
UNIVERSITÀ DEGLI STUDI DI TRIESTE
Sede Amministrativa del Dottorato di Ricerca

XXV Ciclo - Scuola di Dottorato in
Ingegneria dell’Informazione

Machine Learning Techniques for
Document Processing and Web Security

(Settore scientifico-disciplinare ING-INF/05)

DOTTORANDO RESPONSABILE DOTTORATO DI RICERCA

Enrico Sorio Chiar.mo Prof. Walter Ukovich
Università degli Studi di Trieste

RELATORE

Chiar.mo Prof. Alberto Bartoli
Università degli Studi di Trieste

CORRELATORE

Chiar.mo Prof. Eric Medvet
Università degli Studi di Trieste

Anno Accademico 2011/2012

Contents

Abstract 7

Riassunto 9

1 Introduction 11

1.1 Thesis outline . 12

1.2 Publication list . 15

2 Document processing 17

2.1 Overview . 17

2.2 Related work . 19

2.2.1 Multi-source web information extraction 19

2.2.2 Information extraction from printed documents . . 22

2.3 Our Framework . 25

2.4 Wrapper choice . 26

2.4.1 Human Intervention 30

2.5 Blocks location . 32

2.5.1 Overview . 32

2.5.2 Matching probability 33

2.5.3 Wrapper generation 36

2.5.4 Human Intervention 38

2.6 Experiments and Results 42

2.6.1 Prototype . 42

2.6.2 Dataset . 43

2.6.3 Experiments . 43

2.6.4 Results . 45

2.7 Remarks . 48

iii

CONTENTS iv

3 OCR error correction 49

3.1 Overview . 49

3.2 Our approach . 50

3.2.1 System overview 50

3.2.2 Single element . 52

3.2.3 Correlated element fixing 54

3.3 Experiments and results 56

3.3.1 Dataset . 56

3.3.2 Performance evaluation 57

3.4 Remarks . 58

4 Textual document processing 61

4.1 Overivew . 61

4.2 Related work . 63

4.3 Our approach . 65

4.3.1 User experience . 65

4.3.2 Implementation . 66

4.3.3 Observations . 69

4.4 Experiments . 69

4.4.1 Extraction tasks and datasets 69

4.4.2 Methodology . 71

4.4.3 Results . 72

4.5 Remarks . 81

5 Structured document processing 83

5.1 Overview . 83

5.2 Related work . 84

5.3 XML and DTD . 85

5.4 Our approach . 87

5.4.1 Pre-processing . 87

5.4.2 Expressions generation 88

5.4.3 Post-processing . 89

5.5 Experiments . 90

5.5.1 Datasets . 90

5.5.2 Methodology . 90

5.5.3 Results . 91

5.6 Remarks . 94

6 Web Security 97

6.1 Analysis of PA Web Sites 97

6.1.1 Our methodology 99

6.1.2 Discussion . 102

6.1.3 Remarks . 108

v CONTENTS

6.2 Hidden fraudulent URL detection 109
6.2.1 Related work . 110
6.2.2 Our approach . 112
6.2.3 Dataset . 115
6.2.4 Experiments . 117

Bibliography 121

Abstract

The task of extracting structured information from documents that are
unstructured or whose structure is unknown is of uttermost importance
in many application domains, e.g., office automation, knowledge man-
agement, machine-to-machine interactions. In practice, this information
extraction task can be automated only to a very limited extent or subject
to strong assumptions and constraints on the execution environment.

In this thesis work I will present several novel application of machine
learning techniques aimed at extending the scope and opportunities for
automation of information extraction from documents of different types,
ranging from printed invoices to structured XML documents, to poten-
tially malicious documents exposed on the web.

The main results of this thesis consist in the design, development
and experimental evaluation of a system for information extraction from
printed documents. My approach is designed for scenarios in which the
set of possible documents layouts is unknown and may evolve over time.
The system uses the layout information to define layout-specific extrac-
tion rules that can be used to extract information from a document. As
far as I know, this is the first information extraction system that is able
to detect if the document under analysis has an unseen layout and hence
needs new extraction rules. In such case, it uses a probability based
machine learning algorithm in order to build those extraction rules using
just the document under analysis. Another novel contribution of our sys-
tem is that it continuously exploits the feedback from human operators
in order to improve its extraction ability.

I investigate a method for the automatic detection and correction of
OCR errors. The algorithm uses domain-knowledge about possible mis-
recognition of characters and about the type of the extracted information
to propose and validate corrections.

I propose a system for the automatic generation of regular expression
for text-extraction tasks. The system is based on genetic programming

7

CONTENTS 8

and uses a set of user-provided labelled examples to drive the evolution-
ary search for a regular expression suitable for the specified task.

As regards information extraction from structured document, I present
an approach, based on genetic programming, for schema synthesis start-
ing from a set of XML sample documents. The tool takes as input one
or more XML documents and automatically produces a schema, in DTD
language, which describes the structure of the input documents.

Finally I will move to the web security. I attempt to assess the ability
of Italian public administrations to be in full control of the respective web
sites. Moreover, I developed a technique for the detection of certain types
of fraudulent intrusions that are becoming of practical interest on a large
scale.

Riassunto

L’estrazione di informazioni strutturate da documenti non strutturati,
o di cui non si conosce la struttura, è di estrema importanza in mol-
ti campi, ad esempio l’office automation, la gestione della conoscenza, le
interazioni machine-to-machine. Nella pratica, l’estrazione di informazio-
ni può essere automatizzata solo in misura molto limitata e in presenza
di notevoli assunzioni e vincoli riguardo l’ambito applicativo.

In questo lavoro di tesi vengono presentate diverse applicazioni inno-
vative di tecniche di machine learning con l’obbiettivo di automatizzare
l’estrazione di informazioni da documenti di vario tipo. Questi documen-
ti possono variare dalle fatture stampate, ai documenti XML strutturati,
fino a documenti potenzialmente dannosi presenti sul web.

Il principale risultato di questa tesi consiste nella progettazione, svi-
luppo e sperimentazione di un sistema per l’estrazione di informazioni da
documenti stampati. Il sistema è stato progettato per operare quando
l’insieme dei layout possibili dei documenti da analizzare è sconosciuto e
può evolversi nel tempo.

Il sistema utilizza informazioni relative all’impaginazione dei docu-
menti per definire le specifiche regole che possono essere utilizzate per
estrarre le informazioni cercate dal documento. Questo sistema è il pri-
mo, al meglio della mia conoscenza, ad essere in grado di rilevare se
il documento sottoposto ad analisi ha un layout sconosciuto, e quindi
richiede nuove regole di estrazione. In tal caso, viene utilizzato un al-
goritmo di machine learning al fine di costruire le regole di estrazione
utilizzando solo il documento in esame. Un altro contributo innovativo
del nostro sistema è la capacità di sfruttare continuamente il feedback
ottenuto dagli utenti, al fine di migliorare la sua capacità di estrazione
di informazioni.

Ho sperimentato un metodo per il rilevamento automatico e la corre-
zione di errori in sistemi OCR. Questo algoritmo utilizza le informazioni
riguardanti gli errori più comunementi fatti dai sistemi OCR nel ricono-

9

CONTENTS 10

scere i caratteri e la tipologia di informazioni estratte dai documenti per
proporre e convalidare correzioni.

Viene inoltre proposto un sistema per la generazione automatica di
espressioni regolari finalizzate alla estrazione di testo. Il sistema svilup-
pato si basa sul genetic programming e usa un insieme di esempi forniti
dall’utente per guidare la ricerca evolutiva di una espressione regolare
adatta al compito.

Riguardo l’estrazione di informazioni da documenti strutturati viene
presentato un approccio, basato su genetic programming, per la sintesi di
uno schema, a partire da un insieme di documenti XML di esempio. Lo
strumento sviluppato accetta come ingresso uno o più documenti XML e
automaticamente produce uno schema, in linguaggio DTD, che descrive
la struttura dei documenti analizzati.

L’ultimo capitolo di questa tesi tratterà il tema della sicurezza web. Si
è cercato di valutare l’abilità delle pubbliche amministrazioni italiane di
avere il pieno controllo dei loro siti web. Inoltre si è cercato di sviluppare
un sistema capace di individuare un particolare tipo di intrusioni che sta
diventando di notevole interesse nel web.

Chapter 1
Introduction

Information extraction from documents plays a key role in many ar-
eas: office automation, knowledge management, intelligence, machine-
to-machine interactions and so on. This task is particularly challenging
when handling unstructured documents, or documents that do not carry
any explicit structural description.

For example, consider an invoice processing workflow: each firm gen-
erates invoices with its own template and the receiver has to find the
desired items on each invoice, e.g., invoice number, date, total, etc. In
practice, this information extraction task is often performed by human
operators, despite the huge advances and widespread diffusion of In-
formation and Communication Technology. Similar scenarios requiring
manual or semi-manual processing occur in many other contexts, for ex-
ample, the analysis of an XML document or a data log produced by an
unknown source. Therefore the development of systems that help to au-
tomatize information extraction tasks may have a significant impact in
many practical environments.

The practical relevance of this problem may only grow in the near fu-
ture. The increasing power and diffusion of computing and information-
storage resources have reached a level in which virtually every organi-
zation may easily collect and preserve huge amount of heterogeneous
documents related to its daily operations. In this scenario, the elabora-
tion in real-time of new documents coming from unknown sources will
be a daily activity. When handling such kind of data, the ability of an
algorithm to perform information extraction accurately on new, unseen
data after having trained on a small learning data set will be useful. Ma-
chine learning is a computing paradigm that has a great potential in this
context.

In this thesis we will present novel applications of machine learning

11

1. Introduction 12

techniques applied to information extraction from documents of different
types, ranging from printed invoices to structured XML documents to
potentially malicious documents exposed on the web. The applications
presented in this thesis have been published in international journals and
conferences

The work described in this thesis has been developed in the Machine
Learning Lab at University of Trieste.

1.1 Thesis outline

The main results of this thesis consist in the design, development and ex-
perimental evaluation of a system for information extraction from printed
(PDF-like) documents. These results have been recently published on a
top-level scientific journal [15]. Information extraction from printed doc-
uments is still a crucial problem in many interorganizational workflows,
since printed documents do not carry any explicit structural or syntac-
tical description. However each printed document is characterized by a
specific layout (the geometrical position of text on the page) that heavily
depends from the document producer (source). Our system (which we
call PATO) uses the layout information to define layout-specific extrac-
tion rules (wrappers) that can be used to extract information from a
document.

Our proposal makes some novel and crucial contributions: the sys-
tem (i) is able to figure out whether no suitable wrapper exists and
generates one when necessary, in that case, (ii) is able to define a new
wrapper starting from few example documents and, finally, (iii) considers
feedback from human operators an integral part of the design. PATO
assumes that the need for new source-specific wrappers is part of normal
system operation: new wrappers are generated on-line based on a few
point-and-click operations performed by a human operator on a GUI. The
wrapper selection is performed using an SVM-based classifier based only
on image-level features and using a nearest-neighbor approach for detect-
ing the need of new wrapper. The approach behind the wrapper itself is
based on probability: we derived a general form for the probability that
a sequence of blocks contains the searched information. The role of op-
erators is an integral part of the design and PATO may be configured to
accommodate a broad range of automation levels. We show that PATO
exhibits very good performance on a challenging dataset composed of
more than 600 printed documents drawn from three different application
domains: invoices, datasheets of electronic components, patents. We also
perform an extensive analysis of the crucial trade-off between accuracy
and automation level. Its results have been published in [15, 93, 14].

13 Thesis outline

The experimental evaluation showed that PATO is robust to OCR
errors, that is, it is able to locate the correct information despite the
presence of noise and characters misrecognition. However a system able
to perform an automatic correction of these errors will allow PATO to
gain an improved accuracy. In Chapter 3 we propose a method for the
automatic detection and correction of OCR errors. Our algorithm uses
domain-knowledge about possible misrecognition of characters to propose
corrections; then it exploits knowledge about the type of the extracted
information to perform syntactic and semantic checks in order to validate
the proposed corrections. We assess our proposal on a real-world, highly
challenging dataset composed of nearly 800 values extracted from ap-
proximately 100 commercial invoices, obtaining very good results, which
have been published in [94].

Systems presented in Chapter 2 and 3 deals with weakly-structured
documents: the weak-structure is given by the geometrical position of
text on the page and does play a role in the information extraction pro-
cess. When the documents under analysis are mere text sequences, a
more common approach is the use of regular expressions to perform infor-
mation extraction. Regular expressions are a long-established technique
for a large variety of text processing applications, but the constructing
of a regular expression suitable for a specific task is a tedious and error-
prone process. In Chapter 4 we propose a system for the automatic
generation of regular expression for text-extraction tasks. We propose
a system based on genetic programming (GP); the user describes the
desired text extraction task by providing a set of labelled examples, in
the form of text lines. The system uses these examples to drive the evo-
lutionary search for a regular expression suitable for the specified task.
The obtained regular expressions may be used with common engines such
as those that are part of Java, PHP, Perl and so on. Usage of the sys-
tem requires neither familiarity with GP nor with regular expressions
syntax. In our GP implementation each individual represents a syntacti-
cally correct regular expression and the fitness consists of two objectives
to be minimized: the edit distance between each detected string and the
corresponding examples, the size of the individual. We performed an ex-
tensive experimental evaluation on 12 different extraction tasks applied
to real-world datasets. We obtained very good results in terms of preci-
sion and recall. Its results can be found here [11] and another paper is
pending review

The previous chapters focussed on scenarios where documents are
not associated with any explicit structural or syntactical description. In
several cases, though, such description is often available and the eXten-
sible Markup Language (XML) is one of the languages used to this end.
The XML documents are an essential ingredient of modern web technol-

1. Introduction 14

ogy and are widely used in machine-to-machine information exchange.
A schema document describes the type of information contained in an
XML document and the constraints which must be met. Although avail-
ability of a schema for a specific application is very important, in practice
many applications either do not have any schema or the corresponding
schema is incomplete. Chapter 5 proposes a solution to this problem,
presenting an approach for schema synthesis starting from a set of XML
sample documents. In this chapter we describe the design, implementa-
tion and experimental evaluation of a tool for DTD synthesis based on
Genetic Programming. Our GP-DEI tool (Genetic Programming DTD
Evolutionary Inferer), takes as input one or more XML documents and
automatically produces a schema, in DTD language, which describes the
input documents. Usage of the GP-DEI requires neither familiarity with
GP nor with DTD or XML syntaxes. We performed an extensive ex-
perimental evaluation of our tool on a large collection of several sets
of real world XML documents, including documents used in an earlier
state-of-the-art proposal.

Finally, in Chapter 6 we move our attention to a different application
domain: the web security. We attempted to apply several of the machine
learning techniques applied to the previous application domains, in or-
der to assess the ability of Italian public administrations to be in full
control of the respective web sites. In particular, we attempted to de-
tect certain types of fraudulent intrusions that are becoming of practical
interest on a large scale. The analysis of Italian public administrations
web sites was performed examining several thousands sites, including all
local governments and universities; we found that approximately 1.5% of
the analyzed sites serves contents that admittedly are not supposed to
be there. A novel form of modification consists of the addition of new
pages at URLs where no page should exist. Detecting their existence is
very difficult because they do not appear during normal navigation and
are not indexed by search engines. Most importantly, drive by attacks
leading users to hidden URLs, for example to spread malware or phish-
ing credentials, may fool even tech-savvy users, because the hidden URL
could be hosted within a trusted site, possibly with HTTPS. We propose
an approach based on an SVM classifier for detecting such URLs using
only on their lexical features, which allows to alert the user before ac-
tually fetching the page. We assess our proposal on a dataset composed
of thousands of URLs. Results have been published in [95] and another
paper is pending review.

15 Publication list

1.2 Publication list

• [14] A. Bartoli, G. Davanzo, E. Medvet, and E. Sorio. Improving
features extraction for supervised invoice classification. In Proceed-
ings of the 10th IASTED International Conference, volume 674,
page 401, 2010

• [93] E. Sorio, A. Bartoli, G. Davanzo, and E. Medvet. Open world
classification of printed invoices. In Proceedings of the 10th ACM
symposium on Document engineering, DocEng ’10, pages 187–190,
New York, NY, USA, 2010. ACM

• [15] A. Bartoli, G. Davanzo, E. Medvet, and E. Sorio. Semisuper-
vised wrapper choice and generation for print-oriented documents.
IEEE Transactions on Knowledge and Data Engineering, page 1,
2012

• [94] E. Sorio, A. Bartoli, G. Davanzo, and E. Medvet. A domain
knowledge-based approach for automatic correction of printed in-
voices. In Information Society (i-Society), 2012 International Con-
ference on, pages 151–155. IEEE, 2012

• [11] A. Bartoli, G. Davanzo, A. De Lorenzo, M. Mauri, E. Medvet,
and E. Sorio. Automatic generation of regular expressions from ex-
amples with genetic programming. In Proceedings of the fourteenth
international conference on Genetic and evolutionary computation
conference companion, pages 1477–1478. ACM, 2012

• [95] E. Sorio, A. Bartoli, and E. Medvet. A look at hidden web
pages in italian public administrations. In Computational Aspects
of Social Networks (CASoN), 2012 Fourth International Confer-
ence on, pages 291–296. IEEE, 2012

Chapter 2
Document processing

2.1 Overview

Despite the huge advances and widespread diffusion of Information and
Communication Technology, manual data entry is still an essential in-
gredient of many interorganizational workflows. In many practical cases,
the glue between different organizations is typically provided by human
operators who extract the desired information from printed documents
and insert that information in another document or application. As
a motivating example, consider an invoice processing workflow: each
firm generates invoices with its own firm-specific template and it is up
to the receiver to find the desired items on each invoice, e.g., invoice
number, date, total, VAT amount. Automating workflows of this kind
would involve template-specific extraction rules—i.e., wrappers—along
with the ability to: (i) select the specific wrapper to be used for each
document being processed (wrapper choice), (ii) figure out whether no
suitable wrapper exists, and (iii) generate new wrappers when necessary
(wrapper generation). The latter operation should be done promptly and
possibly with only one document with a given template as it may not be
known if and when further documents with that template will indeed ar-
rive. Existing approaches to information extraction do not satisfy these
requirements completely, as clarified below in more detail.

In this chapter we propose the design, implementation and experi-
mental evaluation of a system with all these features. Our system, which
we call PATO, extracts predefined items from printed documents, i.e.,
either files obtained by scanning physical paper sheets, or files generated
by a computer program and ready to be sent to a printer. PATO assumes
that the appearance of new templates is not a sort of exceptional event
but is part of normal operation.

17

2. Document processing 18

Wrapper generation has received considerable attention by the re-
search community in the recent years, in particular in the context of
information extraction from web sources [110, 51, 25, 35, 69, 30, 40].
Wrapper-based approaches fit this scenario very well as they may exploit
the syntactic structure of HTML documents. In this work we focus in-
stead on printed documents, which are intrinsically different from web
pages for two main reasons. First, printed documents do not embed any
syntactical structure: they consist of a flat set of blocks that have only
textual and geometrical features—e.g., position on the page, block width
and height, text content, and so on. Second, the representation of a
document obtained from a paper sheet usually includes some noise, both
in geometrical and textual features, due to sheet misalignment, OCR
conversion errors, staples, stamps and so on. PATO addresses wrapper
generation based on a maximum likelihood method applied to textual
and geometrical properties of the information items to be extracted [73].
The method is semisupervised in that, when no suitable wrapper for a
document exists, PATO shows the document to an operator which then
selects the items to be extracted with point-and-click GUI selections.

There are significant differences between web information extraction
and our scenario even in the wrapper choice component. Web informa-
tion extraction often focuses on a single source at once [69], in which case
wrapper choice is not an issue. Recently, the research focus shifted on a
multi-source scenario motivated by the interest in integrating deep web
sites, i.e., databases which are only accessible by filling search forms on
specialized web sites [26, 35, 25]. In those cases, however, it is the sys-
tem that actively accesses each web site: since the system knows which
source is being accessed, the system also knows exactly which wrapper
to choose. Our wrapper choice problem is different since our system
passively receives documents without any explicit indication of the cor-
responding source. PATO, thus, is required to infer the source from the
document itself. PATO addresses wrapper choice based on a combina-
tion of two classifiers applied to image-level properties of the document
being processed [93]. One of the classifiers determines whether the docu-
ment has been emitted by an unknown source, in which case the wrapper
generation component comes into play. The other classifier determines
the existing wrapper to use.

Our work complements earlier proposals for multi-source wrapper
choice and generation by systematically introducing the human-in-the-
loop factor, an element that we believe is essential for coping with a dy-
namic set of sources in a practical setting. PATO accommodates a broad
range of automation levels in terms of operator-provided feedback, which
may occur independently in the two phases of wrapper choice and wrap-
per generation. Operators need not have any specific IT-related skills,

19 Related work

because their feedback merely consists of basic point-and-click selections
on a dedicated GUI to either confirm or reject the system suggestions.
These design choices allow tailoring the system to widely differing sce-
narios easily, including the scenario where 100% extraction accuracy is
required. This case corresponds to the maximal amount of operator
involvement, because PATO expects a feedback on each processed doc-
ument. Even in this case, PATO may still provide a practical advantage
with respect to traditional (i.e., spreadsheet-based) data entry, since it
can greatly reduce the operators’ engagement time without affecting ac-
curacy (see Section 2.6).

We evaluated the performance of PATO on a challenging dataset,
composed of 641 digitized copies of real-world printed documents con-
cerning three different extraction scenarios: (i) date, total, VAT etc.
from invoices issued by 43 different firms; (ii) title, inventor, applicant
etc. from patents issued by 10 different patent sources; (iii) model, type,
weight etc. from datasheets of electronic components produced by 10 dif-
ferent manufacturers. We examined the accuracy of PATO from several
points of views and in all the 9 different configurations that it supports,
corresponding to all possible combinations of full, partial or no automa-
tion at the wrapper choice and generation stages. We also evaluated
the time required by human operators for each of the processing steps in
which they may be involved, as well as the frequency of their intervention
as a function of the configuration options. To place these results in per-
spective, we estimated the time required by human operators to extract
the same information from a printed copy and then fill a spreadsheet.
All these data enabled us to gain important insights into the practical
impact of the various design options available and the accuracy levels
that can be obtained.

2.2 Related work

Our work addresses a specific multi-source information extraction prob-
lem. In this section we place our contribution in perspective about the
existing literature. We discuss approaches designed for web documents
separately from those for printed documents.

2.2.1 Multi-source web information extraction

Multi-source web information extraction is primarily concerned with web
sources that are accessed through input elements, typically for perform-
ing queries [57]. A crucial step for wrapper generation consists of de-
termining the interface of each source, e.g., how to identify the relevant
form inputs in the web page. The position of these elements may widely

2. Document processing 20

vary across different sources and there are no textual labels for form
inputs that are universally meaningful. Most of the solutions proposed
in [57] are based on heuristics that leverage syntactic features of the web
documents for identifying candidate input elements. Broadly speaking,
our scenario faces similar problems, as a searched information item (e.g.,
invoice number) can be placed at very different positions among different
sources, usually with different textual labels (Num., N., #., Ref., . . .)
or with no textual label at all. On the other hand, as pointed out in the
introduction, our approach to wrapper generation must work at a differ-
ent abstraction level because printed documents have only textual and
geometrical features (which may also be noisy as a result of a scanning
process) and do not have any explicit syntactic structure.

