FOS, but also in locating thiéufe surface as shown in Table 2.

Then, the proposed 3D slope model has been usadalgse the influence of the boundary
condition on the calculation of the FOS using 2&l repen pit cases with various slope
geometries and rock mass properties as indicatéfhiile 6.We have proposed a boundary
weighting factor fg, to investigate the possible correlation of the Rid8er different boundary
conditions.

Our analysis demonstrates that there is a stronglation betweeriz and slope angl# as
shown in Fig. 7. The value &f will decrease with the increase of the slope anglengis less
than 50°. Howeverfg tends to reach stable valuefgy(=1.4 andfgx~=1.1 ) wheng >50°.
Therefore, great care should be taken to selectopppte boundary conditions when the

researchers perform 3D numerical analysis of stafelow slope angle.
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Chapter 6

Chart-Based Slope Stability Assessment Using the

Generalized Hoek-Brown Criterion

Abstract

Slope stability charts are used extensively in gorak application to meet the need of quick
assessment of rock slope design. However, roclesdtgbility charts based on the Generalized
Hoek-Brown (GHB) criterion, which is one of the mosidely adopted failure criteria to
estimate rock mass strength in rock engineering,cansiderably limited. This paper presents
new stability charts for the analysis of rock makspes satisfying the GHB criterion. Firstly,
charts for calculating the factor of safety (FOSa®lope for a specified slope angie 45° are
proposed. Secondly, a disturbance weighting fafgds introduced to illustrate the effect of
disturbance factdd upon the stability of rock slopes. Thirdly, a stagngle weighting factdg is
proposed to show the influence of slope an@len slope stability. Combined with stability
charts based off = 45°, the weighting factor andfg allow the calculation of the FOS of a
slope assigned various slope angle under diffdrksting damage and stress relief conditions.
The reliability of the proposed charts is testediast numerical solutions. The results show that
FOS from the proposed charts exhibits only 3.1 #ragye discrepancy from numerical solutions
using 1680 sets of data. The proposed charts amglesiand straightforward to use and can be

adopted as useful tools for the preliminary rodpslstability analysis.
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1 Introduction

Determining the stability of rock mass slopes isiraportant task in many areas of civil and
mining engineering, such as open pit excavationlarg: dam construction. Most slope stability
analysis is based on seeking the factor of safeé®S|), which is a traditional measure of the
safety margin of a given slope [1]. Having the rnefiquick assessment of preliminary slope
design, stability charts have been extensively tisexstimate the stability of a slope in practical
applications. The most common charts widely useslape engineering is the Taylor’s stability
charts [2], which require the Mohr-Coulomb (MC) ahestrength parameters cohesmmand
angle of frictionpto estimate the FOS of a slope. However, rock rsaength is a non-linear
stress function, therefore, the linear MC criterigenerally do not agree with the rock mass
failure envelope [3- 6], especially for slope sli#pproblems where the rock mass is in a state of
low confining stresses that make the nonlinearityerobvious.

Currently, the Hoek-Brown (HB) [7] criterion is ord the most broadly adopted failure
criteria to estimate rock mass strength in rockireeeying. Over the past 30 years the HB
criterion has been applied successfully to a watege of intact and fractured rock types. The
latest version is the Generalized Hoek-Brown (Gld&terion presented by Hoek et al. [8]. The
equations are expressed as follows:

q=%+m{ﬂ$+% &)

cl

m,, s anda are the Hoek-Brown input parameters that depenthemegree of fracturing of the

rock mass and can be estimated from the Geolo§tcahgth Index (GSI), given by:

m) — m éza—_moj (2)
sz dom) 3)
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2.3

a= 0.5+T (4)
where, o1 is the maximum principal stresses, is the minimum principal stresses, is the
uniaxial compressive strength of the intact rook,is the Hoek-Brown constant of the
intact rock, and is the disturbance factor of the rock mass. Tipaitiparameters of the GHB
criterion can be achieved directly from mineraledi@ssessment, uniaxial compressive testing of
rock materials, and measurement of discontinudiesacteristic of rock masses [9]. Therefore, a
great advance in the field of rock slope stabaisgessment could be achieved if suitable stability
charts could be developed to estimate the FOSthireom the GHB criterion.

Development of rock slope stability charts basedtiom GHB criterion, however, is a
challenging task since there are at least six imawameters (GSh, o, ¥ 5, H) involved to
calculate the FOS for a given dry slope witk= 0, wherey is the unit weight of the rock mass,
[ is the slope angle, arld is the slope height. Based on our literature mgyieharts for the
estimation of FOS directly from the GHB criteriam still a under research area and very few
charts are available in the literature.

