Automatic Feature Extraction

for

Pattern Recognition
by

Jamie Sherrah

Thesis submitted for the degree of

Doctor of Philosophy

Stg ¥
"'-‘nucx:\ﬂ.é/

Department of Electrical and Electronic Engineering
Faculty of Engineering
The University of Adelaide
South Australia

10 July 1998

Contents

Abstract xi
Statement of Originality xiii
Acknowledgments xiv
Related Publications XV
Glossary xvi
1 Introduction and Overview 1
1.1 Background to the Research oo cv v 1
1.2 The Thrust of this Thesis+« v v v v v v b o e i o b e e e e 1
1.3 Contributions of this Thesis« oo v v v v v v o 2
1.4 Methodology . . « « v v v v vt e e 3
1.5 OQutline of this Thesis ¢« v v i v v v i v v et s e e e 4
1.6 COonClUSION . « « v v v e e e e e e e e e e e e e e e 5

2 Pattern Recognition 6
921 Introduction v v ot e e e e e e e e 6
2.2 What is Pattern Recognition?« . oo n e 6
2.3 Supervised Classification n e 7
2.3.1 An Example: Parallelepiped Classifier 9

2.4 Estimating Classification Erroro oo 10
924.1 wv-fold Cross-Validation o v v v v v v i v e 14

242 TheBootstrap o v vt v o 15

2.4.3 The Confusion MatrTix« o« v v v v v v i v v e e e e 15

2.5 Partitioning the Data 16
2.6 Bayesian Classification 17
92.6.1 Discriminant Functions « .« c v o v v e e e s s e e 19

2.6.2 Minimum-Distance-to-Means Classifier 20

2.6.3 The Maximum Likelihood Classifier 20

2.6.4 The k-Nearest Neighbours Classifier 20

9.7 Artificial Neural Networks« . o o v o v i vt ot e e 22
2.7.1 The Generalised Linear Machineo o oo v v v o 23

2.7.2 Multi-Layer Perceptron« oo e 25

9.7.21 Practical TSSues.« v o o i v i e e e e e 29

2.7.2.2 RPROP Training Algorithm 32

2.8 Decision TIeES . « « o v v v v o e e e e e e e e e e e e e 32
281 CART . . . o e e e e e e e e e e 35

982 CAB . . o e e e e e e e e e e e e 38

CONTENTS

283 QUEST céccesvasasssmevsswens
2.9 TFeature Selection v v i i i e e e e e e e e e e e
2.10 Generalisation and Model Complexity« oo oo v oo
2.11 Benchmark Standards e e e e e e e e e s
2.11.1 MeNemar’s Test . . . v v o v v i i e e e e e e e e e e e e e
211.2 TSt . . o o e
2.11.3 Comparing Multiple Classifierso o
2.12 ConcluSION . « + v o v e

Evolutionary Optimisation Techniques

3.1 Introduction o v i o e e e e e e e
3.2 Optimisation and Search oo oo
3.2.1 Complexity Theory e
3.2.2 Heuristic Search Algorithms
3.2.3 Relationship between Search and Pattern Recognition
3.3 Paradigms for Evolutionary Search,
3.3.1 Biological Evolution
3.3.2 Evolutionary computationo
3.3.3 Genetic Algorithmso
3.3.4 Genetic Programming
3.3.5 Evolution Strategies e
3.3.6 Evolutionary Programming
3.3.7 Philosophical Differences between GA/GP and ES/EP
3.4 Genetic Algorithms L e
3.4.1 Selection Mechanisms
3.4.2 GQGenetic Operators e
3.4.3 Diversity and Premature Convergence
3.4.4 Schemata Theory and Implicit Parallelism
3.45 Price’ls Theorem e
3.4.6 Lamarckian Evolution and the Baldwin Effect
3.5 Genetic Programming e
3.5.1 The Initial Population
3.5.2 Genetic Operators e
3.5.3 Strong Typing o e
3.5.4 Validity of the Building Block Hypothesis
3.5.5 Automatically-Defined Functions
3.5.6 The Bloating Phenomenon and Parsimony Pressure
3.6 Conclusion« i i e e e e e

Automatic Feature Extraction

4.1 Introduction i e e e e e e e e e e e
4.2 Manual Feature Extraction e e
4.3 Automatic Feature Extractiono
4.4 Contributions of this Thesis v
4.5 Scopeof this Thesis i
4.6 Benefit of Appropriate Constituent Functions
4.7 Benefit of Appropriate Structure
4.8 The Generalised Pre-Processor i
4.9 Advantage of Population-Based Search
4.10 Feasibility of Automatic Feature Extraction

4.10.1 Genetic Programming for Feature Extraction

ii

CONTENTS

4.10.2 Pre-Processor Representationo
4.10.3 The Role of the Classifier« oo
4.11 Feature Extraction & Knowledge Discovery
4.12 Previous Work using GP for Pattern Recognition
413 Conclusion v o e e e e e e e e e e e e

The Evolutionary Pre-Processor
5.1 Introduction v . v v i e e e e e e e e e
5.2 Algorithmic Design Issues oo
5.2.1 Solution Representation
5.2.2 Population Model
5.2.3 Objective Functiono
5.3 The EPrep Algorithm e
5.4 Initial Population e e
5.5 Mating Pool Selection and Fitness Evaluationo v
5.5.1 The Rational Allocation of Trials
5.5.2 Modifications to RAT for EPrep v v v v o
5.6 Ordering of Training Sampleso
5.7 Optimisation of Constantso
5.8 Genetic Operators o vt o e e e
5.8.1 Self-Adaptation of Operator Probabilities
5.8.2 Operators and their Level of Adaptation
5.8.3 High-Level Introns and Inversion
5.9 Stopping Criteria e e
5.10 Cleaning the BOR Individualo
5.11 Choice of Algorithm Parameters
5.11.1 Training Parameters o0
5.11.2 Evolution Parameters o v v v vttt e
5.11.3 Termination Parameterso oo e
5.11.4 Optimisation Parameters o0
5.11.5 Representation Parameters
.12 Conclusion v i i e e e e e e e e e e e e e e

Experimental Evaluation and Comparison
6.1 Imtroduction o . i i i e e e e e e e e e
6.2 The Test Problems« o o v v i i i e e e
6.3 Test Descriptions i e
6.3.1 Experimental Design oo
6.3.2 Analysisof EPrep e
6.3.3 Comparison with Other Methods
6.3.3.1 Multi-Layer Perceptron
6.3.3.2 QUEST e e e
6.3.3.3 k-Nearest Neighbours
6.3.3.4 Generalised Linear Machine
6.3.3.5 Minimum Distance to Means Classifier
6.3.3.6 Parallelepiped Classifier
6.3.3.7 Gaussian Maximum Likelihood Classifier
6.4 Results of EPrep 0 o i i e
6.4.1 Pre-Processors o ot 0o it e e e e
6.4.2 Evolution of Fitness« o e
6.4.3 Evolution of Size« .« . . e e e

111

CONTENTS iv
6.4.4 Evolution of Operators. v v v v v v v v oo 157

6.4.5 Evolution of Training oo o v v o i e 158

6.4.6 Other Observations. v« v« o v v vt v v v e e e e e 159

6.5 Experimental Resultsof MLPo 160
6.6 Experimental Results of Decision Trees.o oo v o 161
6.7 Experimental Results of Simple Methods 167
6.8 Results of Comparison oo e e e e e 172
6.8.1 DBest-case Performance Comparison« o v v va s 172

6.8.2 Average-case Performance Comparisono o0 175

6.8.3 Comparison of Interpretability 175

6.8.4 Other Comparisons v v v v v v v vt s 178

6.9 Postmortem of EPrep o o o e e 181
6.10 ConcCluSION . « « « v v e e e e e e e e e e e e e e e e e e 181

7 Conclusion 184
71 Introduction i e e e e e e e e e e e e 184
7.2 Conclusions about Research Questions and Hypotheses 184
7.2.1 Feasibility of Automatic Feature Extraction 184

7.2.2 Automatic Feature Extraction for Knowledge Discovery 185

7.2.3 Benefit of Appropriate Constituent Functions 185

7.2.4 Benefit of Appropriate Structureo 185

7.2.5 Generalised Pre-Processor 0o e e 186

7.2.6 Advantage of Population-Based Search 186

7.3 Conclusions about the Performance of EPrep 187
7.4 Conclusions about the Research Topic 187
7.5 Implications for Theory 188
7.6 Implications for Further Research 189

A Instructions for Use of CD-Rom 190
B Implementation Details of EPrep 191
B.1 Development History 0o v v i 191
B.2 Design ChoiCes v it vt vt vt e e ot e e 191
B.2.1 Maintainability00 b e e e e e e 191

B.2.2 Portability e e e e e 192

B.23 Speed e e e e e e e 193

C Description of Data Sets 194
C.1 abalone . . - v v o e e e e e e e e e e e e i e e e e e e e e 195
C.2 australiancredit L e e e e e e e e e e 197
C.3 balanCe . - - v o e e e e e e e e e e e e e e e e e 198
C4 CONCENETIC - « « v o v e e e e e e e e e e e e e e e e e e e 199
C.5 contraceptive method choice (cmc)o oo 200
C.6 diabetes . . v o v o e e e e e e e e e e e e e e e e e 201
C.7 german credit e e 201
C.8 mONKS .+ v v« v o e e e e e e e E E s e e e el g e e e e ey 203
C.9 Satimage . - - « o v v i e e e e e e e e e 204
C.lOSEEMENt . . « . v o v i e e e e e e e e e e e e 205
CAlSmOKINE . « « v o v v o et e e e e e e e e 206
CA2SPITals . . . o o ot e e e e e e e e e 207
CASHIANIC .« .« o o o o e 208
CaAvehicle . . v v o o e e e e wE R e e e W e e e e e s e e b s e e 209

CONTENTS

C.15 yeast

D EPrep Parameters
D.1 abalone . . . o o o e e e e e e e e e e e e e e e e e
D.2 australian credift L o e e e e e e e e e e e e e e
D.3 DalanCe . . . v o e
D4 cOnCentriC . . . v v v v e
D.5 contraceptive method choice (cmc)o
D.6 diabetes . . . v v o e
D.7 german credito oo i e e e
D.8 monksl . . . o o e e e e e e e e e e e e e
D9 mMOnKS2 . . v o o e e e e e e e e e e e e e e e e e
D.10monks3 . . . - e
D.A1satimage o o o o e e e e e e e e e
D.128Segment v o i e e e e e e e e e s e e
D3 SMOKING . - o v« v v e e e e e e e e e e e
DA4Spirals . . .« oo e e e e e
DA EIEANIC .+« o o o v e
D.i6vehicle o o e e e e e e e e e e e e e e e e

D.17 yeast

E Results of EPrep Experiments
E.1 abalone . . . o o i e e e e e e e e e e e e e e e e e e e
E.2 australian credit e e e e e e e e
E.3 balance . . . o o o e e e e e e e e e e e e e e e e e e e
Ed concentriC o v i i e e e e e e e e e e e e e e e
E.5 contraceptive method choice (cmc)
E.6 diabetes . . . o v o o e e e e e e e e e e e e e e e e
E.7 germancredit e
E8 mMONKS . . « o v o e v e e e e e e e e e e e e e e e e e e e s ey
E.9 satimage o o i e e e e
EJOSegment v v vt e e e e e e e e
E1lsmoking o v v v it e e e e e e e e e e e e e
Ed2spirals o e e e
E13 titanic« v o v i o e
E.d4d vehicle o o o e e e e e e e e e e e e e e e e

E.15 yeast

Bibliography

210

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

245

Corrigenda,

Jamie Sherrah

November 18, 1998

| Position Correction
page 131, paragraph 2 “can set” becomes “can be set”
page 177, paragraph 6 “examination diabetes” becomes “examination of
diabetes”
page 187, paragraph 4 “was when” becomes “when”

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5

2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
3.2

3.3

3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1

4.2
4.3
4.4

4.5

5.1
5.2
9.3

A high-level illustration of the evolutionary pre-processor algorithm.

An example scene: mirror and candle stick, M. C. Escher.
Flow diagram for a pattern recognition system.
Example of the parallelepiped classifier.
Partitioning of the data. o
The class probability density functions and posterior probabilities plotted as

a function of z for a two class problem, equal priors.
Example of the Gaussian maximum likelihood classifier.
Neuron activation functions. Lo
An example of a 2-dimensional hyper-plane separating two classes.
The Generalised Linear Machine. oo
The Multi-Layer Perceptron architecture.
Hyperbolic tangent activation function.
An example of a decision tree.
An example of two possible interpolations of a set of measurements.

An example of a 2-dimensional function f(z,y) viewed as a landscape.
Execution flow diagram of a genetic algorithm (adapted from (Koza, 1992b,

PE 29)). - o e
Example of roulette-wheel selection for M = 5, fi = 10, fo = 12, f3 = 14,

f4 = 25, and f5 = 3R, e e e e e e
An example of single-point crossover. oo
An example of a genetic program to compute s = ut + %at2
An example of sub-tree crossover.o
An example of sub-tree mutation. oo
An example of the encapsulation operator.
Example of an illegal type choice during program generation.
Pseudo-code for generating the node possibility tables.

Synthetic sinusoidal boundary problem; the data set on the domain [0,0.5] (o:

class 0, x:class 1). o o
An example of size and fitness vectors for a population of size 2.
The average fitness of individuals with a given size plotted for s* =30.
Simulation results showing the change in size from one generation to the next

for different optimal solution sizes.
An example of the static decisionrule. oo

An example of EPrep’s Pre-Processor representation.
The multi-tree representation.o
Execution Flow Diagram of the evolutionary pre-processor Algorithm, version
M. AAIAEMAAN . W @ -EN:-E - - 8- -G

vi

105

LIST OF FIGURES vii

5.4
5.5
5.6
5.7
5.8
5.9
5.10

5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

6.1

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10

6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19

B.1

C.1
C.2

E1l
B.2
E.3
E4
E.5
E.6

The algorithm for creating the initial population. 107
An example of the RACE model elimination process. 108
The simultaneous selection of tournaments using RAT. 110
The Rational Allocation of Trials algorithm. 111
Fuzzy inference of v from ef and €. 114
Fuzzy membership functions for calculating 115
Similarity tolerance 7y for yyin = 0.1, &lhj* = 3.0, emin = 5.0, emaz = 20.0 and

Cave = 10.0. . o L 115
Algorithm for initially sorting training samples. 117
Algorithm for re-ordering the training samples. 117
The Hill-Climbing algorithm for the optimisation of enumerated constants. . 119
The Simplex algorithm used for the optimisation of real-valued constants. . . 121
Explicitly Defined Introns in the multi-tree representation. 126
Example of crossover with explicitly-defined introns. 126
An example of the inversion operator. 127
The algorithm for cleaning an individual’s features. 129

The 15 data sets plotted according to their dimensionality, number of classes

and number of samples. 136
Best feature sets evolved by EPrep for synthetic problems. 149
Best feature sets evolved by EPrep for the monks problems. 150
Best feature sets evolved by EPrep for australian problem. 152
Best feature set from run 9 for australian3. 153
Best feature sets evolved for first two permutations of titanic. 154
Best feature sets evolved by EPrep for real-world problems. 155
Best feature sets evolved by EPrep for real-world problems. 156
Plot of best-of-generation validation set error (%) versus generation for the

best runof segment3. Lo 157
Plot of best-of-generation validation set error (%) versus generation for the

best run of australian3. Lo 158
Decision tree obtained by QUEST for the australian data set. 165
Decision tree obtained by QUEST for concentricl. 166
The decision regions created by QUEST for concentricl. 167
Decision Trees obtained for the monks problems using QUEST. 168
Decision Tree obtained for monks2 using QUEST. 169
Decision Tree obtained for segmentl problem using QUEST. 170
Decision Trees obtained for first two permutations of titanic using QUEST. . 172
Best feature set evolved by EPrep for abalone2. 180
Standard deviation of fitness versus generation for all three permutations of

yeast, averaged over 10 runs.o 182
The Large-Scale Architecture of EPrep, showing the interface class. 192
Plot of concentric data set.o o 199
Plot of the two interleaved spirals dataset. 207
Performance measures for abalone. Lo 230
Performance measures for australian. 000 231
Performance measures for balance. 232
Performance measures for concentric.o 233
Performance measures for cme. o o h e e s e e e e e e 234

Performance measures for diabetes.00 e 235

LIST OF FIGURES viii

E.7 Performance measures for germamn. o e v e s e e 236
E.8 Performance measures for monks.o a s e 237
E.9 Performance measures for satimage. 0o 238
E.10 Performance measures for segment.o 239
E.11 Performance measures for smoking.o oo 240
E.12 Performance measures for spirals.o 241
E.13 Performance measures for titanic.o 242
E.14 Performance measures for vehicle. o000 243

E.15 Performance measures for yeast.o oo e e 244

List of Tables

2.1
2.2
2.3
24

3.1
3.2

4.1

5.1
9.2

6.1
6.2

6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

6.13
6.14
6.15

6.16
6.17

C.1
C.2
C.3
C4
C.5

An example of a confusion matrix.o e 16
An example of a classifier that trades off errors between classes. 16
Example contingency table for methods Aand B.. 44
One-way repeated measures lay-out. 46

The main characteristics of each of the four evolutionary computation paradigms. 53
Control Parameters required for standard GP. 68

Number of possible binary trees with depth less than or equal to D and con-

sisting of 5 functions and 5 terminals. 0 91
Function and Terminal argument and return types in EPrep. 101
Fuzzy rule base for the v function. 113
Summary of data sets used in experiments. 136
Dimensionality of the problem domains before and after preparation for the

NIBEY,9°0 .M 38F & 8-« @ c B - =+ @2 ~@:¢«"a:: 143
Default parameters used for QUEST simulations. 143
Classification results of EPrep algorithm. 145
Confusion matrix for abalone2. 160
Architecture search results for MLP. o 162
Classification results for best MLP architectures. 163
Classification results of QUEST algorithm. 164
Variable importance measure generated by QUEST for cmel. 165
Variable importance measure generated by QUEST for segmentl. 165
Variable importance measure generated by QUEST for monks problems. . . 167

Classification error rates for the simple classifiers: k-Nearest Neighbours, Gen-
eralised Linear Machine, Minimum-Distance-to-Means, Parallelepiped and Gaus-

sian Maximum Likelihood. o o 171
Classification results of all methods. 173
Frequency of top ranking for the best five classification methods. 174
Confidence intervals for the differences in percentage test set errors of EPrep,

the MLP and Quest.ot 176
Average percentage test set errors of EPrep and MLP. 177
Computational complexity of each classification algorithm for training, and

for classification of a single sample. 180
Details of the abalone data set.o v v v v i v oo 196
Details of the australian dataset.o 197
Details of the balance data set. o 198
Details of the concentric dataset.« .« o o 199
Details of the ecme data set.« o v v v i i b i o e e 200

ix

LIST OF TABLES x

C.6 Details of the diabetes dataset. 201
C.7 Details of the german dataset. 202
C.8 Details of the monks datasets. o v v v v vt o 203
C.9 Details of the satimage dataset. oo 204
C.10 Details of the segment dataset. 205
C.11 Details of the smoking dataset. 206
C.12 Details of the spirals data set.o 207
C.13 Details of the titanic dataset. oo oo 208
C.14 Details of the vehicle dataset. v v vt v vt s e 209

C.15 Details of the yeast data set. oo v 210

Abstract

A typical pattern recognition system consists of two stages: the pre-processing stage to
extract features from the data, and the classification stage to assign the feature vector to
one of several classes. While many general classifiers exist and are well-understood, the
pre-processing stage is usually ad-hoc and designed by hand. Although the accuracy of the
classifier is heavily dependent on the choice of features, there is little more guidance in the
process of manual feature extraction than intuition, experience and trial-and-error.

To achieve automatic and near-optimal pre-processor design, a framework is required
for the problem-independent extraction of features. Within such a framework, the concept
of an optimal pre-processor can be formulated. The framework must allow pre-processors
which are universally applicable and realisable using finite resources. Those frameworks
already in existence, such as principal-component analysis and multi-layer perceptrons, are
either unable to cope with arbitrary non-linearity or unable to be implemented using finite
resources because they employ one type of constituent function and have a fixed structure.

In this thesis, a framework for automatic feature extraction is proposed, called the gen-
eralised pre-processor. This is an arbitrarily-interconnected feed-forward network with ar-
bitrary non-linear functions at the nodes. The use of different constituent functions and
irregular inter-connection strategies allows for the economic realisation of a pre-processor
in more situations than the more uniform universal approximators, such as the multi-layer
perceptron. A software system called the Ewvolutionary Pre-Processor is presented which
performs a search over the space of generalised pre-processors. The system is used for su-
pervised classification, and must be provided with a data set of measurement vectors and
associated class labels. Based on genetic programming, the evolutionary pre-processor begins
with a population of randomly-generated pre-processors. The fitness of each pre-processor
is based on the estimated misclassification cost of a classifier trained on the pre-processed
data. Through fitness-proportionate reproduction and recombination, the ability of the pre-
processors to separate the data increases with generations.

The evolutionary pre-processor has been tested on 15 real and synthetic public-domain
data sets. Neural networks, decision trees and five simple statistical classification techniques
were applied to the same problems, and the results compared. The results show that the
evolutionary pre-processor maintains good classification and generalisation performance, and
is more accurate on average than the decision tree method. The neural network achieved the
lowest classification errors on average, but was surpassed by the evolutionary pre-processor
on some synthetic problems. Both the evolutionary pre-processor and the decision tree
produce solutions which can be understood and interpreted by the user. These results
must be considered with care, however, as they fluctuate with different random seeds and
partitioning of the data.

The investigations of this thesis have revealed that a search over pre-processors is feasible.
The synthesis of pre-processors from a variety of non-linear, and even discontinuous functions
occasionally provides better discrimination than existing methods of classification, but for
most problems gradient-descent methods are adequate. The evolutionary pre-processor has
advantages for knowledge discovery due to the versatility with which appropriate functions

xi

ABSTRACT xii

can be combined, but is limited due to the high variability in results. It should be used
in conjunction with other methods of knowledge discovery for reliable results. The evolved
pre-processors and simple classifiers used by EPrep result in relatively accurate classification
systems that can be implemented more economically than other methods.

Statement of Originality

I hereby declare that this work contains no material which has been accepted for the award
of any other degree or diploma in any university or other tertiary institution and that, to the
best of my knowledge and belief, it contains no material previously published or written by
another person, except where due reference has been made in the text. I also give consent
to this copy of my thesis, when deposited in the University Library, being made available
for loan and photocopying.

Jamie Sherrah

xiii

Acknowledgments

My heart-felt gratitude goes to my two supervisors and friends, Robert Bogner and Salim
Bouzerdoum. Their guidance, technical assistance, encouragement and availability has made
this thesis possible. Thanks go to my colleagues Carmine Pontecorvo, Steven Wawryk and
Ben Raymond, who have been daily participants in my work, albeit indirectly. Acknowledg-
ment and thanks must go to the behind-the-scenes workers: my wife Kate, and my parents.
Most of all, I want to thank my Lord Jesus Christ, without whom I can do nothing.

My thanks go to Daniel McMichael for his advice and rigour. The CSSIP Melbourne
group provided useful feed-back on the work. Thanks to Wei-Yin Loh and Yu-Shan Shih for
their prompt assistance with the QUEST software. Thanks also to the anonymous reviewers
from the GP’97 conference.

This thesis was prepared using I#TEX 2¢. The TreeTeX package (Briiggemann-Klein and
Wood, 1989) was used to produce the QUEST trees. Another package named treetex (Blosch,
1993) was used to lay out the EPrep features.

xiv

Related Publications

Jamie R. Sherrah and Ravi Jain. “Classification of Heart Disease Data using the Evo-
lutionary Pre-Processor”. To appear in Proceedings of the Engineering Mathematics and
Applications Conference, Adelaide University, July 1998.

Jamie R. Sherrah, Robert E. Bogner, and Abdesselam Bouzerdoum. “The Evolutionary
Pre-Processor: Automatic Feature Extraction for Supervised Classification using Genetic
Programming”. In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max
Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming 1997: Proceedings
of the Second Annual Conference, pages 304-312, Stanford University, CA, USA, 13-16 July
1997. Morgan Kaufmann.

Jamie R. Sherrah “Automatic Feature Extraction using Genetic Programming” In John R.
Koza, editor, Late Breaking Papers at the 1997 Genetic Programming Conference, page 298,
Stanford University, CA, USA, 13-16 July 1997. Stanford Bookstore.

Jamie R. Sherrah, Robert E. Bogner, and Abdesselam Bouzerdoum. “Automatic Selection of
Features for Classification using Genetic Programming”. In V. L. Narasimhan and L. C. Jain,
editors, Proceedings of the Australian New Zealand Conference on Intelligent Information
Systems, pages 284-287. IEEE Press, November 1996.

XV

Glossary

Abbreviations with page of first appearance, listed in alphabetical order.

ANN
BOG
BOR
BRACE
cv
DSS
EA
EDI
EP
EPrep
ES
FSM
GA

GL
GLIM
GP
GPP
HC
HTML
kNN
LOC
LOOCV
MDL
MDTM
ML
MLP
MML
PCA
pdf
PPD
QUEST
RACE
RAT
SA
STGP
TP

22
104
104
108

14
116
122
125

55

97

54

95

53
128

23

54

80
118
138

21
191
108

42
140
140

25

42

79

17
140

39
108
104
118

70
127

artificial neural network
best-of-generation

best-of-run

blocking RACE

cross-validation

dynamic sub-set selection
evolutionary algorithm

explicitly defined intron
evolutionary programming
evolutionary pre-processor
evolution strategies

finite state machine

genetic algorithm

generalisation loss stopping criterion
generalised linear machine

genetic program

generalised pre-processor
hill-climbing

hyper-text mark-up language
k-nearest neighbours

lines of code

leave-one-out cross-validation
minimum description length
minimum-distance-to-means
maximum likelihood

multi-layer perceptron

minimum message length

principal component analysis
probability density function
parallelepiped

quick, unbiased, efficient statistical trees
statistical algorithm for model selection
rational allocation of trials
simulated annealing

strongly-typed genetic program
training progress stopping criterion

xvi

GLOSSARY

xvil

Frequently-used mathematical symbols with page of first appearance.

A
(H)

\‘

S =2
-)(-/_\

3
2

g

CRSESSESASY- S

SREREA

g

2222
5
52

<

2
s S
3

— —
— ey

><<S\]o;:u“u®2
=
=

S

o OO0
%

L S S &
—~~
NS

=
" S
A

m(H, g)
TNsort
Ntr
Tist
Nyal

o(H)

112

62

108

22
60
52
14

7

8
68
68
11

100

52
62
13
60
52
56
7
121
49
103
107
102
48
10
53
99
13
107
14
10
100
52

oo

62
52
62
118

62
117
17
17
17
62

number of samples to examine on each iteration of the RAT algorithm
defining length of schema H
similarity tolerance for RAT algorithm

neuron activation function
take-over time
population of individuals
binomial distribution with probability of success p and number of trials n
number of classes
training set

maximum allowable depth of trees resulting from genetic operators
maximum depth of initial random trees

expected value

the ith feature of an individual generated by EPrep
maximum number of generations

schema

logic function, returns 1 if argument is true, false otherwise
length of chromosome

population size

mating pool size

number of data samples

normal distribution with mean p and standard deviation o
neighbourhood function of point z

number of samples used by EPrep for local optimisation and RAT training
number of genetic operators used by EPrep

number of individuals for reproduction

order notation

a probability value

number of runs

tournament size

hold-out test set

uniform distribution on the range [a, b]

validation set

universe of all measurement vectors

the ith input variable used with EPrep

individual in a population

actual class label of data sample

predicted class label of data sample

class label resulting from Bayes decision

dimensionality of input data

average fitness of population at generation g

fitness function

generation

turn-over time of training samples in EPrep

classification rule to classify measurement vector x
number of representatives of schema H at generation g
number of samples per class to periodically sort in EPrep
number of training samples

number of test samples

number of validation samples

order of schema H

GLOSSARY

p()
De
bq
DPm
Dr
Ds
Dinv
Dip
pmc

10
56
63
56
56
63
127
69

[o BN

a probability density function
probability of crossover

probability of destruction of a schema
probability of mutation

probability of reproduction
probability of survival of a schema
probability of inversion

probability of selecting an internal node for crossover
probability of misclassification

input measurement vector

feature vector

xviii

Chapter 1

Introduction and Overview

This is a thesis about pattern recognition, and in particular about the use of genetic pro-
gramming to automatically extract features from data for supervised classification. This
introductory chapter serves as a guide for the whole thesis, giving the reader a flavour of the
background and motivation for the work, as well as a brief description of the experiments
carried out. For the partially-interested reader, Section 1.5 contains an overview of the thesis
so that pertinent chapters can be quickly identified.

1.1 Background to the Research

Pattern recognition refers to the use of computers to recognise and classify objects based
on measurements of those objects. The measurements may be images, sound waveforms,
demographics, etc. Within the topic of pattern recognition, supervised classification is con-
cerned with the task of learning to classify new objects based on knowledge gained from
observations of previously-encountered objects.

A system designed to perform supervised classification usually consists of two sequential
stages: a feature extraction stage, and a classification stage. The feature extractor, or pre-
processor, transforms the data to allow more successful classification by the second stage,
the classifier. There are many different types of general-purpose classifiers that have been
designed for use over a broad range of problems. In comparison, the pre-processing stage is
generally problem-dependent, and is usually constructed by the designer using experience,
intuition and trial-and-error. There is no existing methodology to guide the designer, so the
concept of optimal feature extraction only exists within the context of the method used.

Automatic feature extraction methods seek to extract salient features from data inde-
pendent of the problem domain. Examples of existing methods are principal component
analysis and artificial neural networks. Although these existing methods provide a frame-
work for automatic feature extraction, they are limited in their scope of application by the
availability of a very small number of functions. For instance, the multi-layer perceptron uses
only sigmoidal activation functions to pre-process the data. While theorems exist stating the
sufficiency of these functions to approximate all continuous transformations, only existence
of such a transformation is guaranteed, and it may not be realisable using finite resources.

1.2 The Thrust of this Thesis

A new framework for automatic feature extraction is proposed here: a generalised pre-
processor (GPP), which is an arbitrary composition of different functions, which can be
non-linear and discontinuous. The main question investigated in this work is:

CHAPTER 1. INTRODUCTION AND OVERVIEW 2

How effective is a generalised pre-processor at extracting features from real data
when compared with existing automatic feature extraction methods?

The primary route of investigation was to compare the classification performance of the
generalised pre-processor method with that of other known classification and automatic
feature-extraction methods. The comparison took place over a test-bed of 15 public-domain
data sets, consisting of synthetic and real-world data.

We argue that the research topic and investigations are important for the field of pattern
recognition. The generalised pre-processor represents a fully-general framework for auto-
matic feature extraction, which is essential to:

1. avoid repeated manual feature extraction on new problems,

2. allow the concept of a globally-optimal realisable pre-processor,
3. identify common features of different problems,

4. discover previously-unknown structure in data, and

5. allow the extraction of features from data for which no a priori knowledge is available.
The investigations conducted are important for two reasons:

Feasibility The existence of an optimal realisable pre-processor does not promise the fea-
sibility of its synthesis. Genetic programming was used to investigate the feasibility of
a search for an optimal generalised pre-processor.

Practical Utility Synthetic examples of the usefulness of a generalised pre-processing stage
are demonstrated in Chapter 4. Such examples can always be contrived, but the
important issue is whether the generalised pre-processor is more useful than existing
methods for real problems.

1.3 Contributions of this Thesis

This thesis contributes to the fields of pattern recognition and genetic programming. The
following original contributions to the body of knowledge are made in this thesis:

1. A new framework for automatic feature extraction is proposed (Section 4.8).

2. Genetic programming is applied to general supervised classification of real-world data
sets (Chapter 6).

3. Analysis showing that population-based search methods converge on solutions of the
appropriate size faster than single-point search methods (Section 4.9).

4. A comparison of genetic programming with well-known classification techniques on 15
data sets (Chapter 6).

5. A concise overview of pattern recognition (Chapter 2).
6. A concise overview of evolutionary computation (Chapter 3).

7. The demonstration of the inadequacy of the multi-layer perceptron for classification of
a synthetic data set (Section 4.6).

8. The application of the rational-allocation-of-trials algorithm to classification problems,
with the necessary modifications (Section 5.5.1).

9. The use of the simplex algorithm for local optimisation in genetic programming (Section
5.7).

CHAPTER 1. INTRODUCTION AND OVERVIEW 3

— GPP Classifier|
P [P
=4 .
Epmy

Generate

test

il

L A

Evaluate Select

Terminate?

:

3
1]
[mutation] | crossover |

Finished

Modify

Figure 1.1: A high-level illustration of the evolutionary pre-processor algorithm.

1.4 Methodology

The method used to investigate the issues addressed in this thesis was empirical evaluation
and comparison. The particular line of reasoning was to devise a method to perform a search
over generalised pre-processors so that an optimal pre-processor could be sought. The result
was the evolutionary pre-processor. Experiments were performed to evaluate the algorithm
and compare it with existing methods for classification and automatic feature extraction.

The method used to search for an optimal generalised pre-processor needed to be able to
arbitrarily combine different non-linear or discontinuous functions to form variable-length so-
lutions. Genetic programming, an optimisation method based on the principles of biological
evolution, was chosen as the basis for the evolutionary pre-processor algorithm. Figure 1.1
shows a high-level diagram of the execution of the evolutionary pre-processor. The algorithm
performs a search by manipulating a population of individuals. Each individual is a solution
to the problem, and consists of a generalised pre-processor and a classifier. The evolution-
ary pre-processor operates by iteratively modifying and re-combining the pre-processors in
search of feature extractors that effectively transform the data for the classifier used.

The first stage in the algorithm randomly generates the initial population of solutions.

CHAPTER 1. INTRODUCTION AND OVERVIEW 4

Each pre-processor is represented as a set of trees, each of which is a single feature. The
classifier in each individual is one of a fixed set of simple well-known classification algorithms.
The next stage evaluates the fitness of each individual, which quantifies the ability of the
individual to classify the pre-processed training data. The fitness is an empirical estimate of
classification error. Based upon these fitness values, the selection stage chooses individuals
from the population to form the mating pool. An individual is selected by randomly choosing
a set of individuals from the population to participate in a tournament. The individual in
the tournament with the best fitness value is the winner of the tournament, and proceeds
to the mating pool. Individuals from the mating pool are then stochastically modified by
genetic operators to form new individuals. The modification may involve the combination
of two individuals from the mating pool via the crossover operator, or the perturbation of
a single feature from an individual by a mutation operator. The new individuals are placed
into the new population, which is used for the next iteration of the algorithm. After the
modification stage, the termination criteria are tested. The algorithm terminates if progress
has stagnated, the best individuals are losing their generalisation capabilities, or a prescribed
maximum number of iterations has been performed. Otherwise the process is repeated using
the new population of solutions. Through natural selection, the population is iteratively
transformed from a random mess to a set of individuals whose estimated classification error
is lower than the the classifier used on the original data.

The evolutionary pre-processor was evaluated by running it on 15 public-domain data
sets, most of which came from real-world problems. Having established that the search
was able to find a pre-processor able to improve upon the performance of a classifier, the
evolutionary pre-processor was then compared on the same data sets with several well-known .
classification methods: neural networks, decision trees, and five simple statistical methods.

1.5 OQutline of this Thesis

This section contains a brief outline of the contents of the thesis. The work begins in
Chapter 2 with an introduction to pattern recognition. The key topic for this thesis is
supervised classification, which is the focus of Chapter 2. The classification methods used
for the experimental work are described, and methods for measuring the performance of a
classifier are explained. Methods for comparing classifiers are also presented.

Chapter 3 is an introduction to evolutionary computation. First, the topics of optimisa-
tion and heuristic search are introduced. Next, each of the four paradigms of evolutionary
computation are briefly introduced, and their differences discussed. Then genetic algorithms
and genetic programming are examined in greater detail, because these two approaches form
the basis for the evolutionary pre-processor algorithm.

The main arguments of the thesis begin in Chapter 4. Existing methods of feature
extraction are discussed, and their short-comings are pointed out. To address these short-
comings, the generalised pre-processor is proposed as a framework for automatic feature
extraction. A series of hypotheses are presented and argued for to establish the position
taken in this thesis. To be specific, the hypotheses propose that the GPP method can be
more appropriate than existing methods for feature extraction. It is then conjectured that
population-based heuristic search techniques are more appropriate to search for an optimal
GPP than search methods based on a single point. The two questions are then raised:
is a search for an optimal GPP feasible for real problems, and is this approach useful for
knowledge discovery? It is the task of the next two chapters to address these questions. The
chapter ends with a review of previous work in the field.

The evolutionary pre-processor algorithm used to empirically investigate the research
questions is fully described in Chapter 5. First, the choices of solution representation, pop-
ulation model and objective function are described and justified. Then an overview of the

CHAPTER 1. INTRODUCTION AND OVERVIEW 5

whole algorithm is presented. The rest of the chapter describes each portion of the algorithm
in detail, including relevant background literature. The last section in the chapter presents
some heuristics for selecting the algorithm parameters.

The experiments performed are described in Chapter 6, and the results are presented. The
chapter begins with a description of the data sets used to test the algorithm. The two main
experiments were the use of EPrep to classify the test data sets, and a comparison of EPrep
with existing methods for classification and automatic feature extraction. The chapter next
presents a description of the experimental configuration. The results of the EPrep algorithm
on the test problems follow, and the behaviour of the algorithm is examined in detail. Next,
the results of the existing algorithms are presented. Then a comparison is made between the
algorithms and EPrep using statistical tests. The comparison is based not only on estimated
misclassification rate, but also on interpretability of results and computational complexity.

The conclusion to the work is written in Chapter 7. The experimental results are linked
back to the hypotheses and research questions presented in Chapter 4. Then conclusions
are presented about the overall research topic, followed by implications for the larger field
of research. The chapter ends with suggestions for future research.

There are five appendices. Appendix A contains instructions for the use of the CD-rom
found at the back of this thesis, which contains the detailed reports generated by EPrep.
Appendix B contains some details of the evolutionary pre-processor software, and a discussion
of some of the major design issues of the implementation. Appendix C describes each of
the experimental data sets in detail. Appendix D contains the parameter files used for the
experiments of EPrep. Appendix E shows plots of the summarised results obtained by EPrep
on the test problems.

1.6 Conclusion

This chapter has presented an overview of this thesis, on the basis of which the reader
can proceed with confidence, or skip to particularly relevant sections. The background of
the research problem was introduced, and the main question addressed by the work was
presented. The basic methodology used for the research was described, and an outline of the
remainder of the thesis was presented.

Chapter 2

Pattern Recognition

2.1 Introduction

This thesis presents novel work in pattern recognition with the use of genetic programming
as a tool. To grasp the main concepts beginning in Chapter 4, a knowledge of pattern recog-
nition and genetic programming is required. In this chapter, the field of pattern recognition
is introduced and reviewed. Since pattern recognition is such a voluminous subject, attention
has been restricted to those topics that are immediately relevant to the thesis. The reader
familiar with pattern recognition and supervised classification may like to skip this chapter,
referring back to it if needs be.

2.2 What is Pattern Recognition?

We humans are constantly engaged in pattern recognition. The predominant form of pattern
recognition we engage ourselves in is through our visual senses; correspondingly about 60%
of the brain’s neurons are attributable to our visual system. As we look around us, we
recognise scores of objects without an ounce of effort. Whether they occlude one another,
appear at different angles of rotation or in different lighting conditions, our visual system
enables us to perform this general and complex task subconsciously. Although we exist in a
three-dimensional world and have two eyes to exploit this fact, we humans can still recognise
objects in two-dimensional images. Consider the picture in Figure 2.1. We clearly recognise
the candlestick, toothbrush, glass and other objects in the scene, regardless of occlusions or
their pose. We also deduce that the toothbrush and toothpaste are in the glass, which is on
the dresser.

Pattern recognition is not constrained to the visual senses alone. We can recognise a
face, the voice of an acquaintance, detect facial similarities in two blood-related people,
and identify a musician from their style. Specialists from many fields, such as mining and
medicine, apply their experience and knowledge to detect and diagnose certain scenarios.
Amazingly, all this is done automatically by our bodies without our slightest knowledge of
how it happens.

The field of pattern recognition research is generally an endeavor to enable computers
to perform the same sorts of cognitive tasks that mammals do. The secrets of the brain
and consciousness have eluded current and past scientists, such that state-of-the-art pattern
recognition systems can only mimic isolated cognitive capabilities of humans. For instance,
accurate machine recognition of hand-writing can be performed by a computer under certain
constraints, and similarly human speech can be recognised by a machine to a reasonable
degree of accuracy. There is, however, no single system or methodology that can perform
both tasks, even though our single brain can do all this and more.

CHAPTER 2. PATTERN RECOGNITION 7

Figure 2.1: An example scene: mirror and candle stick, M. C. Escher.

Pattern recognition has attracted interest and input from many disciplines, including
mathematics, physics, engineering, computer science, psychology, biology, cognitive science,
neurophysiology, statistics, geography, geophysics and operations research. The possible
applications for pattern recognition are abundant in every area of industry and research.
Of late, research in the area has taken the interesting turn towards nature and biology as
scientists seek to model the mechanisms by which natural systems perform pattern recogni-
tion. As a result, we have areas such as artificial neural networks, evolutionary algorithms,
simulated annealing, swarm algorithms and immune system algorithms.

There are several tasks that are performed under the banner of pattern recognition:
detection, classification, prediction, data visualisation and analysis, and novelty detection.
Pattern recognition tasks can all be assigned to one of two broad categories: supervised and
unsupervised. A supervised learning process is one in which the user provides some external
information about the problem. In the unsupervised case, no prior information is provided
and the system is to discover the fundamental structure of the data on its own.

It would be impractical to give a comprehensive overview of the field of patiern recogni-
tion in a single chapter. Instead, this exposition discusses only those areas that are requisite
knowledge for the remainder of the thesis, and focuses mainly on supervised classification.

2.3 Supervised Classification

The subject of this chapter and indeed this thesis is supervised classification, often referred
to as machine learning. The task of supervised classification can be defined thus:

e A domain is given in which objects belong to one of C classes. The ithe object is
annotated with a class label c; € {1,2,...,C}.

e Each object is characterised by d measurements, zji, Z;2,. .., Z;¢. Placed in a vector,
these quantities form the measurement vector x; of object 1.

e During some experimental procedure, N objects are observed resulting in a set of
measurement vector-class label pairs:

D = {(x1,¢1), (X2,¢2), .-, (XN, ¢N)}

CHAPTER 2. PATTERN RECOGNITION 8

Each pair (x;,c;) is termed a data sample.

e The task is to construct a function h(x) that learns from D to predict the class of a
previously-unseen object. So for a new object j, we want:

h(x;) = ¢;

The set of data samples used to learn the predictive function is called the training set.
Each data sample in that set is called a training sample or training ezample.

In the case of unsupervised learning, the class labels of the data samples are not known and
the algorithm must discover for itself which samples have a natural affinity with each other.
Unsupervised learning will not be described further in this thesis.

The ability of a classifier to predict the class of new objects is called generalisation. Some
examples of supervised classification are:

e A database of photographs of employees’ faces is made and each photo is labeled with
the respective name. A pattern recognition system is then trained on this database to
identify employees as they arrive each morning, and to detect intruders who are not in
the database.

e A set of pathological reports associated with patients suspected to have heart disease
are catalogued over time. Each record is retrospectively labeled with the presence or
absence of the disease. A pattern recognition system is then designed which learns
from these samples to diagnose new patients complaining of heart trouble.

From the above examples one can see that the nature of x; can vary widely, from a high-
dimensional multi-spectral image (each z;; corresponding to one pixel) to a set of different
discrete and real quantities.

The system that achieves this goal generally consists of two stages: a feature exztraction
stage and a classification stage. The flow diagram is shown in Figure 2.2. The measurement
vector is transformed by the pre-processor to a feature vector of dimensionality g, y; =
[Yi1, Wiz, - - - s Yig]. Each element of the feature vector is called a feature, and is a generally
non-linear transformation of the original measurements. The feature vector becomes the
input to a classifier which outputs a class label ¢}, the predicted class of object 1. ¢, is then
used in some decision process. When the predicted class does not match the true class ¢;, a
misclassification has occurred.

measurement feature class
vector vector prediction
Xi feature Yi h(xi)

_

classifier ———

k.

extractor

Figure 2.2: Flow diagram for a pattern recognition system.

In this very general model of supervised classification, the pre-processing stage is problem-
specific while the classifier is more general. The pre-processing required for an image is quite
different to that required for a time series, but the features of both could be used with a
generic classifier. It is usually the classifier that learns from the data, while the pre-processor

CHAPTER 2. PATTERN RECOGNITION 9

is a static entity designed by the engineer of the system. In practice, the boundary between
the pre-processor and classifier is not clearly defined. For instance, artificial neural networks
can be fed directly with the measurement vector, the pre-processing and classification pro-
ceeding internally and inextricably. In other instances, the pre-processor undergoes learning
as well as the classifier.

This description so far has been only a basic outline; pattern classification systems can
differ in many ways. An important addition to this model is the inclusion of misclassification
costs. Consider again the above example of the use of machine classification in the diagnosis of
human patients with heart disease. If the computer diagnoses a healthy patient as terminal,
the worst that will happen is the patient will get a good scare and the story will appear
on a situation comedy. If, however, the computer diagnoses a sick patient as healthy, the
repercussions are much more grave. Therefore a cost or risk can be associated with each
different type of misclassification to express its relative undesirability.

The predicted class output described previously is a hard decision, since it is mutually
exclusive with the other cases. A classifier may also make soft decisions, which usually
manifest in the delivery of class probabilities. Thus the predicted class label ¢ is replaced
with a vector of probabilities, one for each class:

c; = [p(e; = 1|xi), plci = 2|x3), - -, p(ci = Clxc)]

Each p(c; = j|x;) is the a posteriori (or posterior) probability of class j given the data vector.
These probabilities are usually transformed to a hard decision by selecting the class with the
highest posterior probability. This approach has the advantage that a level of confidence in
the final decision is provided, extremely important in those safety-critical applications.

Another paradigm for soft decisions is fuzzy logic, a technique for manipulating linguistic
quantities in a principled manner (Ross, 1995). Each object does not belong to a single
class, but rather has membership in a number of classes, or fuzzy sets. Soft decision methods
have been found to be more robust to noise than their hard counterparts (Gelfand and Delp,
1991).

2.3.1 An Example: Parallelepiped Classifier

The parallelepiped classifier, commonly used in remote sensing applications (Lillesand and
Kiefer, 1994), is a very simple classifier and therefore makes a good introductory exam-
ple. This classifier emphasizes the view taken in the development of many non-parametric
techniques: that the measurement vectors are a set of points existing in a high-dimensional
space. The classifier assumes that there is only one cluster per class, and seeks to enclose
each cluster in a hyper-rectangle.

The range of feature values over the data samples is calculated along each feature-space
axis to determine the extents of each parallelepiped; a two-dimensional example is shown in
Figure 2.3 for three classes. New samples are assigned the class label corresponding to the
parallelepiped in which they fall.

A problem arises when the boxes overlap: the identity of a sample is undecided in the
overlap region (for example, the points in region 1 in the figure). Similarly, the class label
of a new sample that does not lie inside any of the parallelepipeds will be undecided (point
2 in the figure). These two cases of ambiguity can be resolved by assigning the class whose
parallelepiped centroid is closest to the new sample.

The example of Figure 2.3 illustrates one of the main drawbacks of the parallelepiped
classifier: the parallelepipeds do not account for covariance in the data, so that large regions
in the corners may contain no data and may overlap with other parallelepipeds.

CHAPTER 2. PATTERN RECOGNITION 10

Figure 2.3: Example of the parallelepiped classifier.

2.4 Estimating Classification Error

It is a fact of life that, in real-world situations, classifiers make mistakes. The measurements
chosen as inputs to the classifier are assumed to have some discriminatory qualities such that
objects from the same class are similar in the measurement space. Groups of objects that
are similar in the measurement space are called clusters. In real situations, two objects may
yield the same measurement vector but belong to different classes. The two causes for this
phenomenon are:

1. noise in the sensors used to obtain the measurements, and

2. overlap between clusters, such that objects from different classes share the same mea-
surement vectors.

The issue of noise depends on the quality of the sensors used and the conditions under which
the measurements are obtained. As an example, when classifying fruit based on length, the
sensor may return an erroneously-large value of length for a kiwi fruit so that it is misclassified
as a banana. Overlap between clusters occurs in many practical situations, and the degree
of overlap is determined by the appropriate choice of measurements. For example, diameter
would not be a good measurement to distinguish between apples and oranges, since objects
from both classes share similar measurement values, whereas skin pigment would make an
ideal discriminator. Even if the measurements are chosen carefully, class overlap still occurs
due to variations in the population of all objects. For example, a particularly short banana
may be mistaken for a kiwi fruit, or vice versa.

It follows that there is an irreducible classification error inherent in such situations.
Therefore we take a probabilistic view of the situation via the joint distribution P(x, o)l
where x € X, the universe of all objects, and c is the class of x. Taking this perspective,
there is a maximum a posteriori, or “most likely”, value of ¢ at a given observation which
we will call ¢*(x), and consider to be the “right answer”:

¢t (x) =80 P(c|x)

IThe capital P denotes a single probability value, while the lower-case p is a probability density function.

CHAPTER 2. PATTERN RECOGNITION ' 11

We shall see later that this is termed the Bayes decision.
For a fixed overall classification rule f(x) that outputs a class prediction, the most
common measure of error is the error rate or probability of misclassification, pmc :

pme (f) = Exlpme(x|f)]
= [plf(x) # clx)p(ex).d
XeX

= | 1= PUF)x)lp(e).da 2.1)
XeX

where E[] is the expectation over the subscripted space, and P(f(x)[x) is P(c = f(x)|x).
This is a particular case of the more general loss or cost of the classifier:

cost(f) = L(f(x)|x).p(x).dz (2.2)
Xex
in which L(f (x)|x) is the ezpected loss which defines the cost or loss incurred by the prediction
f(x) and subsequent action. The expectation is over the classes. In general this manifests
as a cost matriz, whose (i,7)th element [; ; defines the cost of predicting class 1 when the
expected class was j:

Zlf x),; P (J[%) (2.3)

As an example, the cost matrix for the heart disease problem described earlier might be:

ground truth

il healthy

0 1
1000 0 ’

l;; = diagnosis ill
healthy

The misclassification rate of Equation(2.1) is the result of the commonly-used 0-1 loss:

_J 0 i=g ..
th_{l Z;éj ZaJ_la'-'aC

The error rate resulting from 0-1 loss will be used as the primary method for measuring
the performance of a classifier in this thesis. 0-1 loss is a natural measure of error for a
classifier making hard decisions. For a classifier that outputs class probabilities, one possible
loss function is the absolute difference between the maximum predicted probability and the
predicted probability of the true class.

Although in practice we only have a single data set to go by, in theory the expected loss
used in Equation(2.2) could be replaced with an expected value over training sets as well as
over P(c[x). The result is a bias-variance decomposition which has been used widely but
in many different forms; some investigations are found in (Tibshirani, 1996; Wolpert, 1995;
Friedman, 1996; Meir, 1994). A bias-variance decomposition can be useful to see how the
expected loss is contributed to by the bias of the classifier and by its sensitivity to the data.
The decomposition of (James and Hastie, 1997) is now presented, and was chosen because
it is more general than the others.

In general prediction, of which classification is a special case, we have a random variable
Y which we wish to predlct and another Y which is the output of our predictor. Y varies
due to noise in the source?, and Y varies with the random selection of the training set used to

For classification, the source noise is the variation in the class of objects with the same measurement
vector.

CHAPTER 2. PATTERN RECOGNITION 12

construct the predictor. For both variables there is a systematic component, SY and SY3,
which can be obtained by operating on the distribution of the variables (the usual choice is
the expected value). The expected loss of the predictor at a specific point x can be written
as:

E[L(Y, ?)] = E[L(Y,SY)]
+E[L(Y,8Y) — L(Y, SY))
+E[L(Y,Y) — L(Y, 8Y)] (2.4)

e
AN

where the expectation is over P(Y|X) and over training sets D € X. If the problem involves
regression on a continuous variable, then squared-error loss Lg (a,b) = (@ — b)? can be used,
resulting in:

E[(Y = Y)Y = var(Y) + bias?(Y, 8Y) + var(Y)

This is a familiar equation; the first term is an irreducible error due to noise, and sets a lower
bound on the error. The remaining two terms form the reducible error which is a function
of the classification algorithm used. The bias measures how close the predictor can get to
the real function on average, while the variance indicates the sensitivity of the predictor to
sampling variations in the data. Clearly we would like to reduce both terms, but decreasing
the bias generally requires more sensitivity to the data, which increases the variance term.
This “bias-variance trade-off” or “bias-variance dilemma” is a well-known phenomenon.

The relationship between bias and variance and their effect on overall error is not as
simple for 0-1 loss. The analysis of (Friedman, 1996) revealed a counter-intuitive relationship
between bias and variance, in that high bias can be canceled by low variance to improve
accuracy. Several corrections to this decomposition were presented in (Wolpert, 1995) which
restored the intuitive behaviour of the decomposition using covariance terms. The bias-
variance decomposition for 0-1 loss can be performed under the notation used here by writing
Equation(2.4) as:

E[L(Y,Y)] = var(Y) + SE(V,Y) + VE(Y,Y)

where the two quantities on the right are defined as:

SE(Y,Y) = E[L(Y,SY) - L(Y,SY)] (2.5)
VE(Y,Y) = E[L(Y,Y) - L(Y,SY)] (2.6)

SE is termed the systematic effect; it is the change in error caused by the bias (S§Y — SY)
VE is the wariance effect, and is the change in error caused by the variance E[(Y — 8Y)2).
So rather than looking directly at the bias or variance, we examine the effect they have on
the expected loss, which is of more concern.

Note that there is no unique definition of bias and variance. In (James and Hastie, 1997),
variance and bias are defined as:

~

var(Y) = E[L(Y,S8Y)]
bias(Y,SY) = L(8Y,SY)

Under this definition, the bias is actually the square of the bias obtained with squared-error
loss.
To simplify notation, we define:

PY = P(Y =ilx)

PY = P =ix)

3The notation used here has been borrowed from (James and Hastie, 1997).

CHAPTER 2. PATTERN RECOGNITION 13

Note that Pi? involves the distribution over all possible training sets, P(X,Y, D). For 0-1
loss the systematic parts are:

argmax __y

Sf’ = argrinax v

)

Let I(.) be the logic function:

I(z) = 1 if z is True
] 0 if zis False

Using Equations(2.5) and (2.6) we get:
VE(Y,Y) = E[I(Y #Y)-I(Y # SY)]
P(Y #Y) - P(Y # 8Y)

= (1 - iPiYPf> —(1-P%)

i=1
C &
= PSSA — E Pi1 Pi._

SE(Y,Y) = E[(Y #8Y)-I(Y # SY)]
= P(Y #£8Y)—P(Y #8Y)
= Piy - Py
— max PY P;/Y

var(Y) = E[I(Y # SY)]
= P(Y #5Y)

max

= 1- 3 PY
Note that while SE > 0, VE can be negative with the constraint VE + SE > 0. This agrees
with Friedman’s observation that it is possible for the variance of a classifier to cancel out

its error due to bias. Now compare the variance and bias effects to the variance and bias of
the classifier themselves:

var(Y) = (ff # 8Y)
— max PY
bias(Y,SY) = (sy # SY)

There is no obvious relationship between the bias and variance and their effects on the
expected loss. The decomposition is still useful for understanding how the bias and variance
are affecting the accuracy of the classifier.

In general we cannot calculate pmc because we do not know P(f(x)[x) or p(x), and the
domain X may be infinite?. In fact, we only have a single training set D from which to infer
our model. Therefore any performance measures must be based on the samples provided.
The experimental approach is to approximate the integral over X by a sumimation over some
data set 7

pmc 1(f|D) = |T| Z I(f(x;) # ¢)
X;eT

40Of course, there are synthetic problems where the distribution of the data is fully known.

CHAPTER 2. PATTERN RECOGNITION 14

The obvious choice for 7 is to use the data set D that was used to train the classifier.
The resulting quantity is called the training error. It is widely known, however, that the
training set error is a downwardly-biased estimator of pmc because the same data were
used to build and to test the model. This optimistic estimate of pmc is also termed the
apparent error (Efron and Tibshirani, 1993). In order to reliably estimate pmc , we require
independent samples from P(x, ¢); such a data set is called the test set. Often the re-sampling
of P(x,c) is impossible or expensive, so the supplied data is divided into a training and a
test set. The classifier is built using D and evaluated using T to obtain an independent, and
therefore unbiased, estimate of pmc. The test set is sometimes termed the hold-out sample.

The problem with the hold-out approach is that we require as much data as possible to
hypothesise f(x|D), and the available data set is often not large enough that we are willing
to spare samples for the test set. Furthermore, a large number of samples is required to
obtain a satisfactory estimate of pmc . Consider a test set consisting of m samples, m. of
which were erroneously classified. m, is a random variable; let us assume that it is binomially
distributed:

me ~ B(m,pmc)

The variance of our estimator pmc is:

»_pme(i-pme)
pme . m
If the true error rate is 5%, say, and we want the 95% confidence interval to span no more
than 2%, then we require (Ripley, 1996):

] 95
oy 05 XU, 401
m
which yields m =~ 1900.

There are several re-sampling methods that can be used to improve the accuracy of the
error estimate. Two are described below.

2.4.1 wv-fold Cross-Validation

Cross-validation (CV) is the practice of dividing a data set into a training set D and a valida-
tion set V, and subsequently using D to create a classifier and V to evaluate its performance.
The difference from the hold-out method is that cross-validation is typically used for model
selection, the result of which must subsequently be evaluated using the hold-out test set.

For v-fold cross-validation, the data set is randomly divided into v disjoint sub-sets of
roughly equal size, V',i = 1,...,v. Let Vi denote the set of samples remaining when the
ith cross-validation sample is removed from the whole data set. Each V' is used to train a
separate classifier f;(x), which is subsequently evaluated on 1%

pre - (fil V) = ﬁ S I(f(x5) #)

X;eVi

The result is v independent estimates of error for which each sample has been used to train
and to test the classifier. The overall error for the classifier is the average of these cross-
validation estimates:

piie () = = 3 pae (V)
vig

The extreme case of v-fold cross-validation is leave-one-out cross-validation, for which [V'| =
1,5 =1,...,v. This method results in a more accurate estimate of error, but clearly is more
computationally expensive.

CHAPTER 2. PATTERN RECOGNITION 15

2.4.2 The Bootstrap

Other methods for estimating the true error rate of a classifier are obtained by adding a
correction to the apparent error. One popular method is the bootstrap (Efron and Tibshirani,
1993), a non-parametric technique for measuring the accuracy of an estimator. It was stated
earlier that the problem with estimating error is that we do not know the distribution of
the data at every point. The bootstrap® approximates the true distribution P(x,c¢) with
the empirical distribution P(x, ¢) derived from N data vectors by placing an impulse of size
1/N at each (x;,c;). The empirical distribution is then re-sampled with replacement to form
B bootstrap samples of size N. A non-linear estimator 6 is calculated for each of the B
samples yielding 67,65, ...,0%, which are averaged to obtain a more accurate estimator 6*.
The underlying assumption is that the empirical distribution is a suitable mimic for the true
distribution of x. In practice, B = 200 usually gives sufficiently accurate results (Efron and
Tibshirani, 1993, p. 52).

The bootstrap estimate of classification error is based on the training set only, so that all
of the available data can be used. To estimate classification error, two bootstrap estimates
are required:

e the classification error of the model trained on the bootstrap sample and tested on the
original data, err(x*, P(x,c)), and

e the classification error of the model trained on the bootstrap sample and tested on the
same bootstrap sample, err(x*, P(x*,c)).

Each of these quantities is averaged over the B bootstrap samples to obtain averages err(x", F)
and W(x*,ﬁ’*). One might expect W(x*,ﬁ’) to be a sufficient estimate of error, but in
practice it is still too downwardly-biased. It is observed, however, that the error estimates
obtained by testing on the bootstrap samples, the apparent errors, are on average lower
than those evaluated on the original sample. We can therefore calculate the average opti-
mism err(x*, F) — err(x*, F*) and add this to the apparent error of the original data set,
err(x, ﬁ’) The result is the bootstrap error estimate.

2.4.3 The Confusion Matrix

A useful tool for evaluating the performance of a classifier is the confusion matriz. The
element m(4,j) of the matrix is the number of test samples that belong to class ¢, and were
assigned by the classifier to class j. From the matrix, one can identify which classes the
classifier is confusing in its decisions. An example of the confusion matrix for a classifier
used to distinguish fruit based on length is shown in Table 2.1. There are three types of fruit
to be classified, bananas (class 1), apples (class 2) and oranges (class 3). When tested on 120
examples with 40 examples per class, the classifier correctly classifies all the bananas, but
incorrectly classifies 9 apples as oranges, and 19 oranges as apples. The matrix can be used
to see where two classes are being confused based on their sensor measurements, and new
sensors can be added to particularly discriminate the confused classes. For example, based
on Table 2.1 the designer might add a sensor that measures the colour or surface texture of
the fruit to distinguish between the apples and oranges.

Another anomaly that can be detected with the confusion matrix is the case when the
classifier tries to trade off misclassifications of one class against another. Consider, for
example, the two confusion matrices for the same two-class problem shown in Table 2.2.
There are 100 test samples, with 70 coming from the first class and 30 from the second.

5The name bootstrap comes from “the Adventures of Baron von Munchhausen”, who was said to have
pulled himself up by his bootstraps. The implication is that by using this method we are getting something
for nothing.

CHAPTER 2. PATTERN RECOGNITION 16

Table 2.1: An example of a confusion matrix.

Class predicted | Total
1] 2] 3
1140 0] O 40
actual [2] 0|31 9 40
3 019121 40

[Total [40]50[30] 120 |

Both classifiers make 20 errors. The first classifier, Table 2.2(a), is biased towards class 1.
It correctly classifies all samples from class 1, but misclassifies most of the samples from
class 2. The second classifier with confusion matrix in Table 2.2(b), however, is more even-
handed, and is not particularly biased towards either class. Now consider that the problem
just described is heart disease diagnosis, class 1 is the class of healthy people, and class 2
is the class of people diagnosed with the disease. In this case the second classifier is more
preferable than the first, because it is much more disastrous to tell a sick person that he/she
is well than to tell a healthy person he/she is sick. The trade-off of errors between the classes
can be controlled using a cost matrix to weight the errors.

Table 2.2: An example of a classifier that trades off errors between classes.

Class predicted | Total Class predicted | Total
1 | 2 1 | 2
actual | 1 | 70 0 70 actual | 1 | 63 7 70
2120 10 30 2| 2 28 30
Total 90 | 10 100] I Total | 65 35 | 100

(a) Classifier 1 (b) Classifier 2

2.5 Partitioning the Data

Many classification algorithms require an independent measure of classifier performance dur-
ing training, either to select from one of several models or to determine when training should
stop. Therefore the following three-fold partitioning of the data is usually performed:

training set: used to train the classifier;

validation set: used to test the trained classifier in order to select a model or a stopping
point; and

test set: used as a hold-out set to evaluate the generalisation performance of the final
classifier resulting from the training algorithm.

The test set is a simulation of the job the classifier will be doing in the real world.
In the work presented in this thesis, the data are partitioned in contiguous chunks,
displayed graphically in Figure 2.4. Let the total number of samples in the data set be N,

CHAPTER 2. PATTERN RECOGNITION 17

and the actual numbers of samples in each set be ny, nyg; and ngg .

Nty + Nyal + Nitst = N

Training Set Vaﬁdationset e

Training Data——.

Figure 2.4: Partitioning of the data.

The training set and the validation set constitute the training data. The test set is not
used at all to generate the classifier, it is only used for comparison of the generalisation
performance of different classifiers. The test set estimate of percentage classification error

1S:
e =100 <”W> %

st

where .., is the number of errors on the test set made by the classifier.

2.6 Bayesian Classification

The Bayesian approach to classification is very popular and has been for several decades.
Under this approach the problem is posed in probabilistic terms and all of the probabilities
and distributions are assumed to be known (Duda and Hart, 1973). The advantages of
this approach are that it is theoretically well-founded, empirically well-proven and involves
procedural mechanisms whereby new problems can be systematically solved (Hanson et al.,
1991). The pivotal mathematical tool for this analysis is Bayes Rule:

P(a,b)
P(b)

P(alb) =

Also using P(bla) we obtain the familiar form:

P(bla)P(a)

Plalb) = =55

In the universe of all objects some objects are more common than others. The probability
of occurrence of an object of class ¢ is the a priori or prior probability of that class, and is
denoted P(i). For example, when classifying aircraft in suburban skies the prior probability
of an air-liner would be much higher than that of an F-18 fighter plane. In the absence of
further information, a class decision could be made based purely on the prior probabilities
by always guessing the class with the highest prior probability. This static classification
decision results in the default error rate:

g=1-"7"P(i)

In practice the true prior probabilities are rarely known, and are either estimated from the
data or are assumed to be equal. In the work of this thesis, the priors are assumed equal.

Rather than settle for the default error rate, we note that objects from the same class
tend to have similar characteristics (that’s what makes a class). So the objects from a single
class are taken from some population with a probability density function (pdf) p(x|c = 1).
These conditional densities are termed likelihood functions, and can be modeled in different
ways as discussed later.

CHAPTER 2. PATTERN RECOGNITION 18

Now consider that we have taken a measurement vector x of some new object whose
class we do not know. The main result of Bayes decision theory is that we can invert the
conditional probabilities using Bayes rule to obtain the probability of each class given the
data: .

Plo — itx) — PK)PE)
p(x)

where p(x) is formed by integrating over the conditional densities to form the marginal:

o pPE)
Flik) Y5 p(x|e;)P(cs)

This conditional class probability is called the a posteriori or posterior probability. Intuitively
we would choose the class with the highest posterior probability as the class decision for
x; in this case, the denominator of Equation(2.7) is irrelevant since it is the same for all
classes. Figure 2.5 shows a one-dimensional example of the likelihood functions and posterior
probabilities for two normally-distributed classes with equal priors.

2.7)

2—_class likelihoods and posteriors, equal priors

o.8 -

= % e — p(xlet)
3 I — — podicz)
:;3 ¥ — - p(e1bo
p(c2ix)

oz

10 12 14 16

Figure 2.5: The class probability density functions and posterior probabilities plotted as a
function of = for a two class problem, equal priors.

In general we must consider the loss associated with the class decision. Referring to
Equations(2.2) and (2.3), the overall expected cost is minimised by minimising the decision
rule’s expected cost at each point x. Re-writing the loss at a given point in the probabilistic
notation:

L(i|x) =

J

H(ilg)P(51%)

C
=1

The Bayes decision rule is to select the class ¢* that minimises L(i|x) at each point:

¢t =""8"" L(c|x)
Thus the class with the maximum posterior probability may not necessarily be selected if it
has a relatively high cost.

It is an important point that the Bayes error rule results in the optimal Bayes error
rate. This is the theoretical minimum achievable error rate of any classifier on the data; it
represents the irreducible error of the problem due to overlap in the class probability density
functions. The reader may be wondering “why not just use this classification rule every time
and everything will be hunky dory?”. The problem is that in reality we rarely know the true
priors or the form and parameters of the pdfs. Therefore the performance of a classifier will
only be as good as the assumptions made in deriving these quantities.

CHAPTER 2. PATTERN RECOGNITION 19

Under 0-1 loss we wish to minimise equal-cost misclassifications; the Bayes decision rule
is to select the class with the maximum posterior probability:

¢t =" P(c|x)

To summarise, the overall Bayesian approach for minimising error rate is to estimate
or hypothesise the priors and the conditional class densities, then invert these to obtain
the posteriors. For a new x, the posterior with maximum value corresponds to the Bayes
optimal class. The freedom in choice of learning algorithm is in the way the conditional pdfs
are formed. Some common methods are discussed here.

2.6.1 Discriminant Functions

For the minimisation of 0-1 loss classification error, we choose the class that maximises:

g9i(x) = p(x|i) P(i)

gi(x) is called a discriminant function; we have C of these, and the maximum value at a
point decides the class label in a winner-take-all fashion. For any two classes 7 and j, there
is a surface at which both classes have an equal discriminant function value defined by:

{z: 9:(x) = g;(x)}

This surface is called a decision surface or decision boundary. These boundaries segment
the feature space into C disjoint regions, one for each class. In general, the regions are not
convex or simply-connected®.

Since we seek a relative maximum, we can apply a monotonic increasing transformation
to each discriminant function to obtain:

nil Z U@
A5 gl = toglp(eeli] + log [P(i)] (28)

e

The pdfs and priors can now be plugged directly into Equation(2.8) to perform classification.
The most common practice is to assume that:

e each class consists of a single cluster;

e the samples from each class are distributed according to a multi-dimensional Gaussian
function.

In that case: !
1 Te—1
P(x|:) = e——(x—mi) Ei (x-mi)
(|) (27r)d/2|2i|1/2
where m; is the mean and ¥; is the covariance matrix of class 7, d is the dimensionality of
the data, and AT denotes the transpose of matrix A. Generally the mean m; and covariance
matrix 3; of each class are estimated from the data.
The discriminant functions are:

g:() = —(d/2) I (2m) — 2 In[] = 3 0 — me)" B (x =) + 1n[()]

Discarding the first class-independent term:

gi(x) = — In 4] 2 (x — my)T27 L — my) + (P

5That is, the regions may consist of several sub-regions, or may contain holes.

CHAPTER 2. PATTERN RECOGNITION 20

2.6.2 Minimum-Distance-to-Means Classifier

With this classifier, each class distribution is assumed to have a different mean but the same
covariance matrix ¥; = o2I: that is, there are no covariance terms and the variance along
each ordinate is the same for each axis for each class. The priors are also assumed equal.
When the class-independent terms and scale-factors are removed, the discriminant functions
become:

T 1 r

gi(x) =X"1m; — imi m;

We can obtain these functions another way. Consider the discriminant functions:

gi(x) = —(x — m;)" (x — m;)
This is the negative of Euclidean distance squared from the sample to the mean of class <.
Simplification reveals:

T

gi(x) =x"x— 2xTm; + mlei

which, for purposes of a comparison amongst discriminant functions, simplifies to:

1
gi(x) = xTm; — imfmz
So the assumptions under this model are equivalent to choosing the class with the closest
mean. The decision surfaces that separate the class sub-spaces are hyper-planes: each hyper-
plane lies between a pair of class means and is the perpendicular bisector of the line between

the means.

2.6.3 The Maximum Likelihood Classifier

The Maximum Likelihood classifier models the distribution of data in each class using a
Gaussian with a different mean and a different covariance matrix. The mean and covariance
maitrix of each class is estimated from the training data:

X
m; = E =
4

XeC;

The discriminant functions are:

1 1 . .
gi(x) = =5 In[Bi[— 5~ m;)" B (x — m;) + In[P(3))]

The resulting discriminant functions between classes are quadratic; this can be very
useful in exclusive-or type problems since one class can consist of several regions in feature
space. An example of this classifier for synthetic two-dimensional two-class data is shown in
Figure 2.6.

2.6.4 The k-Nearest Neighbours Classifier

An intuitively appealing classification rule is the nearest neighbour rule: find the known
training sample x’ closest to x and assign the class of that sample. This approach can still
be considered under the Bayes framework. As the number of training samples n, approaches

CHAPTER 2. PATTERN RECOGNITION 21

Figure 2.6: Example of the Gaussian maximum likelihood classifier.

infinity, x’ becomes infinitely close to x, and the class distribution at x' approaches the class
distribution at x:
. . .
mlrlgoo P(i]x") = P(i}x)

The Bayes rule would choose the class with the maximum posterior. The nearest neighbour
rule is a randomised version of the Bayes rule, in that the class label associated with x/
has been randomly sampled from P(x,c). Therefore it only agrees with the Bayes rule with
probability P(c*|x). In (Duda and Hart, 1973) it has been shown that the error rate under
this rule never exceeds twice the Bayes rate.

The k-Nearest Neighbours (k-NN) algorithm attempts to improve upon the previous rule.
It determines the k nearest training samples to the test sample being classified, and uses
these samples to vote on the class label of the test sample. Ties are broken by selecting the
class whose voters have the smallest total distance. The probabilistic rationale for this rule
is that we now have a sampling of P(i|x’) around x which is averaged through the majority
vote procedure to estimate P(c*|x) and choose the corresponding optimal class.

In general, the higher the hyper-parameter k the more accurate the classification. There
is, however, a trade-off associated with the choice of k. On the one hand, we want k to be
as large as possible to improve our estimate of P(c*|x), but on the other hand we want the
k neighbours to be as close to x as possible. Therefore we can expect a global minimum in
error as k is varied from 1 to ny,.

The decision regions created by this algorithm correspond to the Voronoi tessellation
constructed from the training data. The advantages of this classifier are insensitivity to
initial conditions, guaranteed convergence, and no need for training. The disadvantages are
that it is slow (O(n2.)), the training samples must be stored with the classifier, and k must
be selected.

CHAPTER 2. PATTERN RECOGNITION 22

2.7 Artificial Neural Networks

A biological neural network, or brain, is an interconnected conglomerate of neurons. These
neurons interact with one another through synapses, which carry tiny electrical impulses. It
is estimated that the human brain contains of the order of 10 billion neurons, each having
the order of 6,000 connections to other neurons (Haykin, 1994). As a loose comparison, the
pentium processor contains about 5 million transistors. Although the neurons themselves
are fairly simple and operate via chemical processes that are currently well-understood, it
is the extremely high level of interaction between these units that generates the complex
behaviour which we can only call “ourselves”.

It is the human brain that learns from and stores information that arrives at the senses.
The computational paradigm of the brain is massive parallelism: the individual neurons
all operate concurrently. If the neurons themselves are so limited in capability, how then
do we reason and remember? The only answer can be that the information is stored not
in the individual neurons, but in the patterns of interconnections between them; that is,
the memory of your mother’s face is not stored in a single neuron, but rather distributed
among several neurons, some of which may also be partially responsible for the memory of
your brother’s face. Indeed, studies have revealed that brain activity is accompanied by a
synchronisation in neural impulses between different parts of the brain (Gray et al., 1989;
Poppel and Logothetis, 1986). The distributed nature of knowledge leads to fault tolerance,
so that the loss of a few neurons does not result in the forgetting of your mother’s face.
Despite this distribution of information, the brain is still believed to be largely modular in
structure.

The computational paradigm of biological neural networks is quite different from digital
computers which carry out their tasks in sequential fashion. Artificial Neural Networks
(ANNs) are computational algorithms based on the virtues of the biological brain rather than
on the true physical details. Interconnections of synthetic neurons are used to learn from
observed data in a manner that is amenable to parallelism, robust to noise and fault tolerant.
As in their biological counter-parts, the information learned is stored in the interconnections
of the neurons rather than in the neurons themselves. Although the neural paradigm is
parallel, ANNs are usually implemented on a sequential computer.

Artificial neurons are based on a very crude model of natural neurons (Haykin, 1994).
Each neuron j receives input signals zi,...,z, from n other neurons, and sends its own
output y; to several other neurons. Each synaptic connection between neurons is weighted
according to the degree to which they influence each other. wj; is the numeric weight on the
synapse between neuron ¢ and neuron j. Typically the output of a neuron is a non-linear
function of the weighted sum of its inputs:

n
Y =¢ (Z wji®; + 9,-)
i=1

6; is a bias which acts as a threshold level. The activation function ¢(.) is typically some
form of thresholding function, such as the sign function or the sigmoid function shown in
Figure 2.7. The constant a in the sigmoid equation is the slope parameter; the slope at
the origin is a/4. Learning proceeds by the iterative adjustment of the synaptic weights to
optimise some objective.