Similar remarks apply to all the proposals reviewed in this section,
the only exception being the method in [69] that uses only visual features
of the rendered web documents. In the cited work a result page produced
by a web source is segmented in blocks based on the visual appearance
of the page. The blocks are organized in a tree structure and matched to
trees for the same source already available and previously annotated with
the items to be extracted. The matching uses several heuristics based on
hierarchical, textual and geometrical properties of blocks. Our approach
works on an unstructured sequence of OCR-generated blocks, each as-
sociated with position, size and textual content. The block containing a
given information item is the one which maximizes the probability dis-
tributions of block variables, whose parameters are fitted with values
obtained from previously annotated documents. It shall also be pointed
out that in web information extraction there are often multiple records in
each page, i.e., sets of information items following a predefined schema—
e.g., a page returned by an e-commerce site contains many results, each
composed of name, price, description and so on. It follows that (i) wrap-
pers must be able to identify a varying number of records, and (ii) even
a single page may provide opportunities useful for wrapper generation,
for example by identifying portions of the page with similar structure or
visual appearance—as done in [69]. In our scenario, in contrast, there
is only one record for each document: a wrapper must identify exactly
one record and the presence of recurring patterns in a page is generally
irrelevant for wrapper generation.

Wrapper generation for search engine results pages is considered in [110].
The cited work aims at connecting thousands of different search engines
and argues that it is not practical to manually generate a wrapper for
each source. The approach proposes an unsupervised method for gener-
ating a wrapper automatically, which is based on stimulating the source
with a sample query and then analyzing the obtained result page. In our
scenario we cannot stimulate sources to emit sample documents. More-

21 Related work

over, we need to generate a wrapper as soon as the first document from a
new source arrives—which also introduces the problem of realizing that
the document has been indeed emitted by a new source.

Search engines are also the topic of [51]. This work proposes a tool
which integrates several e-commerce search engines (ESE) making them
accessible from a single interface. A dedicated component crawls the web
for identifying ESE and clusters them according to the domain—ESE
selling similar goods will be placed in the same cluster. The wrapper
for each ESE is then generated automatically. A similar problem, which
consists of crawling and then clustering hidden-web sources, is tackled
in [9], with more emphasis on the ability to cope with a dynamic set of
sources.

When multiple sources may be stimulated to provide exactly the
same data with different templates, the information redundancy of those
sources may be leveraged to improve the corresponding wrappers, as pro-
posed in [25]. While this approach may be often exploited in the web, it
cannot be applied in our domain—we cannot stimulate two firms to emit
invoices with the very same items. Another approach to wrapper genera-
tion is proposed in [35], which combines extraction results obtained with
existing wrappers (generated for other sources) with operator-provided
domain knowledge. In principle a similar approach could be applied
to our case, although it would be necessary to carefully examine the
resulting amount of operator involvement and, most importantly, the
corresponding IT skills required.

In the recent years several studies on web information extraction have
started to focus on more automatic techniques for wrapper generation,
which implies considering the role of human operators [9, 35, 110]. A new
performance measure called revision aimed at quantifying the amount of
human effort has been proposed in [69]. Revision measures the percent-
age of sources for which the wrapper cannot perform a perfect extraction,
the rationale being that a manual correction should suffice to achieve per-
fect extraction. We also provide special emphasis on human operators
but we prefer to quantify the effort involved in using our system as it
is: we perform an extensive experimental evaluation of the trade-off be-
tween extraction accuracy and time amount of operators’ involvement,
including a comparison against a traditional data entry solution, i.e.,
spreadsheet-based.

The ability to accommodate a large and dynamic set of sources effi-
ciently is a crucial requirement in Octopus [26]. The cited work removes a
common assumption in web information extraction, i.e., that the relevant
sources for a given domain have been identified a priori, and assumes in-
stead that the operator cannot spend much time on each new data source.
Our standpoint is very similar in this respect because PATO assumes that

2. Document processing 22

the appearance of new sources is part of normal operation. Leaving the
different document representations and internal algorithms aside, PATO
is similar to Octopus in that both systems work automatically but allow
the operator to provide feedback and correct errors.

A radically different multi-source web extraction problem is consid-
ered in [38]. In this case the target consists of automatically extracting
tables from web lists, which is difficult because list delimiters are incon-
sistent across different sources and cannot be relied upon to split lines
into fields. The authors use a language model and a source- and domain-
independent table model built from a precompiled corpus of HTML ta-
bles aimed at identifying likely fields and good alignments: different field
value candidates depending on different line splits are evaluated basing
on their likelihood according to the language and table models. The ap-
proach here presented consists of training a graphical model—conditional
random fields (CRF)—with a corpus in which each text line has been
previously labeled. Documents are represented in terms of textual fea-
tures that turn out to be both meaningful and useful for text-only table
documents—e.g., number of space indents, all space lines and so on.

For a wider and deeper survey of web information extraction systems
please see [30] and [40].

2.2.2 Information extraction from printed documents

Systems for information extraction from printed documents can be sub-
divided in two categories, depending on whether all documents are pro-
cessed with the same wrapper, or each document is processed by a wrap-
per tailored to the document source. Systems that use the same wrapper
for all documents are, broadly speaking, suitable for a single application
domain and depend on a fair amount of a priori knowledge about that
specific domain—i.e., invoices, medical receipts, and so on [18, 28, 6].
Moreover, these wrappers are usually limited to documents written in
a single language. For example, a precompiled table of “main primary
tags” is used in [18] to identify labels of interesting information. Text-
based and geometrical information is used in [28] for identifying the de-
sired “tags” to be extracted (the cited work proposes a system that may
also be configured to use a wrapper tailored to each source, as discussed
below). A system focused on table forms is proposed in [6], where the
document is subdivided in boxes and then the boxes containing the values
to be extracted are identified based on semantic and geometric knowl-
edge.

Systems that instead have a wrapper for each source have wider appli-
cability but require a preliminary wrapper choice operation [28, 4, 89, 81].
This operation may be performed in two radically different scenarios:

23 Related work

static multi-source scenario, where all sources are known in advance and
each document submitted to the system has been certainly emitted by
one of these sources; dynamic multi-source scenario, where the set of
sources is not known in advance: a document may be associated with
one of the sources already known to the system, but it may also be as-
sociated with a source never seen before. In the latter case the system
must be able to detect the novelty and generate a new wrapper accord-
ingly. Needless to say, the dynamic multi-source scenario is much more
challenging but encompasses a much broader range of practical prob-
lems. To the best of our knowledge, our work is the first description of a
system for information extraction from printed documents in a dynamic
multi-source scenario.

Insights about wrapper choice in this context can be found in [33].
This problem is usually cast as a classification problem, each class being
composed by documents emitted by the same source. Different document
features (e.g., image-level or text features) can be used for the purpose
of classifying printed documents [3, 5, 84, 48], which is a premise for the
actual information extraction (that is not considered in the cited works).

A static multi-source approach based only on visual similarity is pro-
posed in [3]. Each document is represented as a Gaussian mixture dis-
tribution of background, text and saliency. A nearest-neighbor classifier
identifies the document class based on an approximation of the Hellinger
distance.

The dynamic multi-source approach proposed in [5] is perhaps the
closest to ours. The cited work uses a nearest-neighbor classifier based
on the main graphic element of documents emitted by the same source,
usually the logo. We use instead a two-stage approach based on the full
document image: a nearest-neighbor classifier for detecting whether the
document has been emitted by a new source, followed by a multi-class
Support Vector Machine which determines the existing source [93] (the
reason why we have chosen to use two classifiers is discussed later).

An approach based on image-level features similar to ours, but re-
stricted to a static multi-source scenario, is presented in [84]. A radically
different classification approach based on text features (graphs of words)
is proposed in [48]. This approach accommodates dynamic multi-source
scenarios only in part: the system may detect that a document has not
emitted by one of the sources already known, but it is not able to define
a new class. Thus, following documents from the same source will be
again deemed to belong to a unknown source.

Concerning wrapper generation, most of the commercial solutions
currently available require a specialized operator to “draw” a wrapper for
the given class of documents. This operation may be performed through
a specialized GUI, but it requires specific skills hardly found in data-

2. Document processing 24

entry operators, e.g., writing macros, using data description languages
or notations, testing the correctness of the description. An essential as-
pect of our work is that we strive to keep the wrapper generation as
simple and lightweight as possible, on the grounds that this operation
may be frequent in the scenarios of our interest. With our approach it
suffices to point and click on those OCR-generated blocks that contain
the desired information. It seems reasonable to claim that any admin-
istrative operator without any specific IT-related skill is in position to
perform this operation easily.

The approach proposed in [28] is based on a supervised labeling proce-
dure which produces a table (file) of logical objects of interest and related
tags, which have been manually located on a number of sample invoices
of the given class. Our wrappers determine relevant OCR-generated
blocks basing on a probabilistic approach applied to their geometric and
textual properties—size, position, page, text length, text alignment, con-
tent. The result is that even when the OCR fails to detect correctly such
pieces of text as "Total" or "Price", our system generally is still able
to identify the relevant information. On the other side, OCR errors sim-
ply prevented the system in [28] from identifying the searched tags or
labels.

Semisupervised wrapper generation for digitally-born PDF documents
has been proposed in [82, 41, 50]. Wrapper choice is not addressed, while
wrapper generation is based on structural information. The approach
proposed in [82] exploits the knowledge represented in an ontology. The
document is first subdivided in portions based on heuristics that analyze
several visual features, including lines and space distribution. Based
on an ontology expressed into an ontology description language, docu-
ment portions are then translated into sets of rules that constitute a
logic program, which can be used for the actual information extraction
from the document. In [41] the operator specifies textual and syntac-
tical properties of the items to be extracted. Spatial constraints which
link each textual item with its surrounding items (e.g., labels) are then
defined using fuzzy logic. The blocks that best satisfy those constraints
are finally identified with a hierarchical bottom-up exploration. In [50],
the system generates an attributed relational graph describing adjacency
relations between blocks. An operator annotates this graph with geomet-
ric, logical, structural and content-related block attributes, including the
specification of which graph nodes contain data to be extracted.

We explored similar ideas in our early experiments and associated
each block with some information about its surrounding blocks. First,
by requiring that each block selection by the operator be accompanied
by the selection of the corresponding label block (e.g., when selecting
a block containing a price item, also the block containing “Amount” or

25 Our Framework

“Total” should be selected). Then, by introducing further block vari-
ables measuring the distance from the closest blocks. In either case we
could not find any significant improvement, hence we chose to pursue the
approach that appeared to be simpler to analyze and implement.

A system for information extraction from forms, and only from them,
is proposed in [81]. The system assumes a static multi-source scenario
and performs wrapper choice based on a classifier fed with a mixture of
textual, graphical and geometrical document features. Wrappers identify
the desired information items by means of heuristics based on block po-
sition, searched keywords, syntax of block contents. Wrapper generation
is not automatic.

Finally, this work integrates our previously separated solutions for
wrapper choice [93] and wrapper generation [73]. With respect to the
cited works, we show how to include novel document sources in the sys-
tem seamlessly and without interrupting the normal processing flow; we
provide a more compact version of the wrapper construction algorithm;
and we assess the role of human operators experimentally, by explor-
ing the trade-off between accuracy of extraction and automation level
extensively.

2.3 Our Framework

Documents of our interest are multi-page images. A document is asso-
ciated with a schema and a template, as follows. The schema describes
the information to be extracted from the document and consists of a
set of typed elements: for each element, the document contains zero
or one value. For example, a schema could be date, totalAmount,
documentNumber; a document with this schema could contain the val-
ues "7/2/2011", "23,79" and no value for the respective elements.
Without loss of generality, we consider that the system receives in input
a set of documents with the same schema, e.g., invoices, or patents, or
electronic datasheets.

The template describes how the information is physically arranged
on the pages of a document; a document source generates documents
with the same template. The wrapper is the set of rules for locating and
extracting the information described by the schema from a document
generated by a given source. We assume a multi-source scenario and do
not require that the set of sources be known in advance, i.e., we assume
a dynamic multi-source scenario.

PATO processes a document d according to the following workflow.

1. In the wrapper choice stage (Section 2.4), the system selects the
appropriate wrapper W for d or, when such a wrapper is not avail-

2. Document processing 26

able, prepares itself to generate and use a new wrapper in the next
stage.

2. In the blocks location stage (Section 2.5), the system executes an
OCR procedure on d and then uses W to locate the required in-
formation. That is, for each element e of the schema, the system
locates the rectangular region of d where the value v∗e is graphically
represented—we call that region the block b∗e.

3. Finally, for each element e of the schema, the system extracts the
value v∗e from the textual content of the corresponding block b∗e.
This stage consists of applying an element-specific regular expres-
sion that aims to remove from the textual content of the block the
extra-text that is not part of v∗e . A method for performing this
task is proposed in Chapter 3.

The workflow processing stages share access to a knowledge repository
containing the data needed for system operation—i.e., information about
different document sources (Section 2.4), wrappers (Section 2.5.3) and
mapping between them (Section 2.4).

We carefully designed our system to allow selecting different trade-
offs between accuracy and amount of human involvement. As described
in the next sections, the two main workflow stages can be configured
independently of each other so as to be fully automated, or partly auto-
mated, or not automated at all.

2.4 Wrapper choice

The wrapper choice workflow consists of 4 stages: image processing,
feature extraction, novelty detection and classification. The image pro-
cessing stage includes binarization, deskew and rolling, i.e., an operation
aimed at aligning all documents in the same way, by removing the empty
part at the top of the document. We found that this operation is often
necessary in practice, because images obtained by scanning very similar
real-world documents could be significantly different due to human errors
made during their digitization—positioning errors on the scanner area,
non-standard document sizes, cut documents, and so on. To implement
rolling, we identify the upper relevant pixel of the image using an edge
recognition algorithm applied to a low-resolution version of the image
obtained by resizing the original with a 1

6 scaling factor; we reduce the
image in order to remove the noise caused by the scanner and small texts.
We consider the first edge as the upper relevant pixel. To maintain the
image size, we remove all the content between the upper relevant pixel
and the top border to append it at the end of page.

27 Wrapper choice

The feature extraction stage transforms the image into a numerical
vector f including: (i) density of black pixels; and (ii) density of the
image edges. In detail, we divide the image in a 16 × 16 grid and for
each cell of the grid we compute the black pixel density, i.e., a number
in the range [0, 100] representing the percentage of black pixels in the
cell. Then, we reduce the resolution of the original image and apply an
edge detector. We repeat the previous procedure on the resulting image
consisting only of the edges, i.e., we compute the black pixel density for
each cell in a 16× 16 grid. We concatenate the two resulting vectors in
order to obtain a features vector f of length 16×16×2 = 512. Figure 2.1
summarizes the process here described for a generic invoice, for further
details please refer to [93].

The next workflow stages are based on the notion of class. Documents
with similar graphical appearance belong to the same class. Classes are
stored in the knowledge repository as feature vectors sets, as follows. For
each class C, we store a set FC composed of up to k documents of that
class. If there are less than k documents for a class, FC contains all the
documents available, otherwise it contains the last k documents of the
class submitted to the system. After early experiments performed on a
small portion of our dataset, we chose k = 10. For each class C, the
system also maintains: (i) the centroid of the elements in FC , denoted
xC ; (ii) the distances between each element in FC and xC ; (iii) mean µC
and standard deviation σC of these distances. These values are updated
whenever the composition of FC changes. A predefined knowledge of a
few classes is needed in order to initialize the system for the wrapper
choice stage: after early experiments performed on a small portion of
our dataset, we set this starting knowledge to 7 classes with 2 documents
each.

It is important to emphasize that a class description does not pro-
vide any clue as to how to locate and extract the desired information
from documents of that class. The rules for this task are encoded into
wrappers. The association between classes and wrappers is stored in the
knowledge repository.

The novelty detection stage is a crucial component for coping with the
dynamic multi-source scenario: it determines whether the document can
be processed with a wrapper already known to the system, or whether a
new wrapper has to be generated (i.e., W = ∅). Note that in the former
case the wrapper is not identified and the choice of the (existing) wrapper
to be used will be made in the following classification stage, discussed
below. The novelty detection stage works as follows:

1. find the class C with the closest centroid xC to the features vector
f of the input document d; let δC denote the distance between f

2. Document processing 28

SCANNER
//

Original Image

��

Image Edges

��

Rolled Image

��

oo

Density of Image Edges Density of Black Pixels

Figure 2.1: Features extraction work-flow.

29 Wrapper choice

and xC ;

2. compute two values rC = µC + α · σC and rtC = ε · rC (α > 0 and
ε > 1 are two system parameters);

3. if rtC < δC , set W = ∅ and skip the classification stage, otherwise
make the document proceed to the classification stage.

In other words, a new wrapper is needed when the distance of the
document d from the closest centroid xC exceeds a certain threshold.
This threshold rtC depends on the distances from xC of the documents
that are already known to be instances of class C—the closer these doc-
uments to xC the smaller rtC and vice versa. The threshold also depends
in a similar way on the standard deviation of these distances—the more
uniform the distances, the smaller the threshold.

The classification stage is entered only when a new wrapper is not
needed. This stage takes the document d as input and outputs the wrap-
per W to be used for d. More in detail, this stage associates d with a class
C and the wrapper W associated with the class is then extracted from
the knowledge repository (the reason why we do not associate d with the
class selected by the novelty detector and use an additional classifier is
described below). The classification is performed by a multi-class Sup-
port Vector Machine (SVM) with linear kernel. The SVM operates on a
feature vector f ′ obtained from f with a dimensionality reduction based
on Principal Component Analysis (PCA). The set of features in f ′ has
been selected so as to ensure a proportion of variance greater than 95%
on the documents of the knowledge repository. This set of features is
re-evaluated during system operation as discussed in the next section.

Since the novelty detector is essentially a k-nearest neighbor (k-NN)
classifier, we could have avoided the use of the additional SVM-based
classifier. That is, when the novelty detector finds that δC ≤ rtC for a
document d, the wrapper W for d could have been set to the class C of the
nearest centroid. Our early experiments, however, showed that an SVM-
based classifier exhibits much better accuracy than a k-NN classifier.

We attempted to remove the need of a separate novelty detector by
using only the SVM classifier, in particular, by taking the probability
estimates produced by the classifier as indications useful for novelty de-
tection (as suggested in [109]), but this approach did not yield good
results. An option that we did not explore consists of using an addi-
tional one-class SVM for novelty detection (as opposed to the multi-class
one which we use for classification).

Another design option which we did not explore consists of perform-
ing wrapper choice based on the OCR-generated document representa-
tion, rather than working exclusively on image-level document features.

2. Document processing 30

2.4.1 Human Intervention and Updates to the Knowledge
Repository

The wrapper choice stage may be configured to work in three differ-
ent ways based on the value of a parameter HWC, which can be one
among Unsupervised (wrapper choice never delegated to a human oper-
ator), Semisupervised, Supervised (always delegated to a human opera-
tor). We remark that the human operator only deals with the notion
of graphical similarity—he sees neither classes nor wrappers, which exist
only within the system. The mapping between the two notions occurs
internally to the knowledge repository, as each class is associated with
exactly one wrapper.

In detail, let d denote the document being processed and C the class
selected by the SVM classifier. The systems works as follows:

• HWC = Unsupervised =⇒ Human intervention is never required. Up-
dates to the knowledge repository occur as follows:

1. δC ≤ rC =⇒ d is associated with C.

2. rC < δC ≤ rtC =⇒ A new class C ′ which contains only d is
defined. This class is associated with the (existing) wrapper W
associated with C.

3. rtC < δC =⇒ A new class C ′ which contains only d is defined.
This class is associated with a new empty wrapper W .

• HWC = Semisupervised =⇒ The system operates as in Unsupervised,
except that in cases 2 and 3 it requires human intervention, as follows.

The system determines the sequence of four classes, say C1, C2, C3, C4,
whose centroids are closest to the feature vector f of d (these classes
are thus selected by the novelty detector). Then, the system presents
on a GUI an image of d and the image of the most recent document
processed by the system for each of C1, C2, C3, C4 (Figure 2.2). We
chose to show 4 classes because we found, during our early experi-
ments, that this number suffices to always identify the correct class;
the operator may browse through the full list of existing classes, how-
ever. The operator is required to choose from two options:

1. Select the document most graphically similar to d. In this case
the system performs the following (let C1 be the class of the
document selected by the operator): (a) rC < δC ≤ rtC =⇒
associates d with C1; (b) otherwise =⇒ defines a new class C ′

containing only d and using the (existing) wrapper associated
with C1.

31 Wrapper choice

Figure 2.2: Wrapper selection GUI.

2. Specify that in the list of presented documents there is no one
similar enough to d. In this case the system defines a new class
C ′ containing only d and associated with a new empty wrapper.

• HWC = Supervised =⇒ The system operates as in Semisupervised,
except that in case 3 (i.e., δC ≤ rC) the human intervention is as
follows.

The system presents on a GUI a set of images selected as above and
augmented with the image of a document associated with the class
C selected by the SVM classifier. Class C is indicated as the class
suggested by the system for d. The operator is required to choose
from the same two options as above plus a third option:

1. Select the document most graphically similar to d.

2. Specify that none of the presented documents is similar enough
to d.

3. Confirm the suggestion by the system.

Options (1) and (2) are handled as above, whereas option (3) results
in the association of d with the class C chosen by the classifier. When-
ever the human operator modifies the choice suggested by the system,

2. Document processing 32

moreover, the system recomputes again its choice for all queued doc-
uments and does so before presenting them to the human operator
(end of Section 2.3).

Whenever the wrapper choice stage is completed, the system performs
the following tasks:

1. Records the association between the input document d and the
corresponding class C. This step also involves following operations:
(i) the features vector f of d is added to FC ; (ii) if the number of
elements of FC is greater than a predefined value k (k = 10 in our
prototype), then the oldest element is removed; (iii) the parameters
of C required by the novelty detector are recomputed (centroid,
distances: Section 2.4).

2. Recomputes the PCA parameters, i.e., evaluate again the set of
features which grants a proportion of variance greater than 95%.

3. Retrains the SVM classifier.

2.5 Blocks location

2.5.1 Overview

The blocks location stage takes as input the document d and the corre-
sponding wrapper W selected by the wrapper choice stage. In case W is
empty, W has to be generated by the system with the feedback provided
by a human operator. A key strength of our proposal is that the wrapper
can be generated automatically from intuitive operations performed on a
GUI by an administrative operator without any specific IT-related skills.
The operator has merely to point and click on those OCR-generated
blocks that contain the desired information (Section 2.5.4).

The blocks location stage begins with an OCR process, that trans-
forms the document d into a set of blocks, each specified by position,
size and content. The position is specified by the page number p and
the coordinates x and y from the page origin (upper left corner). The
size is specified by width w and height h. The content is specified by
the single-line textual content l, expressed as a character sequence. It
follows that a block is a tuple of block attributes b = 〈p, x, y, w, h, l〉.

The blocks containing the required information are located based
on a probabilistic approach that we developed earlier in a more general
form [73] and summarized in the next sections in a slightly more com-
pact way, specialized for the specific application domain of interest in
this work. The basic idea is as follows. We derived a general form for

33 Blocks location

the probability that a block b contains a value for a given schema element
e. This function, which we call the matching probability, is a paramet-
ric function of the attributes of b. The wrapper generation consists of
estimating these parameters based on the maximum likelihood approach
applied to a set of sample documents. Applying a wrapper to a document
d consists of selecting, for each element, the block of d that maximizes
the corresponding matching probability.

2.5.2 Matching probability

The matching probability Pe of a given block is the probability that the
block contains a value for the schema element e. To simplify the notation,
in the following we shall focus on a single schema element and omit the
specification of e. We want to express this probability, which concerns
rather complex events, as a function of simple univariate probability
distributions of independent random variables obtained from the block
attributes—p, x, y, w, h, l.