In the current research, we propose new chartshadan be used to estimate the FOS of a
slope directly from the Hoek-Brown parameters (GSlandD), slope geometry4 andH) and
rock mass propertiess{ and )). The proposed charts are straightforward to usk Gan be
adopted as useful tools for the preliminary rodpsl stability assessment.

In this paper, the existing rock slope stabilityath related to the HB criterion are briefly
reviewed in section 2. The proposed stability chare presented in section 3. Charts application

to slope cases is presented in section 4.
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2 Review of existing rock dope stability charts based on the HB

criterion

Since Taylor [2] proposed a set of stability chdds soil slopes, chart solutions have been
presented by many researchers [1, 10-21] and drevgtely used as design tools in slope
engineering. At present, rock slope stability chastich as Hoek and Bray’'s [11], often need to
use the equivalent MC shear strength parameteesawit and angle of frictiorg which can be
estimated from softwar@ocData[22] as shown in Fig. 1. The equivalent fitting M@velope is

a straight line. The slope of the tangent to the Bitvelope gives the value @ and the
intercept with the shear stress axis gives theevafie. However, this conversion has been found
to yield inconsistent estimates of the FOS of pa&lavith a discrepancy between the HB and

equivalent MC envelopes of up to 64% [13].
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Fig. 1 Relationship between HB and equivalent Metopes

Until now, the slope stability charts by Carranzat#€s [12] and Li et al. [13-15] have been
among the few charts that can be used to estinmae=OS directly from the HB criterion.
Carranza-Torres [12] proposed a solution for edtmgahe shear strength of rock masses from
the HB criterion, which was incorporated in the Rip simplified method [23] for the analysis
of rock slope stability. Carranza-Torres [12] rdedahat when the Hoek-Brown parameder

0.5, the FOS of a given slope only depends onhreetindependent variableg , sm,> andg .

yH S

+ =

om g ®)

In order to estimate the FOS of a slope with amgigeometry £ andH), rock mass properties

yH =

(yandoc) and Hoek-Brown parameters (G&t, andD), firstly, the values ofm, ands can be
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calculated using Egs. (2) and (3), respectivelyer&hfter, the values of the dimensionless

parametersyH ands/m,? can be calculated. Finally, the FOS can be direzstymated from the

chart as shown in Fig. 2.
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0.01

Factor of safety
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mo,, m,

ci

Fig. 2 Slope stability charZ45°,a=0.5) [12]

While Carranza-Torres [12] proposed a chart is thase=0.5 with only a single slope angle,
[ = 45, the current research proposed a slope angle tisigfactor fg to illustrate the
influence of slope anglg on slope stability, to be discussed in sectio@d@nbined with the Fig.
2 based of = 45°, the slope angle weighting factor chart (assshm Fig. 11) can be used for
estimating the FOS of a slope assigned variouseang|

Stability charts for estimating rock mass slopegdly from the Hoek-Brown parameters

GSI,m andD were originally proposed by Li et al. [13] usinignit analysis (LA). Li et al.’s [13]

charts are based on the assumptbrr 0, which means that the rock slope is undistirbe
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Similar stability charts utilizingp = 0.7 andD = 1.0 were also proposed by Li et al. [14] in arde
to examine the effects of these rates of disturbamt rock slope stability. Seismic stability
charts were also proposed by Li et al. [15] to aotdor seismic effects on rock slope stability.
The current research, however, focuses on stafpe Stability analysis, and seismic charts were

not discussed in detail here.

Fig. 3 shows typical stability charts with a slapegle of 3 = 45°.N is the non-dimensional

stability number, defined as:

— Jci
yHFOS (6)
A
F=PaB=1 p=45.D=1.0
100
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Fig. 3 (a) Slope stability chart with=0 [13], (b) Slope stability chart with=0.7[14], (c) Slope

stability chart withD=1.0 [14]

Because the upper and lower boundary results brackarrow range ol within +9% or
better, Li et al. [13, 14] adopted the average valuetlgoiution to generate the charts in order to
keep their calculations simple. The use of thesetshs quite easy. Firstly, the stability number

N can be calculated using the values of GSI emérom an appropriate chart according to a

143



specifiedD value D = 0, 0.7 and 1) as shown in Fig. 3. Having obtaitiee value oN, Eq. 6
can be used to calculate the R@S