Research into ANNs was first published in 1960, when the Perceptron rule and the LMS
algorithm were independently discovered(Widrow and Lehr, 1990). Both methods involved
the adaptation of a single neuron using an error correcting rule. Interest in ANNs deteriorated
in 1969 when the famous work of Minsky and Papert revealed that the perceptron could not
solve the simple exclusive-or problem (Minsky and Papert, 1969). The next development was
the step to multi-layer neural networks with the MADALINE, which used a hard-limiting

CHAPTER 2. PATTERN RECOGNITION 23

5 | | goe—

! 04

o8 | o
-1 ifz<0

¢p(z) =49 0 ifzx=0 $(z) = ro=we
1 ifz>0
¢'(z) = a.¢(z).[1 — $(2)]
Sign function Sigmoid function

Figure 2.7: Neuron activation functions.

activation function. This network structure was able to solve the exclusive-or problem,
but could not be trained. Although a multi-layer training algorithm was discovered soon
after by Werbos in 1971, it was not popularised until 1985 when it was re-discovered by
Parker, Rumelhart, Hinton and Williams. The logical step that took nearly 16 years to gain
popular usage was to use continuous, differentiable activation functions which approximate
the thresholding function.

There are several types of ANN which are fundamentally different in structure and pur-
pose. Of these, some are used for supervised learning and others for unsupervised learning.
The supervised networks can be divided into two types: those that learn via gradient descent
and those that learn via an error-correcting rule (Widrow and Lehr, 1990). An example of
each type is described below. Both types of learning operate on the manimal disturbance
principle, which suggests that new information be learned in such a way as to cause minimal
disturbance to information previously learned (Widrow and Lehr, 1990). These networks
are termed feed-forward networks, because they consist of several layers of neurons with the
output of each neuron in layer k connected to the input of each neuron in layer £+ 1. Data
is presented at the input layer and the signals propagate through the layers of the network
to produce a result at the output layer. Such networks can be used for classification and,
more generally, function approximation.

2.7.1 The Generalised Linear Machine

The earliest neural elements, the Adaline and the Perceptron, were both trained with an
error-correcting rule and used a discrete activation function. These algorithms are useful for
classification, since the output yields a hard yes-no decision. The visual interpretation of the
Perceptron is a hyper-plane that divides the input space into two, providing a dichotomy
of the data points in that space. An example for points in two dimensions is shown in
Figure 2.8. A point is assigned to one class or the other based on the magnitude of its dot
product with the weight vector.

This dichotomiser is generalised to a multi-class situation by the Generalised Linear
Machine (GLIM) classifier (Nilsson, 1993). The GLIM consists of a single-layer of winner-

CHAPTER 2. PATTERN RECOGNITION 24

y
wx>—0
[] .. ¢
[[] °
....
e ® O
b [}
[] X
L] w =
e® o © .
.....
e * ®
[}
. °
[4

Figure 2.8: An example of a 2-dimensional hyper-plane separating two classes.

take-all neurons, one for each of the C unique classes. The classifier is shown in Figure 2.9.
The term “winner-take-all” comes from competitive learning: the neuron having the largest
output is chosen as the winner of the competition, and its weights alone are updated. The
d-dimensional input vector, x = [z1,Z2,...,Zq], is fed as input to the classifier.

At the ith node, the discriminant function for the ith class g;(x) is:

d
gi(x) =Y wjwij + 0
i=1

To unify the neuron bias with this notation, we augment the input vector with a constant
input of 1:
x' = [1,.’121,.’1}2, o ,acd]T

and set the bias to be the zero-th weight w;. We can then write the discriminant function
as the dot product of the augmented input with the node’s (d+ 1)-dimensional weight vector
Wil

T

gi(x) =w x'

The predicted class of the input vector, ¢/, corresponds to the node with the maximum
output:

, argmax

d="i gi(x)

Training proceeds as follows. Let the weight vector at the nth iteration be denoted w;(n).
The weight vectors are initialised to zero; w;(0) = 0. For each training vector x with correct
class label ¢, the predicted class ¢’ is calculated. If ¢’ = ¢, the weights are updated according
to the following equation:

we(n + 1) = we(n)

If the predicted class is wrong, however, then ¢’ # ¢ and the weight vectors are updated
according to:

CHAPTER 2. PATTERN RECOGNITION 25

arg
max ——— C

Figure 2.9: The Generalised Linear Machine.

we(n +1) =we(n) + px
we(n+1) =wg(n)— px'

where 4 is the learning rate. Thus the weights are modified so as to correct the error
most recently made.

When each training vector has been presented once, an epoch has transpired. Training
continues until a prescribed error rate is achieved, or a prescribed maximum number of
epochs has occurred. If the epoch limit is reached, the classifier did not converge, probably
because the data are not linearly separable. The subsequently-used weights are taken from
the epoch that resulted in the least training error. For linearly-separable data and p > 0,
convergence is guaranteed (Nilsson, 1993, pp. 88-90).

The advantages of the GLIM are its simplicity and speed (O(N.eqy), Where eq, is the
average number of epochs for training), and its insensitivity to the choice of initial weights
and learning rate. The disadvantages are its inflexible linear decision surfaces and uncertain
time to convergence. Note that although a linear classifier has simple decision surfaces,
non-linearly transforming the data before classification is equivalent to using more complex
decision surfaces with the original data.

2.7.2 Multi-Layer Perceptron

The multi-layer perceptron (MLP) is a feed-forward network with an arbitrary number of
layers. The general architecture is shown in Figure 2.10. The network is organised into
layers with an input layer, an output layer, and hidden layers in between. Usually either one
or two hidden layers are used. Connections traditionally only exist between adjacent layers,
although short-cut connections can be added between a neuron and neurons in arbitrary
successive layers.

The activation function at each hidden neuron is typically the sigmoid function shown
in Figure 2.7; in practice any differentiable function can be used. The activation functions
at the output neurons can be either linear (ie: ¢(a) = a) or sigmoidal. The MLP is trained
using a set of input-output data pairs {x;,d;}"¥. The objective of training is to learn the
required mapping from the input domain to the output domain. Training proceeds by the
iterative presentation of input data vectors and subsequent adjustment of the weight vectors.
Let x(n) be the input vector presented to the input layer of the network at iteration n. These

Input First ~ Second
Layer Hidden Hidden

CHAPTER 2. PATTERN RECOGNITION 27

signals are propagated forward through the network to arrive at the output neurons, thus
resulting in an output vector.

We employ the following notation: y;(n %(n) is the output of the jth neuron in layer k as a
result of the presentation of a trammg sample at iteration n. The vector of outputs of the nj
neurons contained in layer k is y*(n). Each neuron j (except for the input-layer neurons) has
an associated weight vector w;? (n), where n is the current iteration. The synapse connecting
the output of neuron i in layer k — 1 to the input of neuron j in layer k has the weight

fz(n). Each layer except the output layer is prepended with a neuron that has no inputs,
and constantly outputs the value +1 (ie: y§(n) = 0V n). This allows the graceful inclusion
of the bias term wfo(n) = Hk into the notation.

The input layer is labelled layer 0, and contains one node for each of the input data
dimensions. Neurons in this layer have no weights or activation function: their outputs are
simply the corresponding input data vector elements:

¥ (n) = x(n)

For subsequent layers, the neuron outputs are the weighted sums of the outputs of the
previous layer acted upon by the activation function:

yj(n) = ¢k(W§(”)T-yk_l(n))
i=1

where ¢;(.) is the activation function used at layer k. Eventually the output vector is
obtained from the network, y¥(n). The error vector at the output is the difference between
the desired and network output vectors:

e(n) = d(n) ~y*(n) (2.9)

The goal of training is to minimise some function of this error vector, usually the instanta-
neous sum-squared error, which is the sum-squared error at the outputs upon presentation
of the training sample at iteration n:

£(n) = % e(n) (2.10)

N
Ew = 5 2:: E(n) (2.11)

The free parameters of the network, the synaptic weights, must be modified to minimise this
average error. The weight vectors are randomly initialised prior to training. The gradient
descent algorithm used to adjust the weights is called error back-propagation. While the error
function to differentiate is the average error in Equation(2.11), in practice the instantaneous
error of Equation(2.10) is often used to approximate the true gradient. The adjustment
Awfi(n) to weight w;?i(n) is formed using this gradient, and the weight is then updated
according to the delta rule:

whi(n +1) = wh(n) + dwf;(n)
with:

35()

wh.(n) = —
Awj;(n) " uk(n)

Jt

CHAPTER 2. PATTERN RECOGNITION 28

where 7 is the learning rate parameter. Define the internal activity of neuron j from layer k
as:

yf(n) = wi(n)".y*(n)

The gradient of the instantaneous error with respect to weight w;?i is obtained using the
chain rule:
9E(n) _ 0E(n) By§(n) Ovj(n)
k - k k k
3wji(") dy; (n) ov; (n) awji(n)

For all layers, the last two partial derivatives are:

ayj (n) Y,
2 —)

avj(n) :y{c—l(n)
Ow;;(n) i
The other term depends on whether the neuron is in the output layer or in a hidden layer.
We shall call this partial derivative the local gradient at neuron j. For the output neurons:
0E(n) 0&(n) Oej(n)
dyf (n) Oej(n) dyf(n)
Referring to Equations(2.9) and (2.10):
of(n)
dyf(n)
The situation is more involved for neurons in the hidden layer, since there is no desired
output with which to compare the neuron’s output. We exploit the fact that we know this
partial derivative for the neurons in the next layer, hence the term error back-propagation.

If we consider the instantaneous error £(n) to be a multivariate function of the outputs in
layer k + 1, then using the chain rule for multivariate functions:

8w | % 0w o)
dyk (n) = oyFt(n) dyi(n)

and:

—e;j(n)

& _9E(n) s k1

Z T¢k+1((n))'wij (n)a k=1,..., (K - 1)

i=1 Oy; ()
Thus the local gradient can be computed in terms of the local gradients at the nodes in the
succeeding layer.

When each training sample has been presented to the network once, an epoch has oc-
curred. Training continues until some criterion is reached, such as zero training set error,
an increase in validation set error or the gradient magnitude approaches zero. Note that the
weight updates are different if we calculate the gradient with respect to the average error:

O gy 8ek()
C')w Z Z nxex(n (n)

nlkl

This is called the batch method of training, as opposed to the pattern method that was de-
scribed earlier. Although the gradient calculated using the average error is more accurate,
the pattern method requires less storage in implementation and results in a stochastic esti-
mate of the gradient, which can help in escaping local optima (Haykin, 1994). In general,
the efficiency of each approach depends on the problem.

What sort of functions can the MLP approximate? The universal approximation theorem
addresses this question:

CHAPTER 2. PATTERN RECOGNITION . 29

Theorem 2.1 (Universal Approximation Theorem (Haykin, 1994)) Let ¢(.) be a non-
constant, bounded, and monotone-increasing continuous function. LetI, denote the p—dimen-
sional unit hypercube [0,1]P. The space of continuous functions on Ip is denoted by C(Ip).
Then given any function f € C(Ip) and € > 0, there exist an integer M and sets of real
constants o;,0; and w;j, wherei=1,...,.M and j =1,...p such that we may define:

M P
F(ml,) ,.’I,‘p) B Zazqﬁ (Z Wi Ty — 91>
i=1 j=1

as an approzimate realisation of the function f(.); that is,
|F (21, .., 3p) — f(21,...,3p)| <€
for all {z1,...,2p} € I.

The reader should note well that this is an existence theorem, and does not say what
the optimal number of hidden nodes or weight values are. In addition, the theorem states
that only a single hidden layer is required to approximate an arbitrary continuous function,
whereas the use of multiple hidden layers may greatly decrease the size or training time
required for the network. This theorem has been generalised to allow the use of any smooth
(thrice differentiable) non-linear activation function ¢(.) in (Kreinovich, 1991).

The MLP can be applied to classification problems, since these require a mapping from
the input domain to the class decisions. The most common architecture is to use one output-
layer node per class and construct the target vectors using a 1-of-m encoding:

d’(n) = [0,0,...,1,...,0]

{ 1 ifi= class of x(n)

with d;(n) 0 otherwise

,’L=1,,C

It has been shown that in the case of infinite training data, the network with globally-optimal
weights approximates the class posterior probabilities at the output neurons (Haykin, 1994):

yf (n) = P(jlx(n)); j=1,....C

Thus the optimal class decision is the class corresponding to the output-layer neuron with
the largest output. Note that under this encoding, minimisation of the sum-squared-error
at the output is not the same as the minimisation of misclassification error, which would be
a discontinuous function.

2.7.2.1 Practical Issues

There are several practical considerations that must be addressed to successfully use the
MLP.

Architecture The first decision that must be made is the choice of architecture. If too
many hidden neurons are used, the network will tend to over-fit the data; if too few, the
network may under-fit since it does not possess enough free parameters to perform the
mapping. In addition, the number of layers may make a difference to the performance of
the MLP. We could go as far as to allow arbitrary forward connections among the neurons.
These factors depend on the underlying complexity of the data which is generally unknown,
so for near-optimal results a search must be made over the set of possible architectures.
There is a significant amount of research into the use of evolutionary algorithms for
this purpose, the different methods varying in the extent of the search (Branke, 1995).

CHAPTER 2. PATTERN RECOGNITION 30

For instance, genetic algorithms have been used to find the best neural connections for a
fixed number of hidden nodes (Miller et al., 1989), while more extreme approaches have used
genetic programming to find the number of hidden layers, hidden nodes, the interconnections
between them and the initial weights for training (Zhang and Miihlenbein, 1995).

Activation Functions It has been found that the training performance of an MLP can
be improved by using an anti-symmetric activation function at the hidden nodes (Haykin,
1994; Bishop, 1995). The usual choice is the hyperbolic tangent shown in Figure 2.11.

e
s = -
0.5 [

-a5

ixh
o

i

e —az
¢($) - 1+Z—am

Figure 2.11: Hyperbolic tangent activation function.

Training can also be expedited for classification by modifying the target vector represen-
tation. With the binary target values set to the asymptotic values of the activation function,
the weights can become very large and training become slow. This situation can be remedied
by offsetting the target values by a small amount e:

dTn)=[e, ¢ ..., (1—¢€), ..., €

Local Optima In practice it is highly unlikely that the error function will contain a single
optimum; rather the function that is being optimised will tend to be very rough and noisy,
and dotted with local optima (Widrow and Lehr, 1990). Since back-propagation training is
a gradient descent method, convergence to a local optimum is final and the network becomes
trapped at this sub-optimal point. Therefore two networks with the same architecture can
often achieve the same goal using different sets of weights. It is sensible to train the network
several times, starting with different initial weights for each training instance. For each
training run, the weight vector may start in a different basin of attraction, and hopefully the
basin of the global optimum will eventually be encountered.

One method for escaping small local optima is the use of a momentum term in training,
although this adaptive step-size update method was explicitly developed to speed up training.
The delta rule is modified to include a memory of previous step sizes (Haykin, 1994):

dE(n)
R r'Jw;-"i (n)

Awfi(n) = aAwfi(n -1) -

where o is the momentum term, and 0 < |a| < 1 for stability. Momentum allows the step-
size parameter to adapt to the local landscape: in regions where successive updates involve
gradients with the same sign, the weight update increases in magnitude, metaphorically
gaining momentum. In the case where gradients change sign on successive updates, the
weight vector has overshot a local minimum and the weight update magnitude decreases to

CHAPTER 2. PATTERN RECOGNITION 31

fit in the smaller basin. For an appropriately chosen «, the weight vector can overshoot and
thus escape relatively small local optima.

Generalisation Generalisation is a significant issue for MLPs: one could keep adding
hidden nodes to a network and generally the training error would reduce, perhaps reaching
a perfect classification accuracy. However, the network would probably be totally unable to
generalise since it would be tuned specifically to the data. Thus the very objective function
we minimise, the training set error, leads to the wrong network!

A useful result has been published by Baum and Haussler for an MLP with one hidden
layer used as a binary classifier (Baum and Haussler, 1989). Given a fixed architecture with
M hidden neurons and W synaptic weights, the network will almost definitely generalise
well, provided that:

1. the fraction of errors made on the training set is less than €/2;

2. the number of training samples N satisfies:

N >

20 (32M) (2.12)

€ €

where € is the fraction of errors permitted during test. This is a distribution-free, worst-case
formula; in practice a much smaller training set may be satisfactory. To a first approximation,
Equation(2.12) reduces to the rule-of-thumb:

N> —
€
This result assumes that we have the number of hidden nodes most appropriate for the
complexity of the problem. In practice one tends to have a fixed-size training set and wishes
to find the best architecture. To avoid over-fitting for networks that are too large, cross-
validation techniques can be used to stop training when generalisation is estimated to be at
its best.

Pre-Processing Experience has shown that transforming the data before use with an
MLP can improve performance (Bishop, 1995). The specific transformation depends on the
type of data:

real-valued: the input variable z is typically de-meaned and scaled to the same dynamic
range as the activation functions used. This allows the same range to be used for the
random initialisation of all weights, regardless of the average magnitude of the original
data measurements.

enumerated: if z can only assume one of m possible values, and these values have no natural
ordering, z can be encoded in one-of-m form to ensure that no artificial ordering is
imposed. For example if z € {red, green, blue, yellow} then x could be replaced with
four binary inputs:

T Tr9 T3 T4 T

1 0 0 0 red

0 1 0 0 green
0 0 1 0 Dblue

0 0 0 1 yelow

Enumerated variables are also referred to as nominal or categorical attributes.

CHAPTER 2. PATTERN RECOGNITION 32

2.7.2.2 RPROP Training Algorithm

The results of back-propagation training are sensitive to the weight step-size 7, the correct
choice of which is problem-dependent. The use of momentum may improve matters, but in
practice moves the selection of an important parameter back one level. One can imagine
also that the learning rate should have a different magnitude at different stages in training.
Several adaptive learning-rate techniques, such as the Delta-Bar-Delta technique, have been
developed to modify the learning rate in response to the behaviour of the error function.
Unfmtunatclzf the step-size is often modified independently of the magnitude of the partial
T

derivative Y and learning is sensitive to the unforeseen behaviour of this derivative.

RPROP (Resah.eﬂ.ﬂ PROPagation) (Riedmiller and Braun, 1993) is an adaptive weight
update method in which each weight step is based on only the sign of the local gradient,
and not the magnitude. Ignoring the magnitude of the local gradient results in more robust
behaviour with respect to learning rate parameters. Each weight has an individual update
value A;;, which solely determines the size of the weight update:

(n-1) .o ag (n=1) ap (n)
+ >< &?’J if le X (}wu > 0
AP =3 g x Al g 220D JEM o,

AE}"*” otherwise.

where 0 < 7 < 1 < nt, and the local gradient DB ™) is calculated at epoch n. Verbally,
the weight update-value is increased when the derlvative keeps the same sign so as to speed
up convergence in shallow regions of the error surface. If the gradient changes sign, the
network has over-shot a local minimum in weight-space and the update-value is decreased
in magnitude accordingly.

With the local update-value calculated, the weight-update itself is:

(n) .o g (n)
AP i 22 5 o,

aE e — (n) .0 9E ()
ww +AU if 5:473 < 0,
0 otherwise.
W = O 4 AwY (2.13)

The weights are updated only after an epoch (ie: batch training). The exception to
Equation(2.13) occurs when the partial derivative changes sign, ie: the previous step was
too large. In this case, the weight is reverted to its previous value:

) (n) o (n D BE (D . OB (n)
Bwij awi]’

<0

When back-tracking is performed, the gradient changes sign again. To avoid back-

tracking repeatedly, the gradient ;Tlfj(n_l) is set to zero for the next weight update. The

update-values A;; are initialised randomly with a uniform distribution on [Agin (0); Amaz (0)]-
During training, the update-values are constrained to the range [Amin) Amag). The weights
are initialised randomly on the range [Wmin, Wmasz) With a uniform distribution.

2.8 Decision Trees

Decision trees are data models that can be used to classify objects by asking a series of
questions to arrive at a class prediction. The trees, which are generally binary, consist of

CHAPTER 2. PATTERN RECOGNITION 33

internal nodes and terminal nodes; an example is shown for a 2-dimensional domain with
two classes in Figure 2.12(a). Each node represents a sub-set of the training data: at the
root node we begin with the full training set, which is subdivided as we progress down the
tree. A question is asked at each internal node, and all the samples responding affirmatively
are assigned to the left child node, with those responding negatively going to the right child
node. This process is called a split. Usually splits involve one variable and are of the form “Is
z; < ¢ 7”. In the example, we begin with 364 training examples. For 207 of these samples,
the first attribute z; is less than 1.5, and these samples are assigned to the left branch. The
subdivision of the data sample continues until a terminal node is reached. Each terminal
node is assigned one of the pre-existing class labels according to the construction algorithm.
Thus a novel sample presented to the tree can successively be tested against the splitting
questions along some path and eventually arrive at a terminal node where a class label is
assigned.

Referring to Figure 2.12(b), we can see that each region r; corresponds to one of the
terminal nodes in Figure 2.12(a). The axis-parallel sub-division of the feature space is a
characteristic of this form of univariate split.

Class 2

X2

z1 < 1.5 364

oy < 8.3 207 zg < 4.7 167
1| 126 r2| 81) < 7.7\ 65 r6| B2
C1 c2 C1

r3| 35 zg < 2.1(30

c2

r4| 12 5| 18
Xi
ce c1 #
(a) Decision Tree for 2-class 2-dimensional (b) Corresponding partition in 2-dimensional do-
problem. The number of samples associ- main.

ated with each node is written in the node,
the splitting criterion is shown to the left
of each internal node, and the assigned
class number is written underneath each
terminal node.

Figure 2.12: An example of a decision tree.

The decision tree approach to classification has the advantage of being descriptive as
well as predictive, since the rules of a reasonably-sized tree are humanly interpreted and
understandable. The three main issues in the construction of a decision tree are (Breiman
et al., 1984):

1. selection of the splits,

CHAPTER 2. PATTERN RECOGNITION 34

2. when to stop splitting, and
3. the assignment of each terminal node to a class.

There are very many ways of addressing these issues, since the research field is quite mature
and many different algorithms have been developed. Among the better-known algorithms are
CART (Breiman et al., 1984), ID3 (Winston, 1992), C4.5 (Quinlan, 1993), FOIL (Quinlan
and Cameron-Jones, 1995), FACT (Loh and Vanichsetakul, 1988) and QUEST (Loh and
Shih, 1997b). A description of CART, C4.5 and QUEST are included in this section. A
more comprehensive overview of the whole field can be found in (Murthy, 1996; Gelfand and
Delp, 1991). But first, a discussion of some of the main points about decision trees.

One can observe from the previous example that univariate splits can be quite inappro-
priate for data in which class discrimination depends on combinations of variables. While
early endeavours in decision tree research only used univariate splits, multi-variate splits are
now commonplace, and usually manifest as linear (oblique) splits of the form (Breiman ef al.,
1984):

Z amTm < c?

m
In general, arbitrary combinations of the data can be used to perform splits. For instance,
neural networks have been used to perform non-linear multivariate splits at each internal
node (Guo and Gelfand, 1992).

Another advantage of decision trees is their ability to cope with ordered and categorical
data. Often a variable can only take on one of several values which have no particular
ordering, such as colours or types of car. These enumerated variables can pose a problem
for some methods. Given a variable z; which can take on values in A = {a1, as,...ax}, the
split question for an enumerated variable is:

z; € B,whereB C A

Decision trees also allow for a rather unique method of dealing with missing data, called
surrogate splits (Breiman et al., 1984). A measure of similarity of two splits is defined for
a given node. If the best split S is performed on variable z,, then find the split S’ that
uses variables other than ,, and that is most similar to S. S’ is the best surrogate split.
Now find the second best surrogate split, the third best and so on. When it comes to using
the tree for classification, a sample that has the value of z,, missing is tested on the best
surrogate split, and so on for any other missing values.

A drawback of decision trees is that they are grown incrementally according to some
criterion, and are therefore incrementally optimal rather than globally optimal. The use of
hard decisions may also be a liability in noisy environment, due to their sensitivity to noise.
Developments in decision trees have been made using soft decisions, and fuzzy logic has also
been used to partition data. Soft splitting assigns probabilities to sample categorisations, so
that a sample has a membership in multiple tree nodes. This can result in more robustly
interpretable trees (Gelfand and Delp, 1991; Sethi, 1995).

Although decision trees can be understood, they must be interpreted with caution. For
example, if a variable is not used to perform a split in the tree, we might conclude that it is
not useful for classification. It may be, however, that the variable’s usefulness was masked
by other variables (Breiman et al., 1984). When this masking is narrow, small changes in
the data sample or the priors may greatly affect the final tree, leading to unstable results.
There are methods to cope with tree interpretation described in (Breiman et al., 1984), but
the most sage advice from there is to do any such analysis carefully and objectively.

Algorithms that split on variables by performing an exhaustive search have a compu-
tational complexity that increases with the number of values taken by that variable in the

CHAPTER 2. PATTERN RECOGNITION 35

learning sample. For an ordered variable with n distinct values, there are (n — 1) splits, and
for an enumerated variable with M values, there are (21 —1) splits (Loh and Shih, 1997b).
A problem that affects tree interpretability is that exhaustive search techniques tend to be
biased towards variables that have more splits.

2.8.1 CART

The book on Classification and Regression Trees (Breiman et al., 1984) (CART) is a seminal
work on decision trees which discusses and offers solutions for many of the issues in the field,
including generalisation and parsimony. It was observed in (Breiman et al., 1984) that the
resubstitution estimate of classification error (ie: based on the training set) decreased to
zero as the tree size was allowed to increase, until eventually each terminal node contained
only a single training sample. As this increase in size occurred, however, the error on an
independent test set increased. The method used by CART to arrive at a good-sized tree is
to allow an unreasonably-large tree to grow, then prune it back to improve generalisation.
Splits are found by exhaustive search in CART:

1. for each variable z;

(a) if z; is an ordered variable

e if z; only takes on N distinct values in the training set, z; € {z;1, Zi2, ... Zin },
then for each value z;; generate the split:

Ti(j+1) — Tij
zi < Tij + (J—;——
else z; is an enumerated variable

e for each sub-set B of the set of values A that can be taken by z;, generate
the split:
T; € B
end if
(b) Select the best split for this variable.

end for
2. Select the variable with the best split.

The concept of which split S is best at node ¢ is determined by the goodness-of-split
criterion ¢(S,t). There are many different criteria, but all are based on the concept of
purity: the more homogeneous the samples are at a node in terms of classes, the more pure
the node. Therefore if a node ¢ has impurity i(¢), a split that results in the two child nodes
tr, and tg results in a decrease in impurity:

6i(8,t) = i(t) — pr-i(tr) — pr-i(tr)

where pr, and pg are the proportions of the sub-set at ¢ going to the left and right child
nodes. The split with the highest decrease in impurity is best.
Examples of impurity measures are:

entropy:

C

i(t) = =D p(j|t) loglp(4|t)]

J=1

CHAPTER 2. PATTERN RECOGNITION 36

Gini index:

C

i(t) =1~ p*(jlt)

J=1

A simple method for halting of the splitting process is to set a threshold £ for 64(S,t), and
stop when §i(S,t) < 3. Experimentation has shown that this method is not very robust to
the selection of 8 (Breiman et al., 1984). When pruning is used, the size of the initially-grown
tree is not such a concern. In fact, if sufficient computational resources were available, the
best option would be to continue until the largest possible tree size is reached. The algorithm
used in practice is to stop splitting a node ¢ when:

e t is pure; ie: each sample in the node belongs to the same class; or

e the number of samples N(t) < Npin, a user-defined minimum-number of samples
required for a split; or

e all the data samples in ¢ are identical.

Define a pruned sub-tree T' of the tree T' to be the tree remaining when the branch T;
rooted at some node ¢ is removed; the notation is 7 < T. The branch is pruned by removing
the sub-tree rooted at ¢ but leaving the node ¢ in place. We write:

T =T-T

The pruning method proceeds by iteratively pruning the weakest link in the tree. This results
in a sequence of sub-trees of the original large tree Tinag, all of different sizes. The best-sized
sub-tree is then selected using an “honest estimate” of the misclassification rate.

The error rate used to prune the tree is based on the training set error (resubstitution
error). Since this would always be biased towards larger trees, it is used in the context of
minimal cost-complezity pruning. Defining the complexity of T' < Tr,q, to be the number of
terminals |T| in T, the cost-complexity measure is:

Ro(T) = R(T) + T

where R(T) is the resubstitution error of tree T. For each o > 0, we seek the minimum
cost-complexity sub-tree T'(a) X Tpnqr Which satisfies:

Ro(T(q)) = T=Tmes Ra(T)
if Ry(T) = Ro(T()), then T'(o) X T

For any node ¢t € T which is the root of a sub-tree T3, we have:

Ru(t) = R(t)+a (2.14)
Ro(T)) = R(T))+a|Ty (2.15)

For sub-tree T} to be of use, we need Ry (T}) < Rq(t). There will be some critical value of «
for which equality is obtained, and the node t becomes preferable to the sub-tree below it.
Solving Equations(2.14) and (2.15):

R, (t) — Ra(Tt)

D<ax< =
|Ty| — 1

(2.16)

The right-hand side of Inequality 2.16 can be calculated for each node in T, marking equality
with . The sub-tree with the lowest value of this threshold « is the weakest link, in the

CHAPTER 2. PATTERN RECOGNITION 37

sense that as « increases, it is the first sub-tree for which its root node becomes preferable,
and should be pruned first.

The pruning algorithm starts with Ty,q;. First, every node t’ for which R(t') = R(t}) +
R(t%p) is pruned, resulting in the tree) = T'(a = 0). Then, calculate the function:

R (t)—Ra (Tt o
91(t)={ s ¢

|T[-1 ~
+00 ten

Prune all sub-trees #; for which: .
— min
g1(f1) = teT1 g1(2)
to obtain T,. Repeat this process starting with T, and so on, to arrive at a sequence of
progressively-smaller trees, eventually ending with the root node only:

Ty=Ty =Tz ... =1 (2.17)

In practice, this algorithm tends to prune many nodes in the beginning, and progressively
fewer towards the end.

There are several interesting and convenient properties of the quantities in this process.
If we let a = gi(Zx), then it can be shown that oy < ag41 V k > 1 in the sequence of trees.
Also, due to the discrete nature of the experiment, the tree T'(cy) remains the minimum
cost-complexity tree for the range of continuous values between oy, and ag41.

Given the sequence of trees in Equation 2.17, it remains to select the best pruned sub-
tree based on some independent measure of classification error. The two most widely used
methods are an independent validation sample, or v-fold cross-validation. The first method
is straight-forward, the second more complex. For cross-validation, we select a number
V and divide the training set L into V disjoint sub-sets L,. The vth learning sample is
LW = [— L,. Then V auxiliary trees are grown on each respective L, along with the
main tree on L. For each value of a we have T'(e) and T®)(a),v = 1,...,V, the minimum
cost-complexity sub-trees of Tpnq, and Tf,l’,}w For each cut-off value oy of T}, the geometric
mean of the continuous range of « is used as the frozen value for combining the auxiliary
trees:

Q) = /OO 11

Then the errors of the T(*)(a}) on the respective L, are combined to form an estimate of
the true error rate R®(Ty). The sub-tree T'(cao) derived from L that minimises this error
estimate is chosen as the best-sized sub-tree:

R®(Tyo) = & R%(Ty) (2.18)
The analysis of the bias of this method is complicated, but errs on the conservative side of
larger errors since the T") (a)'s are derived from a smaller training sample and are therefore
generally less accurate.

The rule of Equation 2.18 can be modified to take into account the variability in results
with cross-validation error due to different random division into the V sub-sets. The new
rule, called the 1 S.E. Rule, assumes a binomial distribution for the errors of the classifier,
and selects the smallest tree with misclassification rate estimate within one standard error
of the lowest:

Select tree Ty, with k1 the maximum k such that R(Tk;) < R(Tko) + SE(R(Tk))

As was stated earlier, the absence of a variable in the splits does not indicate that it has
no correlation with the class of the samples. A method of ranking the input variables in

CHAPTER 2. PATTERN RECOGNITION 38

order of importance is given in (Breiman et al., 1984). The method is based on the surrogate
splits Sy, of variable z,,. Let T be the optimal tree obtained through growing and pruning.
Compute the loss of impurity of the surrogate split, 61 (S‘m,t), at each node in T. The
importance measure is defined as:

m) = Z 6I(gm7t)

teT

Therefore similar splits of which only one can be chosen for the final tree will offer similar
contributions to their respective importance values. The importance measure is usually
normalised to 100.M (z,,)/ "m" M(zy,) so that the most important variable has a value of
100, and the others range from 0 to 100.

2.8.2 C4.5

C4.5 is an extension of the ID3 algorithm; both were developed by Ross Quinlan (Quinlan,
1993). The two main characteristics of the C4.5 algorithm are that a single attribute can
only be used once in any given path from the root to a leaf node, and the splitting criterion
used is information gain.

For a discrete attribute A with n possible values, the splitting rule results in n outcomes
(tree branches). For a real-valued variable, there are only two outcomes of the test A < t.
Each pair of adjacent values for the variable in the test set is a possibility for a split point
t. At each step, that variable is chosen which maximises the gain ratio:

Gain(D, T)

Gain Rath(D T) W

Here D is the set of samples in question, T' is the proposed test with k outcomes, C' is the
number of classes and p(D, j) is the proportion of cases in D that belong to class j. From
information theory, the uncertainty about the class to which a case in D belongs is (Quinlan,
1996):

C
I(D) == _p(D,j) x logy(p(D, 4))
7=1

The information gained by test T is:

k
Gain(D,T) Z

This quantity tends to increase with the number of outcomes and therefore favours discrete
variables that have many values, so the gain ratio is formed by using the split information:

Split(D, T) Zk‘m (||DDill)

which is the potential information obtained by simply dividing the data into k sub-sets,
regardless of class.

Continuous attributes tend to be favoured when selecting splits: for an attribute with N
values in the training set, there are N —1 splits to choose from, whereas for a discrete variable
there is only one possible split. Two modifications to C4.5 are described in (Quinlan, 1996)
to overcome this problem:

1. the minimum description length principle is the minimisation of the total message
length, which is the sum of the bits required to encode the decision tree (the theory)

CHAPTER 2. PATTERN RECOGNITION 39

and the bits needed to correct the errors made by the tree (the exceptions). The MDL
principle provides a mechanism for trading off the complexity and accuracy of the tree
to preserve generalisation. A split on a discrete variable requires the encoding of the
variable identifier only, whereas for a continuous variable an additional log, (N — 1) bits
are needed to encode the split point ¢. This increase in message length is subtracted
from the information gain on a per-case basis:

Gain'(D,T) = Gain(D,T) — logy(Ny — 1)

Now a continuous attribute with many observed distinct values is less likely to be
selected.

2. the split information varies with the split position ¢ and is maximal when there are as
many cases in D above ¢ as there are below. Since the number of outcomes is always
two for a continuous variable, the gain rather than the gain ratio is used to select the
split point. Note that the gain ratio is still used to select the best variable.

Noisy data often leads to over-sized trees, so pruning is used.

2.8.3 QUEST

The QUEST algorithm (Quick, Unbiased, Efficient Statistical Trees) is a decision tree algo-
rithm based on the FACT and CART methods which addresses the following issues (Loh
and Shih, 1997b):

e exhaustive search methods tend to be biased toward variables with more possible splits;
and

o the order of computational complexity for a categorical variable with N values is ex-
ponential, O(2V-1 —1).

The FACT algorithm deals with the problems of variable selection and split selection sepa-
rately. To select the split variable, the analysis-of-variance F-statistic is calculated for con-
tinuous variables, and the variable with the largest statistic is selected. Linear discriminant
analysis is then used to find the split point. Discrete variables are handled by transforming
them into ordered variables using the CRIMCOORD method. The FACT algorithm results
in one sub-tree for each class represented at the node.

In contrast, Quest yields binary splits by applying a two-means clustering algorithm and
then using quadratic discriminant analysis to determine the split point between the two
super-classes. The FACT method of variable selection is biased towards discrete variables,
because after the CRIMCOORD transformation they tend to be stochastically larger. The
QUEST method overcomes this bias by using a different statistical test for discrete variables;
the overall process is quite complicated.

The QUEST algorithm can be used with v-fold cross-validation, pruning and linear com-
bination splits. A recent comparison of several decision tree methods on public databases
has found that QUEST performs relatively well overall in terms of accuracy, speed and tree
size (Lim et al., 1997).

2.9 Feature Selection

Feature selection is the process of selecting a sub-set X’ of the original set of input measure-
ments (features) X to use for classification. One might argue that the maximum number
of features in hand should be presented to the classifier, since this provides the maximum

CHAPTER 2. PATTERN RECOGNITION 40

amount of information available about the problem. It has been observed, however, that
there is a “peaking” effect associated with the addition of features to a classifier: as features
are added, performance improves up to a point, after which additional features degrade
performance (Young and Fu, 1986). Also, the features are usually correlated, so in situa-
tions where an economy of sensors or classifier size is required, redundant features should be
removed.

Although there could be several reasons for the peaking effect previously mentioned, the
main reason is the curse of dimensionality (Duda and Hart, 1973), the principle that as
the dimensionality of data points increases, they become more sparse in the feature space.
In fact, the hyper-volume of the input space increases exponentially as more features are
added (Sinkkonen, 1998). Since a classifier must provide a covering over the input space,
and the amount of resources required are in some way proportional to the hyper-volume of the
space, classifier generalisation performance tends to degrade as dimensionality is increased.

For a general classifier, the optimal features cannot be selected independently of one
another since they may be correlated. The only way to pick the optimal sub-set of features
is to perform an exhaustive search over all possible sub-sets and optimise some criterion. For
a set of d features, there are 2¢ —1 =~ 109-3%4 possible sub-sets, prohibiting exhaustive search
for a significant number of features. For instance, if the problem is prediction for financial
forecasting and we wish to find the best set of stock indicators for our problem, there may be
thousands of possible indicators, from the Dow Jones to the humidity in Namibia. In cases
where there are many features to choose from, a heuristic search for a good sub-set must be
performed.

The next question is what criterion to use during the search. The obvious choice is
to examine the performance of the classifier directly using the sub-set of features at hand.
This approach is usually too computationally expensive, and the solution obtained may be
more characteristic of the particular training and test sets rather than the whole popula-
tion (Ripley, 1996). If the class-conditional density functions are known, then the true error
probabilities can be used to select the best sub-set. For example, the divergence criterion for
two classes is (Young and Fu, 1986):

o - B pxlc=1)
Ip(X') = xeX/[p(xlc =1) — p(x|c=2)].In L}(X|C = 2)] oA

Jp is zero when the class distributions fully overlap, and a maximum when there is no overlap
at all. For the multi-class case, the criterion is averaged over all class-pair combinations:

C C
Ip(X) =3" > PE)P(5)Ji;(X")
i=1 j=i+1

Shannon’s entropy measure can also be used:

C
Ts(a) == [3 P logal P(ix)] ().

i=1

Such criteria simplify when the distributions are assumed to be Gaussian.

Distribution-free criteria that do not involve error probabilities are based on the relation-
ship of within-class distances and between-class distances. These criteria are also used for
clustering, or unsupervised learning. Given some distance metric d(x;, x;;) between the kth
pattern of the ith class and the lth pattern of the jth class, the inter-class distance criterion
is:

il C C il n; Mj
Ja(X') = §ZP(i) ZP(j) D> d(xik, x;1)

=i j=1 L g

CHAPTER 2. PATTERN RECOGNITION 41

There are several heuristic search algorithms that have been used for some time to select
sub-optimal feature sub-sets. Step-wise strategies assume that the feature selection criterion
is monotonic:

if X; is a sub-set containing j features, &; C Xo C ... Xy,

then J(Xl) S J(Xg) I S J(Xd)

Forward selection is the process of starting with one feature, then at each step adding the
feature that maximises the increase in J (Ripley, 1996). Backward selection is the opposite
process: we start with the full set of features and iteratively remove the feature whose
presence least increases J. These two methods are rather limited in that they do not account
for interactions between features.

A popular method from combinatorial optimisation that does produce optimal results
with respect to the criterion used is the branch and bound algorithm. Savings are made
during the search using the monotonicity property by eliminating sub-set A from further
investigation if we know that a larger sub-set A’ C A has a value of J that is below our
current best value « over sub-sets of size k. We start with an estimate of o obtained using
one of the other heuristic techniques, and consider the set of all features. We recursively
drop one feature at a time to form branches in a search tree. At any point, the sub-tree
below a sub-set with a J value lower than the best so far need not be considered further. A
sub-set with J higher than the best is used to update a.

Genetic algorithms have also been applied to the task of feature selection (Punch et al.,
1993; Vafaie and Imam, 1994; Vafaie and De Jong, 1993). Several criteria have been de-
veloped to measure the relevance and irrelevance of features for classification (John et al.,
1994). A review of feature selection methods is given in (Scott et al., 1998), where it is
concluded that in order for a feature selection algorithm to be successful, the classifier to be
used with the features must be taken into consideration.

2.10 Generalisation and Model Complexity

For a given set of data there are an infinite number of possible explanations or models, and
those models will vary in their complexity. For instance, if we were both to see a dolphin
balance a ball on its snout, you may conclude that it has been trained by humans to do
so, whereas I might postulate in a somewhat contrived manner that the dolphin is actually
a visitor from a parallel universe with an intellect far superior to ours, and is trying to
communicate to us its desire for a tin of dubbin. The general principle that the simplest
explanation is true offers widespread appeal to human beings. In science, this principle is
known as Occam’s Razor, and was popularised by William of Ockham(1285-1349). What
William actually said was “Pluralitas non est ponenda sine necessitas” (plurality shouldn’t
be posited without necessity) (Ellison, 1995). He was by no means the first to express the
concept, since similar statements are found in the writings of his teacher Duns Scotus. Even
Aristotle in the Physics (book I, chapter vi) wrote “for the more limited, if adequate, is
always preferable”.

This issue is pertinent for classification, since the objective is to construct a classifier that
generalises well. The classifier interpolates the given set of training points, and the behaviour
of the interpolation between these points determines the quality of the generalisation. There
is an infinite number of ways in which to do this, but if the training data is on the same scale
as the structure of the underlying model, then the smoothest or most regular mapping is
desirable. Consider, for example, the interpolation problem of Figure 2.13. Both interpola-
tions are correct in that they pass through the points provided, but the second is condemned
in the observer's mind as inplausible because it is not a well-behaved interpolator.

CHAPTER 2. PATTERN RECOGNITION 42

\
- W

— e \ \L’/V\/\)/\JL»_,_,,_

(a) “smooth” interpolation (b) “non-smooth” interpolation

Figure 2.13: An example of two possible interpolations of a set of measurements.

The consequence for classification is that classifiers which are less complex will tend to
generalise better. Aside from splitting ties between equally-performing classifiers, we may
want to cut out the cross-validation process altogether and construct a classifier from a
training set alone using the principle of parsimony. This would require the minimisation
of some function of model complexity and model error. Difficulties soon arise over how to
quantify the complexity of the model and in what proportions to trade-off the two quantities.
There is even no reason to believe that a linear combination should be used.

The Bayesian framework allows this trade-off to occur in a principled manner, since a
more complex model is more likely to have a lower conditional probability (Hanson et al.,
1991). Another mechanism that is more explicit about model complexity is the minimum
message length (MML) principle (Quinlan, 1989), also known as minimum description length
(MDL). MML and MDL were developed independently but are virtually identical. The MML
principle is usually stated as the following communication problem: I have a set of data D
which I intend to communicate to you as a string of bits in the most concise way possible.
We agree prior to this communication on an encoding scheme for the data; this scheme
remains fixed and is independent of the data. Now I could transmit the data to you directly,
but it would probably contain redundant information. Instead, I develop a model for the
data, M, and transmit the model and the data given the model. The total length of this
message is L(M) + L(D|M). The principle states that the model that minimises the bit-
length of this message is the best model. For example, the model portion of the message
may be the parameters for the distribution of the data, while the data may be transmitted
as a Huffman code that was constructed based on this distribution. Although the problem
is framed in this way, the most important aspect is the model rather than the bit-string
communicated: therefore it is only necessary to be able to calculate the encoded length of the
model and message, rather than the actual encoded strings themselves. The MML principle
has obvious applications in data mining and physics, since it generates a likely explanation
for a set of data.

For classification, consider the use of decision trees as models. You and I both have a
copy of the data set, but only I have the class labels which I wish to transmit to you. I
construct a decision tree to classify this data, but due to class overlap there will be some
errors. Therefore the message I send to you is the encoded tree plus the exceptional cases
which the tree classifies incorrectly (Quinlan, 1989). The tree that minimises the length of
this message is the MML-optimal tree. One of the main issues in the use of MML is how
to efficiently encode the model and the data; in general the encoding is sub-optimal which
results in a sub-optimal tree.

It has long been the goal of machine learning researchers to devise the perfect classifier
which can out-perform all other methods on all problems. Therefore one finds many general

CHAPTER 2. PATTERN RECOGNITION 43

classifiers in the literature that are designed to operate on any data regardless of its origin.
Researchers have, however, reached the gradual realisation that there is no “Holy Grail” of
classifiers, but rather some methods are more appropriate than others in particular situations.
An important result is presented in (Schaffer, 1994): a conservation law for generalisation
performance.

Theorem 2.2 (Law of Conservation of Generalisation Performance) Define a learn-
ing situation S as a triple (D, C,n) where D and C specify how the data are generated and n
is the size of the training set. Define GPL(S) to be the generalisation performance of learner
L in learning situation S. For any learner L,

> GPL(S)=0
S

The theorem was proven for two-class problems. Generalisation performance was defined as
the correct classification rate of the learner on examples not used in the training set minus
0.5. The conservation law has interesting consequences for “general” classifiers. For instance,
it is possible for a classifier to perform very well on a few learning situations and mildly
worse-than-chance on the rest of learning situations, or to perform very well on a sub-set of
situations, very badly on another sub-set and neutrally on the rest of the possible learning
situations. It is not, however, possible for a classifier to perform better than chance in all
learning situations, or to have better-than-guessing performance on a sub-set of situations
and neutral performance on the rest. Good performance in some situations must necessarily
be balanced by poor performance in others. A similar result has been obtained in the No
Free Lunch theorems for learning algorithms (Wolpert, 1996), which conclude that any two
learning algorithms have the same expected generalisation loss when averaged over all target
functions.

The conservation of generalisation shifts the focus of research from “the quest for the
Holy Grail”, to the question of which algorithms perform best in certain situations. Another
consequence is that any demonstration that an algorithm A is better than another algorithm
B on some test suite is counter-balanced by inverted relative performance on some other
test-suite.

2.11 Benchmark Standards

There is no question that pattern recognition is an exciting field that captures imaginations
with its many possibilities and futuristic applications. Perhaps this coupled with the ease
with which classifiers can be implemented on a computer has sparked the proliferation of
publications about new methods or applications for classification. Just as computer hardware
developments have succeeded advances in computer software, the theoretical analysis of
learning algorithms and the principled and methodical presentation of their results has fallen
far behind the number of publications involving superficial empirical investigations. A study
of 190 neural network articles published in 1993 and 1994 revealed that 29% contained no
realistic learning problems, only 8% presented results for more than one real-data problem,
and one third of papers didn’t contain a comparison with other known algorithms (Prechelt,
1996). Another study (Flexer, 1996) on 61 articles from neural network journals found that
only 43% of experiments involved multiple training runs, only 5% used a statistical test in a
comparison with another method, and although 72% used a hold-out test set, only 5% used
a validation set.

In addition to these findings, it is rare to find the full details of algorithm parameters
and experimental configuration in a publication, and those parameters that are specified are
sometimes ambiguous in their meaning. Furthermore, reliance of results on the permutation,

CHAPTER 2. PATTERN RECOGNITION 44

partitioning and encoding of the data often makes a direct comparison with published results
impossible.

There have been several attempts to overcome these problems by standardising experi-
ments and comparisons (Prechelt, 1994; Flexer, 1996; Zheng, 1993; Rasmussen et al., 1996;
ESPRIT, 1995). Many of the conventions adopted in this thesis have been taken from
the Probenl benchmark report (Prechelt, 1994), and will be described in Chapter 6. Of
particular interest in benchmarking are statistical tests for the comparison of two or more
classification algorithms. Some recommended methods are described next.

2.11.1 McNemar’s Test

Suppose we have two classifiers and we wish to compare their performance on the test set.
Simply assuming the errors are binomially distributed and comparing the error bounds on
the two error rates gives a pessimistic test of their difference, since there are some sam-
ples that both algorithms always get wrong or right, inflating both variances. McNemar’s
Test (Ripley, 1994), a statistical test for differences between proportions in paired sample
designs, overcomes this problem. Let the two algorithms be A and B, with misclassification
probability estimates e4 and ep on some test set. We construct the null hypothesis that
these two algorithms are equivalent:

Hy:es =ep
Without loss of generality, we want to test Hy against:
H;:eq <ep

where A is the algorithm that resulted in fewer misclassifications. We then construct the
contingency table for the number of samples correctly and incorrectly classified by both
algorithms, shown in Table 2.3. The main-diagonal elements contain the number of samples
that both algorithms agreed on. The important elements come from the off-diagonal: these
describe the differences between the algorithms.

Table 2.3: Example contingency table for methods A and B.
| Cp | Ip | Total [
Ca || (Ca,CB) | (Ca,IB) | (Ca)
In || (Ia,CB) | Ua,IB) | (Ia)
Total (Cg) (Ig) m

Let (I4,Cg), the number of observations correctly classified by B but not by A, be
defined as success, and let M = (I4,Cg) + (Ca, Ig). Under the null hypothesis, the number
of successes is binomially distributed:

(Is,Cg) ~ B(M,0.5)

For a given problem, we can use the cumulative probability density function for B (M,0.5)
at (I4,CB) to calculate the level of significance of the result:

o= F(z < (14,CB))

The probability that Hy can be rejected is (1 — o).
Note that McNemar’s test gives a measure of the statistical significance that algorithm
A is better than B, but doesn’t say by how much.

CHAPTER 2. PATTERN RECOGNITION 45

2.11.2 t-Test

The t-Test can be used to test for a significant difference in the average error rates of two
classifiers over several runs. Given the mean T and sample standard deviation s of an error
rate estimate for a classifier obtained from a sample of N values, we can estimate the standard

error of the mean: s

6z i

For sufficiently large values of N, z is distributed normally with mean X and standard
deviation 6z, so that the true mean error rate X lies in the confidence interval Z + 1.9665
with probability 0.95.

For small samples (ie: N < 30) the normality assumption is no longer valid. Instead, a
Student’s t-distribution must be applied which yields accordingly larger confidence intervals.
A statistically-significant result can only be guaranteed if the two confidence intervals do
not overlap. Otherwise, a t-test for the significance of the difference between means must be
used. We have two classification algorithms, A and B and we perform N4 and Np runs on A
and B respectively. It is assumed that the error rates both come from normal distributions
with the same standard deviation but different means. Using the sample means 4 and Zp
and variances s4 and 32]3 of the runs, we perform the following test.

~

Ta—2Ip

Oz,—Zg

~ ~9]. 1
Ozp—2 = T pooled —]_/;A L NB

-2 _ (Na-1)sh + (Ng—1)sh
apooled - NA + NB -9

With the ¢-statistic, the hypothesis that A and B give the same error rate can be rejected
at some level of significance, say o = 0.05 by looking in a ¢-table (for a two-tailed test) with
(N4 + Np — 2) degrees of freedom.

In general, the populations of errors generated by the two classifiers will have different
variances. The statistic for the unequal variance test is (Press et al., 1992):

ITpA—ZIB
\/S%/NA +823/NB

t is approximately distributed as a Student’s ¢ distribution with a number of degrees of
freedom equal to:
S 4 Shy2
_ (#+)
(s%/Na)? + (sh/NB)?
Nai—1 Np—1

2.11.3 Comparing Multiple Classifiers

The simplest way of comparing multiple classifiers is to perform each distinct pairwise com-
parison. Given the confidence «, the probability of making at least one Type I error in a
family of J statistically-independent tests is the family-wise error rate, FWE = 1—(1— a)’;
for & = 0.05, FWE = 0.64. One testing method that overcomes this problem is called the
one-way repeated measures design, and is described in (Feelders and Verkooijen, 1995). Tt
produces confidence intervals for the pairwise differences in error rates between the methods,
and compensates for the multiplicity effect. Given the n;y test set observations and the k
classification methods fi,..., fx, the first step is to produce the one-way repeated measures
lay-out, shown in Table 2.4. Yj; is 1 if f; classifies observation ¢ correctly, and zero otherwise.

CHAPTER 2. PATTERN RECOGNITION 46

Table 2.4: One-way repeated measures lay-out.

Functions
Observations | f1 fo ... f; ... fx | Total
1 Yu Y2 ... Yi; ... Y| Y1
2 You Yoo ... ng s ng Y,
i Ya Y2 ... Y ... Ya| Y
n Y1 Yoo Yn_] Yok Y,
Total Yy Yo Y; Yy
Means Y1 Y, Y; Yy

The pooled variance for each pairwise difference Y ; — Y j/ is:

o _ UETEY, — T YE)
dift n%stk(k - 1)

Using the notation that 6; is the proportion of correct classifications on the test set of
classifier f;, the 100(1 — @)% simultaneous confidence intervals for all pairwise differences
0j - Hj: is:

0;— 05 € [V = Vg & Zfu_oppbass] 1<i<i' <k

where Z/.,_, /2 is based on the Student t distribution adjusted for £*, the total number of
pairwise comparisons involved, and v = n¢s — 1 the degrees of freedom. Tables for the Z
statistic can be found in (Marascuilo and McSweeney, 1977). The value for Z increases with
k*, leading to wider confidence intervals. For each data set, the method results in a table of
confidence intervals for each pair of methods. Intervals that contain 0 indicate that there is
no significant difference between the errors of the two classifiers.

2.12 Conclusion

This chapter has presented an introduction to pattern recognition, and a comprehensive
overview of supervised classification. Material presented later in this thesis refers back to
this chapter. The next chapter has a similar function, but for genetic programming instead
of pattern recognition. With the introductory material aside, the main points of this thesis
begin in Chapter 4.

Chapter 3

Evolutionary Optimisation
Techniques

3.1 Introduction

The previous chapter has presented a founding knowledge of pattern recognition, and in
particular those topics that are relevant to the work of this thesis. This chapter serves
the same purpose for the topic of evolutionary computation. First, a general overview of
optimisation is given. Then evolutionary computation is introduced as a set of algorithms
inspired by the principles of biological evolution. Finally those paradigms of particular
relevance to this thesis, genetic algorithms and genetic programming, receive a lengthier
treatment. The reader familiar with these areas may wish to skip this chapter.

3.2 Optimisation and Search

Many problems of interest to humans can be framed as optimisation problems. An optimi-
sation problem requires an objective function which quantifies how good or bad a solution
is. Such a function maps the space of possible solutions z € & into a real scalar value,
f(z) : X = R. The term “search” is synonymous with optimisation because optimisation is
really a search for a global minimum or maximum of the objective function. An optimisation
algorithm is a series of steps which are carried out to search for an extremum of the objective
function. Two examples of an optimisation problem are:

1. Find the minimum value of (Foulds, 1981):

F(a,y) = 4o + 3y

subject to the constraints:

3r+4y < 12
4r+2y < 8
0 < zand
0 < vy

2. The Traveling Salesman Problem (Telfar, 1994): given the n x n matrix C' = [c;;] where
cij is non-negative and denotes the Euclidean distance separating cities ¢ and j, find
the cyclic permutation 7 of the integers 1,...,n that minimises f(m) = >72; Cir(s)-

47

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 48

There are many differences between these two problems, the most notable being that the
first problem is a continuous optimisation problem because it has a continuous solution
space, while the second is a combinatorial optimisation problem because the solution space
is discrete.

The objective function is commonly envisaged as a generalised landscape, containing
mountains, valleys and other structures in a high-dimensional space. An example of a 2-
dimensional objective function is shown in Figure 3.1. For a maximisation problem, the
“highest peak” in the landscape is the global optimum, the exact solution to the problem.
For a minimisation problem, the global optimum is the lowest point in the landscape.

fx.y)

Figure 3.1: An example of a 2-dimensional function f(z,y) viewed as a landscape.

3.2.1 Complexity Theory

Another difference between the example problems of the previous section is that the first is
considerably easier to solve than the second. Complezity theory is concerned with the amount
of computation required to solve a problem (Goldschlager and Lister, 1988). Complexity
theory uses order notation to bound the computational complexity of an algorithm. An
algorithm is said to be order p(n) (O(p(n))), where n is some measure of the size of the
problem and p(.) is some function, if the number of steps required by the algorithm to solve
the problem is bounded by a constant times p(n). Problems are divided into two categories:
those that are “easy”, and those that are “hard” (Weisstein, 1998). Easy problems can
be solved exactly in polynomial-time, and are said to be in the set P. A polynomial-time
algorithm has a number of steps that is bounded by a polynomial function of the size of the
problem. Linear programming, a numerical technique used to solve the first problem above,
is known to be in P.

Some problems are so hard as to be undecidable, and cannot be solved by any algorithm.
Examples of undecidable problems are the halting problem, Hilbert’s tenth problem (solv-
ability of polynomial equations in integers) and several problems of tiling the plane (Garey
and Johnson, 1979). The remaining hard problems require an exponential-time algorithm
for their solution, and are said to be intractable or infeasible.

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 49

Problems for which no polynomial-time algorithm exists fall into two classes: those that
are proven to be hard, and those that are thought to be hard but have not been proven to
be so. Of those unproven hard problems, there is a class that can be solved in polynomial
time on a non-deterministic computer called the class of NP (non-deterministic polynomial)
problems (Garey and Johnson, 1979). If an algorithm A € NP and every problem in
NP can be transformed to A via a polynomial-time algorithm, then A is said to be N'P-
complete (Telfar, 1994). The traveling salesman problem is an example of an N'P-complete
problem. This class of problems includes the “hardest” problems in NP, and is particularly
interesting because if one A'P-complete problem were proven to be P, then it is a consequence
that all N"P-complete problems are P. It is generally believed that AP-complete problems
are not solvable in polynomial time. There are hundreds of problems known to be AP-
complete, such as the Hamiltonian path problem, the Steiner tree problem, the bin packing
problem and various scheduling tasks. An extensive list is found in (Garey and Johnson,
1979).

If a problem A is not known to be in AP but every problem in NP is polynomial-
reducible to it, then A is said to be N'P-hard (Telfar, 1994), that is at least as hard as any
NP problem (Weisstein, 1998).

3.2.2 Heuristic Search Algorithms

Many interesting optimisation problems are A'P-complete or N'P-hard. For these problems,
an exact solution cannot be obtained in polynomial time: often the only way to obtain
the guaranteed global optimum is via exhaustive search. In most cases such a recourse is
prohibitively expensive, and one must settle with a near-optimal solution in a reasonable
amount of time. Algorithms which accomplish this goal are termed heuristic search algo-
rithms. Of these algorithms, some are generally applicable while others are tailored to the
problem but are not suitable for other problems. The more specific techniques are strong
methods because they exploit knowledge about the problem, and the general techniques are
weak methods because little domain knowledge is used (Angeline, 1994). Strong methods
generally reach an acceptable solution faster than weak methods.

The simplest general heuristic search techniques employ local search, or hill-climbing (Tel-
far, 1994). Given the objective function f(z) and the search space z € X, define N(z,T'), the
neighbourhood of point z, to be the set of points reachable by applying the transformation
T(.) to z. Local search starts with some initial solution and iteratively improves upon it by
searching the neighbourhood set for a superior solution. When the neighbourhood set con-
tains no solutions of superior quality, the search is at an end. The problem with local search
is that objective functions are generally non-convex, so there is no guarantee that the local
extremum reached is the global optimum. The quality of the final solution depends on the
starting point; the chances of reaching the global optimum can be increased by re-starting
the algorithm at different initial points.

Note that hill-climbing, and indeed every heuristic search algorithm, makes the implicit
assumption that the objective function is to some degree smooth, so that local extrema are
surrounded by search points with similar objective values. In any case, functions for which
this is not true have little chance of being successfully optimised. More complicated general
heuristic search algorithms are designed with the following goals in mind:

e to find an acceptable solution as quickly as possible; and
e to escape local extrema.

In general, these objectives are met by adapting to the observed characteristics of the objec-
tive function.

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 50

3.2.3 Relationship between Search and Pattern Recognition

Optimisation is inextricably involved with pattern recognition. In the case of supervised
learning, one may be searching for an appropriate model, or given a model, for that model’s
optimal parameters. For example, the weights that minimise the error function of an MLP
cannot be obtained analytically, but via iterative training. The training process starts with
an initial set of randomly-generated weights corresponding to a single point on the error
landscape. Training proceeds by iteratively estimating the direction of steepest descent in
weight-space with respect to error and stepping in that direction by a certain amount. This
down-hill trajectory can land the weights in a locally-optimal position. Therefore there is
no guarantee of a globally-optimal solution. Alternatively, an algorithm may be devised to
search for an optimal MLP architecture.

Not only do many aspects of classifier design involve optimisation, but often heuristic
algorithms are required. For instance, it has been shown in (Blum and Rivest, 1988) that
the construction of an optimal 3-node neural network is N'P-complete. In (Murthy, 1996),
several results are cited on the N'P-completeness and N P-hardness of different decision tree
induction tasks.

Another similarity between search and classification involves the conservation of perfor-
mance of general algorithms over all problems. In Section 2.10 the conservation law for
generalisation performance of classifiers was discussed. A similar result for optimisation has
been obtained in the No Free Lunch Theorems (Wolpert and Macready, 1996; Wolpert and
Macready, 1997). The theorems establish that for any two search algorithms, better perfor-
mance over a set of problems is offset by worse performance on another set of problems.

Theorem 3.1 (No Free Lunch Theorem for Optimisation) Define the search space
X, the cost-value space), and an objective function f : X — Y. The set of all possible
objective functions is F = Y*. An algorithm visits a time-ordered set of m distinct points
dm = {(d%,(1),d%,(1)),...,(d% (m),d¥%,(m))}, where each point is a search-space point and
associated cost value. For any pair of algorithms a, and ay:

Y- P(d\f,m a1) = Y P(d|f,m,a2)

fer feF
where d¥, = {d¥%,(1),...,d%,(m)} denotes the ordered set of cost values.

The theorem applies to deterministic and stochastic algorithms. This probabilistic approach
uses P(f) = P(f(z1),...,f(z)x|)) to denote the probability that each f € F is the objec-
tive function for the optimisation problem at hand, and can be used to specify a class of
optimisation problems. P(dY,|f,m,a) is the conditional probability of obtaining a particular
sample of objective function values under the given conditions, and can be used to measure
the performance of an algorithm.

Wolpert and Macready’s work also presents a geometrical interpretation of the suitability
of a search algorithm for a given problem. The probability of obtaining some sequence of
search points is:

P(d}m,a) = 3 P(d|m,a, f)P(f)
JEF
which can be written as an inner product:

P(dY,|m,a) = v

vam' P

where vy, . is the vector of length | F| containing the conditional probabilities P(d¥,|m,a, f),
and p is the vector of the same length containing the objective function probabilities P(f).
The inner product form implies that the performance of an algorithm is proportional to its
projection onto the objective function probability vector p. That is, an algorithm must be
aligned with a particular problem to perform well. The framework also provides measures

for the performance of optimisation algorithms.

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 51

3.3 Paradigms for Evolutionary Search

A field of biologically-inspired research contemporary with neural networks is evolutionary
computation. This area of research is concerned with optimisation and search algorithms that
mimic the principles of biological evolution. In this section, the basic principles of biological
evolution are presented, and each of the four main paradigms within evolutionary computa-
tion are introduced. Deeper treatments of genetic algorithms and genetic programming are
given later in Section 3.4 and Section 3.5.

3.3.1 Biological Evolution

No scientific theory has so revolutionised both scientific and philosophical thought like the
Darwinian theories of biological evolution. Beginning with the work of Charles Darwin (1809-
1882) and Alfred Russel Wallace (1823-1913) in 1858, the classical evolutionary theory has
been refined to the universally accepted paradigm of neo-Darwinism we have today (Fogel,
1995). This paradigm asserts that the enormous variation in life on the earth is accounted
for by statistical processes acting on populations of organisms and their genetic codes. The
four processes are reproduction, mutation, competition and selection. Organisms compete
with one another for limited resources. Those organisms which are more adapted to their
environment and are more able to reproduce pass on their beneficial genetic material at a
higher rate than other organisms. Entities that are unable to cope with their environment
die out, and are unable to propagate their genetic material. Thus, over a period of many
generations, superior genetic material proliferates and the ability of a population of organisms
to cope with its environment increases. This process is referred to as natural selection, or
survival of the fittest (Koza, 1992b). It is interesting to note that there is neither a “driving
force” behind natural evolution, nor a concept of progress: evolution is simply a result of
the statistical process of organisms unable to survive in their environment disappearing from
the population (Colby, 1996). Another common misconception is that the fitness of an
individual in its environment determines the survival of its genes. This is only indirectly
true: it is the ability of the organism to reproduce that determines the transferral of its
genetic material (Colby, 1996).

Natural evolution would not work without variations in genetic material. The genetic
encoding of each organism is contained in a very long DNA (deoxyribonucleic acid) molecule
called a chromosome. The chromosome subsists in the concatenation of many nucleotide
bases. There are four different nucleotide bases: adenine (A), cytosine (C), guanine (G)
and thymine (T) (Koza, 1992b). The human chromosome contains about 3,100,000,000 of
these bases. Thus there are 43:000,000,000 101-896x10° digtinct chromosomes possible, far
more than the number of people who have ever lived on the planet. Every sequence of three
bases is translated to one of the twenty amino acids that make up cellular life on earth via
a universal mapping referred to as the genetic code (Altman, 1997). A cellular apparatus
called a ribosome “reads” the DNA strand to create a sequence of amino acids. The sequence
of acids forms a chain called a protein. Proteins have structural properties that determine
the macroscopic properties of the organism; for example, there are light-receptor proteins,
muscle proteins and myoglobin which stores oxygen.

Sub-strings of the chromosome containing about a thousand nucleotide bases are called
genes. Each gene specifies a protein of about 333 amino acids. The set of genes which
constitute the genetic code of an organism is called a genotype or genome. Humans have
about 100,000 genes (100,000,000 DNA bases), the remaining 2,900,000,000 bases are for
control information (Altman, 1997). It is an organism’s genes and control information that
determine its behaviour, development, disease, body structure and microscopic structure.
Hence there is a duality between the genotype and the macroscopic organism, or phenotype.

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 52

Each gene can take on one of several values, called alleles. The position of a gene in the
chromosome is called its locus.

It was at first thought that each gene in a chromosome independently controlled a single
phenotypic trait. Although this view of a single gene mapping to a single phenotypic trait
has been taken in the past to facilitate tractable analysis, it is not the case in general and has
been labelled “beanbag genetics” (Fogel, 1995). Pleiotropy refers to the fact that a single gene
may have an effect on multiple phenotypic characteristics. Polygeny refers to the fact that
a single phenotypic characteristic may be controlled by the non-linear interaction of several
genes. Naturally-evolved systems exhibit extensive pleiotropy and polygeny. This non-linear
interaction between genes is called epistasis. Despite the complexity introduced by epistasis,
a genotype can contain co-adapted sets of alleles, which are alleles occurring in polygenically-
related genes that augment the fitness of the phenotype in its environment (Holland, 1995).
For instance, the co-adapted alleles in fish that result in their gills make them fit to survive
in their watery environment. Thus one can take a semi-modular view of genetics.

3.3.2 Evolutionary computation

Biological evolution is viewed by many as an optimisation process which proceeds by trial-
and-error in a similar manner to human learning (Fogel, 1995, pg. 67). There have been
many endeavours to simulate evolution on a computer in order to solve practical problems.
These endeavours have resulted in the field of evolutionary computation. There are now four
main types of algorithm based on evolutionary principles:

e genetic algorithms
e genetic programming
e evolution strategies
e evolutionary programming
All evolutionary computation methods have the following common framework:

e A population A = {a;}¥ of M individuals is maintained, each individual a; € A being
a solution to the problem.

e There is a user-defined fitness function f : A — R which quantifies how well an
individual solves the problem.

e The initial population, A(0), is randomly generated.

e Evolution proceeds as the current population is iteratively transformed to a new pop-
ulation through selection, reproduction, recombination and mutation:

A(g +1) =T(A(g))

where T'(.) is the stochastic transformation process. Although 7' varies from algo-
rithm to algorithm, it generally involves two stages. The first stage is the fitness-
proportionate selection of individuals from the population to form the mating pool.
The second stage is the application of genetic operators to individuals in the mating
pool to produce offspring. These offspring make up the new population. One iteration
of this transformation is called a generation.

e Evolution proceeds until some termination criterion is met. Often this is a hard limit
G on the number of generations.

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 53

This process describes one run of the algorithm. Since the results come from a stochastic
process, it is recommended that multiple runs be performed. If R runs are made, then the
fitness function is evaluated R x G' x M times. For practical problems the fitness evaluation
is non-trivial and dominates the computation time of the algorithm.

Evolutionary methods have the following advantages over other techniques:

o They are broadly applicable, both in the use of fitness function and the representation
of solutions.

e Optimisation is based on observed values of the fitness function only: no gradient
information is required.

e Learning is stochastic, so the optimisation can escape local extrema.

e The presence of a population of solutions can result in robust adaptation to non-
stationary environments (Vavak and Fogarty, 1996; Calabretta et al., 1997), and faster
convergence than with the use of a single solution.

e The population-based approach is useful for multi-objective optimisation problems
using the concept of Pareto optimality (Goldberg, 1989; Langdon, 1995; Fonseca and
Fleming, 1995; Horn and Nafpliotis, 1993).

The main disadvantages of evolutionary computation techniques are that they:
e can be difficult to successfully apply to a problem,
e are computationally intensive, and
e can converge prematurely.

Table 3.1 summarises the characteristics of the four main evolutionary computation
paradigms. Each of the evolutionary paradigms is briefly described in the following sub-
sections, followed by detailed sections on genetic algorithms and genetic programming.

Table 3.1: The main characteristics of each of the four evolutionary computation paradigms.

| Paradigm GA | GP | ES \ EP [
date and Holland 1975 | Koza 1992 | Rechenberg, | L. Fogel 1962
first author Schwefel,

Bienert 1964

solution fixed-length tree real-valued finite-state
representation string vector machine
primary method of crossover mutation
genetic variation
selection method fitness-proportionate (A, (A | (u+p)
philosophical level genotypic phenotypic
of evolution

3.3.3 Genetic Algorithms

The Genetic Algorithm (GA) is the most well-known paradigm of evolutionary computation.
G As were first proposed by John Holland (Holland, 1995, first published 1975), and a seminal
treatment has been given by Goldberg (Goldberg, 1989). GAs operate on an encoding of the
problem solution in an analogous manner to the manipulation of natural genetic encodings.

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 54

In the traditional GA, the solution to a problem is encoded as a fixed-length string of bits.
This binary genotype is decoded by a user-defined function to produce a phenotype, which is
a solution to the problem. The fitness function is applied to the phenotype, and a probability
of selection is assigned to each individual with a magnitude proportional to its fitness relative
to the rest of the population. Individuals are then stochastically selected according to their
selection probability, and the following genetic operators are applied to obtain one offspring
per individual:

reproduction: the parent individual’s bits are copied exactly.

recombination: the bits from two parent individuals are stochastically combined to result
in two offspring.

mutation: one or more of the parent’s randomly-selected bits are flipped.

Each bit represents a gene, and its position in the string determines its meaning. The mo-
tivation for recombination of genetic material is the assumption that, for some problems,
sub-sets of the chromosome determine certain traits of the phenotype independently of the
rest of the string. Through re-combination, different sets of co-adapted alleles can be com-
bined to result in an individual that is fitter than either of its parents. That is, different
desirable phenotypic traits from both parents can be combined in a single offspring.

3.3.4 Genetic Programming

The Genetic Programming (GP) paradigm proposes the automatic generation of computer
programs through simulated evolution. The ultimate goal is “what-you-want-is-what-you-
get” programming: the user specifies some examples of desired behaviour, and the system
generates the computer program to perform the task. GP was popularised by John Koza
in his first book (Koza, 1992b), in which he applied GP to many problems from different
domains. Genetic programming is essentially an off-shoot of genetic algorithms, with the
primary difference being the structures undergoing adaptation. The individuals in a GP
population are not fixed-length strings, but rather trees which can vary in size. Each tree is
a parse-tree encoding of a computer program or functional expression: the internal nodes (ie:
those nodes with children) of the tree contain functions whose arguments are the outputs
from the child sub-trees, and the leaf nodes (ie: those nodes without children) are the inputs
to the overall program. The fitness of an individual is determined by the performance of
the program when run on the problem. Hence there is no decoding step as in GAs; rather
the genotype is the phenotype. The genetic operators used in GP are analogous to GA
operators, but have been modified to manipulate trees rather than strings.

The versatility of the GP representation is its strength, which enables it to solve a
wide variety of symbolic problems. GP has achieved slightly superior performance than
the best known human-generated solution to at least four problems in genetics and circuit
synthesis (Koza et al., 1996b). Unlike other methods, GP allows the size and structure of
the final solution to be left unspecified and undergo adaptation. However, the ability of the
structures to vary in size can affect search performance, and if the individuals become too
large, they can hog computer resources.

3.3.5 Evolution Strategies

Evolution Strategies (ES) were jointly developed by Rechenberg, Schwefel and Bienert at
the Technical University of Berlin in 1964 (Fogel, 1997). ES is used for solving continuous
optimisation problems (Fogel, 1995). Each individual is a vector of real values. The initial
population is generated by randomly selecting the elements of each vector in a feasible range

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 55

with a uniform distribution. For each parent a;, an offspring a; is generated by adding a
random perturbation from a Gaussian distribution with zero mean and user-defined stan-
dard deviation to each element of the parent vector. The contents of the population in the
next generation are determined by the following selection process: the parent and offspring
individuals are all mixed together and ranked according to their fitnesses. The M best indi-
viduals are retained for the next generation. The process continues until some termination
criterion is satisfied. Note that the real-values undergoing adaptation are meant to continu-
ously encode phenotypic traits. Therefore small numerical mutations should bring about a
small change in phenotypic behaviour.

The ES model described so far is the simplest, and is generalised by the (p + A)-ES
and (u, A\)-ES (Fogel, 1995). The (1 + A) model for evolution strategies uses the best p
individuals as parents to generate A offspring. Both mutation and recombination may be
involved in this process. All solutions compete for a place in the next generation. Under
the (i, A) model, the lifetime of solutions is more limited than for (14 + A), since only the
best offspring, 1 < u <), are selected to be the parents in the next generation. Note that
while the mutation of individuals is stochastic, the selection process is deterministic (Béck
and Schwefel, 1993).

Rechenberg observed that the rate of convergence can be improved by adapting the
standard deviation of mutations during the search (Fogel, 1997). The first attempt was
the one-in-five rule: the ratio of successful mutations to all mutations should be 1/5. If
it is greater, increase the standard deviation; if it is lower, reduce the standard deviation.
This heuristic was obtained through experimentation on several problems. The concept of
self-adaptation was later introduced, which attaches a co-variant Gaussian distribution to
each individual for mutation, and adapts that distribution along with the solution param-
eters (Bick and Schwefel, 1993). The covariance matrix C = [c;;] is represented by the
variances ¢;; = 02 and equivalent rotation angles a; (tan(2ai;) = 2¢i;/(07 — ajz)) to ensure
that C is positive-definite. These strategy parameters are included with the individual and
are n(n + 1)/2 in number, where n is the number of solution parameters. Each strategy
parameter is also mutated along with the individual. The mutation distributions become
adapted to the local topology of the fitness landscape, allowing the algorithm to negotiate a
wider range of situations.

3.3.6 Evolutionary Programming

Evolutionary Programming (EP) was introduced by Lawrence Fogel in 1962 (Fogel, 1995).
The aim of EP is to evolve programs that can predict their environment, and use those
predictions to attain some goal. The classical framework describes the environment as a
sequence of symbols from a finite alphabet. Individuals must output a symbol based on the
past observed environmental states to maximise some pay-off function. Each individual in
the population is a finite state machine (FSM), possessing a finite number of internal states.
Each FSM responds to an input symbol from the environment by outputting a symbol from
a finite alphabet; the output is based on the input symbol and the current state. Therefore,
when presented with a string of input symbols, the FSM generates an equal-length string of
output symbols. Individuals are evaluated based on their ability to predict future symbols
from the environment. As the string of input symbols is presented to the individual, the
output symbol is compared with the next input symbol. ‘T'he overall fitness is based on the
total prediction accuracy over the whole set of input symbols.