The matching probability includes 6 attributes whose corresponding
6 random variables are, in general, dependent on each other:

P (b) = P (〈p, x, y, w, h, l〉)

We identified a domain knowledge-based set of dependencies, which al-
lowed us to elaborate and simplify the form of P , as follows.

First, we can use marginalization in order to write P basing on the
possible values for the page p:

P (b) =
∑
k

P (b ∩ p = k)

where P (b ∩ p = k) is the joint probability of the following two events:
b is the matching block and p = k. These two events are in general
dependent. For example, consider a template of invoices where the total
amount value may be located at the bottom of the first page or at the top
of the second page: it follows that small values for y are more probable if
the page attribute is equal to 2 and large values for y are more probable
if the page attribute is equal to 1—in other words, the y attribute of the
block is dependent on the p attribute. Accordingly, we can rewrite the
joint probability in terms of conditional probability on the page p:

P (b ∩ p = k) = P (b|p = k)P (p = k)

= Pk(〈x, y, w, h, l〉)P (p = k)

where Pk(〈x, y, w, h, l〉) is the probability that a block identified by the
tuple 〈x, y, w, h, l〉 is the matching block, given that its page p is equal

2. Document processing 34

to k. Concerning P (p = k), we assume that there is a finite set K =
{k1, k2, . . . } of possible values for p, whose corresponding probabilities
are sk1 , sk2 , In other words, P (p = k) = skI(p; k), where I(p; k) = 1
for p = k and 0 otherwise and sk = 0 if k /∈ K. In summary, we may
rewrite P as follows:

P (b) =
∑
k

skI(p; k)Pk(〈x, y, w, h, l〉)

Concerning Pk(〈x, y, w, h, l〉), we assume that y and h are indepen-
dent from the other three variables. In particular, note that, since blocks
contain exactly one line of text, the height attribute h is largely inde-
pendent from its text content l. Hence, we can write:

Pk(〈x, y, w, h, l〉) = P yk (y)P hk (h)P x,w,lk (〈x,w, l〉) (2.1)

Concerning now P x,w,lk (〈x,w, l〉), we split the x,w, l dependency in
one between x and w and another between w and the text content l.

• The dependency between x and w represents the fact that a given text
could be aligned in three different ways: left, center or right (justified
text may be handled in any of these three cases, for the purpose of
this analysis). It follows that:

− in case of left-alignment, x and w are independent;

− in case of center-alignment, xc = x+ w
2 and w are independent;

− in case of right-alignment, xr = x+ w and w are independent.

• The dependency between w and l represents the fact that, in general,
the longer the text content, the larger the block width. We define
w′ = w

L(l) as the average width of the characters composing the block

text content, being L(l) the number of characters in l: we assume
that w′ and l are largely independent, since w′ depends on the font
size and type, rather than on the text content.

We can hence write P x,w,lk (〈x,w, l〉) in three possible forms depending
on text alignment:

P x,w,lk (〈x,w, l〉) =


P xk (x)Pw

′
k (w′)P lk(l), left

P x
c

k (xc)Pw
′

k (w′)P lk(l), center

P x
r

k (xr)Pw
′

k (w′)P lk(l), right

which can be summarized as:

P x,w,lk (〈x,w, l〉) = P x
′

k (x′)Pw
′

k (w′)P lk(l)

35 Blocks location

where x′ is a shortcut symbol which represents one among x, xc and xr.
Finally, we obtain the following general form for the matching prob-

ability:

P (b) =
∑
k

skI(p; k)P yk (y)P hk (h)P x
′

k (x′)Pw
′

k (w′)P lk(l)

Note that each Pk is a univariate distribution.
At this point we have to choose a form for each of the above distri-

butions. We assume that the size attributes (w′ and h) and the position
attributes (x′ and y) can be described as random variables with Normal
Distribution (denoted by N(µ, σ)). In a preliminary phase of our study,
we considered using other distributions for the aforementioned random
variables—in particular the Uniform Distribution and the Kernel Density
Estimation (Parzen windows)—but we found the Normal Distribution
models them better.

Concerning the textual content, P lk(l) is the probability that the text
l is the text of the matching block; P lk hence operates on text, differently
from all other probabilities which operate on numbers. We assume that
P lk(l) can be expressed as a Markov chain of order 2. Its state space
corresponds to the set of possible characters and 2 pseudo-characters
representing the begin and end of the text. The probability M of the
text l is defined as the probability of the state sequence corresponding
to l. For example, the probability of the word "two" is given by P (" .
t"|" . ")P ("tw"|" . "t")P ("wo"|"tw")P ("o / "|"wo"), where . and
/ represent the begin and the end of the text, respectively, and each
transition probability corresponds to an element of the transition matrix
Tk. The details about how we set Tk are given in Section 2.5.3. The final
form for the matching probability is the following:

P ≡
∑
k

skI(k)N(µyk, σ
y
k)N(µhk , σ

h
k)

N(µx
′
k , σ

x′
k)N(µw

′
k , σ

w′
k)M(Tk) (2.2)

where we omitted the function arguments for readability.
The wrapper, thus, merely requires the set of values for the param-

eters of Equation 2.2 (one set of parameters for each schema element).
These parameters are summarized in Table 2.1. In the next section we
describe how we generate the wrapper, i.e., how we choose these values.

We analyzed the impact of the various parameters on performance.
The key result of the analysis, omitted for brevity, is that removing
any one feature rendered the wrapper too inaccurate to be useful. In
particular, text and position are a powerful combination of features but
they are not enough.

2. Document processing 36

Table 2.1: Parameters of the matching probability. All parameters are numer-
ical except for the last one, which is a matrix.

Param. Meaning

sk probability of p = k

µx
′
k mean for the x position (x′)

σx
′
k scale for the x position (x′)
µyk mean for the y position
σyk scale for the y position

µw
′

k mean for the character width w′

σw
′

k scale for the character width w′

µhk mean for the height h
σhk scale for the height h
Tk transition matrix for text probability

2.5.3 Wrapper generation

A wrapper requires a set of values for the parameters described in the
previous section. These values are selected based on the maximum likeli-
hood method with respect to the distributions assumed in Equation 2.2.
The maximum likelihood is computed based on the ground truth infor-
mation stored in the knowledge repository for a few documents. The
ground truth for a wrapper W and an element e takes the form of a set
of true blocks, denoted Be. These values are initialized and updated as
described in this section and the following one.

The procedure for generating a wrapper is as follows. We will describe
the procedure for one single element, since the matching probability for
an element can be generated independently from the matching probabil-
ities for the other elements.

• We set sk to the frequency of the true blocks in B whose page p is
k.

• For each k-th Normal Distribution of Equation 2.2, we estimate its
µk and σk parameters, using the corresponding attributes of the
true blocks in B whose page p is k. In order to prevent overfitting,
we impose a lower bound for the σ parameter, which we denote
with σxy for the position attributes and σwh for the size attributes;
σ is also set to this lower bound in case B contains only one element.

• For each k, we choose the x,w, l dependency which maximizes the
probability of blocks in B whose page p is k.

37 Blocks location

After early experiments performed on a small portion of our dataset,
we set our parameters as follows: σxy = σwh = 0.05 inches = 1.27 mm,
ε = 1

3 .

Finally, concerning the text probability Mk, we perform some pre-
processing on each piece of text l: (i) transform to lowercase, (ii) replace
all digit characters with "#", (iii) replace all space characters with stan-
dard space character, (iv) replace all punctuation characters with "."
and finally (v) replace any other character with "*". We denote the
result with l′. Recall that we can describe a chain of order 2 using a
transition matrix T of size a× a2, being a the number of states. In our
case, given the aforementioned text elaborations, a = 32 and T indexes
represent respectively a single character and a sequence of two charac-
ters: e.g., t3,34 = t"c","ab" = P ("bc"|"ab"). In order to set the Tk
matrix forMk we start with a frequency matrix F with the same size of
Tk and each element set to 0. Then, we process the textual content l′∗

of each true block B whose page p is k and increment the corresponding
F elements. For example, after processing the sequence "banana" we
will have f"a",".b" = f"n","ba" = f"/","na" = 1 and f"a","an" = 2.
At the end, we set for each pair of indexes u, v:

tu,v =

(1− ε) fu,v∑a2

z=1 fu,z
, if fu,v > 0

ε
a2−Nu

, otherwise
(2.3)

where Nu is the number of fu,v which are greater than 0. We use the term
ε to make the text probability smoother, i.e., so that it assigns non-zero
(yet low) probabilities also to textual contents which are not present in
the training set.

Wrapper generation example

We provide here an example of building a wrapper when B contains only
one element. Figure 2.3 shows the top-right portions of two documents
of our dataset. The documents share the same wrapper and represent
invoices (see Section 2.6 for a description of our dataset). The true blocks
for the date elements, i.e., set B = {b1, b2}, are highlighted.

Values for blocks attributes follow (where applicable, values are ex-
pressed in mm):

p x y w h l
b1= 〈 1, 54.9, 56.5, 23.5, 6.2, "16/01/07"〉
b2= 〈 1, 54.8, 62.8, 23.5, 6.2, "11/01/07"〉

The values for the variables derived as explained in Section 2.5.2 are

2. Document processing 38

hence computed by the system as:

p x xc xr y w′ h l′

b1→ 〈 1, 54.9, 66.6, 78.4, 56.5, 2.93, 6.2, "##*##*##"〉
b2→ 〈 1, 54.8, 66.6, 78.4, 62.8, 2.93, 6.2, "##*##*##"〉

At this point all parameters for the matching probability—see Ta-
ble 2.1—can be computed. Concerning the page attribute, we have:

sk =

{
1, if k = 1

0, otherwise

For the other parameters, only the values for k = 1 are needed, since all
the true blocks lay on the first page. Concerning x′, the system chooses
to set x′ := x, because the Normal Distribution fits the x values of B
better, compared to the xc and the xr values—i.e., B true blocks of this
example are justified to the left. The model parameter values are as
follow (we omit the transition matrix for the sake of brevity):

µx
′

1 = 54.85

σx
′

1 = 1.27†

µy1 = 59.65

σy1 = 4.45

µw
′

1 = 2.93

σw
′

1 = 1.27†

µh1 = 6.2

σh1 = 1.27†

The values denoted by the symbol † are obtained by lower-bounding the
corresponding computed σ estimates with the proper lower bound (i.e.,
σxy or σwh).

2.5.4 Human Intervention and Updates to the Knowledge
Repository

The block selection stage may be configured to work in three different
ways based on the value of a parameter HBL, which can be one among
Unsupervised, Semisupervised, and Supervised. Each value provokes a dif-
ferent behavior in terms of human intervention and determines whether
wrappers are updated during the normal system operations, as described
in full detail below. The value for HBL can be selected independently

39 Blocks location

x1 w1

y1

h1

(a)

x2 w2
y2

h2

(b)

Figure 2.3: The portions of two documents of our dataset, belonging to the
same class. The corresponding true blocks for the date element are highlighted
and the attributes for the corresponding blocks are depicted (see Section 2.5.3).
Note that sensible informations are blurred for privacy reasons.

2. Document processing 40

of the value selected for the analogous parameter HWC in the wrapper
choice stage.

Wrappers are stored in the knowledge repository in the form of: for
each element e, (i) a set of true blocks Be, and (ii) values for the pa-
rameters of the matching probability. The parameters of the matching
probability are computed by using Be, as explained in the previous sec-
tion. These parameters are recomputed whenever the composition of a
Be changes.

The set Be contains up to w elements, where w is a system-wide pa-
rameter (we chose w = 20 according to the experimental findings of [73]).
If there are less than w elements, parameters are computed based on all
the true blocks available, otherwise one could choose the w true blocks
of the schema element in many different ways. Our prototype uses the
last w true blocks found by the system.

Operations in the block selection stage depend on whether the input
wrapper W to use is empty or not. If it is not, processing proceeds as
follows:

• HBL = Unsupervised =⇒ Human intervention is never required. For
each element e of the schema, the matching block b∗e is added to the
set of true blocks Be. If the set of true blocks Be contains more than
w elements, the oldest one is removed.

• HBL = Semisupervised =⇒ Human intervention is required only for
those elements whose set of true blocks Be contains 4 elements or
less. In this case, the system presents to the operator an image of the
document d with the matching block b∗e highlighted and offers two
options:

1. Confirm the choice made by the system.

2. Select a different block.

The GUI has been carefully designed in the attempt of speeding up
the processing of each document as much as possible (Figure 2.5).
In particular, the system highlights all the matching blocks, i.e., one
block for each schema elements. If all the choices are correct, the
processing of the entire document requires one single click on the
“confirm” option. Otherwise, the operator corrects only the wrong
blocks and then clicks on “confirm”.

The knowledge repository is then updated as in the Unsupervised case,
with the true blocks either selected or confirmed on the GUI.

If the set of true blocks Be contains more than 20 elements, the oldest
one is removed.

41 Blocks location

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

B
lo

ck
lo

ca
ti

o
n

ac
cu

ra
cy

of elements in true blocks Be

♦

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦Invoices
Patents

�

�
� � � � � � � � � � � � �

�
Datasheets

×

×

× ×
× × ×

× × × × × × × ×

×

Figure 2.4: Block location accuracy vs. # of elements in true blocks Be for
the three datasets.

We chose upper limit of true blocks size (4 elements) performing a
dedicated experiment: we evaluated the block location accuracy while
varying the number of elements in the set of true blocks Be. This
experiment was performed with all our datasets (see Section 2.6.2); we
can see in Figure 2.4 that the accuracy improvement with a number
of elements greater then 4 is marginal.

• HBL = Supervised =⇒ Human intervention is always required. In
this case, the system presents each document to the operator and
processing proceeds as in HBL = Semisupervised.

If the input wrapper W is empty, human intervention is always re-
quired irrespective of the value of HBL. The reason is because, for each
element, the set of true blocks is empty and hence the parameters have
no values.

In this case the GUI (Figure 2.5) presents a document with no high-
lighted block and offers only the option of selecting the true block (i.e.,
there is no true block to confirm). Once the document has been processed
by the operator, the selected true blocks are inserted into the respective
sets. The processing of further documents associated with this wrapper
will now proceed as above, based on the value of HBL. In other words, the
processing of the first document of a wrapper requires a human operator
that points and clicks on the relevant information, hence allowing the
system to generate the wrapper. The processing of further documents of

2. Document processing 42

Figure 2.5: Block location GUI.

that wrapper may or may not require a human operator depending on
the configured value for HBL.

2.6 Experiments and Results

2.6.1 Prototype

We implemented PATO prototype according to the SaaS (software as a
service) approach. Documents and results can be submitted and received,
respectively, in batches with a programmatic REST interface. Operators
interact with PATO through a browser-based GUI. We developed the
back-end with Java Enterprise Edition 6 and used Glassfish as application
server. We used the Google Web Toolkit framework (GWT) for the user
interface and the open-source OCR CuneiForm 1.1.0.

All the experiments described in the next sections were executed on a
quad core 2.33 GHz PC with 8 GB of RAM. The average time needed for
choosing the wrapper for a document is 1.4 ms. The update of knowl-
edge repository portion related to the wrapper choice stage takes, on
the average, 2.1 s; most of this time is spent for retraining the SVM
classifier. Regarding the block location stage, the average time for gen-
erating or updating a wrapper is 31.5 ms. The average time for locating
an element on a document is about 135 ms. To place these figures in
perspective, it suffices to note that the OCR execution of a single-page
document takes about 4 s, whereas image preprocessing (binarization,

43 Experiments and Results

deskew) takes 2.4 s.

2.6.2 Dataset

A common problem in the research field of information extraction from
printed documents is the lack of a reference testing dataset, which makes
it impossible to compare results obtained by different research groups
directly [66]. Following common practice, thus, we built three datasets:

• invoices: we collected a corpus of 415 real invoices issued by 43
different firms, i.e., with 43 different templates. The distribu-
tion of documents amongst firms is not uniform, the largest num-
ber of documents from the same firm being 80. This dataset is
challenging because all documents were digitized after being han-
dled by a corporate environment, thus they are quite noisy as
they contain stamps, handwritten signatures, ink annotations, sta-
ples and so on. We defined a schema composed of 9 elements:
date, invoiceNumber, total, taxableAmount, vat, rate,
customer, customerVatNumber, issuerVatNumber

• patents: we collected 118 patents from 8 different countries which
use different templates. We defined a schema composed of 10
elements: classificationCode, fillingDate, title, ab-
stract, representative, inventor, publicationDate,
applicationNumber, priority, applicant.

• datasheets: we collected 108 diode datasheets, produced by 10
different companies which use different templates. We defined a
schema composed of 6 elements: model, type, case, storage-
Temperature, weigth, thermalResistence.

The invoices and a small portion of the other datasets were acquired at
300 DPI, while the remaining documents were born-digital. We manually
constructed the ground truth for all the documents. An operator visually
inspected each document and, for each element of the schema, manually
selected the corresponding true block, if present. We made part of our
dataset publicly available1.

2.6.3 Experiments

The nature of the problem implies that the dataset has to be handled as
a sequence rather than as a set: the results may depend on the specific
order in which the documents are submitted to the system.

1http://machinelearning.inginf.units.it/data-and-tools/ghega-dataset (invoices are
not included due to privacy concerns)

http://machinelearning.inginf.units.it/data-and-tools/ghega-dataset

2. Document processing 44

Based on these considerations, we performed 20 executions of the
following procedure for each dataset: (i) we constructed a random se-
quence S with documents of the dataset; (ii) we submitted S to the
system; (iii) we repeated the previous step 9 times, one for each possi-
ble combination of values for HWC and HBL. We hence performed 540
experiments.

As stated in previous sections, we selected values for the system-
wide and wrapper-independent parameters after a few exploratory ex-
periments on a small portion of the first dataset and left these values
unchanged in all the experiments presented here.

In order to explore the trade-off between accuracy and automation
level, we measured several quantitative indexes, as follows. We measured
accuracy after the two salient workflow stages:

1. wrapper choice (WC) accuracy: the fraction of documents which
are associated with the correct existing wrapper or that correctly
lead to the generation of a new wrapper;

2. block location (BL) accuracy: the fraction of found blocks which
correctly match the corresponding true blocks.

The block accuracy is a cumulative measure, i.e., it takes into account
the effect of any possible error in the prior wrapper choice stage.

We estimated the automation level by counting, in each of the 540
experiments, the number of times that the system asked input from hu-
man operators. In particular, we counted the number of confirmations
and the number of selections provided by the operators, i.e., the num-
ber of correct and of wrong suggestions, respectively. Input from human
operators was actually simulated based on the ground truth.

We also cast the previous automation level results in terms of time re-
quired by human operators. To this end, we executed a further dedicated
experiment for assessing the time required by each basic GUI operation,
as follows. We selected a panel of 7 operators and a random sequence
of 32 documents, one sequence for each dataset, the same sequence for
all operators. We instrumented the system to measure the elapsed time
for the processing steps of the operator and configured the system with
HWC = HBL = Supervised. Then, we asked each operator to process the
sequence and collected the corresponding measurements. The results are
in Table 2.2.

In order to obtain a baseline for these values and for the system
as a whole, we also made a rough assessment of the time required by
a traditional data entry procedure. For each dataset, we prepared a
spreadsheet with the same schema as in the previous experiments and
printed 10 documents selected at random from the dataset. Then, we

45 Experiments and Results

Interaction type Time (s)

WC confirmation 5.24
WC selection 5.80

BL confirmation 3.45
BL selection 5.08

Table 2.2: Human interaction time (average time required to operators for
each basic GUI operation).

asked each of the 7 operators to fill the spreadsheets starting from the
printed documents. The average time for document turned out to be
89.23 s for the invoices documents, 50.9 s for the datasheets and 114.7 s
for the patents. As will be shown in the next section, these values are sig-
nificantly higher than the average time for document required by PATO,
even in the configuration with maximal amount of operator involvement
(i.e., HWC = HBL = Supervised). We did not even attempt to translate
the resulting estimates of time savings into monetary values because of
the excessive number of factors that would be necessary for obtaining
useful figures: labour cost, country, terms of service regarding accuracy
and latency, pipeline structuring (e.g., web-based crowdsourcing or ac-
tual shipping of printed documents) and so on. Indirect but meaningful
indications in this respect may be found on more specialized studies.
In [59] the processing cost of a printed invoice has been estimated in
about $13 per document and [89] reports that the number of printed
paper forms which are handled yearly by Japanese public administration
is greater than 2 billions. The economic impact of accountant personnel
workload involved in generating and maintaining invoice wrappers for a
widely adopted invoice recognition software is quantified in [91].

2.6.4 Results

Accuracy results averaged on the three datasets are shown in Table 2.3
for the accuracy and in Table 2.4 for the BL accuracy. The table contains
one row for each combination of the system parameters HWC and HBL.
The main finding is that block location accuracy is greater than 71% even
in the most automated configuration. The experiments also demonstrate
that less automated configurations indeed improve accuracy, as expected.
Most importantly, even a moderate amount of operators’ feedback in the
block selection stage allows obtaining a block location accuracy consis-
tently above 89%—it suffices to exclude the HBL = Unsupervised mode;
please recall that HBL = Semisupervised involves the operator only when
there are less than 5 examples for an element. It is worth pointing out
also that the 100% accuracy in block location with HBL = Supervised
could not be taken for granted in advance, as this accuracy index takes

2. Document processing 46

HWC
Accuracy Interactions

Avg. St. dev. Conf. Sel.

Unsupervised 72.72% 4.43% 0.00 0.00

Semisupervised 88.91% 5.58% 0.06 0.03

Supervised 100.00% 0.00% 0.90 0.10

Table 2.3: Average accuracy with standard deviation and number of human
interactions per document for wrapper choice stage. Results are averaged on
the three datasets.

HWC HBL
Accuracy Interactions

Avg. St. dev. Conf. Sel.

Unsupervised
Unsupervised 71.23% 1.10% 0.00 0.67

Semisupervised 89.11% 0.96% 1.77 1.14
Supervised 100.00% 0.00% 4.94 1.70

Semisupervised
Unsupervised 74.06% 1.22% 0.00 0.71

Semisupervised 91.59% 0.93% 1.94 1.15
Supervised 100.00% 0.00% 5.16 1.52

Supervised
Unsupervised 75.98% 1.13% 0.00 0.68

Semisupervised 92.66% 1.04% 1.84 1.08
Supervised 100.00% 0.00% 5.10 1.41

Table 2.4: Average accuracy with standard deviation and number of human
interactions per document for block location stage. Each row corresponds to
a different combination for the automation level parameters HWC and HBL.
Results are averaged on the three datasets.

into account any possible error in the previous wrapper choice stage. In-
deed, the block location stage turns out to be quite robust with respect
to errors in the wrapper choice stage: despite different accuracy levels
of the wrapper choice stage, the block location accuracy is always quite
high. It can also be seen, from the standard deviation of the accuracy
(Table 2.3 and Table 2.4), that the system is robust with respect to the
order in which documents are submitted.

These results cannot be compared directly to other earlier works,
due to the lack of a common benchmark dataset (see previous section).
However, it is interesting to note that, even in the most automated con-
figuration, our numerical values are at least as good as those reported in
earlier works focused on a static multi-source scenario for printed doc-
uments, e.g., [28, 49], even though we are coping with a much more
challenging dynamic scenario.