As noted by Li et al. [24], the definition of factof safety for Eq. 6 is different from that of
FOS obtained from the limit equilibrium method (LEMhich was defined as a function of
resisting forcefg divided by driving forcefp, FOSem=fr/ fo. Therefore, the values of FQS
obtained from Eq. 6 are generally not equal to lgQSSuch variations can be illustrated using

four examples in Table 1.
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Table 1 Comparison of the factor of safety estimhdtem different stability charts

Input parameters Example 1[12]Example 2[14] Example 3 Example 4
aci, MPa 0.75 10 13.5 54
GSl 100 30 30 20
m 10 8 5 20
D 0 1 0.7 0.7
¥, kN/m? 25 23 27 27
H, m 27 50 50 25
B ° 45 60 45 45
Calculated parameters
my 10 0.054 0.107 0.247
s 1 8.57E-06 3.93E-05 9.22E-06
a 0.5 0.522 0.522 0.544
simy? 0.0100 0.0030 0.0034 0.0002
H 0.10 2.13 0.94 0.51
el (JH) 1.11 8.70 10 8
N 0.08 50 10 6
Factor of safety
Carranza-Torres

3.14 0.44* 1.00 1.20
Chart (LEM)
Li et al. Chart (LA) 13.89 0.17 1.00 1.33

* FOS of example 2 is calculated from Fig. 2 togetwith Fig. 11.
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Considering that the LEM is still the most widelged methods for slope stability analysis,
we proposed an alternative stability chart basedhenLEM. The proposed charts are able to
estimate the FOS of a slope directly from the HBetwn parameters (GSiny andD), slope

geometry andH) and rock mass propertiegi(@and)).

3 Proposed stability chartsfor rock mass slopes

The work outlined here required hundreds of runs omcrocomputer, analyzing the stability of
various slopes having different geometries and noelss properties. The slope models were

analyzed usinglide 6.0[25]. Details of the slope model settings are shawhable 2.

Table 2 Slope modeling setting3tide 6.0

Modeling setting summary

Analysis method Bishop simplified
Number of slides 25
Search method Auto grid search
Rock strength type Generalized Hoek-Brown
Ground water None
Failure surface type Circular toe failure
Disturbance factor 0-1

The competency factor, the ratio of the uniaxiahpoessive strengtty; to the pressure of the
overburdernyH of tunnels, proposed by Muirwood [26] was usedurrent study. For rock slope
application, )H canrepresent the vertical stress of the rock slopehis paperg. /(JH) was
termed the strength ratio (SR) of a rock slope.iiterested the stability numbBrproposed by

Li et al. [13], which contains SR as shown Eq. Be Tise of SR is a significant innovation for the
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rock slope stability analysis because when theesmbf the input parameters G8i, D andf
are determined, the FOS is related only to the SRab slope.

In this section, the derivation of the theoreticalationship between the SR and FOS of a
given slope slip surface will be explained in deti the next stage, based on the relationship
between the SR and FOS, charts for calculatind=-®8&;s- whenS = 45°, D=0 are proposed. A
disturbance weighting factdp is then introduced to illustrate the effect oftdibanceD upon
the stability of rock mass slopes. Finally, a slapele weighting factofg is proposed to
illustrate the influence of the slope angfeon slope stability. Combined with stability charts
based org = 45°, the weighting factorfg andfp allow for the calculation of the FOS of slopes
exhibiting various angle under different blast dgmand stress relief conditions. Also, some

slope examples are presented to illustrate thefude proposed charts.

3.1 Theoretical relationship between SR and FOS

Combined with a generic form of Balmer’s equati¢h®], the GHB criterion was input into
Slide 6.0in order to calculate the instantaneous sheasssiref each slice of a failure surface
under a specified normal stregs The generic form of Balmer’'s equations are exgedsas

follows:

. ( £+ ja—l
M M =*s

ci

a-1 (7)
oo

ci

(8)
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For a generic cas#£0.5, in order to calculate shear strestr the given values of the input
parametersn, S, a, o andoy, EQ. 7 is solved iteratively to calculate ihevalue [27]. Having

obtainedoss, Eq. 8 can be used to calculate shear stietberefore,os/o; can be expressed as

follows:
03 — an
aci B fl ( aci , mb 'S a] (9)

Also, 7/ocican be expressed as follows:

%z fz[gn. ,m,, s, a] (10)
The FOS can be defined as a function of resistorgeffr divided by driving forcefp as

shown in Fig. 4a. The forces fif andfp can also be expressed in terms ahdo,acting on the

base of an arbitrary slideas shown in Fig. 4b. Resisting shear strgs®f the rock mass is

governed by Eq. 10, and driving shear strgssill depend on the weight of the sligh' as

indicated in Fig. 4b.