Individuals each produce one offspring via mutation. There are several forms of mutation:
change an output symbol, change a state transition, add a state, delete a state, or change
the initial state. The offspring are ranked along with their parents according to fitness, and
the top M individuals are kept for the next generation; this is a (1 +) selection process. An

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 56

example of an early application of EP is the prediction of prime numbers. The consecutive
integers starting at 1 were presented to the individuals, and each individual had to predict
whether the next integer would be a prime number.

3.3.7 Philosophical Differences between GA/GP and ES/EP

The GA and GP, or genetic, methodologies developed almost independently of the ES and
EP, or evolutionary methodologies. There are some fundamental philosophical differences
between genetic and evolutionary methods:

e GA and GP manipulate a genetic representation of the solution, whereas ES and EP
solutions are thought of as phenotypic representations. This is an important, though
vague distinction. The main difference is that in GA and GP, a recombination or small
mutation can result in progeny with radically different performance from the parents.
In contrast, ES and EP seeks to slightly vary the phenotypic traits of the individual
so that the fitness of parents and offspring are highly correlated.

e Recombination is a major feature of GA and GP, and facilitates the supposed implicit
parallelism which is the strength of these methods (see Section 3.4.4). ES and EP,
however, predominantly use mutation to obtain variation amongst the individuals.

e Genetic methods use fitness-proportionate selection to propagate better individuals at
a higher rate, whereas evolutionary methods use selection as a culling force to remove
unfit individuals.

The main distinction between the two philosophies is their view of what is being evolved:
for the genetic methods, it is the genetic information in a population that evolves, whereas
for the evolutionary methods it is the phenotypic traits that are being evolved (Fogel, 1995).

3.4 Genetic Algorithms

A flow chart for one run of the basic genetic algorithm is shown in Figure 3.2. The initial
population of solutions is randomly generated, then the fitness of each individual is evaluated.
The fitness function requires a user-defined mapping from the binary string to a solution.
In general, the mapping is many-to-one: multiple binary strings can code for the same
behaviour. Next, the mating pool of size 1 < M,,, < M is created using a stochastic selection
mechanism. Although there are many different selection mechanisms, all of them select an
individual in proportion to its fitness; therefore the mating pool may contain multiple copies
of highly-fit individuals, but may not contain any copies of poor-performing individuals.
The individuals in the mating pool undergo genetic operations to derive offspring. The three
types of operator are recombination, reproduction and mutation. Recombination requires
two parents and results in two offspring, while reproduction and mutation require only
one parent and produce a single progeny. Each operator has a user-defined probability of
application, and the operator to use is selected stochastically according to these probabilities.
In the diagram, p. is the probability of crossover, p, is the probability of reproduction and
pm is the probability of mutation.

The manner in which offspring are inserted into the new population depends on the GA
model. If the GA is generational, then My,,, = M and the whole population is replaced
with all the offspring. If a steady-state GA is used, then M,,, < M and the offspring
are placed back into the population via some replacement scheme (Jong and Sarma, 1992).
The typical approach is to replace the worst individuals in the population, and commonly
My, = 1 or 2. The steady-state GA is expected to converge faster, because offspring
become available for exploitation more rapidly. Faster convergence may, however, lead to

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES

gen=gen+ 1

yes

Pr

Create initial
population

¢

termination
criterion
satisfied?

Evaluate
fitness of
each individual

Randomly
selelct' Myp
individuals
in proportion

to fitness

Designate

Probabilistically
Select
Genetic Op.

Pe

Pm

take 1 parent
from mating pool

take 2 parents
from mating pool

take 1 parent

from mating pool

perform
reproduction

perform
crossover

perform
mutation

place offspring
in new population

i=i+1l

57

Figure 3.2: Execution flow diagram of a genetic algorithm (adapted from (Koza, 1992b, pg.

29)).

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 58

loss of diversity in the population. Since the generational model replaces all individuals
each generation, it is better for promoting diversity. Other population models exist such as
the island model, in which the population is divided up into a number of demes. There is
a high probability of recombination between individuals from the same deme, but a lesser
probability of inter-breeding between individuals from different demes. The island model is
useful for avoiding premature convergence, for arriving at multiple solutions and for parallel
implementation (Ryan, 1994).

It is quite possible that, upon a given generation, the best individual in the population
is completely lost. To improve the quality of the final results, elitism is often used. Elitism
simply ensures that the best individual from the previous generation is copied into the current
population. In some cases, the individual is only copied if it is better than the best individual
in the current population. Elitism ensures that the best-of-generation fitness is a monotonic
function; if not used, the best-of-generation fitness can decrease from one generation to the
next.

The specific details of the GA are discussed in detail in the following sub-sections.

3.4.1 Selection Mechanisms

The simplest method for choosing parent individuals is roulette-wheel selection. Each indi-
vidual is assigned a probability of selection as a function of its fitness relative to the rest of
the population: 5
- G 3.1

P Zjl\il fi &S
The selection process is then similar to a single spin of a roulette wheel in which each
individual has a wedge with an included angle proportional to its probability. This analogy
is demonstrated in Figure 3.3. The algorithm is implemented by randomly selecting a real
number 7 from the interval [0.0, 1.0] with uniform probability. The selection probabilities
are summed in any order until the aggregate reaches or exceeds r. The individual 7’ at which
the threshold is reached is selected:

. 1
i :i:f.].r.l,M {i:r< Z fit

i=1

With this selection mechanism, the expected number of offspring from individual 7 is
Mmp-fi/ Zj fj-

Scaling of the fitness function before selection is common practice (Goldberg, 1989). In
initial generations, there can be a wide disparity in fitness between individuals, and compe-
tition is fierce. The “tall poppies” with much higher-than-average fitness can dominate the
population causing premature convergence, so in initial generations, fitness values should be
scaled down. In later generations as the population converges, fitness values start to become
more and more similar. To stop the search from losing its focus on the best individuals,
differences in fitness need to be accentuated by scaling the scores up.

Some popular scaling schemes (Goldberg, 1989) are:

Linear: the scaled fitness values are derived from the objective scores as described in:
ss=afi+0b

where s; is the scaled fitness, and a and b are calculated based on the objective scores
of individuals in the population. Negative objective scores are not allowed. There are
many ways to choose a and b. A typical method is to maintain the same average value
for the raw and scaled fitnesses, Sqpe = fave, and set the maximum scaled fitness to

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 59

Figure 3.3: Example of roulette-wheel selection for M = 5, f; = 10, fo = 12, f3 = 14,
fa =25, and f5 = 38.

be Smaz = Cmult-fave- Values of ¢y = 1.2 to 2 have been successfully used. This
method has the advantage of being simple, but becomes problematic when the average
and maximum fitnesses are close together, and the lowest fitness values are much less
than the average. In such cases, the scaled fitness values can become negative.

Sigma Truncation: fitness values are scaled based on the variation from the population
average. Scores can be negative, and are truncated arbitrarily at 0. The mapping from
raw to scaled fitness values is:

8; = fi — (uf — c.o5)

where ¢ is a constant, sy is the mean of the population’s objective scores, and oy is
their standard deviation. Sigma truncation scaling can be used prior to linear scaling
to avoid the problem of negative results.

Power Law: fitness scores are mapped to scaled values using the following relationship:
si = (fi)*

where k is a power scaling factor. The fitness values must be non-negative. The power
law method has the advantage that there is only one parameter to select, which may
have to be adapted during the algorithm.

To avoid the problems associated with choosing a scaling scheme and appropriate param-
eters, selection methods have been developed that are based only on the relative fitness of
individuals in the population. Of these rank-based methods, the most popular is tournament
selection. Using this scheme, a group of S individuals are selected at random from the pop-
ulation with uniform probability. A competition is held within this group, and the winner
is the result of the selection process. The probability with which individual ¢ is selected for
addition to the mating pool is not as simple as the expression for roulette wheel selection,
shown in Equation(3.1). The equivalent expression has been derived for tournament selection
in (Back, 1994):

pi= M=S((M —i+1)° — (M —)%)

where the individuals have been sorted in increasing order of fitness (for a minimisation
task): f(a1) < f(az) < ... < flam).

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 60

Researchers often speak of selection pressure, which qualitatively refers to the rate at
which better individuals are selected for future trials. Take-over time has been developed
as a measure of the selective pressure of a selection mechanism (Béck, 1994). It is defined
as the number of generations required for the best-of-generation individual in the initial
population to fill all positions in the population through the operation of selection only.
Shorter take-over times correspond to stronger selection mechanisms. Since take-over time
is defined without the use of genetic operators, it is only useful for comparisons between
selection methods.

For tournament selection the take-over time is (Béck, 1994):

«_ InM +In(ln M)
T InS

For roulette-wheel selection, the take-over time is problem-dependent because the selection
probabilities rely on f. Goldberg and Deb have shown that, without scaling, the take-over
time for f(z) = z°is 7 = (M InM — 1)/c (Goldberg et al., 1991). According to these
calculations, tournament selection provides stronger selection pressure than roulette-wheel
selection by a factor of = M. The selective pressure can be modified for the roulette-
wheel method via the scaling function. Similarly for tournament selection, selective pressure
increases with tournament size S.

3.4.2 Genetic Operators

The most widely-used recombinative genetic operator in GAs is crossover. Single-point
crossover requires two parent strings. Let the length of all strings in the population be L .
A crossover site k is randomly chosen with uniform probability from the interval [1, L — 1].
Two new individuals are created by swapping the sub-strings in the interval [k + 1, L]. The
process is shown in Figure 3.4.

000000O0O 11111111 Parents
: J

00000111 11111000 Children

Figure 3.4: An example of single-point crossover.

Through this process, a novel solution of better utility can be synthesised from existing
solutions containing desirable features, in much the same way as a human might go about
combining different ideas to come up with a better idea.

The reproduction operator is very simple: it takes a single parent and just copies it
verbatim to the offspring. Mutation also requires a single parent and produces a single
offspring. A position is randomly selected in the individual with uniform probability, and
the bit at that position is inverted. Mutation is used sparingly in GAs, and is seen as a
background operator, while recombination is the driving force (Goldberg, 1989). Mutation
is useful for dislodging a stagnant search, and to compensate allele loss.

The crossover operator described here is only one of many. For instance, two-point
crossover exchanges the sub-strings between two randomly-selected crossover points. Uni-
form crossover transfers bits between individuals at randomly-selected positions rather than

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 61

in contiguous chunks. The appropriate choice of operator depends on the problem and its
encoding.

There is no reason why the strings should be constructed from a binary alphabet. Al-
though the principle of minimal alphabets introduced by Goldberg proposed that the short-
est alphabet possible should be used (Goldberg, 1989), it has since been refuted (Antonisse,
1989). In fact, anything can be placed in the elements of the strings, as long as the operators
are designed to work with the representation. Also, in conventional GAs the meaning of an
allele is determined by its locus. This is not always the case: for instance, order-based GAs
such as those used for the traveling-salesman problem exploit only the relative positions of
the alleles rather than their absolute positions in the string (Ronald et al., 1995).

3.4.3 Diversity and Premature Convergence

Although convergence to the optimal solution is often used as a measure for an algorithm’s
performance, this criterion has been rejected by Holland (Holland, 1995) according to the
argument that even enumerative search converges under this criterion. Rather, the best
solution must be found in a “reasonable time”. Convergence in genetic algorithms typically
refers to the situation that the population becomes homogeneous, containing M copies of the
same individual. Further search points cannot be reached through crossover, since crossing
over identical strings results in identical offspring, and the very low mutation rate is the only
chance of introducing new genetic material. One hopes that the algorithm has converged
upon the optimal solution; if not, the only recourse is to restart the algorithm with a different
initial population.

Under this definition of convergence, the diversity of genetic structures in the population
is expected to decrease as evolution progresses. Due to the geometric rate at which highly-fit
individuals propagate into future generations, the GA can converge too quickly without hav-
ing explored enough of the search space to encounter a global or near-global optimum. This
phenomenon is called premature convergence. In the presence of bit mutation, premature
convergence is a stagnation in the search for an undetermined amount of time (Fogel, 1995).

The way to stop the GA from converging prematurely is to promote diversity in the
population. There are several ways to achieve this:

e Use a high mutation rate.

e Disallow genotypic duplicates in the population, where two individuals are genotypic
duplicates if they are exactly the same. Note the distinction from phenotypic duplicates,
which are individuals with different strings resulting in the same behaviour.

e Use less selection pressure.

e Use a population model that promotes diversity. The island model is good for diversity
preservation, since the demes are kept largely separate so that a super-fit individual
cannot swamp all demes. Another single-population method is the use of fitness shar-
ing, a technique for promoting speciation in the population (Goldberg, 1989). Groups
of individuals exploit environmental niches, and share the resources from that niche.
In practice, the fitness of each individual is de-rated by a weighted sum of the fitnesses
of all the other individuals in the population:

o f(as)
fs(ai) jﬂils(d(ai,aj))

where d(ai,a;) is some measure of the distance or similarity between two individuals,
and s(.) is the sharing function that weights the distance. Individuals that are similar

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 62

are given a relatively large weight, and the function drops off as individuals become less
similar. As the population starts to converge, the mutually-similar individuals begin
to de-rate one another’s fitness values. Thus a single individual is unable to dominate
the whole population without restraint.

3.4.4 Schemata Theory and Implicit Parallelism

The mathematical foundations for genetic algorithms were set out by the work of John
Holland (Holland, 1995, first published in 1975). Holland’s treatment attempted to char-
acterise adaptive systems, drawing together the common threads of natural and simulated
evolutionary processes. Holland defined an adaptive plan as an algorithm for generating new
search points in light of inputs from the environment and previously-visited search points.
By formalising the representation of adaptive plans, the efficiency of different plans can be
compared. Holland analysed the genetic algorithm using schemata theory. A schema (plural
schemata) is a template defining a sub-set of solutions representable by binary strings. They
are formed from an augmented alphabet {0, 1, *} where “+” means “don’t care”. For exam-
ple, the schema [0, *,0] for L = 3 represents strings {[0,0,0],{0,1,0]}. The order of a schema
H, o(H), is the number of fixed alleles in the template. The defining length of a schema,
§(H), is the distance between the first and last fixed bits in the schema. For example, if
H =[1,%,0] then o(H) =2 and §(H) =3 -1=2.

Schemata provide a means for combining attributes, and for analysing their contribution
to performance and propagation through the population. Each schema can be thought of
as a hypothesis about the utility of the defined alleles. For example, the schema [1, *, %]
is like the hypothesis that the first bit being 1 is part of the optimal solution. The fixed
bits in the schema are like “building blocks” which can be combined to form solutions. A
binary string of length I has 3% distinct schemata. Each string is a member of 2L different
schemata, and the whole population can represent at most M 2L schemata. It is natural that
some schemata will be superior to others in that the average fitness of strings representing a
schema can be higher. Therefore we can talk about some schemata being fitter than others,
and examine the rates at which highly-fit schemata proliferate throughout the population.

Suppose that at generation g the population contains m(H, g) representatives of schema
H. Using the fitness-proportionate reproductive plan of roulette-wheel selection and only
using the reproduction operator, the expected number of representatives of the schema in
the next generation is:

f(H,g)
m(H,g+ 1) =m(H,g).M.——=— (3.2)
Zj]vi1 fi(g)
where f(H,g) is the average observed fitness of schema H at generation g:
F(H,g) = ZajEA(g)UH fi(9)
’ m(H,g)

Noting that the average fitness at generation g is f(g) = Z;‘il fi(g)/M, Equation(3.2)

becomes:
f(H,g)
f(9)

Qualitatively, this means that the number of instances of a schema with consistently above-
average observed fitness will increase at a geometric rate with generations. It is important
to note that this happens in parallel for all schemata in the population via simple operations
on M strings. There are no calculated tables of schema representatives or schema average
fitness.

m(H,g+1) = m(H,g)

(3.3)

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 63

Using only reproduction, it would be impossible to examine new schemata since we can
only reproduce those individuals created in the initial population. To enable the examination
of new search points, the variational operators of crossover and mutation must be used.
Variational operators, however, modify the difference Equation(3.3) because the offspring
may no longer be a member of schema H. The question is, which schemata are preserved by
crossover and mutation, and which aren’t? Consider the following two schemata represented
by individual a:

a = 0111000
H = * * * *x x 0
Hy = * % % 1 0 % x

If the third crossover site is chosen randomly, then the individual will be divided at the point

shown:
a N

H, =
Hy =

*» O O

0
0
*

¥ % =
L
— % =
* * O

o x O

Unless the second parent has the same fixed bits as H;, the offspring will belong to Ha
but not to H;. It is generally true that schemata with longer defining length have a higher
probability of disruption through crossover. In fact, the probability of disruption of schema
H is:
_ 8(H)

Pd = -1
The probability of survival of a schema is p; = 1 — py, so for the example above we have
py(Hy) = 6/6 = 1, and pg(Hz) = 1/6. Taking into account the fact that the mating partner
sometimes has identical fixed positions, the probability of survival is bounded by:

§(H)

ps>1 o

Incorporating this into the difference Equation(3.3) yields:

m(H,g+1) 2 m(H,g)M [1 —pc_@]

f(9) L-1
Now considering mutation, the probability of one of the fixed positions of schema H being
mutated is o(H)/L. Therefore the total updated difference equation for the minimum number
of schema members propagated on a single generation is:

m(H,g+ 1) 2 m(H,) LD [1 -,

f(9)
This difference equation implies that short-defining-length, low-order schemata with consis-
tently above-average observed fitness receive an exponentially-increasing number of trials in
future generations. This is referred to as the Schema Theorem, or the Fundamental Theorem
of GAs.

It is reasonable to question why the fitness-proportionate reproductive plan is desirable.
Holland showed that the exponentially-increasing allocation of trials based on observed pay-
off is optimal by analogy with the two-armed bandit problem. A hypothetical two-armed slot
machine has a different distribution of pay-offs associated with either arm, with means 1, p2
and standard deviations o1,09. Assume that g1 > ps. Suppose we have N trials, or coins,
to spend on the machine. The question is, what is the optimal allocation of trials between
those arms? The answer is to spend all trials on the arm with the biggest expected pay-off,
but we don’t know which is best beforehand. If we make some initial trials on both arms, we
have an estimate of the expected pay-off of each arm. If we were then to spend the rest of our

S(H) o(H)
L—1 P]

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 64

money on the arm with the largest observed pay-off, there is always the chance that it was
observed as best only through sampling variations, so the odd trial should still be spent on the
other arm to make sure we did not go down the wrong track. There is therefore a balance
between exploiting what we know about the relative pay-offs, and ezploring to gain more
information about the distributions of the two pay-offs. The trade-off between exploitation
and exploration is a key issue in genetic algorithms: how much should we exploit the best
observed schemata through reproduction, and how much should we explore schemata with
low observed fitness but which may truly have a higher expected pay-off.

Holland showed that, to minimise expected loss, n* trials should be given to the arm
with the lower expected pay-off and the remaining N — n* to the better arm, where n* is
given by:

N?

*~ P ln | ——s
" . lS‘n’b"* In N2

] , where b=01/(p1 — p2). (3.4)

Re-arranging yields:

N —n* = N = V8rbt In N2,e" /2

Hence the optimal number of trials allocated to the better arm should be exponentially
increasing with the number given to the worse arm. Of course this strategy is unrealis-
able, since we do not know beforehand which arm has maximum expected returns. Holland
showed, however, that the plan which allocates an initial n* trials to each arm and then
spends the remaining N — 2n* trials to the best observed arm has an expected loss that
approaches the optimal loss as fast as N -1

The analogy between the bandit’s arms and two schemata is surely not lost on the reader.
The 2-armed bandit has been generalised to a k-armed bandit, and the optimal strategy is
similar, that relatively-good performers should receive a relatively-exponential number of
future trials. A k-armed bandit is analogous to a competition between k schemata with
the same fixed positions but at least one different value in those positions, because these
schemata compete for slots in the population.

The number of schemata contained in a population is anywhere between 2L and M - 2F.
Taking into account the destruction of long schemata through crossover and the possibility
of multiple individuals belonging to the same schema, Holland estimated that the number
of schemata processed by a population of size M is O(M 3). This is the theory of implicit
parallelism, that through simple O(M) processing of strings, a cubic number of templates
or hypotheses can be processed implicitly in parallel. Given the exponential growth rates of
most search spaces, this is an attractive property.

The low-order, short-defining-length schemata processed by binary-string GAs are re-
ferred to as building blocks. The GA juxtaposes these building blocks like a child playing
with lego, hoping that the combination of two partially-fit schemata will result in an individ-
ual of even greater fitness. This decomposition of the problem into many sub-problems allows
the optimal solution to be constructed gradually rather than stumbled upon all in one step.
The proposal that a GA works in this manner has been termed the building block hypothesis.
Although the super-position of fitness is an intuitively appealing concept, its applicability to
real-world problems is the important question. Naturally there are cases in which building
blocks do exist for the problem, and cases where they don’t. In the latter case, a change in
representation or genetic operators may allow for the exploitation of building blocks.

There have been many challenges to the utility of GAs. In particular, the large random
component in the algorithm superficially casts aspersions on the efficiency of GAs. Of course,
in light of the power of implicit parallelism, these arguments can be refuted. The Schema
Theorem and the Building Block Hypothesis, however, have themselves been called into
question. Many doubt the applicability of the schema difference equation to complex dynamic
systems, since it only describes the step between two generations. In (Altenberg, 1995) it is

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 65

pointed out that the Schema Theorem ignores the relationship between the fitness of parents
and offspring, and so is not powerful enough to describe the performance of a GA. In some
research circles, the Schema Theorem is like the “Father Christmas” of GAs: something
that one believes in the beginning but loses its relevance in reality. Empirical investigations
have found that uniform crossover out-performs single-point crossover on a broad range of
problems, even though uniform crossover does not preserve small building blocks (Syswerda,
1989).

The analogy between the k-armed bandit problem and competition between schemata
is also questionable. The bandit trials are assumed independent, while trials in a GA are
heavily biased towards fitter members of a schema (Grefenstette, 1991; ‘Grefenstette and
Baker, 1989). Also, in practical situations we may be interested in the schema containing
the best possible individual rather than the schema with the best average fitness. Flaws have
recently been revealed in Holland’s analysis of the two-armed bandit problem (Macready
and Wolpert, 1996). In particular, Holland’s result is only optimal for the single-decision
framework chosen, and does not account for the general case where a new decision is made
after each trial. They point out the fact that Equation(3.4) is independent of o3, which casts
aspersions on its correctness.

In any case, the question of whether a GA operates by processing building blocks is
problem-dependent. Efforts have been made to characterise problems that are suitable for
GAs by constructing epistasis measures of the representation (Mason, 1995).

3.4.5 Price’s Theorem

In the field of population genetics, Price’s Covariance and Selection theorem (Price, 1970) has
been proposed to relate the change in frequency of a gene in a population to the covariance
of its frequency with the number of offspring produced by individuals in the population. In
recent times, the theorem has been used as an alternative to the Schema Theorem for the
explanation of the operation of GAs (Altenberg, 1995) and GP (Langdon, 1996a).

Theorem 3.2 (Price’s Covariance and Selection Theorem)

c
AQ — O’U(Z q)
z
where:
AQ = expected change in frequency of a given gene from one generation to the
next

q = frequency of the gene in an individual
z = expected number of offspring produced by an individual
zZ = mean number of offspring per individual in the population

The theorem holds “for a single gene or for any linear combination of genes at any number
of loci, holds for any sort of dominance or epistasis, for sexual or asexual reproduction,
for random or non-random mating, for diploid, haploid or polyploid species, and even for
imaginary species with more than two sexes” (Price, 1970). Price’s theorem applies to GAs
under the assumption that the genetic operators are independent of the genes.

Lee Altenberg has suggested that Price’s theorem is superior to the Schema Theorem
in its ability to describe how well a GA will perform (Altenberg, 1994; Altenberg, 1995).
The Schema Theorem implicitly assumes a correlation between the fitness of a parent and
its offspring, while Price’s theorem makes this correlation explicit. Price’s theorem holds
for any choice of genetic operators and for any representation scheme. Altenberg has used
Price’s theorem to derive the Schema Theorem as a special case. The theorem implies
that the search performance of a GA does not rely on schema processing, but rather on
correlations between the fitness of parents and offspring.

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 66

Price’s theorem has been used to predict several evolved measures in a genetic program,
such as program length and gene frequency (Langdon, 1995; Langdon and Poli, 1997a;
Langdon and Poli, 1997b). The theorem was validated by empirical results, except for cases
in which the restriction on maximum size of programs interfered.

3.4.6 Lamarckian Evolution and the Baldwin Effect

Darwin was not the only pioneer to theorise about the evolution of species. Jean-Baptiste
Lamarck (1744-1829) preceded Darwin with the concept of evolution over a long period of
time. The most notable point today about his work is the hypothesis that organisms change
their behaviour in response to their changing environment, and that the resulting traits are
inherited over generations. A prime example is the proposal that the giraffe obtained its
long neck by repeatedly stretching for the high leaves (Gaarder, 1996). The repeated use
of the neck during the lifetime of the individual caused it to become strengthened, which
was inherited by its offspring. It is now known that Lamark’s proposal is not the case in
biology, since it would require a feedback of behaviour to genetic material during the life of
an organism (Waggoner, 1996).

James Mark Baldwin later proposed a theory of the role of learning in evolution that
could explain the apparent Lamarckian phenomenon (Baldwin, 1896). Baldwin conjectured
that, although learnt traits cannot be passed on genetically, learning in individuals alters
the fitness landscape to facilitate evolution. Baldwin further proposed that skills that are
learned at first are replaced in later generations by genetically evolved systems. That is,
abilities that require learning in one generation become innate in later generations.

Genetic algorithms and genetic programming are relatively bad at “fine-tuning” solutions
to their local extremum in search space (Houck et al., 1996). Therefore hybrid systems are
often used in which a simple optimisation process is applied to each individual on each gener-
ation. The evolutionary algorithm performs a global search for the structure of the solution,
and the optimiser performs a local search for the nearest local extremum. Lamarckian evo-
lution and the Baldwin effect are relevant to this type of solution, because they represent the
two possibilities for incorporating local optimisation information into the solutions. That is,
should the locally-optimised parameters of an individual replace the original parameters, or
should the genetic material remain the same and the local tuning affect the fitness function
only? There is evidence to suggest that the Lamarckian approach can interfere with schema
processing and lead to premature convergence (Houck et al., 1996). However, the Baldwin
approach aggravates the possible problem that there are multiple genotypes that map to a
single phenotypic behaviour.

3.5 Genetic Programming

Genetic Programming (GP) is analogous to a genetic algorithm, except that the structures
undergoing adaptation are trees rather than strings. The trees are hierarchical representa-
tions of computer programs or functional expressions. An example is shown in Figure 3.5.
Under the tree is the reverse-polish or prefiz notation form of the expression. The tree is
said to be a parse tree for the expression. The internal nodes are functions that present their
output to their parent node, and take the outputs of their child nodes as arguments. The
leaf nodes are terminals which are the inputs to the program. The output of the program is
taken from the root (top) node. The set of functions and terminals are defined by the user,
and are specific to the problem. Functions can have side effects, such as altering the state
of memory.

In order to apply GP to a problem, there are five things that must be specified by the
user (Koza, 1992b):

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 67

+(x(u,t), x(0.5, x(a, x(t,1))))

Figure 3.5: An example of a genetic program to compute s = ut + %atz.

the set of terminals,

the set of functions,

e the fitness measure,

e the parameters for controlling the run, and

e the method for designating the result and the criterion for terminating a run.

In the above example, the function set is F = {+, x} and the terminal set is T = {t,u,a}.
The function and terminal sets must meet the conditions of sufficiency and closure (Koza,
1992b). Sufficiency requires that the set of functions and terminals be capable of expressing a
solution to the problem. Closure requires each function to be able to accept as an argument
any value that could possibly be output by a function or a terminal. For example, the
arithmetic division function must be protected against division by zero:

.)1 if y =0;
+y) = { z/y otherwise

As will be shown in Section 4.10, the number of possible trees, and therefore the size of the
search space, increases as a very-high-degree polynomial function of the number of functions
and terminals. Therefore the function and terminal set should be limited in size for an
effective search. An issue here is the level of complexity of the function set. The best results
will be obtained by using as much prior information possible so that the GP does not have
to re-invent the wheel. For example, on a problem involving time series it may be more
sensible to use the Fourier transform as a function rather than {+, x,exp}, because if the
Fourier transform is required, it is unlikely that the GP would synthesise it given the current
limitations on computer memory and speed.

The fitness measure is obtained by executing an individual and seeing how well it solves
the problem. This may require a single execution, or require the evaluation of several fitness
cases. For example, when using GP for regression it is not practical to evaluate a program’s
prediction at every point in the target function domain. Therefore the fitness function can
be based on a sub-set of all possible program inputs. The function set may also involve
loops, so the fitness evaluation may have to terminate execution of a non-halting program.

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 68

It was stated earlier that for GAs the fitness function evaluation dominates execution time
of the algorithm. There is an extra complication in GP: the number of nodes in a tree grows
exponentially with depth, so large programs can take a long time just to evaluate, and they
use up a lot of memory. For this reason, the maximum depth of trees is restricted during
creation and generation of offspring.

The user-defined parameters required for the standard GP algorithm are listed in Ta-
ble 3.2. The result of a run is usually the individual with the maximum fitness value en-
countered. A run is usually terminated after a set number of generations.

Table 3.2: Control Parameters required for standard GP.
population size, M

max. number of generations, G

probability of crossover, p,

probability of mutation, pn,

probability of reproduction, p;,

probability of choosing internal points for crossover, p;,
selection scheme

fitness scaling scheme

max. depth of trees created during a run, D,

max. depth of initial random trees, D;

method for generating initial population

elitist strategy?

3.5.1 The Initial Population

The initial population is randomly generated from the set of functions and terminals avail-
able. Since it is the starting point for the search, it is important that a range of tree
shapes and sizes be present to avoid bias. Although functions and terminals absent from
the population can be re-generated by mutation, this process should not be relied upon,
and the initial population should contain an even distribution of the functions and terminals
available. Genotypic duplicates should not be allowed so as to use the full potential of the
population (Koza, 1992b).

Three methods for the random generation of trees are suggested in (Koza, 1992b): the
grow method, the full method, and the ramped half-and-half method. The grow method
randomly selects the next child node from the union of the function and terminal sets with
uniform probability, so the trees can have irregular shapes. The full method only selects
child nodes from the function set to give trees for which every path from the root node to a
terminal node has the same length. In both cases, the user imposes a maximum allowable
depth for the generated trees. When this depth is reached, nodes can only be selected from
the terminal set.

The ramped half-and-half method creates equal numbers of trees at depths in the range
[2, D;]. At each depth, half of the trees are created using the grow method and the other
half using the full method. This method is the most widely used in GP applications.

3.5.2 Genetic Operators

The traditional GP operators are analogous to those used in GAs, but have been adapted to
work with trees. Each operator must ensure that the offspring do not exceed the maximum
allowable depth D, so that the trees cannot grow without bound. Reproduction and crossover

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 69

are viewed as the primary genetic operators, while mutation and other novel operators are
secondary and are used sparingly.

Reproduction simply copies the individual to obtain an identical offspring. Crossover
requires two parents and randomly selects a node in each as a crossover point. The sub-
trees rooted at these crossover points are swapped to obtain the offspring. An example is
shown in Figure 3.6. There are a few important points about crossover in GP. Firstly, unlike
genetic algorithms, crossover between two identical parents can result in different offspring.
Secondly, if the crossover points are the roots of both parents, then crossover degenerates to
reproduction. Thirdly, if the two crossover points are terminal nodes, crossover is like point
mutation that simply changes a single node. Because of this latter point, internal points are
typically chosen as crossover sites with a higher probability p;, than terminals; Koza used
Pip = 0.9.

arcsin

== ====
o s I

arcsin

(]

Figure 3.6: An example of sub-tree crossover.

The most common form of mutation is sub-tree or grow mutation. A node is randomly
selected from the tree, and the sub-tree rooted at the selected node is replaced with a
new randomly-generated sub-tree. An example is shown in Figure 3.7. The usefulness of
mutation is questionable according to Koza: mutation is useful in GAs to relieve a search
from stagnation and to re-introduce lost alleles into the population. Since in GP identical

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 70

parents can result in different offspring through crossover, mutation is not required to avoid
stagnation. In GP the meaning of an allele is not fixed to its position, and since the sizes of
the function and terminal sets are much smaller than the number of nodes in the population,
it is unlikely that a symbol would disappear from the population.

mutation

Figure 3.7: An example of sub-tree mutation.

Koza used several other secondary operators particular to GP. Permutation is a gener-
alisation of the GA inversion operator. It re-arranges the order of function arguments. The
operator proceeds by selecting an individual the same way as for crossover and reproduc-
tion. Next, a function in the tree is randomly selected with a uniform probability. If the
function has n arguments, then one of the n! possible permutations is selected with uniform
probability and the arguments are rearranged to assume that permutation.

The editing operator visits each individual in the population and recursively applies
domain-independent and domain-specific editing rules to each function. The domain-independent
rule is: if any function has constant terminals as arguments, that function is evaluated and
replaced by a constant equal to the result of the evaluation. Domain-specific rules may in-
clude the removal of identities or redundancies, such as replacing (z —z) with 0. Editing can
be performed as a cosmetic operation at the end of the evolutionary run, or as a simplify-
ing operation with some generational frequency while the genetic program is running. The
consequences of using editing during a run are unclear. On one hand, simplifying verbose
sub-expressions can reduce their vulnerability to crossover. On the other hand, editing can
prematurely reduce the number of available structures for recombination.

Encapsulation identifies a potentially useful sub-tree and gives it a name for future use
as a function. Encapsulation allows the GP to discover its own useful building blocks.
Encapsulation is demonstrated in Figure 3.8. The operator selects an individual according
to fitness, randomly chooses an internal function in the tree and then prunes the sub-tree
below and including that point. The sub-tree is given a function name, E0, E1, E2, ..., which
replaces the original sub-tree at the pruning point. The function, which takes no arguments,
is then added to the GP’s repertoire of functions for use during mutation operations.

3.5.3 Strong Typing

The traditional form of GP generates weakly-typed solutions: as long as the function and
terminal sets have the closure property, no distinction is made about the sensibility of a given
function taking the output of another function or terminal as an argument. It is common,
however, to want to combine different data types in the program trees with restrictions
on how types can interact. Strongly-typed genetic programming (STGP) was introduced
in (Montana, 1993) to ensure the correct combination of different types. The types of
terminals, functions and their arguments must be specified beforehand by the user, as well

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 71

encapsulation

Figure 3.8: An example of the encapsulation operator.

as the return type at the root of the tree. The two constraints imposed by STGP are:
1. the root node must return a value with the type specified for the problem, and

2. each non-root node must return a value of the type required by the parent node as an
argument.

The creation and genetic operators must ensure that legal parse trees result. STGP effectively
reduces the size of the search space by disallowing nonsensical solutions.

One of the main complications of STGP is implementing functions which can take or
return multiple types. For instance, the If-then-else function can have any type of second
and third argument, as long as they are the same. Montana approached this problem using
generic functions which are instantiated during program tree generation. Once instantiated,
the program acts just like a normal strongly-typed function.

The only operator that is significantly complicated by strong typing is the program
creator. Clearly the next node to be inserted below some function is restricted by the legal
types allowed for that argument. A further and more subtle restriction is that the element
chosen must make it possible to construct a sub-tree whose depth is within the legal limit.
Consider, for example, a problem in which the function set is F = {OR,NOT,<} and all
the terminals are of type Real. During construction of the tree shown in Figure 3.9 with
maximum depth 3, no node of return type Boolean can be placed at “?” without violating
the depth restriction, because < is the only function available that returns a Boolean result.

Figure 3.9: Example of an illegal type choice during program generation.

This problem is overcome by generating off-line a node possibility table!, which contains
for + = 1,..., D the possible functions or terminals for the root node of a tree of maximum

Tn Montana’s work, a type possibility table is used which contains the legal return types for the given
depth. In general, however, a function can be legal or illegal regardless of its return type. In Figure 3.9, for
example, the NOT node is illegal, but a < node at the same depth is legal, and they both return Boolean.

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 72

depth i. There must be one table for the grow method and one for the full method. The
pseudo-code for generating these tables is shown in Figure 3.10.

// trees of depth 1 must be a single terminal
for each element j in the terminal set, loop:

add element j to grow_table(l) and full_table(1);
end loop;

for each remaining depth i = 1 to D, loop:
// for the grow method, legal trees of size i-1
// are also legal trees of size i
add all elements from grow_table(i-1) to grow_table(i);

for each non-terminal element j, loop:
if each of the arguments of j is matched by the return
type of at least one element in grow_table(i-1), then
add j to grow_table(i);

if each of the arguments of j is matched by the return
type of at least one element in full_table(i-1), then
add j to full_table(i);
end loop;
end loop;

Figure 3.10: Pseudo-code for generating the node possibility tables.

3.5.4 Validity of the Building Block Hypothesis

Since the algorithmic framework for GP has been borrowed by analogy from GAs, it has been
taken for granted that the building-block hypothesis also exists for GP. Useful sub-trees have
been found ubiquitously in the population for some problems (Koza, 1992b; Tackett, 1994;
Rosca and Ballard, 1994). The existence of a schema theory for GP has, however, been
questioned very critically in the literature. The first question to ask is: what is a schema
in GP? Several attempts have been made at defining a general template for variable-sized
programs (Koza, 1992b; O’Reilly and Oppacher, 1995b; Whigham, 1995; Haynes, 1997;
Poli and Langdon, 1997). All of these definitions are complicated by the variable size and
structure of GP individuals. Under their framework, Poli and Langdon developed a GP
schema theorem for a specialised crossover operator. The theorem is more complicated than
that for GAs. They predict that using this operator, the GP conducts the search in two
continuously-joined phases: first a search for the optimal structure, and then a search for
the optimal contents of that structure.

If the building-block hypothesis was tenuous for GAs, then it is more so for genetic
programming because the functions used are typically non-linear. For example, the usefulness
of the expression z < ¢ can be discontinuously reliant on the value of c¢. Therefore under
any definition of a schema, one would expect the variance of a schema to be very large.
The assumption that a functional expression can contribute to fitness in almost any context
is applicable in few instances. In (O’Reilly and Oppacher, 1992; O’Reilly and Oppacher,
1994¢; O'Reilly and Oppacher, 1995b) the issues involved in a GP building-block hypothesis

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 73

are explored. The quantities from the GA Schema Theorem that are assumed to remain
relatively fixed over generations, namely relative observed schema fitness and probabilities
of destructive crossover and mutation, cannot be assumed to be so stable in GP since the
defining-length of a schema can change from one generation to the next.

Empirical evidence has shown that the mutation operator, which has traditionally been
thought to be a background operator in GP, can outperform crossover. In (Angeline, 1997b),
a comparison was made between the standard GP using crossover and the use of “headless-
chicken crossover”, which replaces one parent with a randomly-generated tree before re-
combination. The results showed that headless-chicken crossover performed as well as or
better than standard crossover. Angeline’s explanation was that, rather than processing
building blocks with above-average fitness, the GP was progressing by means of mutation.
Standard crossover exhibited inferior performance because the pool of random sub-trees was
limited to those taken from the current population. Another comparison between crossover
and mutation (Luke and Spector, 1997) found that, although crossover gave better perfor-
mance on average, the improvement was rarely statistically significant, and that mutation
often performed better than crossover using small populations. Another comparison between
standard GP and GP without crossover but with a set of different mutation operators has
shown favourable performance for the mutation operators (Chellapilla, 1997).

Overall the evidence implies that the standard single-point crossover operator used in
GP does not exploit building blocks in all situations, if they exist at all. The philosophy
of Angeline and Chellapilla seems most appealing: that different, complementary operators
should be used when the optimal operator for a problem is not known beforehand. A clever
approach by (Teller, 1996) to finding the optimal operators for a given problem is to co-evolve
a population of recombination operators with the population of solutions. A population of
operators is maintained that are able to combine parent solutions in an arbitrary manner.
These operators are used to modify the individuals in the population of solutions. A fitness
value is then assigned to each operator based on the average improvement in fitness it brought
about on the solutions. The operators then undergo adaptation, and repeating this process
they evolve along with the population of solutions.

3.5.5 Automatically-Defined Functions

The functions and terminals supplied by the user are primitive components from which the
GP solutions are constructed. In programming code written by humans, a problem is sub-
divided into sub-routines which can be invoked multiple times. Similarly if the building
block hypothesis applies to a certain GP problem, then generally-useful macro-functions
constructed from the primitives should be found throughout the population. The next logical
step is to incorporate such macros into the function and terminal sets to facilitate a more
powerful search. This is a significant concept, as it allows the algorithm to accumulate
knowledge about the problem, perhaps even knowledge that would be applicable in other
domains.

The encapsulation operator described earlier is an example of a scheme to accumulate
sub-routines. There have been several other investigations into this concept. Hierarchical
genetic programming (Rosca, 1995b; Rosca, 1995a) adapts the GP representation through
the discovery of new useful macro-functions. Another system constructs a library of func-
tions during evolution (Angeline and Pollack, 1993). The most popular method is the topic
of Koza’s second book, automatically-defined functions (ADFs) (Koza, 1994b). Using the
ADF representation, each individual has a set number of sub-routines and a main program.
The main program can call each of the sub-routines any number of times. The main thrust
of the work on ADFs is in exploiting reqularity. Many real-world problems of interest con-
tain repetitive structure. ADFs are able to exploit this by repetitively applying a useful

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 74

sub-routine. Alternatively, if the sub-routines were to be inserted verbatim into the main
program, the size of the resulting program would be unmanageable. ADFs have been applied
to classification of gene sequence patterns (Koza, 1994a) and analog circuit synthesis (Koza
et al., 1996a).

3.5.6 The Bloating Phenomenon and Parsimony Pressure

A phenomenon that has been observed by many GP practitioners is the tendency for the
average size of trees to increase with generations (Blickle and Thiele, 1994; Nordin and
Banzhaf, 1995; Nordin et al., 1995; Tackett, 1994). Since the initial population is usually
biased towards smaller trees, it is natural that the population will grow to the appropriate
size as accuracy is gained. However, the code growth continues even when no improvement
in fitness is made (Blickle, 1996a). This phenomenon has been termed bloating, or the
size problem. Bloating is undesirable because larger solutions are difficult to read, tend to
generalise poorly (Zhang and Mihlenbein, 1995), and consume more system resources. It
has been suggested that bloating is useful in non-stationary environments, and generally
facilitates evolution because it can protect solutions against destructive crossover (Langdon
and Poli, 1997b), as we shall see in a moment.

The three ingredients for bloating are selection pressure, a variable-length representation
and representational redundancy. In GP it is generally the case that the same behaviour can
be represented by many different trees. It is also generally true that the fitness of the best
encountered solution increases quickly with initial generations, but improvements are more
difficult to make later in a run (Langdon and Poli, 1997b). Langdon observed that most
crossovers in later generations result in no change in fitness, so the evolution degenerates to
a random search for ways to represent the same behaviour. Since there are many more ways
to represent the same behaviour with larger solutions, more of these become prevalent.

Analysis in (Blickle and Thiele, 1994) focused on redundant portions of GP trees. An
edge A in a tree T was defined as redundant if, for all values of the terminals (inputs) of
T, the function represented by 7T is independent of the sub-tree of edge A. That is, the
fitness of a program is independent of a redundant sub-tree. Often this occurs because a
sub-tree is never executed in the fitness calculation; for example, in the expression If(T'rue,
T1, T2) the expression T2 is never evaluated. Redundant code is generally more subtle than
this example, involving portions that look useful but are never executed for the particular
fitness cases used. These redundant segments of code are also referred to as implicitly-defined
introns (IDIs). Qualitatively, the argument of the analysis in (Blickle and Thiele, 1994) is
that when the search comes to an end and no improvements in fitness can be made, the
individuals that procreate the most are those whose fitness is not degraded by crossover.
Given that there is an effective portion of a tree and a redundant portion, the fitness will
decrease if a crossover or mutation point is selected within the effective portion. Therefore
trees with a larger redundant portion are less likely to undergo destructive crossover or
mutation because the redundant code acts as a decoy, protecting the effective code. Blickle
and Thiele showed that trees which contain more redundancy, and are hence larger, are
given an exponentially-increasing number of future trials relative to smaller trees. Thus the
population grows without bound.

There are three types of method for controlling code growth in GP (Langdon and Poli,
1997b):

Restrict Size: Restrict the maximum depth or maximum number of nodes in each tree.
This is really a band-aid solution because the size of the optimal solution is not known
beforehand and the restriction may stop the solution from being found.

Modify Fitness Function: The fitness function can be augmented with a complexity

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 75

penalty:
f'(a) = f(a) + a.C(a)

where C(a) is some measure of the complexity of an individual, such as the number
of nodes, and « is a constant. The problem is in the selection of o. The minimum
description length principle has been applied to GP for regression (Iba et al., 1994a).
The fitness function becomes the sum of the encoded length of the tree and the encoded
length of the exceptional fitness cases that the tree got wrong:

fla) = 0.5k log N + 0.5N log S%
— N e

tree coding length exception coding length

where N is the number of fitness cases, Slzv is the mean square error on the cases, and
k is the number of parameters in the particular tree representation used.

Adaptive methods have also been proposed. The adaptive Occam method described
in (Zhang and Mihlenbein, 1995) uses a two-stage process of learning in which parsi-
mony pressure is increased as the classification error decreases:

1 Epest(g—1) . B
Evfa: Chest (9) if Ebest(g 1) > B

1 1
Nyal Ebest (9_1)-Cbest (g)

a(g) =
otherwise

where Ep..(g — 1) is the fractional error of the best individual from the previous
generation over my, fitness cases, Fpqq is the maximum allowed error for solutions
generated using this method, and C’best(g) is an estimation of the complexity of the
best individual in the current generation, calculated using a moving average:

1
Acsum(g) = E[Cbest(g) - Cbest(g - 1) + AO'sum(g - 1)]
ébest(g + 1) . Cbest(g) + AC’sum(g)

When the best-of-generation error is greater than E,.., parsimony is of little conse-
quence since we want to grow the trees to obtain the desired performance. Once the
error drops below Fy,q;, a(g) increases to force the size of the trees down, while main-
taining the same accuracy. This method is troublesome, however, because the targeted
maximum error is not always known. A similar scheme is investigated in (Blickle,
1996b), where the fitness function being minimised switches discretely to tree com-
plexity when the desired accuracy is reached.

These methods are all a basic form of multi-objective optimisation. Multi-objective
methods have explicitly been used to encourage parsimony with the concept of Pareto
optimality (Langdon, 1996b). In the work of (Ryan, 1994), accurate programs and
small programs were bred independently with controlled rates of inter-breeding.

Modify Genetic Operators: Crossover and mutation can be biased towards smaller trees,
or made aware of redundant code. (Blickle and Thiele, 1994) used marking crossover
by identifying those tree edges® not traversed during fitness evaluation and avoiding
crossover at the marked edges.

Methods for biasing the GP towards smaller offspring are called parsimony pressure.
Given the cause of bloating, it seems that the logical method is to remove all redundancy

2An edge in a tree denotes the link between two nodes.

CHAPTER 3. EVOLUTIONARY OPTIMISATION TECHNIQUES 76

from the representation. Unfortunately this is only possible in special casés because re-
moval of all redundant code is reducible to the program equivalence problem, which is non-
recursive (Soule et al., 1996). Removal of redundancy was examined in (Soule et al., 1996),
but they were unable to rid the programs of all IDIs and the programs eventually began
to grow. An example of a case where redundancy can be removed is in boolean func-
tions (Droste, 1997). Any boolean function can be represented by a directed acyclic graph
called an ordered boolean decision diagram (OBDD). The reduced form of an OBDD has the
important property that it is unique for the given functional behaviour.

3.6 Conclusion

This chapter has presented a brief introduction to the field of evolutionary computation, and
in particular genetic algorithms and genetic programming. The next chapter starts the novel
content of this thesis by motivating a search over pre-processors for supervised classification.
Chapter 5 describes how genetic programming can be used to that end. Experimental re-
sults of the application of GP to pattern recognition are presented in Chapter 6, and the
conclusions are then given in Chapter 7.

Chapter 4

A Framework for Automatic
Feature Extraction

4.1 Introduction

The reader has been introduced to the fields of pattern recognition in Chapter 2 and of
evolutionary search techniques in Chapter 3. This chapter presents the main ideas and
motivations for the research of this thesis. In brief, the main idea is that of automatic, or
generalised, feature extraction. It has been noted that there is no existing formalism or
framework for feature extraction. A framework is suggested here which is a more general
form of existing pre-processing methods.

First, existing mechanisms for feature extraction are reviewed and their shortcomings
pointed out. Then a series of stand-points, or hypotheses, are presented along with their
justification. These logical steps in thought lead to a generalised pre-processor, one which
is not only universally applicable but also realisable with finite resources. Next, the issue
of how to synthesise such a pre-processor is raised, and population-based heuristic search
techniques are suggested. Two questions are posed concerning the feasibility of synthesis
and practical use of these pre-processors, which lead to the construction of the evolutionary
pre-processor described in Chapter 5 and the empirical study detailed in Chapter 6.

4.2 Manual Feature Extraction

It was pointed out in Chapter 2 that there are many general classifiers which objectively treat
the input data as points distributed in a high-dimensional feature space. These classifiers
are general because no knowledge of the problem is required to apply them, save that the
assumptions made by the classification algorithm should be concomitant with the data. The
step that makes these methods successful in practice is the pre-processing or feature extrac-
tion stage, the transformation applied to the raw data before classification. Pre-processing is
required to reduce the dimensionality of the data, and to improve the discriminatory power of
the inputs to the classifier. Note that dimensionality reduction is beneficial by alleviating the
curse of dimensionality and reducing computational requirements. Features may also be ex-
tracted that are invariant to transformations such as scaling or rotation. While the boundary
between pre-processor and classifier is in some cases indeterminate, the distinction between
the two stages can generally be made as follows: feature extraction is problem-dependent,
but classification is more general. For this reason, one finds many broadly-applicable classi-
fiers, such as k-Nearest Neighbours clustering, Perceptrons and Parzen Windowing, but few
generally-useful pre-processors.

Data are usually pre-processed in a way that is chosen by the operator and is specific

77

CHAPTER 4. AUTOMATIC FEATURE EXTRACTION 78

to the problem; this practice will be referred to as manual feature extraction. There is
little theory to guide the feature-extraction process, and the operator typically draws on
domain knowledge, past experience, trial-and-error and intuitive ideas about which features
are important (Nilsson, 1993; Fu, 1980). There are many examples of ad-hoc manual feature
extraction: a few are given here.

An example of manual feature extraction comes from the technique for recognition of
human faces described in (Dunstone, 1995). The facial images were first normalised using
low-frequency Gabor transformations, then local features were sought using Gabor functions.
The motivation for using Gabor functions is biological, as they have been found in the
mammalian visual system. Another example is found in (Casasent and Neiberg, 1995),
where distortion-invariant recognition of objects from infra-red images is performed. Wedge-
sampled magnitude-squared Fourier transforms were used as features because the designer
knew from experience that they would be appropriate for the application.

A common approach to feature extraction is to synthesise a large set of features and
select the most effective sub-set of these. The Multi-function Target Acquisition Processor
ATR System used in (Tackett, 1994) and the segment data set used later in this thesis (see
Appendix C) are both examples of the extraction of many (26 and 19 respectively) localised
non-linear features from images. In (Breiman et al., 1984) a section on the use of decision
trees for selection of a sub-set of features reads (bold face added):

Following this intuitive appraisal, 55 new features were constructed. These were
averages, Tm, m, over the variables from m; to mgo for my, mg odd, that is

m2
Z Lyp, My > M

m=m

N 1
63 =
LM e —my + 1

The selection of appropriate features for classification by a practitioner must be performed
with care, because the classifier cannot compensate for a poor choice of features (Nilsson,
1993). Manual feature selection is problematic for the following reasons:

e There is very little theory to guide the selection, except for the designer’s intuitive
ideas about which features are important (Nilsson, 1993; Fu, 1980).

e For a difficult problem, there may be no intuitive understanding of the data. The
measurements provided may come from disparate sources, and may be intuitively dif-
ficult to combine. The scale-factor chosen for each measurement can greatly affect the
performance of the classifier (Duda and Hart, 1973).

e The best number of features is not known. Nevertheless there are methods for estimat-
ing the intrinsic dimensionality of a data set, which is the dimensionality of the smallest
non-linear sub-space which entirely contains the data (Bishop, 1995). One method es-
timates the fractal dimension of the data as a measure of self-similarity to determine
the necessary number of features (Aviles-Cruz et al., 1995). The difficulty with these
methods is that they may not necessarily produce the best number of features for use
with the classifier.

e Selecting features by trial-and-error, which may involve some dimensionality-reduction
work to visualise the clusters in the data, can be time consuming and laborious.

e Pre-processing is usually developed independently of the classifier, whereas the features
and the classifier are inter-dependent.

e There is no concept of optimality. Although there is no problem with using intuition
and experience per se, there is no way to be sure that the operator has done the best
job possible in manually extracting the features.

CHAPTER 4. AUTOMATIC FEATURE EXTRACTION 79

Optimal features must be optimal with respect to some criterion, and the selection of an
appropriate criterion for a pre-processor is not obvious. For a classifier, the objective is clear:
to minimise the error rate. The criterion for good features suggested here is to minimise the
error rate of the classifier on the pre-processed data.

4.3 Automatic Feature Extraction

Given the problems associated with manual feature extraction, a general framework is re-
quired under which the pre-processing stage can be optimised. One may question the possi-
bility of a general pre-processor, since it has been stated in this thesis that pre-processing is
the problem-dependent component of pattern recognition. Consider, however, the following
pattern recognition tasks:

1. understanding of human speech,

2. recognition of human faces,

3. hand-written character recognition,

4. segmentation and classification of occluded objects in a visual scene, and
5. medical diagnosis via evaluation of diagnostic evidence.

These are all quite different tasks with different subtleties and data types, but they have
something in common: these tasks can all be performed by humans using neurons and
adaptive learning processes. The implication is that there are common aspects to these
problems which can be addressed under a general framework: an exemplary system being
the human brain. The extraction of features in a problem-independent manner will be
referred to here as aufomatic feature extraction.

There are existing methods that extract features in a problem-independent way. The
most common is principal component analysis (PCA), which projects the data onto the prin-
cipal axes of maximum variance in the data. The projections onto those axes with the largest
variance are used as features. There are two problems with PCA. First of all, the features
are linear combinations of the inputs and are not powerful enough to describe non-linear
data (Bishop, 1995, pg. 314). Secondly, PCA is useful for description of data, but not
always for discrimination. In some situations the lower-variance principal components may
contain the discriminatory information in the data, but would be discarded by PCA (Bishop,
1995, pg. 318). Discriminant analysis provides methods for extracting linear features with
discriminatory qualities. These methods find the optimal linear transformation of the data
according to a class-separability criterion (Fukunaga, 1990). Unfortunately, one needs to
know something about the structure of the naturally-occurring clusters, since different cri-
teria are appropriate for different cluster configurations (Duda and Hart, 1973).

Some people in pattern recognition research have attempted to build a perfect classifier
and de-emphasise feature extraction. In such cases the pre-processor is intrinsically contained
in the classifier. For example, a multi-layer perceptron used for classification is often fed the
raw data at its inputs with no explicit pre-processing. The non-linear hidden units transform
the input data in successive stages, with a different representation from one layer to the next.
It has been observed in (Gallinari et al., 1991) that for these internal representations, the
clusters in the data are progressively more separated and compact from one layer to the
next. Thus the early layers of the network learn to perform feature extraction, and the final
layers perform classification.

The MLP suffers from two drawbacks which detract from its generality but are differ-
ent from the limitations of PCA. Firstly, the activation functions used in the hidden nodes

CHAPTER 4. AUTOMATIC FEATURE EXTRACTION 80

are sometimes inappropriate for a given problem. Secondly, the optimal structure and in-
terconnection for an implemented network is unknown beforehand. These problems will be
discussed in detail later, but it must be noted that both arise from a discrepancy between the
theoretical existence of a network to perform the required mapping promised in Theorem 2.1,
and the limitations of what is practically realisable on current-day computers.

Therefore the MLP could not, for instance, be used for classification of 1000 x 1000
natural images because this would require over n million weights in the first hidden layer
for n hidden nodes, and the data would be too sparse for the optimisation of so many
weights. The computational and dimensional problems of the fully-connected MLP have
been overcome by convolutional networks (Lawrence et al., 1996) through the use of three
mechanisms: local receptive fields, shared weights and spatial sub-sampling. Each layer in
the network contains neurons that are connected to only a sub-set of the units in the previous
layer, and all neurons in a layer have the same weight values.

Another automatic method for non-linear feature extraction is to use an auto-associative
network which simply learns the mapping from each training instance to itself, but which
has a hidden layer in the centre with only a few hidden nodes (Bishop, 1995; Haykin, 1994).
The output values at the hidden nodes for a given input constitute a low-dimensional non-
linear representation of the data. This technique requires at least three hidden layers and
expensive training algorithms.

The methods for automatic feature extraction listed in this section can be considered
as frameworks for generalised pre-processing, albeit unwitting ones. In general, all existing
methods for automatic feature extraction are restricted to some fixed structure and functions
of which the features are composed. This imposes a limitation on the applicability of such
techniques and on the range of underlying physical generative processes that can be efficiently
modeled.

4.4 Contributions of this Thesis

This thesis introduces the concept of a generalised pre-processor (GPP) which is not found
explicitly in the literature. The generalised pre-processor provides a framework for automatic
feature extraction under which optimisation of the pre-processing stage can be performed.
The GPP extends the traditional Universal Approximator to be both universally applicable
and implementable using finite resources. The optimal GPP must be sought in the context
of the classifier used. The shift of focus towards common facets of pre-processing rather than
classification is in itself a contribution to pattern recognition research, and may become the
launching pad for future fundamental developments in the field. Nevertheless, the hypotheses
and investigative questions introduced in this sub-section constitute the formal contribution
of this thesis.

Before proceeding to the hypotheses and research questions, let us define a constituent
function to be any function from which a pre-processor is composed. Note the distinc-
tion between constituent functions and basis functions. The term “basis function” tra-
ditionally refers to a function appearing in a linear combination. For example, the sine
and cosine functions are basis functions for the Fourier series representation. The defini-
tion of constituent functions is more general than that of basis functions. For example,
the addition and multiplication functions are also included as constituent functions of the
Fourier series representation. A distinction is commonly made between a linear function
and a non-linear function. A linear function is a linear combination of its arguments, ie:
f(z1,z2,...,2q9) = ap + 1.1 + a2.T2 + ... + aq4.x4 where the a; are constants. A non-linear
function is any other non-constant function.

The usefulness of a GPP is motivated by the following three conjectures:

CHAPTER 4. AUTOMATIC FEATURE EXTRACTION 81

Hypothesis 4.1 A pre-processor constructed from the appropriate constituent functions can
be more economically realisable than existing methods of universal function approximation.

Hypothesis 4.2 A pre-processor having the appropriate structure can be more economically
realisable than existing methods of universal function approzimation.

Assuming that the results of these two hypotheses are positive, it follows that:

Hypothesis 4.3 A pre-processor having the appropriate structure and constructed from the
appropriate constituent functions can be more successfully applied than existing methods of
universal function approximation.

On the basis of these hypotheses, one would like to construct a pre-processor using arbitrary
non-linear functions and having arbitrary size and structure. This requires a search for the
optimal pre-processor of arbitrary size.

Hypothesis 4.4 Search techniques that employ a population of solutions are most appro-
priate for a search over pre-processors of arbitrary size, structure and constituent functions,
and are able to focus on models with the right level of complezity.

If this hypothesis is true, then for reasonably simple underlying models, the search space is
effectively reduced to a manageable size.

Many questions arise from the points made so far; the questions addressed in this thesis
are:

Question 4.1 Is a search over pre-processors of arbitrary size, structure and constituent
functions feasible for real problems?

Question 4.2 Is the generation of an economically-represented pre-processor useful for knowl-
edge discovery?

A section is dedicated to each of these hypotheses and questions below, but first the scope
of this thesis is defined.

4.5 Scope of this Thesis

The concept of automatic pre-processing of data for classification opens a multitude of av-
enues for research. This thesis constitutes a first step, and does not attempt to address all
of the issues at hand. The primary investigation of this work is the use of an evolutionary
optimisation technique to search for a variable-sized network of interconnected non-linear,
even discontinuous functions for pre-processing of data.

Pattern recognition has applications in every area of life, and only a sub-set of these
problems can be addressed. The specific area of supervised classification was chosen for
examination because of the availability of public domain data sets, and the presence of
ground-truth information for evaluation of results. The wide variety of problems that can
be examined in this genre facilitate general results, whereas focusing on face recognition or
speech recognition would have limited the scope of the work.

The criticism may be leveled at this work that the synthesis algorithm used only works
with low-dimensional data, so pre-processing is not needed anyway. The experiments had to
be designed either for high-dimensional data or for low-dimensional data. There are several
reasons why high-dimensional data were not used:

e Use of low-dimensional data allows for comparison with other classification methods.

CHAPTER 4. AUTOMATIC FEATURE EXTRACTION 82

e Manipulation of high-dimensional data requires exploitation of regularity. This issue
has already been addressed in work on convolution networks, automatically-defined
functions (Koza, 1994b) and the work of Teller (see Section 4.12).

e The use of low-dimensional data isolates the issues of interest, non-linear constituent
functions and arbitrary structure, from the issues of regular structure and sparseness
of the data.

e Work has already been performed by another researcher on the use of GP for automatic
classification of images and sound waveforms. Use of high-dimensional data with EPrep
would have resulted in work very similar to that of Teller (Teller and Veloso, 1996).

Given that mechanisms exist for exploiting regularity in high-dimensional data, the work
done here can be considered as a search for what pre-processing should be applied to the
data with regularity. This is literally the case in the satimage and segment problems to
be encountered later (see Appendix C), which are image-segment classification problems.

The feature extraction methods considered in this thesis are functional compositions of
constituent functions and input variables, and are therefore memoryless. Models that rely
on previous inputs to the pre-processor, such as hidden Markov models and recurrent neural
networks, are not considered. These models are useful for high-dimensional data, such as
images and time-series, that are explicitly correlated. Most of the data sets examined in this
thesis do not have @,{L)licit. correlations between the input measurements. Hence there is no
particular benefit to using pre-processor models with feed-back in the experiments of this
thesis.

The method used to investigate Questions 4.1 and 4.2 is empirical rather than theoretical,
the reason being that the questions are about the situation in the real-world rather than on
paper. The traditional machine learning and artificial intelligence approach to evaluation of
classification methods is empirical because the data and algorithms are usually too complex
for a realistic formal treatment (Flexer, 1996). While experiments on synthetic data can
be informative, and indeed are performed in the work of this thesis, experiments using real
data are required to ascertain the practical utility of a system. Also, the use of empirical
evaluation is similar to the prototyping methodology. We can quickly build a system to “see
if it works”, learn more about the problem and ascertain whether further investigation is
worthwhile. If so, then we can return with a more formal treatment, smoothing the rough
edges of decisions previously made via heuristics.

4.6 Hypothesis 4.1: Benefit of Appropriate Constituent Func-
tions

This section addresses the validity of Hypothesis 4.1: can the use of appropriate constituent
functions result in a more efficient pre-processor than existing methods of universal function
approximation? The method will be to demonstrate situations in which this hypothesis is
true. The relevance of this postulate in real-world situations is not addressed here. First, let
us define what is meant by “appropriate constituent functions”.

It is a commonly known fact that any periodic, piece-wise continuous function can be
represented as the weighted sum of sine and cosine functions of different frequencies; this is
the Fourier Series representation of the function. The basis functions used are sine and co-
sine functions, which are very important in engineering because they are the eigen-functions
for linear time-invariant systems. The consequence is that, given sine and cosine functions,
we can construct any function interesting to humans, and therefore any pre-processor. The
problem is in the efficiency of the implementation, because these basis functions can be inap-
propriate in some situations. For example, a square wave function can be exactly represented

CHAPTER 4. AUTOMATIC FEATURE EXTRACTION 83

a Fourier series, but an infinite number of basis functions is required. Obviously this is not
practically realisable, whereas a finite set of threshold logic units could be used to represent
the square wave over a finite interval.

The Universal Approximation Theorem (Theorem 2.1) for the MLP states a similar result,
that any continuous function can be represented as a composition of addition, multiplication
and the activation functions at the hidden nodes. Addition, multiplication and the activation
functions can therefore be considered as the constituent functions for this pre-processing
method. In a similar manner to the Fourier Series representation, the MLP can approximate
any function in theory, but the practical implementation may be prohibitively large. To
illustrate, consider the 2-class classification problem shown in Figure 4.1. There are 900 2-
dimensional vectors, each belonging to one of two classes separated by the sinusoidal decision
boundary 0.4sin(27 fz1), with f = 15 Hz and z; € [-1,1]. The data are divided into 200
training, 100 validation and 600 test samples.

0.5y % X § Xx % s . x X X
X x X . x
- X X X
MINEN N N AT)
/'| |\ | X | [1% |] | |
1 (4 el | | \ 3 x| | [xxx [1x [\
0.3F] % 2 x x| {1 [& x|
[II x | lI x X K J II x| | x | { I| ||| b \
| | [x |
02 '-"Oq, % fo | | 9 \x P £|* x| I|X | | x| 'l
lo | % [0l [= [[| x| | x| |
o1l | [% | ‘ N \ ‘ ¥ [q o |
& | | e | 130 | | ol >><(|IO [| |
o [xfoo " & | > fg | | T
| | o \ |
o B | | t -3 | | | %] o
¥ 0 | x g | | xp X%- ol | '| x| |
° II K% | I #0 l 5 l | ol -]O | b
-0.1 ° wd | | | [
S B P SO I L A S A N (N f
i R O A U T S N A
Oll P o] II. X'ICI OO || |0 a Vid i |I cfl} [ll |[0
-0.3f of ol 7 | O\ | | | i) L/
\ o |II) “- = ﬁ \/o o & /
04k 0 \/ \1 oo V ol gV V o\l &
0.4 © O@o@] 0,0 o o
o
-0-5:: o © 1 (o 0 e o o) %

Figure 4.1: Synthetic sinusoidal boundary problem; the data set on the domain [0, 0.5] (o:
class 0, x: class 1).

The MLP was used to classify this data. The experimental configuration is described
fully in Section 6.3.3.1; in brief, the RProp algorithm (Riedmiller and Braun, 1993) was
used to update the weights, and early stopping was used to halt training. To select the
MLP architecture, 36 preliminary runs were performed: 6 single-layer and 6 double-layer
architectures with up to 32 hidden nodes were searched, with 3 runs per architecture. Only
connections between consecutive layers were used, and the target vectors were restricted to
the [0.1, 0.9] interval. The final results were obtained from 10 runs using the best architecture.

For this data set the MLP obtained a best test set misclassification error of 25.96%,
and was clearly unable to approximate the complicated decision boundary with the limited
number of hidden nodes used. If sinusoidal activation functions were used in the MLP,
classification may have been more successful.

Numerous other scenarios can be engineered to make classification difficult for the MLP,
such as the spirals problem described in Appendix C. The solution is to use constituent
functions that are appropriate for the problem, but this generally prohibits successful training
of the network. First of all, the activations must be everywhere differentiable, and second,
the use of arbitrary continuous functions such as the sine function may introduce too many
local optima to facilitate successful training.

CHAPTER 4. AUTOMATIC FEATURE EXTRACTION 84

Further proof for the validity of Hypothesis 4.1 comes from Kolmogorov’s theorem. In
answer to the 13th Hilbert problem, Kolmogorov proved that every continuous function of
several variables can be written as the super-position of a fixed number of functions of one
variable (Bishop, 1995, pg. 137). This theorem has had limited relevance for neural networks
because the uni-variate functions are generally not smooth and their choice relies on the
function being approximated (Bishop, 1995). The fact that a fixed number of functions is
required for the Kolmogorov decomposition means that the mapping is practically realisable,
except in cases where the univariate functions themselves are extremely complicated. The
theorem therefore endorses the proposed framework of the use of arbitrary smooth or non-
smooth constituent functions for the efficient realisation of a pre-processor.

4.7 Hypothesis 4.2: Benefit of Appropriate Structure

Now we turn to Hypothesis 4.2, that a pre-processor having the appropriate structure can
be preferable to a traditional uniform structure. Let us first explore what is meant by
“structure”. The structure of a pre-processor defines the functional composition of the
outputs, whereas the constituent functions define what goes into the composed functions.
Any composition of functions can be represented as a feed-forward network of interconnected
nodes, the nodes representing the functions and inputs, and the interconnections denoting
the relationship of a function argument. In Chapter 2 it was seen that the traditional MLP
consists of a number of layers of neurons, each of which is connected to every neuron in the
preceding layer. For a given number of layers and neurons, however, there is no reason to
believe that this interconnection strategy is preferable to any other: we could connect each
neuron to every neuron in each previous layer, or only connect to a sub-set of the neurons
in the preceding layer. One must also select the number of hidden layers and the number
of neurons in each layer. The structure of the MLP is the combination of number of hidden
layers, the number of nodes in each layer, and the matrix of interconnections between the
neurons.

The concept of structure is not relegated only to neural networks: there are numerous
other methods of data transformation which have some kind of structure. Decision trees
and genetic programs are examples where the solutions have structure that is automatically
obtained. For traditional neural networks, however, the structure must be selected by hand
before training. The selection of the correct structure is very important, because it directly
determines the complexity of the model. If the complexity of the structure is not concomitant
with the data, then under- or over-fitting is likely to occur.

Note that the Universal Approximation Theorem states that the same structure, namely
a single hidden layer, is sufficient for all continuous mappings, although the optimal size of
the structure can vary. But once again the existence theorem is not always compatible with
practice. A double-hidden-layer network may achieve the same mapping as a single-hidden-
layer network but with fewer nodes. Similarly, a more economical representation may be
achieved by reducing or increasing the number of interconnections between nodes; examples
are found in (Fiesler, 1993). We have already seen an example of appropriate structure
in the convolutional network, which, by reducing the number of inter-connections, achieves
what the traditional MLP cannot within the bounds of current-day computational resources.
The sheer weight of research into automatic methods for the choice of network structure is
sufficient evidence that the optimal network structure is considered to be important (Branke,
1995; Bartlett, 1994; Miller et al., 1989; Balakrishnan and Honavar, 1995a; Balakrishnan
and Honavar, 1995b; Chen et al., 1994; Zhang et al., 1995; Bornholdt and Graudenz, 1992).

CHAPTER 4. AUTOMATIC FEATURE EXTRACTION 85

4.8 Hypothesis 4.3: The Generalised Pre-Processor

The case for Hypotheses 4.1 and 4.2 have been argued. On the basis of these hypotheses,
Hypothesis 4.3 is that a pre-processor with flexible structure and composition has particular
benefits in some situations. The generalised pre-processor is proposed as a framework for
constructing pre-processors with arbitrary structure and using arbitrary functions. The GPP
is simply a functional composition consisting of constituent functions selected by the user,
and the input measurements as input variables. The GPP can be represented as a feed-
forward network similar to the MLP. The differences from the MLP are that the architecture
can have any number of layers, nodes and inter-connections, the inputs are not weighted,
and the functions acting on the inputs to the nodes can take any non-linear form, and even
be discontinuous. The GPP is a generalisation of the MLP, and so in theory it can perform
any continuous mapping. The important feature of the GPP is that it is realisable with
finite resources. This feature is made possible if the appropriate constituent functions for
the problem are available.

Under the GPP framework, a criterion for an optimal pre-processor can be developed.
Since the pre-processor is designed for use with a classifier, a candidate criterion is min-
imisation of the estimated misclassification rate of the classifier on the pre-processed data.
There is an infinite number of pre-processors that yield the same estimate of misclassification
rate for a given problem. The simplest pre-processor is chosen as the optimal one, because
it is the most practically realisable. The concept of “simplest” here is some compromise
between the complexity of the activation functions and the complexity of the pre-processor’s
structure.

By comparison of Kolmogorov’s theorem with the Universal Approximation theorem for
single-hidden-layer sigmoidal networks, it may appear that there is a duality between the
constituent functions and the structure of the pre-processor. That is, we can fix the con-
stituent functions and optimise the structure, as with the MLP, or we can fix the architecture
and modify the constituent functions, as stated in Kolmogorov’s theorem. This duality is
false, however, because Kolgomorov’s constituent functions can be arbitrarily complex and
may therefore have a rich compositional structure of their own. Rather than a duality there
is a trade-off between the complexity of structure and constituent functions: if we fix the
structure to be small, we may need very complicated constituent functions, and if we use
simple constituent functions we may need a complex structure. For instance, we could choose
to build a pre-processor from addition functions, in which case multiplication would have to
be represented by multiple additions: the simpler addition functions are accompanied by an
increase in structural size. The practically desirable compromise lies somewhere in between,
and is dependent on our level of representation of the functions. This also affects our concept
of the “simplest” pre-processor mentioned earlier. The choice of constituent functions to use
in constructing the pre-processor could be affected by the following considerations:

e Choose functions which have been known in the past to be useful for pre-processing;
eg: Fourier transform, Gabor functions.

e Use functions which are in some way complementary, having different types of non-
linearity.

e The functions should be meaningful to humans so that the results can be understood.

4.9 Hypothesis 4.4: Advantage of Population-Based Search

There is an infinite number of ways to represent a single functional mapping. The whole point
of the generalised pre-processor is that it must be realisable using finite resources. The prob-
lem is, there is no known method for the synthesis of the optimal generalised pre-processor;

CHAPTER 4. AUTOMATIC FEATURE EXTRACTION 86

in most cases, the induction of minimal structures is NP-Hard (John et al., 1994). A search
technique is required which allows the combination of arbitrary constituent functions and the
selection of an appropriate structure. The possibility of non-differentiable constituent func-
tions and variable-sized structure precludes the use of many traditional search techniques.
Only heuristic search can be used to manipulate totally general pre-processors, since gradi-
ent information is not explicitly available. Although the infinity of functions and structures
cannot be fully considered when searching for a pre-processor, the quest can be successful
because we are only interested in realisable pre-processors, which constrains the search.

The question arises as to which heuristic search technique to use. Let us define each
pre-processor a; by the pair a; = (A, 6;), where X\; € A is the structure of the model, its size
and interconnectivity, and 6; € ©,, is the set of parameters, inputs and constituent functions
of the model, referred to here as content. For a fixed structure A; there is a search space
over different contents, the size of which increases with the size of A;. Since the appropriate
structure for the pre-processor is not known beforehand, structures of many different sizes
need to be considered initially. The danger is that, since there are generally many more pre-
processors of larger size that perform a particular mapping than of smaller size, the search
technique may become focused on larger structures which increases the size of the content
search space, and makes discovery of a suitable pre-processor less feasible.

Optimisation algorithms that use a population of solutions to search in parallel, such
as genetic algorithms, are referred to as population-based methods. The more traditional
optimisation methods that employ only a single solution to conduct the search are termed
single-point algorithms. Hypothesis 4.4 postulates that population-based search techniques
are more appropriate than single-point techniques for a search over generalised pre-processors
because they are able to focus on models with the right level of complexity. If so, then for
simple underlying models, the content space is effectively reduced to a reasonable size. The
hypothesis is demonstrated here with some general analysis using the following notation and
concepts.

There is a fitness function measuring the accuracy of the model, f : A x © — R, with
higher values of f being preferable and f(a) > 0 V a € A. Some measure of the size of
individual ¢ is denoted as s;, and may be taken as the number of nodes in the pre-processor.
We construct the situation in which the optimal solution with fitness f* has a relatively
small size s*. The population-based algorithm begins with a population of M solutions with
sizes 0 < s51(0) < s$2(0) < ... < sp(0), and s* is one of the lower values of size. The
algorithm is run for G' generations, with the size of individual ¢ at generation g being s;(g)
and the population size M remaining constant. To ensure that the same number of points
is visited by both methods, the single-point algorithm is run M times, and run ¢ starts from
individual s of the initial population of the population-based method so that a range of sizes
is considered. Each run of the single-point method lasts for G iterations, and s;(g) is the
size of the current solution at iteration g of run 4.