Automation level results are also shown in Table 2.3, columns WC
interaction and in Table 2.4, columns BL interaction. These columns

47 Experiments and Results

HWC HBL Interaction (s/doc)

Unsupervised
Unsupervised 3.40

Semisupervised 11.89
Supervised 25.71

Semisupervised
Unsupervised 4.14

Semisupervised 13.05
Supervised 26.06

Supervised
Unsupervised 9.19

Semisupervised 17.56
Supervised 30.49

Table 2.5: Number and time of human interactions per document for both
wrapper choice and block location stage. Each row corresponds to a different
combination for the automation level parameters HWC and HBL. Results are
averaged on the three datasets.

show the average number of interactions required for each document, in
each configuration. For example, with HWC = Unsupervised and HBL =
Unsupervised, the operator is required to perform for each document, on
the average, 0.67 block selections, no block or wrapper confirmation, no
wrapper selection.

These figures are cast in terms of average human interaction time per
document in Table 2.5, based on our measurements for WC/BL selection
and confirmation (see previous section). Interestingly, the human pro-
cessing time in supervised modes (25.71–30.49 s) is significantly smaller
than 86.9 s, i.e., our estimate for the document processing time without
our system (see previous section). In other words, our system may pro-
vide a practical advantage also in those scenario where perfect accuracy
is required, since it can reduce the human processing time by 66% with
respect to traditional data entry.

Data in Table 2.3 and Table 2.4 are averaged on the three datasets.
Table 2.6 shows accuracy and time length of human interaction for each
document, along with the traditional data entry processing time (base-
line), separately for each dataset.

We remark again that in the field of information extraction from
printed documents there does not exist any standard dataset benchmark.
Our indexes, thus, cannot be compared directly to indexes obtained in
other works. Keeping this fundamental problem in mind, though, it
may be useful to note the values for block location accuracy reported
in [49], as this is the only previous work encompassing both wrapper
choice and generation in a (static) multi-source scenario. The cited work
used a dataset composed of 923 documents of which 300 documents were
used for training (we used 415 documents, with a training set of 14

2. Document processing 48

Dataset
WC BL Interaction Data entry

accuracy accuracy (s/doc) (s/doc)

HWC = HBL = Semisupervised

Invoices 90.03% 95.79% 13.51 89.23
Datasheets 86.17% 84.95% 8.39 53.02

Patents 87.50% 82.89% 15.70 118.45

HWC = Semisupervised, HBL = Supervised

Invoices 90.03% 100.00% 26.54 89.23
Datasheets 86.17% 100.00% 16.61 53.02

Patents 87.50% 100.00% 33.00 118.45

Table 2.6: Results for the three datasets with two combinations of HWC and
HBL parameters.

documents). The reported block location accuracy is 80% and 75% for
documents of known and unknown sources respectively.

2.7 Remarks

We have presented the design, implementation and experimental evalu-
ation of a system (PATO) for information extraction from printed doc-
uments in a dynamic multi-source scenario. PATO assumes by design
that the appearance of new sources is not a sort of exceptional event
and is able to generate corresponding new wrappers: wrapper genera-
tion is supervised by the human operator, who interacts with the system
quickly and simply, without the need of any dedicated IT skills. A crucial
consequence of this assumption is that a wrapper must be generated us-
ing only information that can be extracted with a simple point-and-click
GUI. Wrappers are indeed generated based on a maximum-likelihood
approach applied on geometrical and textual properties of documents.
PATO chooses the appropriate wrapper for a document based on a com-
bination of two classifiers (k-NN and SVM) that operate on image-level
features. The prototype allows offering the service on a cloud-based plat-
form and may support crowdsourcing-based interaction modes.

We assessed the performance of PATO on a challenging dataset com-
posed of more than 640 printed documents. The result are very sat-
isfactory and suggest that our proposal may indeed constitute a viable
approach to information extraction from printed documents. The system
provides very good accuracy even in the most automated configuration.
On the other hand, PATO can deliver perfect block location accuracy
(i.e., 100% with our dataset) and, at the same time, reduce significantly
the operators’ engagement time with respect to traditional data entry.

Chapter 3
OCR error correction

3.1 Overview

The importance of the OCR errors for the quality of information extrac-
tion systems is demonstrated in [98] and [76], which quantify the negative
impact of OCR errors. The experimental evaluation showed that the sys-
tem presented in Chapter 2 is robust to OCR errors, that is, it is able
to locate the correct information despite the presence of noise and char-
acters misrecognition. However a system able to perform an automatic
correction of these errors will allow the system presented in Chapter 2
to gain an improved accuracy.

We therefore propose a solution aimed at improving the accuracy of
OCR-produced results on real-world printed documents. Our solution
is tailored to environments in which the type of the information to be
extracted is known, as in [18, 28, 73, 81, 6]. We aim at detecting and cor-
recting OCR errors in the extracted information using knowledge about
the type of each information (date, currency and so on).

The automatic correction of OCR errors is widely discussed in liter-
ature [61, 55, 106, 17], but is still an open research topic, expecially re-
garding the correction of text obtained from low quality or noisy printed
documents. Traditionally, there are two main ways to detect OCR er-
rors: dictionary lookup and character n-gram-matching [61, 55]. Other
methods for automatic OCR errors correction, like the one described in
[106] use topic models, which automatically detect and represent an arti-
cle semantic context. In this work we propose a different approach based
on the use of syntactic and semantic knowledge about the handled text
that is often available, expecially in the information extraction systems
of our interest.

Our approach is composed of two main steps: in the first step we

49

3. OCR error correction 50

exploit domain-knowledge about possible OCR mistakes to generate a
set of variants of the string extracted by the OCR. In the second step we
perform a suite of syntactic and semantic checks to select from the correct
string from the set of proposed ones. We also perform an aggregate
semantic check in order to verify the correctness of two or more elements
that are semantically linked to each other (e.g., total, taxable amount
and vat in an invoice document). This approach is able to detect and
correct OCR errors also in noisy documents without introducing errors.

As far as we know there is only one approach similar to the one here
proposed, but tailored to a different application domain: [44] proposes an
approach where a tree grammar, employed to define syntactically accept-
able mathematical formulae, is used to detect and correct misrecognized
mathematical formulae.

3.2 Our approach

3.2.1 System overview

Documents of our interest are typically electronic images of paper docu-
ments obtained with a scanner. A document is associated with a schema,
as follows. The schema describes the information to be extracted from
the document and consists of a set of typed elements e: for each element,
the document contains zero or one value v.

For example, a schema could be date, totalAmount, document
Number, respectively with types date, currency and number; a docu-
ment with this schema could contain the values "7/2/2011", "23,79"
and no value for the respective elements.

Executing an OCR procedure on the electronic image of a docu-
ment we obtain a set of strings {l1, l2, . . . , ln}. For each element e of
the schema, we associate the candidate string l to that element. The
system presented in the previous chapter can be used to perform the
association between elements e and string l.

For each searched element, it may be l 6= v, because of the following
reasons:

• l may contain v and extra-text that is not part of v. For example
l = "date:21/12/2008" while v = "21/12/2008".

• l may not contain v due to OCR errors. These errors can be of two
types:

– segmentation error : different line, word or character spac-
ings lead to misrecognitions of white-spaces, causing segmen-

51 Our approach

tation errors (e.g., l = "076 4352 056 C" while v =
"0764352056C").

– misrecognition of characters: low print quality, dirt and font
variations prevent an accurate recognition of characters (e.g.,
l = "|9,5SG" while v = "19,556" or l = "IOAS/0B127"
while v = "105/08127").

While the segmentation and misrecognition problem may occur only
with digitized documents, the extra-text problem may occur also with
digitally born documents.

We propose a solution that uses a suite of syntactic and semantic
checks in order to detect and correct these OCR-generated errors.

Our system is designed to be modular and extensible, so as to make
it possible to augment and improve the domain-knowledge encoded in
the module as well as to accommodate further application-specific rules
beyond those currently embedded in the system. A high-level description
of this step follows, full details are provided in the next sections.

For each element, we generate a set of values {v∗1, v∗2, . . . , v∗n} that,
due to OCR errors, might have lead to the extraction of l. This set
is generated by applying to the extracted string l a number of possi-
ble substitutions as encoded in a predefined table of substitution rules.
This table encodes a domain-knowledge about possible misrecognitions
of characters. Then, we perform a suite of syntactic and semantic checks
to exclude from the previous set all those values that do not satisfy at
least one of these checks. We denote by V ∗ the resulting set of candi-
date values. These syntactic and semantic checks are encoded in boolean
functions tailored to the type of the element to be extracted. We have
implemented these functions for the following elements: data, number,
vatNumber, currency, fiscal code (a unique id assigned to each
person that lives in Italy, whose structure follows certain costraints [107]).

In addition to checks applied to individual elements, a check is per-
formed also on groups of correlated elements whose values have to sat-
isfy one or more joint conditions. For example, in our invoice scenario
the group {taxableAmount,vat,total} has to satisfy the condition
vtaxableAmount+vvat = vtotal. Based on this observation, we introduced
a semantic check on the coherency of the values for the elements in the
group, as well as the ability to suggest a set V of further corrections in
case the check is violated.

Finally, for each element we select a single value v∗e that will be the
proposed correction, as follows: if V contains one or more values for e the
first one is selected, otherwise the first one contained in V ∗e is selected.
As will be explained in the next sections, if V or V ∗e contain more than
one value all have the same chance of being correct; the first one is chosen

3. OCR error correction 52

and the system notify the operator about the remaining candidate values.
Our system is provides as output a qualitative evaluation of the pro-

posed corrections, which is a sort of confidence level for the value asso-
ciated with an element. There are three quality levels, low, medium and
high, that are chosen based on the cardinality of V ∗e and of V. We omit
the details of the mapping for brevity. Using the quality for an element,
we can decide whether to use that (possibly corrected) value automat-
ically, or ask a confirmation to the operator. The operator is always
involved when two or more equally likely corrections are selected. If the
candidate string l, obtained from the initial OCR procedure, satisfies all
checks, then no correction is attempted and an high quality level is given
as output.

3.2.2 Single element

The workflow applied to each single element is shown in Figure 3.1 and
discussed below. Algorithm 1 shows the corresponding pseudocode. As
shown in Figure 3.1, our approach is based on components that may
be extended as appropriate in a different application domain: the table
of substitution rules and the functions fesyntax(v) and fesemantic(v) that
implement syntactic and semantic checks on an element value v and are
tailored to each type of element e. The table of substitution rules S
is a set of pairs s → S, where s is a string and S is a set of strings.
Each element of S, say s′, is a string visually similar to s, i.e., such that
the OCR might have extracted s instead of the correct value s′. An
example of substitution rule used in our system is "1" → {"i","I"},
which means that the OCR might extract the character "1" while in fact
the correct character might be either "i" or "I". Another example is
"11" → {"N"}, which means that the extracted string might be "11"
while the correct value might be "N"

In detail, the processing of each element is as follows.

1. The string cleaning stage removes from the input string l the char-
acters that satisfy both the following conditions: the character can-
not be present in v (according to fsyntax) and is not present in any
left-side element of S.

2. The substitution application stage generates a set of candidate val-
ues V ′ applying all the substitution rules on the input string l′. For
example, with l′ = "a1b1" the substitutions can be:

• One-to-one: for example, the rule "1" → "i" provokes the
insertion in V ′ of the candidate values:

{"a1b1","aib1","a1bi","aibi"}

53 Our approach

String cleaning

〈l, e〉

Substitution application

Syntactic checking

Semantic checking

Element selection

V ∗

S

fesyntax

fesemantic

〈l′, e〉

〈V ′, e〉

〈V ′′, e〉

Figure 3.1: OCR error fixer workflow.

3. OCR error correction 54

• One-to-many : for example, the rule "1" → {"i","I"} pro-
vokes the insertion in V ′ of the candidate values:

{"a1b1","a1bi","a1bI","aib1","aibi",
"aibI","aIb1","aIbi","aIbI"}

3. The syntactic and semantic checking stage removes from the set of
candidate values V ′ those strings that do not satisfy one or both of
the semantic checks for the element (joint checks applied to groups
of correlated elements are discussed in the next section) and gen-
erates V ′′.

4. The element selection stage selects the strings with minimal dis-
tance from the extracted string l′. Since the Levenshtein distance
gives the same weight to a character replacement and a character
removal, we used a modified version of that distance (dL) which give
more weight to a character removal. This is done adding the length
difference between strings to the original Levensthein distance.

If the final set of candidate values V ∗ is composed of more than one
element, then the operator is asked to make the final choice. Otherwise,
the operator may or may not be involved depending on the quality level
assigned to the element, as outlined in the previous section.

3.2.3 Correlated element fixing

Given a group E = {ei1 , ei2 , . . . , eik} of correlated elements, we introduce
a joint semantic check encoded in a boolean function

f
ei1 ,ei2 ,...,eik
semantic (v∗i1 , v

∗
i2 , . . . , v

∗
ik

)⇒ {T, F}

The joint conditions are used to provide further corrections: e.g., vvat =
vtotal − vtaxableAmount.

Using the single element fixing algorithm we obtain, for each element
ei, a set of candidate values V ∗ei . Using the sets V ∗ei we generate all the
possible combination of values 〈v∗ei1 , . . . , v

∗
eik
〉 ∈ V ∗ei1 × · · · × V

∗
eik

.

Then we create a new set of tuple called V where we store all the
combinations 〈v∗ei1 , . . . , v

∗
eik
〉 that satisfy the joint semantic check.

We also define k functions Fj(v∗ei1 , . . . , v
∗
eij−1

, v∗eij+1
, . . . , v∗ein) = v̂eij ,

i.e., having k− 1 elements, the function Fj gives the j-th value v̂eij such
that fsemantic is satisfied.

Using these functions, we can obtain a value v̂eij for at most one

element eij for which V ∗eij
= ∅.

55 Our approach

Algorithm 1 Single element fixing pseudo-code

for e in {e1, e2, . . . , en} do
le := extracted string for e
l′e := fcleaner(le)
V ′e := fsubstitutions(l

′
e)

V ′′e := ∅
for v′ in V ′e do

if fesyntactic(v
′) and fesemantic(v

′) then
V ′′e := V ′′e ∪ v′

end if
end for
V ∗e := ∅
dmin := min

v′′∈V ′′e
dL(v′′, l′e)

for v′′ in V ′′e do
if dL(v′′, l′e) = dmin then

add v′′ to V ∗e
end if

end for
end for

In particular, in our scenario we have a single

E = {total,taxableAmount,vat,rate}

for which the joint semantic function is defined as follows (we omit the
elements superscripts for ease of reading):

f(v∗total, v
∗
taxableAmount, v

∗
vat, v

∗
rate) =

=


T, if v∗total = v∗taxableAmount+

v∗vat ∧ v∗vat =
v∗taxableAmount∗v∗rate)

100

F, otherwise

Moreover, for the E described above we can define these functions:

Ftotal = v∗taxableAmount + v∗vat

FtaxableAmount = v∗total − v∗vat
Fvat = v∗total − v∗taxableAmount

Frate =
100 · v∗vat

v∗taxableAmount

3. OCR error correction 56

Algorithm 2 Correlated element fixing algorithm

for each {ei1 , ei2 , . . . , eik} do
for 〈v∗ei1 , . . . , v

∗
eik
〉 in V ∗ei1

× · · · × V ∗eik do

if ∃j | V ∗eij = ∅ then
v̂eij = Fj(v∗ei1 , . . . , v

∗
eij−1

, v∗eij+1
, . . . , v∗eik

)

add 〈v∗ei1 , . . . , v̂eij , . . . , v
∗
eik
〉 to V

else
if f

ei1 ,ei2 ,...,ein
semantic (v∗ei1

, v∗ei2
, . . . , v∗eik

) = T then

add 〈v∗ei1 , . . . , v
∗
eik
〉 to V

end if
end if

end for
end for

3.3 Experiments and results

3.3.1 Dataset

In order to assess our approach effectiveness we collected two real-world
datasets: the first (D1) composed by 591 values (extracted from 76 in-
voice documents) and the second (D2) composed by 208 values (extracted
from 37 invoice documents).

All documents belonging to the dataset were digitalized after being
handled by a corporate environment, thus they are quite noisy with hand-
written signatures, stamps, etc.; during the digitalization the pages were
positioned in a variable way with respect to the scanner area, resulting
in images whose content position is variable.

We defined a schema composed of 9 elements: date, invoiceNumber,
total, taxableAmount, vat, rate, customer, customerVatNumber,
issuerVatNumber.

The ground truth for the entire dataset was constructed using the de-
fined schema. Each document image is converted to a set of values using
an OCR system1. Then an operator inspected visually each document
and, for each element of the schema, manually selected the corresponding
string (i.e., l), if present, and wrote down the correct value (i.e., v).

The dataset D2 was created with the purpose of testing our algo-
rithm with low quality and dot-matrix printed documents. OCR per-
formances on dot-matrix printed document is poor: a visual inspection
of the dataset showed us that the OCR system introduced a sensible
amount of errors, making the scenario highly challenging. In particular,

1CuneiForm 1.1.0, an open source document analysis and OCR system.

57 Experiments and results

OCR→ "R5/0 I/07"

v = "25/01/07"

(a)

OCR→ "O1027eSO329"

v = "01027680329"

(b)

OCR→ "QXOVANNX00"

v = "GIOVANNI**"

(c)

Figure 3.2: Examples of OCR errors; in particular, Figure 3.2(a) is a typical
low quality dot matrix print.

approximately 55% of the strings recognized by the OCR system were
wrong. Figure 3.2 shows some portions of documents that led to OCR
errors.

3.3.2 Performance evaluation

The ground truth for this experiment is hence composed, for each docu-
ment, of the following set of pairs:

L = {〈le1 , ve1〉, 〈le2 , ve2〉, . . . , 〈len , ven〉}

Each pair associates the string l with the correct value v wrote down by
the operator.

We applied our algorithm to each set L and counted the number of
times when the output v∗ was equal to v, i.e., the output was correct.

Table 3.1 and 3.2 shows the performance of our algorithm in both
datasets. In particular, the tables show the percentage of correctly rec-
ognized values before (second column) and after (third column) the ex-
ecution of our procedure.

Averaging these values we obtain the global percentage of correct
values before and after the application of our algorithm. In dataset D1

we increment correctness from 49.1% to 86.8%, while in dataset D2 form
31.7% to 61.23%. In summary, our system is able to nearly double the
percentage of correct values, also in a challenging low quality dataset.

3. OCR error correction 58

Element
Correct Correct

Total
before after

date 46.05% 89.47% 76
invoice number 28.95% 55.26% 76
vat number 40.00% 88.89% 135
taxable amount 47.37% 90.79% 76
total 30.26% 85.53% 76
vat 57.89% 96.05% 76
rate 100.0% 100.0% 76

Table 3.1: Performance on dataset D1

Element
Correct Correct

Total
before after

date 54.8% 77.4% 31
invoice number 46.1% 50.0% 26
vat number 19.12% 58.82% 68
taxable amount 46.4% 71.4% 28
total 43.4% 69.6% 23
vat 29.1% 45.8% 24
rate 50.0% 75.0% 8

Table 3.2: Performance on dataset D2

It is important to notice that vat number and total are the el-
ements with the greatest correctness increment in both datasets. The
vat number structure follows certain constrains, and the great correct-
ness improvement (44.2% in average) confirms the usefulness of seman-
tic checks; similarly the correctness improvement of the total element
(40.7% in average) confirms the usefulness of joint semantic checks.

3.4 Remarks

In this work we consider the problem of detecting and correcting OCR
errors in an information extraction system. We propose an approach
based on domain-knowledge about the possible misrecognition of char-
acters to suggest corrections. We also propose a set of semantic and
syntactic checks to validate the suggested corrections.

The system here proposed is able to nearly double the percentage
of correctly identified values. These results have been obtained with a
real-world dataset including a substantial amount of noise, as typically
occurs when digitalizing printed documents previously handled by a cor-
porate office. Despite the challenging dataset used in our experimental

59 Remarks

evaluation, the obtained results are highly encouraging.
Future work will be devoted to extending further the generation of

the corrections, possibly for allowing an automatic definition of the sub-
stitution rules.

Chapter 4
Textual document processing:
RegEx generation

4.1 Overivew

Systems presented in Chapter 2 and 3 deals with weakly-structured doc-
uments: the structure is given by the geometrical position of text on the
page and does play a role in the information extraction process. When
the documents under analysis are mere text sequences, a more common
approach is the use of regular expressions to perform information extrac-
tion. Indeed a regular expression is a means for specifying string patterns
concisely. Such a specification may be used by a specialized engine for
extracting the strings matching the specification from a data stream.

Regular expressions are a long-established technique for a large va-
riety of textual document processing applications [99] and continue to
be a routinely used tool due to their expressiveness and flexibility [23].
Regular expressions have become an essential device in broadly different
application domains, including construction of XML schemas [19, 20],
extraction of bibliographic citations [31], network packets rewriting [53],
network traffic classification [101, 16], signal processing hardware design
[96], malware [83, 32] and phishing detection [85] and so on.

Constructing a regular expression suitable for a specific task is a te-
dious and error-prone process, which requires specialized skills including
familiarity with the formalism used by practical engines. For this rea-
son, several approaches for generating regular expressions automatically
have been proposed in the literature, with varying degrees of practical
applicability (see next section for a detailed discussion). In this work we
focus on text-extraction tasks and describe the design, implementation
and experimental evaluation of a system based on genetic programming

61

4. Textual document processing 62

(GP) for the automatic generation of regular expressions. The user is
required to describe the desired task by providing a set of positive ex-
amples, in the form of text lines in which each line is accompanied by
the string to be extracted, and an optional set of negative examples, i.e.,
of text lines from which no string has to be extracted. The system uses
these examples as learning corpus for driving the evolutionary search for
a regular expression suitable for the specified task. The regular expres-
sion generated by the system is suitable for use with widespread and
popular engines such as libraries of Java, PHP, Perl and so on. It is im-
portant to point out that all the user has to provide is a set of examples.
In particular, the user need not provide any initial regular expression
or hints about structure or symbols of the target expression. Usage of
the system, thus, requires neither familiarity with GP nor with regular
expressions syntax.

Essential components of our implementation include the following.
First, the fitness of individuals is based on the edit distance between
each detected string and the corresponding target string. Several earlier
works use a fitness based on the number of examples extracted correctly
(see Section 5.2), but, as it turned out from our experiments, such a
fitness definition is not adequate for this task. Second, we incorporate
in the fitness definition a function of the size of the individual, in order
to control bloating and obtain more readable results. Third, individu-
als are generated so as to make sure that each individual represents a
syntactically correct expression.

We performed an extensive experimental evaluation of our proposal
on 12 different extraction tasks: email addresses, IP addresses, MAC
(Ethernet card-level) addresses, web URLs, HTML headings, Italian So-
cial Security Numbers, phone numbers, HREF attributes, Twitter hash-
tags and citations. All these datasets were not generated synthetically,
except for one: the Italian Social Security Numbers dataset. We obtained
very good results for precision and recall in all the experiments. Some
of these datasets were used by earlier state-of-the-art proposals and our
results compare very favourably even to all these baseline results.

We believe these results may be practically relevant also because we
obtained very good figures for precision and recall even with just a few
tens of examples and the time required for generating a regular expression
is in the order of minutes.

It seems reasonable to claim, thus, that the system may be a prac-
tical surrogate for the specific skills required for generating regular ex-
pressions, at least in extraction problems similar to those analysed in our
evaluation.

A prototype of our system is publicly available at http://regex.inginf.
units.it.

http://regex.inginf.units.it
http://regex.inginf.units.it

63 Related work

4.2 Related work

The problem of synthesizing a regular expression from a set of examples
is long-established (e.g., [24]) and has been studied from several points of
view. We restrict our discussion to evolutionary solutions and to recent
proposals focussed on practical application domains of text-extraction.