- {
v
hi
]
r! e /u
D TR

Slip surface

(@) (b)

Fig. 4 (a) The basic of method of slices, (b) Stessacting on a given slice
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Therefore, with the help of Eq. 10, the FOS caeXy@essed as follows:

FOS= g(%j: f{% f{%, . s %} (11)

The value ob, of arbitrary slice depends on the weight of slfagwhich in turn depends on the

characteristic streggi and slope anglg[12]. Eq. 11, therefore, can be transformed into Y

_ | % s M
FOS= f{yH t*[a. , M, S aﬁﬂ (12)

Cl

The parametensy, sandain Eqg. 12 can be calculated from Egs. 2 to 4,eetipely. Finally, the

FOS can be expressed as Eq. 13

FOS= g[am GSI m Dﬁj = § SRGSI,m p) (13)

Eqg. 13 illustrates the fact that when the value&8t, my andD are given in a homogeneous
slope, along with the slope angbethe FOS of a slip surface for a particular methbdlices is
uniquely related to the dimensionless parametere®fardless of the magnitude of individual
parameters;, yandH.

Table 3 shows three different groupseaf yandH associated with the same SR value for a
slope that has the same values of G§IP andg. The values of FOS were calculated using four

limit equilibrium methods irSlide 6.0[25], with finite element method (FEM) conductednas

the progranPhasé 8.0[28].
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Table 3 Comparison of the FOS of a given slope Wighsame value of SR

Input parameters Group 1 [13] Group 2 Group 3

GSI 30 30 30

m 8 8 8

D 0 0 0

B ° 60 60 60

aci, MPa 20 25 250

y, kKN/m® 23 28.75 23.96

H, m 25 25 300

ocil (OH) 34.783 34.783 34.783
Factor of safety

Bishopsimplified 2.026 2.026 2.026

Janbu simplified 1.934 1.934 1.934

Spencer 2.032 2.032 2.032

Morgenstern-Price 2.027 2.027 2.027

Phasé 8.0 (FEM) 2.000 2.040 2.030

The results show that FOS values for all three ggoare exactly the same. Results of the
comparison of the FOS calculated for the three ggawer a range of GSI and are shown in
Table 4. Again, the results reveal that the FO& sfope depends only on the magnitude of SR
when the values gf, GSI,m andD are the same. Based on the relationship betweeSRhand
FOS, the number of independent parameters for ladgileg the FOS can be reduced to four (SR,

GSI,m and ) whenD = 0. In the next stage, we will propose the roldpes stability charts

based on the SR, GSI anglfor slopes with3 = 45°,D = 0.
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Table 4 Comparison of the FOS of a given rock slejtle various Hoek-Brown parameters.

Hoek-Brown parameters Group 1 Group 2 Group 3
GSI m FOS FOS FOS
10 5 0.958 0.958 0.958
10 15 1.326 1.326 1.326
10 25 1.547 1.547 1.548
10 35 1.705 1.705 1.706
40 5 2.532 2.532 2.532
40 15 2.819 2.819 2.819
40 25 3.043 3.043 3.043
40 35 3.227 3.227 3.227
100 5 46.854 46.854 46.856
100 15 30.840 30.840 30.842
100 25 25.540 25.540 25.542
100 35 22.753 22.753 22.755

3.2 Slope stability charts based on slope afigiet5°

The examination of 54 slope case histories [20jflcan and Australia shows that the average
slope angle is 46.3°. Therefore, firstly, the pregub stability charts for the current study were
based on the GHB criterion from a range of SR, &®lm, but with a specified slope angh=

45° andD = 0 as shown in Fig. 5.
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Factor of Safety

SR: a/(H)
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Factor of Safety
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Factor of Safety

SR: 6,/(H)

()

Factor of Safety

SR: aci/(}'H)

(f)

154

0 5 10 15 20 25 30 35 40
SR: 64l (yH)

' ' ' ' ' ' '
' ' ' ' ' ' ' '
0 T T I T T U I N A I T I O O O I A I I |

0 5 10 15 20 25 30 35 40
SR: 64l (H)



7 fffs
6 [/
> & LA/
g ° i
& 4t i
S B3/ [
5 3| .
® T
L 2
1 ft
0 ol
. 0 5%10 15 20 25 30 35 40
SR: a,/(yH) SR: a4/(H)
(9)

Fig. 5 Proposed stability charts for rock massa|@45, D=0 (5<m<35)

Fig. 5 indicates that there is a clear trend ofitlteease of FOS with the increase of GSI and
SR. For example, increasing GSI values from 100@ When SR=1, the values of FOS increase
from 0.45 to 2.80 as shown in Fig. 5a. It is alsonfd that SR has a considerable effect on the
FOS, especially, under the state of high GSI val&es example, when GSI=90, the values of
FOS are equal to 3.1 for SR=2 and increase tods.3R=5 in Fig. 5a. On the other hand, under
the state of low GSI values, there is a moderateease of FOS with the increase of SR. For
instance, when GSI=10, the value of FOS is equdlfdéo SR=15, and FOS increase to 1.4 for
SR=40 as shown in Fig. 5a.