The population-based method is considered first. The total size of the initial population
is:

M
5(0) = Z si(0)
=1
Let us assume that simple roulette-wheel selection is used in generating the next population.
Parents are selected in direct proportion to their fitness and offspring are formed through
the application of genetic operators:

ai(g +1) = T(ai(g))

A1l heuristic search techniques use a neighbourhood function to generate new search points
in the vicinity of the current best solution; in the case of evolutionary methods, the genetic

CHAPTER 4. AUTOMATIC FEATURE EXTRACTION 87

operators produce the neighbouring points, or offspring. We would expect pre-processors in
the neighbourhood of a point to have a similar size and similar constituent functions and
parameters to that point. Since the operators are applied stochastically, the neighbourhood
function T is a stochastic process. Let us assume that T is unbiased with respect to size,
so that Ep(s;(g +1)] = si(g), where Er[] is the expectation with respect to the stochastic
function T'. The expected total size of the population in the next generation is:

) = Zfl((g))E 54(0))

fi(0)
Z HOR (4.1)

where we have used T'(s;(0)) to denote the size of the offspring resulting from the genetic
operator on individual 4, and f(0) to denote the mean fitness in generation 0. Let us consider
the sizes in the population to be a vector s(0), and similarly the corresponding fitnesses to
be a vector £(0):

s(0) = [51(0),s2(0),...,sm(0)]
f(0) = [f1(0), f2(0),..., far(0)]

Now we can write Equation(4.1) as a dot-product:

£(0) - 5(0)
70)
M
= e cosOONIED))
o \/Z 1f1 \/Zl 15Z _
= Meos0)"om 1ﬁ() zfilsm -0
— Mcos(8(0))F(0)S(0)5(0) (4.2)

5(1)

where 6(0) is the angle between the size and fitness vectors, F(0) is the ratio of the length
of the fitness vector to the sum of its elements, and similarly S(0) is the ratio of the length
of the size vector to the sum of its elements. We have the result that the total size of the
individuals in generation 1 is some factor times the total size in the previous generation;
this relationship generalises for all generations. Under what conditions does the total size

decrease? We must have:]
cos(6(0))F(0)S(0) < o (4.3)

A sufficient condition for a geometric decrease in GPP sizes is:
M cos(0(0)) < 1

We know from the triangle inequality that 0 < F/(0) < 1 and 0 < §(0) < 1. The fitness and
size values cannot be negative, therefore 0 < cos(#(0)) < 1. An example of a population of
size 2 for which cos(8) is relatively small is shown in Figure 4.2. As can be seen from the
figure, the angular separation between the vectors can be large if there is a good dynamic
range of fitness and size values, and if there is an inverse proportionality between fitness and
size. Although it has already been stated that there are usually more cases of near-optimum
fitness for larger sizes, one would generally expect the fitness function to be more volatile
for larger-sized structures. In such a case, the average fitness of smaller individuals will be
higher than that of bigger individuals, and the conditions for a small cos(f) are viable.

CHAPTER 4. AUTOMATIC FEATURE EXTRACTION 88

f/s

T CE

s s 1%

Figure 4.2: An example of size and fitness vectors for a population of size 2.

Equation(4.2) generalises to generation g:

5(g+1) = K(g) 3(9)

where K (g) = M cos(0(g))F(9)S(9). If K(g) <1 on average then there will be a geometric
decrease in the size of the population as generations progress. As s(g) approaches M.s*,
the mean size of individuals in the population will decrease. The sizes of the individuals
cannot be negative, so the variance will also decrease. Therefore the population will become
more homogeneous in size, and the size vector will approach a scaled version of the unit
vector [1,1,...,1]. Hence cos(f(g)) will increase, and the average size of individuals in the
population will stop decreasing.

To illustrate, simulation results showing the relationship between average individual sizes
from one generation to the next for three different optimal solution sizes are shown in Fig-
ure 4.4. Using M = 1000, the sizes in the initial population were randomly generated 2000
times. For each of these populations, the total population size in the next generation was
calculated using the piecewise-linear fitness function:

f(s) = 100.:% if s <s*
8= 100.5—577%1@5__—; otherwise

where S5 is the size of the largest solution in the population. This fitness function is shown
in Figure 4.3 for s* = 30. Note that the function quantifies the average fitness of individuals
at that size, and larger values of fitness are better. By comparing the plotted points in
Figure 4.4 with the line 5(0) = 5(1), it can be seen that the average size of individuals
decreases when greater than s*, increases when less than s* and stays the same when equal
to s*. Hence the change in solution size is always such that the sizes iteratively converge
upon s*.

The reason a geometric convergence upon the optimal solution size is possible with
population-based methods is that solutions with inappropriate size, and therefore relatively
low fitness, are discarded from the population on subsequent generations through natural
selection. Regions of the search space that are found from the initial population to hold the

CHAPTER 4. AUTOMATIC FEATURE EXTRACTION 89

Figure 4.3: The average fitness of individuals with a given size plotted for s* = 30.

Oplimal solulion slze, 8" = 30 Oplimal solution size, s = 50
T v

S(1)
average s|(1)

&0 120
Y average &(0)

(b) s* =50

Oplimal solution size, s =70

average s|(1)
»
<

i s ' . i
o 20 40 60 80 100 120
avarage {0}

(c) s* =70

Figure 4.4: Simulation results showing the change in size from one generation to the next
for different optimal solution sizes.

CHAPTER 4. AUTOMATIC FEATURE EXTRACTION 90

most promise can have a proportionate amount of resources invested in them in subsequent
generations.

Compare the population-based approach with the single-point search. The neighbour-
hood function used to generate new points is T'(.), the same as that used to generate offspring
in the population-based method. Therefore on average, half of the neighbouring points will
have a smaller size than the current point. Assume the best case for the single-point algo-
rithm: that each neighbouring point under examination with smaller size than the current
best point has higher fitness and becomes the new best solution, and that neighbouring
points with larger size have lower fitness. Therefore, beginning with s;(0) > s*, the size of
the best solution after g iterations will be:

where 6;(4) is the size change at iteration j of run ¢. The total size of all solutions at iteration
g over the M runs is:

M 9/2
sg) = >, [Si(o) - Z&'(ﬁ]
7=1

i=1
M g/2

= 500 =Y > &)
1=1j5=1

which, assuming the §;(j) are roughly the same on average, is an arithmetic decrease in
size. This is compared with the geometric decrease in size associated with population-based
search. Therefore the single-point search wastes resources on the larger initial pre-processors,
for which the content space is also large and the likelihood of finding a near-global optimum
is smaller. The reason single-point search suffers in this way is that the runs are independent,
so that if the search begins in a relatively unfit region of the search space, it is stuck there
for the rest of the run. In the population-based case, these unfit individuals are replaced
with the offspring of the fitter individuals.

Note well that the argument here is the possibility that population-based methods can
out-perform single-point methods by focusing on models of the appropriate size. Whether or
not this will be the case in practice is dependent on the problem, and in particular whether
Equation(4.3) is satisfiable.

The astute reader may have noticed that the hypothesis presented in this section appears
to be in contradiction to the bloating phenomenon described in Section 3.5.6. Bloating occurs
when the fitness and size vectors are correlated in the following way: solutions of various
sizes can all share the same fitness value, and more importantly, there is a path between these
solutions via the genetic operators. More specifically, via sub-tree crossover one can add to
a genetic program a sub-tree that does the same job as the previous sub-tree, but which is
much larger. Bloating is avoided in the experiments of this thesis by reducing the number
of these constant-fitness paths from smaller to larger individuals via the genetic operators.

4.10 Question 4.1: Feasibility of Automatic Feature Extrac-
tion

The whole point of the general pre-processor is that it is practical rather than hypotheti-
cal. It would be contradictory to propose a framework that is of no practical use. Hence
Question 4.1: is the search over generalised pre-processors feasible for real problems? By
“feasible” we mean that the probability of finding an appropriately near-optimal solution is

CHAPTER 4. AUTOMATIC FEATURE EXTRACTION 91

acceptable. It is not difficult to suspect that the search is infeasible when the size of the
search space is considered. Suppose the pre-processor networks are represented as trees of
minimum depth 1 and some maximum depth D. Each internal node of the tree can be one
of F' functions, and each leaf node can be one of V input variables or numerical constants.
Let us also assume that all functions take two arguments so that the trees are binary. We
can start to write the number of distinct trees for each depth:

n(l) = T
n(2) = F.T?
n(3) = F.n(2)?
n(4) = F.n(3)?

n(D) = Fn(D-1)>
Fz(d_l)_l_T2(d—1)

(F.7)2“™"
F

Therefore the total number of distinct pre-processors of depth between 1 and D inclusive is:
np(D) =

D

> n(d)

d=1

1 & od~1)

& > (F.T) (4.4)
d=1

which increases with depth as an exponential of an erponential function. To fix ideas, the

number of possible trees is listed in Table 4.1 for various values of D using a modest F =

T = 5. It is not unreasonable to expect pre-processors for real problems to have more than

five functions or terminals, or a depth larger than 8, so how can one expect to search this

space with any success?

Table 4.1: Number of possible binary trees with depth less than or equal to D and consisting

of H functions and 5 terminals.
D 1 2 3 4 5 6 7 8

np(D) || 5 | 125 | 78,125 | 3.052 x 1010 | 4.657 x 102! | 1.084 x 10%* | 5.878 x 1088 | 1.727 x 10178

The method chosen to answer this question is empirical experimentation. Much effort
could have been expended by formally analysing a real-world problem, but the simplifications
required to make the analysis tractable would cast suspicion on the validity of the results.
Also, it is preferable to explore this question for as many real-world problems as possible, since
results obtained for one problem may be totally different from those on other problems, but
would nevertheless remain in the mind of the reader as a characterisation of the technique.
The software required to perform the investigative simulations is called the Ewvolutionary
Pre-Processor (EPrep for short). The total algorithm is very complicated and incorporates
much knowledge gained through iterative investigation; it is described fully in Chapter 5. The
question of whether EPrep can effectively search for pre-processors is discussed in Chapter 6,
where comparative experiments are performed on real data using EPrep, neural networks,
decision trees and a series of other statistical classification methods. The following sub-
sections discuss some of the issues associated with EPrep.

CHAPTER 4. AUTOMATIC FEATURE EXTRACTION 92

4.10.1 Genetic Programming for Automatic Feature Extraction

To find an acceptable solution to an NP-hard or N'P-complete search problem, special
properties of the objective function must be exploited. There are two areas of exploitation
that appeal to intuition. Firstly, the efficient convergence to the right-sized solutions offered
by population-based algorithms, as stated by Hypothesis 4.4. Secondly, the intuitive semi-
independent contribution of features to discrimination. It is a simple fact that a mapping
from a d-dimensional space to a g-dimensional space is essentially the concatenation of ¢
mappings from a d-dimensional space to a 1-dimensional range. In this respect, a pre-
processor can be viewed as a set of features, each of which maps from the measurements
to a single feature dimension. Each feature, when used on its own for classification, has its
own ability to discriminate the data. Although not necessarily true, it is an intuitive step
to assume that some features have greater discriminatory power than others, and that the
addition of some feature to an existing set can improve the performance of the resulting set
more so than a feature of lesser discriminatory power. This semi-independent contribution
to fitness of a portion of the pre-processor is reminiscent of the building block hypothesis
in genetic algorithms. Therefore since a population-based approach is already suggested, a
recombinative method should also be employed to exploit the possible building blocks in the
solutions.

The generalised pre-processor to be optimised is an arbitrarily-connected feed-forward
network of different non-linear functions. Such a network can be represented as a forest of
trees: one for each of the d-dimensional to 1-dimensional functions described previously. The
whole field of genetic programming, described in Chapter 3, is devoted to the manipulation
of tree structures containing arbitrary functions at the internal nodes. Hence GP was chosen
as the general method to search for pre-processors. The final algorithm deviates signifi-
cantly from the standard genetic program, but still manipulates the same variable-sized tree
structures. GP uses recombinative search to exploit possible super-positioning effects with
the features, and does not require explicit gradient information from the objective function,
which is a necessary property to allow arbitrary constituent functions in the pre-processor.

4.10.2 Pre-Processor Representation

The functions of which the features are composed are selected to be complementary and
to handle different types of data; they are described fully in Chapter 5. For reasons to
be made known in the next section, the constituent functions are also commonly used by
humans. There are arithmetic functions, such as addition, multiplication, absolute value and
exponentiation, boolean functions such as AND, OR and NOT, and miscellaneous functions
such as if-then-else and test for equality. The arguments to the functions can be the outputs of
other functions, the input measurements for the problem, and randomly-generated constants.
It would be ideal to throw in every function known to man and have the algorithm determine
the best combination of these. In practice, GP is severely limited by the exponential growth
in search space with the number of functions and terminals (see Equation(4.4)). Therefore
the dimensionality of the data is severely restricted, and images or time-series cannot be
used directly with EPrep.

4.10.3 The Role of the Classifier

It is very important that the pre-processor be constructed to complement the classifier. If
the pre-processor were developed independently of the classifier, then the objective criterion
used could be completely different from that used to train the classifier. For example, a
classifier that assumes only one cluster per class must be preceded by a pre-processor which
collects all the clusters from one class into a single cluster. The GP approach allows the

CHAPTER 4. AUTOMATIC FEATURE EXTRACTION 93

pre-processors and classifier to be considered together by basing the fitness function on an
empirical estimate of misclassification cost using the classifier on the pre-processed data.

It may be argued that no classifier is required at all: since the pre-processor performs
a multi-dimensional mapping, why not have it approximate the mapping directly to the
predicted class labels? Indeed, this approach has been taken previously using GP (Tackett,
1994). In that work, vehicle detection was framed as a two-class classification problem.
Each individual in the population yielded a single feature, which was thresholded to obtain
a “present/absent” decision. This idea was generalised to C classes by (Banzhaf et al., 1996),
in which the range of the output value was divided into C' regions of equal size. The region
to which the output fell corresponded to the predicted class of that sample.

The method of arbitrarily dividing the output range into C' fixed intervals is referred to
here as a static decision rule. The static decision rule approach is not used here because it
is not as general as the adaptive decision rule realised by a trainable classifier. The local
tuning performed by the classifier facilitates search by removing the reliance of the pre-
processor fitness on the arbitrarily-placed decision region boundaries. Take the example in
Figure 4.5(a) below: three classes, with means of 5, 15 and 25 along the single feature,
fall into the regions 0-10, 11-20, 21-30. The fitness function designates that each sample
falling in the 0-10 region comes from class 1, and so on, so that 100% correct classification
is achieved. Now consider the data shown in Figure 4.5(b) which have been transformed by
some pre-processor: although this solution is semantically correct in that it separates the
data into distinct clusters, it is judged to be syntactically incorrect by the objective function
because the samples do not fall in their arbitrarily-placed regions. A classifier with adaptable
decision boundaries, on the other hand, introduces a shift and scale invariance that can
recognise semantically correct solutions regardless of the irrelevant scale and shift factors.
This provides the GP with more ways of representing desirable solutions, and therefore
increases the likelihood that the GP will converge to a good solution.

—— e S S e—

30
(a) Deemed correct by the fitness function.
| o—— : © . Smcmsosly s —
-8 -6 -4 4 6 8 10

(b) Deemed incorrect by the fitness function.

Figure 4.5: An example of the static decision rule.

Another reason why a classifier is useful is that it may allow the pre-processor to be
simpler in some situations. For example, if the classification problem has a parity-type
structure, a pre-processor to perform the full task of discrimination may be quite complicated
and difficult to design. If, however, a classifier is used which can discriminate multiple clusters
per class, then the required pre-processing is simpler and easier to find.

CHAPTER 4. AUTOMATIC FEATURE EXTRACTION 94

4.11 Question 4.2: Automatic Feature Extraction and Knowl-
edge Discovery

The field of knowledge discovery, or data mining, has received extraordinary popularity of
late. The basic principle is that large databases can be automatically processed by computers
to find succinct pieces of information which are “interesting” to people (Berry and Linoff,
1997). Example applications are fraud detection in banks, market segmentation for direct
marketing, and medical diagnosis. The most classic example of its use is in the finding
that nappies and beer were often bought simultaneously in a chain of supermarkets. The
explanation is that fathers are performing this transaction. Despite the simplicity of this
pattern, there are relatively few such real-world examples. Techniques from statistics and
machine learning are widely used in data mining, such as clustering, decision trees, neural
networks and genetic algorithms. The enormous databases must first be reduced using simple
methods to a size which renders the application of these methods feasible. The learning
algorithm is used to form some sort of model of the data through regression, classification or
clustering. The model is then used for prediction, or scrutinised to reveal some underlying
patterns in the data.

There are an infinity of ways to describe a finite set of data. Therefore one may wonder
that the user could be at all certain that the model obtained is the true model responsi-
ble for generating the data. The principle of Occam’s razor is generally employed in data
mining: that among a set of models that accurately describe the data, the least complex of
those models is the most likely to be responsible for its generation. Given that the optimal
generalised pre-processor among those with adequate performance is the simplest according
to some criterion, it is possible that the resulting pre-processor could be reverse-engineered
to learn about the problem.

Question 4.2 asks whether EPrep would be useful for knowledge discovery. It is generally
agreed upon that the MLP is not useful for revealing underlying relationships, because the
model must be apprehensible by a human, and a set of real-valued weights reveals little. De-
cision trees, on the other hand, are useful for knowledge discovery because they generate a
series of questions or tests on the data which are easily understood by a person. The problem
with decision trees is that when the clusters are not axis-parallel or contain non-linear depen-
dencies between input variables, large complicated trees result and interpretability breaks
down.

EPrep has been designed to investigate Question 4.2 by taking the following design
measures:

e constituent functions are used that are meaningful to humans;
e the representation of features is simple to understand;

e the boundary between features is clear because they are represented as separate trees;
and

e in the context of equal classification accuracy, there is a bias towards simpler pre-
Processors.

There are two main difficulties with the interpretability of solutions generated by EPrep:

e the way in which the features work with the classifier to perform discrimination may
not be clear; and

e the GP trees generally contain superfluous material which makes no contribution to
the overall fitness of the individual.

CHAPTER 4. AUTOMATIC FEATURE EXTRACTION 95

The empirical investigations in Chapter 6 will serve to illuminate EPrep’s utility for knowl-
edge discovery. In particular, several synthetic problems will be used for which the true
underlying model is known.

4.12 Previous Work using GP for Pattern Recognition

Most of the previous work on classification using GP has been performed for a specific
application or domain. Classification of low-resolution optical characters has been achieved
by co-evolving 2-D features and the algorithms for using them (Koza, 1994b; Andre, 1994).
A similar approach was taken to the classification of protein segments in (Koza, 1994b).
Tackett (Tackett, 1993) evolved expressions to combine pre-calculated statistics of infra-red
images for the detection of military vehicles.

The Compiling Genetic Programming System has been used by (Francone et al., 1996)
on three classification problems to investigate generalisation capabilities as the training set
size is reduced. GP has also been used to classify data with missing values (Backer, 1996),
and to classify brain tumours from nuclear magnetic resonance biopsy spectra (Gray et al.,
1996).

Evolutionary computation has been used extensively for the design and training of neural
networks; an overview of this field is found in (Branke, 1995). In particular, genetic pro-
gramming has been applied to the evolution of neural networks for classification by Zhang
and Miihlenbein, who combined GP with hill-climbing to fine-tune the weights (Zhang and
Miihlenbein, 1995), and also by (Friedrich and Moraga, 1996), who used the Cellular Encod-
ing representation of (Gruau, 1992).

Teller and Veloso developed the evolutionary Parallel Architecture Discovery and Orches-
tration (PADO) system for the classification of arbitrary signals. The idea is similar to that
of EPrep: a system to automatically generate a program that can identify signals, so that
the wheel does not need to be re-invented for every classification problem. PADO has been
applied to sound and visual object recognition (Teller and Veloso, 1995b), and human face
recognition (Teller and Veloso, 1995a). PADO evolves programs that recognise individual
classes, and combines the outputs of these programs to give an overall decision. The PADO
system is extremely complicated, so a full description cannot be given here. Since there are
similarities between PADO and EPrep, the main differences are listed:

e EPrep is designed to work with medium-sized databases of small signals, such as social
science databases, whereas PADO is designed for small sets of large signals, such as
sounds and images.

e PADO uses loops and indexed memory to detect and exploit regularities in the data;
this is how it can classify such high-dimensional signals.

e EPrep is designed to work with mixed data types, while PADO works with integers
only.

e PADO evolves the whole classification program, while EPrep searches for the pre-
processor only.

PADO is an exciting concept with motivations similar to the work of this thesis. However,
it is the author’s view that the data used to test PADO are so sparsely-distributed in the
very high-dimensional space that the accuracy of misclassification cost estimates must be
called into question. The work of this thesis tackles the issues of feature extraction at a
lower problem scale so that more realisable results can be obtained.

CHAPTER 4. AUTOMATIC FEATURE EXTRACTION 96

4.13 Conclusion

The main ideas that have motivated the work of this thesis have been presented in this
chapter. In brief, a general framework for pre-processing is required to further the field of
pattern recognition. This requires a functional mapping that is not only universal, but is also
realisable. It is the proposition of this thesis that feed-forward networks of arbitrary structure
and composed of different non-linear constituent functions constitute such a framework.
There is, however, no known algorithm to synthesise the optimal realisable pre-processor.
The evolutionary pre-processor has been developed as a first attempt to search over the space
of these pre-processors. Although there is an infinite number of realisable pre-processors with
similar performance for a given problem, preference is given to less complex models according
to Occam’s principle.

The next chapter describes EPrep, the system used to search for an appropriate pre-
processor. Chapter 6 details the experiments used to investigate the feasibility of a search
over variable-sized pre-processors and their use in knowledge discovery. The conclusions are
given in Chapter 7.

Chapter 5

The Evolutionary Pre-Processor

5.1 Introduction

One of the questions posed in the previous chapter is whether a search over variable-sized pre-
processors with arbitrary constituent functions is feasible for real problems. The evolutionary
pre-processor (EPrep) is a piece of software which has been designed and implemented to
carry out the experiments necessary to answer this question. The purpose of this chapter is
to describe the EPrep algorithm and its components in detail. The details of the software
implementation are generally irrelevant to the algorithm itself, and are not included here.
Some of the implementation details and software design choices are included in Appendix B
for the curious reader.

5.2 Algorithmic Design Issues

Before examining the details of the algorithm, it is necessary to describe some of the overall
design issues that are independent of the implementation: namely the representation of
solutions, the population model and the objective function.

5.2.1 Solution Representation

Each individual in the population must represent a variable-sized arbitrarily-connected net-
work of nodes with arbitrary transfer functions, and a classification algorithm. The classi-
fication algorithm is specified by a label indicating one of a fixed set of classifiers available;
its use will be further described in Section 5.2.3. The remainder of this section focuses on
the representation of the pre-processing networks. There is no unique representation for this
task; in choosing a representation the following criteria must be considered:

1. it should allow simple modifications by genetic operators that result in valid solutions;
2. the migration of highly-fit short-defining-length building blocks should be facilitated;
3. the solutions should be easy for a human to read and interpret.

Note that it is the combination of representation and operators that facilitates efficient search,
so in principle any representation can achieve the same results by appropriate modification
of the genetic operators. The operators can, however, become quite complicated which may
result in programming or logical errors. For instance, suppose we represented each solution
as a directed acyclic graph; it is not obvious how recombination would proceed, since the
crossover fragments would generally have different numbers of input and output links which
would be nonsensical in their new context.

97

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 98

The easier approach is to represent the network as a tree: this is the representation used
in EPrep. It is instructive to consider the representation used in the previous version of
EPrep and its associated flaws. An example is shown in Figure 5.1. The Pre-Processor
in Figure 5.1(a) represents a feed-forward network of diverse functional nodes. The Pre-
Processor operates on the input vector x = [z1, z2, %3] and transforms it to the output vector
y = [y1,%2]. The corresponding expression tree is displayed in Figure 5.1(b). The internal
nodes of the tree are functions which take the outputs of their child-nodes as arguments. The
leaf nodes are terminals which act as inputs to the Pre-Processor. Each function operates
on a vector of real-values and outputs a vector whose length depends on the function and
its number of inputs. Thus all edges in the tree represent vectors of arbitra,r:y length; this
approach allows complicated expressions to be represented succinctly. Each function operates
on the concatenation of the output vectors of its child-nodes. All terminals are scalar-valued.
The output features are generated as follows. Execution flows up the tree from the terminals
to the root node, and the features are gathered at the output points labeled “Y” on the
diagram. The left branch takes the ratio of z; and z, and stores it as the first feature. The
right branch calculates the sum of z;,z3 and 1. The two branches’ results are multiplied
to produce the second feature. The use of the output points in this representation allows
individual features to be transferred through crossover.

X, X, X,

%
X [Xt [x3] [t |
Vi Y2
(a) Example of a Pre-Processor. (b) Tree representation of the Pre-Processor.

Figure 5.1: An example of EPrep’s Pre-Processor representation.

There are several flawed aspects of this representation:

Weak Typing: any node can be an argument of any function regardless of the compati-
bility of their types. For example, a continuous input variable can be the argument
of a boolean AND function. The weak typing is often exploited by the GP to gener-
ate portions of code that are unnecessarily complicated. For instance, consider the

expression:

1
1< —
X2

If X1 is a boolean variable and X2 is real-valued, the meaning of the expression depends
on the numerical range of the real variable and on the representation of the boolean

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 99

quantity. The expression would be better expressed as:

NOT(X1) AND (‘i > 1)
X2 2

Vector branches: the fact that all inputs and outputs of functions are vectors can make
a solution virtually impossible to understand, since the dimension of each vector is
not displayed and must be determined by fully tracing the execution of the expression
below the relevant branch.

Varying arity: ! each function can take any number of arguments (greater than zero); this
requires default behaviours which impede the interpretation of solutions.

Output points: although output points provide a building-block structure for the solution
representation, their hierarchical placement is un-intuitive and impedes understanding
of the solutions. Output points can also produce highly correlated features, which
suggests an unnecessary redundancy and therefore sub-optimal parsimony.

The representation used in EPrep version 3.0 seeks to overcome these problems and ad-
dresses the 3 criteria mentioned earlier. The multi-tree representation is an array of expres-
sion trees, as shown in Figure 5.2. This representation has been used previously: in (Lang-
don, 1996a), data structures were evolved by adapting the set of functions for an abstract
data type. Each function was represented by a single tree. Similar work by (Bruce, 1996)
used an array of trees representing object methods to generate abstract data type objects.
The representation has been used in the dynamic modeling of industrial processes (Hiden
et al., 1997), in the evolution of teams of co-operative agents (Luke and Spector, 1996), in
the evolution of multi-input-multi-output dynamical system models for a communications
receiver problem (Jaske, 1997), and for the classification of magnetic resonance spectroscopy
data (Gray, 1997). Angeline has also used the representation for his multiple interacting
program system (Angeline, 1997a).

This representation has been referred to in the literature as a multi-chromosome, but is
here called a multi-tree chromosome to avoid ambiguities with biological nomenclature.

F1| F2 | F3 | F4

X1 ER AND | [x7
xo | | pow | x5 | [NOT
o x3 | |17 | x|

Figure 5.2: The multi-tree representation.

The motivation for using multiple trees is to permit the presence of multiple features that
can be un-correlated and are clearly distinguishable for interpretation. The representation
allows two scales of search: a search over combinations of features, and a search over the

!The arity of a function is the number of arguments it requires.

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 100

features themselves. As will be seen later in Section 5.8, recombination occurs at the feature
level, while mutation occurs at the node level. Thus combinations of useful features can
be manipulated as building blocks, while sub-trees within the features that do not contain
obvious context-independent building blocks can be modified gradually through mutation.

The following constraints are applied to the multi-tree representation, and are maintained
by the creation and genetic operators:

1. a feature cannot be a constant.
2. a genotype cannot contain two features that are identical.
3. a feature tree cannot exceed a user-defined maximum depth.

4. the length of the tree array cannot exceed d, the number of initial measurements
for the problem. This ameliorates the curse of dimensionality and maintains gener-
alisation. Also, this constraint avoids the bloating problem, because the number of
non-contributory features which can be added to an individual is limited.

The feature expressions follow the traditional GP methodology of fixed-arity functions
with scalar inputs and outputs. This does not preclude the construction of arbitrary func-
tions, since multiple-argument functions can be equivalently constructed through composi-
tions of fixed-arity functions. For example, +(1 2 3 4) = +(1 + (2 + (3 4))). To further
assist in the interpretability of solutions, the trees are strongly-typed: each terminal, func-
tion argument and function return value has a type (Boolean, Real or Enumerated) and a
valid program must have all return value types matching with the corresponding argument
types. The syntactic correctness of programs is maintained during initial random creation
and the application of the genetic operators. Strong typing reduces the size of the search
space as seen by the GP, because many isomorphic solutions are eliminated from the set of
possibilities. See Section 3.5.3 for further details.

In EPrep, there are three node types used:

Real: any real number, including the integers.

Enumerated: an enumerated value which can take one of several values having no natural
ordering, such as the colours {red, green, blue, yellow}.

Boolean: cither True or False.

Although Enumerated constants in EPrep and in the data are represented as integers, they
are not manipulated as normal integers (eg: with functions like addition and multiplication)
since the values by definition have no natural ordering. If the order does have significance
(eg: age in years, number of children) then the value should be treated as an integer, making
it type Real. It is important to note that different enumerated variables are not considered to
be of equal type, since they have different ranges of values. Therefore enumerated variables
X1 and X2 cannot appear in the boolean expression X1 = X27. As a result, the only
expression an enumerated variable can appear in is X = ¢?, where ¢ is a constant of type
Enumerated within the range of values taken by X. An enumerated variable can appear on
its own as a feature; ie: F1 = X.

The functions and terminals used in EPrep and their associated type specifications are
listed in Table 5.1. It is up to the user to select an appropriate sub-set of these functions and
terminals. All input variables for the problem are automatically included in the terminal set.
Note that the return type for functions that can return one of several types (eg: If-then-else)
is specified by the parent node in the program.

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR

Table 5.1: Function and Terminal argument and return types in EPrep.

[

Function or Terminal

Return Type |

Argument Types

Addition Real (Real, Real)
Subtraction Real (Real, Real)
Multiplication Real (Real, Real)
Power Real (Real, Real)
Ratio Real (Real, Real)
Absolute Value Real (Real)
Natural Logarithm Real (Real)
Exponentiation Real (Real)
Equal To Boolean (Real, Real)
Boolean (Enumerated, Enumerated)
Less Than Boolean (Real, Real)
Logical AND Boolean (Boolean, Boolean)
Logical OR Boolean (Boolean, Boolean)
Logical XOR Boolean (Boolean, Boolean)
Logical NOT Boolean (Boolean)
If-Then-Else Real (Boolean, Real, Real)
Boolean (Boolean, Boolean, Boolean)
Sine Real (Real)
Cosine Real Real)
Real Input Variable Real -
Enumerated Input Variable Enumerated -
Boolean Input Variable Boolean -
Real Constant Real =
Ephemeral Random Constant | Real -
Enumerated Constant Enumerated =

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 102

5.2.2 Population Model

Even though steady-state evolutionary models are becoming the norm in recent times, a
generational population model is used to promote diversity, and to ensure that all individuals
are evaluated using the same training sample order.

To maintain diversity, exact duplicate individuals are not placed in the population; there-
fore no reproduction operator is used, since it would place multiple copies of some individuals
in the population. It is still possible for duplicates to occur as the result of genetic opera-
tions. Functional duplicates are too difficult to detect, and so the question of whether or not
to exclude them will not be considered.

Some form of reproduction is still desirable to avoid the loss of highly-fit individuals
through destructive crossover. In EPrep, the N,., best individuals from the previous gener-
ation are copied straight into the new generation. This stops duplicates from being explicitly
placed in the population, and leaves an effective M — N, individuals for exploration.

5.2.3 Objective Function

The qualitative criterion for evolution is to generate a pre-processor that separates the data
appropriately for the classifier used. While class-separability criteria are often used in unsu-
pervised learning, decision trees and other methods, each criterion makes certain assumptions
about the data which would not be applicable in all instances. Also, the pre-processor should
co-operate with the classifier in its action on the data; this interaction may not be captured
by the criterion used. These issues were avoided by basing the objective function directly on
an empirical estimate of classification error rate.

The classifier used by each individual is one of a set of three algorithms chosen for their
speed, simplicity, few parameters and independence of initial conditions and sample order:

e Minimum-Distance-to-Means Classifier (Section 2.6.2);
e Parallelepiped Classifier (Section 2.3.1); and
e Gaussian Maximum Likelihood Classifier (Section 2.6.3).

The classifiers must not be too powerful, otherwise they will do all the work of classification
and there will be no pressure for EPrep to evolve useful features. The classifiers are to some
extent complementary: the MDTM and PPD classifiers only allow one cluster per class,
while the quadratic discriminant boundaries of the ML classifier allow multiple clusters for
each class. Note that the MDTM and PPD classifiers are generally different, since the mean
of the class samples is not necessarily the same as the centroid of the parallelepiped. Both are
included because the PPD classifier is faster than the MDTM classifier on average. These
classifiers have the advantage that only one training epoch is needed, making them fast
enough to use in EPrep.

The following method is used to calculate the objective function (fitness) of an individual,
which is to be minimised 2 by the evolutionary algorithm. Let the pre-processor function
of individual ¢ be Fj(x). The training data are transformed to the feature space using the
pre-processor of individual i:

Pi = {Yj|Yj = Fi(xj)§ j=1,...,n4}

where ny, is the number of training samples. Next the classifier associated with individual ¢
is trained on P;, resulting in the classification rule h;(y). The fitness of individual 7 is the

“The fact that the fitness function is minimised in EPrep makes the meaning of the word “fitness” counter-
intuitive. Fitness will nevertheless be used to refer to the objective function.

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 103

apparent error percentage on this transformed training set:

o= 1007 < 35 100 2.)
tr

=1

(5.1)

The computational cost of this objective function is linear in the number of training sam-
ples. Experience with previous versions of EPrep has shown that this complexity is a severe
limitation on the size of problem EPrep can cope with. The Rational Allocation of Trials
algorithm, described in Section 5.5, is used in EPrep 3.0 to relax this complexity somewhat.
This algorithm evaluates each individual on the bare minimum number of training samples
required to make the error estimate statistically accurate enough for the evolutionary algo-
rithm. The true objective function obtained using this algorithm is more complicated than
that described here, but for now the current description will suffice. It should be noted,
though, that the first N, samples are used in some situations to obtain a rough estimate of
the apparent error, where N, is a user-defined parameter.

The reader may be wondering at this stage how an individual that optimises this objective
function can provide good generalisation performance. There are three mechanisms that
assist in avoiding over-fitting on the training data:

Parsimony Preference: rather than parsimony pressure, since it is only a gentle bias to-
wards less complex models. In comparisons involving two individuals having equal
fitness, the less complex model is preferred. There are several ways to quantify com-
plexity, such as the number of nodes in the individual n,, the number of features ny,
and the number of distinct input variables n,. Since the curse of dimensionality is
such a problem, preference is given to individuals with fewer features. Parsimony in
the number of measurement variables is also important from an interpretative point of
view, so this is the next index for sorting. Finally the number of nodes is used to dis-
tinguish individuals. Overall the decision process is to select individual A in preference
to B if:

fa</fs
or fa=fpand n;}<n]“a3
or fa=fpand n’}l = n? and nf < nf

or fa=fpand n? :n? and n = nf and n? < nB

Time-varying Objective Function: because a sub-set of the training samples is used
to calculate classification error, the order of the samples is changed each generation
according to the algorithm described in Section 5.6. Therefore an individual can only
stay in the upper echelons of the population over a number of generations by performing
well on a series of partially-different training sets. This characteristic requires good
generalisation performance.

Early Stopping: for many problems, the best individuals in the population would even-
tually learn to classify the whole training set almost perfectly to the detriment of
generalisation. We would never know at what point the solutions lost their ability to
generalise. A validation set is used to detect this point in the optimisation, as described
in Section 5.9. The solution from the generation at which the best-of-generation indi-
vidual yielded the minimum validation set error is kept as the best-of-run individual.

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 104

5.3 The EPrep Algorithm

An execution flow diagram of the entire EPrep 3.0 algorithm? is shown in Figure 5.3. Each
rectangular block represents some process which may consist of several sub-routines. Each
diamond-shaped block represents a test as part of an if-then-else statement or as the condition
of a loop. Execution leaves the conditional boxes from the left or right when the condition
is true, and from the bottom when the condition is false. The arrows on connecting lines
show the direction of execution. The program begins with the block labelled “EPrep” at
the top, and ends with the block “end EPrep” below it. Most blocks in the diagram contain
references to the sections in which a description and motivation for their use can be found.

An overall description of the algorithm is given here. The remaining sections describe
the pieces of the algorithm in order of their logical dependence, and not the order in which
they are encountered in the diagram.

An outer loop allows the algorithm to be repeated R times, and the best overall results are
recorded. Each run begins with the initialisation of data structures, the most significant being
the random creation of the initial population. Then the generational loop is entered until one
of the termination criteria is reached. First, the enumerated and real-valued constants in each
individual are locally optimised. Then the Rational Allocation of Trials (RAT) algorithm is
applied to calculate the fitness of individuals and select individuals for the mating pool. With
the fitness of each individual calculated, the population can now be sorted with lower values
of the objective function being preferential and ties broken as described in Section 5.2.3. The
best individual is noted as the best-of-generation (BOG) individual.

Now that fitness evaluation is over, the next generation can be formed. No more fitness
calculations are required for this generation, so the training sample order is modified. Filling
of the next generation’s population begins with the transfer of the top Ny, individuals. The
rest of the individuals are obtained by taking the next parent individual(s) from the mating
pool and applying a randomly-selected genetic operator to obtain the offspring. Note that
if the offspring is the same as the parent, no modification has occurred and the process of
selecting and applying an operator is repeated to ensure that duplicates are not explicitly
placed in the population. It is important that the operator selection be included in this loop
because some operators cannot bring about a change in some individuals, and the repeated
application of such an operator would cause an infinite loop. With the new population
full, the operator probabilities contained in the individuals are perturbed randomly and
the inversion operator is applied. The validation set error of the BOG individual is tested
against that of the best-of-run individual (BOR) to see if this generation has yielded the best
performance so far. This point marks the passing of a generation, and the next generation
is entered.

At the end of a run, the BOR individual is first cleaned to remove superfluous features.
It is then compared with the best-ever individual according to validation set error and size
to check if it has become the best-ever individual.

5.4 Initial Population

The initial population is generated randomly and becomes the starting point for the optimi-
sation process. It is therefore crucial that the population be initialised with care, since biases
introduced in the initial population will inevitably bias the search algorithm. To obtain a
wide range of shapes and sizes in the new trees, the ramped half-and-half generation method

3This is a list of steps performed by the algorithm, and does not include the steps that would have to
be performed by the user to apply the algorithm to his or her data (ie: initial selection of functions and
terminals, parameters, etc.).

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR

EPrep
randomly sort
training set
create initial

end EPrep .
population

C

!

Sefion 5.6
/

Section 5.4

105

Section 5.9 $

Section 5.10

set BOR as true

best-ever

optimise

population

Y

clean BOR

individual

RAT selection

of mating pool

Section 5.2.3

BOR val <

best-ever val?

Sfalse

Figure 5.3: Execution Flow Diagram

3.0.

Section 5.8.1

Section 5.8.3

Section 5.2.3

¥

sort

population

¥

set top indiv

as BOG

¥

cale. BOG

val. set error

¥

update tr,

sample order

¥

copy top N

to next pop

Section 5.7

Section 5.5

Section 5.2.3

Section 5.9

Section 5.6

Section 5.2.2

<>

select genetic |

Section 5.8.1

operator

Y

perturb op.

probabilities

apply to m.p.
to get offepring

Y

apply inversion

to population

Section 5.8.2

Section 5.8.2

while
offapring=parent

insert offspring

into next pop.

set BOG as

best-of-run

I

l

of the evolutionary pre-processor Algorithm, version

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 106

is used (Koza, 1992a). This method generates equal numbers of solutions with depths ramp-
ing from 2 up to a user-specified maximum initial depth. Half of the individuals are created
using the full method, and half using the grow method. The full method ensures that all
terminals occur at the maximum depth of the tree (ie: all nodes at less than the maximum
depth are functions), and the grow method allows functions or terminals at any point in the
tree. The algorithm is described more fully in Section 3.5.1 of Chapter 3.

There may be cases in which the original input measurements constitute the best set of
features for one of the available classifiers. For this reason, and to ensure that each input
variable is present at least once in the population, the initial generation is seeded with one
individual that contains all the input measurements, F3 = z1,...,Fy = z4, and uses the
classifier that performs best on the full training set of the original data.

Exact duplicate individuals in the initial population waste space and reduce diversity
(Koza, 1992a); no duplicate features are allowed in the initial population (therefore there
can be no duplicate individuals either). The overall algorithm used for production of multi-
tree individuals is shown in Figure 5.4. In short, the length of each individual is randomly
selected according to a uniform distribution to be an integer between 1 and d inclusive.
The sum of these lengths is calculated, M’, and a population of M’ unique features is
created using the ramped half-and-half method. These features are then randomly sampled
without replacement to form the multi-tree individuals. The classification algorithm for each
individual is chosen as that of the set available which minimises the individual’s training set
error on the first IV, samples.

5.5 Mating Pool Selection and Fitness Evaluation

One of the main problems with EPrep is its computational burden: the number of training
samples processed is proportional to R x G x M x ny.. The first three factors cannot be
reduced, but it seems wasteful to use all n; training samples for the evaluation of each
individual when some individuals will be such poor performers that their low worth is made
evident using much fewer samples. In general, the minimum number of training samples
required is different for each individual and for each generation. For instance, we would
expect the need for more training samples to distinguish individuals in later generations as
the population converges and individuals become more similar to one another than in initial
generations. Although using fewer fitness cases can save on computation time, there are two
pertinent issues:

1. how many fitness cases to use for each individual, and
2. which fitness cases to use.

The first issue is discussed here, while the second is dealt with in Section 5.6.

The issue of how many fitness cases are required for a genetic program has been tackled
previously. The Limited Error Fitness method of (Gathercole and Ross, 1997a) uses a
different number of samples for each individual. Fitness calculation is halted when the
number of errors made by an individual exceeds an error limit. This way, time is not wasted
on individuals that perform poorly. Another algorithm for selecting the number of samples
per individual is the Rational Allocation of Trials (RAT) algorithm (Teller and Andre, 1997),
which is described in some detail below. The RAT algorithm evaluates each individual until
its rank is statistically unambiguous.

The RAT algorithm was chosen as the method for selecting the number of samples re-
quired for fitness evaluation because it is based on a statistical test. The RAT algorithm
had to be significantly modified to be used with EPrep, as will be discussed shortly.

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 107

1. set M' =0.
2. fori=1,...M — 1 loop

(a) randomly select the number of features in individual ¢ with uniform
probability from the range [1,d]: L; ~ U(1,d).

(by M' =M'+ L,.
end loop.

3. Create M’ features {Fi}M' with randomly-selected output types using the
ramped half-and-half method, ensuring that no two features are the same;
F,#F;Vi,j=1,...M'i#j.

4. Randomly shuffle the order of these features.
5. Set k = 1.
6. fori=1,...M — 1 loop

(a) Set individual 4 to consist of features Fy,..., Fyir,_1.
(b) k=k+ L;.
(c) Initialise operator probabilities to 1/Nops.
(d) Insert one intron between each pair of features.
)

(e} Set the classifier label to refer to the classifier that results in the minimum
training set error on the first /N, samples pre-processed using individual
i

(f) Insert individual ¢ into the population.
end loop.

7. Create an individual containing only the original input variables,

Fy =z1,39,..., Fy =24

8. Set its classifier to be that which performs best on the original training set.

9. Insert this individual into the population.

Figure 5.4: The algorithm for creating the initial population.

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 108

5.5.1 The Rational Allocation of Trials

The RAT algorithm was introduced by Astro Teller and David Andre at the 1997 Genetic
Programming Conference (Teller and Andre, 1997). The algorithm is essentially the BRACE
algorithm (RACEing models using Blocking) applied to evolutionary algorithms. The RACE
and BRACE algorithms were introduced in (Moore and Lee, 1994) as a method to speed
up the selection of one from a large number of models. Given N data samples, the RACE
algorithm refines the leave-one-out cross validation (LOOCV) error of Npo4es models in
parallel, hence the name “race”. When it becomes statistically unlikely that a model will
win the race by having the lowest LOOCYV error, it is removed from the race and no further
computation time is wasted evaluating it. Under the strong assumption that the cross-
validation errors are normally distributed, the mean and standard deviation of the error of
model 7 based on k£ data points can be calculated:

) 1 .

frj = 7) e(i)
ki
] &

68, = = 2 (ei(8) — fgy)?
k—lizl

where e;(i) is the leave-one-out error of model j on sample . The LOOCV error of model
j based on k samples is ej = fig;. Upon each iteration, model j is eliminated if there is
another model j' that is statistically better or indistinguishable. This elimination process is
shown graphically in Figure 5.5.

e Unsure: further refinement
necessary

osl Clearly Losers

srror

Figure 5.5: An example of the RACE model elimination process.

There are two parameters for the algorithm: § is the statistical significance of the elimina-
tion test, and « is a threshold (also a small positive number) which quantifies the maximum
error difference between two models that are indistinguishable. For example, if § = 0.001
we have a one in a thousand chance of making an error in the test that model j has a mean
error that is not less than that of some model j' by more than an amount . The rule is to
eliminate j if there exists model 7’ such that:

Prob(e] < ey —v|ej(1),...,ej(k),ej(1),...,e5(k)) <o

The v shift is introduced to stop similar models racing indefinitely, and therefore must
quantify a trade-off between the consequences of erroneously eliminating a model, and the
computational effort required to continue evaluation of the model.

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 109

The BRACE algorithm is an enhancement of the RACE algorithm using the statistical
technique of Blocking (Box et al., 1978). Blocking is the removal of variation in an experiment
by keeping dependent samples together. In the RACE algorithm, for instance, there is a
fair degree of dependence between the errors of different models for a given data sample:
an outlier may be erroneously classified by nearly all models, but still contributes to the
variance of each model error. If the errors coming from the same samples are kept together,
variations coming from the data set are eliminated and the confidence intervals for the tests
are reduced.

The race is now based on the difference of mean error rates of the models:

Kook ok
h”,—e] CJ/

The following statistics must be maintained:
1k
A R) = 2 (ei0) ~ ey ()

i=1

. L & NPVIRT:
&l (k) = \l o1 > [(63'(1) — e (1)) — M?j:]
=1
Model j is removed when there exists another model 5/ such that:
Prob(hj; < —v) <4é

The improvement in performance brought by blocking can best be seen by examining the
race between two identical models. The RACE algorithm will race these models until the
confidence intervals of their error estimates becomes comparable to vy (which may never
occur). BRACE, on the other hand, will quickly stop a race between identical individuals
since the distribution of the differences between outputs will have zero variance.

There are three problems encountered when applying BRACE to evolutionary algo-
rithms (Teller and Andre, 1997). Firstly, BRACE tests for the superiority of one model
over others, whereas the roulette-wheel selection strategy requires that we know the quan-
tity by which a model is better. Secondly, evolutionary algorithms typically select many
individuals, whereas BRACE only selects one. The third complication is the choice of the
v value. In BRACE, the value of « is selected based on the model’s current performance.
In an evolutionary algorithm, however, the quality of the final solutions is the pay-dirt, and
an individual at some intermediate generation can contribute to this result in many various
and subtle ways. For example, an individual may have a low fitness, but it may contain the
genetic material that, through recombination, results in the best individual encountered.

The first two problems are addressed by using tournament rather than roulette-wheel
selection. The tournament selection algorithm results in one clear winner per tournament,
and does not need to know the absolute fitness values. The individuals (or models) must be
evaluated only once per generation, so the tournaments need to be selected ahead of time.
Then each individual is raced against all the other individuals in the same tournaments. The
simultaneous performance of multiple tournaments is illustrated in Figure 5.6.

The third problem does not have a simple answer, as the method for selecting v is not
obvious. A trade-off must be sought between the computational cost of further evaluating a
model, and the consequences of a model losing a tournament without statistical confidence?.

(Teller and Andre, 1997) suggest several methods for selecting v with varying complexity.
The most basic thing to do is set v = 0, which assumes that the cost of further trials is

4The decision will still result in the best individual based on the information we currently have, but that
decision could have a low statistical significance.

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 110

oY 15 g g 2 15
o [= =] =] =1
I : model 1
g =) = =] =] s e B
5 8 & & & g
= = 5 N iy "_3 mode] 2
?f
= % "\ model 3
_ \
= —] \
N .

=

i
|
|

model M

Figure 5.6: The simultaneous selection of tournaments using RAT.

insignificant compared to the utility of a tournament winner. For v = ¢, a constant, the
utility of a tournament winner is considered to be independent of its fitness. In general, an
individual is considered more important for the evolutionary process if it has a higher fitness,
and should therefore have a smaller value of v to refine the comparison. The relative fitness
of an individual can be quantified through the expected number of tournaments it should
win based on its fitness rank. At the extreme level of detail, the whole myriad of complex
factors that affect an individual’s contribution to the final best solution could be considered.

The RAT algorithm performed each generation is shown in Figure 5.7. Note well that
removing an individual from the contention list does not mean that the individual is of
lesser use to the evolutionary algorithm: it simply indicates that no further investigation is
required to ascertain this individual’s relative performance. Indeed, an individual may be
removed from the list because it won all its tournaments with clear statistical confidence.

Steps 5a and 5b in Figure 5.7 are not found in the original RAT algorithm; they were
added so that models with larger observed mean error are removed first in comparisons
between indistinguishable individuals, and to reduce the average number of comparisons.
Further modifications to the algorithm were required, and are discussed next.

5.5.2 Modifications to RAT for EPrep

Three difficulties remain for the application of RAT to EPrep: how to update the fitness
of an individual with each additional training sample, what distribution to assume for the
classifier errors, and the choice of ~.

The saving in computational effort imparted by RAT relies on the computational com-
plexity of the fitness evaluation being incrementally linear in the number of fitness cases.
This property is defined here as the computational independence of the fitness function:

Definition 5.1 (Computational Independence) Given two mutually-ezclusive sets of
fitness cases t, and t,, and some fitness function f, whose evaluation is based on the cases
in the set t, [is said to be computationally independent if:

ftaUtb = g(fta’ftb)

and g(.,.) is some trivial function such as a linear combination.

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 111

1. Randomly select individuals for all M,,, tournaments, where M,,, is the size
of the mating pool.

2. Initialise the contention list (@) with all individuals.

3. Evaluate all individuals on the first N, samples in the sample list S.

4. Set counter j = N, + 1.

5. While j < N and |Q| > 0 loop:

(a)
(b)

(c)

(d)
(e)

Sort the members of () based on their current evaluation of fitness.

Visit each individual X in @) in decreasing order of error (ie: from worst
to best).

Remove X from Q if, for every tournament ¢ that X is in:

e X is not in first place, and
Prob(hXy, < —v) <46

or

e X is in first place, and
Prob(hy,x < —v) <46

or
e there are no individuals in ¢ other than X.

where Y; is the individual from tournament ¢ other than X that has the
lowest error.

Evaluate all individuals still in list ¢} on training sample j.

Set 7 =45+ 1.

end loop.

6. Elect the individual in each tournament with the lowest error as the winner.

Figure 5.7: The Rational Allocation of Trials algorithm.

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 112

The implication of this definition is that the number of operations required to calculate the
fitness for all available trials is roughly the same as that required to calculate the fitness
separately for each of the individual trials and combine these sub-calculations to arrive
at the overall fitness. The LOOCYV error function used in (B)RACE is computationally
independent, because the overall error estimate is a linear combination of the k leave-one-
out errors evaluated so far.

For EPrep, fitness evaluation is a different story. We are not allowed the luxury of
LOOCYV error, since we cannot even afford to evaluate all training samples once. The
objective function used in EPrep is not computationally independent because the addition
of one sample to the training set requires the classifier to be re-trained and the predicted class
labels to be re-calculated. If the computational complexity of the training algorithm is linear
in the number of training samples, then the worst-case computational cost in evaluating an
individual will be:

ONog+ (No+1)+ (No+2)+ ...+ 1) = O(nyr — No + 1)(ngr + No)/2)
O(nl) (5.2)

assuming n¢. > N,. This is much more expensive than the worst case without RAT, which
is O(ny,). The complexity of Equation(5.2) can be reduced by adding A samples instead of
only one sample on each iteration (step 5d in Figure 5.7). The worst-case complexity of the

fitness function then becomes:)

O()

However there is a trade-off in choosing the size of A, since large values will more often result
in worst-case complexity. Therefore to justify the use of RAT, the fitness function must be
made computationally independent.

After consideration of several alternatives, the following compromise was reached. The
classifier of each individual is trained on the first IV, samples only, since these must be
processed for every individual anyway. This rough estimate of the classifier parameters
is assumed to be adequate for generalisation, and may even promote the evolution of more
robust features. After this initial training, the classifier remains static for the classification of
future trials in the RAT algorithm. For the kth trial, the objective function of Equation(5.1)
then becomes:

fi(k) = 100% x zk: I(hi(Yj) # ¢;)
’ ; k
7j=1
(b= DLfilk = 1) + 100%.L(hi(y) #)
k

which is computationally independent.

Since classification errors are binary (ie: correct or incorrect), the training error of each
classifier is more appropriately modeled with a binomial distribution rather than with a
Gaussian distribution. If the number of training samples is n;. and the observed error rate
is ¢, then:

B = q.N
g = ntrQ(l_q)

The binomial distribution can be approximated with a normal distribution when ny, is large
and ¢ is not too close to one or zero; in practice, the approximation is good if ny (1 — q) and
ny-q are both greater than 5.

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 113

There is no problem using this assumption for the RACE algorithm; the situation is
more complicated for BRACE, since the distribution under test is that of the differences
in binomial errors. This results in a trinomial distribution with possible values both-the-
same, A-correct-B-incorrect and B-correct-A-incorrect. In order to keep things simple, the
rather brazen assumption was made that the error differences are normally distributed. This
assumption seems not unreasonable since if a binomial distribution can be approximated
well with a normal distribution, then a trinomial distribution must not be far behind.

The final choice is in the selection of the «y value. The methods suggested previously all
have a disadvantage in that they try to derive a value of error () in terms of computational
effort. It seems reasonable to call upon the ability of humans to effectively trade-off quantities
of differing types. This can be done by asking the user a number of questions and using the
information to compute values for 7. The process is complicated by the fact that we don’t
know how much computational effort will be required to further race two individuals: they
may be disambiguated by the next fitness case, or they may require all of the remaining
samples. Therefore a question must be framed as “how much error can be tolerated in
discerning individuals rather than continue a race?”. As in the previous methods, this will
depend on the absolute fitness of the individuals undergoing comparison: a larger tolerance
can be used for individuals with lower fitness than for highly fit individuals.

Fuzzy logic allows linguistic concepts to be manipulated quantitatively (Ross, 1995).
Rather than asking the human a set of questions to determine the answer to a problem,
the human’s expertise can be incorporated into a fuzzy rule set. Considering that the error
estimates €] and € of two individuals can take on the linguistic values LOW, MEDIUM and
HIGH, a table of fuzzy rules can be constructed to calculate the value of v, as shown in
Table 5.2.

Table 5.2: Fuzzy rule base for the «y function.

*

Y €;

LOW | MED. ‘ HIGH
LOW || LOW | LOW | LOW
e* | MED. || LOW | MED. | MED.
HIGH || LOW | MED. | HIGH

Each element of this table is interpreted as an IF-THEN-ELSE rule: for instance, IF e
is LOW and €} is HIGH, then v is LOW. The lexical statements combined with an AND
operation are called conjunctive antecedents. The outcome (following THEN) is called the
consequent. The rules reflect the relative importance of highly fit (low error) individuals,
since these individuals are more likely to have an impact on the quality of the final solution.
Only one of the rules needs to be true, so they are combined with an OR function, and are
therefore called a disjunctive system of rules.

The Mamdani (max-min) implication method of inference is used to calculate the crisp
value of v from the crisp values e; and €] (Ross, 1995). Both e} and ¢; have a membership
p in each of the antecedent fuzzy sets Arow, Amep and Aprgu. For each of the nine rules
in Table 5.2, the conjunctive antecedents are calculated to derive the consequent fuzzy set.
The consequents are then aggregated disjunctively, and the aggregated output is defuzzified
using the centroid method. Using the minimum function as fuzzy AND, and the maximum
function as fuzzy OR, the aggregated output membership function is:

max

p(y) =k=1,...9 [minfp 4 (€7), w45 (€5)]]

where A% is the first antecedent of the kth rule, and A% is the second antecedent of the kth

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 114

rule. The defuzzified output value is:

- Jup(2) -z dz
[up(2)dz

Figure 5.8 shows visually the fuzzy sets and the operation of the min and max functions
in the whole process of calculating v for two rules. The actual membership functions to
be used in EPrep are shown in Figure 5.9. In Figure 5.9(a), emin,€qve and epmq; are the
minimum, average and maximum classification errors in the population calculated based on
the first N, samples. In Figure 5.9(b), ¥min is the minimum value of the error tolerance,
defined as the equivalent of one error from the £ RAT trials:

1
Ymin = E
and:
~ Pk ~h
01] = max {O'ij, 27’!71,1,71}
Rule 1:ife] is LOW and ej— is MEDIUM then Y is LOW
m # M

Al wow A} o)

Xy

Rule 2: if e] is MEDIUM ande; is HIGH thenY is MEDIUM

K n W) n
Al e A3 HIGH

E: M
! : aggregate
(max)

Figure 5.8: Fuzzy inference of y from ej and ej.

In Figure 5.10, the output of the fuzzy v function is plotted for ymin = 0.1, 6%* = 3.0,
emin = 9.0, emaez = 20.0 and e4q, = 10.0. *

5.6 Ordering of Training Samples

The question of which samples to use for training has been considered previously in the
literature. Principled approaches have been taken to intelligently select the best training
samples for the MLP (Plutowski and White, 1991; Zhang, 1994). In the approach of (Zhang,
1994), training of an MLP was started with N, < N samples and the sample size was
increased by iteratively adding the sample that resulted in the largest error under the current

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 115

ALOW AMED AHIGH

' *
0 € min € ave € max ! €

(a) Fuzzy membership functions LOW, MEDIUM and
HIGH for the input error fitness.

n
B LOW B MED B HIGH
T T T
0 Ymin 8}’* 28hk 36-"* i1

ij ij ij

(b) Fuzzy membership functions LOW,
MEDIUM and HIGH for the model similarity
tolerance ~y.

Figure 5.9: Fuzzy membership functions for calculating .

similarity tolerance
. [+ -] -~
L L J

w
L

Figure 5.10: Similarity tolerance v for ,;, = 0.1, &l’-lj* = 3.0, emin = 5.0, emee = 20.0 and
eave = 10.0.

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 116

model; this equates to selecting the most difficult thing to learn next. Learning was found
to be more robust than use of the whole training sample.

In the Dynamic Sub-Set Selection (DSS) method of (Gathercole and Ross, 1997q), a
sub-set of cases is selected on each generation of a GP according to how difficult they were
in previous generations and how recently they have been evaluated. Although the number of
samples is chosen arbitrarily, the identity of the samples is biased towards samples that are
difficult or have not been used recently. The Limited Error Fitness algorithm also re-orders
the fitness cases in response to the performance of the best-of-generation individual. If there
is no improvement in the BOG individual after several generations and the BOG individual
makes fewer errors than the error limit, the limit is lowered and some of the easiest samples
are shifted to the end of the list of fitness cases. The problem with both DSS and LEF is
their dependence on several parameters which are difficult to choose.

The EPrep algorithm uses the first NV, samples to evaluate every individual, but thereafter
the number of samples varies from individual to individual. The set of samples evaluated
by each individual should be as similar as possible to minimise the amount of variation
in the comparison of individuals. Therefore the sample order should be the same for each
individual. According to this approach, the samples at the start of the list will be evaluated
by all individuals, while those at the end of the list will be evaluated by only a few individuals.
Therefore the sample order must be changed from generation to generation so that all samples
are considered by the whole population at least once during evolution. Rather than totally
re-ordering the training set each generation, only a few samples will be moved to the front
of the list. This results in a relatively slight modification to the objective function, rather
than the total upheaval associated with full re-ordering of the training samples.

A problem to be avoided with sample ordering is the sacrifice of certain classes because
they have few training samples. For example, in a two class problem with 90 samples from
class 1 and 10 from class 2, a classifier can obtain 10% error by misclassifying all samples
from class 2 and getting all of class 1’s samples correct. This individual would be ranked
higher than a more even-handed individual that correctly classifies 80 samples from class 1
and 8 from class 2. To properly address this problem a cost matrix should be used. In EPrep
the problem is partially addressed by ensuring that training samples are always sorted so as
to preserve equal proportions of all classes. In cases where the classes are represented in the
whole data set in unequal proportions, all the samples from the less-frequent classes may
appear near the beginning of the training sample list.

According to conventional wisdom, the training sample order is updated by moving those
samples which are the most difficult for the current population to the start of the list. There
will be some samples at the end of the list that are not considered difficult simply because
they have not been classified by many or by any individuals. Therefore the least-frequently
visited samples are also periodically shifted to the front of the list. The question of which
training samples to start with at generation 0 cannot be answered here, since at that stage
there is no information about the problem. Therefore the algorithm of Figure 5.11 is used
to initialise the order of the training samples. Note that the classifiers used by EPrep do not
depend on the order in which the samples are presented.

If we keep the ordering the same for all generations, over-fitting may occur. If we totally
re-order the samples after each n generations, the population could become unsettled so
that convergence is slowed. As a trade-off between these two extremes, the algorithm of
Figure 5.12 is used at the end of each generation.

This algorithm requires two counters to be associated with each sample: one for each
visit, and one for the number of times it is erroneously classified. In steps la and 1b, if
there are no samples left from class ¢ then select from the class with the largest number of
samples remaining. The algorithm ensures that a sample is moved to the start of the list
(and is therefore evaluated by more individuals) if it has not been evaluated often or if the

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 117

1. Set list of samples, S, to be empty. Set ¢ = 0.
2. While 7 < ny, loop

e forc=1,...,C loop
(a) With uniform probability, randomly select a sample s of class ¢
without replacement from the training set.

(b) If there are no samples left from class c, select s from the class with
the largest number of samples remaining.

(c) Add sto S.
(d) Seti=1i+1.

end loop.

end loop.

Figure 5.11: Algorithm for initially sorting training samples.

1. fori=1,...,n50/2 loop

e forc=1,...,C loop
(a) select the sample from class c that has been least frequently classified
and place it at the beginning of the list.

(b) randomly select a sample from class ¢ in proportion to its classifi-
cation error F; using roulette-wheel selection, and place it at the
beginning of the list. The classification error of sample j is:

nerror(j)
Nelassified (J)

. 0 if never classified;
A otherwise

where nepror(j) is the number of times sample j has been incorrectly

classified, and nciqssified(j) is the number of times sample j has been
classified.

end loop.

end loop.

Figure 5.12: Algorithm for re-ordering the training samples.

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 118

population is finding it difficult to classify on average. The disadvantage is that outliers
which are irrevocably difficult to classify will spend more time at the beginning of the list,
and over-fitting may occur.

The number of samples moved each generation is C.ngop¢, 50 the magnitude of change each
generation is controlled by the value of ns,. A method of setting this value is to consider
the desirable criterion that every sample is shifted to the beginning of the list at least once
every gsort generations, independent of its performance. Considering only the selection based
on frequency of evaluation, it would take at worst gsort = (ner — No)/(C.nsort/2) generations
to cycle through all the samples. This yields a value of:

2(nt'r - No)

5.3
C'gsort ()

Nsort =

For typical values of ny, = 1000, N, = 100, C = 4 and gsort = 10 we have ngo,; = 45 samples.

Looking at things from the minimum disturbance principle perspective, nsor4 should be

chosen so as to disturb the learning mechanism only minimally. It is difficult to gauge the

effect of changing some training samples on the error of a classifier, as the alteration of only
a few samples can disproportionately affect the decision boundaries.

5.7 Optimisation of Constants

The efficient adaptation of constant values has been a point of difficulty in the GP community.
While the gross structure of genetic programs can be improved through crossover, there
remains no explicit mechanism for the optimisation of the constants, which can be considered
as parameters for the overall model. Although the classifiers in EPrep act to some degree as
a fine-tuning mechanism for the individuals, their effectiveness is limited to the adaptation
of the decision boundaries: it is the parameters within the individual that determine the
structure and separability of the data.

The problem of constants has previously been addressed through hybrid approaches.
GP combined with simulated annealing (GP/SA) (O’Reilly and Oppacher, 1995a; O’Reilly
and Oppacher, 1996; Sharman and Esparcia-Alcazar, 1993; Sharman et al., 1995; Esparcia-
Alcazar and Sharman, 1997) or GP combined with hill-climbing (GP/HC) (Harries and
Smith, 1997; Iba et al., 1994b; O’Reilly and Oppacher, 1994a; O’Reilly and Oppacher, 1994b;
O’Reilly and Oppacher, 1995a; O’Reilly and Oppacher, 1996; Zhang and Miihlenbein, 1993).
With these methods, the local optimisation algorithm is applied to each individual in the
population with some frequency, or is integrated into the genetic operators to give selective
recombination results. Some methods use a local optimisation that is particular to the
representation (Hafner et al., 1996; Sebag et al., 1995; Iba et al., 1993a).

Simulated Annealing (Press et al., 1992) can be applied to an individual that contains
at least one non-binary constant. A perturbation is applied to each constant in the individ-
ual, and the fitness is re-evaluated, f/. If the difference in fitness is positive, this point is
selected as the new search point; if the difference is negative, the new point is selected with
a probability:

The temperature T is decreased according to the annealing schedule. Iteration continues
until the objective is optimised or the maximum number of iterations is reached. The HC
algorithm is similar, but an alternative solution is only accepted if its fitness is improved.
SA is not used in EPrep since the evolutionary algorithm should place the constants in the
neighbourhood of a local optimum, which then need to be adjusted with hill-climbing.

Two complications associated with using HC in EPrep are the computational effort of
evaluating each alternative point, and choosing the scale of the perturbations. A successful

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 119

hill-climb may require many iterations, and each iteration requires an evaluation of the fitness
function. This means an increase in computational effort which should be compensated for
by improved results for smaller populations, and convergence after fewer generations. As a
compromise, only the first IV, samples are used to obtain a rough approximation of training
set error for the local optimisation of individuals.

For any local optimisation method, the numerical perturbations must be concomitant
with the constant being perturbed. There are no constants associated with boolean functions,
so there are only constants of type Real and Enumerated. Since an enumeration’s ordering
does not have any semantic significance, a perturbation means uniformly selecting a new
value from the enumeration. Enumerated values are therefore optimised according to the
hill-climbing algorithm shown in Figure 5.13.

1. Let x(0) = [21(0),22(0),...,2,(0)] be the enumerated constants in the indi-
vidual, and the set of values attainable by each be A;, Ag, ..., Ay.

2. Set the number of iterations k& = 1, and the set of previously-visited points

V = {x(0)}.

3. Evaluate fitness of starting solution, yg, and set the best fitness and enumer-
ated constant values to be this solution; ie: ypest = yo and Xpesr = x(0).

4. while k < min(kyqz, [17—; |Ai|) loop:

(a) loop:
e fori=1,...,n loop

i. with probability 1/n, modify the ith element of the current so-
lution to be a new value from the set A;; ie: z;(k) € A;, z;(k) #

z;(k —1).
ii. otherwise set z;(k) = z;(k — 1).
end loop.

while x(k) € V.

(b) Evaluate yg, the fitness of the individual with enumerated constants

x(k).
(c) V=V Uu{x(k)}
(d) If yp < Ypest then set Ypest = Yr and Xpest = x(k).
(e) k = k+1.

end loop.

Figure 5.13: The Hill-Climbing algorithm for the optimisation of enumerated constants.

The mutation of real-valued constants is a more difficult issue, since the appropriate
step-size for a given context is unknown. The Simplez optimisation method is used in EPrep
to locally tune the real-valued constants in each individual. The method has the advantage
that the step size adapts to the local landscape (Nelder and Mead, 1965). The problem is
to optimise the fitness of an individual with respect to its n real-valued constants. This can
be viewed as a search through an n-dimensional space. The simplex is the set of (n + 1)
points (or individuals) #Fy, 1, ..., Py in the n-dimensional space. Let the fitness value of

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 120

point (individual) i be y; = f(P;), and define:

argmax
h = 1=0,...,n Y;
argmin
I = 1=0,...,n Y;

That is, b stands for “high” and ! stands for “low”. P is the centroid of the points P;,i # h.
The algorithm is found in Figure 5.14. At each stage, P is replaced with a new point by one
of three mechanisms: reflection, contraction and ezpansion. The new point P* lies on the
line joining Py and P. P* lies on the opposite side of P from P, by a distance determined
by the reflection coefficient o (a > 0), with |P*P| = o|P,P|. If the new point P* produces
a new minimum, we can expand the step size by expanding the simplex. The ezpansion
coefficient, y (y > 1) is the ratio of the distance |[P**P| to |P* P|, where P** is the expanded
point. If the new point P* becomes the maximum of the simplex, the step failed and the
simplex must be contracted. The contraction coefficient, 8 (0 < 8 < 1) is the ratio of the
distance |P** P| to |P,P|, where P** is the contracted point.

Through this mechanism, the simplex is “walked” down-hill through the fitness landscape,
adapting to local variations as it goes. The termination criterion used in EPrep is satisfied
when: e :

> (vi n}’) T
=1
where y is the centroid of the simplex and 6.4,y 18 a user-defined parameter.

If the local optimisation step is selected by the user, then it is applied each generation
to every individual. In cases where the data are purely boolean, then there is no need
for an optimisation step. In general an individual may contain real-valued and enumerated
constants. In such a case, either the real-valued or enumerated constants are optimised, each
with a probability of 0.5.

5.8 Genetic Operators

The most difficult task to perform when applying an evolutionary algorithm to a problem
is selection of an appropriate representation and corresponding operators that will facilitate
the search for fitter points in the solution space. There is a duality between operators
and representation: anything that can be done in the representation can also be done in
the operators. For instance, a GP tree can be represented as a tree or as a linear string
in reverse polish notation: in either case, the genetic operators can be written to perform
single-point sub-tree crossover. The action of the genetic operators on the representation
determines the transmission function, which is the probability distribution of offspring from
every possible recombination (Altenberg, 1994). The relationship between the transmission
function and the fitness function determines the success of an evolutionary algorithm. If
the transmission function is not geared towards fitter offspring, performance will be poor.
Either the representation or the genetic operators can be modified to adapt the transmission
function.

It is generally accepted that the crossover operator will not result in the proliferation of
highly-fit building blocks unless the representation used provides building blocks in the form
of sub-trees for the given problem. If we make the assumption that building blocks do exist
in some form for the problem, then we can maintain the same representation and change the
genetic operators to be appropriate for the given problem.

EPrep is intended to be applicable to a range of classification problems. We cannot
generally assume that the standard single-point sub-tree crossover operator employed in GP
will be appropriate for all such problems. Therefore an approach that suggests itself is to

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR

121

1. Starting with constant values P, set P, = P and generate the remaining
FP;,,i=1,...,n by individually perturbing each constant:

p.— Pyj+dj+e ifi=y
Y Py ifi#£y
where 40; is a perturbation sampled from the normal distribution
8; ~ N(0,0.5F;) and the addition of ¢ ensures a change when Fp; = 0.

2. Loop:
(a) Calculate y;, P, h,l and:

P*=(14a)P —aPy,
(b) Evaluate y* = f(P*).
(¢) If y* <y, then:
i. Calculate:
P* = (14~)P* — 4P
ii. Calculate y**.
iii. If y** < gy then:
e Replace P, with P**
else
e Replace P, with P*
end if.
else if y* > y;,1 # h then:
i. If y* < yy then replace P, with P*.
ii. Calculate:
P* =3P, + (1+B)P
iii. Calculate y**.
iv. If y** > yy then:
e Replace all P;’s with (P, + P)/2.
else
e Replace P, with P**.
end if.

else
e Replace P, with P*
end if.

until termination criterion is satisfied or maximum number of iterations is
achieved.

Figure 5.14: The Simplex algorithm used for the optimisation of real-valued constants.

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 122

employ several complementary genetic operators, each of which may or may not be useful
for the problem at hand. The following sub-sections describe the operators, the method for
selecting them, and the use of introns in EPrep.

5.8.1 Self-Adaptation of Operator Probabilities

There are several ways in which the operators can be selected for deployment. The easiest is
to use a static probability of selection for each operator. Slow convergence is expected with
this naive method, since those operators which bring about the most improvement in fitness
must wait for their turn, and the evolutionary process must continually compensate for the
damage done by the inappropriate operators.

Another approach is to adapt the operator probabilities based on their observed perfor-
mance for the problem. There are several ways of adapting strategy parameters in general,
a taxonomy is given in (Hinterding et al., 1997; Angeline, 1995). To summarise, there are
three levels at which the adaptation can occur:

population: the adapted parameters belong to the whole population; for instance, the
probability of crossover.

individual: the strategy parameters undergoing adaptation are specific to each individual.

component: the parameters are local to each gene of each individual in the population.
For instance, the probability that a given bit will be mutated in a GA.

The mechanism for adaptation can belong to one of three categories:

deterministic: the strategy parameters are modified by a deterministic rule, and there is no
feedback from the algorithm. For instance, the probability of mutation may decrease
with time.

adaptive: the parameters undergo adaptation via a deterministic rule based on information
fed back from the evolutionary algorithm (EA). For example, the “1 in 5 rule” for
ES (Back and Schwefel, 1993): the ratio of successful mutations to all mutations should
be 1/5. If it is greater, increase the standard deviation, if it is lower, reduce the standard
deviation.

self-adaptive: the strategy parameters are evolved along with the population. The ra-
tionale is that parameters resulting in fitter offspring become associated with those
offspring, and thereby permeate the population. An example is the mutation strategy
parameters in evolution strategies (Fogel, 1995).

The goal of strategy parameter adaptation is for the algorithm to respond favourably to
unexpected situations during evolution. The adaptation becomes more flexible as the level
of adaptation becomes finer. Similarly, the mechanism will be more robust and able to cope
with unforeseen situations the more adaptive it is. Therefore the most robust combination
should be a self-adaptive component-level mechanism. It should be noted, however, that as
the level of detail and adaptation increase, the burden placed on the EA increases also. This
makes the complexity of the problem increase and may slow convergence. It is expected,
however, that in difficult problems for which optimal solutions are difficult to find, the quality
of the best solutions would be higher.

It is quite reasonable to assume that different operators will be more appropriate for
different individuals on the same problem. Therefore the adaptation should be at least at
the individual level. Ideally we would adapt the operator probabilities for each individual
tree, but this would result in too many strategy parameters for an individual. As a com-
promise, a self-adaptive individual-level strategy is used in EPrep. A vector of operator

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 123

probabilities is attached to each individual, as was done in (K. Chellapilla, 1997). The
probabilities are initialised to be equal at generation zero. When an offspring is generated
through recombination or mutation, it inherits the probability vector of its first parent. At
every generation, the probability vector of each individual is modified by adding a Gaussian
random perturbation to every element. Each element of the random perturbation vector
is drawn from a normal distribution N(0,0.1/n.p), where n,, is the number of operators
used. Negative probabilities are set to 0.001, and probabilities that exceed 1 are set to 1, as
in (K. Chellapilla, 1997). The probability vector is then normalised such that its elements
have unit sum. When a parent is selected from the mating pool, roulette wheel selection is
used to choose an operator according to the probabilities in the parent’s operator probability
vector. If the operator requires two parents, the next individual in the mating pool is used
as the second parent. Since it was the first parent’s vector that brought about the choice in
operator, both offspring inherit the first parent’s operator probabilities.