An evolutionary approach based on grammatical evolution, i.e., a
grammar-based genetic algorithm for generating programs written in
languages specified with the Backus-Naur Form, is proposed in [29] and
assessed on the extraction of hyperlinks from HTML files. The approach
takes a set of examples in the form of text lines as input: a positive
example is a text line from which some string has to be extracted and
a negative example is a line from which no string has to be extracted.
The cited work, thus, considers a flagging problem: a positive example
is handled correctly when some string is extracted, irrespective of the
string. We consider instead a more difficult extraction problem: in our
case a positive example consists of a text line paired with a substring in
that line; a positive example is handled correctly only when exactly that
substring is extracted. We included in our experimental evaluation the
dataset of [29]. Interestingly, our results improve those of the cited work
even in terms of flagging precision and recall.

Problem and fitness definition in [10] and [46] are more similar to
ours. The proposal in [10] applies a genetic algorithm for evolving regu-
lar expressions in several populations, followed by a composition module
that composes two given regular expressions in several predefined ways
and selects the composition which scores better on a validation set. The
criteria for choosing from the final populations the two specific expres-
sions to be input to the composition module are not given. The proposal
is assessed in the context of web data extraction, in particular URLs and
phone numbers. According to the authors, when applied to real web doc-
uments, the generated expressions are often not able to extract essential
URLs components. A more direct application of genetic algorithms is
presented in [46], which proposes to restrict the search space by selecting
the symbol alphabet based on a preliminary frequency string analysis on
a subset of the corpus. The approach is applied to URL extraction, but
no details are given about size and composition of training and testing
set.

Concerning evolutionary approaches based on genetic programming,
the automatic induction of deterministic finite automata from examples
was proposed in [37], whereas the generation of regular expressions was
proposed in [97] and applied to the Tomita benchmark languages [100].
Stochastic regular expressions, also applied to the Tomita languages,
were considered in [88]. Our approach follows the same lines of these

4. Textual document processing 64

works, in that regular expressions are directly encoded as program trees.
On the other hand, the computing power available today enable us to
place much stronger emphasis on real-world text processing problems,
with regular expressions suitable to be input to widespread engines such
as Java, PHP and so on.

Concerning recent proposals focussed on text extraction, an active
learning approach is explored in [108]. The application domain is criminal
justice information systems and the main focus is minimizing the manual
effort required by operators. Starting from a single positive example,
human operators are introduced in the active learning loop in order to
manually prune irrelevant candidate examples generated by the learning
procedure. The approach is assessed on datasets with training set larger
than the corresponding testing set—in our experiments the training set is
a small fraction of the testing set. The cited work proposes an algorithm
that may generate only reduced regular expressions, i.e., a restricted form
of regular expressions not including, for example, the Kleen operator
used for specifying zero or more occurrences of the previous string (e.g.,
“a*” means zero or more occurrences of the “a” character). Similar
constraints characterize the learning algorithm proposed in [39]. This
limitation is not present in the active learning algorithm proposed in
[58], which requires a single positive example and an external oracle able
to respond to membership queries about candidate expressions—the role
played by human operators in the previous works. This algorithm is
provably able to generate arbitrarily complex regular expressions—not
including the union operator “|”—in polynomial time. No experimental
evaluation is provided.

An approach that may be applied to a wide range of practical cases
is proposed in [67]. This proposal requires a labelled set of examples and
an initial regular expression that has to be prepared with some domain
knowledge—which of course implies the presence of a skilled user. The
algorithm applies successive transformations to the starting expression,
for example by adding terms that should not be matched, until reaching
a local optimum in terms of precision and recall. The proposal is assessed
on regular expressions for extracting phone numbers, university course
names, software names, URLs. These datasets were publicly available
and we included some of them in our experimental evaluation. Another
approach based on successive transformations, which also relies on an
initial regular expression, is proposed in [7]. The main focus here is the
ability to cope with a potentially large alphabet over noisy data. The
requirement of an initial regular expression is not present in [23], which is
based on the identification in the training corpus of relevant patterns at
different granularity, i.e., either tokens or characters. The most suitable
of these patterns are then selected and combined into a single regular

65 Our approach

expression. This proposal is assessed on several business-related text
extraction tasks, i.e., phone numbers, invoice numbers, SWIFT codes and
some of the datasets in [67] (we included these datasets in our evaluation).

As a final remark we note that the earlier proposals more promising
for practical text-extraction applications are not based on evolutionary
approaches (i.e, [67, 7, 23]). Our experiments, though, exhibit precision
and recall that compare very favourably to all these works.

Automatic generation of regular expressions from examples is an ac-
tive research area also in application domains very different from text
extraction, in particular, gene classification in biological research [62].
The algorithm proposed in the cited work is tailored to the specific ap-
plication domain, i.e., extraction of patterns (mRNA sequences) with
biological significance which cannot be annotated in advance. Our ap-
proach focusses on a radically different scenario, because we require that
each positive example is annotated with the exact substring which is to
be identified.

Automatic generation of an appropriate schema definition from a
given set of XML documents is proposed in [19, 20]. These works de-
velop probabilistic algorithms able to generate subclasses of regular ex-
pressions that, as shown by the authors, suffice for the specific application
domain—e.g., expressions in which each alphabet symbol occurs a small
number of times.

Automatic generations of regular expressions to be used for spam
classification is described in [86]. The algorithm proposed in the cited
work is trained by examples of textual spam messages paired with a reg-
ular expression generated by a human expert for flagging those messages
as spam.

4.3 Our approach

4.3.1 User experience

The user provides a set of examples, each composed by a pair of strings
〈t, s〉 where t is a text line and s is the substring of t that must be
extracted by the regular expression. A pair where s is empty, meaning
that no string must be extracted from t, is a negative example.

The system generates a regular expression fully compatible with all
major regular expression engines, including those of Java, Perl and PHP.
The generated expression is not compatible with the JavaScript engines
included in popular browsers, for reasons discussed below. However,
the expression may be made compatible with JavaScript by means of a
simple mechanical transformation [43] and our system is able to execute
this transformation automatically.

4. Textual document processing 66

We remark that the user should not provide any further information
like an initial regular expression, a restricted set of important words, or
hints about the structure of the example. Moreover, our approach does
not required any knowledge about the syntax of the regular expressions or
about the GP algorithm. As pointed out in the introduction, a prototype
is available at http://regex.inginf.units.it.

4.3.2 Implementation

Every individual of the genetic programming (GP) search process is a
tree τ . The terminal set consists of: (i) a large alphabet of constants in-
cluding common characters and punctuation symbols, (ii) the numerical
and alphabetical ranges, (iii) two common predefined character classes,
i.e., “\w” and “\d”, (iv) the wildcard character “.”. Members of the
terminal set are listed in Table 4.1, in which the Label column is the
string that represents the corresponding node in the tree.

The function set consists of the regular expressions operators listed in
Table 4.1: (i) the possessive quantifiers “star”, “plus”, “question mark”,
(ii) the non-capturing group, (iii) the character class and negated charac-
ter class, (iv) the concatenator, that is a binary node that concatenates
its children, (v) and the ternary possessive quantifiers “repetition”. La-
bels of function set elements are templates used for transforming the
corresponding node and its children into (part of) a regular expression.
For example, a node of type “possessive question mark” will be trans-
formed into a string composed of the string associated with the child node
followed by the characters “?+”. The string associated with each child
node will be constructed in the same way, leaf nodes being associated
with their respective labels as listed in Table 4.2.

A tree τ is transformed into a string Rτ which represents a reg-
ular expression by means of a depth-first post order visit. In detail,
Rτ := Node2Regex(root(τ)), where the function Node2Regex is de-
fined in Algorithm 3: child(N, i) denotes the i-th child of node N and
replace(t1, t2, t3) is a function that substitutes string t2 with string t3
in string t1. A simple example is shown in Fig. 4.1.

Upon generation of a new candidate individual, the syntactic correct-
ness of the corresponding candidate expression is checked. If the check
fails, the candidate individual is discarded and a new one is generated.
The GP search is implemented by a software developed in our lab. The
software is written in Java and can run different GP searches in parallel
on different machines.

We used a fitness function that implements a multiobjective opti-
mization, minimizing: (i) the sum of the Levenshtein distances (also
called edit distances) between each detected string and the correspond-

http://regex.inginf.units.it

67 Our approach

Node Type Arity Label

possessive star

1

“c1*+”
possessive plus “c1++”
possessive question mark “c1?+”
non-capturing group “(c1)”
character class “[c1]”
negated character class “[ˆc1]”

concatenator 2 “c1c2”

possessive repetition 3 “c1{c2,c3}+”

Table 4.1: Function set

Node Type Labels

constants
“a”, . . . ,“z”,“A”, . . . ,“Z”,
“0”, . . . ,“9”,“@”,“#”, . . .

ranges “a-z”,“A-Z”,“0-9”
predefined character classes “\w”,“\d”
wildcard “.”

Table 4.2: Terminal set

Algorithm 3 Transformation function from node N to regular expres-
sion RN .

function node2regex(N)
RN := label(N)
if N is leaf then

return RN
else

for i := 1; i ≤ arity(N); i++ do
NC := child(N, i)
RN := replace(RN ,“ci”,node2regex(NC))

end for
return RN

end if
end function

Quantifier Greedy Lazy Possessive

0 or more times * *? *+
1 or more times + +? ++
0 or 1 time ? ?? ?+
from m to n times {m,n} {m,n}? {m,n}+

Table 4.3: Sample quantifiers

4. Textual document processing 68

“c1c2”

“[c1]” “c1++”

“c1c2”

“@” “#”

“\w”

Figure 4.1: Tree representation of the “[@#]\w++” regular expression.

ing desired string, and (ii) the length of the regular expression. In detail,
we defined the fitnesses fd(R) and fl(R) of an individual R as follows:

fd(R) =
n∑
i=1

d(si, R(ti)) (4.1)

fl(R) = l(R) (4.2)

where: (i) ti is the i-th example text line in a set of n given examples,
(ii) si is the substring to be found in ti, (iii) R(ti) is the string extracted
by the individual R for the example ti, (iv) d(t′, t′′) is the Levenshtein
distance between strings t′ and t′′, (v) l(R) is the number of characters
in the individual R—i.e., the length of the regular expression represented
by that individual. The multi-objective optimization is performed by a
Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [36].

We remark that the fitness is not defined in terms of precision and
recall, which are the performance metrics that really matter in the final
result. Other prior works attempt to minimize the number of unmatched
strings in the training corpus, thereby focussing more directly on preci-
sion and recall [62, 29]. Our early experiments along this line did not
lead to satisfactory results. Looking at the generated individuals, we
found that this approach tends to be excessively selective, in the sense
that individuals failing to match just a few characters are as important
in the next evolutionary step as those that are totally wrong. We thus
decided to use the Levenshtein distance (along the lines of [10, 46]) and
obtained very good results. A more systematic comparison between dif-
ferent fitness definitions is given in the experimental evaluation.

69 Experiments

4.3.3 Observations

The choice of function set and terminal set has been influenced by the
results of our early experiments, as follows. Regular expressions may
include quantifiers, i.e., metacharacters that describe how many times a
given group of characters shall repeat to be considered a match. Quanti-
fiers can be grouped by their behaviour in three macro groups (Table 4.3):
greedy, when they return the largest matching string, lazy, when they re-
turn the minimal match, and possessive, that are very similar to greedy
quantifiers except that a possessive quantifier does not attempt to back-
track when a match fails. In other words, once the engine reaches the
end of a candidate string without finding a match, a greedy quantifier
would backtrack and analyse the string again, whereas a possessive quan-
tifier will continue the analysis from the end of the candidate string just
analysed. Since greedy and lazy quantifiers have worst case exponential
complexity, we decided to generate individuals that include only posses-
sive quantifiers.

This design choice has been corroborated by the results of early ex-
periments in which we allowed individuals to include either greedy or lazy
quantifiers. The execution time of these experiments was way too long to
be practical—in the order of several tens of hours for generating a regular
expression, as opposed to the minutes or few tens of minutes typically
required when only possessive quantifiers are allowed (Section 5.5). Al-
lowing regular expressions to contain only possessive quantifiers lead to
results that cannot be handled by JavaScript engines included in major
browsers. However, as pointed out in Section 5.4, a simple mechanical
transformation—which consists in replacing each possessive quantifier
with an equivalent expression composed of group operators and a greedy
quantifier—makes the resulting expression compatible with JavaScript.

4.4 Experiments

4.4.1 Extraction tasks and datasets

We considered 12 different datasets, 2 of which are taken from [67],
and [23] and other 2 are taken from [29]. We made our best to include
in the evaluation all earlier proposals that address our problem. In this
respect, it is useful to remark that our setting is more challenging than
some of these works: (i) the proposal in [67] improves a regular expression
initially provided by the user, whereas in our case the user does not pro-
vide any hint about the regular expression to be constructed; and, (ii) the
proposal in [29] counts the numbers of examples in which a match has
been found, irrespective of the content of the matched string—a flagging

4. Textual document processing 70

problem. We count instead the number of examples in which exactly the
searched string has been matched.

Each dataset corresponds to an extraction task, as described below,
and we manually labelled all the data. The size of each dataset, including
its composition in terms of number of positive and negative samples, is
given in Table 4.5. A list of the datasets follows.

ReLIE URL Extract URLs from a collection of 50,000 web-pages ob-
tained from the publicly available University of Michigan Web page
collection [68] (used by [67]).

ReLIE Phone Number Extract phone numbers from a collection of 10,000
emails obtained from the publicly available Enron email collec-
tion [78] (used by [67, 23]).

Cetinkaya HREF Extract the HTML attribute HREF from the HTML
source of a set of 3 web pages (used by [29]).

Cetinkaya URL Extract URLs from a set of 3 web pages (used by [29]).

Twitter Hashtag/Cite Extract hashtags and citations from a big corpus
of Twitter messages collected using the Twitter Streaming API1; a
superset of this corpus has been used in [72].

Twitter URL Extract URLs from a subset of the corpus used in the
previous task.

Log IP Extract the IP addresses from a firewall log. These log were col-
lected from our lab gateway server running the vuurmuur2 firewall
software.

Italian SSN Extract Italian SSNs3 from a text corpus partly composed
of synthetically generated examples including some form of noise,
and partly obtained by OCR processing of low quality printed doc-
uments, mostly produced by dot-matrix printers. These documents
were invoices issued by sixty different Italian dealers and have been
used in [74].

Email Header IP Extract the IP addresses from the headers of an email
corpus composed of 50 email collected from personal mail boxes
of our lab staff. This task is more challenging than extracting IP
addresses from a server log because email headers typically contain
strings closely resembling to IP addresses, such as serial numbers,
unique identification numbers or timestamps.

1https://dev.twitter.com/docs/streaming-apis
2http://www.vuurmuur.org/
3http://it.wikipedia.org/wiki/Codice fiscale

71 Experiments

Website Email Extract the email addresses from the HTML source of the
address book page obtained from the website of a local nonprofit
association.

Log MAC Extract the MAC (Ethernet card) addresses from the same
log used in the Log IP task.

Website Heading Extract the HTML headings from the HTML source
of a set of pages taken from Wikipedia and W3C web sites.

4.4.2 Methodology

We executed each experiment as follows:

1. We split the dataset in three subsets selected randomly: a training
set, a validation set and a testing set. The training set and the
validation set are balanced, i.e., the number of positive examples is
always the same as the number of negative examples. Those sets
are used as learning corpus, as described below.

2. We executed a GP search as follows: (i) we ran J different and
independent GP evolutions (jobs), each on the training set (with-
out the examples in the validation set) and with the GP-related
parameters set as in Table 5.2; (ii) we selected the individual with
the best fitness on the training set for each job; (iii) among the
resulting set of J individuals, we selected the one with the best F-
measure on the validation set and used this individual as the final
regular expression R of the GP search.

3. We evaluated precision, recall and F-measure of R on the testing
set. In detail, we count an extraction when some (non empty)
string has been extracted from an example and a correct extraction
when exactly the (non empty) string associated with a positive
example has been extracted. Accordingly, the precision of a regular
expression is the ratio between number of correct extractions and
number of extractions; the recall is the ratio between number of
correct extractions and number of positive examples; F-measure is
the harmonic mean of precision and recall.

4. We executed each experiment with 5-fold cross-validation, i.e., we
repeated steps 1–3 five times.

5. We averaged the results for precision, recall and F-measure across
the five folds.

4. Textual document processing 72

Parameter Settings

Population size 500
Selection Tournament of size 7
Initialization method Ramped half-and-half
Initialization depths 1-5 levels
Maximum depth after crossover 15
Reproduction rate 10%
Crossover rate 80%
Mutation rate 10%
Number of generations 1000

Table 4.4: GP parameters

Task Examples Positive Negative
ReLIE URL 3877 2820 1057
ReLIE Phone Number 41832 4097 37735
Cetinkaya HREF 3416 211 3205
Cetinkaya URL 1233 466 767
Twitter Hashtag/Cite 50000 34879 15121
Twitter URL 5300 2200 3100
Log IP 10000 5000 5000
Italian SSN 5507 2783 2724
Email Header IP 2207 480 1728
Website Email 25590 1095 24495
Log MAC 10000 5000 5000
Website Heading 49513 566 48947

Table 4.5: Dataset compositions

4.4.3 Results

We executed a first suite of experiments with a learning corpus size of 100
elements, 50 training examples and 50 validation examples, and J = 128
jobs. The learning corpus is always a small portion of the full dataset,
around 1-4% except for the Cetinkaya URL task in which it is 8.1%.
The results were very good in all tasks as we always obtained values of
precision, recall, and F-measure around or higher than 90% (Fig. 4.2).
The only exceptions are the precision indexes for Cetinkaya HREF and
the ReLIE Phone precision. However, even these results constitute a
significant improvement over earlier works as discussed in detail in the
following.

Tasks ReLIE URL and ReLIE Phone Number have been used in ear-
lier relevant works [67, 23]. We repeated our experiments with different
sizes for the training set (as clarified in more detail below) and plotted the
average F-measure of the generated expressions on the testing set against

73 Experiments

0

20

40

60

80

100

R
eL

IE
U

R
L

R
eL

IE
P

h
on

e
N

u
m

b
er

C
et

in
ka

ya
H

R
E

F

C
et

in
ka

ya
U

R
L

T
w

it
te

r
H

as
h
ta

g/
C

it
e

T
w

it
te

r
U

R
L

L
og

IP

It
al

ia
n

S
S

N

E
m

ai
l

H
ea

d
er

IP

W
eb

si
te

E
m

ai
l

L
og

M
A

C

W
eb

S
it

e
H

ea
d

in
g

Prec. Recall F-m.

Figure 4.2: Experiment results, in terms of Precision, Recall and F-Measure,
of each task

4. Textual document processing 74

0

20

40

60

80

100

10 100 1000 10000 100000

T
es

ti
n

g
F

-m
ea

su
re

%

Training size

Our approach
Li et al.[67]

(a) ReLIE URL task

0

20

40

60

80

100

10 100 1000 10000 100000

T
es

ti
n

g
F

-m
ea

su
re

%

Training size

Our approach
Li et al. [67]

Brauer et al. [23]

(b) ReLIE Phone Number task

Figure 4.3: Analysis of tasks ReLIE URL and ReLIE Phone Number. Perfor-
mance comparison between our approach and earlier state-of-the-art proposals.

75 Experiments

the training set size. The results are in Fig. 5.2(a) for ReLIE URL and
in Fig. 5.2(b) for ReLIE Phone Number. The figures show also curves
for the corresponding F-measure values as reported from the cited works.
It seems fair to claim an evident superiority of our approach—note the
logarithmic scale on the x-axis.

The performance indexes of our approach are obtained, as described
in the previous section, as the average performance of the best expres-
sions generated in each of the five folds, where the best expression for
each fold is chosen by evaluating J = 128 individuals on the validation
set. We analyzed all the 5× 128 individuals that compose the final pop-
ulations of the five folds and reported the corresponding performance
distributions in Fig. 4.4 and Fig. 4.5 (learning set with 100 examples and
J = 128, i.e., the experiment in Fig. 4.2). It can be seen that the very
good performance that we obtain is not the result of a bunch of lucky in-
dividuals: our approach manage to generate systematically a number of
different expressions with high values of precision, recall and F-measure.

Task
Dataset Results (%) Time

Learn. % Train. Prec. Recall F-m. (min)

ReLIE URL

25 0.7 12 77.3 82.5 78.3 2
50 1.3 25 79.9 98.1 88.0 4
100 2.6 50 88.6 98.1 93.0 6
250 6.4 150 89.7 99.0 94.1 10
400 10.3 300 92.0 98.6 95.2 23

ReLIE
Phone
Number

25 0.1 12 80.9 90.9 84.0 2
50 0.1 25 85.4 99.2 91.7 5
100 0.2 50 83.2 98.7 90.2 7
250 0.6 150 87.7 99.1 93.0 11
400 1.0 300 90.2 99.1 94.5 28

Cetinkaya
HREF

25 0.7 12 34.5 94.8 46.9 5
50 1.5 25 72.2 94.4 81.6 10
100 2.9 50 81.3 99.9 89.6 17
250 7.3 150 85.6 99.2 91.8 30
400 11.7 300 88.1 100.0 93.5 41

Cetinkaya
URL

25 2.0 12 79.4 89.6 83.4 3
50 4.1 25 87.6 98.4 92.7 7
100 8.1 50 90.6 99.7 94.9 12
250 22.3 150 95.0 99.8 97.3 22
400 32.4 300 97.1 99.8 98.5 29

4. Textual document processing 76

Twitter
Hashtag/Cite

25 0.1 12 98.7 91.2 94.8 1
50 0.1 25 99.1 95.6 97.3 2
100 0.2 50 100.0 100.0 100.0 3
250 0.5 150 99.9 100.0 100.0 8
400 0.8 300 99.8 99.9 99.9 13

Twitter URL

25 0.5 12 95.4 99.5 97.3 1
50 0.9 25 97.3 99.4 98.3 2
100 1.9 50 96.6 99.7 98.1 7
250 4.7 150 96.5 99.6 98.0 12
400 7.5 300 97.4 99.4 98.4 24

Log IP

25 0.3 12 100.0 100.0 100.0 4
50 0.5 25 100.0 100.0 100.0 7
100 1.0 50 100.0 100.0 100.0 9
250 2.5 150 100.0 100.0 100.0 7
400 4.0 300 100.0 100.0 100.0 30

Italian SSN

25 0.5 12 95.6 99.6 97.6 1
50 0.9 25 90.7 99.7 94.9 2
100 1.8 50 94.7 99.7 97.1 2
250 4.5 150 98.6 99.7 99.2 3
400 7.3 300 98.5 99.6 99.1 6

Email
Header IP

25 1.1 12 84.2 99.8 91.3 2
50 2.3 25 86.1 99.4 92.4 4
100 4.5 50 87.0 99.4 92.8 6
250 11.3 150 89.5 98.1 93.6 9
400 18.1 300 89.8 99.9 94.6 20

Website
Email

25 0.1 12 75.3 99.2 81.0 2
50 0.2 25 88.3 99.8 92.3 5
100 0.4 50 89.0 98.1 91.8 7
250 1.0 150 99.1 100.0 99.6 10
400 1.6 300 99.1 100.0 99.6 23

Log MAC

25 0.3 12 100.0 100.0 100.0 4
50 0.5 25 100.0 100.0 100.0 7
100 1.0 50 100.0 100.0 100.0 10
250 2.5 150 100.0 100.0 100.0 19
400 4.0 300 100.0 100.0 100.0 29

Website
Heading

25 0.1 12 79.9 100.0 88.7 6
50 0.1 25 72.4 91.4 78.7 10
100 0.2 50 89.8 95.4 92.4 15
250 0.5 150 90.6 89.9 89.2 28
400 0.8 300 92.7 100.0 96.2 42

Table 4.6: Experiment results with different learning size

77 Experiments

0
50

100
150
200
250
300
350
400

0 20 40 60 80 100

#
of

in
d

iv
id

u
a
ls

Testing precision %

0
50

100
150
200
250
300
350
400

0 20 40 60 80 100

#
of

in
d

iv
id

u
a
ls

Testing recall %

0
50

100
150
200
250
300
350
400

0 20 40 60 80 100

#
of

in
d

iv
id

u
a
ls

Testing F-measure %

Figure 4.4: Distributions of precision, recall and F-measure on the testing set
of ReLIE URL task.