Alternative form of stability charts are shown ilgF6. We can see that, overall, the FOS
increase with the increase of values. However, at the state of high GSI and 8Res, the
FOS decrease with the increasemplalues as shown in Fig. 6 (c) and (d). This phezrmon can
be explained by Fig. 7 [29], whidhustrates the relationship between the Mohr-Cowloshear

strength parameters and Hoek-Brown parameters @Bhavalues. It is clear that the values of
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cohesion decrease with the increasenpialues when 60< GSI <90. Therefore, the resisting
shear strength will decrease, which leads to theedse of FOS, whem values increase in

these specified cases.
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Fig. 6 Proposed stability charts for rock masse|@s45, D=0 (SR=0.1, 1, 10, 40)
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Fig. 7 (a) Relationship betweefys.; and GSI for differentn; values [29], (b) Relationship

betweengand GSI for differenin values [29]

Fig. 8 is an alternative form of Fig. 6a using #ability numbemlN proposed by Li et al. [13].
It should be noted that the valued\obbtained from Fig. 8 are different from Fig. 3a,the FOS
calculated from limit equilibrium method are gerlgramot equal to those from limit analysis

[24].
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3.3 The disturbance weighting facter
Practical experience in the design of large opéslppes has demonstrated that the estimation of
rock mass properties from the HB criterion aredptimistic whernD = Obecause of the realities
of rock mass disturbance. Therefore, Hoek et &lintBoduced the disturbance factdr which
can vary from zero for undisturbed in situ rock sesto one for highly disturbed rock masses,
to consider the effects of heavy blast damage disawestress relief result in disturbance of the
rock mass.

It is not easy to determine the exact valu®ais various factors can influence the degree of
disturbance in the rock mass. Hoek et al. [8], Haedt Diederichs [30] and Hoek [31], therefore,
presented a number of slope cases to illustratetb@hoose an appropridievalue for practical

application. In civil engineering, small scale roslope blasting results in modest rock mass
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damageDP=1.0 and 0.7 were recommended under poor blastidggaod blasting, respectively.
For folded sedimentary rocks in a carefully excadabad cuttingD = 0.3 is suggested since the
disturbance is relatively shallow. In mining engiriag, large scale open pit mine slopes suffer
significant disturbance under heavy productiontbigs andD = 1.0 is the suggested value. For
softer rocks under mechanical excavatién,is assumed to equal to 0.7. However, these
guidelines are based on a limited number of casieiines, and it can be argued that they should
be extended and modified by considering more calsisned from practical applications [32].

Thus, in order to understand the real influenc® afpon the stability of rock mass slopes, it
is critical that researchers and engineers pergiudies of a range & values rather rely on the
results from a singl® analysis. As noted by Hoek and Diederichs [308, 4bnsitivity analysis
of a design is probably more significant in judgiihg acceptability of the design than a single
calculated FOS.

The current study, therefore, proposes a distudbareghting factofp to use in refining the
influence ofD upon the stability of rock mass slopes. The ftep in proving the importance of
factor fp in determining the influence d in calculating the FOS is to assume a disturbance
factor D from O to 1, using the same values of Q8l, SR andg as those found in the slope
models in section 3.2 witD = 0. Fig. 9 illustrates the relationship betwdarandfy for a slope
with SR = 10 angB = 45°. It is found that the minimum valueraf = 5 and the maximum value
of m = 35 generates a narrow range fpf which indicates that the value of has an
insignificant influence upon the estimationfef For example, for a slope with GSI = 10, SR =

10, 5= 45°,D = 0.7, increasingy from5 to 35 only results in an increasdgiirom 0.42 to 0.48.