5.8.2 Operators and their Level of Adaptation

Given that a set of operators will be used, which operators are most appropriate? The
operators must not be designed independently of the representation. Given the multi-tree
representation used in EPrep (described in Section 5.2.1), variation can be conducted at two
levels:

High-level Operators: which treat each tree like an indivisible gene, and therefore treat
the genotype as a variable-length string of genes; and

Low-level Operators: which modify the trees themselves.
The set of high-level operators is the same as in a standard GA:

High-Level Crossover: analogous to single-point crossover used in GAs. If parent 4 has
length L; in features, ¢ = 1,2, then the range of valid crossover points is [1, L; — 1].
A crossover point s; is randomly chosen between two features in the first parent with
a uniform distribution. The crossover point in the second parent s, is also chosen
randomly, but from a constrained set of points so that the offspring have length within
the bounds (1, d]:

Sp € [max(31 + Ly — d, 1), mln(d — L+ s1,Ly — 1)]
These bounds are derived as follows. The lengths of the offspring are:

Lll =351+ Lo — 89 (54.)
L’2 =g+ L1 — 81 (55)

Given that L} < d and Lj < d, Equation(5.4) and (5.5) yield the inequality:
81+L2—d§52 Sd—Ll—FSl

In practice the selection of crossover points is more complicated due to high-level
introns, which are discussed in Section 5.8.3

Add-Feature Mutation: if L < d, a feature is created randomly using the grow method
and inserted at a randomly-chosen point in the individual.

Delete-Feature Mutation: if L > 1, a feature is randomly chosen with a uniform distri-
bution and deleted from the individual.

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 124

Inversion: randomly chooses two features in the individual and reverses the order of the
features between them (inclusive). Inversion allows interdependent genes to come close
to one another in the string, thus constructing short defining-length schemata which are
less susceptible to destructive crossover (Holland, 1995). This operator is not applied
to individuals in the mating pool to obtain offspring. Inversion is different from the
other operators because it does not change the fitness of the individual to which it is
applied; it is described below in Section 5.8.3.

Intuitively building blocks can exist at the high level of adaptation, since a good feature can
to some extent contribute to the class-separability of the data independently of the rest of
the features.

Low-level operators modify the tree-structured genetic material. The general utility of
the standard single-point crossover operator is questionable since it is not always the case
that single sub-trees are the building blocks for a problem (Angeline, 1997b; O’Reilly and
Oppacher, 1995b). For example, the internal nodes of a sub-tree may be as likely to constitute
a highly-fit code segment as the combination of code near the root and code near the bottom
of the tree. Blind recombination should not be expected to work in every context. This
state of affairs was addressed by the work on SMART operators (Teller, 1996) in which
a population of operators was evolved that could arbitrarily recombine two individuals to
form new offspring. The fitness of the operators was based on their ability to produce better
offspring in the problem GP.

In the absence of knowledge about what form highly fit building blocks take for a problem,
and of Teller’s complicated system of operator evolution, the use of an arbitrary recombina-
tion operator cannot be justified. Therefore only mutation operators are used to modify the
trees; this approach has been used previously in (Chellapilla, 1997; Angeline, 1996; O’Reilly
and Oppacher, 1994a).

A mutation is applied by selecting a feature from the individual with uniform random
probability and applying the operator to the selected tree. If the resulting tree contains
no input variables, the process is repeated until the new one does. The following mutation
operators are used in EPrep:

grow: randomly select a terminal node and replace it with a randomly-generated sub-tree.
oneNode: replace one node with another randomly-selected syntactically-legal symbol.
AllNodes: replace each node with another randomly-selected syntactically-legal symbol.

oneSymbol: replace each instance of a randomly-chosen symbol with one new randomly-
chosen symbol.

swap: select a function node with two or more children having compatible return types, and
swap two of the child sub-trees.

truncate: randomly select an internal node and replace it with a randomly-selected termi-
nal.

hoist: select an internal node and replace the root node with the sub-tree from below that
node.

All of the operators in EPrep restrict the maximum depth of the feature trees to a
user-specified quantity. Note that bloating is unlikely to occur because sub-tree crossover
is not used. The only mutation operators which can result in an increase in the size of an
individual are the grow and add-feature mutators. However, bloating requires an increase
in size associated with a constant fitness. This is an unlikely event for these two mutation

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 125

operators, since the randomly-generated sub-tree is very unlikely to have no effect on the
fitness of the individual.

In some situations the selected operator cannot be successfully applied to the parent
individual. For example, the crossover operator may be applied to two parents with L; =1
and Ly = 1, or strong typing constraints may preclude the use of the oneNode mutator.
When this is the case, the offspring returned is the same as the respective parent. To
maintain diversity in the population duplicates are not allowed to be explicitly inserted:
therefore the offspring are not allowed to be identical to the parents. If this does occur,
the process of selecting a new genetic operator and applying it to the parent(s) is repeated
until the offspring is (are) different from the parent(s). Finally, before insertion into the new
population, each offspring is checked to see if it contains any duplicate features. If a feature
is found to be an exact verbatim duplicate of another feature in the individual, it is deleted.

5.8.3 High-Level Introns and Inversion

Introns (as opposed to ezons) are non-coding segments which do not contribute to the fitness
of an individual. Introns have been observed and studied in biological genetics; a survey
is found in (Wu and Lindsay, 1996). This inspiration from biology has been applied in
evolutionary algorithms in the form of ezplicitly defined introns (EDI). EDIs are alleles
that have no effect on an individual’s fitness, but through their presence they modulate the
probability of selection of a crossover or mutation point. Through the action of recombination
and fitness-proportionate selection, the configuration of EDIs in an individual can adapt to
protect co-adapted alleles against destructive crossover. They can therefore be considered
as self-adaptive strategy parameters. EDIs have been used in genetic algorithms (Levenick,
1991) and genetic programming (Nordin et al., 1995) with general success.

EPrep uses EDIs at a high-level, in between the trees. Note that EDIs are not allowed
at the end of the string. To see how EDIs alter schema crossover probabilities, consider the
individual in Figure 5.15. For a string of length L, there are L — 1 distinct crossover sites.
The probability of a crossover occurring at site 4 is 1/(L — 1). Now if an individual contains
T trees, and the number of EDIs between trees 4 and (i + 1) is ngpr(é) fori =1,...,7 -1,
then the probability that crossover occurs somewhere between tree ¢ and (i + 1) is:

., NED [(Z) +1
p(i) = T -1
Therefore as L increases and ngpy(i) decreases for tree ¢, the probability of adjacent trees
becoming separated through crossover can become arbitrarily small. For example, there
is a relatively low probability of separating F1 and F2 through crossover in Figure 5.15,
so through natural selection and crossover, schemata of arbitrary defining length and high
average fitness can proliferate and be protected from destructive crossover by intron accu-
mulation.

Rather than physically representing the EDIs in the data structure of the individual, an
integer is stored for each of the first T'— 1 trees which holds ngpy(i). Examine the crossover
example in Figure 5.16. The length of the string is L =T + ZiT:_ll ngpr(t). The crossover
point j is randomly selected with a uniform distribution from the L — 1 alternatives. The
tree to the left of point j (call this tree 1 with immediately following crossover site j') is the
cnd of the left crossover fragment, and the tree to the right (tree 14 1) is the beginning of the
right crossover fragment. When point [(and corresponding tree k with following crossover
site I') is selected in the other parent, the first offspring has:

nppr(t) = (5 —§') + (nepr(k) — (1 = 1'))
and the second has:
ngpr(k) = (1 —=1') + (nep1(@) - (G —7"))

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 126

alternative crossover sites

#1 | gpr | F2 | EDI | EDI | EDI | F3 | EDI | EDI | EDI | EDI | F4

I 1 |

X1 + AND X7

x9 | [pow x5 | [NoOT|
[xs] [17 x4 |

Figure 5.15: Explicitly Defined Introns in the multi-tree representation.

i J J i+1
i EDI F2 | EDI EDI EDI F3 | EDI EDI EDI EDI F4 parent 1

@W\ X5 NOT

Jk l fk[—]

Fi | EDI| EDI | F2 | EDI| F3 parent 2
{Ngf] i?

|NOT|

i_'}[i_]

Figure 5.16: Example of crossover with explicitly-defined introns.

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 127

Introns can protect highly-fit short-defining-length schemata from destructive crossover,
but cannot protect schemata of large defining length. For example, if an individual contains
10 features, and the first and last features are the main contributors to fitness, they will
be easily separated through crossover to the detriment of the offspring. This problem has
been recognised in genetic algorithms and is addressed by the inversion operator (Holland,
1995). Inversion selects a contiguous sub-string of the chromosome and inverts its order. An
example is given in Figure 5.17. Considering our previous example, inversion with end points
1 and 9 can bring the first and last feature close together, making them less vulnerable to
destructive crossover. Note that in genetic algorithms the meaning of each allele must be
kept with the genes during inversion since the meaning of a gene is dependent on its position
in the string, whereas in EPrep the utility of a feature is independent of its position.

inversion
1 2 3 4 5 6 7 8 9 10 1 2 3 7] 6 5 4 8 9 10
) —_——
A B A B

Figure 5.17: An example of the inversion operator.

The inversion operator is applied every generation to each individual in the population
with a user-defined probability p;,,. Note that the inversion operator does not alter the
fitness of an individual.

5.9 Stopping Criteria

Computational effort can be wasted by continuing converged or stagnated runs until the
maximum number of generations is reached. The new stopping criterion could therefore be:
if (g = G) OR
(validations set error + training set error = 0) OR
(convergence criterion = TRUE)
then stop

A possible convergence criterion that tests for stagnation is:

STAG : fpest (g - nconvergence) — foest (g) < €convergence

where nconyergence 18 a positive integer constant. This criterion is unlikely to fire for EPrep,
though, since the training set error will fluctuate over generations for a single individual
due to the samples being shuffled around. A more appropriate criterion is training progress,
borrowed from (Prechelt, 1994):

TPy : stop after first generation g with Py(g) < 8 (5.6)

where Py(g) is the training progress:

min
k- ¢'=g—k+1,....g egOG(g

g BOG ¢ ./
Pi(g) = 100% - (Sy=gkn®r @) 1)
)

forg=k—1,k,...,G. ef9G(g) is the lowest training set error at generation g, and k is the
training strip length. Qualitatively, this criterion says to stop when the minimum training
set error over the strip is not lower than the strip average by more than 3 percent. Py(g) is

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 128

high when training set error is changing, and will approach zero in the steady-state as long
as the training error does not oscillate.

There is another issue here, namely generalisation. Despite the steps taken to encourage
parsimony, it was observed in preliminary studies (Sherrah et al., 1997) that EPrep tended to
over-fit, to the detriment of generalisation. A commonly-used method for stopping training
before over-fitting occurs is early stopping (Prechelt, 1994). Some validation measure of
the population can be monitored, and when it starts to increase consistently, the run is
terminated. Note that the validation score can contain local minima, so one must be careful
to allow the validation score some leeway to increase. The state at which the best validation
score was obtained must also be held and reverted to upon termination.

Define generalisation loss at generation g to be (Prechelt, 1994):

GL(g) = 100%. (@9@ - 1)
eopt(g)

where e,4;(g) is the validation measure at generation g and eqp;(g) is the minimum validation
measure before generation g:
min '
eopt(g) =¢'<g €yal (g)
Qualitatively, the generalisation loss is the percentage amount by which the current validation
measure exceeds the minimum achieved so far. As in (Prechelt, 1994), training ceases when
the generalisation loss exceeds a pre-specified amount «:

GL, : stop after first generation g > k with GL(g) > (5.7)

Note that the GL criterion can only be true after one training strip; this allows for erratic
behaviour of the validation measure at the beginning of a run. The validation measure e,4;(g)
used in EPrep is the validation set error of the individual with the best training set error in
the population (je: the BOG individual). This quantity is calculated by pre-processing the
training and validation sets with the individual, training the individual’s classifier on all of
the pre-processed training samples, and calculating the percentage misclassifications of the
trained classifier on the pre-processed validation set.

The generalisation loss criterion, Equation(5.7), and the training progress criterion,
Equation(5.6), are combined with an OR rule.

5.10 Cleaning the BOR Individual

The BOR individual must be cleaned by removing those features which do not contribute to
the individual’s fitness. This enables the fair comparison of the BOR individual’s size with
the size of the best-ever individual. The process starts with the full set of the individual’s n
features, F(0) = {F1, Fy,... F,,}. Each feature ¢ is in turn removed from the BOR individual
and its validation set error is re-evaluated. If the validation set error increases above the
previous value, the feature is put back; otherwise, this feature is not necessary, and is left out
of the individual. The process continues until all features have been checked. The algorithm
is written in Figure 5.18.

5.11 Choice of Algorithm Parameters

EPrep is a complicated algorithm, and there are many parameters for the user to select.
This section provides some guidance on how to select these parameters. It is an unfortunate
truth that there are currently no methods for calculating the optimal parameters; indeed, the
selection of parameters such as population size could constitute the topic of another thesis

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 129

1. Set F(O) = {Fl,Fg, s Fn}
2. Set vy to be the validation set error using F'(0).
3. fori=1,...n loop

o if |[F(i)] > 1 then
(a) Let F(i) = F(i—1)— F,.
(b) Calculate v;, the validation set error using only the features in F(i).
(¢) If v; > vpmip then
— set F(i) = F(i—1)
else
— set Upin = U;

end if.
end loop.

4. Return the individual containing only the features in F(n).

Figure 5.18: The algorithm for cleaning an individual’s features.

altogether. The best parameters will generally be problem-dependent, and some helpful
suggestions are provided here to guide the user in their selection. The following sub-sections
deal with related parameters together.

Although this chapter has described the full EPrep algorithm, individual options can set
through the graphical user interface, or through a text file.

5.11.1 Training Parameters

It is common for one classifier used by EPrep to perform considerably better on the original
data than the other two classifiers; the ML classifier assumes this pole position most fre-
quently. The user may want to eliminate this classifier from the set because it will be more
difficult for EPrep to improve on its already good performance, resulting in features that are
trivial or over-fit the data.

Assuming that the data have already been divided into training, validation and test sets,
the number of initial samples N, used by RAT and local optimisation must be selected, along
with the number of samples to periodically move to the front of the list, ns-¢. An expression
has already been derived for ng,r¢, Equation(5.3), in terms of the turn-over time, gs,¢, the
worst-case number of generations required to shift each training sample to the front of the
list. For convenience, that relation is repeated here:

2(’/7437- — NO)
C-gsort

Nsort =

The value of N, decides the accuracy of the rough estimate of training set error used
in RAT and local optimisation. It is these N, samples which are used to estimate the true
parameters of the simple classifiers. Therefore, we can frame the selection of N, in terms of
the degree of accuracy to which we wish to estimate the classifier’s parameters. To simplify
matters, we will only consider the class means, which are required by the ML and MDTM
classifiers. The classifier operates on the features generated by some individual, y,...,y,.

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 130

When calculating the mean p;; of class ¢ samples along feature j, the true mean will lie
within the following confidence interval with probability (1 — «):
Oij 04
Hij—z\/%i < i SuijJrZ\/—%;
where Prob(Z > z) = /2, 0;; is the true standard deviation of the population of y; values
from class 4, and N; is the number of samples in class ¢ used to calculate the mean, >°;2; N; =
N,.

It would be ideal to select N; so as to shrink this confidence interval to some desired size
for all classes; however o;; will be different for each individual, and it is unlikely that the
yi;'s will be normally distributed. Therefore all that can be practically done is to choose N;
so as to bring about some acceptable percentage reduction in the confidence intervals over
the estimated standard deviation. For example, to shrink the confidence interval to width
0.2z0;;, we require N; = 100, and assuming equal class proportions at the beginning of the
list, this makes N, = 100C. If any wisdom can be gained from this analysis, it is that N,
should be linearly proportional to the number of classes present.

5.11.2 Evolution Parameters

The number of runs, number of generations and population size all interact to affect the
likelihood of encountering the optimal solution to the problem. For example, running the
algorithm for more generations increases the probability that a run will be successful. There
is a point, however, after which it becomes more efficient to increase the number of runs
rather than the number of generations. Similarly, increasing the population size will generally
increase the probability of encountering the ideal solution on or before a given generation,
but at some point it becomes more efficient to fix M and use more generations. These factors
were considered in (Koza, 1992a) to measure the number of fitness evaluations required to
solve a problem. Let z = 1 — € be the probability of encountering the optimal solution, and
P(M, i) be the probability that the optimal solution is encountered on or before generation

¢ of any given run. Then:
z=1—[1—P(M,)"

Note that P(M,1) is monotonically non-decreasing in <. Re-arranging yields:

_ log(1—-2)
RG) = 1ot - pa)y

which is a non-linear dependence of the minimum number of runs on P(M, 7). The number
of individuals required to obtain the solution, R x i x M, can be plotted to obtain the optimal
number of runs and generations for a given population size.

The problem is that P(M,1) can only be obtained by computationally-expensive statis-
tical sampling, after which time the problem is solved anyway. The analysis was intended
to measure the difficulty of a problem for GP, and not for the selection of optimal parame-
ters. In practice, the number of runs should be as large as possible given the computational
burden.

The size of populations in evolutionary algorithms has been a limiting factor in the field.
While biological populations can be enormous, computational methods are usually limited to
sizes &~ 1000 by constraints on speed and memory resources. The Parsytec parallel processor
used at Stanford University, consisting of 64 80-MHz Power PC 601 processors arranged in a
toroidal mesh, can evolve an overall population size of 640,000 individuals representing analog
circuits (Koza et al., 1997). Although it is generally held that the larger the population
size the better the performance, some results such as (Gathercole and Ross, 19974) have
exemplified the converse case.

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 131

The issue of the minimum-required population size has been addressed in (Goldberg
et al., 1991) for a genetic algorithm. There the statistical confidence of the observed ranking
of the mean schema, fitnesses for two schemata from the optimal solution is used to motivate
the derivation of the general population-sizing relation:

2
M = 2z2n%
where z is the cumulative distribution ordinate value at some level of confidence, x is the
number of competing schemata in the same partition as the two in question, d is the difference
in mean fitnesses of the two schemata, and aﬁ is the mean of the schema variances. Clearly
it would be difficult to apply this formula in practice since the mean schema fitnesses for the
optimal schemata are what we are trying to find in the first place.

The general advice on population sizing is to double the population size until no further
improvement in performance is observed (Kinnear, Jr., 1994).

Tournament size has a direct effect on the selective pressure of the evolutionary algorithm:
the larger the tournaments, the more possibility of involving the better individuals in the
population. The probability with which individual 7 is selected for addition to the mating
pool has been derived in (Béack, 1994):

pi=M5((M —i+1)% — (M —i)®)

where S is the tournament size and the individuals have been sorted in increasing order
of fitness (for a minimisation task): f(a1) < f(a2) < ... < f(apm). The take-over time is
a measure of selective pressure of a selection mechanism. It is defined as the number of
generations required for the best-of-generation individual in the initial population to fill the
population through the operation of selection only. For tournament selection the take-over
time is:

« InM +In(ln M)
L InS
Of course this is without the use of genetic operators, and so is only useful for comparisons
between selection methods. Tournament selection provides much stronger pressure than
roulette-wheel selection (Back, 1994). Higher selective pressure leads to a loss of diversity,
which is offset in EPrep by the uniqueness of individuals inserted into the population. Nev-
ertheless given the high selective pressure of tournament selection and the observation from
initial experiments that EPrep tends to converge very quickly, the tournament size should
be set as low as possible, S = 2.

The motivation for carrying the top N,e, individuals into the next population is to
protect highly-fit individuals from destructive crossovers and mutations. A good individual
may be selected for the mating pool many times, but there is a possibility that all of the
offspring have considerably lower fitness, especially given the highly non-linear nature of
the fitness function. Consider that for EPrep, the BOG individual is not necessarily the
best generalising individual. Therefore if we could calculate how many individuals in the
population are likely to be candidates for the best generalising individual based on their
training set error, this would be an ideal value for N,.,, since the candidates are ensured
propagation to the next generation where they may become the BOG individual due to the
changing fitness function.

If we consider candidates for the best-of-generation generaliser to be those individuals
which are statistically indistinguishable from the BOG individual, then we could calculate
the confidence intervals for the BOG fitness assuming the errors take a Binomial distribution,
and set Ny¢p to be the number of individuals falling within the confidence interval. This value,
however, would change from generation to generation. At the beginning of a generation the
population is more sensitive to the loss of good individuals, since the individuals become

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 132

more and more similar as the population converges so that the loss of one good individual
would not affect the average fitness much. For this reason and because the distribution of
fitnesses at generation 0 does not depend on the value of Ny, initial runs can be performed
to calculate the average number of candidates at generation 0.

5.11.3 Termination Parameters

It has been observed in experiments that runs are almost always terminated by the general-
isation loss criterion. Therefore the maximum number of generations should be set to some
large amount to stop the program running forever, but no more notice need be paid to it.
Similarly the training progress threshold is unimportant since the training error estimate
is unlikely stagnate, given that the sample order is changing each generation. The more
important parameters are the generalisation loss threshold o and the training strip length k.

Since the BOR individual will be chosen as that which obtains the minimum observed
validation set error irrespective of the values of k and «, these parameters should be set such
that a good result is observed. Ideally we would let the algorithm run forever (k = oo, =
100%) and choose the best encountered solution, but we realise that generalisation will be
lost at an earlier point to a degree that makes us almost certain about the fruitlessness of
further computation.

One could use the curvature of the validation error plot to look for the global minimum,
but in practice the error can be quite erratic without any smooth trajectory. It may be wiser
for the user to make a subjective judgment based on trial runs. Note that the GUI has an
Abort Run button to allow the user to manually terminate the run.

The value of k£ imposes a lower bound on the number of generations performed per run,
should the behaviour of the validation measure be volatile in early generations. A sensible
approach would be to set &k = gsort, the turn-over time for the training samples. This way
each training sample is considered by the whole population at least once.

5.11.4 Optimisation Parameters

It is safest to set the convergence value for the simplex algorithm to some small number,
so that the algorithm stops when the variance of simplex scores is approximately zero. The
choice of the maximum number of iterations is the main issue. For the simplex algorithm,
n + 1 fitness evaluations are required just to initialise the simplex where n is the number
of real-valued constants in the individual. For best performance the maximum number of
iterations should be proportional to n, but for very large individuals in the population an
inordinate amount of computation would be required. Therefore a constant value is used for
all individuals.

There is a trade-off between the amount of time spent on local optimisation and on
global optimisation: more iterations for the local optimiser may result in faster convergence
to a solution, but require more computational power per generation. This state of affairs
is similar to the discussion of number of runs versus number of generations: the use of
optimisation increases P(M, 1) for a given generation 7. Similarly the optimal trade-off can
only be seen in retrospect, since the utility of the local optimisation is highly problem- and
individual-dependent.

5.11.5 Representation Parameters

The choice of functions and terminals must be performed by the user, and depends on the
data types and prior knowledge of the problem. The probability with which inversion is
applied to individuals in the population is not critical to the performance of the algorithm,

CHAPTER 5. THE EVOLUTIONARY PRE-PROCESSOR 133

since the inversion operator does not directly alter the fitness of an individual. If the prob-
ability is set too high, short-defining length schemata will not have a chance to settle in the
population. If too low, there will be insufficient modification of schema-defining lengths to
be worthwhile. It must be taken into account that crossover will not be applied to every
individual, since it must compete with the other available operators. Assuming that the
probability of crossover associated with each individual does not converge to 1, p;, should
be set as high as possible (ie: piny = 1) to make use of every crossover that occurs.

Setting the maximum initial depth of features is tricky, since the optimal tree depth
is problem-dependent. The overall search can be biased by the appropriate choice of this
parameter, and a poor choice can lead to poor results. The only wisdom offered on this
topic is to try different depths. The depth should be started at a small value rather than a
large value, as computation time increases exponentially with the maximum tree depth and
smaller solutions are preferable anyway.

Note that if the maximum initial depth is set to 1, each feature can only possibly be
an input variable. In this case EPrep performs feature selection by evolving sub-sets of the
original measurements; this is useful when there is a very large number of measurements
available.

5.12 Conclusion

This chapter has presented a thorough description of the evolutionary pre-processor algo-
rithm. The motivation for each design decision has been given, and heuristics for selecting
appropriate parameters have been listed. The next chapter describes the experiments using
EPrep to search for optimal pre-processors, and the corresponding results.

Chapter 6

Experimental Evaluation and
Comparison

6.1 Introduction

In Chapter 4, the concept of a generalised pre-processor was introduced to facilitate a search
for the optimal pre-processor for a given supervised classification problem. The evolutionary
pre-processor described in Chapter 5 was developed to perform this search. It may be,
however, that such a search is infeasible for practical problems, or is of no practical use
because existing methods are adequate.

It is the purpose of this chapter to investigate the issue of whether a search for the
optimal generalised pre-processor is a practical enterprise. There are two aspects to the
practicality of the search: is it feasible, and is it worthwhile? The approach used here was
to run the evolutionary pre-processor on several data sets from different problem domains.
For each problem, the improvement in classification performance conferred by the evolved
pre-processor was observed to assess the feasibility of the search.

To ascertain whether the process was worthwhile, a comparison was made to see if a
generalised pre-processor could result in classification performance superior to conventional
methods for supervised classification and automatic feature extraction.

This chapter begins with a description of the data sets used in the experiments. Next,
the motivation for the experiments is given, and the experiments are described. The results
of the EPrep algorithm on the test problems follow. The results of the other methods are
then presented, followed by a comparison between them and EPrep. The conclusion presents
a summary of the results.

6.2 The Test Problems

The methodology taken in this thesis was to examine a reasonably large set of appropriate
problems and test EPrep’s ability to learn from the data. Machine learning is of necessity an
empirical science, and consequently analytical results are not the boast of this thesis. At our
stage in history we do not have the tools to analytically decompose the dynamical behaviour
of most machine learning algorithms. Although there are, fortunately, some analytical results
for neural networks, genetic algorithms and other denizens of the machine learning literature,
they rarely lend powerful insight since the algorithms had to be so grossly simplified that
they scarcely resemble their original form.

The 15 data sets used in the experiments came from public domain repositories (White
and Fahlman, 1993; Rasmussen et al., 1996; Aviles-Cruz et al., 1995; Meyer, 1996; ESPRIT,
1995; Merz and Murphy, 1996), and are briefly described in Table 6.1. A full description of

134

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 135

each data set is given in Appendix C. Note that in this work, each data set is referred to
by a unique name in bold-face, as recommended in (Prechelt, 1994); eg: spirals for the two
intertwined spirals problem. Most of the data sets are real-world, while four are synthetic.
Since many of the classification algorithms used in the experiments have a model selection
step, the data were always divided into training, validation and test sets. The data sets were
chosen to have the following desirable characteristics:

e Real, noisy data with possible missing or incorrect values.

e Medium to large size to avoid issues concerning the statistical validity of results due to
small sample sizes. The number of samples is especially critical here because the data
will be divided into the training, validation and test sets.

e Problems from different domains such as medical diagnosis, social science and image
processing.

e Dimensionality of problems over a broad range.
e Number of classes of problems over a broad range.

e Non-trivial classification tasks: for instance, the well-known mushrooms (Prechelt,
1994) and iris (Aviles-Cruz et al., 1995) problems were not used because they are
almost linearly-separable, and present no challenge.

e Some enumerated attributes with a large number of distinct values, because some
classification methods are sensitive to this parameter.

e Problems with a mixture of the attribute types real, enumerated and boolean.

e Varying difficulties of classification: the synthetic problems have an exact solution and
there is no class overlap, while the real-world problems have varying degrees of class
overlap.

The 15 data sets are plotted according to their dimensionality, number of samples and
number of classes in Figure 6.1. From this figure it can be seen that the distribution of
problem sizes is fairly uniform, with two outliers having a relatively large value along one or
two of the axes. Note that there is no problem that is large according to all three dimensions.
Special characteristics attributable to some of the data sets are worth mentioning. The
four synthetic databases are balance, concentric, monks and spirals. The monks data
set consists of three separate problems defined on the same input domain. The concentric
and spirals have the z — y plane as their input domain, and therefore have a geometrical
interpretation. The treatment of spirals used here is different to that of past studies because
the data are divided into training, validation and test sets, and the input space is under-
sampled in the training and validation sets. The abalone data set has a relatively large
number of classes, and the satimage problem has a relatively high dimensionality and
number of samples. The australian data set has an enumerated variable with a relatively
large number of distinct values. The titanic domain only has 16 distinct combinations of the
inputs, and is heavily over-sampled. Therefore classification is based on statistics collected
from the data. It is expected that there is no discriminatory information contained in the
smoking data set, and that little more can be done than to guess the most frequent class.

6.3 Test Descriptions

To investigate the question of whether a search over pre-processors is feasible, the evolu-
tionary pre-processor was used to classify the data sets described in the previous section.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 136

Table 6.1: Summary of data sets used in experiments. “Default Error” is the percentage of
misclassifications obtained by always guessing the most frequent class. monks has 3 entries
because it contains 3 different problems. “Dim.” is the dimensionality of the data. Data
types are real, enum(erated) and bool(ean).

Problem Default No. of | Dim. | No. of data types
Error(%) Samples Classes | real | enum | bool
abalone 83.51 4177 8 29 v/ v
australian 44.50 690 14 2 v v v
balance 53.92 625 4 3 v
cme 57.30 1473 9 3 v v v
concentric 36.84 2500 2 2 v/
diabetes 35.00 768 8 2 v
german 30.00 1000 20 2 e v
monks 50-32.9-47.2 432 6 2 v v
satimage 76.18 6435 36 6 v
segment 85.71 2310 11 7 v
smoking 30.47 2855 9 3 v v
spirals 48.23 770 2 2 v
titanic 32.30 2201 3 2 v
vehicle 76.48 846 18 4 v
yeast 68.80 1484 8 10 v
7000 — -
6000 — i C . il cabalone Bafifnage
5000 —{ :
§4000~ :
§ 3000 —) _
S _o_ncé_'htric moﬁlng eﬁmenl
2000 | frame ast
1000 f@lar%e betes .ustﬂa“ﬂ?,r?g;%%n 30
0 - '
0 = - ' _

10 iy 10

20 25

35

40 O
number of classes

dimensionality

Figure 6.1: The 15 data sets plotted according to their dimensionality, number of classes
and number of samples.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 137

On the basis of these results, a comparison was then performed with existing methods to
investigate whether the new approach is worthwhile. While addressing these two fundamen-
tal issues, other potential questions about the use of EPrep as a classification method were
investigated. The following questions could potentially be asked of EPrep, or of any machine
learning algorithm:

1. Does it work at all?

2. For what sort of problems is it appropriate? What are the limits on problem size and
data type?

3. How long does it take to run?
4. If it is a stochastic algorithm, how much variation is there in the results?

5. Do the results yield useful information about the problem? Is the information reliable,
or does it vary too much over runs to be useful?

6. Does it learn efliciently?

7. How does it compare with other supervised learning algorithms, and what advantages
does it have?

For the practitioner, these questions can all be summarised into one: “why should I use
this algorithm?” Simply running EPrep on a broad range of example problems constituted
sufficient experimentation to address the first 5 of these questions. The last question was
addressed through a comparison with other methods. The question of efficiency depends
on the criterion of interest. If, for example, search efficiency is the issue then the no-free-
lunch methods mentioned in Section 3.2.3 may be of use, or a comparison with hill-climbing
or random search may serve as a suitable benchmark. If, on the other hand, classification
accuracy is paramount, then the user would not care if an algorithm took longer to run as long
as it produced a more efficient classifier. Other criteria are the computational complexity
of the algorithms, the number of input measurements required by the trained classifier, and
average number of computations per classification of the trained classifier. The efficiency
comparison performed in these experiments was based on computational complexity.

The next sub-section describes the general decisions and conditions for the experiments.
The succeeding sub-section is devoted to the experiments applying EPrep to the test bed,
followed by a sub-section describing the comparative experiments.

6.3.1 Experimental Design

In the experimental design, the results were analysed statistically where possible rather than
naively jumping to conclusions. There were several sources of variation in the experiments
which were addressed to make the results more sound:

problem type A result or phenomenon that arises for one problem may not for another
problem. To address this, different problems from different domains were used.

stochastic algorithms Those algorithms relying on random initial conditions or having a
stochastic element during training were run 10 times each. This number of runs was
chosen as a compromise between statistical accuracy and computational cost.

partitioning of the data Classification errors can be heavily dependent on the partition-
ing of the data into training, validation and test sets. For example, if a random
partitioning happens to result in a training set that gives little information about the

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 138

test set, then tests for generalisation will yield poor results. To offset this problem, the
experiments were performed separately for three different permutations of each data
set. This number of partitions was selected to give a feel for the effect of permuting
the data on the results, while keeping the amount of data generated manageable. Each
permutation of a data set is referred to by the data set name augmented with its num-
ber; eg: the second permutation of the two spirals data set is referred to as spirals2.
The data were permuted randomly while keeping the same relative class proportions
in each of the training, validation and test sets.

One of the issues in preparing the data was what proportions to use for the training, valida-
tion and test sets. There is a trade-off because we would like to use all of the data for training
to obtain the most accurate model, but we would also like to use as much as possible for
testing to obtain an accurate estimate of the misclassification rate. Fortunately in this case
the results do not rely heavily on this choice, because all of the experiments are comparative
in nature. Therefore it is not so much an issue of whether the classifier learned the structure
contained in all of the data from the problem, but rather which of the classifiers managed
to learn the most from the data used for training. With this in mind, all experiments used
a partition of 50% training, 25% validation and 25% test. The exact number of samples in
each set is shown in Appendix C. Note that there are two exceptions to this rule, monks
and spirals. In the case of monks, the data were already partitioned into training and
test. The training samples were randomly divided into a training set and a validation set.
In the case of spirals, the training samples were randomly partitioned into the training and
validation sets for each of the three permutations.

In the experiments involving multiple runs of stochastic algorithms, the “best” run was
used as the measure of the overall algorithm performance. It is very important to note,
however, that best does not mean that run with the minimum test set error. If the
test set is used to select the best classifier, then it automatically becomes part of the training
data. Rather, the run with the minimum validation set error is selected as the best run. If a
classifier has good generalisation capabilities, then the test set error will be correspondingly
low.

6.3.2 Analysis of EPrep

The experiments were conducted on EPrep by performing 10 runs on each of the 3 permu-
tations of the 15 data sets: 450 runs overall. Each run resulted in a best-of-run individual,
consisting of a pre-processor and a classifier. This individual can in itself be considered as
a non-linear classifier: it can be applied on its own to the classification problem without
ever having to run EPrep again. Therefore a before-after comparison was made between
the classifier on the raw data and the classifier on the pre-processed data. The comparison
between these two classifiers indicated whether the performance of the classifier could be
improved upon by finding an appropriate generalised pre-processor. The misclassification
errors of the two classifiers on the test set were compared using McNemar’s test (see Sec-
tion 2.11.1). This test is built into EPrep, and the probability that the evolved pre-processor
has improved classification performance is displayed in the HTML reports generated. Note
that this test does not tell us by how much EPrep has improved the performance of the
classifier.

Referring back to the questions asked in Section 6.3, trialing EPrep on different data
sets helps to answer the questions of whether the search for a generalised pre-processor is
feasible, what sort of problems are best solved using this method, and what the limitations
on problem size are.

After the best results were examined, the variability in the results was analysed to explore
the likelihood of obtaining the best solution were the algorithm run again with a different

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 139

random seed. The variability in the structure and content of the pre-processors themselves
is also an issue, and is important for ascertaining the usefulness of EPrep for knowledge
discovery. To casually examine computational complexity, the average execution time of the
algorithm for each data set was recorded. These execution times are not directly useful for
comparative purposes, because they depend on the platform used to run the algorithm. The
execution times is included only to provide an order of magnitude estimate of the time taken
for the algorithm to solve a problem. The computational complexity of the EPrep algorithm
is examined in Section 6.8.4.

The parameters for EPrep were selected according to the guidelines given in Section 5.11.
In some cases, the parameters were iteratively refined by changing parameters that were
obviously chosen poorly. The following notes summarise the main points of the parameter
selection process:

e The parameters used were different for each problem, but usually kept the same for each
of the three permutations of the same problem. The exceptions were cmc, german,
monks, satimage and yeast.

e The power function pow(a,b) = a® was avoided because it was found to produce poor

results due to its highly non-linear behaviour.

e For many of the data sets, one of the three classifiers used by EPrep (see Section 5.2.3),
MDTM, PPD and ML, was excluded from the set used by EPrep because it performed
significantly better than the other two classifiers. This “tall poppy” was often the
ML classifier. The classifier was excluded in these cases because it was doing most
of the work in classification, leaving little for EPrep to do. It was found that if the
classifier was left in, there was too little room for improvement on classification error
for EPrep to evolve useful features. Removing the best classifier put more pressure on
EPrep to evolve features that separate the data, yielding more interesting results. The
exceptions to this rationale were monks2 and vehicle for which EPrep was unable to
achieve a reasonable error rate without the ML classifier. It may be that excluding the
most accurate classifier is a better approach for knowledge discovery, but if accuracy
is the main objective then the best classifier should perhaps be left in the set.

e In some cases, the parallelepiped classifier was excluded from the set used by EPrep
because it did not generalise well with the evolved features.

e Local optimisation was not used for monks3 and yeast due to restrictions on compu-
tation time, and the limited benefits of its use.

6.3.3 Comparison with Other Methods

To examine the strengths and weaknesses of the EPrep methodology, a comparison was
performed with 7 other classification methods. Without the benefit of experimental results,
EPrep has some advantages over other supervised classification methods:

e the search algorithm can escape local optima;
e the features generated are true for all time, and can be interpreted by the user;

e arange of different non-linear and discontinuous functions can be combined to construct
the decision surfaces;

e the data dimensionality is reduced and the classification algorithms are simple, so the
solution can be implemented inexpensively; and

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 140

e the input measurements that are needed for classification are automatically selected.

How useful these advantages are in practice depends on the application at hand.

In terms of classification performance, a comparison with established methods was per-
formed. For each of the problems listed previously, EPrep’s test set classification errors were
compared with those of the following methods:

e Multi-Layer Perceptron (MLP) trained with the RPROP algorithm; see Section 2.7.2
e Decision Trees (QUEST); see Section 2.8.3

Generalised Linear Machine (GLIM); see Section 2.7.1

k-Nearest Neighbours (kNN); see Section 2.6.4

Parallelepiped Classifier (PPD); see Section 2.3.1

Minimum-Distance-to-Means Classifier (MDTM); see Section 2.6.2
e Gaussian Maximum Likelihood Classifier (ML); see Section 2.6.3

The MLP was chosen as part of the comparison because it is another automatic feature
extraction method, and is widely used. The QUEST algorithm was chosen because, like
EPrep, it generates solutions that can be scrutinised by the user. The other methods are
fairly simple and were used because they were readily available (PPD, MDTM and ML are
intrinsically part of EPrep), and can be used to indicate problems for which complicated
decision boundaries are not necessary.

The statistical test used to compare the best-case performance of the classifiers is the
one-way repeated measures design described in Section 2.11.3. This method gives pair-wise
confidence intervals for all the algorithms. Comparing EPrep with these other methods
indicates in what situations the generalised pre-processor approach is advantageous.

The average-case performance of EPrep was compared with that of the MLP. The ¢-test
described in Section 2.11.2 for the difference between means of distributions with unequal
variances was used to compare the mean test set errors over the 10 runs performed. The
understandability of the solutions generated by EPrep was compared with QUEST’s decision
trees to investigate the utility of EPrep for knowledge discovery. A final comparison was made
between the execution times and computational complexities of the classification algorithms.
The execution times are only recorded to give the reader an idea of the time required for each
algorithm, and cannot be used for a direct comparison due to the multiplicity of platforms
used.

There is often an intrinsic bias in comparisons between a new algorithm and existing
algorithms, because the person conducting the experiments is usually the author of the new
method. Therefore the experimenter is the expert on how to select parameters for the new
method, but does not know how best to configure the existing methods. The comparison
made in this thesis was intended to be as unbiased as possible. Although for QUEST and
the MLP the same parameters were used for all data sets, different parameters were used if it
was obvious that the defaults were not appropriate. The parameters for EPrep were selected
according to common sense, and in some cases iteratively refined by changing parameters
that were obviously chosen poorly. The iterative process was limited, however, so that
sub-optimal parameters were also used for EPrep.

The experimental particulars for each of the methods are set out below.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 141

6.3.3.1 Multi-Layer Perceptron

The experimental set-up for the Multi-Layer Perceptron (MLP) was virtually identical to
that used in the Proben1 technical report (Prechelt, 1994). An initial search over 12 network
architectures was performed to find the best topology, termed the pivot architecture. The
pivot network was then run 10 times to obtain the final results. The MLP algorithm was
implemented in Matlab.

One output layer neuron was used for each class, and the target vectors were constructed
using the 1-of-m encoding (see Section 2.7.2). In order to improve training performance,
the target vector values 0,1 were shifted to 0.1,0.9. The networks contained all connections
between consecutive layers. The neuron activation function was the sigmoid:

_ ax
"~ 1+alz|

()

with derivative:

, a if z = 0;
fle) = { f;gx) otherwise.
a is the slope at the origin; a value of @ = 1 was used. This sigmoidal function was used
in preference to the traditional tanh function because it does not require calculation of an
exponential function. The RPROP algorithm (see Section 2.7.2.2) was used to train the
networks. The GL, and TPy stopping criteria (see Section 5.9) were used to halt training
with training strip length &£ and a maximum number of 3000 epochs.

The 12 one- and two-hidden-layer network architectures trialed were 24-0, 440, 840,
1640, 24+0, 3240, 2+2, 442, 4+4, 8+4, 8+8, 16+8, where the notation z+y means z
neurons in the first hidden layer and y in the second hidden layer. For each architecture, two
runs were performed using linear output neurons and one using sigmoidal output neurons,
denoted z+yl and z+ys respectively. Therefore a total of 36 initial runs were used to choose
the MLP architecture. The pivot architecture was chosen using the following algorithm,
recommended in (Prechelt, 1994) for use with early stopping. The set of networks with
validation set classification error (not sum-squared error) rates within 5% of the lowest were
chosen as competitors. From these, the network with the largest number of weights was
chosen. If two competitors had the same size, the one with the smaller validation set error
was chosen unless the linear architecture appeared twice, in which case it was chosen.

The parameter settings used to find the pivot architectures were:

k 50
a = 5
B = 15
nt = 1.1
n- = 0.5
Aoz = 50
Apin = 0

Apaz(0) = 0.2
Apmin(0) = 0.05
Wmin = —0.5

Wmaz = 0.5

Refer to Sections 2.7.2.2 and 5.9 for an explanation of each parameter.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 142

The pivot architecture was then trained 10 times to obtain a best and average classifica-
tion error on the test set. The parameters used in these final runs were:

Ek =5

a = 5

B = 15

nt = 1.2

n = 0.5

Apaz = 50

Apin = 0
Apmaz(0) = 0.02
Apmin(0) = 0.005
Wmin = —0.01
Wmae = 0.01

except for the concentric problem, for which the architecture-finding parameters were used.
Since data are usually pre-processed specifically for neural networks (see Section 2.7.2.1),
the following modifications were made to all data files:

e Each enumerated variable was replaced with a set of boolean values, one for each value
in the enumeration. More formally, for a variable z; which can take on one of n distinct
values:

T; — [3711,%2, cen fﬂin]

g 1 ifj =y,
771 0 otherwise

e Real variables were scaled to the range [0, 1].

This process resulted in an increase in the dimensionality of the data. The old and new
dimensionalities for each problem domain are shown in Table 6.2.

For the MLP, both the best and average classification errors were compared with those
of EPrep.

6.3.3.2 QUEST

There are many different decision tree methods. QUEST (see Section 2.8.3) was chosen for
this comparison because it was recommended as the best overall decision tree method from
a survey of 22 decision tree methods on 32 data sets (Lim et al., 1997), and the software is
public domain (Loh and Shih, 1997a). QUEST version 1.6 was used on the PC for most of
the data sets, but version 1.7 was used on Unix workstations for the larger problems. In each
case, the default parameters were used, listed in Table 6.3. The training and validation sets
were combined into a single learning sample, and the test set was kept aside as a hold-out
set.

6.3.3.3 k-Nearest Neighbours

The k-Nearest Neighbours algorithm uses the full set of training samples to determine the
class of a newly-presented sample. When a new sample is presented, the distance from it to

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON

143

Table 6.2: Dimensionality of the problem domains before and after preparation for the MLP.

Problem original MLP
dimensionality | dimensionality
abalone 8 10
australian 14 40
balance 4 4
cme 9 12
concentric 2 2
diabetes 8 8
german 2 63
monks 6 15
satimage 36 36
segment 11 11
smoking 9 22
spirals 2 2
titanic 3 8
vehicle 18 18
yeast 8 8

Table 6.3: Default parameters used for QUEST simulations.

Parameter Value

priors estimated from data
misclassification costs equal

minimal node size)

splitting method univariate

variable selection method

(unbiased) statistical tests

alpha value

0.05

method of split point selection

discriminant analysis

number of SEs for pruning

1.0

pruning method

10-fold cross-validation

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 144

all the training samples is calculated, and the k nearest samples are used to decide the class
of the sample. The decision is made by majority vote. In the case of a tie, the class whose
samples have the lowest aggregate distance is chosen. The distance function used depends
on the application; in this case, Euclidean distance was used.

The hyper-parameter k& was chosen by minimising the validation set error over the range
k €1,...Ny.. This value of k was then used to classify the test set using the training and
validation sets as the reference data. Note that for satimage, only & values in the range [1,
1300] were examined due to excessive computation times, and the steady progression toward
larger errors for higher values of k.

6.3.3.4 Generalised Linear Machine

The generalised linear machine, described in (Nilsson, 1993), is similar to the linear percep-
tron. It separates the feature space with C hyper-planes, which are positioned via iterative
training with an error-correcting rule.

The neuron weights were always initialised to zero, so that the results were independent
of the initial conditions. The parameter that could vary was the number of epochs, which is
the number of times the whole training set was presented to the classifier. During training,
the minimum training set error indicated the best set of weights. To avoid over-training, the
algorithm was run for each number of epochs in the range [1,1000], and the classifier with
the minimum validation set error was chosen as the best.

6.3.3.5 Minimum Distance to Means Classifier

This is a very simple classifier indeed. The mean of the training samples is constructed for
each class. When a new sample is classified, it is assigned to the class of the mean that is
nearest. Fuclidean distance was used here. There was no need for validation, so the training
and validation sets were merged into a single training set.

6.3.3.6 Parallelepiped Classifier

One step up from MDTM, the parallelepiped classifier calculates the extents of the training
samples from each class to form an enclosing parallelepiped. A novel sample that falls in a
single parallelepiped is assigned the class of that parallelepiped. If the sample falls in more
than one parallelepiped or is unclaimed, the centres of the parallelepipeds are calculated and
the algorithm reverts to minimum-distance-to-means. Again, the training and validation
sets were merged to form a single training set.

6.3.3.7 Gaussian Maximum Likelihood Classifier

This classifier assumes a single Gaussian density function for each class, resulting in quadratic
decision boundaries. There is no model selection step, so the training and validation sets
were merged into a single training set to estimate the means and covariance matrices for
each class.

6.4 Results of EPrep

It is natural that, since this thesis is about EPrep, more attention should be paid to its
results than to those of the other methods. The summarised results of the EPrep runs are
shown in Table 6.4. The meanings of the columns in the tables are:

Problem: the name of the data set and permutation.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 145
Table 6.4: Classification results of EPrep algorithm.
Problem tr. val. test A l1-«a test% no no. classifier | time
error% | error% | error% | error p | o ftrs | nodes h:m
abalonel 73.71 73.18 75.60 | 14.64 1.00 | 76.81 1.50 4 91 MDTM | 42:55
abalone2 72.51 73.37 73.97 | 18.09 1.00 | 76.62 1.29 2 42 MDTM | 11:00
abalone3 73.23 73.56 74.64 | 16.84 1.00 | 77.51 2.01 6 102 MDTM | 10:58
australianl 17.97 10.47 10.40 | 27.17 1.00 | 11.39 0.37 2 13 MDTM | 13:53
australian2 13.33 11.63 16.76 | 22.54 1.00 | 17.17 0.37 5 55 MDTM 2:04
australian3 17.10 11.63 10.98 | 15.20 1.00 | 11.50 0.31 1 5 MDTM 1:43
balancel 0.00 0.00 0.00 | 22.29 1.00 4.90 8.00 1 7 PPD 0:25
balance2 0.00 0.00 0.00 | 22.93 1.00 8.60 9.99 1 74 PPD 0:35
balance3 0.00 0.00 0.64 | 24.20 1.00 | 14.33 | 15.75 1 7 PPD 0:21
cmcl 43.75 45.11 40.92 | 23.31 0.99 | 44.63 3.21 4 41 MDTM 8:11
cmc2 43.89 38.32 44.99 | 18.97 0.99 | 45.85 1.83 3 182 MDTM | 44:57
cmced 46.06 45.11 38.21 | 21.68 1.00 | 42.87 3.22 6 127 MDTM | 10:42
concentricl 0.00 0.16 0.00 | 23.52 1.00 2.51 0.99 1 15 PPD 14:29
concentric2 0.80 0.48 1.92 | 20.96 1.00 2.22 0.73 2 92 PPD 25:40
concentric3 0.48 0.80 1.76 | 21.28 1.00 2.00 0.41 2 22 PPD | 17:.07
diabetesl 25.00 19.27 22.92 | 15.10 1.00 | 23.23 1.24 2 163 PPD 8:05
diabetes2 22.66 22.40 24.48 9.90 0.99 | 29.11 4.40 1 21 MDTM 3:41
diabetes3 25.00 21.88 24.48 | 13.02 0.99 | 28.59 6.47 3 23 MDTM 3:23
germanl 22.80 24.80 26.80 9.60 0.99 | 29.68 2.73 11 54 ML | 11:38
german?2 22.60 21.20 27.20 1.60 0.69 | 28.96 2.02 16 173 ML | 13:49
german3 25.00 22.80 28.40 0.80 0.60 | 27.48 1.53 12 432 ML | 27:33
monksl 0.00 0.00 0.00 | 27.08 1.00 7.36 7.63 3 29 ML 0:53
monks2 0.00 0.00 0.93 | 24.77 1.00 7.96 8.77 5 45 ML 1:39
monks3 4.94 9.76 2.78 | 16.67 1.00 2.78 0.00 2 7 MDTM 0:05
satimagel 19.18 19.22 21.68 2.24 0.20 | 26.17 6.15 18 856 PPD | 65:16
satimage2 15.82 14.74 16.46 7.20 1.00 | 19.99 2.96 15 60 MDTM | 95:51
satimage3 17.28 16.79 15.34 4.97 0.99 | 17.06 1.82 9 49 MDTM | 113:52
segmentl 5.89 5.37 4.84 | 80.80 1.00 6.83 1.21 9 28 ML | 45:59
segment?2 5.97 4.51 4.50 | 10.38 1.00 6.21 1.48 8 92 ML | 11:11
segment3d 4.24 4.16 6.40 | 12.80 1.00 7.23 0.75 9 111 ML | 20:33
smokingl 29.85 30.01 31.19 | 32.87 1.00 | 52.27 | 27.00 5 855 PPD | 49:07
smoking2 30.13 29.87 30.91 | 31.89 1.00 | 41.82 | 21.86 2 393 PPD 10:01
smoking3 30.34 29.87 31.47 | 34.41 1.00 | 49.66 | 28.50 2 868 PPD 9:04
spiralsl 17.01 22.68 24.22 | 24.22 1.00 | 28.98 2.76 2 22 ML 9:12
spirals2 26.29 19.59 34.66 | 17.12 1.00 | 30.69 3.75 2 38 ML 8:34
spirals3 18.56 19.59 32.15 | 19.21 1.00 | 29.52 4.83 2 101 ML 6:13
titanicl 21.55 20.55 20.15 | 12.34 1.00 | 20.15 0.01 1 12 MDTM 9:48
titanic2 22.18 22.18 20.15 | 11.98 1.00 | 1948 0.49 1 31 MDTM 4:41
titanic3 21.64 22.18 20.69 | 11.62 1.00 | 21.13 0.68 2 48 MDTM 3:22
vehiclel 9.22 13.27 13.68 -0.94 0.17 | 13.77 0.86 13 13 ML | 11:20
vehicle2 9.93 14.22 17.45 0.94 0.35 | 18.73 2.13 13 15 ML | 45:18
vehicle3 12.29 13.74 16.51 -2.36 0.09 | 15.71 1.61 12 12 ML 12:53
_yeastl 39.62 46.90 46.90 22.10 0.78 | 57.82 7.93 8 182 PPD 7:19
yeast2 42.72 46.09 47.71 21.02 0.75 | 59.54 | 10.93 6 233 PPD 14:01
yeast3 48.25 45.01 52.56 15.90 0.48 | 53.02 1.36 2 43 ML 6:22

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 146

tr. error: the objective function value of the best-of-all-runs individual. Note that this is
the percentage error calculated by the RAT algorithm described in Section 5.5.1, and
is generally not based on the full training set.

val. error: the validation set percentage error of the best-of-all-runs individual.
test error: the test set percentage error of the best-of-all-runs individual.

A error: the improvement in test set percentage error of the best-of-all-runs individual over
the test set error of the best classifier on the original data. The best classifier comes
from the sub-set of MDTM, PPD and ML used by EPrep for the problem, and has the
minimum validation set error from amongst the sub-set.

1 —a: 1 minus the McNemar’s test confidence level, interpreted as the probability with
which the best-of-all-runs individual improved the test set error above that of the best
classifier in the set used on the original data.

1 test: the mean test set error over the 10 runs.

o test: the standard deviation of the sample of test set errors over the 10 runs.
no. ftrs: the number of features contained in the best-of-all-runs individual.
no. nodes: the number of nodes contained in the best-of-all-runs individual.
classifier: the classifier used by the best-of-all-runs individual.

time(h:m): the elapsed time taken for the batch of runs, in hours and minutes.

The parameters used to obtain these results are printed in Appendix D. Note that those
values of A error that are statistically significant at the 99% level are high-lighted in bold.
The following comments can be made about the results:

e For 36 out of 45 problem domains, EPrep brought about a statistically significant (at
the 99% level) improvement in classification performance over the classifiers used.

e The test set error obtained by EPrep was far better than the default error rate for all
problems except german and smoking.

e The 9 data sets for which no significant improvement was obtained over the default
error or the error of the original classifier were german, satimagel, smoking, vehicle
and yeast. Of these, satimagel is an outlier according to Figure 6.1, smoking is
suspected to contain no learnable information, and vehicle is already well classified
by the ML method on the original data. There is no such explanation for the poor
performance of EPrep on german and yeast.

e The features generated usually resulted in good generalisation performance in the sense
that the test set error was close to the validation set error.

e The RAT estimate of training error was often similar to the validation set error.
e The time taken to perform 10 runs of EPrep ranged from hours to days.

e The results were fairly consistent for the three permutations of each data set. For
australian and satimage, the test set error was changed dramatically by permuting
the data. In 11 of 15 cases, the same classifier was used from the set available for
all three permutations. The number of features in the best-of-all-runs individual was

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 147

about the same for each permutation of the same data set, while the number of nodes
tended to vary quite a bit. Statistically significant improvements were obtained for all
three permutations in each case except for german and satimage.

e In most cases, the mean test set error was fairly close to the best, and the standard
deviations were small relative to the error.

e For german3, spirals2, spirals3, titanic2 and vehicle3, the mean test set error was
lower than the best. Hence the best run did not correspond to the lowest test set error
for these data sets.

e The synthetic problems balance, concentric, monks and spirals were not, in gen-
eral, solved perfectly. While performance was good on balance, the best individual
did not generalise perfectly for balance3. Similarly for monks, generalisation was
imperfect for monks2 and the minimum error was not achieved for monks3, which
contains noise. The results for spirals were quite poor, but it should be noted that
zero error may be out of the question because the training set is under-sampled.

e For many of the data sets, the dimensionality of the data was significantly reduced by
the best pre-processor.

e For vehiclel and vehicle3 the test set error of the classifier on the pre-processed data
was worse than on the original data. This occurred because EPrep was not able to
improve upon the original input measurements. The reader may be wondering why, if
the initial population was seeded with the full set of input measurements, EPrep can
do any worse than the original data. The reason is primarily over-fitting: features are
evolved that reduce the error specifically on the training data, and happen to perform
better than the original measurements on the validation set. When it comes to the
test set, however, the over-specialised features do not generalise as well as the original
measurements.

Each time EPrep is run on a set of data, it generates many data files, plots and a HTML
report summarising the results. The main outputs of EPrep were the following 10 quantities:

best-of-generation fitness: the minimum objective function value (RAT training fitness)
of individuals in the population at generation g.

best-of-generation validation error: the validation set error of the best-of-generation
individual at generation g.

average fitness: the mean objective function value of individuals in the population at gen-
eration g.

standard deviation of fitness: the standard deviation of objective function values of in-
dividuals in the population at generation g.

average number of features: the average number of features contained in individuals in
the population at generation g.

average number of nodes: the average number of nodes contained in individuals in the
population at generation g.

average number of introns: the average number of introns contained in individuals in
the population at generation g.

average number of RAT trials: the average number of training samples required to eval-
uate the fitness of individuals in the population at generation g.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 148

average optimisation improvement: the average improvement in fitness brought about
by local optimisation at generation g.

average operator probabilities: the average probability per genetic operator contained
in individuals in the population at generation g.

Each quantity was plotted versus generation per run, and averaged over all runs. Therefore
the experiments performed resulted in 15 x3x(10+1)x10 = 4,950 plots, which cannot all
be included in this thesis. Instead, a single plot per quantity for each problem is included
in Appendix E. The plots are included to support the comments on EPrep’s performance
made in the following sub-sections. Each plot contains the quantity for all of the three
permutations, averaged over the 10 runs. The exception is the operator probabilities, since
showing three groups of operator probabilities would over-complicate the plot. Instead, only
the probabilities for the first permutation are shown. The specific plots for each run can be
viewed through the HTML reports using a web-browser. All HTML reports generated in
these experiments are found on the CD-rom included with this thesis; instructions for the
use of the CD-rom are found in Appendix A.

Since the plots in Appendix E are averages, they do not capture the dynamics of in-
dividual runs. Therefore the reader should be careful in interpreting the dynamics of the
averaged plots, since they are generally not reflected in the curves from the individual runs.
In the following sub-sections, some examples of the evolved pre-processors are presented, and
characteristics of the plotted quantities are discussed.

6.4.1 Pre-Processors

In this section, a selection of the pre-processors evolved during the experiments is shown.
Each pre-processor is displayed as a set of trees, each tree being a feature. The trees are
displayed horizontally, and the order of the function arguments is from bottom to top; ie:
the bottom-most argument is the first. For example, the tree:

represents the expression a/b.

The pre-processors shown here do not constitute the full results of the experiments, but
are representative of the results obtained. In each case, the pre-processor shown is the
best-of-run individual from the best run on the corresponding permutation of the data set.
Therefore the pre-processor labeled australianl, say, corresponds to the autralianl entry
in Table 6.4. Note that some of the pre-processors cannot be shown here because they are
too large to fit on a page, and would not make much sense to the reader anyway.

The pre-processors evolved for the synthetic problems are shown in Figure 6.2. These
results are easier to analyse, because the true distributions of the classes are known. Referring
to Appendix C, the true solution to the balance problem is based on the difference between
X1xX2 and X3xX4. Since the single feature in Figure 6.2(a) reduces to (X1.X2)/(X3.X4),
EPrep found the perfect solution. The concentric data are dichotomised by the circular
boundary between the two clusters; see the diagram in Figure C.1. The boundary is defined
by the circle centred at (0.5, 0.5):

{(z,y) : (x - 0.5)* + (y — 0.5)% = 0.3%}

The expression simplifies to:
ety —z—y=-041 (6.1)

The feature evolved by EPrep, shown in Figure 6.2(b), reduces to:

X124+ X22 - X1—-X2+1

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 149

With the appropriate substitution of X1 for £ and X2 for y, this is identical to Equa-
tion 6.1 except for the constant factor. It is the constant factor that is effectively modified by
the classifier, which acts like a fine-tuning mechanism. The validation set error is not zero in
Table 6.4 due to finite data effects. That is, the value of -0.41 is not perfectly obtained from
the finite training set, so some of the boundary points are misclassified on generalisation.

.-[sin 51587e 01

“M‘{

. -9.37256e-01
F1
Xd - l[:
.[M sl
= :

F2 .{-
(a) balancel

(b) concentricl

(c) spiralsl

Figure 6.2: Best feature sets evolved by EPrep for synthetic problems.

EPrep had some trouble classifying the spirals data, obtaining a best test set error of
24.22% on spiralsl.

The best pre-processors for the three monks problems are shown in Figure 6.3. As is
usual for the results of genetic programming, we find some redundant expressions that can
be simplified by hand, and others that do not contribute to the fitness of the solution. For
example, in Figure 6.3(b), F5 contains “If(X3 X6 X6)”, which simplifies to X6.

For monksl, the concept to be learned was (head_shape(X1) = body_shape(X2) OR
jacket_colour(X5) = red) (refer to Appendix C). EPrep learned this in some way, since the
test set error was zero. However, the results are not as neat and nice as we would have
hoped. From Figure 6.3(a) we see that EPrep has discovered =(X5 red), but the variables
X1 and X2 are not considered to be of equal type since they are enumerated variables, which
in general do not possess the same enumerated values. Therefore EPrep cannot generate the
expression =(X1 X2); it circumvented this restriction by increasing the dimensionality and
using the separating qualities of the classifier. Since X1 and X2 can take on the values round,
square and octagon, these were tested separately in different features of the pre-processor so
that the conjunction of X1 and X2 having some particular value is transformed to a corner
of the output-domain hyper-cube. These corners can then be separated by the ML classifier,
which has the advantage that diagonally-opposite corners can be included in the same class.
The solution also contains the superfluous variable X3, which has “hitch-hiked” along with
the best solution.

For monks2, the concept to learn is whether exactly two of a robot’s six attributes have
their first value. EPrep almost learned this concept, making four errors on the test set. For
X1 and X2, the first value is round; for X4 sword and X5 red. X3 and X6 are boolean, so the
first value is false. We can see these first values being used in the solution of Figure 6.3(b).
Trial runs without the ML classifier have shown that EPrep is unable to discover the true
solution without the ML classifier, whose special properties are the key to discovering the
classification rule. The problem is that, when classifying the training and validation samples,
the classifier is only trained on the training set, whereas to classify the test set the union of
the training and validation sets is used for training. The features evolved are not robust to

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 150

E|'[
X2
F1 EI-[
F2 [X1]
'E’{ octagon E—[E
-E'{E - And] E{ﬁnd
- X2
y El'[octagon E [octagon
i ofy nEeig™
| i) =
octagon And
ool o 2]
3
d
El-[3 [or E[m
[round] :]
E{ sword
T E]{_X—_‘il (c) monks3
F3 F4 [If] E
(a) monksl -{
F5 | And|
W
(b) monks2

Figure 6.3: Best feature sets evolved by EPrep for the monks problems.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 151

this variation in training data, which overall stems from the very small data set available,
and 4 of the test samples are misclassified.

In the third monks problem, the concept is (jacket_colour(X5) = green AND holding(X4)
= sword) OR (jacket_colour(X5) != blue AND body_shape(X2) != octagon), where != means
“not equal to”. Although EPrep managed to learn the second AND term in the concept,
it was unable to detect the first term. Indeed, X4 does not even feature in the solution. A
suitable explanation can be found by closer examination of the data, which is graphically
presented in (Thrun et al., 1991). Of the 122 training samples, there are only two samples
from class 1 that are covered by the first term and not by the second. Further, both of these
examples are found in the training set, so when choosing the best run based on validation set
error, an individual that has learned the first part of the concept is indistinguishable from
one that has not. Too little evidence is provided by which EPrep can learn the first term
rather than the added noise. In short, the training and validation sets are not sufliciently
representative of the whole data set to properly learn the first part of the concept. EPrep
made 12 errors on the test set; these are the 12 samples that are covered by the second term
but not the first.

The remaining pre-processors shown here are for the real-world data sets. Figure 6.4
shows the best features evolved for each of the three permutations of australian. The
GPPs for australianl and australian3 are quite similar, with X8 and X12=p being the
common expressions. For australian2, however, the GPP is much larger, and does not
contain the variable X12 at all. This shows just how much the evolved features can vary
due to a permutation of the data. It is interesting to note that for australian3, only X8
and X12 were needed, whereas the documentation of the data set states that a step-wise
regression procedure strongly suggested that attributes X5, X8, X9, X13 and X14 were the
relevant measurements. The latter result is, however, only step-wise optimal.

The best-of-run GPPs vary not only with the permutations of the data, but also be-
tween runs on the same permutation. For example, compare the GPP from the best run
on australian3, shown in Figure 6.4(c), with training-validation-test set errors 17.10-11.63-
10.98%, against the BOR pre-processor from another run shown in Figure 6.5 with errors
15.94-11.63-11.56%. Although the two pre-processors have the same validation set error, the
second is much larger and uses a larger set of input variables. The training set error of the
larger individual is lower than that of the smaller because it has started to over-fit the data,
but the test set error is higher because it does not generalise as well.

The best feature set for titanicl and titanic2 are shown in Figure 6.6. The single
feature for titanicl in Figure 6.6(a) translates to “a passenger survived if he/she was a child
or female, and not in third class”. This is the familiar women-and-children-first rationale,
with discrimination against third class. Slightly different results were obtained for titanic2.
The feature in Figure 6.6(b) simplifies to (child AND 3rd class AND male) OR (adult AND
(male OR 3rd class)). In words, “a passenger did not survive if he/she was a 3rd class male
child, an adult male, or an adult from third class”. The difference from the first permutation
is that little girls from third class survived. This difference arose due to the permutation of
the data, so the whole data set would have to be used to ascertain the true facts.

In Figures 6.7 and 6.8, pre-processors for some of the other real-world data sets are
shown. The GPP for cmcl in Figure 6.7(a) does not use X5 (religion: islam or non-islam?)
or X6 (wife now working?). For diabetes3 in Figure 6.7(b), the attributes X1 (number
of times pregnant), X4 (triceps skin fold thickness) and X5 (2-hour serum insulin) are not
needed for classification of the data. For the segmentl problem, the solution shown in
Figure 6.7(c) only uses 6 of the original 11 input measurements. These results indicate that
EPrep performs attribute selection at the same time as performing feature extraction. The
information about which attributes are useful for classification must be handled with care,
though, because some attributes may be present but not contribute to the fitness of the

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 152

m
E,{m

-—E
-Xl
F1 And -

- Not

X14

-{ x13
- Not
D e o m

= E|'[5.09017e-01]
2]

log {2 [P]
F2
[oxf E]'[m F1 @
X12 1And] m (c) australian3
(a) australianl
m

F3 M{Em
F4 [g{

1]
F5 [1iH(0]

(b) australian2

Figure 6.4: Best feature sets evolved by EPrep for australian problem.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON

!
g

>
E
E

><T.t
4
N

Fi [Or} ;

) (el

3 [And

F4 [And}

Figure 6.5: Best feature set from run 9 for australian3.

153

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 154

E{m

'E]{m
E]{
- | If X1
. E.{;]j
F1 [And] El'l: fernale
C.]
% F1 -—-'[
E[— oy Lemal]
[X3]
first
(a) titanicl -[Not | E‘[

E'_[m

(b) titanic2

Figure 6.6: Best feature sets evolved for first two permutations of titanic.

individual, and the results vary from run to run.

The GPP for vehicle2 consists of virtually un-modified attributes. It would appear that
the ML classifier is already so effective that transforming the attributes could not improve
the classification rate, so EPrep reverted to feature selection, finding the most economical
combination of the original attributes through high-level crossover. The solution shown here
uses only 12 of the original 18 attributes. The pre-processors for abalonel and satimage2
are quite large, and have departed the limits of what can reasonably be interpreted by a
human. The solution for abalonel does not use X1, which is the sex of the mollusk.

6.4.2 FEvolution of Fitness

The figures in Appendix E show the best-of-generation, average and standard deviation
of fitness, along with the best-of-generation (BOG) validation error for each data set as a
function of generation. Note that fitness in this case is a classification error, so lower is
better.

The reproduction of the top N, individuals in the population ensures that the BOG
individual is propagated to the next generation. Therefore it may surprise the reader that
the BOG fitness and validation set error is not a strictly monotonic non-increasing function
of the generation. The reason is that the fitness criterion is changing each generation because
some of the samples are sorted to the start of the training set. Difficult samples are moved
to the front of the list, and in some cases the lowest error in the population is no longer as
low as that from the previous generation. This changes the criterion for selecting the BOG
individual, so the validation set error can increase.

The BOG fitness, based on training set error, generally decreased with time, with the
exception of the vehicle problem. For some of the data sets (eg: australian, diabetes,
satimage), there was a characteristic bump in the plot as the fitness initially increased,
then decreased with generations. This is to be expected: at generation 0, there are some
individuals in the population that have a low objective function value but do not generalise
well, or specialists, and some with low fitness that do generalise relatively well, or generalists.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 155

aha
(o 4]
a{j*: THE
-3.62906e+00 [X3]

2] F1[*} x10
X2 F2 [+
B e m{- FHE
-—I{'3 T i)
X4 5
D[F2 [x2] £ [1.06847e-02]
) I{H iy
X8
[Tzsow0e02] *
. rlabs HEH rs 1] .[m
3 e [nﬁ
-E{- .{ [x8] 6 [¥] .{m
|
El-[F7 [X10
EI{ [x] (b) diabetes3 F8 [X9]
F4 [-H F9 [X11]

-Iﬂ{

(c) segmentl

(a) emcl

Figure 6.7: Best feature sets evolved by EPrep for real-world problems.

On the first generation, there is no way to tell the difference between a specialist and a gen-
eralist. Over the first few generations, the specialists are gradually removed from the upper
ranks of the population because their fitness does not remain low as the objective function
changes. The less brittle generalists remain around the top of the ranks, and gradually learn
to classify the new difficult samples through the genetic operators’ modifications. After sev-
eral generations, the gross structure of the data has been learned, and the error starts to
decrease.

In most cases, the plots of BOG fitness were similar for the three permutations of the
data. When the plots were different, they usually had roughly the same shape but differed
by a bias; eg: australian, diabetes, titanic, satimage. The implication is that some
permutations of the data deprive the training set of samples that are essential to approach
the Bayes rate. In particular, the first permutation of satimage was significantly more
difficult for EPrep than the other two permutations.

In the BOG validation set error, there is a characteristic decrease to a minimum value,
and then an increase as over-fitting occurs and generalisation capabilities are lost. As an
example, the best-of-generation validation set error is plotted in Figure 6.9 for the best run
of segment3. The validation set error was fairly volatile in general, except for the monks
and concentric data sets.

Average fitness generally decreased with time, and shared the bump characteristic with
BOG fitness early in the run. The standard deviation of fitness increased most of the time,
but sometimes decreased. In both cases, it often stabilised around some value in the steady-
state, indicating that the genetic operators were providing a good degree of genetic diversity.
The behaviour of the fitness variance is problem-dependent, and relies on the amount of
reproduction and tournament size as well.

In most cases, EPrep converged quickly upon the solution when compared with typical
run durations for GP. As an extreme example, the best solution for australian3 was found

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 156

F1
F2
e
-{ﬁ
- I{m
6 17608¢-01
.{E i
[X26]
.{m " U]
X21
_ e (R
F1[X15 EH:_-z 50273e-01 %;—
F2 [X13 = [X5] PSS
F3|X17 [x3] F5 X14
r4 [xa]] xal
F5 [X18 F3Eh EI-[m Fe X2z ot
F6 E X26
F71X10 m FT X25
F8 [X11 -'[ps [
F9 [X16 r =
F10 [X4] abs |-{abs]
F11 [X5] 3 .{ e Xz4
9.43689¢-02 EH: rio [TH T
F12 [x9]
F13 X17
F12 —
(a) vehicle2 El-[F13 izi
- F14 %
X5
. F15 o]
=
X6
E]-[(c) satimage2
X4 _
F4

(b) abalonel

Figure 6.8: Best feature sets evolved by EPrep for real-world problems.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 157

segment_3: BOG validation error for run 8.
40 T T L] L] L T

35}

301 | 1

bogV

Figure 6.9: Plot of best-of-generation validation set error (%) versus generation for the best
run of segment3d.

in the first generation, as shown by the plot of validation set error versus generation in
Figure 6.10. On the other hand, cmc2 and the yeast problem took 200 and 150 generations
to complete respectively.

6.4.3 Evolution of Size

The figures in Appendix E show the average number of features and nodes per individual
plotted versus generation for each data set. Apart from australian, titanic and yeast, the
average number of features increased as a function of generation. This indicates that the use
of more features is advantageous for separating the data. For german, segment and vehicle
there was a characteristic trough in the number of features after several generations. In those
cases, it may be that the optimisation process focused on a particularly valuable, small set
of features and later added to their number to improve accuracy. Note that the trough is
much more pronounced for german2 than for germanl and german3. Presumably this is
a consequence of the different parameters used for german2. Since several parameters were
changed for this permutation, the trough cannot be attributed to any single parameter.

The behaviour of the average number of nodes per individual was problem-dependent.
In some cases the number of nodes gradually decreased, in others it increased and for some
it stayed the same in the steady-state. In those cases where the number of nodes continued
to increase, it was a slight increase that ended in a roughly constant level; eg: segment and
balance2. Therefore bloating did not occur in the same sense that it traditionally does in
GP: the BOG fitness was still changing with a steady increase in program size, indicating
that more and more nodes were being added to the pre-processors to improve their accuracy
on the training set. Eventually this would lead to over-fitting.

6.4.4 Evolution of Operators

In Appendix E, the average number of introns per individual and the average operator
probability per individual for each genetic operators is shown versus generation for each
data set. The number of introns in the population generally fell or stayed the same as

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 1568

australian_3: BOG validation error for run 6.

22 T

14+ ".r' \ / \ /

12 N

Figure 6.10: Plot of best-of-generation validation set error (%) versus generation for the best
run of australian3.

evolution proceeded. This indicates that the evolutionary algorithm was not utilising the
introns to protect highly-fit schemata as predicted. There are two implementation details
that may have interfered with the accumulation of introns. First, the high-level crossover
operator was biased towards a decrease in the number of introns in the offspring, the reason
being that in special cases, such as one of the parents having only a single feature, introns
left hanging off the ends of the offspring were discarded. Second, a closer examination has
found that the delete-feature mutation operator had a bug in it: the deleted feature was
randomly selected from amongst the T features present, rather than selecting a point in
the whole chromosome including the features and introns. Consequently introns could not
protect features from delete-feature mutation. Nevertheless, it was expected that the number
of introns would increase dramatically with generations in a similar fashion to the bloating
phenomenon through the operation of high-level crossover.

For 34 of the 45 data permutations, high-level crossover had the highest probability
averaged over runs, generations and individuals. On the surface, this suggests that high-level
crossover is useful in almost any situation. However, there was a natural bias towards the
high-level crossover operator, because both offspring from a crossover inherited the operator
probabilities from the parent used to select the operator. Therefore the ascendancy of this
operator may be purely due to the bias. Apart from that, there was generally no pattern
to the operator probabilities, and the plots from individual runs deviated significantly from
the averaged plot.

6.4.5 Evolution of Training

In Appendix E, the average number of training samples examined per individual and the
average improvement in fitness due to local optimisation are shown versus generation for
each data set. The number of RAT trials generally increased with generations, ending
at some number significantly less than ns. This behaviour was anticipated, since fewer
samples should be required to distinguish individuals in the initial random population, but
more and more samples should be required to distinguish similar solutions that appear
as the population converges. To illustrate, the settings for abalone2 were ny = 2088 and

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 159

N, = 750. From Figure E.1, the average number of trials needed per individual at generation
0 was approximately 880, and after 15 generations the number of trials had risen to about
1150, which is still around half of the full training set.

The number of RAT trials was constant for the monks and spirals problems, since the
training set was so small that all the samples were used to evaluate fitness. For german
and vehicle, there was a characteristic dip in the number of trials after several generations.
In the case of german, this dip coincides with the dip in the average number of features per
individual. The change in models could be related to the reduced number of trials, because
classifiers using fewer features may be easier in general to distinguish. For example, suppose
that two offspring are generated from a parent individual, both via the mutation of the
first feature F1. The first offspring a; has a new feature F1 with improved discriminatory
properties, while as has an F1 whose discriminatory powers have been destroyed through the
mutation. If there are many features in each individual, then the classifier may be able to
classify the data in the sub-space of ay’s features that do not include F1 fairly well, and more
samples will be required to distinguish the performances of a; and a,. If, on the other hand,
there are few features in the individual, then the new feature plays a more important role,
and the poor F1 in a; cannot be disguised as effectively by the other features. Therefore
fewer trials are necessary to distinguish the individuals.