0
50

100
150
200
250
300
350
400

0 20 40 60 80 100

#
of

in
d

iv
id

u
al

s

Testing precision %

0
50

100
150
200
250
300
350
400

0 20 40 60 80 100

#
of

in
d

iv
id

u
al

s

Testing recall %

0
50

100
150
200
250
300
350
400

0 20 40 60 80 100

#
of

in
d

iv
id

u
al

s

Testing F-measure %

Figure 4.5: Distributions of precision, recall and F-measure on the testing set
of ReLIE Phone Number task.

4. Textual document processing 78

The datasets of tasks Cetinkaya HREF and Cetinkaya URL were also
used in earlier relevant works in the context of a flagging problem [29]:
a positive example is counted as correct when some string is extracted,
irrespective of the string—an extraction problem simpler than ours. We
assessed the performance of our result and of the regular expressions
described in [29] according to this metric—i.e., we used all these expres-
sions for solving a flagging problem on our testing set. The results are in
Table 4.7. Our results exhibit better performance, which is interesting
because: (i) the regular expressions in [29] were generated with 266 and
232 learning examples for the two tasks, whereas our result used 100
learning examples; (ii) our GP search aimed at optimizing a different
(stronger) metric.

Having ascertained the good performance of the previous configura-
tion, we investigated other dimensions of the design space in order to
gain insights into the relation between quality of the generated expres-
sions and size of the training set. We executed a large suite of experi-
ments by varying the size of the learning set, as summarized in Table 4.6.
This table reports, for each task, the number of learning examples, the
percentage of the learning corpus with respect to the full dataset and the
number of training examples. The rows with 100 learning examples are
a duplicate of the previous configuration provided for clarity. It can be
seen that the quality of the generated expression is very good in nearly
all cases, even when the learning corpus is very small. Not surprisingly,
for some tasks a learning corpus composed of only 25–50 examples turns
out to be excessively small—e.g., Cetinkaya HREF. Even in these cases,
however, enlarging the learning corpus does improve performance and
100 examples always suffice to achieve F-measure greater than 90%.

The table also reports the average execution time for each fold. We
executed our experiments on 4 identical machines running in parallel,
each powered with a quad-core Intel Xeon X3323 (2.53 GHz) and 2GB
of RAM. Execution time is in the order of a few minutes, which seems
practical. Indeed, although constructing the learning corpus is not im-
mediate, the size of such a corpus is sufficiently small to be constructed
in a matter of minutes as well. Most importantly, though, this job does
not require any specific skills to be accomplished.

We also explored the possibility of reducing the number of jobs J =
128, in order to save computing resources. We repeated each of the
experiments in Table 4.6 twice, with J = 64 and J = 32. We found
that performance does not degrade significantly even when the number
of jobs drops from 128 to 32—which roughly corresponds to dividing the
execution time in Table 4.6 by four. In this perspective, we decided to
set J = 32 in the prototype of our system available at http://regex.inginf.
units.it.

http://regex.inginf.units.it
http://regex.inginf.units.it

79 Experiments

Approach
Cetinkaya Cetinkaya

HREF URL
Cetinkaya [29] 99.97 76.07
Our approach 100.00 99.64

Table 4.7: Comparison between our approach and the one presented in [29]
(flagging-based metric)

Task Regular expression
Twitter Hashtag/Cite [@#]\w++

Twitter URL \w++[ˆ\w]*+\w\.\w\w[ˆ#]\w*+

Log IP \d++\.\d++\.\d++\.\d++

Italian SSN ([A-Z]{4,8}+(\w\w\w)*+[A-Z])*+

Email Header IP \d*+\.\d*+\.\d*+\.\d*+

Website Email (\-?+\w*+@*+\.*+\w++)*+

Log MAC \w*+:\w*+:\w\w:\w\w:\w\w:\w\w

Website Heading \<h[ˆX]*+

ReLIE URL
((\w++:)?+/*+\w++\.[a-z]\w([ˆ1]\w)

?+\w(\.([ˆ1]\w++)++)?+)++

ReLIE Phone Number ([ˆ\)]\d)++[ˆ:][ˆ:]\d++[ˆ:]\d\d[ˆ:]\d

Cetinkaya HREF
h[r][ˆ\.]*+(([ˆ1][ˆh][ˆ1]*+\w*+[ˆ1])*+)

+/+(\.*+\w\w*+/*+[ˆ1])*+\w*+

Cetinkaya URL ([/\w:]*+\.([ˆ:][/\w\.]++)*+)

Table 4.8: Regular expressions obtained with a training set of 50 elements.
For each task, we report only the shortest expression among those obtained in
the five folds.

4. Textual document processing 80

We believe that our fitness definition plays a crucial role in determin-
ing the very good results. In order to gain further insights into this issue,
we executed further experiments with different fitness definitions. First,
we defined a linear combination of the objectives in Eqn. (5.1) and (4.2):

f(R) =

n∑
i=1

d(si, R(ti)) + αl(R) (4.3)

Next, we focussed on the experiment of the Twitter URL task with
learning corpus of 400 examples and executed this experiment with the
following fitness definitions.

MO [Edit,Length] the multi-objective fitness function of our approach
(Section 4.3.2).

MO [Edit,Depth] a multi-objective fitness function in which the length
of the regular expression is replaced by the depth of the tree rep-
resenting the individual.

Edit + αLength a linear combination of the objectives, with varying val-
ues for the α parameter (Eqn. 4.3);

Edit + αDepth the same as the previous definition, but using the depth
of the tree instead of the length of the expression;

Errors a set of four fitness definitions obtained from the four above by
counting the number of missed examples rather than the sum of
the edit distances between each detected expression and the corre-
sponding example.

The results are given in Table 4.9. We omitted the results of the ex-
periments with fitness functions based on the number of missed examples
(Errors in the above list) as they all exhibited precision and recall equal
to zero. This analysis has three key outcomes. First, fitness definitions
aimed at minimizing the number of missed examples do not work. In-
deed, this observation is perhaps the reason why the earlier approaches
shown in the Fig. 5.2(a) and Fig. 5.2(b) need a much larger training set.
Second, when minimizing the sum of the edit distances, the various fit-
ness flavours have essentially no effect on precision and recall, but they
do have a strong impact on the complexity, and thus on readability, of
the generated expression. Third, a multi-objective framework avoids the
problem of estimating the linearisation coefficients, but a broad range
of values for α provide expressions that are shorter and of comparable
quality.

Finally, we show a sample of the expressions generated by our system
in Table 4.8. The table has one row for each of the previous experiments

81 Remarks

Prec. Recall F-m.
Fitness α % % % l
MO [Edit,Length] 97.39 99.47 98.42 54
MO [Edit,Depth] 97.72 99.63 98.67 150
Edit 97.41 98.50 97.05 285
Edit + αLength 0.01 97.40 99.50 98.44 30
Edit + αLength 0.10 97.36 99.50 98.42 28
Edit + αLength 1.00 97.36 99.50 98.42 28
Edit + αDepth 0.01 97.41 99.50 98.44 51
Edit + αDepth 0.10 97.67 99.50 98.58 55
Edit + αDepth 1.00 97.41 99.50 98.44 47

Table 4.9: Performance indexes and average length l of the resulting regular
expressions for different fitness functions and values for the α parameter used
for weighing the two objectives. MO indicates a Multi-Objective approach.

with training set of 50 elements. Each row shows the shortest expression
generated across the corresponding five folds. The expressions have not
been manipulated and are exactly as generated by our machinery.

4.5 Remarks

We have proposed an approach for the automatic generation of regu-
lar expressions for text extraction implemented with genetic program-
ming (GP). The approach requires only a set of labelled examples for
describing the extraction task and it does not require any hint about the
regular expression that solves that task. No specific skills about regular
expressions are thus required by users.

We assessed our proposal on 12 datasets from different application
domains. The results in terms of precision and recall are very good, even
if compared to earlier state-of-the-art proposals. The training corpus
was small, in a relative sense (compared to the size of the testing set), in
an absolute sense and in comparison to earlier proposals. The execution
time is sufficiently short to make the approach practical.

Key ingredients of our approach are: (i) a multi-objective fitness func-
tion based on the edit distance and the length of the candidate regular
expression, (ii) the enforcement of syntactical and semantic constraints
on all the individuals constructed during the evolution, (iii) the choice
of speeding up fitness evaluation by constructing individuals that may
include only possessive quantifiers.

Although our approach has certainly to be investigated further on
other datasets and application domains, we believe that our results are
highly promising toward the achievement of a a practical surrogate for the
specific skills required for generating regular expressions, and significant

4. Textual document processing 82

as a demonstration of what can be achieved with GP-based approaches
on contemporary IT technology.

Chapter 5
Structured document
processing: DTD generation

5.1 Overview

The eXtensible Markup Language (XML) is a markup language for en-
coding data in a format which is both human-readable and machine-
readable. XML documents consist of Unicode text and can represent
arbitrary data structures. Although XML documents may be produced
and/or consumed also by humans, in practice XML is widely used in
machine-to-machine interaction, especially on the web.

Practical applications may impose specific encoding constraints on
the data to be exchanged and these constraints take the form of a schema.
Schemas are specified in a schema language, the most widely used schema
languages being those used in Document Type Definitions (DTD) [103]
and XML Schema Definitions (XSD) [104]. Schemas provide human
users with a conceptual description of the data contained in XML doc-
uments and, most importantly, greatly facilitate automated processing.
For example, availability of the expected schema for a given XML docu-
ment allows machine consumers to validate input data automatically. In
fact, unvalidated input data from web requests is a very important and
pervasive class of security vulnerabilities in web applications.

XML documents are not required to refer their schema, however. Al-
though the presence of schemas constitutes an important advantage, a
large portion of XML documents found in the wild actually does not
refer any schema [75, 8]. Furthermore, even when XML documents do
refer a schema, the schema is often unavailable (e.g., it has been moved
to another web site) or incomplete. For example, the DTD schema for

83

5. Structured document processing 84

requests and responses to the OpenStreetMap API1 is stated to be “in-
complete”, yet made available by the organization itself who defined and
primarily uses the corresponding XML documents.

For these reasons, the need arose for methods capable of generating
and maintaining good-quality schemas from existing XML data, in or-
der to allow more effective production, processing and consumptions of
XML encoded data [42]. In this chapter, we propose the design, imple-
mentation and experimental evaluation of a tool based on Genetic Pro-
gramming (GP) for generating DTD schemas automatically. Our tool,
which we called GP-DEI (Genetic Programming DTD Evolutionary In-
ferer), takes as input one or more XML documents and automatically
produces a DTD schema which validates the input documents. Usage of
the GP-DEI requires neither familiarity with GP nor with DTD or XML
syntaxes. Our software is publicly available on our lab web site2, along
with the dataset used for its experimental evaluation.

The contribution of this work includes: (i) a way of encoding DTD
element type declarations as trees that is suitable for a GP-based DTD
schema generation; (ii) a set of multi-objective fitness definitions which
allow obtaining a DTD which allow generating practically useful DTDs.

We performed an extensive experimental evaluation of our tool on a
large collection of several sets of real world XML documents, including a
portion of a dataset previously used in [19]. We compared a DTD gener-
ated by our tool against the real counterpart and we assessed the ability
of GP-DEI to generate a DTD which, when used to validate corrupted
XML documents, correctly detect wrong XML elements.

5.2 Related work

We are not aware of any evolutionary-based approach for inferring DTD
schemas automatically from a set of examples; yet, there are some works
on automatic generation of DTDs. The approach in [45] generates a
DTD based on a sequence of induction steps. The proposed algorithm
finds sequential and choice patterns in the input data, performs a form
of factorization and generalization, and finally applies a Minimal De-
scription Length principle. The approach in [19] is based on the obser-
vation that content models in DTDs contain large alphabets but every
alphabet symbol occurs only a small number of times. Moreover, cer-
tain restricted forms of regular expressions suffice to represent DTDs,
i.e., single occurrence regular expression (SORE) and chain regular ex-
pression (CHAREs). The approach proposes a learning algorithm that

1http://wiki.openstreetmap.org/wiki/API v0.6/DTD, visited in November 2012
2Obscured due to double blind review.

http://wiki.openstreetmap.org/wiki/API_v0.6/DTD

85 XML and DTD

automatically infers the latter based on a set of examples.

Use of spanning graphs is proposed in [79]. The XML input docu-
ments are converted into document trees, then all trees are merged in a
spanning graph. The conversion from the final spanning graph into the
DTD form is performed by applying a set of heuristic rules. It is also
possible to perform a relaxation of the generated DTD according to a
parameter specified by the user. A variation to this approach is proposed
in [77], where a restricted content model is inferred from each element
and some heuristic rules are applied to the merging procedure for gen-
erating the spanning graph. The algorithm proposed in [92] is based
on converting XML documents to an entity-relationship model, which is
done by extracting semantics information from the input documents, like
cardinalities among entities and parent-child relationship.

The use of the DTDs goes beyond the document validation, therefore
a tool able to infer DTDs from a set of XML documents could be useful
in other application domains. For instance in [102] the DTDs are used to
automatically create tables definition in a relational data base. A method
for generating XForms and XSL code automatically starting from a DTD,
in order to reduce development cost for coding forms, is presented in [64].

Since a DTD expression is a form of regular expression, as will be dis-
cussed in section 5.3, our approach, for each element in the documents,
tries to find a suitable regular expression. In literature the problem of
learning a regular expressions from a set of examples is long-established
(e.g., [24]) and has been studied from several points of view. For ex-
ample, [39] provides a learning algorithm for finite unions of pairwise
union-free regular expressions, and two approaches for generating regu-
lar expressions based on Genetic Programming are proposed in [11, 97].

Finally, the inference of XML Schemas (i.e., XSD, which are not
addressed in this work) from examples is addressed in [34, 52, 77, 21].

5.3 XML and DTD

An XML document is a string of characters which are either markup
or content: the former describes the structure of the information while
the latter is the information itself. Markup constructs are known as
tags, which can be of three types: start tags (e.g., <author>), end tags
(e.g., </author>) and empty-element tags (e.g., <reviewed/>). Start
tags and empty-element tags may include zero or more pairs of named
values known as attributes (e.g., <paper doi="10.1145/2330784.
2331000">). A tag can have at most one attribute with a given name.
The portion of a document between a start tag and the first matching
end tag (tags included) is an element. Each element may include other

5. Structured document processing 86

markups, i.e., other elements. An XML document may easily be trans-
formed into a tree in which each node corresponds to an element and the
node descendants corresponds to the elements contained in the element.
An example is in Figure 5.1-left.

The XML specification does not impose any constraints on: (i) the
element names that may be present in an XML document; (ii) the con-
tent of the elements; (iii) the attribute names that may be present in
the elements; (iv) the value of the attributes. Such constraints may be
described in a schema, an external document which can be written us-
ing different schema languages and can be possibly referred by an XML
document. An XML document that is both syntactically correct and
conforms to its schema is said to be valid.

A widely used schema language is the one used in Document Type
Definitions (DTD). A DTD is composed by a set of element type declara-
tions, a set of attribute type declarations and possibly further constructs
(entity declarations and notation declarations) that are rarely used and
not addressed in this work.

An element type declaration defines an element and its possible con-
tent. The content is defined as: (i) EMPTY, which specifies that the
element cannot have any content, (ii) ANY, which specifies that no con-
straints exist for the element content, or (iii) an expression e, which is a
form of reduced regular expression over the alphabet A of element names
allowed by the DTD.

Expression e can be defined with a context free grammar: e :=
#PCDATA, e := a, e := (e1, . . .,en), e := (e1| . . .|en), e := e?,
e := e+, e := e*, where: (i) #PCDATA is text content ; (ii) a ∈ A is an
element name; (iii) the list operator , specifies that an element content
must include all the given expressions, in the exact order; (iv) the choice
operator | specifies that an element content must include exactly one
of the given expressions; (v) the ?, + and * quantifiers specify that the
given expression must appear respectively 0 or 1 times, 1 or more times,
0 or more times.

An example is in Figure 5.1-right, which shows a DTD describing a
set of constraints satisfied by the XML document on the left.

An attribute type declaration defines the possible attributes for a
given element. The declaration simply consists of a list of triplets, each
describing: (i) the name of the attribute, (ii) its data type or an enu-
meration of its possible values, and (iii) an indication of whether the
attribute is required (#REQUIRED), optional (#IMPLIED) or has a fixed
value (#FIXED)—the latter being accompanied by an actual value. Fig-
ure 5.1-right contains 2 attribute type declarations.

87 Our approach

<dblp>
<inproceedings doi="10.1145/2330784.23300">
<author>Alice Anderssen</author>
<author>Bob Bolder</author>
<author>Chris Cage</author>
<author>Dimitri Dizokulos</author>
<author>Eric Egon</author>
<author>Frank Fanluc</author>
<title>
Automatic generation of foo from bar

</title>
<year>2012</year>

</inproceedings>
<article doi="10.1016/0304-3975(86)9008">
<author>Gerard Berry</author>
<author>Ravi Sethi</author>
<title>
From regular expressions to
deterministic automata

</title>
<year>1986</year>

</article>
</dblp>

<!ELEMENT dblp(inproceedings|article)*>
<!ELEMENT inproceedings(author+|title|year?)>
<!ELEMENT article(author+|title|year?)>
<!ELEMENT author(#PCDATA)>
<!ELEMENT title(#PCDATA)>
<!ELEMENT year(#PCDATA)>
<!ATTLIST inproceedings

doi CDATA #REQUIRED
venue CDATA #IMPLIED>

<!ATTLIST article
doi CDATA #REQUIRED>

Figure 5.1: An XML document (left) and a DTD (right) which validates the
XML document.

5.4 Our approach

Our tool, named GP-DEI, takes a set of XML documents and generates
a DTD. The output DTD includes all and only the element type declara-
tions and the attribute list declarations which allow to validate the input
documents. The tool has the following limitations: (i) generated DTDs
does not include other DTD artifacts (as entity declarations and nota-
tion declarations) and (ii) generated attribute list declarations include
only one data type (CDATA) and only the #REQUIRED and #FIXED key-
words. These limitations do not prevent GP-DEI from generating DTDs
that are useful in the vast majority of practical cases, though.

GP-DEI operates in three steps: (i) pre-processing of the documents,
(ii) evolutionary generation of the schema, (iii) post-processing of the
schema which produces a syntactically correct DTD.

5.4.1 Pre-processing

In this step, GP-DEI parses the input XML documents and produces two
sets of training corpora: (i) a set τE which will be used for generating
the element type declarations, and (ii) a set τA which will be used for
generating the attribute type declarations. The set τE contains one train-
ing corpus Ee for each element name e which occurs at least once in the
input documents. A training corpus Ee is generated as follows: (i) parse
each XML input document d and, (ii) for each found element with name
e in d, adds the sequence of e children names to Ee; in case e contains

5. Structured document processing 88

Element name e Character ce Training corpus Ee

dblp a {bf}
inproceedings b {ccccccde}
author c {C, C, C, C, C, C, C, C}
title d {C, C}
year e {C, C}
article f {ccde}

Table 5.1: Part of the result of pre-processing step, including the set τE (third
column) built from the document in Figure 5.1. Character C is the character
associated with #text during pre-processing.

textual content, the name #text is included in the sequence (this name
is used only by our tool and has not any XML/DTD meaning). The set
τA is built in the same way, except that each training corpus Ae contains
the sequences of attribute names instead of children element names.

A further pre-processing step is then performed on τE and τA, as
follows: (i) we associate each element name e with a single (globally
unique) unicode character ce, (ii) we associate each attribute name a
with a single (globally unique) unicode character ca, (iii) for each Ee, we
replace each sequence of children element names with a string obtained
by concatenating the corresponding associated characters, (iv) we repeat
the previous step for each Ae and, finally, (v) we replace in each Ee string
all character repetitions of three or more times with a repetition of two
characters (e.g., aaa→aa, bbbb→bb). As an example, Table 5.1 shows
the set τE (third column) built from the input document of Figure 5.1.

5.4.2 Expressions generation

Since a DTD element type declaration is a form of regular expression
(Section 5.3), we generate a regular expression Re for each element name
e in the set τE . We generate regular expressions with a GP-based pro-
cedure similar to the one described in [11].

The terminal set varies for each element name e and consists of all
the characters appearing in Ee. The function set consists of the following
regular expressions operators: (i) the possessive quantifiers *+, ?+ and
++, (ii) the non-capturing group, (iii) the concatenator, that is a binary
node that concatenates its children, (iv) and the choice operator |.

We use two fitness functions to be minimized: (i) the sum of the Lev-
enshtein distances between each example string and the corresponding
matched portion of the string, and (ii) the number of optional quantifiers
(*+ and ?+) in the regular expression. More in the detail, we define the

89 Our approach

fitnesses fd(R) and fc(R) of an individual R as follows:

fd(R) =
∑|Ee|

i=1 d(ti, R(ti)) (5.1)

fc(R) = s(R) + q(R) (5.2)

where ti is the i-th element of Ee, R(ti) is the string matched by the
individual R in ti, d(t′, t′′) is the Levenshtein distance between strings
t′ and t′′, s(R) is the number of *+ quantifiers in R and q(R) is the
number of ?+ quantifiers in R. We use a multi-objective NSGA-II based
optimization to drive the GP-search.

The choice of the fitness function in Equation 5.2 was made to reduce
the bloating in the regular expressions: an optional element may be
useless, increases the length of regular expression and can also allow the
regular expression to match strings never seen in the training set, which
may result in producing DTDs which are “too general”. Therefore, we
give an advantage to individuals containing a smaller number of optional
quantifiers.

It is important to point out that we represent each element name with
only one character in order to equally weigh the errors on all elements
independently by their name length. If element names were represented
in their native form, the fitness function in Equation 5.1 would penalize
errors on elements with a longer name. Moreover, compressing exam-
ple strings speeds up the evaluation of the individual, since the regular
expression processor takes more time to analyze longer strings.

Regarding the generation of the attribute list declarations, we do not
use an evolutionary approach. Instead, for each e, we check the presence
of an attribute character ca in all the strings s of Ae and, if ca occurs
in each s, we set a as required (i.e., #REQUIRED), otherwise, we set a
as optional (i.e., #IMPLIED). We finally set all attributes data type as
CDATA.

5.4.3 Post-processing

In this step, we transform each regular expression Re obtained in the
previous step in an equivalent DTD markup declaration for e, as follows:
(i) remove useless parts of Re—e.g., redundant parentheses or element
repetitions, (ii) replace each single character representation ce with its
corresponding element name e, and (iii) convert Re to the correspond-
ing DTD element declaration according to DTD syntax—e.g., replace
concatenations with the list operator ,.

Regarding the attributes declaration, we generate a DTD declaration
by replacing each single character representation ca with the correspond-
ing attribute name a.

