
Resource-Limited Genetic Programming:
Replacing Tree Depth Limits

Sara Silva1, Pedro J.N. Silva2, Ernesto Costa1
1Centro de Inforḿatica e Sistemas da Univ. Coimbra, Dep. Engenharia Informática

Polo II – Pinhal de Marrocos, 3030 Coimbra, Portugal
2Centro de Geńetica e Biologia Molecular, Dep. Biologia Vegetal

Fac. Cîencias Univ. Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
E-mail: {sara,ernesto}@dei.uc.pt, pedro.silva@fc.ul.pt

Abstract
We propose replacing the traditional tree depth limit

in Genetic Programming by a single limit on the amount
of resources available to the whole population, where re-
sources are the tree nodes. The resource-limited tech-
nique removes the disadvantages of using depth limits at
the individual level, while introducing automatic popu-
lation resizing, a natural side-effect of using an approach
at the population level. The results show that the replace-
ment of individual depth limits by a population resource
limit can be done without impairing performance, thus
validating this first and important step towards a new ap-
proach to improving the efficiency of GP.

1 Introduction
Genetic Programming (GP) solves complex problems

by evolving populations of computer programs, using
Darwinian evolution and Mendelian genetics as inspira-
tion. Bloat is an excess of code growth caused by the
genetic operators in search of better solutions, without
a corresponding improvement in fitness. It is a serious
problem in GP, often leading to the stagnation of the evo-
lutionary process [1].

The traditional approach to maintaining code growth
under control is by imposing a tree depth limit on the
individuals accepted into the population, on a tree-based
GP system [2]. Several other techniques have been used
with various degrees of success (reviews and recent work
in refs. 3–6), but none was ever as popular as the tradi-
tional depth limits.

This paper describes how to implement a simple tech-
nique to replace the traditional tree depth limits. It is
based on a single limit imposed on the amount of re-
sources available to the whole GP population, where
resources are the tree nodes or other elements in non
tree-based GP (e.g. code lines). The resource-limited
technique removes most of the disadvantages of using
depth limits at the individual level, while introducing au-

tomatic population resizing, a natural side-effect of using
an approach at the population level.

Previous work, focused on financial time series pre-
diction, also used limits on the total number of nodes in
the population [7]. The results presented were, however,
scarce, and the implications of the idea have not been
explored any further.

Section 2 of this paper deals with several aspects of
tree depth limits, while Sect. 3 introduces and explains
the limited-resources technique. Section 4 describes the
experiments made, Sect. 5 relates the results obtained,
and finally Sect. 6 draws some conclusions and points
towards future directions of this work.

2 Tree Depth Limits
Tree-based GP traditionally uses a depth limit to avoid

excessive growth of its individuals [2]. When crossover
creates an offspring that violates this limit, one of its par-
ents is chosen for the new generation instead.

Traditional depth limits effectively avoid the growth
of trees beyond a certain point, but they do nothing to
control bloat until the limit is reached. They may also
prevent the optimal solution to be found for problems
of unsuspected high complexity. This may happen ei-
ther because the number of possible nodes in a tree of
maximum depth is not enough to represent the solution,
or because a maximum depth may prove too hard a re-
striction to find the solution, regardless of the number of
necessary nodes (for example, in symbolic regression of
the quartic polynomial,x4 +x3 +x2 +x, tree-based GP
usually finds a solution of depth 7, whereas solutions of
depth 6, 5, and even 41 are rarely found). Last but not
least, depth limits cannot be used on non tree-based GP
systems.

Various approaches have been tried in order to over-
come the difficulties mentioned above. Some rely on

1The factored form of the polynomial,(x2 + 1)(x2 + x), can be
represented with a tree of depth 4.



choosing specialized genetic operators to keep tree
growth under control, without imposing strict limits
[8,9].

Recent work ondynamic limits has achieved promis-
ing results without the need for specific operators [10,
11]. It introduces a dynamic tree depth limit, initially
set at a low value, but increased whenever needed to ac-
commodate an offspring that, although deeper than the
limit, is better than any other individual found during the
run [10], and optionally decreased again whenever pos-
sible [11]. The idea has even been extended to create
a dynamicsize limit, where size is the number of tree
nodes regardless of depth (which would enable its use in
non tree-based GP), but this variation did not perform so
well as the original idea [11]. All in all, new and better
approaches to bloat control are still needed.