159



0.9

0.8

0.7

0.6

0.5

0.4

0.3

Distur bance weighting factor , fy

0.2

0.1

SR=10,8= 45

0 01 02 03 04 05 06 07 08 09 1
Distur bancefactor, D

0

Fig. 9 Chart for estimating disturbance weightiagtérfy , SR=10 =45

By considering the limit influence afiy on the estimation ofp, charts representing the
relationship betweefy andD based om; = 5, 15, 25 and 35 were proposed, as shown inlbig.
The use of Fig. 10 to calculate the valuefpfis easy. For example, for a given slope with

GSI=90,D=0.7, SR=10 anth=5, the value ofp is equal to 0.88 as shown in Fig. 10a.
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Fig. 10 Chart for estimating disturbance weightiactor,fp (m=5, 15, 25, 35)

3.4 The slope angle weighting factgr

The values of FO@-estimated directly from the data in Fig. 5 are dame a slope angl@= 45°.

In order to examine the influence on the FOS ofsibpe angle, it was necessary to test the slope
models using angles of different values. Slope@fighas assigned values ranging from 30° to

75° while the values of the G3h, D and SR are the same as slope models FAathd5°.
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After hundreds of computer runs using a wide ranfgock mass properties and slope
geometry, a chart representing the relationshipvden the slope angle weighting facfgand
the slope angl# was proposed based on the data 0<FOS<4, whichbwiddpplicable for most
civil and mining slope cases, as shown in Fig. B§.adopting a curve fitting strategy, a

simplified equation was developed, as shown inl#g.

— —0.0223
fﬂ =2.66 %2 (14)
1.6 T
o L4
5 N
g 1.2 : \ fﬂ - 2'6&—0.0228
g 1 C \‘\ 0<FOS<4
< i
[@)] L
S -
2 08
I r
2 : T~
3 06 ~
o [ T~
=) i
D 041
0.2 +
0 [0y

30 35 40 45 50 55 60 65 70 75
Slopeangle, B°

Fig. 11 Slope angle weighting factor chart

Combined with the stability charts (Figs. 5 and, I8¢ slope angle weighting factor chart or Eg.
14 can be used for estimating the FOS of a slofie wairious given slope angleestimated from

real cases.
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Compared with the values calculatedSide 6.0 the values of the FOS estimated from Fig.
11 show some discrepancy. The prediction performarfid-ig. 11 was tested using 1680 sets of
data. The discrepancy result shows that 78.6%eotitlta is lower than 5%, while the absolute
average relative error percentage (AAREP) is 3.406, the maximum discrepancy percentage
(DPwmax) is -18.9% as shown in Fig. 12. It was also fotht the data with a discrepancy greater

than +10% appears when GSI>90.

1000
] Data Di
800 AAREP=3.1% percea:nage % pzizz?;gg %
78.6 <5
700 - DR, =-18.9% 171 510
600 4.3 10-20
>
[&]
5 9907 436
8 400 -
(L
300 -
200 - 176
112
100 -
00 0 g 39 o5
0

-20% -15% -10% -5% 0% 5% 10% 15% 20%
Range of discrepancy

Fig. 12 Discrepancy analysis of the proposed rdéapesstability charts

Fig. 11 can also be used in conjunction with ther&@ea-Torres [12] slope stability chart
shown in Fig. 2 ,which is based @gh= 45°, for estimating the FOS of a slope with slopgles
other than 45°. Example 2 [14] in Table 1, therefevas reanalyzed using the chart from Fig. 2

together withfg from Fig. 11. Using the Fig. 2, results in the B§S 0.62. Using the data from
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Fig. 11, the slope angle weighting factpr 0.72. Finally, the FOS fg xFOSs- = 0.72x0.62 =
0.446, which is slightly different from the FOS #89 calculated usinglide 6.0
3.5 The use of the proposed stability charts

The use of the proposed rock slope stability chartsalculate the FOS of a given slope is
quite straightforward. Firstly, for given values 8R, GSI andn, the value of FO{&- can be
obtained using the stability charts (Fig.5). Sedpntbr any given disturbance fact@, the
disturbance weighting factds can be obtained from Fig. 10. Thirdly, for the givadope anglg,
the slope angle weighting factéy can be calculated from Eqg. 14 or obtained from Hity
Finally, the FOS can be calculated as, FGg<«#p xFOSs-