5. Structured document processing 90

5.5 Experiments

5.5.1 Datasets

We assessed our approach on a number of XML documents, that we
grouped based on their origin, as follows:

Mondial a single XML document (1.8 MB) containing information on
various countries used in [19];

Genetic a single XML document (683 MB) representing a protein se-
quence used in [19];

SVG a set of 10 XML documents (1.7 MB, globally), each containing a
copyright-free image represented in SVG and collected by searching
on Google Images;

OpenStreetMap a set of 20 XML documents (12 GB, globally) con-
taining free geographic data and mapping of the Italian adminis-
trative regions, downloaded from OpenStreetMap3.

RSS a set of 10 XML documents (278 KB, globally), each containing a
Rich Site Summary (RSS) files, obtained from an online scientific
library4.

The datasets are publicly available on our lab web site5. For ease of
discussion, all the results are grouped as above.

5.5.2 Methodology

For each XML document in a group, we generated a DTD as follows:
(i) we executed the pre-processing described in Section 5.4.1 and obtained
τE and τA; (ii) for each Ee in τE , we executed 8 different and independent
GP evolutions (jobs) with the GP-related parameters set as in Table 5.2
using Ee as training corpus; (iii) we selected the individual Re with
the best fitnesses on the training corpus among the best individuals of
each job; (iv) for each Ae in τA, we determinated which attributes are
required or implied for e (see Section 5.4.2) (v) we transformed each Re
into a DTD element declaration through the post-processing described
in Section 5.4.3; (vi) we obtained the DTD attribute list declarations
through the post-processing described in Section 5.4.3.

3http://download.gfoss.it/osm/osm/
4http://ieeexplore.ieee.org/
5http://machinelearning.inginf.units.it/data-and-tools

http://download.gfoss.it/osm/osm/
http://ieeexplore.ieee.org/
http://machinelearning.inginf.units.it/data-and-tools

91 Experiments

Parameter Settings

Population size 500
Selection Tournament of size 7
Initialization method Ramped half-and-half
Initialization depths 1–5 levels
Maximum depth after crossover 15
Reproduction rate 10%
Crossover rate 80%
Mutation rate 10%
Number of generations 200

Table 5.2: GP parameters

A validation task consists in applying a standard XML validator 6

on a pair 〈d,D〉. If a validation task does not terminate correctly, the
validator indicates the number of errors found on d using the DTD D. We
executed a number of validation tasks, as explained in the next section.

5.5.3 Results

The salient results are summarized in Table 5.4. The table provides:
(i) number of XML elements in each XML document; (ii) time for pre-
processing each XML document d; (iii) time for generating the corre-
sponding DTD Dd (not including pre-processing); (iv) number of errors
found by the validator using 〈d,Dd〉. The values are averaged across all
documents in the same group. The key, important result is that each
generated DTD indeed validates correctly the corresponding document.
The time taken by the pre-processing step is clearly proportional to the
number of elements in the input documents. Otherwise, the generation
time is deeply influenced by the complexity of the DTD we aim to infer—
i.e., the OpenStreetMap dataset, although is the biggest one in terms of
elements, has quite simple structure and take less time to find an optimal
solution.

In the next suite of experiments we investigated the generalization
ability of our approach. For each document d in groups SVG, Open-
StreetMap and RSS, we executed a validation task by using Dd on each
of the other documents in the group. We measured the percentage of
elements for which a validation error has been found, averaged across all
validation tasks on each group. We obtained 0 errors for OpenStreetMap
and RSS documents and an error rate of 22.7% for SVG group. In other
words, for documents in groups OpenStreetMap and RSS, one single

6http://www.saxproject.org/apidoc/org/xml/sax/XMLReader.html#setFeature(java.
lang.String,boolean)

http://www.saxproject.org/apidoc/org/xml/sax/XMLReader.html#setFeature(java.lang.String, boolean)
http://www.saxproject.org/apidoc/org/xml/sax/XMLReader.html#setFeature(java.lang.String, boolean)

5. Structured document processing 92

Name # docs
Elements

avg sd

Mondial 1 22,423 -
Genetic 1 21,305,818 -
SVG 10 290 335
OpenStreetMap 20 7,343,984 7,758,557
RSS 10 244 66

Table 5.3: DTD datasets size

Name
Preprocess (s) Generation (s) Errors

avg sd avg sd avg sd

Mondial 1.0 - 241.0 - 0.0 -
Genetic 1, 078.0 - 897.0 - 0.0 -
SVG 0.1 0.0 6.8 6.3 0.0 0.0
OpenStreetMap 144.9 151.6 6.7 0.5 0.0 0.0
RSS 0.1 0.0 17.7 2.0 0.0 0.0

Table 5.4: DTD generation results

document suffices to infer a DTD suitable for validating every other doc-
ument. This interesting outcome does not occur with SVG documents.
We believe the reason is because the set of element names that may po-
tentially be found in a SVG file is very large and a single SVG is unlikely
to contain all those element names.

To gain insights into this issue, we investigated how many files are
needed for inferring a DTD suitable for validating any SVG document.
We focussed on documents in the SVG group and proceeded as follows:
(i) we sorted the documents based on the number of contained XML
elements, in increasing order; (ii) we chose the first d1, . . . , dn documents;
(iii) we generated a DTD Dd1,...,dn from these n documents; (iv) we
executed a validation task on each document in the group using Dd1,...,dn .
Figure 5.2 plots the percentage of elements that are validated correctly
against the training set size, expressed as a percentage of number of
elements with respect to all SVG documents.

We can see that using DTD Dd1—which is generated only with the
smallest document (corresponding to 0.27% of the training set)—we can
correctly validate slightly more than the 90% of our dataset. Using a
DTD Dd1,...,d6—generated with the first six smaller documents (corre-
sponding to the 9.6% of the training set)—we can reach the 95%.

Having ascertained the ability of our approach to indeed generate
useful DTDs, we investigated its robustness when a generated DTD has
to validate a corrupted XML—a generated DTD Dd which is not “too

93 Experiments

0

20

40

60

80

100

0 20 40 60 80 100

C
or

re
ct

E
le

m
en

ts
(%

)

Training size (%)

+++++
+ + + + +

86

88

90

92

94

96

98

100

0 10 20 30 40 50 60

Training size (%)

+
+++

+
+

+ +

Figure 5.2: Generalization ability for SVG task (detail in the rightmost figure).

general”, should be able to detect the corrupted elements. We focussed
on the SVG group and proceeded as follows: (i) we generated ten DTD
Dd1 , . . . , Dd10 , one for each document of the group, (ii) we generated a
new set d′1, . . . , d

′
10 of corrupted SVG files, (iii) for each Ddi and each d′j ,

we executed a validation task.

The corrupted SVG files are generated using the following procedure:
for each element of the document we randomly select one of these oper-
ation: (i) the element remains unmodified, (ii) the element is removed
from the document, or (iii) the element is replaced with an empty ele-
ment whose name is randomly selected from the DTD DSVG defined in
the SVG specification7. We define the corruption rate r for a corrupted
document d′i as ratio between the number of errors raised by running
a validation task on 〈d′i, DSVG〉 and the number of elements in d′i. The
average corruption rate over all the 10 corrupted documents is 64.4%.

We assess GP-DEI performances on corrupted documents using false
positive rate (FPR) and false negative rate (FNR), where a positive is a
validated element. The former (FPR) is the ratio between the number
of elements which are validated by Di and are not validated by DSVG

and the number of elements which are not validated by DSVG. The lat-
ter (FNR) is the ratio between the number of elements which are not
validated by Di and are validated by DSVG and the number of elements
which are validated by DSVG. Table 5.5 shows the results obtained for
each document used as input: each row corresponds to a DTD Ddi and
reports the number of element in di and the FPR and FNR averaged
over d′1, . . . , d

′
10.

7http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd

http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd

5. Structured document processing 94

DTD Ddi Elements in di FPR (%) FNR (%)

Dd1 4 29.3 28.3
Dd2 8 25.6 16.7
Dd3 16 12.7 20.2
Dd4 38 16.5 15.3
Dd5 74 12.8 18.1
Dd6 143 12.7 17.5
Dd7 548 20.8 19.7
Dd8 640 17.1 18.6
Dd9 645 9.8 18.0
Dd10 864 13.7 16.1

Average 17.1 18.8

Table 5.5: Performances in presence of corrupted documents.

Original Generated
<!ELEMENT rss (channel)> <!ELEMENT rss (channel)+>
<!ATTLIST rss version CDATA <!ATTLIST rss version CDATA
#FIXED "2.0"> #REQUIRED>
<!ELEMENT channel (title | <!ELEMENT channel((title,link)|
description | link & (((day,item+)|(month|year))
| language | item+ | rating? | image? |(year|description)))+
| textinput? | copyright? | pubDate?
| lastBuildDate | docs?
| managingEditor? | skipDays?)*>
<!ELEMENT title (#PCDATA)> <!ELEMENT title(#PCDATA)>
<!ELEMENT description (#PCDATA) > <!ELEMENT description(#PCDATA)>
<!ELEMENT link (#PCDATA) > <!ELEMENT link(#PCDATA) >

Table 5.6: Comparison between a portion of DRSS and one DTD generated by
GP-DEI.

Finally, in Table 5.6 we report a comparison between the DTD gen-
erated by GP-DEI for the first document in the RSS group and the
Netscape DTD for RSS DRSS found in the wild8. It is interesting to note
that, as pointed out in Section 5.1, (i) DRSS is no more available at the
original URL (we refer to a copy) and (ii) our RSS documents (which we
found in the wild) are not validated by DRSS.

5.6 Remarks

We have proposed an approach for the automatic inference of DTDs
with Genetic Programming. The approach requires only a set of XML
documents to generate a DTD able to validate these documents. No

8http://web.archive.org/web/200012040847/http://my.netscape.com/publish/
formats/rss-0.91.dtd

http://web.archive.org/web/200012040847/http://my.netscape.com/publish/formats/rss-0.91.dtd
http://web.archive.org/web/200012040847/http://my.netscape.com/publish/formats/rss-0.91.dtd

95 Remarks

specific knowledge about the DTD and XML syntaxes nor any kind of
supervision are required.

We assessed our proposal on 5 different dataset collected from dif-
ferent application domains. We verified that our tool generates DTD
schemas which always correctly describe the input documents. We in-
vestigated the ability of our approach to generate schemas which may val-
idate also similar documents and the robustness of our algorithm when a
generated DTD has to validate a corrupted XML. Although our approach
has to be investigated on other datasets, the results are highly promising
and GP-DEI offers a practical solution to the problem of synthesizing a
schema for a set of XML documents.

Chapter 6
Web Security

6.1 Analysis of Public Administrations Web Sites

The web is increasingly becoming one of the fundamental means for
accessing government and public services. On the other hand, the web is
also plagued by ICT-based security incidents at all levels: user devices,
browsers, networks, server infrastructure [2]. An effective strategy for
tackling Internet security threats is thus essential for fueling innovation
and diffusion of e-government initiatives [60]. Indeed, it is not surprising
that one of the seven goals of the European Digital Agenda is “enhance
trust and security” [1].

A peculiar form of Internet security threats consists in the illegitimate
modification of a web site that offers a public service. These risks are
web-specific and have no counterpart in the traditional, i.e., “physical”,
access to public services. A common form of illegitimate modification is
the defacement, i.e., the replacement of the original page with an entirely
different page carrying political messages, offensive content and alike [13,
12]. In this case the user perceives immediately that the service cannot
be used, thus the main effect of the attack is on the availability and
utility of the application.

Other forms of attacks are aimed at remaining undetected by users
and may take different forms:

a) Subtle changes aimed at injecting malware in browsers by exploiting
software vulnerabilities [87].

b) Addition of new pages at URLs at which no page is supposed to
exist. These pages are essentially defacements, except that they do
not replace the original content and are visible only to users that
know their URL. Attacks of this form are meant to be merely a proof

97

6. Web Security 98

of the ability of the hacker. A significant fraction of the defacements
archived in Zone-H1 falls in this category.

c) Addition of illegitimate content aimed at deliberately manipulating
search results—search spam [47]. The illegitimate content consist of
links to the pages to be fraudulently promoted. The links may be
added on existing pages or on pages created explicitly and solely to
this purpose, at URLs at which no page is supposed to exist.

d) Modification of the site aimed at redirecting the browser to a site
chosen by the attacker only when the user comes from a page returned
by a search engine—search redirection. The relevance and diffusion
of these attacks have been illustrated recently in the context of illegal
drug trade [65].

Attacks of these forms are hard to detect because site administrators
will likely never see any anomaly in the served content. Their effects on
web sites of public interest may be very dangerous. Even leaving the
malware injection threat aside, careful exploitation of the other forms of
attack may create a very odd scenario: pages hosted on a trusted site
that serve content fully controlled by attackers, tailored to the navigation
path followed by users, visible only to certain users. An analogy with
the physical world may illustrate the issue more clearly: when entering
into the building of a public administration, one would not expect to
find offices that are not supposed to exist and are visible only to certain
citizens, perhaps depending on where they come from. Unfortunately,
this is exactly what it could happen in web sites of public administrations.
It is important to point out that HTTPS—the main and ubiquitous
line of defense in sensitive web sites—does not provide any defense in
this respect. HTTPS ensures secrecy, integrity and authentication by
means of cryptographic techniques. The problem is, the server site is
authenticated as a whole—any page coming from that site appears as
being legitimate.

In this work we attempted to assess the ability of Italian public ad-
ministration to be in full control of the respective web sites. We examined
several thousands sites, including all local governments and universities,
in search of evidence of attacks of categories c and d—a quick look at
Zone-H will reveal that attacks of category b occur more or less routinely.
We defined a methodology based on carefully constructed search engine
queries for identifying pages that could be the results of those attacks,
and inspection of those pages for filtering false positives out. We found
that approximately 1.16% of the analyzed public administration domains

1http://www.zone-h.org

99 Analysis of PA Web Sites

contains content that admittedly is not supposed to be there. Although
these contents do not constitute an immediate threat to citizens, this
result is not very encouraging and somewhat surprising. To place this
result in perspective, we observe that a state-of-the-art system recently
developed for efficiently searching malicious web pages, manages to con-
struct a stream of URLs in which 1.34% of them identify malicious pages
and this system improves earlier strategies by one order of magnitude
[56]. While our results cannot be compared directly to those of the cited
paper (the cited paper proposes a method for finding only the pages
that distribute malware, i.e., attacks of category a, while we analyze all
the web sites of public administrations and found compromised sites),
it seems fair to claim that our results are indeed surprising. Besides, as
clarified in the next sections, we could inspect just a few of the possible
attack signatures, hence our data are very conservative. We believe that
our analysis allows gaining useful insights into this novel and peculiar
threat.

6.1.1 Our methodology

Preliminary Observations

Performing a full crawl of all the web sites of interest is clearly not
feasible, even leaving aside the problem of discriminating between legit-
imate and illegitimate content. Moreover, a full crawl would not high-
light search redirection attacks: in these attacks the fraudulent code on
a compromised server identifies the requests to be redirected based on
the HTTP request header, whose value identifies the page containing the
link followed by the user—we would have to repeat the full crawl with
differing values for such header, one indicating a click on a Google result
page, another indicating an URL typed directly and so on.

For these reasons, we defined a methodology that may only search
for a predefined set of attack signatures but can be implemented with
moderate effort. As described in full detail in the next sections, the basic
idea consists in querying search engines for the presence of certain words
in the target sites. These words are chosen so as to be unlikely to be found
in legitimate pages at those sites. The results provided by the search
engines are then analyzed carefully so as to filter false positives out, i.e.,
to identify pages that are indeed fraudulent. Of course, this methodology
cannot provide a full coverage of intrusions—querying search engines for
all words or sentences that “should not be found” in legitimate pages is
not feasible. Consequently, our analysis can only provide a partial view
and conservative estimate of this phenomenon. On the other hand, we
believe the results are indeed useful.

6. Web Security 100

Pharmacy (WF) Illegal Drugs (WD)

viagra pills
cialis marijuana
propecia bong
zithromax crack
doxycycline cocaine
clomid cannabis
levitra lsd
nolvadex heroin
lexapro stoned
amoxil opium
prednisone koks
lasix morphine
silagra narcotic
tadalis stimulant
zenegra reefer

Table 6.1: Lists of target words that we used in our searches (we preferred to
omit the Pornography list WP).

Data Collection

We constructed a list D containing 5965 domains belonging to Italian lo-
cal government administrations (municipalities, provinces, counties) and
universities. Domains belonging to public administrations were obtained
from a specialized web site2 whereas those belonging to Universities were
downloaded from “Ministry of Instruction, University and Research” web
site. We compiled three lists WF ,WP ,WD containing target words in
three categories—pharmacy, pornography, illegal drugs—as follows. We
initialized WF with all the best seller drugs of an on-line shop3; WP and
WD with all the blacklisted words in the parental filtering software Dans-
guardian4. Then, we removed all the non-word items (phrases, URLs,
etc.) and performed a web search using the word as query and annotated
the number of obtained results. Finally, we retained in each list only the
15 words with the highest number of results (see Table 6.1).

We generated two lists QBing and QYahoo of search queries as follows.
For each domain d in D and for each word w ∈WF ∪WP ∪WD, we added
to QBing the search query "site:d w". The "site:d" query portion
instructs the search engine to include only results in the domain d. For
each domain d in D and for each word list WF ,WP ,WD, we added to

2http://www.comuni-italiani.it
3http://www.drugs-medshop.com
4http://www.dansguardian.org

101 Analysis of PA Web Sites

QYahoo the search query "site:d w1 OR . . . OR w15", where wi, i ∈
[1, 15] is the set of words in the word list (i.e., 3 queries for each domain
d). The "OR" keyword instructs the search engine to find web pages
containing at least one of the words in the query. While the Bing search
API can be used free of charge, usage of the Yahoo search API is charged
on a per-query basis. For this reason, we constructed QYahoo so as to
search for several words at once.

We submitted each query in QYahoo to the Yahoo search API and
each query in QBing to the Bing search API. We kept the first 50 results
returned by each query. Using these results we compiled a list R where
each element is a tuple 〈d,W, uSE〉: d is the queried domain, W is the set
of words contained in the query, uSE is the URL returned by the query.

We obtained a list composed of 9459 elements: 6003 returned from
the Yahoo API, 3456 from the Bing API. We found that 2305 results were
obtained from both engines. We merged those duplicate items by setting
the W value to the single word obtained from the Bing API and obtained
a set R of 7154 elements, corresponding to 695 different domains.

We then collected additional data for each R element 〈d,W, uSE〉, as
follows. First, we performed 4 HTTP GET requests for each uSE: 3 with
the HTTP Referrer header set as if the request were generated by a
user clicking on a search result obtained from one of the three major
search engines (Google, Yahoo, Bing); 1 without including such header.
For each GET request, we followed all redirections and saved the landing
URL of the final web page (udirect, uGoogle, uYahoo, uBing) as well as the
corresponding image snapshot (Idirect, IGoogle, IYahoo, IBing).

Second, we associated each element with a single target word wa ∈W
as follows. We saved all the DOM trees obtained after the rendering of
each landing URL. For elements obtained only from the Yahoo API we
took the DOM tree obtained after the rendering of uYahoo, whereas for all
the other elements we took the DOM tree after the rendering of uBing.
We removed from the selected DOM tree: (i) all script and style
HTML elements (along with their content) and (ii) all the HTML tags,
hence obtaining a plain text string t which contains all the text rendered
in the corresponding web page. We chose as wa the first word in W
found in t. In several cases we could not find in t any word in W , which
may be an artifact of our procedure for choosing wa but also of a change
in the web site that had removed all words in W and had not yet been
indexed by the search engine.

Data Analysis

At this point we analyzed the elements in R to determine whether the
corresponding content was legitimate or contained evidence of an attack.

6. Web Security 102

To this end we defined four categories, as described below. The analysis
required visual inspection of each image snapshot, which was carried
out in our lab by five lab staff members who were previously carefully
instructed. We could examine a subset of R composed of 3209 elements
selected at random.

• Normal: the landing URL belongs to domain d and the corre-
sponding page does not appear compromised. Even if the operator
detected one of the target words, he deemed its usage legitimate.

• FraudModifiedPage: the landing URL belongs to domain d;
the corresponding page appears compromised, yet part of the le-
gitimate content is still present. The operator identified one of the
following scenarios: (a) the page textual content includes a target
word and its usage is clearly not legitimate; or (b) the page does not
include any target word, yet it includes one or more images which
are clearly visible and orthogonal to the page legitimate content.

• FraudNewPage: the landing URL belongs to domain d; the cor-
responding page appears compromised, with no legitimate content
apparently present (except for a a few graphical elements such as
headers, navigation bar and alike).

• FraudOtherSite: the landing URL is unrelated to domain d, as
a result of a redirection; the corresponding page appears compro-
mised, i.e., totally unrelated to the content of d.

For the elements in which all landing URLs are identical (udirect =
uGoogle = uYahoo = uBing), we inspected only Idirect. For the other el-
ements we inspected all the 4 image snapshots, assigned a category to
each snapshot and take the most severe value as the category of the ele-
ment (Normal being the least severe and FraudOtherSite the most
severe).

Note that this categorization provides a conservative estimate of at-
tacks, emphasizing precision over accuracy. In particular, a page con-
taining fraudulent links could be categorized as being Normal.

6.1.2 Discussion

Key Insights

The main findings of our study are summarized in Table 6.2. We grouped
the elements in R associated with the same target word wa. The table
contains a row for the 10 most frequently occurring words wa, a row
describing elements for which we could not find any wa (labelled ∅),

103 Analysis of PA Web Sites

and a row for all other target words wa. The row indicating the total
counts each domain only once, even when the domain appears in multiple
rows. There are several elements containing the same domain-target
word pair. We counted such elements only once and considered only the
one associated with the most severe category, to simplify the analysis. In
other words, Table 6.2 counts the number of different domains involved
in each category.

The key result is that 400 of the 3209 URLs that we could inspect vi-
sually (FraudModifiedPage, FraudNewPage, FraudOtherSite)
were actually compromised (12.5%). At the domain level, the compro-
mised domains were 31 out of the 312 that we could analyze. Considering
that we analyzed 312 on 695 domains and that no search results were
returned for the remaining 5270 domains (which we hence conservatively
deem as not compromised), this figure corresponds to 1.16%. As dis-
cussed in the final part of the introduction—and keeping in mind the
corresponding caveats—this value is indeed surprising with respect to
the value for [56], which is 1.12%.

An additional analysis on R elements for which wa = ∅ suggests
that the number of actually compromised domains could be higher than
31. These elements correspond to pages in which we did not find any
target word in the corresponding rendered text. We performed a deeper
analysis on a subset of these elements and analyzed the textual snippet
that the search engine provided along with the URLs. We found that, for
about half of the cases, the page appeared to be actually compromised
but later restored—possibly partially. The restored (not compromised)
version had not yet been indexed by the search engine. For the remaining
cases the visual inspection of the snippet did not enable us to tell whether
the page had been actually compromised (note that we did not inspect
the DOM, hence we did not search for fraudulent links hidden from the
visual content).

Redirections and Attack Categories

Table 6.2 also shows that, in our sample, redirection to external sites is
less frequent than other forms of illegitimate content: there are 23 com-
promised domains in categories FraudModifiedPage and FraudNew-
Page, whereas there are 8 domains in FraudOtherSite.