There was little consistency between the optimisation improvement plots for the different
data sets. In some instances, optimisation was more effective at the beginning of the run and
quickly tapered off, while in other instances its effectiveness increased with generations. The
average improvement never rose above 5.3% error for any problem, and was most often less
than 1%. There was no improvement for monks3 and yeast because optimisation was not
used for these problems. The usefulness of optimisation is questionable, since it increases
the execution time of EPrep by a multiplicative factor.

6.4.6 Other Observations

The HTML reports generated by EPrep and included on the CD-rom contain extra infor-
mation about the simulations. This sub-section contains salient points from those sources of
information.

The confusion matrices (explained in Section 2.4.3) of the best-of-all-runs individuals
were examined. The confusion behaviour for abalone was interesting in that classes were
generally confused with numerically-adjacent classes. The confusion matrix for abalone2 is
shown in Table 6.5. For example, of the samples belonging to the seventh class for abalone2,
28 samples were classified as belonging to the sixth class, 28 were correctly assigned to
the seventh class and 30 samples were misclassified as belonging to the eighth class. This
behaviour is understandable because the class labels correspond to age and have a natural
ordering. That is, we are more likely to misclassify a 10-year-old abalone as an 11-year-old
than as a 20-year-old.

For the diabetes problem, EPrep tended to mistake a large portion of the diabetics for
non-diabetics. Similarly for german, people with bad credit tended to be mistaken for people
with good credit. In the titanic domain, the classifier was biased towards non-survivors. In
all three of these cases, the class to which EPrep was biased had a larger number of samples
in the test set than the other class.

In satimage, there was confusion between grey (third class), damp grey (fourth class)
and very damp grey (sixth class) land types. This confusion is understandable. In the
vehicle problem, the main confusion was between the first and second classes, the Opel
and the Saab. Again this is understandable, since both vehicles are sedans and the other
two classes are bus and van. The confusion matrices for the smoking problem verified that
EPrep was guessing the most frequent class, the third class.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 160

Table 6.5: Confusion matrix for abalone2.

Class Predicted Total
12[3] 4] 5] 6] 7] 8] 9[10] L1[12]13][14]15]16][17[18][19]20]21]22]23]24]25]26] 27]28]29
1 [[ofo] 1] o] o] o] o] o] of o[of o] o] o] o] o] o] o] of of o] o] of o] 0] of 0] 0] O 1
2 | 1[0] 0] 0] 0] 0] 0] ©f o[o] 0/ 0| 0 o[o| 0ojfo[ofojofofo]0]0o[f0]of 000 1
3| 1/0o] 3] 1| o] o o| o of o] ©of of o] o[o] o] o] o] o] of o] o] o[0] o] o] 0] O] O 5
4 | 1jof 3] 9] 1] o] 1| of o[of oo ofofofofofo]o]ofofo]ofofofo]ofo0]o0f 15
5 | 1(0o[3| 6] 8[10] 1| o o] 0 o[o[o of o] o] o] o] o] o] o] o] o] 6] o] of o] o] o] 29
6 || 4/0] 0| 0| 5|25 21| 8| 0] 1| 1] o[o[o/ o[ofofo[ofofofofofo]o[o] ofof0] 65
7 | 3[0] 1| 0| 2]|28] 28] 30| 3| 2| o[of o] o] o] of o[o] of o of o] of of of of of o of| 97
g | ofo| 0| o] o|to| 20| 58| 23[11| 13| o o] o] o] of of ol o] o] of o] o] o] of o] of of 0]| 135
9 | 6/0] 0] o] o] 1| 13| 37| 44|27 40| o] o] o] o] of o] o] o] of o] o] o] o] o] O o] 0] 0] 168
10|[7[0] 0] o] 0| 5] 8| 15| 28|23] 70| o] o] o[o[o] o] o[of o] o[o[o] o[of o] 1] o[of] 157
11| 4|0 o] o] o 1| 5| 11| 13|14| 73] 0| 0] 0] O] o] O] o] of of o] o o] 1| O 0] Of O] 0[] 122
12| 2[o] o] o] o] o] 3| 6] 9| 5 41] o] o] of o[o] o[o] o] of o[o] o] o] o] o] 2] O 0| 68
13][10[0] 0] o] o] 2| 0| 6| 3| 5] 23] 0] o] o[o] of o] o] of o] o] 0] 0] of o] O] 2] 0] Off 81
14| 3[0] o] of of o] 1| o] 6| 3] 18] o] o] of o] o] o] o[o] 0] o] o] o[o] o] Of 1| O] Off 32

Actual|15]] 5[0 O] 0] 0] 0] o] 2| 4| o] 14| o] o[o] O] o] o] O 0] 0] O] O] o] 1| O] O] O] O] O] 26
16| 1j0] o] o] of o o] o] 3] 3] 8/ 0| of o] o] of o[o] of of of o[o] 1] of o] 2[o[o] 18
17| 0]0] o] of o] o O] o 3| | 7[o[of o[0] 0] [o[o[0f of O] o] 1] O[of 2[O[O] 15
18] ofo] o] o] o] o] o 2| o 1 7[0] o] o[o] o[o[o] of o] of o] o 1] o] o] o] o] o] 11
19| 1]0] 0| o 0] 0] 0] o] o] 2| 3[o[o[o[ojofofofojfofofojo[ojojof2/0[0 8
20| 0jo] o] o] of o o] o] I[of 4] o[o[o] o] of o] ofo]ofo]ofof1]ofo] 1]0[0 7
21| 1/0] 0 0] 6] 0] 0] o o] o] 2] o[of o[o] o] 0] o] o] of 0] o] o[o] o] O] 1] O] O 4
22| 1Jo] o] o] o] of o] O] o[o 1I[ofo[of ol ofo]ofo]ofofo]ofo]ojo]ofof0 2
23] 1[0] 0] 0] 0 0f O] O] 0] 1| o] of o o[o[o[o] 0] O] o] 0] O] O] 6] o] O] 1] O] © 3
24| o[o[o] o] o] of o] o] o[of o|jojofcfofofololojofofojojolofo] 1]o]0 1
25| 0[0] 0] 0/ 0] 0] O] O] 0] 0] 0] 0]/ 0] 0[00/ 00 0]of0o]ofofofo[o] 1[0[0 1
26][o[o] o] of o] 0] ©| G o[o] 1] o] o] o] o[o[o] o] o] of of o] of o] o] of 0] 0] © 1
27| 0{0] 0] 0] of 0] O] o] o[of o] of o[o|ofofofofo|ofofofof1][o]o]ofofo0 1
28][0jo[o] o] o] o o] o] O] o] o] of o[of o of o] ofofofc[0]o]ofo]o] 0f]0]OC 0
29| 0/0[o] o] o] 6] o] o] o[o] 1[ojo[ofofofofofofo[o]o]o]0]o[0] 0]0[0 1

[Total [[53]0[11]16]16]82]101[175]140[99|327] o] 0] 0] 0] o] 1] 0] 0] 0] 0] 0] o] 7| 0] 0[17| O] 0]||1045]

The average number of fitness evaluations during a run was problem-dependent. The
largest was for emc2, which used over 886,000 fitness evaluations per run.

Most of the runs were terminated by the generalisation loss criterion or by reaching the
maximum number of generations. Zero validation set error was sometimes the reason for
stopping for the synthetic data sets, and the training progress criterion occasionally fired.

Generalisation was generally good, in that the best run had a test set error that was the
lowest or very close to the lowest of the ten runs. For 9 of the data sets, however, the test set
error of the best run was significantly higher than the lowest. These data sets were cme2,
diabetesl and 3, german3, spirals2 and 3, titanic2, and vehicle2 and 3. The poor
generalisation for spirals indicates that EPrep was badly over-fitting the training data. The
below-average generalisation for diabetes is attributable to the relatively small number of
samples in that data set.

The pre-processors themselves varied significantly for the different runs by the number
of features, nodes and distinct input variables.

6.5 Experimental Results of MLP

The results of the architecture-search runs are shown in Table 6.6. For each data set, the
pivot architecture is shown, along with its validation set error, number of weights and the
number of epochs required to train it. These pivot architectures were then run 10 times to
obtain the results shown in Table 6.7. This table contains the mean and standard deviation
of training, validation and test set error and number of training epochs for each of the data
sets over the 10 runs, as well as the test set error of the best run and the time in hours and

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 161

minutes for the architecture search and the ten runs combined.
From the results, the following general observations can be made:

e The classification errors obtained by the MLP are lower than the default error rate by
a significant margin for all data sets except spirals and smoking.

e In most cases, the pivot architecture was different for different permutations of the
data.

e Execution times ranged from minutes to days.
e Classification error rates were fairly similar from permutation to permutation.

e The mean test set error was fairly indicative of the best error except for the cases of
balance2, balance3 and monks2, which had a much lower best test error.

e vehicle2, vehicle3, yeastl, yeast3, german3, diabetesl and balancel had a
higher test set error from the best run than the average. In these cases, the mini-
mum validation set error did not correspond to the minimum test set error.

6.6 Experimental Results of Decision Trees

The results of the QUEST experiments are shown in Table 6.8. For each permutation of
each data set, the 10-fold cross-validation classification error, test set error and number of
leaf nodes in the tree are shown. The number of leaf nodes in the tree can be interpreted
as the number of regions into which the feature space is divided. The execution time is not
listed, but times ranged from a few seconds to 8 minutes.

From the results, the following general observations can be made:

e The results are fairly robust to permutation of the data.

e It is common for the CV error to be larger than the test set error. The reason for this
is the CV estimates of error are based on fewer training samples than the test set error.

e The trees for abalone, german3 and smoking contain fewer leaf nodes, and therefore
fewer decision regions, than classes.

e All of the test set errors are lower than the default error rate for the data set, except
for smoking and german3 for which the tree has a single node and guesses the most
frequent class.

Some of the decision trees obtained are shown in Figures 6.11, 6.12 and 6.14-6.17. Note
that in most cases, the nodes near the root of the tree are identical for the different per-
mutations of the data; that is, the same variables are usually chosen first for splitting. In
Figure 6.11, the tree obtained for all three permutations of the australian data set is shown.
The tree splits on only one attribute, X8. In the diagram, split nodes are circular and leaf
nodes are square. The number in the centre of each node is a unique label given to that
node. On the left of each split node 1s the criterion for splitting. If this criterion is true,
the decision proceeds down the left branch, otherwise down the right branch. The number
to the left of each leaf node is the number of training samples assigned to that node. The
number under each leaf node is the class to which samples falling in that node are assigned.

The decision tree for concentricl is shown in Figure 6.12. The decision regions created
by this tree are shown in Figure 6.13. We can see that the decision tree approximated
the circular shape with a piece-wise linear boundary. The resolution of this boundary was
determined by the amount of training data available.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 162

Table 6.6: Architecture search results for MLP.

Problem architecture best no. no.
val. error % | weights | epochs
abalonel 32+01 71.552 1309 250
abalone2 32+01 73.084 1309 300
abalone3 3240l 73.563 1309 250
australianl 0421 11.047 180 1800
australian2 24+0s 9.884 1034 700
australian3 04+4s 12.791 194 1650
balancel 04-+21 0.641 39 3000
balance2 088/ 1.923 139 3000
balance3 16+8! 1.923 243 2400
cmcel 16+8s 42.935 371 450
cmc2 16+01 41.848 259 550
cmec3 24401 41.033 387 500
concentricl 16481 0.320 202 3000
concentric2 16+8s 0.640 202 3000
concentric3 16+8l 0.480 202 3000
diabetesl 32+01 20.833 354 600
diabetes2 24401 21.354 266 700
diabetes3 16+0s 19.792 178 450
germanl 16+8s 24.000 1178 2300
german?2 04+2s 21.200 272 2100
germand 32+0s 20.000 2114 1300
monksl 32401 0.000 578 3000
monks2 08+8l 0.000 218 3000
monks3 08-+0/ 7.317 146 3000
satimagel 16481 10.752 782 3000
satimage2 32401 9.820 1382 3000
satimage3 16481 10.503 782 2450
segment1 1648l 3.466 391 2600
segment2 16+8(2.773 391 3000
segment3 32401 4.159 615 3000
smokingl 32+0s 29.692 835 450
smoking2 24401 29.832 627 700
smoking3 32+0s 29.972 835 450
spiralsl 16481 31.959 202 2950
spirals2 16+8s 29.897 202 1000
spirals3 16481 34.021 202 1400
titanicl 32401 20.545 354 100
titanic2 32+01 22.182 354 100
titanic3 32401 22.545 354 100
vehiclel 32+0s 18.009 740 2800
vehicle2 32401 15.166 740 1900
vehicle3 32+0s 15.166 740 3000
| yeastl 32401 38.814 618 800
yeast2 32401 40.701 618 900
yeast3 32401 35.040 618 750

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 163
Table 6.7: Classification results for best MLP architectures.
Problem training % validation % test % best epochs time
v | o p | o p | o |test % p | o | (h:m)
abalonel 75.584 | 0.599 |76.925| 1.757|75.809 | 1.605|73.301 35.00 8.16 | 2:02
abalone2 74.607 | 0.939|76.341 | 1.057|77.321 | 1.100 | 75.407 30.50 9.26 | 2:00
abaloned 75.038 | 1.251|76.360 | 1.021 |76.172 | 1.482|75.311 29.50 | 10.12| 1:01
australianl | 7.623| 1.176 |13.372| 0.613 | 13.468 | 0.820 | 13.873 51.50 | 14.92| 1:01
australian2 | 7.333| 2.041|10.756 | 0.919 [18.208 | 0.734|17.341| 118.00| 45.17| 1:01
australiand | 8.928| 0.935|14.593 | 0.748 [11.272 | 0.734|10.983 66.50 | 19.59 | 0:00
balancel 6.186] 2.09910.962 | 1.108| 7.134| 1.964| 7.643| 155.00| 44.78| 4:03
balance2 5.962 | 2.237| 8.205| 2.488 | 7.643| 2.383| 1.274| 143.50(123.13| 4:00
balance3 3.974| 2.635| 6.282| 1.954| 7.389| 2.788| 2.548 | 192.50|178.39 | 0:00
cmcl 38.098 [2.482146.658 | 1.537[43.117| 2.074 [40.650 | 111.00 | 20.52 | 4:04
cmc2 40.435| 1.896 [43.261 | 1.305|46.748 | 1.926 | 45.257 72.50| 17.99| 4:01
cmc3 42.079 | 3.920 | 43.859 | 1.256 |41.463 | 2.649|39.024 90.50 | 37.23| 1:00
concentricl| 0.688[0.417| 0.976 | 0.409 [2.192| 0.908 | 1.120|2780.00|695.70 | 13:56
concentric2 | 1.104| 0.594| 1.904| 0.725(2.192| 0.735| 1.440 | 3000.00 0.00 | 14:44
concentric3d | 0.384 | 0.145| 1.344| 0.560| 1.712| 0.512| 1.280 | 3000.00 0.00 | 15:31
diabetesl 16.094 | 1.537|23.490| 0.794|22.135| 0.859|22.917 86.50 | 19.87| 2:02
diabetes2 19.792 | 1.705|23.906 | 1.055|23.906 | 1.355|22.396 50.00 | 38.87| 2:00
diabetes3 20.000| 2.086]19.427 | 0.852]21.094 | 0.563 |[20.833 | 120.00| 29.25| 0:00
germanl 15.520 | 2.821(27.760 | 1.878|26.920 | 1.969 | 25.600 26.50 7.47 | 0:00
german?2 18.100 | 7.287127.240 | 1.899|26.400| 2.199 | 24.000 54.00 | 33.32| 0:02
germand 16.100 | 1.905]20.360 | 0.479|20.960| 1.375]|22.400 51.50 8.83 | 2:02
monksl 0.000] 0.000] 0.233| 0.735| 0.371| 0.897| 0.000|1014.00 | 587.28 | 1:01
monks2 20.000 | 15.549 | 25.536 | 17.759 [22.824 [15.807 | 0.000 | 212.00|347.09 | 1:10
monks3 1.728 [1.193| 9.756 | 0.000| 0.972| 0.754| 0.463 75.00 | 46.49 | 13:05
satimagel 9.456 | 0.998 [13.400 | 0.767 |14.413 | 0.427|13.797| 238.00| 51.60 | 53:15
satimage2 [12.191| 0.469|13.468 | 0.562|13.250 | 0.586 | 12.989 | 165.50 | 22.54 | 22:29
satimaged [10.398 | 1.186]13.605| 0.591 [12.293 | 0.791 [11.187 | 225.00 | 34.08 | 29:34
segmentl 3931 0.762] 6.014| 1.132| 6.263| 1.661| 5.190| 465.50 |148.78 | 3:57
segment2 4.597| 1.290| 4.662| 1.116| 5.294| 1.887| 3.460| 449.50 | 89.80 | 59:15
segment3 5177 0.806 | 7.574| 0.712| 8.495| 0.821| 7.612(323.00 | 79.31 | 48:53
smokingl 30.112 | 0.932 | 30.828 [0.934 |30.672| 0.093|30.672 | 344.17|256.13 | 33:44
smoking?2 29.516 | 1.215[30.902 | 0.850 [30.938 | 0.154|30.812| 345.83 |254.21 | 39:17
smoking3 30.203 | 0.087130.921 | 0.829 [30.882 | 0.151|31.092| 343.06 |257.43 | 9:01
spiralsl 44.819 | 0.560 [46.804 | 4.512|48.979 | 2.066 | 45.833 21.50 2.42| 13:14
spirals2 43.420 | 1.966 | 48.866 | 2.440 [49.125 | 2.409 | 50.417 24.50 | 14.23 | 50:01
spirals3 40.207 | 3.413 [47.113| 3.506 [48.271 | 2.248 | 46.250 28.50 4.74 | 33:57
titanicl 21.455 | 0.000 | 20.727 | 0.000 | 20.690 | 0.000 | 20.690 46.00 3.94 | 28:02
titanic2 21.036 | 0.115(22.545 | 0.148 | 20.036 | 0.454 | 20.145 46.00 5.68 | 6:25
titanic3 19.909 | 0.000 | 22.545| 0.000|21.597 | 0.000 | 21.597 45.50 4.38 | 19:19
vehiclel 16.147 | 0.997 | 25.308 | 1.207|21.651| 1.548(19.340| 191.00 | 23.66 | 32:36
vehicle2 9.196 | 2.733]18.199| 0.953|21.745| 1.482|22.642| 324.00 | 95.77 | 32:21
vehicle3 17.116 | 0.642[24.787| 1.073|17.830| 2.666 | 18.868 [170.00 | 25.82 | 22:22
yeastl 38.423 | 0.899|40.485| 0.694 |40.296 | 1.166 |41.240 | 110.50 | 15.17 | 11:17
yeast2 37.439 | 0.612]44.016 | 1.427[38.922 | 1.80236.388 | 119.50 | 14.80 | 20:27
yeast3d 37.898 | 1.125|38.868 | 1.015|43.639| 1.154|43.666 | 113.00| 13.17 | 25:22

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 164

Table 6.8: Classification results of QUEST algorithm.

Problem 10-fold | test set | no. leaf
CV error | error nodes
abalonel 72.89 73.88 20
abalone2 73.79 75.12 14
abalone3 73.82 72.63 12
australianl 13.54 11.56 2
australian2 15.47 17.34 2
australian3 15.47 11.56 2
balancel 23.50 17.83 16
balance2 18.38 19.75 13
balance3 19.87 19.11 19
cmcl 45.20 45.26 9
cmc2 47.10 42.55 18
cmce3 45.47 39.30 11
concentricl 3.47 2.88 25
concentric2 3.09 2.56 29
concentric3 2.67 2.88 29
diabetesl 25.87 23.44 2
diabetes2 25.35 24.48 2
diabetes3 25.87 24.48 2
germanl 26.93 28.40 4
german?2 27.07 28.80 4
germand3 30.00 30.00 1
monksl 8.06 11.11 9
monks2 33.14 28.24 31
monks3 6.56 2.78 3
satimagel 14.01 15.53 75
satimage2 15.13 15.71 33
satimage3 14.78 15.09 64
segmentl 6.35 5.19 39
segment2 5.60 5.54 31
segment3 5.60 7.79 26
smokingl 30.42 30.63 1
smoking?2 30.37 30.77 1
smoking3 49.40 30.77 1
spirals1 35.05 24.84 34
spirals2 18.21 25.05 57
spirals3 30.93 34.03 35
titanicl 22.06 20.51]
titanic2 21.52 19.78 8
titanic3 21.58 20.15 o
vehiclel 31.55 26.89 28
vehicle2 29.65 31.13 61
vehicle3d 31.23 28.77 20
yeastl 44.47 40.97 24
yeast2 43.85 42.32 14
yeast3 45.28 43.67 21

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 165

Xg = false
245 | 2 2721 3
0 1

Figure 6.11: Decision tree obtained by QUEST for the australian data set.

The decision trees for the monks problems are shown in Figures 6.14 and 6.15. For the
monksl problem, QUEST had no problem learning jacket_colour = red, but was confused
by head_shape = body_shape. At node 8 it chose X4 as the split variable, which is unrelated
to the class variable. Apart from this and some other bad decisions, it almost learned the
concept fully. QUEST performed poorly on monks2, which being a parity-style problem
is really quite difficult. For the monks3 problem, QUEST learned the main part of the
concept, (jacket_colour(X5) != blue AND body_shape(X2) != octagon), but did not pick up
on the under-represented (jacket_colour(X5) = green AND holding(X4) = sword).

The trees generated for the segment data sets are quite complicated, and are generally
beyond the immediate comprehension of the user. The tree for segmentl is shown in
Figure 6.16.

The trees obtained by QUEST for the first two permutations of the titanic data are
shown in Figure 6.17. The simpler tree for titanicl shown in Figure 6.17(a) indicates that
the average passenger did not survive if he/she was male or in third class. This is not quite
intuitive, because it means that male children from first class died. For titanic2, the tree
shown in Figure 6.17(b) agrees with the previous, but now admits that first and second class
boys survived, as well as girls from third class.

Another useful output of the QUEST program is a ranking of the variables according to
their importance for discrimination. Note that this ranking is not necessarily reflected in
the final tree. That is, the variables that are most important according to the ranking may
not be included in the tree due to masking by other variables. The ranking of variables for
some of the data sets are listed below. In the tables, the most important variable has rank
100 and all others are normalised with respect to it. A description of the ranking method is
found in Section 2.8.1.

The ranking of variables for cmc1 is shown in Table 6.9. Age, number of children and
education are ranked as the top three variables for this problem, while religion is ranked
second-to-last. The ranking for segment1 is shown in Table 6.10.

Table 6.9: Variable importance measure generated by QUEST for cmecl.

Variable X1 |X2|X3|X4|X5|X6|X7]|X8]|X9
Importance || 100 | 77 | 25 | 99 | 37 81 51| 53 | 40

Table 6.10: Variable importance measure generated by QUEST for segment1.

Variable X1 |X2|X3|X4|X5|X6|X7|X8]| X9 |X10]| X11
Importance | 24 | 84 4 6| 12 8| 30| 20| 100 52 83

166

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON

“TOLIJUSOUO0D 10} I,SHANG £q paure)qo 9a1) WOISIS(] :g1'9 9Ind1]

! 0
goﬁmw:

I 0 0 r
1] 12 [o3] [c4] oe [v1] 61 &) L1070 > ﬁimu
I o 10 0 1 '
(19) 20990 > 1x (o) eeveo > Tx [og] ev [sg] 26 [2¢] 61 [9g] 0% og] s [pe]ec (gg) o80r-0 > txlzg] ex
I I) 0 r I 0 0 7 t
[tg] s2e (0g) 0g19°0 > Tx (62) sev2'0 > 1x[82] 6v[ez] evdoz] ot [cz] zedrz] vor [£2] 19 [z2] €21 (1g] o1 [02] 00 (61) vezz0 > tx (D eveeo > Ix (1) 1e12°0 > Bxot] 62z
9 129L°0 > X 6 2282°0 > X 9 16640 > TX 9 02020 > Tx 9 gLeL0> 1x 9 69€2°0 > Ix e €188'0 > Ix Q 89410 > TX
(L] eeeso > 2x (9) 6020 > 1x (g) eeszo > Tx (+) vsgz-o > ex
(¢ Juzron > ox (e) essz0 > ox

(1)yocoro > ex

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 167

[+] 01 02 03 0.4 0.5 08 0.7 08 09 1
X1

Figure 6.13: The decision regions created by QUEST for concentricl.

The variable importance measures for the monks problems are shown in Table 6.11. For
monks1, QUEST has identified the importance of X1, X2 and X5, but has erroneously given
X4 a high rank as well. For monks2, all attributes have the same conceptual importance;
yet X5 has been given almost double the rank of the next highest variable. For monks3,
X2 and X5 have been clearly identified as the most important variables, but X4 missed out
due to the under-representation of this part of the concept in the training data.

Table 6.11: Variable importance measure generated by QUEST for monks problems.

| Variable | X1 | X2 | X3 [X4 | X5 | X6 |
monksl [100 | 67 [19| 73| 72| 14
monks2 | 55 | 46 | 65 | 39 | 100 | 41
monks3 | 3| 72| 3| 1[100| 6

6.7 Experimental Results of Simple Methods

The results of the simple classifiers are shown in Table 6.12. The kNN and GLIM algorithms
involved parameter selection, so the minimum validation set error, optimal value of £ and
best number of epochs are shown. For the other methods there were no parameters to select,
so only the test set error is shown. The execution time is given in hours:minutes for the kNN
and GLIM methods. The other algorithms took on the order of seconds and were only run
once, so the time is not recorded. .

On average, the kNN algorithm achieved the lowest classification error on the test set, and
was only surpassed significantly by the ML classifier on australian, balance and vehicle.
The disadvantage of the kNN classifier is that classification of a new sample is O(ny,.d), and
the training samples must be stored to perform classification. The ML classifier was the next
best method on average over the problems. Strangely, the ML classifier performed poorly
on segmentl but well on segment2 and segment3.

Since the GLIM classifier did not achieve 0% error on any of the data sets, none of them
are linearly separable. For vehicle, however, the GLIM had lower errors than kNN, and
similar errors for german. The performance of the GLIM classifier was relatively sensitive

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 168

Xs € {red} (1
29| 2 X, € {octagon} (3
1
X, € {octagon} (4 X,y € {round, square} (5
13| 6 11| 7 X4 € {sword} (8 22| 9
1 0 0
X, € {square, octagon} (10 30|11
0
X, € {square,octagon} (12 X € {round, octagon} (13
6|14 4115 4|16 517
1 0 1 0

(a) monks1

Xy € {round, square}

X5 € {red, yellow, green} 41| 3
0
62| 4 19 5
1 0
(b) monks3

Figure 6.14: Decision Trees obtained for the monks problems using QUEST.

169

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON

-

=
~
2]
™
HE
-
N
o

{punos} s = {601/
@ 0% Edelde @ peons)
> ¥x

@ T @ T

{3n42}
ERD'

a
[£1] 07zD)

{uobp300

g ‘aeonbs}

ox

0 I
eyl v [zp] €

*1LSHNO Sulsn gsjuour 10 Paure)qo 9oy, UoIsa(GT"9 9andig

meoypah

(o) ‘pou}

3 Sx

L
Q mopai

‘pas}

59

7ioms}

I 0 0 I
19 ¢ [og) 5 Bel [eg) «
I 0 I 0 I 0 I 0 {uobnj00 {uobp300
L6] £ E ¥ E 9 B 9 K | 2 E L a £ E % 9 ‘a4vnbs} 9 ‘aunnbs}
ERS EXS'e
I {uobvy00 {onig {u23ub
h an.4g ELN) ‘usadb .
1] » G wsew:vumw) ﬁw nvw 59 { EY muw @9 ‘pas} (@g) vwmsw
X g 23X
EXE ¢
& I \ 0
< {anu3} {an132} Twuwg {3n13}
Q E) wvm Q El wk 5 Wmvmm.ww E ¥ @ 3 m.um E L
{uobvo0 0 {uobo
¢ 200} > {punous}
_g msswsﬂmuw 51 o1 a 58y 9 51x
{ansp asiof}
9 E) muw 9 { 3 9x

0
27l
and3} £
Sex Ll
{uobogoo 0
(6) ‘punos} [g]ur
38y
0 {34Dnbs
u u‘a ‘punos}
3 Ix
@ {sn13}
3 9x

170

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON

"1LSHNG Sursn weqoid Tjusu8es 10] paureIqo 991, UOISIOO(:9T"9 oINS

g 0
19| dog] 26

£
9 s'sz1 > ex [egle

s f r y o
MEDE]l v &Y cotero > orx [dorl ¢
g r 5
E vzt S ex [edw ed 1eled » (19 e0'0s S 8x 08 evv1 S Ix
£ 3 £ 9 9
g fod v € es01 S ex Jral ez g v €2 o101 5 1x 17) 1 0 ves1 S 6x
0
Gllvstz— > Tix fan eszrro S otx(e] ovrlpy) 9sss00 S €x Eraitro S Fx
<
[11] se2 00 v691 5 2x (6)e50z70 S 0Ty
(Lot > ox (arior1- > ix

ﬂ«@ §7.e > 6Xx
g

L£] w2 (2) 1601 5 6x

(1) 1ov1°0 > Uix

& ¥
65l dugf ev
0
[1d 6 (g) zzezo0 > =x
°
el t B9 1651 S 6x

(GoteeL > 8x

(srFes1- S Tix

y g 4 4
Lo dog o [ed £ 9 6621 5 Txfed 119 s2oL S 8x

4

td zz@g) o10% > 6x(eg) 9sss00 S ¥x (9099 S Tx

z 3
Gy) ss0'z > 1ix [sr] zat L) 629°9 S5 Lx Jayl sz

Gelutre S iy g 2525 > Tx

z
G Zeoz S 'ix [g1lv

z1) 1652 > Ty

&g 180070 S Oty

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON

171

Table 6.12: Classification error rates for the simple classifiers: k-Nearest Neighbours, Gener-
alised Linear Machine, Minimum-Distance-to-Means, Parallelepiped and Gaussian Maximum

Likelihood.
kENN GLIM MDTM PPD ML
problem k| val.% | test% | t(h:m) || ep. | val.% | test% | t(h:m) test% || test% || test%
abalonel 47 | 72.13 | 74.45 49:38 19 | 78.16 | 84.79 14:37 91.39 90.24 99.90
abalone2 125 | 72.70 | 76.08 50:26 || 136 | 75.00 | 77.51 19:26 92.06 92.92 99.90
abalone3 25 | 72.13 | 75.50 50:25 18 | 74.81 | 88.33 15:18 91.48 93.68 99.90
australianl 16 | 26.74 | 32.95 0:03 56 | 25.00 | 34.68 0:13 37.57 39.88 21.97
australian2 4 | 30.23 | 33.53 0:03 || 364 | 26.74 | 36.99 0:13 38.73 39.31 20.81
australian3 6 | 30.81 | 31.21 0:03 || 829 | 27.33 | 27.75 0:13 31.79 36.99 16.18
balancel 42 | 10.26 | 10.83 0:01 || 661 | 12.82 8.28 0:6 22.29 54.14 5.73
balance2 21 9.62 8.92 0:01 || 708 | 14.74 | 10.19 0:6 22.93 54.14 5.73
balance3 36 8.97 | 10.83 0:01 83 8.97 | 21.02 0:6 24.84 54.14 7.64
cmcl 48 | 42.12 | 46.34 0:50 || 128 | 52.72 | 63.42 0:32 59.35 64.23 44.99
cmc2 15 | 45.38 | 44.99 0:50 7| 52.17 | 73.98 0:32 63.96 65.04 52.30
cmce3 62 | 46.20 | 40.65 0:50 4| 51.63 | 72.36 0:33 59.89 66.67 42.01
concentricl 65 0.64 1.44 16:27 1| 36.80 | 36.96 0:21 49.92 23.52 4.32
concentric2 11 0.96 0.64 16:19 1| 36.96 | 36.80 0:21 51.04 22.88 3.68
concentric3 58 0.96 1.12 12:14 5 | 36.80 | 36.96 0:21 51.52 23.04 4.48
diabetesl 7 | 25.00 | 25.00 0:05 || 645 | 32.29 | 64.58 0:10 38.02 32.29 24.48
diabetes2 7 | 23.96 | 27.60 0:05 || 544 | 29.17 | 32.29 0:10 33.85 34.38 27.60
diabetes3 17 | 25.52 | 20.31 0:05 || 292 | 33.85 | 32.29 0:10 37.50 64.58 27.08
germanl 29 | 28.80 | 30.00 0:19 1| 30.00 | 30.00 0:28 40.80 67.20 36.40
german?2 19 | 26.80 | 31.20 0:15 1| 70.00 | 30.00 0:28 41.20 32.00 28.80
german3 21 | 29.20 | 28.40 0:16 114 | 29.60 | 30.00 0:28 37.20 28.40 29.20
monksl 1 14.29 15.51 0:01 9 | 30.95 44.91 0:02 34.03 33.33 27.08
monks2 4 | 2857 | 25.00 0:01 4 | 33.93 | 32.87 0:03 46.53 32.87 25.69
monks3 11 9.76 8.80 0:01 47 | 17.07 | 21.53 0:02 19.44 52.78 11.34
satimagel 4 9.63 9.20 | 145:40 || 460 | 22.56 | 23.31 10:07 23.91 34.53 14.66
satimage2 4 8.89 9.07 75:23 67 | 21.32 | 31.57 10:09 23.66 37.95 14.47
satimage3 4 | 10.69 6.84 75:55 89 | 22.93 | 23.68 9:49 20.31 33.23 12.55
segment1 1| 11.96 8.82 11:58 || 906 | 24.78 | 38.58 2:16 37.37 17.47 85.64
segment?2 1| 10.75 8.82 18:46 || 837 | 26.69 | 34.78 2:17 33.22 15.74 14.88
segment3 1 10.23 10.21 11:31 677 | 22.36 40.83 2:15 36.33 16.26 19.20
smoking1 51 | 30.25 | 30.95 27:16 || 133 | 33.33 | 34.73 1:19 64.06 88.53 65.59
smoking2 32 | 30.39 | 29.97 43:00 1| 30.39 | 31.37 1:19 62.80 88.95 63.50
smoking3 49 | 29.83 | 31.09 27:38 4 | 44.82 | 38.80 1:20 65.87 89.09 65.45
spirals1 1 7.22 0.42 0:01 || 100 | 41.24 | 60.63 0:2 51.57 50.31 48.43
spirals2 1 7.22 2.08 0:01 2 | 42.27 | 43.96 0:2 51.57 50.52 51.77
spirals3 1 8.2b 1.46 0:01 31 | 43.30 | 48.13 0:2 51.36 51.57 51.15
titanicl 3| 20.55 | 20.15 9:09 1| 21.82 | 21.60 0:17 30.67 32.49 21.23
titanic2 3| 22.18 | 20.15 8:32 1| 26.55 | 25.59 0:17 32.12 32.49 20.69
titanic3 6 | 22.55 | 21.60 8:45 1| 67.64 | 67.70 0:17 32.30 32.30 22.87
vehiclel 1| 33.18 | 37.26 15:55 || 229 | 32.23 | 29.25 0:30 60.38 62.26 12.74
vehicle2 6 | 32.23 | 38.68 15:21 || 345 | 29.86 | 34.91 0:30 60.38 67.45 18.40
vehicle3 3| 3175 | 36.79 14:31 || 544 | 30.81 | 23.59 0:30 63.21 65.57 14.15
yeast1l 20 | 38.28 | 42.32 1:59 29 | 55.80 | 65.50 1:04 46.09 83.83 69.00
yeast2 41 | 39.89 | 37.47 1:59 3| 49.33 | 80.32 1:04 48.52 79.78 68.73
yeast3 13 | 40.16 | 42.05 2:00 13 | 45.82 | 58.22 1:04 49.60 77.90 68.46

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 172

(a) titanicl

(b) titanic2

Figure 6.17: Decision Trees obtained for first two permutations of titanic using QUEST.

to the permutation of the data, while the other classifiers had similar errors for the three
permutations. This is not surprising, because the GLIM is the only classifier in the table
that relies on the order of the training samples.

The kNN classifier achieved almost zero error on the spirals data set with & = 1, which is
due to the large distance between the two spiral arms. For the concentric problem, the ML
classifier had the perfect density functions, but still made some errors because the density
parameters were estimated from finite data. The kNN classifier did not manage so well with
discrete data sets like balance and monks, which nevertheless can be perfectly classified.

6.8 Results of Comparison

This section compares the best-case performance of all classification methods examined, the
average-case performance of EPrep and the MLP, the understandability of EPrep’s features
and QUEST’s decision trees, and the computational complexity of the algorithms used.

6.8.1 Best-case Performance Comparison

Table 6.13 shows the test set error for each method on each data set. For each problem,
the lowest test set error is shown in bold-face. Table 6.14 shows how many times each of
the EPrep, MLP, QUEST, kNN and ML classifiers achieved the lowest, second-lowest or
third-lowest test set error. The following observations can be made from Tables 6.13 and
6.14:

e The simpler methods to the right of the double vertical line performed relatively poorly
on average, except for kNN.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 173

Table 6.13: Classification results of all methods.

| Problem EPrep | MLP | QUEST || kNN | GLIM | MDTM | PPD ML |
abalonel 75.60 | 73.30 73.88 74.45 | 84.79 91.39 | 90.24 | 99.90
abalone?2 73.97 | 75.41 75.12 76.08 | 77.51 92.06 | 92.92 | 99.90
abalone3 74.64 | 75.31 72.34 75.50 | 88.33 91.48 | 93.68 | 99.90

australianl | 10.40 | 13.87 11.56 || 32.95 | 34.68 37.57 | 39.88 | 21.97
australian2 | 16.76 | 17.34 17.34 || 33.53 | 36.99 38.73 | 39.31 | 20.81
australian3 | 10.98 | 10.98 11.56 || 31.21 | 27.75 31.79 | 36.99 | 16.18

balancel 0.00 7.64 17.83 10.83 8.28 22.29 | 54.14 5.73
balance2 0.00 1.27 19.75 8.92 | 10.19 22.93 | b4.14 5.73
balance3 0.64 2.55 19.11 10.83 | 21.02 24.84 | 54.14 7.64
cmel 40.92 | 40.65 45.26 || 46.34 | 63.42 59.35 | 64.23 | 44.99
cme?2 44.99 | 45.26 42.55 || 44.99 | 73.98 63.96 | 65.04 | 52.30
cmc3 38.21 | 39.02 39.30 || 40.65 | 72.36 59.89 | 66.67 | 42.01
concentricl 0.00 1.12 2.88 1.44 | 36.96 49,92 | 23.52 4.32
concentric2 1.92 1.44 2.56 0.64 | 36.80 51.04 | 22.88 3.68
concentric3 1.76 1.28 2.88 1.12 36.96 51.52 | 23.04 4.48

diabetesl 22.92 | 22.92 23.44 || 25.00 | 64.58 38.02 | 32.29 | 24.48
diabetes2 24.48 | 22.40 24.48 || 27.60 | 32.29 33.85 | 34.38 | 27.60
diabetes3 24.48 | 20.83 24.48 || 20.31 | 32.29 37.50 | 64.58 | 27.08

germanl 26.80 | 25.60 28.40 || 30.00 | 30.00 40.80 | 67.20 | 36.40
german2 27.20 | 24.00 28.80 || 31.20 | 30.00 41.20 | 32.00 | 28.80
germand 28.40 | 22.40 30.00 || 28.40 | 30.00 37.20 | 28.40 | 29.20
monksl 0.00 | 0.00 11.11 || 15.51 | 44.91 34.03 | 33.33 | 27.08
monks2 0.93 | 0.00 28.24 || 25.00 | 32.87 46.53 | 32.87 | 25.69
monks3 2.78 0.46 2.78 8.80 | 21.53 19.44 | 52.78 | 11.34

satimagel 21.68 | 13.80 15.53 9.20 | 23.31 23.91 | 34.53 | 14.66
satimage2 16.46 | 12.99 15.71 9.07 | 31.57 23.66 | 37.95 | 14.47
satimage3 15.34 | 11.19 15.09 6.84 | 23.68 20.31 | 33.23 | 12.55

segmentl 4.84 5.19 5.19 8.82 | 38.58 37.37 | 17.47 | 85.64
segment2 4.50 | 3.46 5.54 8.82 | 34.78 33.22 | 16.74 | 14.88
segment3 6.40 7.61 7.79 || 10.21 | 40.83 36.33 | 16.26 | 19.20

smokingl 31.19 | 30.67 30.63 || 30.95 | 34.73 64.06 | 88.53 | 65.59
smoking?2 3091 | 30.81 30.77 || 29.97 | 31.37 62.80 | 88.95 | 63.50
smoking3 31.47 | 31.09 30.77 || 31.09 | 38.80 65.87 | 89.09 | 65.45

spiralsl 24.22 | 45.83 24.84 0.42 | 60.63 51.57 | 50.31 | 48.43
spirals2 34.66 | 50.42 25.05 2.08 | 43.96 51.57 | 50.62 | 51.77
spirals3 32.15 | 46.25 34.03 1.46 | 48.13 01.36 | 61.57 | 51.15
titanicl 20.15 | 20.69 20.51 || 20.15 | 21.60 30.67 | 32.49 | 21.23
titanic2 20.15 | 20.15 19.78 || 20.15 | 25.59 32.12 | 32.49 | 20.69
titanic3 20.69 | 21.60 20.15 || 21.60 | 67.70 32.30 | 32.30 | 22.87
vehiclel 13.68 | 19.34 26.89 || 37.26 | 29.25 60.38 | 62.26 | 12.74
vehicle2 17.45 | 22.64 31.13 || 38.68 | 34.91 60.38 | 67.45 | 18.40
vehicle3 16.51 | 18.87 28.77 || 36.79 | 23.59 63.21 | 65.57 | 14.15
yeast1l 46.90 | 41.24 40.97 || 42.32 | 65.50 46.09 | 83.83 | 69.00
yeast2 47.71 | 36.39 42.32 || 37.47 | 80.32 48.52 | 79.78 | 68.73
yeast3 52.56 | 43.67 43.67 || 42.05 | 58.22 49.60 | 77.90 | 68.46

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 174

Table 6.14: Frequency of top ranking for the best five classification methods.

| Classifier [EPrep | MLP | QUEST | kNN | ML |
number of times first 15 13 7 12 2
number of times first 31 31 21 17 4
or second
number of times first, 36 42 30 27 | 17
second or third

e The methods that most often achieved the lowest test set error were EPrep (15 times),
the MLP (13 times), kNN (12 times) and QUEST (7 times).

e The MLP was among the top three classifiers for 42 data sets, EPrep for 36, and
QUEST for 30. In this sense, the MLP was the most reliable classifier.

e For the synthetic problems balance, concentric, monks and spirals there is no class
overlap and zero error is attainable. The relatively simple balance problem proved
too difficult for the MLP and QUEST, but was solved by EPrep. Finite but small
errors were obtained for all methods on concentric due to the limited amount of data.
Both EPrep and the MLP were able to perfectly learn the concept in monks1, while
only the MLP was able to learn monks2. None of the methods could cope with the
noise and under-representation of the concept in monks3. The spirals problem was
especially difficult for the MLP, and still difficult for EPrep and QUEST, while kNN
achieved almost zero error on this data set. Note that in other studies of the spirals
problem (Lang and Whitbrock, 1989; Koza, 1992a) zero error has been achieved. In
the experiments presented here, however, only a limited portion of the data was used
for training which made learning more difficult.

e The classifier achieving best performance was not always the same for the three per-
mutations. Nevertheless, the ascendancy of one algorithm over the others for at least
two out of the three permutations was observed for all problems except abalone, cmc
and yeast.

e smoking was the only data set for which the lowest test set error was not significantly
less than the default error rate.

The variability of the best classifier with permutation of the data demonstrates the value of
using more than one permutation of the data. For example, if examination diabetes had
been based only on the third permutation, it would have appeared that the kNN was most
suited to this data set.

It is not sufficient to state that method A achieved superior classification performance to
method B on the test set because its test set error was lower. For example, the test set for
the balance problem contains 157 samples, so the difference of 1.27% between the errors of
EPrep and the MLP equates to 2 samples. A statistical comparison must be performed to
ensure that this difference did not come about by chance. The testing method used here is
the one-way repeated measures design described in Section 2.11.3. The simple methods to
the right of the double vertical line generally performed poorly, so the statistical comparison
was constrained to the first three methods. Since k = 3, k* = 3(3—1)/2 = 3. The Z statistic
values listed in (Marascuilo and McSweeney, 1977) only go up to 120 degrees of freedom;
since all data sets examined had more than 121 test samples, ¥ = oo was used. From the
table, Z$9 975 = 2.39 is the value used to obtain 95% confidence intervals, because the test is

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 175

two-tailed. The 95% confidence intervals of differences in test set classification error rate (%)
for each data set are given in Table 6.15. Intervals that include 0 do not indicate a significant
difference. Those differences that are significant at the o = 0.05 level are high-lighted in
bold.

The following observations can be made from Table 6.15:

e Of the 45 comparative experiments, only 18 yielded a statistically significant result.
e EPrep achieved a lower test set error than the MLP and QUEST on balancel only.

e The MLP achieved a lower test set error than EPrep and QUEST on 4 data sets,
monks3 and all permutations of satimage.

e QUEST achieved a lower test set error than EPrep and the MLP for spirals2 only.
e The MLP beat EPrep on 6 data sets, while EPrep beat the MLP on 4.

e EPrep beat QUEST on 9 data sets, while QUEST beat EPrep on 3.

e The MLP beat QUEST on 13 data sets, while QUEST beat the MLP on 3.

e EPrep performed relatively poorly on the satimage and yeast problems. This is most
likely due to the relatively high dimensionality of the satimage data.

Based on these results, we can loosely say that, in terms of classification accuracy, the MLP
was one-and-a-half times as accurate as EPrep, and EPrep was three times as accurate as
QUEST.

6.8.2 Average-case Performance Comparison

The mean and standard deviation of test set errors achieved by EPrep and the MLP over
the 10 runs are compared in Table 6.16. The sixth column contains the difference between
the average percentage error obtained by EPrep and that obtained by the MLP. A Student’s
t-test for the difference between means of samples from distributions with unequal variances
was performed to test for the significance of the differences in mean error; the test is fully
described in Section 2.11.2. The last column in Table 6.16 contains the probability p = 1 —«
that the difference between the means did not arise by chance. Those differences that are
significant at a level of @ = 0.05 are high-lighted in bold.

EPrep generally had a higher standard deviation of test set errors than the MLP. In
some instances, such as balance, diabetes, smoking and yeast, the standard deviation
of EPrep’s errors was several times larger than that of the MLP. Note that this was the
case even when the best run of EPrep was superior to the best run of the MLP, such as for
balancel and spirals. The t-test revealed that for 27 of the 45 data sets the error difference
was significant. Of those 27 cases, the MLP obtained a lower mean error 15 times. While
this is not an overwhelming majority, the MLP was lower than EPrep by a larger margin on
average. Therefore it can be concluded that the MLP was more robust from run to run than
EPrep.

6.8.3 Comparison of Interpretability

There are two types of auxiliary information that can be provided by the QUEST and EPrep
algorithms: identification of the measurements that are of most use for classification, and
simple relationships between the variables that reveal structure in the data. While the other
classification methods may yield better accuracy, they are not considered to offer any useful
information for interpretation of the data. The practice of identifying those measurements

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON

176

Table 6.15: Confidence intervals for the differences in percentage test set errors of EPrep,
the MLP and Quest.

[problem [MLP - EPrep | QUEST - EPrep | QUEST - MLP |
abalonel -6.23, 1.64 -5.66, 2.21 -3.36, 4.51
abalone2 -2.48, 5.35 -2.77, 5.07] -4.20, 3.63
abalone3 “3.12, 4.46) 75.80, 1.78 6.47, 1.11
australianl | -1.94, 8.88 | -4.25, 6.57 -7.72, 3.10
australian2 | -4.71, 5.87 -4.71, 5.87 -5.29, 5.29
australian3 | -4.22, 4.22 | -3.64, 4.80 -3.64, 4.80
balancel [0.61, 14.67] | [10.80, 24.87] | [3.16, 17.22]
balance2 -5.65, 8.19 12.82, 26.67] | [11.55, 25.39]
balance3 -5.23, 9.05 11.33, 25.61 [9.42, 23.70]
cmcl -6.53, 5.99 [-1.92, 10.59] [-1.65, 10.86)
cmc2 -5.69, 6.23 -8.40, 3.52 -9.01, 3.59
cmc3 -5.10, 6.73 -4.83, 7.00 -5.64, 6.18
concentricl -0.31, 2.55 [1.45, 4.31] [0.33, 3.19]
concentric2 -1.98, 1.02 -0.86, 2.14 -0.38, 2.62
concentric3 -2.10, 1.14 -0.50, 2.74 -0.02, 3.22
diabetesl -6.59, 6.59] -6.07, 7.11] -6.07, 7.11]
diabetes2 -7.83, 3.67 -5.75, H.75 -3.67, 7.83
diabetes3 | -9.30, 2.01 -5.66, 5.66 -2.01, 9.30
germanl [-7.91, 5.51 -5.11, 8.31 [-3.87, 9.47
german2 -10.09, 3.69 [5.29, 8.49 [-2.09, 11.69]
german3 -13.15, 1.15 [-5.55, 8.75 [0.62, 14.58]
monks1 -3.13, 3.13 [7.98, 14.24] [7.98, 14.24]
monks2 -5.98, 4.12 [22.26, 32.37] | [23.19, 33.29]
monks3 [-3.74, -0.89] | [-1.43, 1.43] [0.89, 3.74]
satimagel | |-10.18, -5.59] | [-6.46, -1.86] | [1.43, 6.02
satimage2 -5.50, -1.46] -2.77, 1.28] 0.71, 4.75
satimage3 -6.15, -2.18] 923, 1.74 1.93, 5.90
segment1 2.00, 2.78 -1.57, 3.30 1.92, 2.95
segment2 -3.17, 1.10 -1.10, 3.17 -0.06, 4.21
segment3 1,53, 3.95 -1.36, 4.13 2,57, 2.92
smokingl -1.33, 0.21 | -1.33, 0.21 | -0.77, 0.77
smoking2 -0.86, 0.86 | -1.00, 0.72 -1.00, 0.72
smoking3 -1.48, 0.64 -1.76, 0.36 | -1.34, 0.78
spiralsl [14.71, 28.71] [-6.37, 7.62] -28.08,-14.09]
spirals2 8.53, 23.20] | [-16.94, -2.27] | [-32.80,-18.14]
spirals3 7.28, 20.69] [-4.83,859] | [-18.96, -5.26)
titanicl -0.52, 1.61] -0.70, 1.43 -1.24, 0.88
titanic2 -2.45, 2.45 -2.82, 2.09 -2.82, 2.09
titanic3 -1.33, 3.15 278, 1.70 ~3.69, 0.79]
vehiclel | -2.10, 13.42 5.45, 20.96 [-0.21, 15.30]
vehicle2 [-2.78, 13.16) 5.71, 21.65] | | 0.52, 16.46)
vehicle3 | -5.67, 10.38| 4.24, 20.29 | 1.88, 17.93
yeastl [-11.99, 0.67] -12.26, 0.40 [-6.94, 6.40]
yeast2 -17.29, -5.35] | |[-11.36, 0.58 [-1.15, 13.01]
yeast3 -15.07, -2.72] | [-15.07, -2.72] | [-6.59, 6.59]

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 177

Table 6.16: Average percentage test set errors of EPrep and MLP.

Problem EPrep MLP EPrep - MLP | 1 —«
il o | a [o (%)
abalonel 76.81 | 1.50 | 75.809 | 1.605 1.00 | 0.833
abalone2 76.62 | 1.29 | 77.321 | 1.100 -0.70 | 0.792
abalone3 77.51 | 2.01 | 76.172 | 1.482 1.33 | 0.891
australianl | 11.39 | 0.37 | 13.468 | 0.820 -2.07 | 1.000
australian2 | 17.17 | 0.37 | 18.208 | 0.734 -1.03 | 0.998
australian3 | 11.50 | 0.31 | 11.272 | 0.734 0.22 | 0.618
balancel 4.90 | 8.00 | 7.134 | 1.964 -2.23 | 0.590
balance2 8.60 | 9.99 | 7.643 | 2.383 0.95 | 0.226
balance3 14.33 | 15.75 | 7.389 | 2.788 6.94 | 0.800
cmcl 44.63 | 3.21 | 43.117 | 2.074 1.61 | 0.771
cmc2 45.85 | 1.83 | 46.748 | 1.926 -0.90 | 0.701
cmc3 42.87 | 3.22 | 41.463 | 2.649 1.40 | 0.700
concentricl | 2.51 | 0.99 | 2.192 | 0.908 0.31 | 0.536
concentric2 | 2.22 | 0.73 | 2.192 | 0.735 0.02 | 0.067
concentric3 | 2.00 | 0.41 | 1.712 | 0.512 0.28 | 0.818
diabetesl 23.23 | 1.24 | 22.135 | 0.859 1.09 | 0.965
diabetes2 29.11 | 4.40 | 23.906 | 1.355 5.20 | 0.995
diabetes3 28.59 | 6.47 | 21.094 | 0.563 7.49 | 0.995
germanl 29.68 | 2.73 | 26.920 | 1.969 2.76 | 0.981
german? 28.96 | 2.02 | 26.400 | 2.199 2.56 | 0.985
german3 27.48 | 1.53 | 20.960 | 1.375 6.52 | 1.000
monksl 7.36 | 7.63 | 0.371 | 0.897 6.98 | 0.983
monks2 7.96 | 8.77 | 22.82 | 15.80 -14.86 | 0.979
monks3 2.78 | 0.00 0.97 | 0.75 1.81 | 1.000
satimagel 26.17 | 6.15 | 14.413 | 0.427 11.75 | 0.999
satimage2 19.99 | 2.96 | 13.250 | 0.586 6.74 | 1.000
satimage3 17.06 | 1.82 | 12.293 | 0.791 4.76 | 1.000
segmentl 6.83 | 1.21 6.26 | 1.66 0.567 | 0.607
segment2 6.21 | 1.48 529 | 1.88 0.92 | 0.760
segment3 7.23 0.75 3.49 0.82 -1.26 | 0.997
smokingl 52.27 | 27.00 | 30.67 | 0.09 21.60 | 0.970
smoking?2 41.82 | 21.86 | 30.93 | 0.15 10.89 | 0.853
smoking3 49.66 | 28.50 | 30.88 | 0.15 18.78 | 0.936
spiralsl 28.98 | 2.76 | 48.97 | 2.06 -19.99 | 1.000
spirals2 30.69 | 3.75 | 49.12 | 2.40 -18.43 | 1.000
spirals3 29.52 | 4.83 | 4827 | 2.24 -18.75 | 1.000
titanicl 20.15 | 0.01 | 20.690 | 0.000 -0.54 | 1.000
titanic2 19.48 | 0.49 | 20.036 | 0.454 -0.55 | 0.983
titanic3 21.13 | 0.68 | 21.597 | 0.000 -0.46 | 0.942
vehiclel 13.77 | 0.86 | 21.651 | 1.548 -7.88 | 1.000
vehicle2 18.73 | 2.13 | 21.745 | 1.482 -3.01 | 0.998
vehicle3 15.71 | 1.61 | 17.830 | 2.666 -2.12 | 0.952
yeastl 57.82 | 7.93 | 40.296 | 1.166 17.52 | 1.000
yeast2 59.54 | 10.93 | 38.922 | 1.802 20.62 | 0.999
yeast3 53.02 | 1.36 | 43.639 | 1.154 9.38 | 1.000

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 178

in the final solution as exclusively useful is unwise, and is warned against in (Breiman et al.,
1984). The reason is that the measurements are generally not independent, so that some
group of variables may in combination contain the same amount of information as some
other group of variables.

The solution obtained by QUEST for australian (Figure 6.11) used the variable X8
only. While the solutions generated by EPrep were more complicated, the feature sets for
the first and third permutations (Figures 6.4(a) and 6.4(b)) are quite small, and use X8 as
well as X12 and X13. Hence there is some agreement between the two methods that X8 is
an important variable. The decision tree for segmentl (Figure 6.16) is much larger than
the feature set generated by EPrep (Figure 6.7(c)). Among the variables highest in the tree
and having the highest rank in Table 6.10 are X9, X2, X11 and X10. Of the 11 variables,
EPrep’s solution uses X2, X4, X5, X9, X10 and X11, with X9, X10 and X11 appearing more
than once in the feature set. Both methods agreed upon the importance of X9, X2, X11 and
X10, but not on X4 and X5 that have a low rank according to QUEST.

For the monksl problem, both QUEST (Figure 6.14(a)) and EPrep (Figure 6.3(a))
included a variable in the solution that was unassociated with the concept to be learned. In
the case of EPrep, the presence of this variable did not interfere with the classification of
the data, while QUEST’s performance was degraded. For monks2, EPrep evolved a more
compact solution (Figure 6.3(b)) than the QUEST tree (Figure 6.15), and the two solutions
are quite different. The features evolved by EPrep for the monks3 problem (Figure 6.3(c))
contained all the variables except for the useful X4; this excess confusion is probably the
result of the noise in the training data. QUEST (Figure 6.14(b)) also missed the importance
of X4, but used only the other critical variables.

Some consensus was also reached on the importance of X1, X2 and X4 for cmcl. The
variable importance ranking produced by QUEST for cmecl (Table 6.9) has these three
variables first, and gives a low rank to the subject’s religion. The features evolved by EPrep
for emel (Figure 6.7(a)) predominantly used X1, X2 and X4, and did not use the variable
for religion.

The results for concentric (Figures 6.2(b) and 6.12) and titanic (Figures 6.6 and 6.17)
reveal useful relationships in the data. While the tree of QUEST for concentric is large and
complicated, and generally difficult to read, the solution presented by EPrep is succinct and
understandable. The decision tree can only ever approximate the true decision boundary,
whereas EPrep can produce an exact expression due to its versatility in combining different
functions. Both methods gave similar results for titanic. Although the previously-known
women-and-children-first rule was in operation, the analysis revealed that third class children
were discriminated against. Both methods found that, for titanic2, third-class girls survived
while third-class boys did not. This finding may have come about due to permutation of
the data, and is not necessarily indicative of the whole data set. The features evolved by
EPrep are slightly easier to read than the decision trees for this problem, because AND/OR
statements are easier to translate into sentences.

6.8.4 Other Comparisons

There are other criteria by which to compare classification algorithms. The two addressed
here are parameter selection and computational complexity. The more parameters there are
associated with an algorithm, the less certain it is that the results obtained are the best that
can be attained using the algorithm. On the other hand, a higher level of configurability
means more flexibility, which can be an advantage. A lower computational complexity is
always desirable, but more resources may be affordable if the algorithm can achieve signifi-
cantly better results.

The simpler algorithms used in these experiments are the most appealing in terms of the

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 179

number of parameters that need to be selected by the user. PPD, MDTM and ML have no
parameters at all, and are deterministic. kNN is also deterministic, but requires the choice
of k. The results of the GLIM algorithm depend on the choice of learning rate, maximum
number of epochs, initial weights and order of the data samples. All of these simpler al-
gorithms are quite easy to understand and to implement in a programming language. The
EPrep, MLP and QUEST methods have more parameters to select, are harder to understand
and are more prone to programming errors. EPrep is the most complicated algorithm of all,
and has many different parameters to select. EPrep is also a stochastic algorithm, and the
results depend on random choices during the algorithm apart from data sub-set selection,
which is also randomised in QUEST. The MLP algorithm used trains in batch mode, so the
order of training samples does not matter. The sample order was randomised internally by
EPrep and QUEST.

A comparison of elapsed computation time is complicated by the multiplicity of platforms,
and the variations in efficiency of coding of the different methods. Also, the concurrent load
on Unix workstations can deceptively double or triple the time taken. The times quoted in
this chapter are included only to give an idea of the relative times it would practically take
to run each algorithm. A more rigorous analysis requires the computational complexity of
the algorithm to be calculated.

The computation time of EPrep and the MLP were similar, being on the order of 1-10
hours, with EPrep generally taking longer. The QUEST algorithm took on the order of 1
minute, about two orders of magnitude faster than the other two methods. The simpler
methods took on the order of less than one second, but for the kNN and GLIM methods an
exhaustive search for the hyper-parameters was performed which took a long time.

The computational complexity of each algorithm for training and for classification of a
single sample are shown in Table 6.17. Some of the complexities require further explanation.
The kNN method requires no training. For the GLIM, e,, is the average number of epochs
required for training. For QUEST, v is the fold of cross-validation, and diy¢. is the depth of
the tree obtained, which is proportional to the number of attributes and the complexity of
the problem. For the MLP, e,, is the average number of epochs for training, and nyeights i8
the number of weights in the network. For a two-hidden-layer network with n; nodes in the
first hidden layer and ng in the second:

Nweights = (d + 1).’/11 + (n1 + 1).’!12 + (TLQ + l)C

Therefore the number of weights involves a product of the number of hidden nodes with
the number of classes and input variables. For EPrep, e, is the average number of fitness
evaluations in the local optimisation routine, Ogp,, is the complexity of the derived pre-
processor, which will usually be proportional to d, and O, is the complexity of the classifiers
used on the pre-processed data.

Of QUEST, the MLP and EPrep, QUEST is the most efficient, with EPrep the most
expensive algorithm. The local optimisation used in EPrep is a severe burden on the com-
putational load. Note that in the complexity of EPrep shown in Table 6.17, the cost of
evaluating the pre-processing function is usually assumed to be much less than the cost of
classification. If optimisation is not used, the complexity becomes O(G.M.O,), which can
be less than the complexity for a neural network if G.M.d < €gy.Nyeights- 1f, however, the av-
erage tree size or number of features in the population becomes large, the feature evaluation
component of the fitness function can dominate computation time to a degree exponential
with depth.

Although EPrep is more computationally intensive than the other methods, the evolved
pre-processors and simple classifiers used require relatively few resources. Once the pre-
processor has been evolved, it can be used for the problem independently of the EPrep
algorithm. Therefore the algorithm may be preferable to the others according to the criterion

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 180

Table 6.17: Computational complexity of each classification algorithm for training, and for
classification of a single sample.

| algorithm | O(.) for training | O(.) for classifying
kNN - nyy.d
GLIM ny.d.Cl.egy d.C
MDTM Ngpr.d d.C
PPD Ngp.d d.C
ML Nyr.d? d?.C
QUEST nt,.d.v dtree
MLP Nty .€au-Nweights Nweights
EPrep G.M.eopt-(Ogpp + Oct) | Ogpp + Oci

that the final classifier have minimum complexity. For example, compare the results of EPrep
and the MLP for the abalone2 data set. The two algorithms achieved comparable test set
error rates. The MLP has 1309 adaptive weights, which means that 1309 multiplications
are required to classify a new sample. The classification system generated by EPrep has
a pre-processor with 42 nodes which passes its features to the MDTM classifier. The pre-
processor, shown in Figure 6.18, requires only 5 multiplications!, and the classifier requires
d x C = 232 multiplications. Therefore EPrep’s solution requires only about 18% of the
computational and memory resources that the MLP does.

“
i
] [Xs]
:-5.16744e—01|

(x4]

= 5.55290e-01

F1 1.27295e-01

S

._[ﬂ
E"

X8
—2.71609e+00|

[Xs]

/]

.{E

2

Figure 6.18: Best feature set evolved by EPrep for abalone2.

"Multiplications are the operations by which computational complexity is usually measured, because they
take more time than additions. Divisions are counted as multiplications.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 181

6.9 Postmortem of EPrep

In light of the comparative results, the problems for which EPrep performed relatively poorly
or relatively well are identifiable. This section investigates the reasons why EPrep performed
poorly or well on certain problems.

EPrep performed relatively well on the abalone problem, indicating that the algorithm
does not have difficulty with a large number of classes. EPrep also excelled for the australian
data set, which shows that the method is not sensitive to enumerated attributes with a large
number of distinct values. EPrep’s symbolic approach proved useful for titanic and for the
synthetic problems, for which relatively good accuracy was achieved. In particular, EPrep
classified the balance data relatively easily. The distinctive quality of this data set is that
the attributes are discrete, but have a natural ordering. In absolute terms, however, the
classification performance for spirals was quite bad. If the full data set were made available
for training, a perfectly general solution may be attainable.

For vehicle, the ML classifier was already achieving the lowest error rate of all the
classifiers other than EPrep. Consequently there was no way for EPrep to improve upon
the classification rate other than to over-fit the data, therefore generalisation was poor. For
the smoking problem, the best strategy was to always predict the most frequent class.
Hence this problem is another candidate for over-fitting, since there is little else that can be
done other than a very simple strategy. Nevertheless, EPrep managed to achieve almost-
optimal error rates for this problem, even though it generated some enormously complicated
pre-processors. This situation exemplifies the danger of interpreting results from machine
learning algorithms: the user could look at the solution from EPrep and conclude that the
data set is extremely complicated, whereas the decision tree generated by QUEST contains
only one node.

The two data sets that were the most problematic for EPrep were satimage and yeast.
The satimage data set contains the most attributes of all the data sets. EPrep’s failure to
effectively search the space of solutions for this data set is understandable, because of the size
of the search space is a very-high-order polynomial in the number of input measurements for
the problem (see Section 4.10). The reason for the poor performance on yeast is less obvious.
Although this problem has 10 classes with disproportionate numbers of samples in the classes,
the similar situation in abalone did not present a problem. From examination of the plots in
Appendix E, the results were similar for yeastl and yeast2, but quite different for yeast3.
In particular, the standard deviation of fitness, shown for convenience in Figure 6.19, displays
quite different behaviour. The cause for this difference is that different parameters were used
for the permutations. The common difference between the first two permutations and the
third is that the PPD classifier was not used for yeast3. It is not obvious how the PPD
classifier led to a higher initial diversity but lower final diversity in the population. The
inability of EPrep to achieve competitive error rates on this data set suggests that, for the
function and terminal sets chosen, representation of a useful pre-processor is not easy. The
use of a different function set, or other modified parameters may be sufficient to improve the
success of the algorithm.

6.10 Conclusion

This chapter has presented experiments designed to investigate the feasibility of a search for
optimal generalised pre-processors for real-world problems, and to examine the advantages
of this approach over existing methods for classification and feature extraction. The experi-
ments have shown that EPrep is able to synthesise generalised pre-processors to improve the
performance of a classifier for synthetic and real-world problems. Although the simple classi-
fiers used by EPrep performed relatively poorly on their own, EPrep was able to significantly

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 182

yeast: std. deviation of fithess
16 T T

! yeast_1
— — yeast_2
10| e yeast_3

stdF

~ N -~ AN~ =
= SO R T NS e FE D 2 e s e

N <o - 3

0 50 100 150
g

Figure 6.19: Standard deviation of fitness versus generation for all three permutations of
yeast, averaged over 10 runs.

improve their performance by evolving appropriate features. When compared with existing
techniques for classification, EPrep achieved error rates that were similar to the MLP and
better than QUEST. Except for the kNN algorithm, the simple methods did not perform
well on average. Although EPrep obtained the lowest estimate of test set error for more data
sets than the MLP, the advantage was only statistically significant about a quarter of the
time. The advantage of the MLP over EPrep was statistically significant more often. The
MLP was generally more consistent from run to run than EPrep was, and achieved a test
set error among the lowest three for more data sets.

EPrep yielded particularly good results for the balance data set, which is characterised
by its discrete attributes that have a natural ordering, and are therefore treated as real-values.
EPrep’s performance on satimage was poor due to the large number of input measurements
for that domain. Performance was also poor for the yeast problem, the reason most likely
being an incompatibility between the structure in the data and the function set used. For
each data set, it is possible that EPrep could achieve a lower error by better selection of
the parameters. For the vehicle data set, it was impossible for EPrep to improve upon the
maximum likelihood classifier, and the algorithm reverted to feature selection.

The results of EPrep and QUEST were compared for their interpretability. For some
problems, such as concentric, EPrep had a clear advantage in understandability due to its
ability to combine intuitively appropriate functions to form the decision boundaries. For
other problems, EPrep’s results were harder to read because the features can contain useless
sub-expressions, the combination of multiple features can lead to discrimination in a non-
intuitive manner, the way in which the classifier contributes to discrimination is unknown,
and the features may require simplification by hand. Both methods sometimes resulted in
solutions that were too large and complicated to be understood by a human. Both EPrep
and QUEST were able to perform attribute selection by excluding input measurements not
required for classification. There was general agreement between EPrep and QUEST on
which measurements are required for discrimination for the australian, segment and cmc
data sets. It was found for titanic that the relationships found in the data can vary with the
permutation of the data. For the monks problems, QUEST sometimes split on variables that
are known to be unimportant, while EPrep sometimes included the unimportant variables

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON 183

in useless expressions. Very different feature sets were obtained by EPrep on different runs
and for different permutations of the data. The results of QUEST varied with permutation,
but the variables used for the first few splits were generally the same. All these factors make
interpretation of the data a complex matter which should be carried out with great care.

Of QUEST, the MLP and EPrep, QUEST was the most efficient algorithm, while EPrep
was the most computationally expensive. If the local optimisation were switched off, EPrep
could complete a run in about the same time as the MLP. The choice of whether to use EPrep
depends on the trade-off between the expected benefits and the increased computational cost
over other methods.

Regarding the EPrep algorithm, the RAT algorithm was able to effectively reduce the
number of training samples processed on average for all data sets. In contrast, the self-
adaptive operator probabilities and introns did not seem to work effectively. There was
no consistent pattern to the behaviour of the operator probabilities from one run to the
next, other than the seeming tendency towards the use of high-level crossover, which is most
likely due to the inherent bias. The number of introns in the population was expected to
increase with generations to protect highly-fit sub-sets of features, but tended to decrease
with generations. An error in the program contributed to the lack of success of the intron
accumulation. The local optimisation brought about a relatively small improvement in fit-
ness on average, and does not appear to be worth the dramatic increase in computation time
necessary. EPrep tended to use more features rather than fewer, which indicates that the
classifier is being exploited by increasing the dimensionality of the feature space. The bloat-
ing phenomenon was not observed, which may be due to the explicit bias towards smaller
individuals when breaking ties, or to the requirement that solutions generalise well, which
implicitly biases the algorithm towards smaller pre-processors. An examination of the con-
fusion matrices of the EPrep solutions indicates that there was confusion between classes
that are intuitively similar, and that there was sometimes a bias towards classes with more
samples in the database.

To conclude, EPrep was able to achieve similar classification accuracy to the MLP while
providing information about the data.

Chapter 7

Conclusion

7.1 Introduction

The reader was provided with an introduction to pattern recognition in Chapter 2 and an
overview of evolutionary computation in Chapter 3. The main hypotheses and research
questions of the thesis were put forth in Chapter 4. The algorithm used to investigate
the research questions was described in Chapter 5, and the experiments and results were
presented in Chapter 6. This concluding chapter links the experimental results back to the
original research questions and hypotheses, lists the implications for various fields of research,
and contains recommendations for further investigation.

7.2 Conclusions about Research Questions and Hypotheses

The results of Chapter 6 are now discussed in the context of the research questions and
hypotheses presented in Chapter 4. First, the research questions are discussed, then experi-
mental support for the hypotheses is presented.

7.2.1 Question 4.1: Feasibility of Automatic Feature Extraction

The experiments of Chapter 6 have demonstrated that a search for a near-optimal gener-
alised pre-processor is feasible for real-world supervised classification problems. Starting with
simple classifiers that performed relatively poorly on their own, EPrep was able to improve
their classification performance significantly by evolving features that were appropriate for
the specific classifier. This improvement was statistically significant at the 99% level for 80%
of the data sets used in the experiments.

The search was not confounded by a large number of classes, or by enumerated variables
with large numbers of distinct values. Training time was linear in the number of training
samples used, as is the case for most classification algorithms. The main sensitivity of
performance to problem size was through the dimensionality of the data. This sensitivity
was expected, because the size of the search space is a polynomial function of the data
dimensionality, and the order of the polynomial increases exponentially with the maximum
depth of the feature trees. EPrep achieved relatively poor error rates was when the function
set did not contain the appropriate constituent functions for the problem, as was the case
with the yeast data set.

184

CHAPTER 7. CONCLUSION 185

7.2.2 Question 4.2: Automatic Feature Extraction for Knowledge Discov-
ery

The generalised pre-processor method has advantages and disadvantages for knowledge dis-
covery. On the positive side, the ability to combine arbitrary non-linear functions resulted in
easily-understood solutions for balance, concentric and titanic. The arbitrary structure
allows attribute selection to occur at the same time as feature extraction so that the most
discriminatory input measurements can be identified. On the negative side, the presence
of multiple features can make interpretation difficult, and their interaction with the classi-
fier can blur the role of the features for discrimination. The pre-processors often contain
expressions that must be simplified by hand, and superfluous expressions which do not con-
tribute to fitness. The evolved features vary dramatically from run to run, which undermines
confidence in interpretation of the results.

For the balance, concentric and titanic problems, useful relationships between the
variables were extracted from the data. For instance, the user may not have previously known
that third class passengers were discriminated against on the SS Titanic life-boats. Similarly,
the automatic selection of attributes was revealing for the australian and cmc problems.
The information file that came with the australian data set indicated that only five of
the fourteen attributes were judged important by a stepwise regression procedure, whereas
EPrep evolved pre-processors that used only two or three attributes, and disregarded four of
the five supposedly-important attributes. This discrepancy indicates that it is dangerous to
select the attributes based on only one method. For the cme problem, EPrep revealed the
interesting fact that religion was not related to the subject’s choice of contraceptive method.

7.2.3 Hypothesis 4.1: Benefit of Appropriate Constituent Functions

The experiments have demonstrated the advantage of combining the appropriate constituent
functions in particular situations. The use of the division function proved beneficial for the
balance problem, so that the results obtained by EPrep were better than those of any other
algorithm examined. The arithmetic functions used for concentricl resulted in a concise
pre-processor for the problem containing 15 nodes, while the MLP which achieved the same
accuracy had 202 adjustable weights, and the QUEST decision tree had 49 nodes. The use of
the sine and cosine functions for the spirals problem gave EPrep an advantage over the MLP.
For several of the real-world problems, such as abalone, australian and titanic, EPrep
obtained accuracies similar to the MLP, but used a number of nodes an order-of-magnitude
less than the number of weights used by the MLP.

In each of these examples, the combination of appropriate constituent functions allowed
for a more realisable or, in the case of balance, more accurate classifier. When considering
this comparison, however, it must be remembered that the classifier used in conjunction with
the pre-processor also requires resources.

7.2.4 Hypothesis 4.2: Benefit of Appropriate Structure

The pre-processors shown in Chapter 6 do not have a regular structure like the MLP does.
The removal of constraints on the pre-processor architecture has allowed EPrep to evolve
more compact solutions than the MLP, as discussed in the previous sub-section. The pre-
processors are not fully-connected from layer to layer, therefore not all of the input measure-
ments are necessarily present in EPrep’s solutions. Thus flexibility in structure allows EPrep
to perform attribute selection while the MLP gives no immediately recognisable information
as to which measurements are irrelevant for classification.

CHAPTER 7. CONCLUSION 186

7.2.5 Hypothesis 4.3: Advantage of the Generalised Pre-Processor

From the comparative experiments, it can be concluded that there are problems for which the
generalised pre-processor method is preferable to the other classification methods examined.
In particular, EPrep was an advantageous method to use for the balance problem. The
EPrep algorithm had the best peak performance in that it achieved the lowest test set error
for more problems than the other classifiers examined. However, not all of these results were
statistically significant. In terms of those results that were statistically significant at the
95% level, the MLP was the best algorithm, with EPrep a close second, and QUEST a more
distant third. Similarly in terms of reliability, the MLP was the most reliable algorithm in
that it was one of the three best methods for the most problems, EPrep was second, and
QUEST was third. The results of the MLP were more reliable from run to run than those
of EPrep.