Example 2 [14] in Table 1 was again adopted tcithate the use of the proposed charts. The
calculation steps are as follows: Firsthy,= 5 from Fig. 5a andy = 10 from Fig. 5b were used
to estimate the average value of the FOSior 8. The values of FQ§for m =5 andm = 10
are 1.5 and 1.8, respectively. Therefore, the @esvalue of FO&- for m = 8 was assumed to
equal to 1.65. Thenmy = 5 from Fig. 10a andy = 15 from Fig. 10b were used to estimate the
average value ofp for m = 8. The values ofp for m = 5 andm = 15 are 0.39 and 0.44,
respectively. Thus, the value fpf for m = 8 should be located between 0.39 and 0.44. ihird
slope angle weighting factdy for 8= 60° was estimated using the chart (Fig.11) arl&qg with
the resultfg = 0.72. Finally, the lower and upper values of H@S can be calculated. The results
were FOSower = fpX fo-Lower XFOSse = 0.72x0.39%1.65 = 0.463 and RQser = fzX fo-upper

XxFOSs = 0.72x0.44%x1.65 = 0.522. The result providg&hde 6.0was FOS = 0.489.
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4 Case studiesfor the proposed charts

The following three examples with a wide range @tk properties and slope geometry were
used to illustrate the practical application of greposed rock slope stability charts. The results
are shown in Table 5.

Example 1: A small slope consisting of highly fiaetd rock masses with the following input
parameterss = 2.7MPa, GSI = 10mn = 5, y= 27kN/n?, H = 5m and8 = 30°,D = 0.5. Example
2: A medium slope consisting of good quality rocasses with the following input parameters:
o = 0.625MPa, GSI = 80 = 15, y= 25kN/nt, H = 25m and8 = 75°,D = 0.3. Example 3: A
large open pit slope consisting of blocky rock neassith the following input parameteks; =
46MPa, GSI = 50m = 35, y= 23kN/n¥, H = 250m ang3 = 60°,D = 1.0. The results show that
there is close agreement between the proposeditstaihiart and theSlide 6.0results. The

discrepancy percentages for examples 1 to 3 884%3.1.27% and 0.78%, respectively.
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Table 5 Three slope examples analyzed using thmpeal stability charts.

Input parameters Example 1 Example 2 Example 3
oc, MPa 2.7 0.625 46

GSlI 10 80 50

m 5 15 35

y, kKN/m® 27 25 23

H,m 5 25 250

B ° 30 75 60

D 0.5 0.3 1

Calculated data

SR:oei/ H 20 1 8
FOSs 1.1 2.08 3.3
o 0.64 0.96 0.59
fo 1.4 0.53 0.72

Factor of safety

Proposed charts 0.986 1.058 1.402
Slide 6.0 1.025 1.045 1.391
Discrepancy -3.84% 1.27% 0.78%
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5 Conclusions

New rock slope stability charts for estimating loé tstability of rock mass slopes satisfying the
GHB criterion have been proposed. The proposed<iecan be used to calculate the FOS of a
slope directly from the Hoek-Brown parameters (G&landD), slope geometry4andH) and
rock mass properties{ and})).

Firstly, the theoretical relationship between ttrerggth ratio (SR)g.i/(yH) and the FOS has
been demonstrated. It is found that when the vadfigs GSI,my andD in a homogeneous slope
are given, the FOS of a slip surface for a paricahethod of slices is uniquely related to the
parameter SR regardless of the magnitude of theithdhl parameters.;, yandH. Based on the
relationship between the SR and FOS, stabilitytshes shown in Fig. 5 for calculating the FOS
of a slope with specified slope angle= 45°,D = 0 have been proposed.

Secondly, while the disturbance fact@ras great influence upon the stability of rock mass
slopes, it is, nevertheless, difficult to determitseexact value. Yet a sensitivity analysisDofs
probably more significant in judging the accepti&pibf a slope design than a single calculated
FOS with specifiedD values estimated from the guidelines by [8, 30, ¥¥e proposed a
disturbance weighting factds as shown in Fig. 10 to show the influence of ayeaof values of
D upon the stability of rock mass slopes.

Thirdly, a slope angle weighting factiaghas been proposed to show the influence of theeslop
angleg on slope stability. It should be noted that tharthas shown in Fig. 11, representing the
relationship betweefy and S was proposed based on the data 0<FOS<4, howeweil] be

applicable for most civil and mining slope cases.
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Combined with stability charts based gn= 45°, the values ofg andfp can be used for
estimating the FOS of slopes with various anglea wariety of blast damage and stress relief
conditions. The reliability of the proposed charts been tested against results fiside 6.0
using 1680 sets of data representing a wide rahgeck mass properties and slope geometries.
The results show that there is good agreement eetives values of the FOS as calculated from
the charts and those produced3lide 6.0 as shown in Fig. 12. The discrepancy of 78.6% of
data is lower than +5%, and the absolute averdgawe error percentage (AAREP) is 3.1%. In
addition, it is found that the data with a discrepaof more than £10% appear when GSI>90.