3 Limited Natural Resources in GP

Individuals in GP are built with small elements called
functions and terminals. Each individual is made from
a certain number of these elements, jointly designated
as nodes. We can refer to the number of nodes of an
individual as the amount of resources the individual uses
(which is also directly related to the computational effort
needed to evaluate it).

We propose limiting the total amount of resources the
population can use in each generation. We can think of
it as limiting the amount of natural resources available
to a given biological population, where each individual
competes with the others for its share, and the weakest
individuals perish when resources are scarce. In GP, re-
sources become scarce when the total number of nodes
in the population exceeds the predefined limit. Beyond
this point, not all offspring are guaranteed to be accepted
into the new generation. The allocation of resources to
individuals (ensuring their survival) is mainly based on
fitness, with size playing a secondary role.

All the candidates to the new generation are queued by
fitness, regardless of their size, and given the resources
they need in a first come, first served basis. The indi-
viduals requiring more resources than the amount still
available are skipped (do not survive) and the allocation
continues until the end of the queue. Some resources
may remain unused. A rule emerges from this proce-
dure, promoting the survival of the best individuals and
the rejection of ‘not good enough for their size’ individu-
als, where the relationship between size and fitness is not
explicitly programmed, but a product of the evolutionary
process itself.

The resource-limited approach is expected to cause a
steady decrease of the population size (defined as the
number of individuals) as long as code growth contin-
ues. According to recent work [12–15], this factor may

bring some benefits in terms of convergence to good so-
lutions. It is also expected that, after the resources have
reached the exhaustion point, eventually some new gen-
eration will use them more sparingly, having all its indi-
viduals surviving and still leaving some resources avail-
able. We have considered two options on how to deal
with this situation: (1) use the exceeding resources to
allow the survival of the best individuals of the previous
generation - the parents that would otherwise be replaced
by their offspring - by applying the same allocation pro-
cedure described above (but ensuring that the population
size never increases beyond its initial value), or (2) do
not use the exceeding resources, thus never allowing the
population size to increase again.

4 Experiments
The aim of these experiments is to see whether tradi-

tional tree depth limits can be replaced by resource lim-
its as described above, without impairing performance
in terms of fitness and computational effort. To perform
a fair comparison, the resource limit for the new tech-
nique must be such that, during the entire run, the total
amount of resources used is roughly thesame for both
approaches. We also want to study the differences in the
evolution of population size and mean tree size inside the
population.

A simple problem was used for the experiments: sym-
bolic regression of the quartic polynomial (x4 + x3 +

x2 + x, with 21 equidistant points in the interval−1 to
+1). An initial population of 500 individuals (Ramped
Half-and-Half initialization [2] with maximum depth
6) was evolved for 50 generations, even if the opti-
mal solution was found earlier. Tree crossover was
the only genetic operator used, and reproduction rate
was set at 0.1. The function and terminal sets were
{+,−,×,÷, sin, cos, log, exp} (protected as in ref. 2)
and{x}, respectively. Selection for reproduction used
the lexicographic parsimony pressure tournament [5]
and selection for survival used no elitism (in the tradi-
tional sense only, since the resource-limited approach
can be considered highly elitist). A total of 50 runs were
performed with each of the following techniques:

None → no limits
Depth → tree depth limit
Rsteady → limited resources, forced steady usage
Rlow → limited resources, possible low usage

The first technique (None) uses in fact no technique:
nothing is done to control the growth of trees. The sec-
ond technique (Depth) uses the traditional tree depth
limit as described in Sect. 2, with the typical value 17.
The following two techniques, Rsteadyand Rlow, use lim-
ited resources as described in Sect. 3, set at 14500. The



0 10 20 30 40 50
0

0.5

1

1.5

2

2.5
x 10

4

Generation

T
o

ta
l r

e
so

u
rc

e
s 

u
se

d
 (

p
e

r 
g

e
n

e
ra

tio
n

) None
Depth
R steady
R low

resources limit

0 10 20 30 40 50
0

1

2

3

4

5

6
x 10

5

Generation

T
ot

al
 r

es
ou

rc
es

 u
se

d 
(c

um
ul

at
iv

e)

None
Depth
R steady
R low

Fig. 1. Evolution of the amount of resources used by the pop-
ulation (left: per generation, right: cumulative).

difference between them is that Rsteady forces the us-
age of all available resources (whenever possible), while
Rlow leaves any exceeding resources unused (see Sect. 3
for details).