Although the MLP algorithm was on average the most accurate and reliable, it offers no
interpretable information for knowledge discovery. EPrep and QUEST, however, can perform
attribute selection and reveal relationships in the data. For the concentric data set, EPrep
had a more understandable solution than QUEST due to its ability to combine intuitively
appropriate functions to form the decision boundaries. In other cases, the difficulties in
interpreting EPrep’s features made the QUEST trees more understandable. Both algorithms
used variables that were known to be unimportant for the monks problems, but this only
seemed to interfere with the classification accuracy of the QUEST method.

There was some consensus between EPrep and QUEST on the importance of certain
attributes for the australian, segment and cmec data sets. The relationships found in the
data for titanic were also in general agreement for the two algorithms. For the smoking data
set, the QUEST tree had only a single node whereas the over-fitted EPrep pre-processor was
quite large and complicated. This exhibits the danger of using a single method for knowledge
discovery. The results of QUEST were more robust to permutation of the data, and did not
suffer from the variability over runs that EPrep’s pre-processors did.

In terms of computational complexity, QUEST was the simplest algorithm and EPrep
was the most intensive. With local optimisation switched off, however, EPrep’s computation
time is approximately the same as that of the MLP.

In summary, the use of a generalised pre-processor did not bring about significant im-
provements in classification accuracy over other methods for real-world problems. The gen-
eralised pre-processors were, however, more practically realisable than the MLP in the sense
that they generally required fewer nodes and fewer input measurements. An additional
feature of the method is that the economical pre-processors and classifiers can be easily
implemented on a micro-processor. The function set could even be constrained to those
functions available on the micro-processor. In some instances, the pre-processors were more
informative about the data than the decision tree method. Since neither EPrep nor QUEST
are reliable enough to use in isolation for knowledge discovery, EPrep can be used as an
additional source of information.

7.2.6 Hypothesis 4.4: Advantage of Population-Based Search

The performance curves in Appendix E show that, in many cases, the average size of solutions
in the population did decrease with generations. In particular, a size decrease was observed
for all of the synthetic problems. The most poignant example of an exponential decrease was
for the vehicle problem, which displayed a very rapid drop in average pre-processor size. In
several of the cases for which an initial size decrease was observed, the size later increased.
The two explanations for this are over-fitting and bloating. In most cases where the average
pre-processor size increased, the training error continued to improve as well. Hence the cause
for the size increase was over-fitting rather than bloating,.

CHAPTER 7. CONCLUSION 187

7.3 Conclusions about the Performance of EPrep

Additional conclusions can be made about the performance of the evolutionary pre-processor
algorithm itself. The rational-allocation-of-trials algorithm worked well at decreasing the
average number of samples processed per individual. This is a promising addition to the
standard genetic or evolutionary algorithm. The use of many genetic operators successfully
maintained diversity for the duration of each run. The self-adaptive operator probabilities,
however, did not adapt with any pattern, and the mechanism seemed to be of little use. The
introns tended to trickle away rather than building up in number to protect co-adapted sets
of features. A similar lack of improvement through the use of inversion has been reported
in (Goldberg, 1989, pp. 166-170). The average improvement in classification rate brought
about by local optimisation was so slight as to not be worth the enormous increase in
computation time required.

The bloating phenomenon did not often occur: in those instances where the average size
of individuals in the population increased with generations, the fitness was also changing.
This indicates that the individuals were increasing in size due to over-fitting rather than
bloating. The absence of bloating was expected for several reasons:

e Those offspring having the same fitness as their parent but containing more nodes
were given a lower rank in the population due to a preference towards parsimony
during sorting.

e According to Occam’s principle, more parsimonious solutions should generalise better.
Since the time-varying fitness function resulted in a fitness criterion of generalisation,
there was an intrinsic bias towards smaller pre-processors.

e Sub-tree crossover was not used. Therefore trees could only increase in size by applica-
tion of the grow mutation operator. This operator was not applied frequently enough
to cause a radical growth in average feature size.

EPrep tended to generate more features as generations progressed, but nevertheless most
of the best evolved pre-processors reduced the dimensionality of the data from input to out-
put. The generalisation performance of the evolved features used with the simple classifiers
was generally very good, and the run with the minimum validation set error was usually
the run with the minimum test set error. However, the pre-processors themselves varied
significantly from run to run. It was sometimes difficult to choose acceptable parameters for
EPrep, as was the case for the yeast problem.

If one of the simple classifiers used by EPrep was already achieving an error rate close to
the Bayes limit for the problem, there was little scope for improvement and EPrep reverted to
feature selection. Such was the case for the vehicle data set. From the confusion matrices
of the best solutions generated by EPrep, it could be seen that intuitively similar classes
were often confused. For problems with disproportionate class representations in the data
set, EPrep tended to favour the more frequent classes in its decisions. This problem can be
controlled through the use of cost matrices.

7.4 Conclusions about the Research Topic

In Chapter 1, the following question was stated to summarise the topic of this thesis:

How effective is a generalised pre-processor at extracting features from real data
when compared with ezisting automatic feature extraction methods?

The answer revealed by the examinations of this thesis depends on the criterion employed.
In terms of classification accuracy, the GPP approach was effective in that it was able to

CHAPTER 7. CONCLUSION 188

improve the performance of simple classifiers. For the real-world data sets, however, the GPP
approach did not result in significantly better classification rates than the MLP. In terms of
utility for knowledge discovery, the GPP method resulted in more informative features than
the MLP. The GPP approach had advantages over decision trees due to its versatility in
combining different functions. Nevertheless, the decision trees were generally more reliable.
In terms of computational complexity, the search for the best GPP was relatively expensive,
but the resulting classification systems were relatively economical, both in computational
resources and in the number of input measurements required.

Whatever the criterion used to assess the performance of the GPP search method, the
effectiveness of the algorithm broke down when the dimensionality of the data was large.

7.5 Implications for Theory

The findings of this thesis have implications for feature extraction in general. The fixed
structure and limited but smooth constituent functions used in the multi-layer perceptron
are sufficient to extract features from the real-world data sets examined. Nevertheless, the
fact that the combination of different non-linear functions can achieve better results for
some synthetic problems suggests that the generalised pre-processor methodology would be
advantageous in certain real scenarios. By removing constraints on the structure and content
of a feature extractor, the system can be realised more economically. When problems are
scaled up, this economy may mean the difference between a feasible and an infeasible real-
time system.

The experimental procedures and findings have general implications for the field of su-
pervised learning. The use of multiple permutations of each data set has shown the danger
of drawing conclusions from a single permutation of the data. In comparing different classifi-
cation techniques, relatively few of the differences in error rate were statistically significant.
The interpretation of the models obtained by the classification methods also varied with per-
mutation of the data. All of these findings indicate that machine learning algorithms cannot
be compared prima facie, and that their use for knowledge discovery must be performed
with great care. Amidst the recent excitement about knowledge discovery in databases for
practical applications, such caution is scarce. It is recommended that several different meth-
ods be used for knowledge discovery, and their results cross-referenced. The evolutionary
pre-processor is one such method that can be used in conjunction with other techniques.

The implications for the No Free Lunch theorem are that some general algorithms are
more tuned to the problems people are interested in than others. For instance, the MLP
ranked near the top the most often, and some of the simpler methods such as the GLIM
performed quite badly across the problem set. The main result of the NFL theorem, that
all algorithms perform equally on average, was vindicated in that no algorithm was the best
for all problems examined.

There were important findings for the field of genetic programming. The rational-
allocation-of-trials algorithm was quite effective at reducing the number of fitness evalua-
tions, and should find more widespread use amongst the GP community. The method used
for self-adaptation of operator probabilities, however, was not effective and needs improve-
ment. The use of the simplex method and hill-climbing for local optimisation did not seem
to be worth the overhead on average. It is difficult to assess the value of optimisation overall,
however, because it may have brought about large improvements for a few key individuals
and thus improved the quality of the final solutions. The fact that the co-operation of high-
level introns and the inversion operator did not work to protect co-adapted features from
destructive crossover may be an indication that there was no schema accumulation occurring.
This sustains the argument in (Angeline, 1997b) that for many problems, crossover is a form
of macro-mutation.

CHAPTER 7. CONCLUSION 189

The final contribution of this thesis to scientific research as a whole is to question popular
assumptions. Sometimes gains can be made by framing a problem in a more general manner.

7.6 Implications for Further Research

The two most severe limitations of the EPrep algorithm are its computational complexity and
its sensitivity to the dimensionality of the input data. The most interesting avenue of further
research would be to extend EPrep to work with high-dimensional data such as images and
time-series. This could be achieved by adding loops and memory to the pre-processors so
that a relatively small pre-processor could be iteratively applied to the data. Similar work
has already been conducted by (Koza, 1994b) and (Teller and Veloso, 1996). The increase
in data size would bring about a significant increase in computation time, which would have
to be somehow circumvented. Methods would also have to be developed to cope with sparse
sampling of the very-high dimensional data.

Further research is required into mechanisms for self-adaptation of parameters in ge-
netic programming. Cross-fertilisation with methods for partial credit assignment from the
artificial intelligence community may produce effective algorithms for adapting operator
probabilities. To reduce the computational overhead of local optimisation, algorithms could
be developed to apply different amounts of computational resources to different individuals.
For instance, individuals whose ancestors have been optimised and that are similar to those
ancestors may receive relatively few optimisation trials in future, under the assumption that
they are already relatively well optimised.

The field of knowledge discovery is now becoming important, but the main drawback of
EPrep for this use is the high variability in the results. Future research could endeavour to
constrain the solution representation so as to produce more consistent results from run to
run. Methods could be developed to remove superfluous expressions from the features. The
performance of EPrep could also be improved by investigating what set of complementary
constituent functions is the most appropriate for a broad range of problems.

Appendix A

Instructions for Use of CD-Rom

Due to the enormous amount of data produced by EPrep, a CD-rom disk has been attached
to the back of this thesis. The CD-rom can be used with a Unix workstation, or with a PC
under Windows 95 or Windows NT. The CD-rom contains the following directories:

results: HTML reports, data and figures generated by EPrep in the experiments of Chap-
ter 6.

data: data files and types files used with EPrep in the experiments of Chapter 6.
parameters: parameter files used with EPrep in the experiments of Chapter 6.

eprep: executable files of EPrep and associated utilities, for use with DEC and Sun com-
puters. Note that the EPrep GUI is not included.

The item of most interest to the reader is the collection of reports output by EPrep.
These reports can be viewed with a web browser such as Netscape or Microsoft Internet
Explorer through the top-level HTML page:

cd-rom/index.html

where cd-rom is the path of your CD-rom drive. Simply insert the CD-rom disk into the
drive, and select the top-level HTML file through the internet browser.

190

Appendix B

Implementation Details of EPrep

This appendix contains some of the history and details of the evolutionary pre-processor
software implementation, and motivates the major design choices.

B.1 Development History

The EPrep algorithm and software described in this thesis are the latest version, EPrep 3.0.
The previous version of EPrep were significantly different: due to poor maintainability of the
software and algorithmic shortcomings, the software was entirely re-written from scratch.

Before version 3.0, the implementation of EPrep was a mixture of three software compo-
nents: proprietary code, the XView Graphical-User Interface (GUI) library (Microsysterns,
1991), and Matthew’s GALib genetic algorithm library (Wall, 1996). The software was writ-
ten in C and C++ for Unix and Linux workstations. Over 21,000 lines of code (LOC) were
written for version 2.5 of the software (this does not include the GALib or XView libraries).
Version 3.0 of EPrep was written in C++ (31,000 LOC) with a Java GUI (6,700 LOC) for
a Unix workstation.

Although the total abandonment of the previous implementation of EPrep may seem like
time wasted, many invaluable lessons were learned about the implementation and algorithmic
details, which resulted in a final algorithm of higher quality.

B.2 Design Choices

Some of the global design choices involved with design of the latest version of the software
are discussed here. These choices were motivated by the following difficulties encountered
with previous versions.

B.2.1 Maintainability

Although GALib is a reusable object-oriented library, it was not flexible enough to neatly
accommodate the structures and algorithms of EPrep. The GUI library XView, like many
GUI libraries, was very messy to integrate with proprietary code. Consequently the previous
version of EPrep was expensive to maintain as a piece of software. The complicated modifi-
cations to be made for the next version would have been extremely difficult to implement by
modifying the existing GALib, and would have required the re-writing of many components.

As an alternative to the band-aid approach, the GP kernel was re-written resulting
in Jamie’s Genetic Program (JGP), a generally re-usable C++ object-oriented strongly-
typed genetic programming library. JGP was designed specifically to accommodate the
modifications to GP that were required by EPrep 3.0.

191

APPENDIX B. IMPLEMENTATION DETAILS OF EPREP 192

B.2.2 Portability

The XView library only worked under Solaris and Linux operating systems, so the GUI
could not be used on other platforms. This restricted future availability to any parties
interested in the use of EPrep. A version of the software without the GUI is available, and
can be configured through text files, so one may wonder if a GUI is necessary to perform the
experiments at all. The user interface is useful for two reasons:

e the user can see the results plotted versus generation as they occur, and examine the
contents of the population at arbitrary generations. This is useful for understanding
how the algorithm operates, and for heuristic selection of learning parameters.

e if an external party wished to use the software, the GUI is invaluable for user-friendliness
and their understanding of the algorithm.

The solution to the problem of GUI portability has two parts. The first is to implement an
interface class to communicate between the GUI and EPrep, as shown in Figure B.1. This has
the attractive quality that the GUI can be replaced by a command-line interpreter or a data
file. The second part is to use a platform-independent GUI library, such as Java (Flanagan,
1997) or V (Wampler, 1998). This cuts down on programming if multiple platforms need
to be supported, but technically the GUI could be re-written using any GUI library for the
platform in mind.

Graphical User Interpreter Input Output
Interface Data File Data File
EPrep Interface
EPrep
IGP

Figure B.1: The Large-Scale Architecture of EPrep, showing the interface class.

It was preferable to implement the interface class regardless of the choice of GUI library,
because this insulates! the GUI writer from the details of the EPrep software.

The Java Development Kit version 1.1 (Microsystems, 1998) was chosen to implement the
GUI due to its continued support, alleged platform independence, and easy use of call-back
functions and threads. The resulting combination of C++ and Java code required the use

! Insulation is the practice of making implementation details programmatically inaccessible to the library
user (Lakos, 1996).

APPENDIX B. IMPLEMENTATION DETAILS OF EPREP 193

of native methods, which are Java methods written in C (Stearns, 1997). To date there have
been problems with using native methods on DEC machines, and the necessary modifications
have not been made to the C++ code to enable use on a PC, so the GUI version of EPrep
currently works on Sun workstations only.

B.2.3 Speed

The issue of speed is very important, since the EPrep algorithm does not scale well with
problem size and some simulations using the previous version have taken weeks to compute.
While the objective function is the dominating time factor in most evolutionary algorithms,
the evaluation of a tree expression can also be extremely time consuming: the number of
nodes in a tree is exponential in the depth, and can become quite large. The previous im-
plementation stored trees as records connected with pointers, which is not the most efficient
implementation for evaluating individuals. There were many inefficiencies in GALib as well,
since generality and reusability generally incurs a run-time overhead in pointer dereferencing
and virtual table look-ups.

A comparison of several GP implementations in C++ by (Keith and Martin, 1994)
revealed that a linear prefix and jump table approach is overall the most efficient implemen-
tation. This approach stores the expression trees in prefix notation in a linear array. Each
array element contains an index into a jump table where the node information is stored.
Execution of an individual proceeds by initialising a program counter at the start of the
array, and iterating a lookup-evaluate cycle until no more arguments are expected. Only
two bytes are required per node. Although the tree of pointers method is the fastest method
in terms of number of instructions required for evaluation, it has a much larger memory
overhead which, in the long run, can slow the system down due to disk swapping and restrict
the largest possible population size.

Appendix C

Description of Data Sets

This Appendix contains a description of each of the 15 public-domain data sets used in the
experiments of Chapter 6. Each data set has a sub-section with a brief description of the
classification problem, and a table containing the details of the data set. The fields of the
tables are:

dimensions: number of input attributes from which to predict the class label.

classes: number of distinct classes.

samples: number of examples in the database.

preparation: steps carried out on the data to prepare it for use with EPrep.
partition: number of samples in the training, validation and test sets; ni — nyar — Nist-

source: whence the data came. All data sets used (except for cmce) come from the following
repositories:

cmu CMU Neural Network Benchmark Database (White and
Fahlman, 1993)

delve Data for Evaluating Learning in Valid Experiments (Rasmussen
et al., 1996)

elena Enhanced Learning for Evolutive Neural Architecture (Aviles-
Cruz et al., 1995)

statlib StatLib: a system for distributing statistical software, datasets,
and information by electronic mail, FTP and WWW (Meyer,

1996)
statlog Project StatLog (ESPRIT, 1995)
uci UCI Repository of Machine Learning (Merz and Murphy, 1996)

default error: the percentage of misclassifications made on the whole data set by always
guessing the most frequent class.

input attributes: the name, type and range of values for each input attribute from the
database. Possible types are real, enum(erated) and bool(ean). Note that some at-
tributes are discrete but are still considered to be real-valued rather than enumerated
because the ordering over the values makes sense; eg: number of children, age. Some
enumerated values only have two possible values and could be considered boolean: this
is an arbitrary choice.

missing values: describes how missing values were handled by the original collectors of the
data.

194

APPENDIX C. DESCRIPTION OF DATA SETS 195

class distribution: the name of each class, along with the number and proportion of sam-
ples from the database belonging to that class.

C.1 abalone

Predicting the age of abalone from physical measurements. The age of abalone is determined
by cutting the shell through the cone, staining it, and counting the number of rings through
a microscope — a boring and time-consuming task. Other measurements, which are easier
to obtain, are used to predict the age. Further information, such as weather patterns and
location (hence food availability) may be required to solve the problem.

From the original data, examples with missing values were removed (the majority having
the predicted value missing), and the ranges of the continuous values have been scaled by
dividing by 200.

The details of the abalone data set are shown in Table C.1. Note that some of the
classes contain only one or two samples.

APPENDIX C. DESCRIPTION OF DATA SETS 196

Table C.1: Details of the abalone data set.

dimensions 8
classes 29
samples 4177
preparation For attribute 1, replaced M with 1, F with 2, and I with 3. Subtracted 1 from
class labels.
partition 2088-1044-1045
source UCI
default error | 83.51%
attr. | name type | range
1 Sex enum | male, female, infant
2 Length real 0.075,...,0.815
3 Diameter real 0.055,...,0.650
input 4 Height real 0.000,...,1.130
attributes 5 Whole weight real 0.002,...,2.826
6 Shucked weight | real 0.001,...,1.488
i Viscera weight | real [0.001,...,0.760
8 Shell weight real 0.002,...,1.005
missing none
values
class (age) | samples [proportion(%)
1 1 0.0239
2 1 0.0239
3 15 0.3591
4 a7 1.3646
D 115 2.7532
6 259 6.2006
7 391 9.3608
8 568 13.5983
9 689 16.4951
10 634 15.1784
11 487 11.6591
12 267 6.3921
13 203 4.8599
class 14 126 3.0165
L . 15 103 2.4659
distribution 16 67 1.6040
17 58 1.3886
18 42 1.0055
19 32 0.7661
20 26 0.6225
21 14 0.3352
22 6 0.1436
23 9 0.2155
24 2 0.0479
25 1 0.0239
26 1 0.0239
27 2 0.0479
29 1 0.0239
total | 4177 100.00

APPENDIX C. DESCRIPTION OF DATA SETS 197

C.2 australian credit

Classify credit card applications as successful or unsuccessful. All attribute names and values
have been changed to meaningless symbols to protect confidentiality of the data. This dataset
is interesting because there is a good mix of attributes — continuous, nominal with small
numbers of values, and nominal with larger numbers of values. There were originally a few
missing values, but these have all been replaced by the overall median.

A stepwise regression procedure strongly suggests that only attributes A5, A8, A9, A13
and A14 are relevant. Improved results are often obtained if only these five attributes are
used.

Table C.2: Details of the australian data set.

dimensions 14
classes 2
samples 690
preparation none
partition 345-172-173
source statlog
default error | 44.5%
input descriptions are confidential
Siiglni e attr. | name | type range
1 Al enum a,b
2 A2 real 13.75,...,80.25
3 A3 real 0,...,28.00
4 A4 enum P.E.EE
5] Ab enum it,d,i,k.j,aa,m,c,w,e,q,rce.x
6 A6 enum if,dd,j,bb,v,n,0,h,z
7 A7 real 0,0 2815
8 A8 boolean | true,false
9 A9 boolean | true,false
10 | A0 | real 0,...,67.00
11 All boolean | true,false
12 Al12 | enum S, g, P
13 [AL3 | real 0,...,2000
14 | Ald | real 1,...,100001
missing 37 cases (5%) of the original data had one or more missing values. The missing
walnes values from particular attributes were: Al A2 Gd 45 @6 A7 Ald
p 12 12 6 6 9 9 13
These were replaced by the mode of the attribute (categorical) mean of the
attribute (continuous).
class | samples | proportion(%)
successful 307 44.5
closs unsuccessful 383 55.5
distribution - y
total 100.00

APPENDIX C. DESCRIPTION OF DATA SETS 198

C.3 balance

This data set was generated to model psychological experimental results. Each example is
classified as having the balance scale tip to the right, tip to the left, or be balanced. The
attributes are the left weight, the left distance, the right weight, and the right distance. The
correct way to find the class is the greater of (left-distance x left-weight) and (right-distance
x right-weight). If they are equal, it is balanced.

Table C.3: Details of the balance data set.

dimensions 4
classes 3
samples 625
preparation moved class labels to last column, replaced letters: L with 0, B with 1, R with
2
partition 312-156-157
source UCI
default error | 53.92%
attr. | name ‘ type | range
1 Left-Weight real [1,2,3,4,5
input 2 Left-Distance | real | 1,2, 3,4, 5
attributes 3 Right-Weight real | 1,2,3,4,5
4 Right-Distance | real | 1,2, 3, 4, 5
missing none
values
class samples | proportion (%)
left 288 46.08
class balanced 49 7.84
distribution right 288 46.08
total 625 | 100.00

APPENDIX C. DESCRIPTION OF DATA SETS

C.4

199

concentric

A synthetic data set consisting of 2-dimensional points distributed in a circle of radius 0.3
centred on (0.5, 0.5) (class 0), and in an immediately-surrounding concentric annulus with
external radius 0.5 (class 1). The data are plotted in Figure C.1, from (Aviles-Cruz et al.,

1995).
a.nfu"}' - 1
.I:: .:‘.' :"-“ :‘z ! ‘a'
0.6 :.: ?-':::. : s ‘:;n
LR i e .
- - 0 - .?-l-u (A .l_ :
:’|'..'h.i'_'| i "y "ha
i St Ko P LS
4 E-.‘o ". l'-‘"‘a.ﬁl :-
: } " bkl -I .l'*.
. .; {c.{.‘-"o.'
Figure C.1: Plot of concentric data set.
Table C.4: Details of the concentric data set.
dimensions 2
classes 2
samples 2500
preparation nothing.
partition 1250-625-625
source elena
default error | 36.84%
attr. | name | type | range
input 1 x real [0,...,1
attributes 2 y real | 0,...,1
missing none
values
class samples | proportion(%)
- circle 921 36.84
B (
distribution annulus 1579 63.16
total | 2500 100.00

APPENDIX C. DESCRIPTION OF DATA SETS

C.5

contraceptive method choice (cmc)

200

This dataset is a subset of the 1987 National Indonesia Contraceptive Prevalence Survey.
The samples are married women who were either not pregnant or do not know if they were
at the time of interview. The problem is to predict the current contraceptive method choice
(no use, long-term methods, or short-term methods) of a woman based on her demographic
and socio-economic characteristics.

Table C.5: Details of the cmc data set.

dimensions 9
classes 3
samples 1473
preparation Subtracted 1 from class labels.
partition 736-368-369
source Wei-Yin Loh, http://www.stat.wisc.edu/~loh/loh.html
default error | 57.30%
attr. | name l type range
1 Wife's age real 16,...,49
2 Wife’s education real 1,2,3,4
3 Husband’s education real 1,2,3,4
. 4 Number of children ever born | real 0,...,16
input - — . .
attributes 5 Wife's religion boolean | non-islam, islam
6 Wife is now working? boolean | yes, no
7 Husband’s occupation enum 1,2, 3,4
8 Standard-of-living index real 1,2, 3,4
9 Media exposure boolean | good, not good
missing none
values
class | samples | proportion(%)
No-use 629 42.70
class Long-term 333 22.61
distribution Short-term 511 34.69
total | 1473 | 100.00

APPENDIX C. DESCRIPTION OF DATA SETS 201

C.6 diabetes

The task is to determine whether the patient shows signs of diabetes according to World
Health Organization criteria (ie: if the 2 hour post-load plasma glucose was at least 200
mg/dl at any survey examination, or if found during routine medical care). The population
under study is the tribe of Pima Indians, living near Phoenix, Arizona, USA.

Table C.6: Details of the diabetes data set.

dimensions 8
classes 2
samples 768
preparation removed commas
partition 384-192-192
source UCl
default error | 35%
attr. | name type | range
1 Number of times pregnant real | 0-17
2 Plasma glucose concentration after 2 hours | real | 0-199
3 Diastolic blood pressure (mm Hg) real | 0-122
fpitt 4 Triceps skin fold thickness (mm) real | 0-99
. 5 2-Hour serum insulin (mu U/ml) real | 0-846
attributes - : :
6 Body mass index (weight in kg/(height in | real | 0...67.1
m)?)
7 Diabetes pedigree function real | 0.078...2.42
8 Age (years) real | 21-81
missing Although there are no missing values in this data set according to its docu-
values mentation, there are several senseless 0 values. These most probably indicate
missing data. Nevertheless, we handle this data as if it was real, thereby in-
troducing some errors (or noise, if you want) into the data set.
class samples | proportion (%)
class 1o diabetes 590 65
distribution diabetes 268 35
total] 768 100.00

C.7 german credit

Credit card approval problem from a German bank. Classify applicants as successful or

unsuccessful.

APPENDIX C. DESCRIPTION OF DATA SETS

202

Table C.7: Details of the german data set.

dimensions 20
classes 2
samples 1000
preparation Replaced AxXX with XX; subtracted 1 from class labels.
partition 500-250-250
source statlog
default error | 30%
allr. [name | type | range
ATl .. <0 DM
Al2: 0 < ... < 200 DM
i Status of existing checking | enum Al13 : ... > 200 DM salary assignments for at least 1
mecount yiear
Ald - no checking account
2z Duration in month real At 12
AJ0 T no credits taken, all credits paid back duly
A31 : all credits at this bank paid back duly
ot gs A32 : existing credits paid back duly till now
] Gredit history ehm A33 : delay in paying off in the past
A34 : critical account, other credits existing (not at
this banlk)
AdD : car (new)
A4l : car (used)
A42 : furniture/equipment
A43 : radio/television
Ad4 : domestic appliances
4 Purpose anum A45 : repairs
A46 : education
A47 : (vacation - does not exist?)
A48 : retraining
A49 : business
. _,\éoln —athers
o Credit amount veal 250, « . ., L8924
ABl S ... < I00TDRI
A62 : 100 € ... < 500 DM
6 Savings account /bonds enum AG3 : 600 € ... < 1000 DM
A64 : ... > 1000 DM
A65 : unknown/ no savings account
ATT - unemployed
AT2: ... < 1 year
7 Present employment since enum AT3: 1 < ... < 4 years
ATl 4 < ... < 7 years
T . I 1A75 ... = T years
] Installment rate in percent- ren aieiaay
IHPUt age of disposable income
i AGT + male : divorced/separated
attrlbutes A92 : female : divorcefd/:eparated/married
9 Personal status and sex crum A93 : male : single
A94 : male : married/widowed
A95 : female : single
ATOI : none
10 Other debtors / guarantors ernm A102 : co-applicant
A103 : guarantor
1T Present residence since real e
ATIT: real estate
A122 : if not Al121 : building society savings agree-
12 Brapeits S ment/ life insurance
) A123 : if not A121/A122 : car or other, not in attribute
6
A124 : unknown / no property
13 Age Tn Years rieal I9,,, ., 75
ATAT : bank
14 Other installment plans enum A142 : stores
Ald4d : none
ALST: rent
15 Housing enum Al152 : own
Al1G3 - far free
16 Number of existing credits real | R |
at this bank
ATTT : unemployed/ unskilled - non-resident
A172 : unskilled - resident
17 Job enum A173 : skilled employee / official
A174 : management/ self-employed/ highly qualified
employee/ officer
) Number ol people being | real ST
liable teo provide mnininte-
nance for
" AlBl : none
0 Teleplions ghem Rég? : yes, vegistered under the ¢ustomers name
N T yes
20 foreign worker enum A202 : no
missing none
values
class | samples | proporiion (7o)
ood 700 TO.00
class ad 300 } 3000
distribution Total 000 | oo

APPENDIX C. DESCRIPTION OF DATA SETS 203

C.8 monks

The three monks problems were the basis of an international comparison of learning algo-
rithms. The results of this comparison are summarised in (Thrun et al., 1991). The artificial
input domain, which is the same for all three problems, consists of six nominal attributes of
robots. The concepts to be learned for each problem are:

monksl: head_shape = body_shape or jacket_colour = red

monks2: The second monk’s problem is to determine whether exactly two of a robot’s six
attributes have their first value. There is no noise added.

monks3: (jacket_colour = green and holding = sword) or (jacket_colour != blue and body_shape
= octagon).
5% class noise is added to the training set (6 misclassifications).

Rather than using three permutations of one problem, one permutation of each of the three
problems is examined. Since there is no noise added to the test set for any of the problems,
100% accuracy is attainable in each case.

Table C.8: Details of the monks data sets.

dimensions 6
classes 2
samples The test sample is the same for all three problems, consisting of all 432 possible examples.
The training sample is different for each of the three data sets, being drawn randomly from
the test set. The sample sizes are:
| problem | training samples | Nir | Noar |
monks1l 124 82 42
monks2 169 113 56
monks3 122 81 41
preparation Removed sample indices, moved class label from start to end of measurement vector.
Problem Ntr Nval Ntst
.. monksl 82 42 432
pastibion monks2 113 56 432
monks3 81 41 432
source UCI
default error 50% for monks1, 32.87% for monks2, and 47.22% for monks3.
attr. | name type | range
1 head shape enum | round,square,octagon
2 body shape enum | round,square,octagon
input attributes 3 1s smiling bool | 0,1
4 holding enum | sword, balloon,flag
5 jacket colour | enum | red,yellow,green,blue
6 has tie bool | 0,1
missing values none
class different for each class
distribution Problem Class 0 Class 1
monksl 216 216
monks2 290 142
monks3 204 228

APPENDIX C. DESCRIPTION OF DATA SETS 204

C.9

satimage

Satellite image classification problem. One frame of Landsat multi-spectral imagery consists
of four digital images of the same scene in different spectral bands. Two of these are in the
visible region (corresponding approximately to green and red regions of the visible spectrum)
and two are in the (near) infra-red. Each pixel is an 8-bit binary word, with 0 corresponding
to black and 255 to white. The spatial resolution of a pixel is about 80m x 80m. Each image
contains 2340 x 3380 such pixels. The data is given in random order and certain lines of
data have been removed so you cannot reconstruct the original image from this dataset.

Table C.9: Details of the satimage data set.

dimensions 36
classes 6
samples 6435
preparation transformed class labels from {1,2,3,4,5,7} to {0,...,5}.
partition 3217-1608-1610
source ELENA
default error | 76.18%
input The present database is a (tiny) sub-area of a scene, consisting of 82 x 100
attributes pixels. Each line of data corresponds to a 3 x 3 square neighbourhood of pixels
completely contained within the 82 x 100 sub-area. Each line contains the pixel
values in the four spectral bands (converted to ASCII) of each of the 9 pixels in
the 3 x 3 neighbourhood and a number indicating the classification label of the
central pixel. The aim is to predict this classification, given the multi-spectral
values. The attributes are numerical, in the range 0 to 255 (8 bits).
In each line of data the four spectral values for the top-left pixel are given first
followed by the four spectral values for the top-middle pixel and then those for
the top-right pixel, and so on with the pixels read out in sequence left-to-right
and top-to-bottom. Thus, the four spectral values for the central pixel are
given by attributes 17, 18, 19 and 20.
missing none
values
class | samples | proportion(%)
red soil 1533 23.82
cotton crop 703 10.92
class grey soil 1358 21.10
distribution damp grey soil 626 9.73
soil with vegetation stubble 707 10.99
very damp grey soil 1508 23.43
total | 6435 | 100.00

APPENDIX C. DESCRIPTION OF DATA SETS 205

C.10 segment

Natural image segmentation problem. The instances were drawn randomly from a database
of 7 outdoor images. The images were hand-segmented to create a classification for every
pixel. Each instance is a 3 X 3 region.

Table C.10: Details of the segment data set.

dimensions 11 (originally 19)
classes 7
samples 2310
preparation the constant and linearly-dependent attributes (3 and 10-16) were removed.
partition 1155-577-578
source statlog
default error | 85.71%
input the inputs are various statistical features of the 3 x 3 region. Eight attributes
attributes (3 and 10-16) are linear combinations of the data or are constant.
attr. l name] type [range
1 region-centroid-col | real | 1...254
2 region-centroid-row | real | 11...251
3 short-line-density-5 | real | 0...0.3
4 short-line-density-2 | real | 0...0.2
5 vedge-mean real [0...29.2
6 vegde-sd real | 0...991.7
7 hedge-mean real | 0...44.7
8 hedge-sd real | 0...1386.3
9 value-mean real | 0...150.9
10 saturation-mean real | 0...1.0
11 hue-mean real | —3.0442...2.9
missing none
values
class | samples | proportion (%)
brick face 330 14.29
sky 330 14.29
foliage 330 14.29
class cement 330 14.29
distribution window 330 14.29
path 330 14.29
grass 330 14.29

total | 2310 | 100.00

APPENDIX C. DESCRIPTION OF DATA SETS 206

C.11 smoking

Data from a Survey on Attitudes Toward Smoking Legislation, analysed and described
in (Bull, 1994). The task is to predict each subject’s attitude toward restrictions on smoking
in the work-place (prohibited, restricted or unrestricted) based on bylaw-related, smoking-
related and sociodemographic attributes.

In a comparison of 33 classification methods on this data set (Lim et al., 1997), no method
was able to reduce the error rate below the default rate, indicating that there is no structure
in the data to be learnt.

Table C.11: Details of the smoking data set.

dimensions 9
classes 3
samples 2855
preparation removed example labels, moved class label to end of line, collapsed redun-
dant encoding into one variable for work place and smoking status variables
(removed 4 variables).
partition 1427-713-715
source statlib
default error | 30.47%
attr. | name | type | range
1 sampling weight real 0.305...4.494
2 time of survey relative to | enum | pre, post
by-law
3 place of work enum | in.city, outside_city, not_outside_home
4 place of residence enum | metro, city
b} smoking status enum | never.smoked, quit_more_12_months,
input quit_6_to_12_months,
attributes quit_less_6_months, current_smoker
6 knowledge real | 0...12
7 sex enum | female, male
8 (age in years - 50)/10 real -3.2...45
9 education enum | elementary, high_school,
high_or_trade_school, college_or_uni,
uni_degree
missing none
values
class | samples | proportion(%)
prohibited 151 5.29
class restricted 719 25.18
distribution unrestricted 1985 69.53
total 2855 100.00

APPENDIX C. DESCRIPTION OF DATA SETS 207

C.12

spirals

The task is to learn to discriminate between two sets of points which lie on two distinct
spirals in the x-y plane. These spirals coil three times around the origin and around one
another. This appears to be a very difficult task for many learning techniques. The training
and validation data come from different regions of the spiral arms, while the test set contains
points evenly distributed along the lengths of the spirals. The test set is plotted in Figure C.2.

6 PR 5 .
0
%0
o X - 9%
. o, (-]
4 2 o P9 X0 9
d{a 3 ? °
= Y
=]

* »
3 &q " %%n TR ’L’
3 x
o % 6,0*5’ 2 ;55’
%Y,
-4 A ar w 0
]
oo oo F

oy Ll _4 2 [2 4 [}

Figure C.2: Plot of the two interleaved spirals data set.

Table C.12: Details of the spirals data set.

dimensions 2
classes 2
samples 770
Used ¢ program to generate data:
p two-spirals_gen 4 6.5 > spirals.dat
PECRATabIoN Divided the training data into the training and validation sets. Removed com-
mas, replaced "=> -” with 0 and "=> 4” with 1.
partition 194-97-479
source CMU
default error | 48.23%
attr. [name [type | range
input 1 X real | —6,...,6
attributes 2 y real | —6,...,6
missing none
values
class | samples | proportion(%)
. D 248 51.77
o 1 231 48.23
distribution towal | 479 100.00

APPENDIX C. DESCRIPTION OF DATA SETS 208

C.13 titanic

The titanic dataset gives the values of three categorical attributes for each of the 2201 people
on board the Titanic when it struck an iceberg and sank. The attributes are social class
(first class, second class, third class, crew member), age (adult or child), and sex. The task
is to predict whether or not the person survived.

The question of interest for this natural data set is how survival relates to the other
attributes. There is obviously no practical need to predict survival, so the real interest
is in interpretation, but success at prediction would appear to be closely related to the
discovery of interesting features of the relationship. Note that there are only sixteen possible
combinations of input attributes for this prediction task, so the interesting behaviour will be
that with small training sets.

Table C.13: Details of the titanic data set.

dimensions 3
classes 2
samples 2201
preparation replaced class-type lst, 2nd, 3rd, crew with 0, 1, 2, 3. Replaced adult, child
with 0, 1. Replaced male, female with 0, 1. Replaced survived? no, yes with
0, 1.
partition 1100-550-551
source delve
default error | 32.30%
attr. | name | type | range
input 1 class | enum ls‘?, 2nd, 3rd, crew
attributes 2 age enum | child, adult
3 sex enum | female, male
missing none
values
class | samples | proportion(%)
class died. 1490 67.70
distribution survived 711 32.30
total 2201 | 100.00

APPENDIX C. DESCRIPTION OF DATA SETS 209

C.14 vehicle

Vehicle silhouette dataset. The purpose is to classify a given silhouette as one of four types
of vehicle, using a set of features extracted from the silhouette. The vehicle may be viewed
from one of many different angles.

The features were extracted from the silhouettes by the HIPS (Hierarchical Image Pro-
cessing System) extension BINATTS, which extracts a combination of scale independent
features utilising both classical moments based measures such as scaled variance, skewness
and kurtosis about the major/minor axes and heuristic measures such as hollows, circularity,
rectangularity and compactness. Four “Corgie” model vehicles were used for the experiment:
a double decker bus, Cheverolet van, Saab 9000 and an Opel Manta 400. This particular
combination of vehicles was chosen with the expectation that the bus, van and either one
of the cars would be readily distinguishable, but it would be more difficult to distinguish
between the cars.

Table C.14: Details of the vehicle data set.

dimensions 18
classes 4
samples 846
preparation subtracted 1 from class labels.
partition 423-211-212
source statlog
default error | 76.48%
attr. [name | type | range
1 compactness real T
2 circularify real | 33;:..;09
3 distance circularity real | 40,...,112
4 radius ratio real | 104,...,333
i) pr.axis aspect ratio real | 47,...,138
6 max.Jength aspect ratio veal | 2,...,55
T scatter ratio real | 112,...,200
] 8 elongatedness real | 206,...,61
input 9 pr.axis rectangularity real | 17,...,29
attributes 10 max.length rectangularity | real | 118,...,188
i1 scaled variance real | 130,...,320
12 scaled variance real | I8&4,...,1018
13 scaled tadius of gyration | real | 109,...,208
11 skewness about real | 59,...,135
1o skewness about real | 0,...,22
16 kurtosis about real | 0,...,41
17 kurtosis about real | 176,...,200
18 hollows ratio real | I81,...,211
missing none
values
class | samples | proportion(%)
opel 212 25.06
saab 217 25.65
gass bus 218 57T
distribution van 199 23.52
Lotal | 840 | 100.00

APPENDIX C. DESCRIPTION OF DATA SETS 210

C.15 yeast

Predict the localisation site of a protein.

Table C.15: Details of the yeast data set.

dimensions 8
classes 10
samples 1484
preparation removed first attribute (label). Replaced mnemonic class labels with numeric
starting at O:
0 1 2 3 4) 6 7 8 9
CYT NUC MIT ME3 ME2 MEl1 EXC VAC POX ERL
partition 742-371-371
source UCI
default error | 68.80%
attr. | name [type | range
1 meg: McGeoch's method Tor signal sequence | real | 0.1100,...,
recognition. 1.0000
2 gvli: von Heijne’s method for signal sequence | real | 0.1300,...,
recognition. 1.0000
-3 alm: Score of the ALOM membrane spanning region | rveal | 0.2100,...,
prediction program. 1.0000
4 mit: Score of discriminant analysis of the amino acid | real | 0,...,
content of the N-terminal region (20 residues long) of 1.0000
input mitochondrial and non-mitochondrial proteins.
attributes 5 erl: Presence of "THDEL” substring (thought to act as | real | 0.5000,...,
a signal for retention in the endoplasmic reticulum lu- 1.0000
men). Binary attribute.
6 pox: Peroxisomal targeting signal in the C-terminus. real | 0,...,
0.8300
7 vac: Score of discriminant analysis of the amino acid | real | 0,...,
content of vacuolar and extracellular proteins. 0.7300
3 nuc: Score of discriminant analysis ol nuclear localiza- | real | 0,...,
tion signals of nuclear and non-nuclear proteins. 1.0000
missing none
values
class [samples | proportion(%)
CYT (cytosolic or cytoskeletal) 463 31.1995
NUC (nuclear) 429 28.9084
MIT (mitochondrial) 244 16.4420
ME3 (membrane protein, no N-terminal signal) 163 10.9838
class ME2 (membrane protein, uncleavec_i signal) nl 3.4367
R MET (membrane protein, cleaved signal) 44 2.9650
distribution EXC (extracellular) 37 2.4933
~ VAC (vacuolar) 30 2.0216
POX (peroxisomal) 20 1.3477
ERL (endoplasmic reticulum lumen) 5 0.3369
total [1484] 100.00

Appendix D

EPrep Parameters

This Appendix contains the parameter files used by EPrep for the experiments of Chapter 6.
The parameter files are listed here for repeatability of the experiments. If these parameters
are used with the same random seed chosen by EPrep at the time of execution, identical
results will be obtained. The random seed used for each problem can be found in the HTML
reports included on the CD-rom; see Appendix A.

The parameters were essentially the same for all permutations of a given data set. There-
fore only the parameter file for the first permutation is included here. As an exception,
different parameters were used for each of the three monks problems, and so they are listed
separately. For guidelines on the selection of parameters for EPrep, refer to Section 5.11.

211

APPENDIX D. EPREP PARAMETERS 212

D.1 abalone

// EPrep Parameter File Mon May 11 21:43:06 1998

data = /home/users/jsherrah/EPrep3/data/abalone_1.dat (tr=2088 va=1044)
classifier = MDTM

classifier = PPD

classifier = ML

tournament_size = 2

rat_delta = 0.02

rat_n_init = 750

rat_n_inc = 40

n_sort = 10

n_runs = 10

pop_size = 400

n_gens = 30

rand_seed = 0

n_reproduction = 70

seed_init_pop = True

optimise_pop = True

opt_max_iter =7

opt_convergence_val = 0.01

gl_thresh = 15

tp_thresh = 0.001

tr_strip_len = 10

feature_corr = True

results_to_log = All

results_log_freq = 1

max_init_depth = 9
max_run_depth = 9
use_h_1_introns =
prob_inversion = 1
operator = High-Level Crossover
operator = Grow Mutation

operator = One-Node Mutation
operator = All-Nodes Mutation
operator = One-Symbol Mutation
operator = Swap Mutation

operator = Truncate Mutation
operator = Hoist Mutation

operator = Add-Feature Mutation
operator = Delete-Feature Mutation
terminal = Random Ephemeral Constant
function = Add

function = Subtract

function = Multiply

function = Divide

function = Equal To

function = Less Than

function = If-Then-Else

function = And

function = Or

function = Not

True

APPENDIX D. EPREP PARAMETERS

D.2 australian credit

// EPrep Parameter File Tue May 12 12:44:56 1998
data = /home/users/jsherrah/EPrep3/data/australian_1.dat
classifier = MDTM
classifier = PPD
tournament_size = 2
rat_delta = 0.02
rat_n_init = 120

rat_n_inc = 8

n_sort = 22

n_runs = 10

pop_size = 500

n_gens = 50

rand_seed = 0
n_reproduction = 26
seed_init_pop = True
optimise_pop = True
opt_max_iter = 15
opt_convergence_val = 0.01
gl_thresh = 20

tp_thresh = 0.01
tr_strip_len = 10
feature_corr = True
results_to_log = All

results_log_freq = 1
max_init_depth = 8
max_run_depth = 8
use_h_1l_introns = True

prob_inversion = 1

operator = High-Level Crossover
operator = Grow Mutation
operator = One-Node Mutation
operator = All-Nodes Mutatiom
operator = One-Symbol Mutation
operator = Swap Mutation
operator = Truncate Mutation
operator = Hoist Mutation
operator = Add-Feature Mutation
operator = Delete-Feature Mutation
terminal = Random Ephemeral Constant
terminal = Zero

terminal = One

terminal = Two

terminal = Three

function = Add

function = Subtract

function = Multiply

function = Divide

function = Abs

function = Log

function = Equal To

function = Less Than

function = If-Then-Else
function = And

function = Or

function = Not

(tr=345 va=172)

213

APPENDIX D. EPREP PARAMETERS 214

D.3 balance

// EPrep Parameter File Tue May 12 11:11:38 1998

data = /home/cssip/jsherrah/EPrep3/data/balance_1.dat (tr=312 va=156)
classifier = MDTM

classifier = PPD

tournament_size = 2

rat_delta = 0.02

rat_n_init = 90

rat_n_inc = 6

n_sort = 18

n_runs = 10

pop_size = 400

n_gens = 40

rand_seed = 0

n_reproduction = 7

seed_init_pop = True

optimise_pop = True

opt_max_iter = 15

opt_convergence_val = 0.001

gl_thresh = 35

tp_thresh = 0.001

tr_strip_len = 8

feature_corr = True

results_to_log = All

results_log_freq = 1

max_init_depth = 8
max_run_depth = 8
use_h_1l_introns =

True
prob_inversion = 1

operator = High-Level Crossover
operator = Grow Mutation
operator = One-Node Mutation
operator = All-Nodes Mutation
operator = One-Symbol Mutation
operator = Swap Mutation
operator = Truncate Mutation
operator = Hoist Mutation
operator = Add-Feature Mutation
operator = Delete-Feature Mutation
terminal = Random Ephemeral Constant
function = Add

function = Subtract

function = Multiply

function = Divide

function = Abs

function = Equal To

function = Less Than

function = If-Then-Else
function = And

function = Or

function = Not

APPENDIX D. EPREP PARAMETERS 215

D.4 concentric

// EPrep Parameter File Mon May 11 15:21:39 1998

data = /home/cssip_a/jsherrah/data/concentric_1.dat (tr=1250 va=625)
classifier = MDTM

classifier = PPD
tournament_size = 18

rat_delta = 0.02

rat_n_init = 800

rat_n_inc = 20

n_sort = 10

n_runs = 10

pop_size = 600

n_gens = 50

rand_seed = 0

n_reproduction = 100
seed_init_pop = True
optimise_pop = True
opt_max_iter = 10
opt_convergence_val = 0.005
gl_thresh = 100

tp_thresh = 0.01

tr_strip_len = 20

feature_corr = True
results_to_log = All
results_log_freq = 1
max_init_depth = 15
max_run_depth = 17
use_h_1_introns = True
prob_inversion = 0

operator = High-Level Crossover
operator = Grow Mutation
operator = One-Node Mutation
operator = All-Nodes Mutation
operator = One-Symbol Mutation
operator = Swap Mutation
operator = Truncate Mutation
operator = Hoist Mutation
operator = Add-Feature Mutation
operator = Delete-Feature Mutation
terminal = Random Ephemeral Constant
terminal = One

terminal = Two

function = Add

function = Subtract

function = Multiply

function = Divide

APPENDIX D. EPREP PARAMETERS 216

D.5 contraceptive method choice (cmc)

// EPrep Parameter File Tue May 12 11:19:53 1998

data = /home/cssip/jsherrah/EPrep3/data/cmc_1.dat (tr=736 va=368)
classifier = MDTM
tournament_size = 3
rat_delta = 0.02
rat_n_init = 240
rat_n_inc = 12
n_sort = 33

n_runs = 10

pop_size = 500
n_gens = 50
rand_seed = 0
n_reproduction = 150
seed_init_pop = True
optimise_pop = True
opt_max_iter = 10
opt_convergence_val = 0.01
gl_thresh = 50
tp_thresh = 0.015
tr_strip_len = 10
feature_corr = True
results_to_log = All

results_log_freq = 1
max_init_depth = 8
max_run_depth = 8
use_h_1_introns = True

prob_inversion = 1

operator = High-Level Crossover
operator = Grow Mutation
operator = One-Node Mutation
operator = All-Nodes Mutation
operator = One-Symbol Mutation
operator = Swap Mutation
operator = Truncate Mutation
operator = Hoist Mutation
operator = Add-Feature Mutation
operator = Delete-Feature Mutation
terminal = Random Ephemeral Constant
terminal = Zero

terminal = One

terminal = Two

terminal = Three

function = Add

function = Subtract

function = Multiply

function = Divide

function = Abs

function = Equal To

function = Less Than

function = If-Then-Else
function = And

function = Or

function = Not

APPENDIX D. EPREP PARAMETERS 217

D.6 diabetes

// EPrep Parameter File Mon May 11 14:36:06 1998

data = /home/cssip/jsherrah/EPrep3/data/diabetes_1.dat (tr=384 va=192)
classifier = MDTM

classifier PPD

tournament_size = 2

rat_delta = 0.02

rat_n_init = 100

rat_n_inc = 6
n_sort = 28
n_runs = 10
pop_size = 500
n_gens = 40
rand_seed = 0
n_reproduction = 25
seed_init_pop = True
optimise_pop = True
opt_max_iter = 15
opt_convergence_val = 0.01
gl_thresh = 50

tp_thresh = 0.015
tr_strip_len = 10
feature_corr = True
results_to_log = All
results_log_freq = 5
max_init_depth = 7
max_run_depth = 7
use_h_l_introns =

prob_inversion = 1.0

True

operator = High-Level Crossover
operator = Grow Mutation

operator = One-Node Mutation
operator = All-Nodes Mutation
operator = One-Symbol Mutation
operator = Swap Mutation

operator = Truncate Mutation
operator = Hoist Mutation

operator = Add-Feature Mutation
operator = Delete-Feature Mutatiom
terminal = Random Ephemeral Constant
function = Add

function = Subtract

function = Multiply

function = Divide

function = Abs

function = Log

function = Less Than

function = If-Then-Else

APPENDIX D. EPREP PARAMETERS 218

D.7 german credit

// EPrep Parameter File Tue May 12 13:45:49 1998

data = /home/cssip/jsherrah/EPrep3/data/german_1.dat (tr=500 va=250)
classifier = MDTM

classifier = ML

tournament_size = 2

rat_delta = 0.02

rat_n_init = 250

rat_n_inc = 6

n_sort = 32

n_runs = 10

pop-size = 500

n_gens = 50

rand_seed = 0

n_reproduction = 50
seed_init_pop = True
optimise_pop = True
opt_max_iter = 10
opt_convergence_val = 0.01
gl_thresh = 30

tp_thresh = 0.01

tr_strip_len = 10

feature_corr = True
results_to_log = All
results_log_freq = 5
max_init_depth = 8
max_run_depth = 13
use_h_l_introns = True
prob_inversion = 1

operator = High-Level Crossover
operator = Grow Mutation
operator = One-Node Mutation
operator = All-Nodes Mutation
operator = One-Symbol Mutation
operator = Swap Mutation
operator = Truncate Mutation
operator = Hoist Mutation
operator = Add-Feature Mutation
operator = Delete-Feature Mutation
terminal = Random Ephemeral Constant
function = Add

function = Subtract

function = Multiply

function = Divide

function = Equal To

function = Less Than

function = If-Then-Else
function = And

function = Or

function = Not

APPENDIX D. EPREP PARAMETERS 219

D.8 monksl

// EPrep Parameter File Tue May 12 16:00:27 1998

data = /home/cssip/jsherrah/EPrep3/data/monks_1.dat (tr=82 va=42)
classifier = ML

classifier = MDTM

classifier = PPD

tournament_size = 2

rat_delta = 0.01

rat_n_init = 82

rat_n_inc = 0

n_sort = 0

n_runs = 10

pop_size = 400

n_gens = 30

rand_seed = 0

n_reproduction = 28

seed_init_pop = True

optimise_pop = True

opt_max_iter = 15

opt_convergence_val = 0.01

gl_thresh = 60

tp_thresh = 0.01

tr_strip_len = 8

feature_corr = True

results_to_log = All

results_log_freq = 1

max_init_depth = 7
max_run_depth = 7
use_h_1_introns =

True
prob_inversion = 1

operator = High-Level Crossover
operator = Grow Mutation
operator = One-Node Mutation
operator = All-Nodes Mutation
operator = One-Symbol Mutation
operator = Swap Mutation
operator = Truncate Mutation
operator = Hoist Mutation
operator = Add-Feature Mutation
operator = Delete-Feature Mutation
function = Equal To

function = If-Then-Else
function = And

function = Or

function = Not

APPENDIX D. EPREP PARAMETERS 220

D.9 monks2

// EPrep Parameter File Mon Mar 16 13:22:08 1998

data = /home/cssip/jsherrah/EPrep3/data/monks_2.dat (tr=113 va=56)
classifier = MDTM

classifier = PPD

classifier = ML

tournament_size = 7

rat_delta = 0.01

rat_n_init = 113

rat_n_inc = 1

n_sort = 0

n_runs = 10

pop_size = 500

n_gens = 30

rand_seed = 0

n_reproduction = 10

seed_init_pop = True

optimise_pop = True

opt_max_iter = 10

opt_convergence_val = 0.4

gl_thresh = 10

tp_thresh = 0.01

tr_strip_len = 8

feature_corr = True

results_to_log = All

results_log_freq = 6

max_init_depth = 7
max_run_depth = 7
use_h_1_introns =

True
prob_inversion = 0.5

operator = High-Level Crossover
operator = Grow Mutation
operator = One-Node Mutation
operator = All-Nodes Mutation
operator = One-Symbol Mutation
operator = Hoist Mutation
operator = Add-Feature Mutation
operator = Delete-Feature Mutation
function = Equal To

function = If-Then-Else
function = And

function = Or

function = Not

APPENDIX D. EPREP PARAMETERS 221

D.10 monks3

// EPrep Parameter File Tue May 12 16:12:41 1998

data = /home/cssip/jsherrah/EPrep3/data/monks_3.dat (tr=81 va=41)
classifier = MDTM

classifier = PPD

tournament_size = 2

rat_delta = 0.01

rat_n_init = 81

rat_n_inc = 0

n_sort = 0
n_runs = 10
pop_size =
n_gens = 30
rand_seed = 0
n_reproduction = 20
seed_init_pop = True
optimise_pop = False

400

opt_max_iter = 15
opt_convergence_val = 0.01
gl_thresh = 70

tp_thresh = 0.01
tr_strip_len = 8
feature_corr = True
results_to_log = All
results_log_freq = 1
max_init_depth = 7
max_run_depth = 7
use_h_1_introns =

True
prob_inversion = 1

operator = High-Level Crossover
operator = Grow Mutation
operator = One-Node Mutation
operator = All-Nodes Mutation
operator = One-Symbol Mutation
operator = Swap Mutation
operator = Truncate Mutation
operator = Hoist Mutation
operator = Add-Feature Mutation
operator = Delete-Feature Mutation
function = Equal To

function = If-Then-Else
function = And

function = Or

function = Not

APPENDIX D. EPREP PARAMETERS 222

D.11 satimage

// EPrep Parameter File Tue May 12 12:07:39 1998
data = /home/cssip/jsherrah/EPrep3/data/satimage_1.dat (tr=3217 va=1608)
classifier = MDTM

classifier = PPD
tournament_size = 2

rat_delta = 0.02

rat_n_init = 600

rat_n_inc = 60

n_sort = 84

n_runs = 10

pop_size = 500

n_gens = 50

rand_seed = 0

n_reproduction = 116
seed_init_pop = True
optimise_pop = True
opt_max_iter = 10
opt_convergence_val = 0.001
gl_thresh = 100

tp_thresh = 0.001

tr_strip_len = 10

feature_corr = True
results_to_log = All
results_log_freq =1
max_init_depth = 10
max_run_depth = 10
use_h_1l_introns = True
prob_inversion = 1

operator = High-Level Crossover
operator = Grow Mutation
operator = One-Node Mutation
operator = All-Nodes Mutation
operator = One-Symbol Mutation

operator = Swap Mutation
operator = Truncate Mutation
operator = Hoist Mutation
operator = Add-Feature Mutation
operator = Delete-Feature Mutation
terminal = Random Ephemeral Constant
terminal = Zero

terminal = One

terminal = Two

terminal = Three

function = Add

function = Subtract

function = Multiply

function = Divide

function = Abs

function = Log

function = Equal To

function = Less Than

function = If-Then-Else
function = And

function = Or

function = Not

APPENDIX D. EPREP PARAMETERS 223

D.12 segment

// EPrep Parameter File Tue May 12 11:33:03 1998

data = /home/cssip/jsherrah/EPrep3/data/segment_1.dat (tr=1155 va=577)
classifier = ML
tournament_size = 2
rat_delta = 0.02
rat_n_init = 420
rat_n_inc = 21
n_sort = 21

n_runs = 10

pop_size = 500
n_gens = 40
rand_seed = 0
n_reproduction = 8
seed_init_pop = True
optimise_pop = True
opt_max_iter = 15
opt_convergence_val = 0.001
gl_thresh = 100
tp_thresh = 0.001
tr_strip_len = 10
feature_corr = True
results_to_log = All

results_log_freq = 1
max_init_depth = 8
max_run_depth = 8
use_h_1_introns = True

prob_inversion = 1

operator = High-Level Crossover
operator = Grow Mutation
operator = One-Node Mutation
operator = All-Nodes Mutation
operator = One-Symbol Mutation
operator = Swap Mutation
operator = Truncate Mutation
operator = Hoist Mutation
operator = Add-Feature Mutation
operator = Delete-Feature Mutation
terminal = Random Ephemeral Constant
terminal = Zero

terminal = One

terminal = Two

terminal = Three

function = Add

function = Subtract

function = Multiply

function = Divide

function = Abs

function = Equal To

function = Less Than

function = If-Then-Else
function = And

function = Or

function = Not

APPENDIX D. EPREP PARAMETERS 224

D.13 smoking

// EPrep Parameter File Tue May 12 15:39:48 1998

data = /home/cssip/jsherrah/EPrep3/data/smoking_1.dat (tr=1427 va=713)
classifier = MDTM

classifier = PPD

classifier = ML

tournament_size = 2

rat_delta = 0.02

rat_n_init = 450

rat_n_inc = 30

n_sort = 66

n_runs = 10

pop_size = 500

n_gens = 30

rand_seed = 0

n_reproduction = 35

seed_init_pop = True

optimise_pop = True

opt_max_iter = 15

opt_convergence_val = 0.01

gl_thresh = 100

tp_thresh = 0.001

tr_strip_len = 10

feature_corr = True

results_to_log = All

results_log_freq = 5

max_init_depth = 8
max_run_depth = 8
use_h_1_introns =

True
prob_inversion = 1

operator = High-Level Crossover
operator = Grow Mutation
operator = One-Node Mutation
operator = All-Nodes Mutation
operator = One-Symbol Mutation
operator = Swap Mutation
operator = Truncate Mutation
operator = Hoist Mutation
operator = Add-Feature Mutation
operator = Delete-Feature Mutation
terminal = Random Ephemeral Constant
function = Subtract

function = Multiply

function = Divide

function = Equal To

function = If-Then-Else
function = And

function = Or

function = Not

APPENDIX D. EPREP PARAMETERS 225

D.14 spirals

// EPrep Parameter File Mon May 11 21:19:38 1998

data = /home/cssip/jsherrah/EPrep3/data/spirals_1.dat (tr=194 va=97)
classifier = MDTM

classifier = PPD

classifier = ML

tournament_size = 18

rat_delta = 0.02

rat_n_init = 194

rat_n_inc = 0

n_sort = 0

n_runs = 10

pop_size = 800

n_gens = 100

rand_seed = 0

n_reproduction = 100
seed_init_pop = True
optimise_pop = True
opt_max_iter = 10
opt_convergence_val = 0.001
gl_thresh = 100

tp_thresh = 0.01

tr_strip_len = 25

feature_corr = True
results_to_log = All
results_log_freq = 1
max_init_depth = 15
max_run_depth = 17
use_h_1_introns = True
prob_inversion = 0

operator = High-Level Crossover
operator = Grow Mutation
operator = One-Node Mutation
operator = All-Nodes Mutation
operator = One-Symbol Mutation
operator = Swap Mutation
operator = Truncate Mutation
operator = Hoist Mutation
operator = Add-Feature Mutation
operator = Delete-Feature Mutation
terminal = Random Ephemeral Constant
terminal = Pi

function = Add

function = Subtract

function = Multiply

function = Divide

function = Sin

function = Cos

APPENDIX D. EPREP PARAMETERS 226

D.15 titanic

// EPrep Parameter File Mon May 11 15:00:37 1998

data = /home/cssip_a/jsherrah/data/titanic_1.dat (tr=1100 va=550)
classifier = MDTM

classifier = PPD

tournament_size = 2

rat_delta = 0.01

rat_n_init = 400

rat_n_inc = 20

n_sort = 80

n_runs = 10

pop_size = 500

n_gens = 40

rand_seed = 0

n_reproduction = 250

seed_init_pop = True

optimise_pop = True

opt_max_iter = 12

opt_convergence_val = 0.001

gl_thresh = 25

tp_thresh = 0.001

tr_strip_len = 10

feature_corr = True

results_to_log = All

results_log_freq = 1

max_init_depth = 7
max_run_depth = 7
use_h_l_introns =

prob_inversion = 1.0

True

operator = High-Level Crossover
operator = Grow Mutation
operator = DOne-Node Mutation
operator = All-Nodes Mutation
operator = One-Symbol Mutation
operator = Swap Mutation
operator = Hoist Mutation
operator = Add-Feature Mutation
operator = Delete-Feature Mutation
function = Equal To

function = If-Then-Else
function = And

function = Or

function = Not

APPENDIX D. EPREP PARAMETERS 227

D.16 vehicle

// EPrep Parameter File Tue May 12 14:24:16 1998

data = /home/cssip/jsherrah/EPrep3/data/vehicle_1.dat (tr=423 va=211)
classifier = MDTM

classifier = ML

classifier = PPD

tournament_size = 2

rat_delta = 0.02

rat_n_init = 200

rat_n_inc = 4

n_sort = 12

n_runs = 10

pop_size = 500

n_gens = 50

rand_seed = 0

n_reproduction = 16

seed_init_pop = True

optimise_pop = True

opt_max_iter = 15

opt_convergence_val = 0.01

gl_thresh = 60

tp_thresh = 0.01

tr_strip_len = 10

feature_corr = True

results_to_log = All

results_log_freq = 5

max_init_depth = 9
max_run_depth = 9
use_h_1_introns =
prob_inversion = 1
operator = High-Level Crossover
operator = Grow Mutation
operator = One-Node Mutation
operator = All-Nodes Mutation
operator = One-Symbol Mutation
operator = Swap Mutation
operator = Truncate Mutation
operator = Hoist Mutation
operator = Add-Feature Mutation

True

operator = Delete-Feature Mutation
terminal = Random Ephemeral Constant
function = Add

function = Subtract

function = Multiply

function = Divide

function = Abs

function = Log

function = Exp

function = Less Than

function = If-Then-Else

APPENDIX D. EPREP PARAMETERS

D.17 yeast

// EPrep Parameter File

data = /home/cssip/jsherrah/EPrep3/data/yeast_1.dat
classifier = PPD

classifier = ML

tournament_size = 2

rat_delta = 0.02

rat_n_init = 350

rat_n_inc = 10

n_sort = 10

n_runs = 10

pop_size = 600

n_gens = 150

rand_seed = 0

n_reproduction = 100

seed_init_pop = True

optimise_pop = False

opt_max_iter = 10

opt_convergence_val = 0.01

gl_thresh = 50

tp_thresh = 0.015

tr_strip_len = 10

feature_corr = True

results_to_log = All

results_log_freq = 5

max_init_depth = 7
max_run_depth = 7
use_h_l_introns =

True
prob_inversion = 1.0

operator = High-Level Crossover
operator = Grow Mutation

operator = Une-Node Mutation
operator = All-Nodes Mutation
operator = One-Symbol Mutation
operator = Swap Mutation

operator = Truncate Mutation
operator = Hoist Mutation

operator = Add-Feature Mutation
operator = Delete-Feature Mutation
terminal = Random Ephemeral Constant
function = Add

function = Subtract

function = Multiply

function = Divide

function = Abs

function = Log

(tr=742 va=3T71)

228

Appendix E

Results of EPrep Experiments

This Appendix contains the plots obtained by running EPrep on each of the 15 public-domain data sets
used in the experiments of Chapter 6. Each data set has a sub-section containing plots of the following 10
quantities versus generation:

best-of-generation fitness: the minimum objective function value (RAT training fitness) of individuals in
the population at generation g. Fitness is based on training set classification error, so lower is better.

best-of-generation validation error: the validation set error of the best-of-generation individual at gen-
eration g.

average fitness: the mean objective function value of individuals in the population at generation g.

standard deviation of fitness: the standard deviation of objective function values of individuals in the
population at generation g.

average number of features: the average number of features contained in individuals in the population
at generation g.

average number of nodes: the average number of nodes contained in individuals in the population at
generation g.

average number of introns: the average number of introns contained in individuals in the population at
generation g.

average number of RAT trials: the average number of training samples required to evaluate the fitness
of individuals in the population at generation g.

average optimisation improvement: the average improvement in fitness brought about by local optimi-
sation at generation g.

average operator probabilities: the average probability per genetic operator contained in individuals in
the population at generation g.

All results are averaged over the 10 runs performed for each permutation. Each plot shows the results for all
three permutations of the data on the same axes. The only exception is the average operator probabilities:
only the results for the first permutation of the data are shown, because the plot would become too complicated
if the other two permutations were added.

Note that runs generally last for a different number of generations on the same permutation of the data,
so when a value was absent from a shorter run, the value at the last generation for that run was used to
calculate the average. For example, if the longest run lasted 20 generations, and run ¢ lasted 15 generations,
then we set g(j) = q(i),j = 16,...20 to calculate the average, where q(g) is the value of the quantity at
generation g. Since these plots are averaged, fluctuations in the individual run-curves cannot be observed.
Nevertheless the averaged plots exhibit some interesting fluctuations.

229

APPENDIX E. RESULTS OF EPREP EXPERIMENTS

E.1

no -

abalone

abalone: BOG fithese

230

abalone: BOG validation error

—— abalone_1
— = abalone_2
— - abalone_3

abalone_1
— — abalone_2
~ - abalona_3

¥ N it = N . i
o L3 10 16 20 26 B 10 " 20 L
g9 L
abalone: average fithess abalone: std. deviation of fithess

o0 - 66 v "
—— abalone_1 —— abalone_1
~ — abalone_2 5 — ~ mbalone_2
— - abalone_3 abalone_3

e i
L 0 16 20 EL

- abalone_1
= abalone_2
+= = abalona_3

a4

13 1m0 106 20 26

abalona_1
= abalone_2
== abalone_3

030

abalone: average optimisation improvement

oaal

094

—— abalone_1
— — abalone_2
— - abalona_3

abalone: average number of nodes

—— abalono_1
— — abalone_2
— - abalone_3

10 "

20 25

abaione: average number of RAT trials

abalone_1
— - abalone_2
1= abatone_3

o

0 1"

@0 2

0.00

—— Del.~Fir. Mut'n
—— Add-Ftr. Mut'n
—— Holal Mut'n

— Trimcato Mut'n
—— Swap Mut'n

= = 1-Symbol Mut'n

— — 1-Node Mut'n
Grow Mut'n

— = HL Crossover

AR Fioon ML

9,008

Figure E.1: Performance measures for abalone.

APPENDIX E. RESULTS OF EPREP EXPERIMENTS 231

E.2 australian credit

australian: BOG fithess

australlan: BOG validation error

aumtrabian, i
= = susttalinn 2
mustealinn_ 5

—— australian_1 .
- = gumtrallan_2
v e puintradion,_ 3 1
v P P R 08 1
P, W— . R—, :
L3 =8 16 20 E a0
[a
australian: averagse fitness australian: std. deviation of fithess
= puntialinn_1 L

= = auniialian_2
australian_3

= gustralian_1
- astralian_2
e wuntiatian_5

16 20 Lt oan

australian: average number of nodes

0.6 ol T Z00
=0
s “ australian_1
. S = = nustialinn 2
e) ~ - auslraiian_3 1
N A
e “
e musttalinn _t
- = pustealinn_2 -
Edd w = nustralinn_3
o6 — 4
ak 4
6.6 \
K) gt 2 4
2 puaser - == = . M "
B, L] 1o %6 20 26 o 6 10 0 wo e a0
] [}
australian: average number of introns australian: average number of RAT trials
o .2 oo T L -
—— australian_1 f—" ’/"-’\ - A
~ — austallan_2
— - auswallan_3 i J
- s L N/ = .
) N
o, 4
-,

e

2 [6 W 20
L]
australian: average optimisation improvement
on
— aiistralian_1
0.46] i = = mustralinn s
- mipstralan 2
04
a
go as
—’\ A z
P
LE] ~.F o
ok
0¥ . ———
o [10 13 20 26

—— australian_t
== pstraban_s
== gusirallan_3

" " —
“6’ (] 10 " Eatd bl B
a

- D " L i T T

o104 ’ — Ak T, N

—— Holet Mut'n
Truncate Mut'n

—— Swap Mutn

= = 1-Symbol Mut'n

— — All-Nodes Mur'n

== A=buda Mul'n

P == Girow Mut'n

== ML Groweouor

0008

0,000,

L

Figure E.2: Performance measures for australian.

APPENDIX E. RESULTS OF EPREP EXPERIMENTS 232

E.3 balance

balance: BOG fitness

balance: BOG validation error

—— balance_1 —— balanae_1
- ~ balance_2 ~ — balance_2
— - balance_a 6L — - balance_3 &
L}
*
L
-, N
mol D R
106 e
— 1o i
o . e e s 6 " = .
o B 10 16 20 BT 30 o 3 10 6 20 T a0 a6
“ [}
balance: average fltness balance: std. deviation of fitness
62 v - G - - .
sol ~—— balance_1
~ — balance_2 ~ ———— 1
40 - batance_3 = D
anl e
lg ad
anp e
4o TN - ~—— palance_1
\\ = — balance_2
L L 1= = palance_3
- Q\ -
aol ~o
‘_____—————-.._—_
P I S (| P—— =& o S - .
) 0 () [20] £ 3 [3 [13 20 26 a5
e [}

balance: average number of features

balance: average number of nodes

2.

—— balance_1
= = balanca_2
+=:= balanoe_3

== balance_1
= = balance_2
= - balance_3

P 4 . i s ool 3 . 5
] 6 10 0 wo 2 20 g 1m0 i w0 6 Do an
o o
balance: average number of introns balance: average number of RAT trials
1.4 r 166 T v A
1.6 —— batance_1 balance_1
— balance_2 ui balance_2
—' - balange_3 =« balance_3
1.5 E
1.2
Ea
1
G 4
on -
mEE W S M, T e —— of
or
[P S S Ul - et i et 2L 120 " "
‘] B 10 16 20 26 30 ¥ 6 10 i 20 26 o o

= balance_1
= — balance_2
+=:- balance_3

o0

EREE]
0. 102 . [- A, N
Aikg- e Mt
0.101
—— Hoiat Mut'n
Py
% 01 ——— Truncate Mut'n
—— Swap Mut'n
o000 = = 1-Symbol Mur'n
== AR Mdan Mut'n
0080 = = J—-Node Mul'n
" Grow Mut'n
arere . — — HL Crossover
& o n "0 o >0
o

Figure E.3: Performance measures for balance.

APPENDIX E. RESULTS OF EPREP EXPERIMENTS

E.4

concentric

concentric: BOG fithess

233

concentric: BOG validation error

conoentrio_1
et
conoantrio_3

concentric:

average fithess

— gonoaniin_1
conoenitie_2 T
= oofoanith_ 3

conoantrio_1
— — conoenlric_2
— - ooncenlrio_3

concentric: std. deviation of fithess

—— concantric_1 -
— - concenlric_2
- - conoentric_3

(%4 ‘\ 5.
R o S N
N N

e o e e] kg ity ,"""-"'\ et N
————— = =] N
66k i ST -
LI
o & a AT i i
[10 16 20 26 a0 a6 40 AL 60] L3 10 6 20 26 a0 an a0 an no
[o
concentric: average number of features concentric: average number of nodes
= - v 4000 v -
1,06} P) o - [—— ponsentie_]
PRI ER BN e = - - L0 = = concontin &t
1ok Y] - gonsantne. 3
T e 3000 4
1,06k N
100 J 2500
&€ 1751 4 g 2000/
— oncantie_ 1
A - = goncantric 2 1 oo 4
105 e poncontie_3 B
1000 4
10 -
1.66F e OO
" N "] e e W
i L3 10 15 @»0 o6 0 oL 40 A 6o Yo o 1m0 o &0 26 a0 36 “0 an o
1] 9
concentric: average number of introns concentric: average number of RAT trials
16 v b v L oo v v ¥
1.4 oo concenlrio_1
— — ooncentric_2
13 040 — - concentrio_3
12
oz0
11
©oo
=
5 =
nno;
on
o 000
o 40
on s20
0.6 000,
L & 10 mn 20 afh o an 40 Al &0
g
concentric: average optimisation improvement >nccnlﬂ°e_1: ave. operator probs. averaged over all runs.
LA .l v |

optimp

—— consontrio_1
concontrie_3¥ h
concentric_ 3

CALS
o
go 14

o1

—— Dol ~Fir Mut'n
—— Add-Fir. Mut'n
—— Hoist Mut'n
e Wrumnveitas MUY
—— Swap Mut'n
= = 1-8ymbot Mut'n
Al-Nodes Mut'n
~ = 1-Node Mur'n
— = Grow Mut'n

— — HL Crossover

Figure E.4: Performance measures for concentric.