The proposed charts are quite simple and straigtdial to use and can be adopted as a

useful tool for the preliminary rock slope stalyilgnalysis.
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Chapter 7

Conclusions and Recommendations for Further Work

Rock slope stability is one of the major challengésock engineering projects, such as open pit
mining. Rock slope failure can affect mining openas and result in costly losses in terms of
time and productivity. Therefore, the evaluationtbé stability of rock slopes is a critical
component of open pit design and operation. Thk stape stability is predominantly controlled
by the rock mass strength which is a non-lineasstfunction. However, when limit equilibrium
method (LEM) and shear strength reduction (SSR)hatktare used to analyze rock slope
stability, the strength of the rock mass is gemgmatpressed by the linear Mohr-Coulomb (MC)
criterion. It is known that the MC criterion is déar, therefore, it does not agree with the rock
mass failure envelope very well.

This research focuses on the application of thekHRrewn (HB) criterion, which can ideally
represent the non-linear behavior of a rock madshais been successfully applied in the field of
rock mechanics for over 30 years, on the rock slsiaility analysis. The major research
contributions and outcomes of the thesis are liatefbllows:

* A new method that can estimate the HB constgntalues using only UCS and rock

types has been proposed. The reliability of thegppsed method has been evaluated using
908 sets of triaxial tests together with our labamatests for five common rock types.
Results from the comparison have shown thavalues calculated from the proposed
method can reliably be used in the HB criteriondredicting intact rock strength without
triaxial test data which require expensive and {omesuming testing procedures.

Simplified empirical equations for estimating def@ation modulus of rock ma&s, also
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have been proposed by adopting Gaussian functidit the in-situ data. It has been
demonstrated that the proposed equations fit wethé in-situ data compared with the
existing equations.

Analytical solutions that can be used to estimhgeinstantaneous MC parameters angle
of friction g and cohesior from the HB input parameters (G3h, D, o) have been
proposed. The proposed solutions can be implemantedthe LEM to calculate the
instantaneous shear strength of each slice ofiadasurface under a given normal stress.
It also can be used in conjunction with numericaldeling performed by SSR technique
to calculate the instantaneous shear strengtreofezits under various stress states.

A new non-linear SSR method has been proposed adlysas the stability of 3D rock
slopes satisfying the HB failure criterion. This th is based on estimating the
instantaneous MC shear strength parametand ¢ values from the HB criteriofor
elements in FLAE® model. Then, the proposed 3D slope model has bseto analyse
the influence of boundary condition on the caldalatof FOS using 21 real open pit
cases having various slope geometries and rock praperties A boundary weighting
factor, fg has been introducetb investigate the correlation of FOS under diffiere
boundary conditionRResults have illustrates that the effect of boupdanditions on the
FOS values are more obvious for the slope with stepe angle than steep slope. The
values offgx, andfgyy, Will go up to 1.7 and 1.5 when slope angle is kss 35°. On
the other hand, when the slope angle is more tbafs%, andfgy, values tend to equal
to 1.4 and 1.1, respectively.

2D slope stability analysis using LEM has beeniedrout. The value of FOS for a given

slope is calculated based on estimating the irst@aus shear strength of slices of a slip
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surface from the HB criterion. By analyzing thebdity of various slopes having
different geometries and rock mass properties, Instability charts for assessing the
stability of rock mass slopes have been proposéd froposed charts are able to
estimate the FOS for a slope directly from the HBameters (GSln and D), slope
geometry § andH) and rock mass propertiegi(and})). The proposed charts are simple
and straightforward to use and can be adopted efsilusols for the preliminary rock

slope stability analysis.

It should be noted that there are some limitatione current research and further research

recommendation are described as follows:

The proposed empirical equations for predictmgand E,, values are based on the
analysis of existing database and the reliabilftgsiimation of these empirical equations
depends on the quality and quantity of laborat@tadTherefore, the proposed empirical
equations are open to further improvement as nesteng data become available.

The current 3D slope stability study is based onpg slope geometry. However, it is
known that the slope geometry is more complex atitye For example, the natural slope
often has curvature, and round surface often apdear open-pit mining design.
Therefore, future work is required to consider #ffect of complex geometries on 3D
numerical model.

The proposed 2D stability charts do not accoungfound water conditions and seismic
effects on the slope stability. In some situatiogrmund water level on the slope and
earthquakes can be major factors for slope in#yabilhus, further studies needs be

conducted to investigate the effects of ground natel seismicity on the slope stability.
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