When looking for the ideal resources limit, 14500, we
searched (in multiples of 500) for such a value that, when
used to cap the amount of resources used per generation
with the None technique, would result in an amount of
cumulative resources (used during the entire run) similar
to the cumulative amount used with the Depth technique.
Capping at a lower value would have saved resources,
but so would lowering the tree depth limit, and one must
not forget we want to provide the same resources to both
techniques.

All the experiments were performed using the
GPLAB toolbox [16]. Statistical significance of the
null hypothesis of no difference was determined with
Kruskal-Wallis non-parametric ANOVAs atp = 0.01.

5 Results
The following results are based on the mean values

over the 50 runs performed for each experiment.
Figure 1 shows the mean resources usage (per gener-

ation and cumulative) obtained with all techniques. Al-
though the resources limit was chosen so that Depth and
Rsteadywould produce similar behavior (see Sect. 4),
one could expect the Rsteadyline to run close to None
until it reached the resources limit (left plot, dashed
line) and then stick to the limit until the end of the run.
Instead, it diverts from None much sooner and barely
reaches the limit on the last few generations, a result of
the dynamics of the resource allocation procedure de-
scribed in Sect. 3. The Rlow technique does not behave
much differently from Rsteady. Consequently, the cu-
mulative lines of Depth and both resource-limited tech-
niques (Rsteady, Rlow) show very similar evolution (right
plot), with no significant differences between them.

0 10 20 30 40 50
100

150

200

250

300

350

400

450

500

Generation

M
e

a
n

 p
o

p
u

la
tio

n
 s

iz
e

None
Depth
R steady
R low

0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

180

Generation

M
e

a
n

 t
re

e
 s

iz
e

None
Depth
R steady
R low

Fig. 2. Evolution of the population size (left plot) and mean
tree size inside the population (right plot).

However similar the behavior of Depth, Rsteadyand
Rlow may look in Fig. 1 (except during the last 10 or
15 generations in the left plot), Fig. 2 shows a different
reality, both in terms of population size and mean tree
size inside the population (note that the left plot of Fig. 1
is obtained by “multiplying” both plots of Fig. 2). Re-
garding mean tree size, both Rsteadyand Rlow run close
to None during the entire run, while Depth diverts com-
pletely around generation 25 (right plot). In terms of
population size, in both resource-limited techniques it
starts dropping steeply (and not coincidentally) also by
generation 25 (left plot).

Regardless of the relationship between population size
and mean tree size, we are interested in looking at a dif-
ferent and important issue, fitness, and how it relates to
the computational effort spent to obtain it. Effort can
be roughly expressed as the total number of nodes evalu-
ated – in other words, the total amount of resources used.
Figure 3 shows best (lowest) fitness as a function of com-
putational effort. Apart from the fact that the None tech-
nique proves to be a terrible waste of resources (which
comes as no surprise), the remaining three techniques
show similar behavior (note the logarithmic scale). The
differences in the best fitness achieved during the run are
not statistically significant between any two techniques.

6 Conclusions and Future Work
The replacement of the traditional tree depth limit in

GP by a technique based on limited resources available
to the entire population can be done without impairing
performance, and at the same time removing most of the
disadvantages of using depth limits.

The resource-limited technique could not be expected
to perform better than tree depth limits in a simple prob-
lem like the one we have presented, where the resources
available for both techniques were the same, and clearly
more than needed to easily find the optimal solution. The



0 1 2 3 4 5 6 7 8 9 10 11

x 10
5

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Effort

B
es

t f
itn

es
s 

(lo
g1

0)

None
Depth
R steady
R low

Fig. 3. Best fitness as a function of computational effort.

superiority of the new approach lies in its ability to auto-
matically compensate higher tree size with lower popula-
tion size, thus providing the necessary elements to cope
with highly complex problems where tree depth tech-
niques may fail, not for lack of resources, but for lack
of flexibility. Unlike tree depth techniques, the resource-
limited approach is also easily adaptable to non tree-
based GP systems.