APPENDIX E. RESULTS OF EPREP EXPERIMENTS

E.5

cmc: BOG fitness

234

contraceptive method choice (cmc)

cme: BOG validation error

64 T
—— emo_1 —— ama_l o
-~ omo_2 - = omu_2
- - omec_3 -~ cmo_3
“en A Pr o 1
AT LA, o N, o A i -
SN I T A, b 32 n \
4z v 2 o . # ! A% "
‘ aob T W S SR e
'
S SS— YO P a4 " .
(] 20 40 0o oo 100 190 140 160 mo 200 20 A0 oo no 100 720 140 1Mo 1m0 200
o d
cmc: average fithess cme: std. deviation of fithess
o4 - v 6 T T T
o2 —— ome_1 o
— = omc_2
a0, — -omo_3 4
G ~
o0 P
w
8
Ba 4
e E
hoa " .
50 N R A no N A 7
N Vot haYA ‘/\h'\ ! ‘.,' ""-‘~"‘, N ‘l P
Aok ~ PSRV vl
| i o
20 a0 no Ho 100 120 A0 1o B =00
a
cmc: average number of features cmce: average number of nodes
0. v o 200, T
& =
-~ A] LU
g . I-lf\\"'l_o‘l\-"4~’ Nen = o guok A :, .‘.‘ *‘“, |
- ! s,]
I] .
i CIC_ Y —cmo.1
- oma2 4 - omo_2
= = omc_3 = amc_3
P I P — il P— " - "
20 an an "o 100 20 140 100 100 200 a0 190 1no 200
a
cmc: average number of introns cmc: average number of RAT trials
L o 6 T T T
—— omo_1 . 6o0 H
-~ emo_e K
— - cmo_3 9 400 IH
I
- l 4 4
1 A70 1
p 5
AND| 8 |
i 460 o
440, — g1 i
g i == amc_2
| a0 == amc_3 i
~~o - -
£} P Sy s S SOt S S o 20 40 L B0 T T T T T
D A0 0o 140 100 100 200 a

100 120
o

cmec: average optimisation Improvement

emc_1: ave.
o

016
094
o0
g oaRE
e
30 1
o1
000

o.00

—— Del —Fir. Mut'n
- — A BT
o —— Hoiet Mut'n
P Truneatn Mid'n
—— Swap Mut'n

1-Symbol Mul'n
All-Nodee Mul'n
R e
Cirow Miit'n

L Cromwover

E.6 diabetes

APPENDIX E. RESULTS OF EPREP EXPERIMENTS

235

diabetes: BOG validation error

diabetes: BOG fitness
27 - ¥ v T
diabelea_1
L — — diabetes_2 L
~ - diabetes_3 —--’"_\/"_'“"/\’

]
&

bogf
e

=~ diabetes_1
— — diabeles_2
-+« diabetes_3

i
i)
'
|
wz !
i -
- [l g - -
b IR S Y
@) =
- ; - ’
P AL A Wb TP
| P
20 a - T — — S o L 3
] [3 10 16 20 o 30 £ a0 b [3 10 16

diabetes: average fltness

—— diabalas_1
— — diabates_2

— - diabates_3
Y
£ Y 4
~ ¢ -
- 3 =
w' ey N - -
7 Lon,? N
. -
e
26 a0 a6

diabetes: std. deviation of fithess

8.4

i

= diabeloe_1
- dinbotes %
B T LT)

&

"0 ALa 20 e a0
[

dlabetes: average number of nodes

7 ol

—— diabetes_1
— — diabeles_2

diabetos_1
— — diabetes_2
1=~ diabeles_3

= - diabetas_3 - et T
- 140 \ PRt
.. -
- o - 4
al - £ e
] 6 10 At 0 26 30 £ a0 o & [16 w0 26 0o £
[} [
dilabetes: average number of introns diabetes: average number of RAT trials
Al -~ - v T 230 . -
—— diabetes_1
220} |- - diabotes_2 i
~ - diabetes_3 |aY
hY,
—— diabetes,_1 S
16} |== diabeles_2 Il
+= = diabetes_3
1 —i= s s
[i) [20 E73 a0 a5 a0 5 . . ™
o e o 0 i 20 oh £ £
[
diabetes: average optimisation improvement linbat: L ave. op tor probs. averaged over all runs.
vz ' v - ot
e —— diabelos_1 E
- — diabotos_2 011
o1 ~ - diabetes_3 !
~—— Del —Fir. Mut'n
el ©.106 — APt b
—— Hoist Mut'n
014 £ o4 — Truncate Mutn
8 —— Swap Mutn
CRE]
- — 1—Symbol Mut'n
os 0.008 - e AN M
= — 1-Node Mut'n
000 0.09 = = Grow Mut'n
= = HL Crossovar
0.00
o ——
0.04 L w 20 oo At
! L]

Figure E.6: Performance measures for diabetes.

APPENDIX E. RESULTS OF EPREP EXPERIMENTS 236

E.7 german credit

german: BOG flthess

german: BOG validatlon error
an v ‘= T T v T
[y
g0k 4N german_1
4o . A
i’ b - — german_2
24l y ~ - garman_3

N
wzp N

e e
10! o S——' L b b
1 1m0 6 20 26 a0 a6 40 an
g9

o (LI |
' a] —— german_1
ool TN ety 1 — = german_2 -
N/ Y — - german_a
oo . " i : .
o [3 10 " =0 o EC a6 a0 an e

o

german: std. deviation of fithess

—— german_1 —— german_1
T \. — — german_2 — — garman_2 o
L —~ - garman_3 — - german_3

german: average number of introns

—— german_1)
— — german_2
+ == garman_3 g
20 a5 20 a5 40 a5 [
]

% !
‘D 1 o0 in 20 25 30 35 Ll Al (o)
]
german: average number of nodes

L) —
german_1
L .
200 ., — — german_2
\“ _‘,.——"" «=:= german_3
100 ———
i . . " e
o 0 " 20 =h 30 ET 40 a6 [
[}

= e
==
|
10} P S e e
- ,.—- -
14f o i -
RO P L
»
)' -
’
L
o+
Fh —— german_1
FJ - — gorman_2
bt == german_3
nE LY]
¥]
\‘ rl
Y ,
ok s J
e S Sy S S— A (PR
“ 3 0 3 20 256 ET) a6 40 A6 W

german: avarage optimleation improvement

.
PR S A R

—— german_1
= — german_2
= german_a

german: average number of RAT trials

-t‘/\:\-r-:,-f— - =

- " o
= N
= 1
L}
' P PO R L b
snob | ’ 4
L} 'l
\‘ ’
A Py —— garman_1
-~ 4
- — ~ german_2
+=— - german_3
200, P . . rr——
(] [10 [0 26 a0 06 a0 an o
a

o115
o1
0106 L L LT
—— Ada- T M
3 — bt Mt
%o.nos — Trpneate Mut'n
—— Swap Muf'n

009 = = 1-Bymbol Mut'n

0086 = = Al Bhodan Mutn

— — 1=Nnra Mul'n
e \ — — GrowMutn
0.076] = = ML Growsover

— =

007

Figure E.7: Performance measures for german.

APPENDIX E. RESULTS OF EPREP EXPERIMENTS

E.8 monks

monks: BOG fithess

237

monks: BOG validation error
—

» r ¥ o
——— manka_1 —— monks_1
— — monks_2 — — monka_2 4
— - monka_3 h — - monks_3
N -
. wiba
16 20 o 30 20 o 30
o
monks: average fithess monks: std. deviation of fithess
At .2 v 11 v
I manat
1o - 1
1 2
= +=- - monks_3 ki
- '
- sk B
s e 4 i
o [0 16 20 25 L] “o 3 10 i =0 13 a0
Q9 o
monks: average number of features monks: average number of nodes
L T T T -
- S ag monka_1
sl T e e] — — monks_2
monks_3
~ i
~
~——— monke_1 N Mmoo
= = monke_2 T X, = T e el e i
== monke_3 aof- i 1
N i S N s
o [0 16 20 ET3 a0 & i .
a i G w0 " 2 26)
a
monks; average number of RAT trials
116 T v *
110p 4
106 E
100 —— monks_1 1
E = — monke_2
o6l » == monks_3 4
L o -
o6l 4
il - i e B T e et .
< & 10 6% 20 £ 30 6 10 " ®o 20 >0
o o
monks: average optimisation improvemeant monks_1: ave. operator probs, averaged over all runs.
4 . . 1oa
06 1 0100 il
9 1 ©.1041 -7 - - e D0h TR A
s Adas- . Mut'n
X0 i 5 W T W]

e monke_1

1=~ monke_3

s Hoint Murn

- Trumaiti Mut'n
—— Swap Mut'n
— = 1-Symbol Mut'n
= = All-Hodan Muth
~ — 1-Noda Mut'n
— — Grow Mut'n
= = HIL Chhanmoval

Figure E.8: Performance measures for monks.

APPENDIX E. RESULTS OF EPREP EXPERIMENTS

E.9 satimage

satimage: BOG validation error

238

satimage: BOG fithess

34 L T & & v v
satimage_1 -
- = molimnge. 2 46|
~ - sallmage_3 9
o AD e
. \
an d‘I — galimage_1 1
ﬁ/\‘‘\f"\/\,f’\-"\/\/\/\-/—/_/_/"_ E‘ k! S TS
7 o ont
) aol a e satimage_3 i
i~ N
E LY L
P L N A Moo E
i N - T T kY 5~
Y - - ~ 1 L & - L] Pt
. T i AP - -y s P
- E g 7 T = sok it s i
iok ___’-‘-‘_“\- B - Tty T g W Ny T
. . -
1 Y A 2o i - " - L b
+3 1 10 i 20 260 a0 a8 40 arn LD > L 10 " 20 26 a0 a0 40 45 650
o o
satimage: average fithess satimage: std. deviation of fithess
L1 ol T ' Al T v v T
—— antmagpe_1 —— ealimage_1
&0 = = aatimago_% 12f |- — satimage_2 4
aatimage_3 ~ - salimage_3
ank
10 o
‘~ o O e
40 . ~
% % n _/\\‘,\\’,\,_
an
o
30
- <k o gt]
20 N == x Pr— - P i " —
o 1 10 16 =0 26 30 a6 a0 AG no B 1w 16 20 e 20 1 At 46 Lo
a 9
satimage: average number of features satimage: average number of nodes
" - - —_— 4 —— satimage_1
4500 — — salimage_2
— - salimage_3 /
80/ p
—c 4000
o iR R N
o
DGDO|
A 3000
4 2600
~——= satimage_1
— eatimage_2 A
.=~ satimage_3 2000
— gt
a5 a0 Al 6O
satimage: average number of introns
—— aalimage_1 P A
- - o >
Lo |_ _ satimage_2 a e i P i
~ - matim 3 SR R A RN
s mda= ;- g i |“'» ~N% Y
4
——— matlmage_1 1
- = salimage_2
+= - salimage_3 7
e ™ =
oo w ey

satimage: average optimisation improvement
0. v T
i
A
0.2k satimage_1 n 1
— — satimage_2]
— - salimage_3 : :
o.16f [
IR
a by
£ b
B i
o1l H
.!. :
l“. P
el |‘ I Al
e ow gt %
LT 1. ¢
"oy L
i % i e
al = et YISy S
o B 10 I3 wa 26 B0 £ a0 a5 6
[:]

N .
20 o6 a6 A0 an
o

L] 10 " B0

nimage1: ave. operator probs. averaged over all runs.
o

no

o -
.
fl
LRI A e Dul —Fir. Muf'n
—_— AT, M
——— Hoist Mutn
e Truncale Mut'n
- Bwap Murn

- 1-Symbol Mut'n
- All_Nodes Mul'n
1-Nods Muln
Grow Mutn

HL Croasover

Figure E.9: Performance measures for satimage.

APPENDIX E. RESULTS OF EPREP EXPERIMENTS

E.10

segment

segment: BOG fitness

£l

segment_1
- — segment_2
asgment_a

segment: average fithess

segment_1
- — sagmeni_2 b
— - segment_3

e

i e

an

239

segment: BOG validation error

—— segmeani_1
— — segment_2
— - segment_3

8 . y "
10 0% 20 £l a0 B AD
a
segment: std. deviation of tithess
30 v ¥

- gegmeni_1
— — segmenl_2
1= - segment_3

f0f — e
B T
o]
20, N . . .
o () 16 w0 26 30 a6 a0 i 20 h no e a0
[]
segment: average number of features segment: average number of nodes
76 v - 200 v v
4 = - - —— sagment_1
).' p — — segmeni_2
o6 - - — - esgmeni_3 1
a s " ol g
- Pid
6.6 - - 4
-
£ o o 1
- ’l’
LR Pty
2t
4 i
e
A /L — segmant_1
S = — segment_2
a s ” .= sagment_3 d
D) . . " — s e ereaen rmmmmmm————
) [10 3 L] 26 ET 06 40 R0, riadt -
a "o 10 h 20 o £ ab A0
segment: avarage number of introns segment: average number of RAT trials
—— segmeni_1 g
— - segment_2 Lol
sagment_3 1
B0
Bool
5
AN P
460} o 8
4 — agrreni_ i
440} ' e

a S S5

& "o 16 0 =28 0 an 40
a

== wagment

013
oar
%o 1
o0

000

10 16 w0 2 no o 40
[

- —— Dal —Fir Mu'n

’ e A M
- —— Hoisl Mut'n

Trunocate Mut'n
—— Swap Muln
1-Symbol Mut'n
Al-Nodes Mut'n
- oo Mt

Chigew BUA'sy
~ = HL Crossaver

Figure E.10: Performance measures for segment.

APPENDIX E. RESULTS OF EPREP EXPERIMENTS 240

E.11 smoking

— = 1-Symbol Mut'n
~ — All-Nodes Mut'n
— = 1-Noda Mut'n

00U0|

smoking: BOG fithess smoking: BOG validation error
40 v =
sok smoking_1 4 s 4
— — emoking_2
~ - smoking_3 91 4
smoking_1 b
1 = = smoking_2
i += = amoking_3 '
o i .
mn 15 20 26 #O 26
e
emoking: average fithess smoking: std. deviaticn of fithess
04 14
. oo
A amoking_t -
oak - — smoking_2 J vl £ Al
\ — - smoking_3 i
-
-
a0 4 12} = B
'E ool e b-RT15 i
sar 1 or smoking_1 1
— — smoking_2
»== = amoking_3
Bal - o 4
N e
“o 26] [10 106 20 2n
o
smoking: average number of features smoking: averaga number of nodes
8.4 v L2 T T
salk S E e ———— - = g —_———
(13 SCmp——. B
Bt 4 — i —
€ 5ol
—— emoking_1
64 - =~ emoking_2 4 |
.= - emoking_a
B2 1 = gmoking_1
— = smoking_2 b
[-+ e« mmoking_9
AD i i ﬁ 10 " 0 #h
g L3 10 16 20 26 a
1
smoking: average number of Introns smoking: average number of RAT trials
smoking_1
ok — — smoking_2 i asal- N
] +— - amoking_3
a0 L
3ok 1
_‘\ a20 -
=
Earp =
600 -
3.8l ' N\ smoking_1
A} e
- \ Loz / N - — emoking_2
A & »= = amoking_3
26 N 1 Frere s i 4
~ v
N
f——
a4 = T a0 . —
o L 1% 0 =0 Bl 4] L] 10 16 20 oo
o U]
amoking: average optimisation improvement smoking_1: ave. operator probs. averaged over all runs.
@ . o1
A
13 smoking_1 J 0100 TR g
|| \ — — smoking_2 S
o 1 I\ amoking_3 Lol ;i
: o103 e e | =F A M
! — Achid-Fir. M
| o102 — ot M
|
| g 0101 e Trumbate Mut'n
] 8 ——- Swap Mul'n
] 01
f

Ll ~ = Grow Mut'n

Dour = = ML Crossovor

Figure E.11: Performance measures for smoking.

APPENDIX E. RESULTS OF EPREP EXPERIMENTS

E.12

spirals

spirals: BOG fithess

241

validation error

spirats: BOG

—— npirnln_1 . — npirala_1
- = gpirals 2 - i 2 1
— - mpirnie 1 mprnis_
i SRR ——.
P e T .
ST - St
i \’W |
—— - Ei '\t“" ." e gt A |
O L Y TR— S J o] e e e e . i
i1 1m0 20 g ao oo 0o o oo <] 10 =0 a0 40 60 o o no
o o9
spirals: avarage fithess spirals: std. deviation of fitness
——— apirata_1 -
i af =% A T e ™ Tam E
splrals_1
- — spirala_2
1 «—.- spirale_3
20 i e e . —— L " "
- » 10 no 30 AD &0 0o 7o no 20 30 Al L) oy T0 no
o o
spirals: average number of features splrals: average number of nodes
= B o e B i = o i —— wplinis_1 i
- P = o N == wplruin_2
¢ == mplraks_5
—— wpirala_1
= = spusl_2 1
== aplinle_3 E
sl 4
. " .
¥ ‘0 10 20 0o AD KO o0 70 L] o L
9 o
spirals: average number of introns spirals: average number of RAT triale
0.7 T d Y Leer -
—— mpirabe 104 8 e mplrain_1 i
- = apinin_2 J = = pirate, S
- a3 104 0 urgtirinsed 4
194.4 J
104 2 -
T A et e e
1031
B N 1 0.8 1
103.4 -
- o 169.2 B
. Vo3, PR |
o0 ro no o 19 M Bl no
9

spirals; average optimisation improvement

— npirale_1 <
— ~ upiraie_2
mpirals 2 b

Figure E.12: Performance

— el Pl M
— A e M
—— Holal Mut'n
Teuncate Mut'n
—— Swap Mut'n
1-B8ymbol Mut'n
~ = An-Modan Ko
1—-Nnare Mut'n

Grow Mutn
ML Cronsover

measures for spirals.

APPENDIX E. RESULTS OF EPREP EXPERIMENTS

E.13 titanic

titanic: BOG fitness

1ltanio_1 4
~ — titanic_2
- - Hanio_3 T

3 SR T N I
on & 6 16 20 =6 ET] £ Ao
a
——— thanic_1
— — titanic_2 -

——— ttankc_1 (1 - CX2N
- i ¢
1.0 titanic_2 ‘nk S A
- i 4 -
tanic_a -
) M A
o n 0 [20 [a0 an “0
L)

titanic: average number of introns

o0

—— thanio_31 R
— — litanic_2
— - tllanic_3 1

242

titanic: BOG validation error

——— titanic_1 o
fitanic_2
— - anic_3

titanlc: std. deviation of fithess

—— titanio_1
— = Wanic_2
— - ltanio_3

titanic: average number of RAT trials

LTS

A5,
.

~——— titanic_1

titanlc: average optimisation improvement

—— Wanla_1 4
— — thanko_2
titanio_3 1

Figure E.13: Performance

— — utanic_2

E = - ttanic_3
E T
Wt
———— e e e] d

— 400 . . i,
26 a0 36 A0 6 1o 16 a0 3 Do £ A0
]

titanic_1: ave. operator probs. averaged over all runs.
0.14

—— Det —Fir, Mut'n
—— Add-Ftr Mul'n
—— Hoisl Mu'n
—— Swap Mut'n
—— 1-Symbol Mut'n
= Al=ostes Muln
~ = 1—Node Mut'n
- = Grow Mut'n
~ = HL Crossover

measures for titanic.

APPENDIX E. RESULTS OF EPREP EXPERIMENTS

E.14 vehicle

vehicle: BOG fitnese

—— vehiala_1
= = vehiola_2
1=~ vahiole_3

v
L3 m e 20 25 a0 a6 A0 afe [
o
vehicle: average flthess
—— vaehiole_1 g
—~ — vehiala_2
~ - vahlcle_3 1

243

vehicle: BOG validation error

—— vehicle_1
gof |- — vehicle_2 y
~ - vehicle_3 /
4] E
}w " i,
(a2l
i
= P) 28—
P i
¥ v st
LT S, 4
b b
T 3 10 16 20 B o0 an 40 an [

vehicle: std. deviation of fithness

—— vaniale_1
vehiole_2
«=<= vahiole_3

. P e— .

10 0 20 26 0o a6 A0
o

vehicle: average number of nodes
=

« 500
2

=
< 400

—— vehlcla_1
— — vehicle_2
— - vehicle_3

—— vahiata_1
vehiate_2
= vehiole_3

vehiola_1 200 e i -
- — venlale_2 - e
== vahigle_3 200 ST
100 L
. . . "
] 10 6 20 26 ET) D6 an At 2]
[
vehicle: average number of RAT trials
A z PO |
L e o (e
= W
[P
~——— vehicle_1
— — vehilole_2 vehiala_1
j=_= vehicle_3 — = vehicle_2
T 1=+~ vehicle_3
s e S S S, o & [[0 20 26 an a6 ECI T o

0106

opProb

01

LR

— Dl - M

—~— Add-Ftr Mut'n

—— Hoist Mut'n

—— Trunaate Mulm

—— Swap Mui'n

— ~ 1-Symbol Mut'n
Al Bodne Mutn

~ — 1-Node Mul'n

— — @row Mut'n

= = HL Crossover

000

Figure E.14: Performance measures for vehicle.

APPENDIX E. RESULTS OF EPREP EXPERIMENTS

E.15

yeast

yeast: BOG fithess

244

AG

yeast_1
- - yeasi_2
~ - yeasl_3

.
LETPRUYPRID g W T

) RPN - ’
R L L A Tt

L

yeast: BOG valldation error

yeast_1
-~ yoast_2 i
— - yeasi 3

M

v ad

A
N T . , Joth ity R
40 LI :‘r i ‘",‘_‘ A ".":‘u""(Ml"
'f.-‘u’_"" -) 5
¥ Vet Ma
G) no 100 160
o
yaast: std. deviation of fithess
B, "
B TN_»f'\""--— 1
141 gl -
B L T - .
12 o~ <
R L L / — yaasl_1
[P /
- - = yeast 2
1= yonet_3 E
— yoast_1
- = yoasl_2 E
r=-=yoasl_3
] TR RN R T A e A A i
SN N .)
Ah + — 2 —d
Lt &0 100 160 o o 100 0
] [
yeast: average number of features - yeast: avarage number of nodes
- o = S TN
7k i - I - -
i o Ve 4""- 1
) N LT
o 4 . s
100k
I =S
3 —— yoast_1 b -f_ﬂ
& - = yeast 2 N
FEY += - yoaet_3 4 e
\ - - om———
. r b D T
9 y 4
af o E \ i
.‘ N] o~ ’ —— yeast_1 i
N f———— 1 \ i = = yeast 2
e o b - e e s mEmES T Sk 5 =l «=-= yoaat_3
i =
" i > 60 100 160
] &0 100 160 L]
o
yeast: average number of introns yeast: average number of RAT trials
—— yeasi_1
B — — yeasl 2 -
A ~ - yemal_3
\
. 4
Eaf, g
\ ——— yoanl_1
\ - — yeast_2
2F 5 400 =~ yeasl_3
\ -
FY A M p
e l‘ o “\ il S \"‘--1-'.-'\ LY ,""‘".'- Ak]
h L » " o e i,
\ v
- I e
o e P NP ——— et 280, L -
o 65O 100 160 > ho 100 160
o o
yeast: average optimisation improvement yeast_1: ave. oparator probs. averaged over all runs.
011 v L]
—— yeast_1
o1 -u-._:’-\\ - — yeasi_2 7
by T il ~ - yeas_3
oour "= - By s (3000 T, WA
e Adid - FNE, WA
ool e b MY
= Trumicasts Moo
E"‘r’ —— Bwap Mul'n
= = {-Symbol Mut'n
008
= AN-Nodes Mut'n
o.08f - = feModa Mutin
= — Grow Mui'n
0.04 - = L Orowaover
.03 e (] 100 0o
N (2] 100 1640 L

Figure E.15: Performance measures for yeast.

Bibliography

Altenberg, Lee. “The Evolution of Evolvability in Genetic Programming.” In Kenneth E. Kinnear, Jr., ed.,
Aduvances in Genetic Programming, chap. 3, pp. 47-74. MIT Press, 1994.

Altenberg, Lee. “The Schema Theorem and Price’s Theorem.” In L. Darrell Whitley and Michael D. Vose,
eds., Foundations of Genetic Algorithms 8, pp. 23-49. Estes Park, Colorado, USA: Morgan Kaufmann,
1995.

Altman, Russ B. “Molecular Biology for Computer Scientists Tutorial.” Tutorial at Genetic Programming
1997 Conference, 1997.

Andre, David. “Automatically Defined Features: The Simultaneous Evolution of 2-Dimensional Feature
Detectors and an Algorithm for Using Them.” In Kenneth E. Kinnear, Jr., ed., Advances in Genetic
Programming, chap. 23, pp. 477-494. MIT Press, 1994.

Angeline, P. J. and Pollack, J. B. “Coevolving High-Level Representations.” July Technical report 92-PA-
COEVOLVE, Laboratory for Artificial Intelligence. The Ohio State University, 1993.

Angeline, Peter J. “Adaptive and Self-Adaptive Evolutionary Computations.” In M. Palaniswami, Y At-
tikiouzel, R. Marks, D. Fogel, and T. Fukuda, eds., Computational Intelligence: A Dynamic Systems
Perspective, pp. 152-163. Piscataway, NJ: IEEE Press, 1995.

Angeline, Peter J. “Two Self-Adaptive Crossover Operators for Genetic Programming.” In Peter J. Angeline
and K. E. Kinnear, Jr., eds., Advances in Genetic Programming 2, chap. 5, pp. 89-110. Cambridge, MA,
USA: MIT Press, 1996.

Angeline, Peter J. “An Alternative to Indexed Memory for Evolving Programs with Explicit State Represen-
tations.” In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba,
and Rick L. Riolo, eds., Genetic Programming 1997: Proceedings of the Second Annual Conference, pp.
423-430. Stanford University, CA, USA: Morgan Kaufmann, 1997a.

Angeline, Peter J. “Subtree Crossover: Building Block Engine or Macromutation?” In John R. Koza,
Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, eds.,
Genetic Programming 1997: Proceedings of the Second Annual Conference, pp. 9-17. Stanford University,
CA, USA: Morgan Kaufmann, 19975.

Angeline, Peter John. “Genetic Programming and Emergent Intelligence.” In Kenneth E. Kinnear, Jr., ed,,
Advances in Genetic Programming, chap. 4, pp. 75-98. MIT Press, 1994.

Antonisse, Jim. “A New Interpretation of Schema Notation that Overturns the Binary Encoding Constraint.”
In J. D. Schaffer, ed., Proceedings of the Third International Conference on Genetic Algorithms, pp. 86—
91. San Mateo, California USA: Morgan Kaufmann, 1989.

Aviles-Cruz, C., Guérin-Dugué, A., Van Cappel, D., and Voz, J.L. Enhanced Learning for Evolutive Neural
Architecture. ESPRIT, 1995.

Bick, Thomas. “Selective Pressure in Evolutionary Algorithms: A Characterization of Selection Mechanisms.”
In Proceedings of the First IEEE Conference on Evolutionary Computation, pp. 57-62. Piscataway NJ:
IEEE Press, 1994.

Bick, Thomas and Schwefel, Hans-Paul. “An Overview of Evolutionary Algorithms for Parameter Optimiza-
tion.” Ewvolutionary Computation, vol. 1(1), pp. 1-23, 1993.

Backer, Gerriet. “Learning with missing data using Genetic Programming.” In The 1st Online Workshop
on Soft Computing (WSC1). http://www.bioele.nuee.nagoya-u.ac.jp/wscl/: Nagoya University, Japan,
1996.

Balakrishnan, Karthik and Honavar, Vasant. “Evolutionary Design of Neural Architectures - A Preliminary
Taxonomy and Guide to Literature.” TR CS 95-01, Artificial Intelligence Group, lowa State University,
Ames, Towa 50011-1040 USA, 1995a.

Balakrishnan, Karthik and Honavar, Vasant. “Properties of Genetic Representations of Neural Architectures.”
Proceedings of the World Congress on Neural Networks, vol. 1, pp. 807-813, 19955.

245

BIBLIOGRAPHY 246

Baldwin, J. M. “A New Factor in Evolution.” American Naturalist, vol. 30, pp. 441-451, 1896.

Banzhaf, Wolfgang, Frankone, Frank D., and Nordin, Peter. “The Effect of Extensive Use of the Mutation
Operator on Generalization in Genetic Programming Using Sparse Data Sets.” In Hans-Michael Voigt,
Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, eds., Parallel Problem Solving from Nature
IV, Proceedings of the International Conference on Evolutionary Computation, vol. 1141 of LNCS, pp.
300-309. Berlin, Germany: Springer Verlag, 1996.

Bartlett, Eric B. “Dynamic Node Architecture Learning: An Information Theoretic Approach.” Neural
Networks, vol. 7(1), pp. 129-140, 1994.

Baum, E. B. and Haussler, D. “What Size Net Gives Valid Generalisation?” Neural Computation, vol. 1,
pp. 151-160, 1989.

Berry, Michael J. A. and Linoff, Gordon. Data Mining Techniques for marketing, sales, and customer support.
John Wiley and Sons, 1997.

Bishop, Christopher M. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

Blickle, Tobias. “Evolving Compact Solutions in Genetic Programming: A Case Study.” Tik-report, TIK
Institut fur Technische Informatik und Kommunikationsnetze, Computer Engineering and Networks
Laboratory, ETH, Swiss Federal Institute of Technology, Gloriastrasse 35, 8092 Zurich, Switzerland,
1996a.

Blickle, Tobias. Theory of Evolutionary Algorithms and Application to System Synthesis. Ph.D. thesis, Swiss
Federal Institute of Technology, Zurich, 19965.

Blickle, Tobias and Thiele, Lothar. “Genetic Programming and Redundancy.” In J. Hopf, ed., Genetic
Algorithms within the Framework of Evolutionary Computation (Workshop at KI-94, Saarbriicken), pp.
33-38. Im Stadtwald, Building 44, D-66123 Saarbriicken, Germany: Max-Planck-Institut fiir Informatik
(MPI-1-94-241), 1994.

Blosch, Anthony. “Treetex 1.0 - Software for the Automatic Layout of n-ary Trees.” 1993.

Blum, A. and Rivest, R. “Training a 3-node neural netowrk is NP-complete.” In Proceedings of the 1988
Workshop on Computational Leraning Theory, pp. 9-18. Boston, MA: Morgan Kaufmann, 1988.

Bornholdt, Stefan and Graudenz, Dirk. “General Asymmetric Neural Networks and Structure Design by
Genetic Algorithms.” Neural Networks, vol. 5, pp. 327-334, 1992.

Box, George E. P., Hunter, William G., and Hunter, J. Stuart. Statistics for Experimenters. Wiley Series in
Probability and Mathematical Statistics. John Wiley & Sons, 1978.

Branke, Jurgen. “Evolutionary Algorithms for Neural Network Design and Training.” In Jarmo T Alander, ed.,
Proceedings of the First Nordic Workshop on Genetic Algorithms and its Applications. Vaasa, Finland,
1995.

Breiman, Leo, Friedman, Jerome H., Olshen, Richard A., and Stone, Charles J. Classification and Regression
Trees. Wadsworth, 1984.

Bruce, Wilker Shane. “Automatic Generation of Object-Oriented Programs Using Genetic Programming.”
In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo, eds., Genetic Programming
1996: Proceedings of the First Annual Conference, pp. 267-272. Stanford University, CA, USA: MIT
Press, 1996.

Briiggemann-Klein, Anne and Wood, Derick. “Drawin Trees Nicely with TEX.” Tech. rep., Freiburg University
and University of Waterloo, 1989.

Bull, Shelley. Case Studies in Biometry, chap. 13, pp. 249-271. Probability and Mathematical Statistics.
New York, NY: John Wiley & Sons, 1994.

Calabretta, Farraele, Galbiati, Riccardo, Nolfi, Stefano, and Parisi, Domenico. “Investigating the Role of
Diploidy in Simulated Populations of Evolving Individuals.”, 1997. Submitted for publication.

Casasent, David P. and Neiberg, Leonard. “Distortion-Invariant Image Pattern Recognition FST Temporal
Neural Network.” Proceedings of the World Congress on Neural Networks, vol. 2, pp. 145-150, 1995.

Chellapilla, Kumar. “Evolutionary Programming with Tree Mutations: Evolving Computer Programs without
Crossover.” In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi
Iba, and Rick L. Riolo, eds., Genetic Programming 1997: Proceedings of the Second Annual Conference,
pp. 431-438. Stanford University, CA, USA: Morgan Kaufmann, 1997.

Chen, Yan Qiu, Thomas, David W., and Nixon, Mark S. “Generating-Shrinking Algorithm for Learning
Arbitrary Classification.” Neural Networks, vol. 7(9), pp. 1477-1489, 1994.

Colby, Chris. “Introduction to Evolutionary Biology.” http://www.talkorigins.org/faqs/fag-intro-to-
biology.html, 1996.

BIBLIOGRAPHY 247

Demiral, Hasan Tahsin, Ma, Sheng, and Ji, Chuanyi. “Combined Power of Weak Classifiers.” Proceedings of
the World Congress on Neural Networks, vol. 1, pp. 591-595, 1995.

Droste, Stefan. “Efficient Genetic Programming for Finding Good Generalizing Boolean Functions.” In
John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L.
Riolo, eds., Genetic Programming 1997: Proceedings of the Second Annual Conference, pp. 82-87. Stan-
ford University, CA, USA: Morgan Kaufmann, 1997.

Duda, R.O. and Hart, P.E. Pattern Classification and Scene Analysis. Wiley-International, 1973.

Dunstone, Edward S. “Face Normalisation and Recognition using Low Frequency Gabor Jets and Neural
Networks.” Proceedings of the Australian Conference on Neural Networks, pp. 95-97, 1995.

Efron, Bradley and Tibshirani, Robert J. An Introduction to the Bootstrap. No. 57 in Monographs on Statistics
and Applied Probability. Chapman & Hall, 1993.

Ellison, Mark. “William of Ockham.” In Minimum Message Length Encoding. http://www.cs.monash.edu.au/-
~lloyd/tildeMML/Notes/Ockham.html: Department of Computer Science, Monash University, 1995.

Esparcia-Alcazar, Anna L. and Sharman, Ken. “Evolving Recurrent Neural Network Architectures by Genetic
Programming.” In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi
Iba, and Rick L. Riolo, eds., Genetic Programming 1997: Proceedings of the Second Annual Conference,
pp. 89-94. Stanford University, CA, USA: Morgan Kaufmann, 1997.

ESPRIT. “Project StatLog.” 1995. Datasets and Software Available from LIACC, Porto via
ftp://ftp.ncc.up.pt/pub/statlog.

Feelders, A. and Verkooijen, W. “Which Method Learns Most From the Data?” Tech. rep., University of
Twente, Department of Computer Science, the Netherlands, 1995. Anonymous FTP: /pub/doc/pa-
reto/aistats95.ps.Z on ftp.cs.utwente.nl.

Fiesler, E. “Minimal and High Order Neural network Topologies.” In Proceedings of the 1993 international
Simulation Technology conference (SimTec ’93). Society for Computer Simulation (SCS), San Diego,
1993.

Flanagan, David. Java in a Nutshell - a Desktop Quick Reference. The Java Series. O’Reilly, 2nd edn., 1997.

Flexer, Arthur. “Statistical Evaluation of Neural Network Experiments: Minimum Requirements and Current
Practice.” In Trappl R., ed., Cybernetics and Systems ’96, Proceedings of the 13th European Meeting
on Cybernetics and Systems Research, vol. 2, pp. 1005-1008. Austrian Society for Cybernetic Studies,
Vienna, 1996.

Fogel, David B. Ewolutionary Computation - Toward a New Philosophy of Machine Intelligence. IEEE Press,
1995.

Fogel, David B. “Evolutionary Programming and Evolution Strategies Tutorial.” Tutorial at Genetic Pro-
gramming 1997 Conference, 1997.

Fonseca, Carlos M. and Fleming, Peter J. “An Overview of Evolutionary Algorithms in Multiobjective
Optimization.” Evolutionary Computation, vol. 3(1), pp. 1-16, 1995.

Foulds, L. R. Optimizetion Techniques: an Introduction. Springer-Verlag, 1981.

Francone, Frank D., Nordin, Peter, and Banzhaf, Wolfgang. “Benchmarking the Generalization Capabilities
of a Compiling Genetic programming System using Sparse Data Sets.” In John R. Koza, David E.
Goldberg, David B. Fogel, and Rick L. Riolo, eds., Genetic Programming 1996: Proceedings of the First
Annual Conference, pp. 72-80. Stanford University, CA, USA: MIT Press, 1996.

Friedman, H.P. and Rubin, J. “On Some Invariant Criteria for Grouping Data.” American Statistical
Association Journal, vol. 62, pp. 1159-1178, 1967.

Friedman, Jerome H. “Local Learning Based on Recursive Covering.” Tech. rep., Department of Statistics,
Stanford University, 1996.

Friedrich, Christoph M. and Moraga, Claudio. “An Evolutionary Method to Find Good Building-Blocks for
Architectures of Artificial Neural Networks.” In Proceedings of the Sizth International Conference on
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU ’96), pp.
951-956. Granada, Spain, 1996.

Fritzke, Bernd. “Incremental Learning of Local Linear Mappings.” Proceedings of the International Conference
on Artificial Neural Networks, 1995.

Frohlich, Jirg and Hafner, Christian. “Extended and Generalized Genetic Programming for Function Anal-
ysis.” Tech. rep., Swiss Federal Institute of Technology, Laboratory for Electromagnetic Fields and
Microwaves Electronics. Available from http://alphard.ethz.ch/hafner/gp.htm, 1996.

Fu, K. S. Digital Pattern Recognition. No. 10 in Communication and Cybernetics. Springer-Verlag, 2nd edn.,
1980.

BIBLIOGRAPHY 248

Fukunaga, Keinosuke. Introduction to Statistical Pattern Recognition. Academic Press, 2nd edn., 1990.
Gaarder, Jostein. Sophie’s World. Phoenix House, 1996.

Gallinari, P., Thiria, S., Badran, F., and Fogelman-Soulie, F. “On the Relations Between Discriminant
Analysis and Multilayer Perceptrons.” Neural Networks, vol. 4, pp. 349-360, 1991.

Garey, Michael R. and Johnson, David S. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman San Fransisco, 1979.

Gathercole, Chris and Ross, Peter. “Small Populations over Many Generations can beat Large Populations
over Few Qenerations in Genetic Programming.” In John R. Koza, Kalyanmoy Deb, Marco Dorigo,
David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, eds., Genetic Programming 1997: Proceed-
ings of the Second Annual Conference, pp. 111-118. Stanford University, CA, USA: Morgan Kaufmann,
1997a.

Cathercole, Chris and Ross, Peter. “Tackling the Boolean Even N Parity Problem with Genetic Programming
and Limited-Error Fitness.” In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max
Garzon, Hitoshi Iba, and Rick L. Riolo, eds., Genetic Programming 1997: Proceedings of the Second
Annual Conference, pp. 119-127. Stanford University, CA, USA: Morgan Kaufmann, 1997b.

Gelfand, Saul B. and Delp, Edward J. “On Tree Structured Classifiers.” In L K. Sethi and A. K. Jain, eds.,
Artificial Neural Networks and Statistical Pottern Recognition - Old and New Connections, pp. 51-87.
Elsevier Science Publishers, 1991.

Goldberg, David E., Deb, Kalyanmoy, and Clark, James H. “Genetic Algorithms, noise, and the sizing of
populations.” THNiGAL Report 91010, Illinois Genetic Algorithms Laboratory, University of Illinois at
Urbana-Champaign, 1991.

Goldberg, D.E. Genetic Algorithms in Search, Optimisation, and Machine Learning. Addison-Wesley Pub-
lishing Company, Inc., 1989.

Goldschlager, Les and Lister, Andrew. Computer Science: a Modern Introduction. Computer Science. Prentice
Hall International, 2nd edn., 1988.

Gower, J.C. and Ross, G.J.S. “Minimum Spanning Trees and Single Linkage Cluster Analysis.” Applied
Statistics, vol. 18(1), pp. 54-64, 1969.

Gray, Charles M., Kénig, Peter, Engel, Andreas K., and Singer, Wolf. “Oscillatory Responses in Cat Visual
Cortex Exhibit Inter-columnar Synchronization which Reflects Global Stimulus Properties.” Nature,
vol. 338, pp. 334-337, 1989.

Gray, H. F., Maxwell, R. J., Martinez-Perez, 1., Arus, C., and Cerdan, S. “Genetic Programming for Classifi-
cation of Brain Tumours from Nuclear Magnetic Resonance Biopsy Spectra.” In John R. Koza, David E.
Goldberg, David B. Fogel, and Rick L. Riolo, eds., Genetic Programming 1996: Proceedings of the Fuirst
Annual Conference, p. 424. Stanford University, CA, USA: MIT Press, 1996.

Gray, Helen. “Genetic Programming for Classification of Medical Data.” In John R. Koza, ed., Late Breoking
Papers at the 1997 Genetic Programming Conference, p. 291. Stanford University, CA, USA: Stanford
Bookstore, 1997.

Grefenstette, J. J. “Conditions for implicit parallelism.” In G. J. E. Rawlins, ed., Foundations of Genetic
Algorithms, pp. 2562-261. San Mateo, CA: Morgan Kaufmann, 1991.

Grefenstette, John J. and Baker, James E. “How Genetic Algorithms Work: a Critical Look at Implicit
Parallelism.” In J. D. Schaffer, ed., Proceedings of the Third International Conference on Genetic
Algorithms, pp. 20-27. San Mateo, California USA: Morgan Kaufmann, 1989.

Gruau, F. “Cellular encoding of Genetic Neural Networks.” Technical report 92-21, Laboratoire de
I'Informatique du Parallilisme. Ecole Normale Supirieure de Lyon, France, 1992.

Guo, Heng and Gelfand, Saul B. “Classification Trees with Neural Network Feature Extraction.” IEEFE
Transactions on Neural Networks, vol. 3(6), pp. 923-933, 1992.

Hafner, Christian, Froehlich, Juerg, and Gerber, Hansueli. “Generalized Genetic Program.”, 1996. Submitted
to the Evolutionary Computation Journal.

Handley, Simon. “Classifying Nucleic Acid Sub-Sequences as Introns or Exons Using Genetic Program-
ming.” In Christopher Rawlins, Dominic Clark, Russ Altman, Lawrence Hunter, Thomas Lengauer,
and Shoshana Wodak, eds., Proceedings of the Third International Conference on Intelligent Systems
for Molecular Biology (ISMB-95), pp. 162-169. Cambridge, UK: AAAT Press, 1995.

Hanson, Robin, Stutz, John, and Cheeseman, Peter. “Bayesian Classification Theory.” Tech. Rep. FIA-90-
12-7-01, Artificial Intelligence Research Branch, NASA Ames Research Centre, CA USA, 1991.

BIBLIOGRAPHY 249

Harries, Kim and Smith, Peter. “Exploring Alternative Operators and Search Strategies in Genetic Program-
ming.” In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba,
and Rick L. Riolo, eds., Genetic Programming 1997: Proceedings of the Second Annual Conference, pp.
147-155. Stanford University, CA, USA: Morgan Kaufmann, 1997.

Haykin, Simon. Neural Networks: A Comprehensive Foundation. Macmillan College Publishing Company,
1994.

Haynes, Thomas. “Phenotypical Building Blocks for Genetic Programming.” In Eric Goodman, ed., Ge-
netic Algorithms: Proceedings of the Seventh International Conference. Michigan State University, East
Lansing, MI, USA: Morgan Kaufmann, 1997.

Hiden, Hugo, Willis, Mark, McKay, Ben, and Montague, Gary. “Non-Linear And Direction Dependent Dy-
namic Modelling Using Genetic Programming.” In John R. Koza, Kalyanmoy Deb, Marco Dorigo,
David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, eds., Genetic Programming 1997: Proceed-
ings of the Second Annual Conference, pp. 168-173. Stanford University, CA, USA: Morgan Kaufmann,
1997.

Hinterding, R., Michalewicz, Z., and Eiben, A. E. “Adaptation in Evolutionary Computation: a Survey.” In
Proceedings of the 4th IEEE Conference on Evolutionary Computation, pp. 65-69. IEEE Service Centre,
1997.

Holland, John H. Adaptation in Natural and Artificial Systems. MIT Press, 1995.

Horn, Jeffrey and Nafpliotis, Nicholas. “Multiobjective Optimization Using the Niched Pareto Genetic Al-
gorithm.” IliIGAL Report 93005, Illinois Genetic Algorithms Laboratory, Department of General Engi-
neering, University of Illinois at Urbana-Champaign, 1993.

Houck, C. R., Joines, J. A., and Kay, M. G. “Utilizing Lamarckian evolution and the Baldwin effect in
hybrid genetic algorithms.” Tech. Rep. NCSU-IE 96-01, College of Engineering, North Carolina State
University, 1996.

Iba, Hitoshi, de Garis, Hugo, and Sato, Taisuke. “Genetic Programming Using a Minimum Description Length
Principle.” In Kenneth E. Kinnear, Jr., ed., Advances in Genetic Programmang, chap. 12, pp. 265—284.
MIT Press, 1994a.

Iba, Hitoshi, de Garis, Hugo, and Sato, Taisuke. “Genetic Programming with Local Hill-Climbing.” In Yuval
Davidor, Hans-Paul Schwefel, and Reinhard Minner, eds., Parallel Problem Solving from Nature III,
pp. 334-343. Jerusalem: Springer-Verlag, 1994b.

Iba, Hitoshi, Karita, Takio, de Garis, Hugo, and Sato, Taisuke. “System Identification Using Structured Ge-
netic Algorithms.” In Stephanie Forrest, ed., Proceedings of the 5th International Conference on Genetic
Algorithms, ICGA-93, pp. 279-286. University of Illinois at Urbana-Champaign: Morgan Kaufmann,
1993a.

Iba, Hitoshi, Kurita, Takio, de Garis, Hugo, and Sato, Taisuke. “Systemn Identification using Structured
Genetic Algorithms.” In Stephanie Forrest, ed., Proceedings of the Fifth International Conference on
Genetic Algorithms. University of Illinois at Urbana-Champaign, Morgan Kaufmann Publishers, 19935.

James, G. and Hastie, T. “Generalizations of the Bias/Variance Decomposition for Prediction Error.” Tech.
rep., Department of Statistics, Stanford University, 1997.

Jaske, Harri. “On code reuse in genetic programming.” In John R. Koza, Kalyanmoy Deb, Marco Dorigo,
David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, eds., Genetic Programming 1997: Proceed-
ings of the Second Annual Conference, pp. 201-206. Stanford University, CA, USA: Morgan Kaufmann,
1997.

John, George H., Kohavi, Ron, and Pfleger, Karl. “Irrelevant Features and the Subset Selection problem.” In

William W. Cohen and Haym Hirsh, eds., Machine learning : proceedings of the eleventh international
conference, pp. 121-129. New Brunswick, N.J.: Rutgers University, 1994.

Jong, Kenneth A. De and Sarma, Jayshree. “Generation Gaps Revisited.” In Darrell Whitley, ed., Foundations
of Genetic Algorithms - 2, pp. 19-28. Morgan Kaufmann, 1992.

K. Chellapilla, David B. Fogel. “Exploring Self-Adaptive Methods to Improve the Efficiency of Generating
Approximate Solutions to Traveling Salesman Problems Using Evolutionary Programming.” In Fvolu-
tionary Programing 97. Indianapolis, IN, 1997.

Keith, Mike J. and Martin, Martin C. “Genetic Programming in C++: Implementation Issues.” In Kenneth E.
Kinnear, Jr., ed., Advances in Genetic Programming, chap. 13, pp. 285-310. MIT Press, 1994.

Kinnear, Jr., Kenneth E. “Evolving a Sort: Lessons in Genetic Programming.” In Proceedings of the 1998
International Conference on Neural Networks, vol. 2. San Francisco, USA: IEEE Press, 1993a.

Kinnear, Jr., Kenneth E. “Generality and Difficulty in Genetic Programming: Evolving a Sort.” In Stephanie
Forrest, ed., Proceedings of the 5th International Conference on Genetic Algorithms, ICGA-93, pp. 287-
294. University of Illinois at Urbana-Champaign: Morgan Kaufmann, 19935.

BIBLIOGRAPHY 250

Kinnear, Jr., Kenneth E. “A perspective on the Work in this Book.” In Kenneth E. Kinnear, Jr., ed,,
Advances in Genetic Programming, chap. 1, pp. 3-19. MIT Press, 1994.

Kopka, Helmut and Daly, Patrick W. A Guide to BTgX 2 - Document Preparation for Beginners and Advanced
Users. Addison-Wesley, 2nd edn., 1995.

Koza, John R. “A Genetic Approach to the Truck Backer Upper Problem and the Inter-Twined Spiral
Problem.” In Proceedings of IICNN International Joint Conference on Neural Networks, vol. IV, pp.
310-318. IEEE Press, 1992a.

Koza, John R. Genetic Programming: On the Programming of Computers by Natural Selection. Cambridge,
MA, USA: MIT Press, 1992b.

Koza, John R. “Automated discovery of detectors and iteration-performing calculations to recognize patterns
in protein sequences using genetic Programming.” In Proceedings of the Conference on Computer Vision
and Pattern Recognition, pp. 684-689. IEEE Computer Society Press, 1994a.

Koza, John R. Genetic Programming II: Automatic Discovery of Reusable Programs. Cambridge Mas-
sachusetts: MIT Press, 1994b.

Koza, John R., Andre, David, Bennett III, Forrest H., and Keane, Martin A. “Use of Automatically De-
fined Functions and Architecture-Altering Operations in Automated Circuit Synthesis Using Genetic
Programming.” In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo, eds., Genetic
Programming 1996: Proceedings of the First Annual Conference, pp. 132-149. Stanford University, CA,
USA: MIT Press, 1996a.

Koza, John R., Bennett ITI, Forest H., Lohn, Jason, Dunlap, Frank, Keane, Martin A., and Andre, David. “Use
of Architecture-Altering Operations to Dynamically Adapt a Three-Way Analog Source Identification
Circuit to Accommodate a New Source.” In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B.
Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, eds., Genetic Programiming 1997: Proceedings of
the Second Annual Conference, pp. 213-221. Stanford University, CA, USA: Morgan Kaufmann, 1997.

Koza, John R., Bennett III, Forrest H., Andre, David, and Keane, Martin A. “Four problems for which
a computer program evolved by genetic programming is competitive with human performance.” In

Proceedings of the 1996 IEEE International Conference on Evolutionary Computation, vol. 1, pp. 1-10.
IEEE Press, 19965.

Kreinovich, Vladik Ya. “Arbitrary Nonlinearity Is Sufficient to Represent All Functions by Neural Networks:
A Theorem.” Neural Networks, vol. 4, pp. 381-383, 1991.

Kruizinga, P. and Petkov, N. “Person Identification Based on Multiscale Matching of Cortical Images.”
Proceedings of the International Conference and Ezhibition on High-Performance Computing and Net-
working, 1995.

Lakos, John. Large-scale C++ Software Design. Professional Computing Series. Addison-Wesley, 1996.

Lang, Kevin J. and Whitbrock, Michael J. “Learning to Tell Two Spirals Apart.” In David S. Touretzky,
Geoffrey E. Hinton, and Terrence J. Sejnowski, eds., Proceedings of the 1988 Connectionist Models
Summer School. Morgan Kaufmann, 1989.

Langdon, W. B. “Pareto, Population Partitioning, Price and Genetic Programming.” Research Note
RN/95/29, University College London, Gower Street, London WCIE 6BT, UK, 1995.

Langdon, W. B. Data Structures and Genetic Programming. Ph.D. thesis, University College, London, 1996a.

Langdon, W. B. and Poli, R. “An Analysis of the MAX Problem in Genetic Programming.” In John R.
Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo,
eds., Genetic Programming 1997: Proceedings of the Second Annual Conference, pp. 222-230. Stanford
University, CA, USA: Morgan Kaufmann, 1997a.

Langdon, W. B. and Poli, R. “Fitness Causes Bloat.” Tech. Rep. CSRP-97-09, University of Birmingham,
School of Computer Science, Birmingham, B15 2TT, UK, 19975.

Langdon, William B. “Data Structures and Genetic Programming.” In Peter J. Angeline and K. E. Kinnear,
Jr., eds., Advances in Genetic Programming 2, chap. 20, pp. 395-414. Cambridge, MA, USA: MIT Press,
19965.

Lawrence, Steve, Giles, C. Lee, Tsoi, Ah Chung, and Back, Andrew D. “Face Recognition: A Hybrid
Neural Network Approach.” Tech. Rep. UMIACS-TR-96-16, Institute for Advanced Computer Studies,
University of Maryland, 1996.

Levenick, James R. “Inserting Introns Improves Genetic Algorithm Success Rate: Taking a Cue from Biology.”
In Proceedings of the fourth International Conference on Genetic Algorithms, pp. 123-127. 1991.

Lillesand, Thomas M. and Kiefer, Ralph W. Remote Sensing and Image Interpretation. John Wiley & Sons,
Inc., 3rd edn., 1994.

BIBLIOGRAPHY 251

Lim, Tjen-Sien, Loh, Wei-Yin, and Shih, Yu-Shan. “An Empirical Comparison of Decision Trees and Other
Classification Methods.” Tech. Rep. 979, Department of Statistics, University of Wisconsin, Madison,
USA, 1997.

Loh, W.-Y. and Vanichsetakul, N. “Tree-structured Classification via Generalized Discriminant Analysis
(with discussion).” Journal of the Americal Statistical Association, vol. 83, pp. 715-728, 1988.

Loh, Wei-Yin and Shih, Yu-Shan. “QUEST (Quick, Unbiased and Efficient Statistical Tree), version 1.6.”
http://www.stat.wisc.edu/~loh/quest.html, 1997a.

Loh, Wei-Yin and Shih, Yu-Shan. “Split Selection Methods for Classification Trees.” Statistica Sinica, vol. 7,
pp. 815-840, 19975.

Luke, Sean and Spector, Lee. “Evolving Teamwork and Coordination with Genetic Programming.” In
John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo, eds., Genetic Programming 1996:
Proceedings of the First Annual Conference, pp. 150-156. Stanford University, CA, USA: MIT Press,
1996.

Luke, Sean and Spector, Lee. “A Comparison of Crossover and Mutation in Genetic Programming.” In
John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L.
Riolo, eds., Genetic Programming 1997: Proceedings of the Second Annual Conference, pp. 240-248.
Stanford University, CA, USA: Morgan Kaufmann, 1997.

Luttrell, S. P. “Using Self-Organising Maps to Classify Radar Range Profiles.” Proceedings of the IEE
Conference on Artificial Neural Networks, pp. 335-340, 1995.

Macready, William G. and Wolpert, David H. “On 2-armed Gaussian Bandits and Optimization.” Tech. Rep.
96-03-009, Santa Fe Institute, 1996.

Marascuilo, Leonard A. and McSweeney, Maryellen. Nonparametric and Distribution-Free Methods for the
Social Sciences. Wadsworth Publishing Company, Inc., 1977.

Mason, Andrew. “A Non-Linearity Measure of a Problem’s Crossover Suitability.” In 1995 IEEE Conference
on Ewvolutionary Computation. Perth, Australia: IEEE Press, 1995.

Meir, R. “Bias, Variance and the Combination of Least-Squares Estimators.” In G. Tesauro, D. Touretzky,
and T. Leen, eds., Adunces in Neural Information Processing Systems 7, pp. 295-302. MIT Press, 1994.

Merz, C.J. and Murphy, P.M. “UCI Repository of machine learning databases.” 1996.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Meyer, Mike. “StatLib: a system for distributing statistical software, datasets, and information by electronic
mail, FTP and WWW.” http://lib.stat.cmu.edu/, 1996.

Microsystems, Sun. “XView: X Window-System-based Visual/Integrated Environment for Workstations.”
XView is available with the OpenWindows distribution, 1991.

Microsystems, Sun. “The Java Development Kit.” http://java.sun.com, 1998.

Miller, Geoffrey F., Todd, Peter M., and Hegde, Shailesh U. “Designing Neural Networks using Genetic
Algorithms.” Proceedings of the International Conference on Genetic Algorithms, pp. 379-384, 1989.

Minsky, M. and Papert, S. Perceptrons. Cambridge: MIT Press, 1969.

Montana, David J. “Strongly Typed Genetic Programming.” BBN Technical Report #7866, Bolt Beranck
and Newman, Inc., 10 Moulton Street, Cambridge, MA 02138, USA, 1993.

Moody, John and Darken, Christian J. “Fast Learning in Networks of Locally-Tuned Processing Units.”
Neural Computation, vol. 1, pp. 281-294, 1989.

Moore, Andrew W and Lee, Mary S. “Efficient Algorithms for Minimizing Cross Validation Error.” In
William W. Cohen and Haym Hirsh, eds., Machine Learning: Proceedings of the Eleventh International
Conference, pp. 190-198. Rutgers University, Morgan Kaufmann, 1994.

Murthy, Kolluru Venkata Sreerama. On Growing Better Decision Trees from Data. Ph.D. thesis, John Hopkins
University, Baltimore, Maryland, 1996.

Nelder, J. A. and Mead, R. “A Simplex Method for Function Minimization.” The Computer Journal, vol. 7,
pp. 308-313, 1965.

Nilsson, Nils J. The Mathematical Foundations of Learning Machines. Morgan Kaufmann Publishers, 1993.

Nordin, Peter and Banzhaf, Wolfgang. “Complexity Compression and Evolution.” In L. Eshelman, ed., Ge-
netic Algorithms: Proceedings of the Sizth International Conference (ICGA 95), pp. 310-317. Pittsburgh,
PA, USA: Morgan Kaufmann, 1995.

Nordin, Peter, Francone, Frank, and Banzhaf, Wolfgang. “Explicitly Defined Introns and Destructive
Crossover in Genetic Programming.” In Justinian P. Rosca, ed., Proceedings of the Workshop on Genetic
Programming: From Theory to Real-World Applications, pp. 6-22. Tahoe City, California, USA, 1995.

BIBLIOGRAPHY 252

O'Reilly, U. M. and Oppacher, F. “The Troubling Aspects of a Building Block Hypothesis for Genetic
Programming.” Working Paper 94-02-001, Santa Fe Institute, 1399 Hyde Park Road Santa Fe, New
Mexico 87501-8943 USA, 1992.

O’Reilly, Una-May and Oppacher, Franz. “Program Search with a Hierarchical Variable Length Representa-
tion: Genetic Programming, Simulated Annealing and Hill Climbing.” Tech. Rep. 94-04-021, Santa Fe
Institute, 1399 Hyde Park Road Santa Fe, New Mexico 87501-8943 USA, 199%4a.

O’Reilly, Una-May and Oppacher, Franz. “Program Search with a Hierarchical Variable Length Represen-
tation: Genetic Programming, Simulated Annealing and Hill Climbing.” In Yuval Davidor, Hans-Paul
Schwefel, and Reinhard Manner, eds., Parallel Problem Solving from Nature — PPSN III, no. 866 in
Lecture Notes in Computer Science, pp. 397-406. Jerusalem: Springer-Verlag, 1994b.

O’Reilly, Una-May and Oppacher, Franz. “Using Building Block Functions to Investigate a Building Block
Hypothesis for Genetic Programming.” Working Paper 94-02-029, Santa Fe Institute, 1399 Hyde Park
Road Santa Fe, New Mexico 87501-8943 USA, 1994c.

O’Reilly, Una-May and Oppacher, Franz. “Hybridized Crossover-Based Search Techniques for Program Dis-
covery.” Tech. Rep. 95-02-007, Santa Fe Institute, 1399 Hyde Park Road Santa Fe, New Mexico 87501-
8943 USA, 1995a.

O’Reilly, Una-May and Oppacher, Franz. “The Troubling Aspects of a Building Block Hypothesis for Genetic
Programming.” In L. Darrell Whitley and Michael D. Vose, eds., Foundations of Genetic Algorithms 3,
pp. 73-88. Estes Park, Colorado, USA: Morgan Kaufmann, 1995b.

O’Reilly, Una-May and Oppacher, Franz. “A Comparative Analysis of GP.” In Peter J. Angeline and K. E.
Kinnear, Jr., eds., Advances in Genetic Programming 2, chap. 2, pp. 23-44. Cambridge, MA, USA: MIT
Press, 1996.

Parekh, Rajesh, Yang, Jihoon, and Honavar, Vasant. “Constructive Neural Network Learning Algorithms for
Multi-Category Pattern Classification.” Tech. Rep. 95-15, Artificial Intelligence Research Group, lowa
State University, Ames, lowa 50011-1040 USA, 1995.

Peng, Fengchun, Jacobs, Robert A., and Tanner, Martin A. “Bayesian Inference in Mixtures-of-Experts and
Hierarchical Mixtures-of-Experts Models With an Application to Speech Recognition.”, 1995. Accepted
for publication in the Journal of the American Statistical Association.

Perry, Chad. “How to write a Doctoral Thesis - PhD / DPhil.”, 1998. To appear in the Australasian Marketing
Journal, available on-line at http://www.imc.org.uk/imc/news/occpaper/cpindex.htm.

Plutowski, Mark and White, Halbert. “Active selection of training examples for network learning in noiseless
environments.” Tech. Rep. CS91-180, University of California, San Diego, 1991.

Poli, Riccardo and Langdon, W. B. “A New Schema Theory for Genetic Programming with One-point
Crossover and Point Mutation.” In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max
Garzon, Hitoshi Iba, and Rick L. Riolo, eds., Genetic Programming 1997: Proceedings of the Second
Annual Conference, pp. 278-285. Stanford University, CA, USA: Morgan Kaufmann, 1997.

Péppel, E. and Logothetis, N. “Neuronal Oscillations in the Human Brain.” Naturwissenschaften, vol. 73,
pp. 267268, 1986.

Prechelt, Lutz. “PROBEN1 — A Set of Benchmarks and Benchmarking Rules for Neural Network Training
Algorithms.” Tech. Rep. 21/94, Fakultdt fiir Informatik, Universitit Karlsruhe, D-76128 Karlsruhe,
Germany, 1994. Anonymous FTP: /pub/papers/techreports/1994/1994-21.ps.Z on ftp.ira.uka.de.

Prechelt, Lutz. “A Quantitative Study of Experimental Evaluations of Neural Network Learning Algorithms:
Current Research Practice.” Neural Networks, vol. 9, 1996.

Press, William H., Teukolsky, Saul A., Vetterling, William T., and Flannery, Brian P. Numerical Recipes
in C: the Art of Scientific Computing. On-line at http://nr.harvard.edu/nr/bookc.html: Cambridge
University Press, 2nd edn., 1992.

Price, G. R. “Selection and Covariance.” Nature, vol. 227, pp. 520-521, 1970.

Punch, W. F., Goodman, E. D., Pei, Min, Chia-Shun, Lai, Hovland, P., and Enbody, R. “Further Research
on Feature Selection and Classification using Genetic Algorithms.” In Proceedings of the International
Conference on Genetic Algorithms, pp. 557-564. 1993.

Quinlan, J. R. “Inferring Decision Trees Using the Minimum Description Length Principle.” Information and
Computation, vol. 80, pp. 227-248, 1989.

Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993.

Quinlan, J. R. “Improved Use of Continuous Attributes in C4.5.” Journal of Artificial Intelligence Research,
vol. 4, pp. 77-90, 1996.

BIBLIOGRAPHY 253

Quinlan, J. Ross and Cameron-Jones, R. Mike. “Induction of Logic Programs: FOIL and Related Systems.”
New Generation Computing, vol. 13(3&4), pp. 287-312, 1995.

Rasmussen, Carl Edward, Neal, Radford M., Hinton, Geoffrey, van Camp, Drew, Revow, Michael, Ghahra-
mani, Zoubin, and andRob Tibshirani, Rafal Kustra. “DELVE: Data for Evaluating Learning in
Valid Experiments.” 1996. Data sets, learning environment and learning algorithms available at
http://www.cs.utoronto.ca/~delve/.

Riedmiller, Martin and Braun, Heinrich. “A Direct Adaptive Method for Faster Backpropagation Learning:
the RPROP Algorithm.” In 1993 International Conference on Neural Networks, vol. 1, pp. 586-591.
IEEE, 1993.

Ripley, B. D. “Neural Networks and Related Methods for Classification.” Tech. rep., Department of Statistics,
University of Oxford, 1992.

Ripley, B. D. “Flexible Non-linear Approaches to Classification.” In V. Cherkassky, J. H. Friedman, and
H. Wechsler, eds., From Statistics to Neural Networks, pp. 105-126. Springer-Verlag, 1994.

Ripley, B. D. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.

Rogova, Galina. “Combining the Results of Several Neural Network Classifiers.” Neural Networks, vol. 7(5),
pp. T77-781, 1994.

Ronald, Simon, Asenstorfer, John, and Vincent, Millist. “Representational Redundancy in Evolutionary
Algorithms.” In Proceedings of the IEEE Conference on Evolutionary Computation, pp. 631-636. 1995.
I went to this one too.

Rosca, Justinian P. “An Analysis of Hierarchical Genetic Programming.” Technical Report 566, University
of Rochester, Rochester, NY, USA, 1995a.

Rosca, Justinian P. “Genetic Programming Exploratory Power and the Discovery of Functions.” In
John Robert McDonnell, Robert G. Reynolds, and David B. Fogel, eds., Evolutionary Programming v
Proceedings of the Fourth Annual Conference on Ewvolutionary Programmang, pp. 719-736. San Diego,
CA, USA: MIT Press, 1995b.

Rosca, Justinian P. and Ballard, Dana H. “Genetic Programming with Adaptive Representations.” Tech.
Rep. TR 489, University of Rochester, Computer Science Department, Rochester, NY, USA, 1994.

Ross, T.J. Fuzzy Logic with Engineering Applications. McGraw-Hill, Inc., 1995.

Ryan, Conor. “Pygmies and Civil Servants.” In Kenneth E. Kinnear, Jr., ed., Advances in Genetic Program-
ming, chap. 11, pp. 243-263. MIT Press, 1994.

Schaal, Stefan and Atkeson, Christopher C. “From Isolation to Cooperation: An Alternative View of a System
of Experts.”, 1995. Submitted to Neural Information Processing Systems 1995.

Schaffer, Cullen. “A Conservation Law for Generalization Performance.” In William W. Cohen and Haym
Hirsh, eds., Machine Learning: Proceedings of the Eleventh International Conference, pp. 259-265. New
Brunswick, N.J.: Rutgers University, 1994.

Scott, M. J. J., Niranjan, M., and Prager, R. W. “Parcel: Feature Subset Selection in Variable Cost Domains.”
Tech. Rep. 323, Cambridge University Engineering Department, 1998.

Sebag, Michele, Maitournam, Habibou, and Schoenauer, Marc. “Identification of Mechanical Behaviour
by Genetic Programming Part I: Rheological Formulation.” Tech. rep., Ecole Polytechnique, 91128
Palaiseau, France, 1995.

Sethi, Ishwar K. “Neural Implementation of Tree Classifiers.” IEEE Transactions on Systems, Man, end
Cybernetics, vol. 25(8), pp. 1243-1249, 1995.

Sharman, Ken C. and Esparcia-Alcazar, Anna I. “Genetic Evolution of Symbolic Signal Models.” In Pro-
ceedings of the Second International Conference on Natural Algorithms in Signal Processing, NASP’93.
Essex University, 1993.

Sharman, Ken C., Esparcia Alcazar, Anna 1., and Li, Yun. “Evolving Signal Processing Algorithms by
Genetic Programming.” In A. M. S. Zalzala, ed., First International Conference on Genetic Algorithms
in Engineering Systems: Innovations and Applications, GALESIA, vol. 414, pp. 473-480. Shefhield, UK:
IEE, 1995.

Sherrah, Jamie. “Automatic Feature Extraction using Genetic Programming.” In John R. Koza, ed., Late
Breaking Papers at the 1997 Genetic Programming Conference, p. 298. Stanford University, CA, USA:
Stanford Bookstore, 1997.

Sherrah, Jamie and Jain, Ravi. “Classification of Heart Disease Data using the Evolutionary Pre-Processor.”
In Engineering Mathematics and Applications Conference. University of Adelaide, 1998. (accepted for
publication).

BIBLIOGRAPHY 254

Sherrah, Jamie R., Bogner, Robert E., and Bouzerdoum, Abdesselam. “Automatic Selection of Features for
Classification using Genetic Programming.” In V. L. Narasimhan and L. C. Jain, eds., Proceedings of
the Australian New Zealand Conference on Intelligent Information Systems, pp. 284-287. IEEE Press,
1996.

Sherrah, Jamie R., Bogner, Robert E., and Bouzerdoum, Abdesselam. “The Evolutionary Pre-Processor:
Automatic Feature Extraction for Supervised Classification using Genetic Programming.” In John R.
Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo,
eds., Genetic Programming 1997: Proceedings of the Second Annual Conference, pp. 304-312. Stanford
University, CA, USA: Morgan Kaufmann, 1997.

Sinkkonen, Janne. “What is the Curse of Dimensionality?” In comp.ai.neural-nets FAQ, Part 2 of 7: Learn-
ing. http:/ /www.fags.org/fags/ai-faq/neural-nets/part2/section-8 html: The Internet FAQ Consortium,
1998.

Soule, Terence, Foster, James A., and Dickinson, John. “Code Growth in Genetic Programming.” In John R.
Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo, eds., Genetic Programming 1996: Pro-
ceedings of the First Annual Conference, pp. 215-223. Stanford University, CA, USA: MIT Press, 1996.

Spears, William. “Adapting Crossover in Evolutionary Algorithms.” In Proceedings of the Ewolutionary
Programming Conference, pp. 367-384. 1995.

Stearns, Beth. “Integrating Native Code and Java Programs.” In The Javae Tutorial
http://java.sun.com/docs/books/tutorial/: Sun Microsystems, 1997.

Syswerda, Gilbert. “Uniform Crossover in Genetic Algorithms.” In J. D. Schaffer, ed., Proceedings of the
Third International Conference on Genetic Algorithms, pp. 2-9. San Mateo, California USA: Morgan
Kaufmann, 1989.

Tackett, Walter Alden. “Genetic Programming for Feature Discovery and Image Discrimination.” In Stephanie
Forrest, ed., Proceedings of the 5th International Conference on Genetic Algorithms, ICGA-93, pp. 303~
309. University of Illinois at Urbana-Champaign: Morgan Kaufmann, 1993.

Tackett, Walter Alden. Recombination, Selection, and the Genetic Construction of Computer Programs.
Ph.D. thesis, University of Southern California, Department of Electrical Engineering Systems, 1994.

Telfar, Grant. Generally Applicable Heuristics for Global Optimisation: an Inwvestigation of Algorithm Per-
formance for the Euclidean Traveling Salsman Problem. Master’s thesis, Institute of Statistics and
Operations Research, Victoria University of Wellington, 1994.

Teller, Astro. “Evolving Programmers: The Co-evolution of Intelligent Recombination Operators.” In Pe-
ter J. Angeline and K. E. Kinnear, Jr., eds., Advances in Genetic Programming 2, chap. 3, pp. 45-68.
Cambridge, MA, USA: MIT Press, 1996.

Teller, Astro and Andre, David. “Automatically Choosing the Number of Fitness Cases: The Rational
Allocation of Trials.” In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon,
Hitoshi Iba, and Rick L. Riolo, eds., Genetic Programming 1997: Proceedings of the Second Annual
Conference, pp. 321-328. Stanford University, CA, USA: Morgan Kaufmann, 1997.

Teller, Astro and Veloso, Manuela. “Algorithm Evolution for Face Recognition: What Makes a Picture
Difficult.” In International Conference on Ewvolutionary Computation, pp. 608-613. Perth, Australia:
IEEE Press, 1995a.

Teller, Astro and Veloso, Manuela. “Program Evolution for Data Mining.” The International Journal of
Egxpert Systems, vol. 8(3), pp. 216-236, 19955.

Teller, Astro and Veloso, Manuela. “PADO: A New Learning Architecture for Object Recognition.” In
Katsushi Ikeuchi and Manuela Veloso, eds., Symbolic Visual Learning, pp. 81-116. Oxford University
Press, 1996.

Tham, C K. “On-Line Learning Using Hierarchical Mixtures Of Experts.” Proceedings of the IEE Conference
on Artificial Neural Networks, pp. 347-351, 1995.

Thrun, S.B., Bala, JI., Bloedorn, E., Bratko, I., Cestnik, B., Cheng, J., Jong, K. De, Dzeroski, S., Fahlman,
S.E., Fisher, D., Hamann, R., Kaufman, K., Keller, S., Kononenko, 1., Kreuziger, J., Michalski, R.S.,
Mitchell, T., Pachowicz, P., Vafaie, Y. Reich H., de Welde, W. Van, Wenzel, W, Wnek, J., , and Zhang,
J. “The MONK’s Problems - A Performance Comparison of Different Learning algorithms.” Tech. Rep.
CS-CMU-91-197, Carnegie Mellon University, 1991.

Tibshirani, R. “Bias, Variance and Prediction Error for Classification Rules.” Tech. rep., Department of
Preventive Medicine and Biostatistics and Department of Statistics, University of Toronto, 1996.
Vafaie, Halech and De Jong, Kenneth A. “Robust Feature Selection Algorithms.” In Proceedings of the

International Conference on Tools with AI, pp. 356-364. Boston, MA: IEEE Computer Society Press,
1993.

BIBLIOGRAPHY 255

Vafaie, Haleh and Imam, I. “Feature Selection Methods: Genetic Algorithms vs. Greedy-like Search.” In
Proceedings of the International Conference on Fuzzy and Intelligent Control Systems. Louisville, KY,
1994.

Vavak, F. and Fogarty, T. C. “A Comparative Study of Steady State and Generational Genetic Algorithms for
Use in Nonstationary Environments.” In Proceedings of the Society for the Study of Artificial Intelligence
& Simulation of Behaviour Workshop on Evolutionary Computing, pp. 301-307. University of Sussex,
1996.

Waggoner, Ben. “Jean-Baptiste Lamarck (1744-1829).” http://www.ucmp.berkeley.edu/history /-
lamarck.html, 1996.

Wall, Matthew B. “GAlib: A C++ Genetic Algorithm Library (ver. 2.4.2).” http://lancet.mit.edu/ga/, 1996.
Copyright 1994-5 Massachusetts Institute of Technology.

Wampler, Bruce. “V - A Freeware Portable C++ GUI Framework for Windows, X, and 0S/2.”
http://www.objectcentral.com/, 1998.

Webb, Andrew R and Lowe, David. “The Optimised Internal Representation of Nultilayer Classifier Networks
Performs Nonlinear Discriminant Analysis.” Neural Networks, vol. 3, pp. 367-375, 1990.

Weisstein, Eric. The CRC Concise Encyclopedia of Mathematics. Online at http://www.astro.virginia.edu/-
~eww6n/math/math0.html: CRC Press, 1998.

Whigham, P. A. “A Schema Theorem for Context-Free Grammars.” In 1995 IEEE Conference on Evolutionary
Computation, vol. 1, pp. 178-181. Perth, Australia: IEEE Press, 1995.

White, Matt and Fahlman, Scott E. “Carnegie Mellon University Neural Network Benchmark Database.”
ftp://ftp.cs.cmu.edu/afs/cs/project/connect/bench, 1993.

Widrow, Bernard and Lehr, Michael A. “30 Years of Adaptive Neural Networks: Perceptron, Madaline, and
Backpropagation.” Proceedings of the IEEE, vol. 78(9), pp. 1415-1442, 1990.

Winston, P.H. Artificial Intelligence. Addison-Wesley, 3rd edn., 1992.
Wolpert, David H. “On Bias Plus Variance.” SFI TR 95-08-074, Santa Fe Institute, 1995.

Wolpert, David H. “The Lack of A Priori Distinctions Between Learning Algorithms.”, 1996. Available via
ftp://ftp.santafe.edu/pub/dhw_ftp/nfl.1.ps.Z.

Wolpert, David H. and Macready, William G. “No Free Lunch Theorems for Search.” Tech. rep., The Santa
Fe Institute, 1996.

Wolpert, David H. and Macready, William G. “No Free Lunch Theorems for Optimization.” IEEE Tronsac-
tions on Evolutionary Computation, vol. 1(1), pp. 67-82, 1997.

Wu, Annie S. and Lindsay, Robert K. “A Survey of Intron Research in Genetics.” In Hans-Michael Voigt,
Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, eds., Parallel Problem Solving From Nature
IV. Proceedings of the International Conference on Evolutionary Computation, vol. 1141 of LNCS, pp.
101-110. Berlin, Germany: Springer-Verlag, 1996.

Young and Fu. Handbook of Pattern Recognition and Image Processing. Orlando:Academic Press, 1986.

n

Zhang, Byoung-Tak. “Acclelerated Learning by Active Example Selection.
Systems, vol. 5(1), pp. 67-75, 1994.

International Journal of Neural

Zhang, Byoung-Tak and Miihlenbein, Heinz. “Genetic Programming of Minimal Neural Nets Using Oc-
cam’s Razor.” In Stephanie Forrest, ed., Proceedings of the 5th International Conference on Genetic
Algorithms, ICGA-93, pp. 342-349. University of Illinois at Urbana-Champaign: Morgan Kaufmann,
1993.

Zhang, Byoung-Tak and Miihlenbein, Heinz. “Balancing Accuracy and Parsimony in Genetic Programming.”
Evolutionary Computation, vol. 3(1), pp. 17-38, 1995.

Zhang, Byoung-Tak, Ohm, Peter, and Miihlenbein, Heinz. “Learning to Predict by Evolutionary Neural
Trees.” Proceedings of the World Congress on Neural Networks, vol. 1, pp. 823-826, 1995.

Zheng, Zijian. “A Benchmark for Classifier Learning.” Tech. rep., Basser Department of Computer Science,
The University of Sydney, 1993.