Still, the resource-limited technique may be criticized
because, like the traditional depth limit, it does not
prevent bloat from occurring freely until the limit is
reached. The solution we propose for this problem is
to adapt the idea of dynamic tree depth limits [10,11] to
the resource-limited approach: initially low, the limit is
only raised if that results in improvement of the popu-
lation fitness. This will be the next of a series of steps
towards the achievement of more efficient GP systems.

Acknowledgements

We acknowledge grant SFRH/BD/14167/2003 from
Fundaç̃ao para a Cîencia e a Tecnologia, Portugal. We
also thank the Biomathematics Group at ITQB/UNL for
allowing us the use of their computational resources.

References
[1] Banzhaf, W., Nordin, P., Keller, R. E., Francone,

F. D. (1998). Genetic Programming - An Introduc-
tion. Morgan Kaufmann, San Francisco, CA.

[2] Koza, J. R. (1992). Genetic programming - on the
programming of computers by means of natural se-
lection. The MIT Press, Cambridge, MA.

[3] Soule, T., Foster, J. A. (1999). Effects of code
growth and parsimony pressure on populations in
genetic programming. Evolutionary Computation
6(4):293–309

[4] Poli, R. (2003). A simple but theoretically-
motivated method to control bloat in genetic pro-

gramming. In Ryan, C.et al. (eds.), Proceedings of
EuroGP-2003. Springer, Berlin, pp. 204–217

[5] Luke, S., Panait, L. (2002). Lexicographic parsi-
mony pressure. In Langdon, W. B.et al. (eds.),
Proceedings of GECCO-2002. Morgan Kaufmann,
San Francisco, CA, pp. 829–836

[6] Panait, L., Luke, S. (2004). Alternative bloat con-
trol methods. In Deb, K.et al. (eds.), Proceedings
of GECCO-2004. Springer, Berlin, pp. 630–641

[7] Wagner, N., Michalewicz, Z. (2001). Genetic pro-
gramming with efficient population control for fi-
nancial time series prediction. In Goodman, E. D.
(ed.), GECCO-2001 LBP, pp. 458–462

[8] Kennedy, C. J., Giraud-Carrier, C. (1999). A Depth
Controlling Strategy for Strongly Typed Evolution-
ary Programming. In Banzhaf, W.et al. (eds.), Pro-
ceedings of GECCO-1999. Morgan Kaufman, San
Francisco, CA, pp. 1–6

[9] Langdon, W. B. (2000). Size fair and homol-
ogous tree crossovers for tree genetic program-
ming. Genetic Programming and Evolvable Ma-
chines 1:95–119

[10] Silva, S., Almeida, J. S. (2003). Dynamic max-
imum tree depth. In Cantú-Paz, E.et al. (eds.),
Proceedings of GECCO-2003. Springer, Berlin,
pp. 1776–1787

[11] Silva, S., Costa, E. (2004). Dynamic limits for bloat
control. In Deb, K.et al. (eds.), Proceedings of
GECCO-2004. Springer, Berlin, pp. 666–677

[12] Luke, S., Balan, G. C., Panait, L. (2003). Popula-
tion implosion in genetic programming. In Cantú-
Paz, E.et al. (eds.), Proceedings of GECCO-2003.
Springer, Berlin, pp. 1729–1739

[13] Fernandez, F., Vanneschi, L., Tomassini, M.
(2003). The effect of plagues in genetic program-
ming: A study of variable-size populations. In
Ryan, C. et al. (eds.), Proceedings of EuroGP-
2003. Springer, Berlin, pp. 317–326

[14] Fernandez, F., Tomassini, M., Vanneschi, L.
(2003). Saving computational effort in genetic pro-
gramming by means of plagues. In Sarker, R.et al.
(eds.), Proceedings of CEC-2003. IEEE Press, Pis-
cataway, NJ, pp. 2042–2049

[15] Tomassini, M., Vanneschi, L., Cuendet, J., Fernan-
dez, F. (2004). A new technique for dynamic size
populations in genetic programming. In Proceed-
ings of CEC-2004. IEEE Press, Piscataway, NJ,
pp. 486–493

[16] Silva, S. (2004). GPLAB - a genetic programming
toolbox for MATLAB. http://gplab.sourceforge.net