Moreover, in the analyzed domains illegal drugs appear more fre-
quently than other word categories. On the other side, the ratio between
compromised and normal domains which contain a given target word
tend to be higher for pharmacy words: e.g., 16 on 44 domains which
include the word “viagra” were indeed compromised, whereas only 6 on
93 of domains which include the more frequent word “crack” were com-

6. Web Security 104

Total Normal
FraudModified

Page
wa URLs Domains URLs Domains URLs Domains

crack 404 93 371 87 3 2
marijuana 295 75 286 70 2 2
viagra 237 44 89 28 4 3
cannabis 210 74 210 74 0 0
pills 144 35 106 26 4 2
prednisone 117 30 113 27 1 1
lsd 84 41 84 41 0 0
cialis 72 27 38 17 6 2
morphine 66 13 66 13 0 0
bong 54 26 48 24 0 0

∅ 1213 242 1166 227 18 7
Other 313 77 232 67 2 2

Total 3209 312 2809 281 40 12

Total
FraudNew FraudOther

Page Site
wa URLs Domains URLs Domains URLs Domains

crack 404 93 30 4 0 0
marijuana 295 75 7 3 0 0
viagra 237 44 25 5 119 8
cannabis 210 74 0 0 0 0
pills 144 35 34 7 0 0
prednisone 117 30 3 2 0 0
lsd 84 41 0 0 0 0
cialis 72 27 14 5 14 3
morphine 66 13 0 0 0 0
bong 54 26 6 2 0 0

∅ 1213 242 27 6 2 2
Other 313 77 54 7 25 1

Total 3209 312 200 11 160 8

Table 6.2: Full result set.

105 Analysis of PA Web Sites

Total Normal FraudOtherSite
wa URLs Domains URLs Domains URLs Domains

viagra 119 8 0 0 119 8
propecia 15 1 0 0 15 1
cialis 14 3 0 0 14 3
levitra 10 1 0 0 10 1

∅ 22 4 20 2 2 2

Total 180 9 20 2 160 8

Table 6.3: Search redirection results: elements for which the returned URL
depends on the referrer of the HTTP request.

promised.
Table 6.3 focuses on search redirection, i.e., it considers only R items

for which the returned URL depends on the referrer of the HTTP re-
quest (udirect = uGoogle = uYahoo = uBing does not hold). Columns for
FraudModifiedPage and FraudNewPage are not shown because we
did not find any such values in the considered partition of R.

The main finding here is that most of the domains in this partition
have been compromised: the partition is composed of 9 domains and 8
of them have been categorized as FraudOtherSite. In other words,
when a redirection is performed basing on the referrer on a web site which
contain a target word, the web site has been likely compromised. The
20 web pages categorized as Normal were error pages. We could not
clearly tell whether the pages have been actually compromised: indeed,
these pages could be the result of an attack that succeeded only in part.

It can be seen that we could find only 4 target words wa and that all
of them belong to WF , the pharmacy category. In other words, all these
compromised pages make the user coming from a search engine visit a
pharmacy store.

Another interesting outcome is that, in our sample, search redirection
does not affect all search engines equally: Table 6.4 describes which
search engines actually trigger the referrer-based redirection. Google
and Yahoo trigger all the 9 search redirection cases we found, while Bing
triggers only 4 of them. We explain this difference because the formers
are, or are perceived to be, more widely used than the latter and hence
attackers concentrate their effort on the formers.

Table 6.5 shows the results on the other partition of R, i.e., it con-
siders only R items for which the returned URL does not depend on the
referrer of the HTTP request (udirect = uGoogle = uYahoo = uBing holds).
The column for FraudOtherSite is not shown because we did not find
any such values in the considered partition of R. This result corrobo-
rates the observation made in the previous table, i.e., that referrer-based

6. Web Security 106

Search engines URLs Domains

Google 180 9
Bing 74 4
Yahoo 175 9
Google + Yahoo 175 9
Bing + Yahoo 74 4
Google + Bing 74 4
Google + Bing + Yahoo 74 4

no redirection 3029 303

Table 6.4: Number of redirections as a function of search engines.

redirection on an external site is a likely indicator of compromise.

The main finding here is the disparity in the number of compromised
domains and URLs in the two categories FraudModifiedPage and
FraudNewPage. The two categories exhibit a nearly identical number
of compromised domains, but there are much more compromised URLs
in the FraudNewPage category than in FraudModifiedPage (this
disparity is reflected also in the full set R, Table 6.2). We interpret this
result as follows: once an attacker gains sufficient privileges to add a
new illegitimate page on a CMS (Content Management System), he will
likely exploit these privileges to add further illegitimate pages.

URL structure analysis

We investigated the structure of URLs that identify fraudulent web
pages. We have found that, as expected, attackers tend to hide fraudu-
lent web pages by placing them “deeply” into the target site.

In detail, for each URL u of a fraudulent page we determined its
sub-domain level as follows: (i) we extracted the domain portion from
the URL, say du; (ii) we removed from du the trailing string “www.” (if
present) and the domain obtained from the list D; (iii) we counted the
number of dot characters and defined this value to be the sub-domain
level of u. Consider for instance the domain name comune.udine.it;
the URL www.comune.udine.it/hacked.html is at level 0 while segreteria.
comune.udine.it/hacked.html is at level 1.

We have discovered that only 15.2% of fraudulent URLs are at level 0;
71.5% are at level 1 and 13.5% at level 2. In other words, the vast major-
ity of fraudulent URLs (85%) are not at level 0: this result confirms that
attackers indeed attempt to hide fraudulent pages—a fraudulent page at
level 1 is harder to detect for the web site administrator than a page at
level 0. From another point of view, prevalence of level 1 domains among
fraudulent web pages could be due to the fact that the compromised sites

www.
comune.udine.it
www.comune.udine.it/hacked.html
segreteria.comune.udine.it/hacked.html
segreteria.comune.udine.it/hacked.html

107 Analysis of PA Web Sites

Total Normal
wa URLs Domains URLs Domains

crack 404 93 371 87
marijuana 295 75 286 70
viagra 118 37 89 29
cannabis 210 74 210 74
pills 144 35 106 26
prednisone 117 30 113 27
lsd 84 41 84 41
cialis 58 24 38 17
morphine 66 13 66 13
bong 54 26 48 24

∅ 1211 241 1166 228
Other 288 76 232 67

Total 3029 311 2809 286

Total
FraudModified FraudNew

Page Page
wa URLs Domains URLs Domains URLs Domains

crack 404 93 3 2 30 4
marijuana 295 75 2 2 7 3
viagra 118 37 4 3 25 5
cannabis 210 74 0 0 0 0
pills 144 35 4 2 34 7
prednisone 117 30 1 1 3 2
lsd 84 41 0 0 0 0
cialis 58 24 6 2 14 5
morphine 66 13 0 0 0 0
bong 54 26 0 0 6 2

∅ 1211 241 18 7 27 6
Other 288 76 2 2 54 7

Total 3029 311 40 13 200 12

Table 6.5: Elements for which the returned URL does not depend on the
referrer of the HTTP request.

6. Web Security 108

are actually managed by smaller organizations (related to their parent
public administration) which enforce weaker security IT policies.

We also determined the path depth of each fraudulent URL u: (i) we
removed the two slashes after the protocol name; (ii) we removed the
slash character at the end of the domain name; (iii) we counted the num-
ber of remaining slashes and defined this value to be the path depth of
u. For example, segreteria.comune.udine.it/hacked.html has path depth 0,
whereas segreteria.comune.udine.it/people/hacked.html has path depth 1.
We counted 1.6 slashes on the average.

Finally, we found that the URL length of fraudulent pages is 77.1
characters on the average, while the URL length of the home page of the
target sites is, on the average, only 24.45 characters.

Socio-demographic analysis

We performed a few additional analysis to understand whether there is
any correlation between compromised sites and some non-technical fea-
tures of the affected organizations. In particular, we analyzed population
and geographical location of municipalities, provinces, and counties. For
universities we analyzed number of students and position in a public
ranking regarding the quality of the respective IT services. We did not
find any significant correlation between compromised sites and these in-
dexes. Of course, the number of compromised sites is too small to draw
any statistically relevant conclusion in this respect. However, the lack
of any meaningful pattern in this respect seems to be evident: compro-
mised sites tend to be equally distributed in small or large municipalities
and universities. Compromised university web sites are scattered more
or less randomly across the ranking, going from the 1st to the 51st po-
sition. Indeed four of the eleven universities at the top of this ranking
have a compromised web site. The geographical position of the organi-
zations owners of the compromised domains are also equally distributed
throughout the country.

6.1.3 Remarks

We have described recent attack trends in web applications and illus-
trated their potential dangers for e-government initiatives. Attackers
may hide fraudulent content in widely trusted web sites and let those
contents appear only to selected users, perhaps depending on the navi-
gation path they followed. The potential effects of attacks of this form
are very dangerous: such hidden content is very difficult to detect by
administrators and HTTPS—the ubiquitous main line of defense—does
not address this threat, thus it does not defend citizens in any way. In

segreteria.comune.udine.it/hacked.html
segreteria.comune.udine.it/people/hacked.html

109 Hidden fraudulent URL detection

our opinion, it is only a matter of time before targeted attacks based on
the technical means described here will start appearing. Indeed, crim-
inal attacks on government sites aimed at selling fake certifications are
already occurring [80].

We have defined a methodology for detecting fraudulent contents and
demonstrated that Italians public administrations indeed tend to host
fake content. Our study certainly requires further work, in breadth and
depth of the analysis, yet we believe it may help the research commu-
nity in promoting greater awareness of the problem and in developing
solutions both effective and practical.

6.2 Hidden fraudulent URL detection

Finally we attempted to define a methodology to detect certain types of
fraudulent intrusions that are becoming of practical interest on a large
scale. A peculiar form of Internet security threats consists in the fraud-
ulent modification of a web site, both in the form of the alteration of
existing content or in the form of addition of new content. Fraudulent
modifications might aim at advertising disturbing content which is en-
tirely different from the original one (defacement); or, they might aim
at facilitate phishing campaign; or, they might aim at spreading mal-
ware by exploiting vulnerabilities of web browsers. Being hidden, that
is, reachable at an URL where no page should exist, additive fraudulent
content could remain undetected by the web site administrators for a
long time.

The strategies for persuading unsuspecting users to visit hidden fraud-
ulent pages can differ, but all the methods require that the user takes
some action, usually by clicking on a link which points to the fraudulent
URL. Ideally, when a user clicks on an unknown URL, he should assess
the risk associated with her action. This risk assessment is indeed a dif-
ficult task for common users and is furtherly exhacerbated by the fact
that a URL could refer a fraudulent content which is hosted within a site
trusted by the user, i.e., a site routinely accessed by the user and whose
administrators perform their best effort to host content that is indeed
genuine and not harmful.

Fraudulent modification to trusted web sites could be broadly divided
in two categories: (i) subtle changes to existing pages or (ii) addition of
new pages at URLs at which no page is supposed to exist. Both these
attacks are hard to detect because site administrators will likely never
see any anomaly in the served content. The diffusion of this phenomenon
is confirmed by abundant anectodal evicence and quantified in different
studies. In [95] researchers found that approximately 1.5% of sites be-

6. Web Security 110

longing to Italian public administrations serve contents that admittedly
is not supposed to be there.

It is important to point out that HTTPS—the main and ubiquitous
line of defense in sensitive web sites—does not provide any defense in
this respect. HTTPS ensures secrecy, integrity and authentication by
means of cryptographic techniques. The problem is, the server site is
authenticated as a whole: thus, any page coming from that site appears
as being legitimate, from the HTTPS point of view.

In this paper, we present an approach for the detection of hidden
fraudulent URLs before actually fetching the corresponding page. A sys-
tem with this ability could be deployed in a variety of ways, for instance,
within an e-mail client or within a web browser and trigger an alert to
the user before actually accessing the fraudulent page itself. It could also
be deployed within a web proxy, at the outside border of an organization,
as a layer for a defense in depth strategy.

The peculiarity of our proposal consists in not using any feature re-
lated to the domain part of the URL, i.e., the URL portion which identi-
fies the host. The rationale for this requirement is our focus on addressing
fraudulent URLs inserted into trusted web sites. In this scenario, the do-
main part of the URL is obviously not a discriminant between fraudulent
and legitimate URLs belonging to the same web site. For the same rea-
sons, we purposefully avoided using other domain-related features, e.g.,
whois queries or geographic properties.

We use lexical features extracted from the URL to be classified, ex-
cluding the domain part of the URL. These features are then input to a
Support Vector Machine. We also propose two variants of this method,
which augment the features available for classification based on the re-
sponses to HTTP requests directed at the site hosting the URL to be
classified, but that do not involve fetching the actual content of that
URL.

Our approach effectiveness was assessed on two categories of hidden
fraudulent URLs: hidden phishing pages and hidden defacements. The
two datasets are composed of about 6500 and 2150 URLs respectively.
Our approach achieves an accuracy of about 96% for the phishing cate-
gory and 99% for the defacement one.

6.2.1 Related work

The problem of detecting fraudulent URLs is long-established and has
been studied from several points of view. As far as we know, though,
this is the first approach focussed on detecting fraudulent URLs that are
hosted on a trusted (in the sense clarified above) web site. With respect
to other existing approaches for detecting fraudulent URLs, we (i) ex-

111 Hidden fraudulent URL detection

cluded the domain part from the feature used for classifying a URL and
(ii) we assessed explicitly our approach ability to discriminate between
fraudulent and legitimate URLs belonging to the same web site.

Almost all the previous works in this area focused on the detection of
phishing URLs and URLs related to spam-advertised web sites. In this
paper we also consider hidden defacements URLs—a quick look at the
on-line defacement archive http://www.zone-h.org shows that exploit of
this form occur routinely at organizations of any size. A large scale study
showed that the typical reaction time for recovering the defaced page is
surprisingly long, in the order of several days [12]. A system for detecting
automatically whether a given URL is defaced has been proposed in [13].
The system operates as a cloud-based service and is designed for dynamic
web content: it first builds a profile of the web page and then sends an
alert whenever the page content deviates from that profile. This system
is unable to detect hidden defacements because it must know the URLs
to be monitored in advance.

Techniques for detecting phishing attacks can be subdivided in three
categories: URL-based, host-based and content-based detection meth-
ods. Broadly speaking, URL-based approaches are faster and more scal-
able than the others since that they can classify a URL based on the
URL itself, without collecting any further information.

An approach that rely only on URL-based features is proposed in [54].
The authors of the cited work use structural features of the URLs and
some binary features indicating the presence of certain words in the URLs
itself. This approach requires a fair amount of domain knowledge (for
choosing the words corresponding to features) and, as such, it appears
to be difficult to generalize.

Other studies augment URL-based features by features extracted
from the host where the corresponding document resides [63, 90, 70, 71].
The approach proposed in [63] uses lexical features, geographic properties
and features extracted from whois queries: primary domain name, the
registrar, the registrant, and the registration date. Authors of [90, 70, 71]
use a larger set of host-based features such as whois queries, DNS in-
formation, geographic properties, connection speed and membership in
blacklists; these features are used with online classification algorithms.
In [70] the authors experiment with different classifiers (Support Vec-
tor Machine (SVM), logistic regression, Bayes), whereas in [90] the fea-
tures are processed also using the confidence-weighted algorithm, passive-
aggressive algorithm and the perceptron.

Approaches that belong to the content-based category [27, 105, 22]
are more time consuming than the others, since they involve fetching
and analyzing the full page content. The authors of [27] use a number of
features coming from the HTML and JavaScript code found in the page

http://www.zone-h.org

6. Web Security 112

Figure 6.1: The structure of a URL

http

sch
em

e

://foo

u
sern

a
m

e

:bar

p
a
ssw

o
rd

@www.here.com

d
o
m

a
in

/path/to/there.htm

p
a
th

?p=1

q
u

ery
strin

g

#title

fra
g
m

en
t

id

in addition to URL and host based features: the obtained features set is
analyzed with different classifiers. In [22] the features corresponding to a
URL are extracted using a bag-of-word approach while the page content
is compared to sets of files from previously confirmed phishing websites
using MD5 hashes. The classification is performed using a confidence
weighted algorithm and tests are conducted on daily batches of URLs
simulating a model updated by a daily URL blacklist/whitelist feed.
The approach proposed in [105] uses features extracted from the web
page content (the presence of password fields and the external links fre-
quency) in addition to URL and host based features with a proprietary
machine learning algorithm: due to their nature, these content-based
features fit the phishing URLs detection scenario, while they could not
be appropriate for the defacement URLs detection scenario—a phishing
page is carefully crafted to resemble genuine content, while a defacement
page is usually very different from the original page.

6.2.2 Our approach

A URL (Uniform Resource Locator) is a string which identifies a web
resource (Figure 6.1). We say that a URL is hidden if the corresponding
page is hosted within a site without the administrator being aware of it.
We say that a URL is fraudulent if the corresponding page is a defacement
or a phishing attack (pages devoted to disseminating malware are beyond
the scope of this work). The goal of the proposed method is to associate
an input URL u with a boolean value which indicates if u is an hidden
fraudulent URL.

We propose three increasingly more complex variants of the method.
Each variant makes use of a superset of the information available to the
previous variant. The first one, which we call lexical, uses only features
extracted from the URL u itself. The second one, lexical+headers, aug-
ments those features with some of the headers obtained as response to an
HTTP request for u. Finally, lexical+headers+age, uses also some of the
headers obtained while fetching the home page of the domain of u—i.e.,
the web page identified by u without the path and subsequent compo-
nents. In other words, lexical may be applied for classifying u without

113 Hidden fraudulent URL detection

issuing any request for u and may thus be applied offline; lexical+headers
requires one HTTP HEAD request for u; lexical+headers+age requires
one HTTP HEAD request for u and another HEAD request for the home
page of the domain of u.

Each variant requires a preliminary parameter calibration to be per-
formed only once based on labelled data collected in a training set. The
training set is transformed into a matrix F of features, with one row for
each URL in the training set and one column for each feature analyzed—
each variant analyzing a superset of the features analyzed by the previous
one. We describe the three variants in the next sections.

Lexical

The lexical variant uses only the URL string itself, as follows (Figure 6.1
shows the structure of an example URL..). Let U = {u1, . . . , un} be the
training set and L = {l1, . . . , ln} the corresponding set of labels: li = true
if and only if ui is an hidden fraudulent URL.

For the tuning, we first remove from each URL ui every character up
to the domain (included), and obtain a string pi. Then, we extract the
unigrams (i.e., character occurrences) from each pi and obtain a matrix
F of features, where fi,j is the number of occurrences of character cj in
pi. Finally, we train a Support Vector Machine (SVM) on F using the
labels of L. We use a third-degree polinomial kernel with cost parameter
C = 10.

The classification of a unknown URL u is performed with the same
steps as above, i.e.: (i) preprocess u to obtain a string p; (ii) compute
the occurrences in p of the characters corresponding to the columns of
F , obtaining a feature vector; (iii) apply the SVM to the feature vector.

Lexical+headers

The lexical+headers variant uses, in addition to the features of the pre-
vious variant, features extracted from the values of some of the HTTP
response headers obtained when requesting the url U to be classified:

1. Server: name and version of the software running the server;

2. Content-Type: MIME type of the content of the named web-
resource;

3. Content-Lenght: length of the response body in octets;

4. X-Powered-By: framework of the web application that produces
the content of the web-resource (e.g., ASP.NET, PHP, JBoss);

6. Web Security 114

In order to minimize the traffic, we issue HTTP HEAD requests instead
of HTTP GET requests (while a GET asks for a resource, an HEAD asks
for a response identical to the one that would correspond to a GET, but
without the response body, i.e., without the actual resource).

The tuning of this variant proceeds as follows. For each ui ∈ U , we
perform a HEAD request to ui and store each of the received header
values h1

i , . . . , h
4
i (in case the response does not contain the k-th header,

we set the corresponding hki is to the empty string). We pre-process
the values for the Server and X-Powered-By headers so as to keep
only the framework name and the major and minor version number (e.g.,
Apache/2.2.22-12 becomes Apache/2.2). We then transform the
header values in numerical features as follows. For each k-th header, we
build a matrix F k based on all the vk1 , . . . , v

k
nk

observed values, as follows.

F k has a row for each URL and a column for each distinct header value:
a matrix element fki,j of F k is 1 if and only if hki = vkj , 0 otherwise. In

other words, F k is a matrix of the nk binary features corresponding to
the observed values for the k-th header. Finally, the new features in
F 1, F 2, F 3, F 4 are added to the original feature matrix F by joining all
the columns of the five matrices.

The remaining part of the tuning step and the classification step are
the same of the lexical variant.

Lexical+headers+age

The lexical+headers+age variant augments the previous features with
the difference between the timestamps given by the values of the Last-Modified
header obtained for the URL u and for the home page corresponding to
u. These timestamps correspond to the creation in the tuning of two
further columns in F , as follows.

For each ui ∈ U , we extract the Last-Modified value (from the
same response to the HEAD request performed for the previous variant)
and store it in ti as a date (in case the response does not contain the
Last-Modified, we set ti = ∅). Next, we remove from ui the substring
which starts from the path (included) and obtain di, which is the URL of
the home page corresponding to ui. Then, we perform a HEAD request to
di, store the value of the Last-Modified header in t′i and set ai = ti−t′i
(in seconds). We also set a binary feature a′i to 0, if both ti and t′i were
defined (i.e, ti 6= ∅ and t′i 6= ∅), or 1, if at least one of them was undefined.
Finally, we add two new columns to F , given by the ai and a′i.

The rationale is that we try to exploit the information given by the
relative age of the u resource, i.e, its last modification date compared to
the home page last modification date. In other words, if the home page
of the web site was modified long before the URL u under analysis, this

115 Hidden fraudulent URL detection

could be a symptom of an hidden fraudulent URL.

6.2.3 Dataset

We assessed the effectiveness of our approach on two categories of hidden
fraudulent URLs: (i) hidden phishing pages and (ii) hidden defacements.
Due to the lack of publicly available datasets we collected, for each cat-
egory, a set of real-world URLs as described below.

Concerning hidden phishing pages, we used the data provided by
Phishtank5. Phishtank is a public web-based archive of phishing at-
tacks: a user can report Phishtank of a possible attack by providing
the phishing page URL. A team of voluntary experts may then verify
the user’s notification, marking the URLs as “valid phish”. Moreover,
Phishtank periodically verify that each phishing attack is actually still
in place—i.e., if a page is served at the corresponding URL—and mark
those URLs as “online”. We composed a set UP of about 7500 valid
and online URLs extracted from Phishtank; we verified that each URL
in UP was still marked as valid and online for all the duration of our
experimental evaluation.

Concerning hidden defacements, we used data provided by Zone-H6.
The Zone-H Digital Attacks Archive is a public web-based archive of
defacement attacks: users or attackers themselves report a URL of a
defaced page to Zone-H; later, a human operator verifies and confirms
the attack which is then published on the Zone-H web site. We composed
a list UD of about 2500 URLs extracted from Zone-H.

A key ingredient of our problem is the ability of identifying hid-
den fraudulent URLs, even when they are hosted within trusted web
sites. For this reason, we defined 5 sets of URLs: (i) hidden fraudulent
URLs: UP+ and UD+ (phishing and defacement category respectively);
(ii) URLs of legitimate pages belonging to sites that are trusted but also
host fraudulent URLs: UP− and UD− (phishing and defacement category
respectively), (iii) URLs of legitimate pages belonging to trusted and (as
far as we can tell) uncompromised web sites: U−. In order to populate
these sets we proceeded as follows.

We assumed that both Phishtank and Zone-H are indeed authorita-
tive with respect to URLs being fraudulent, i.e., we assumed that all
URLs of UP and UD are fraudulent. First, we dropped from these lists:
(a) URLs whose domain is an IP address; (b) URLs whose path is empty
or equal to index.html. The rationale for dropping these items is that
they are not intended to be hidden. In the former case, we assume that
the whole web site is involved in the attack (since it has no DNS name):

5http://www.phishtank.com
6http://www.zone-h.org

http://www.phishtank.com
http://www.zone-h.org

6. Web Security 116

edition.cnn.com www.steampunk.dk
www.bbc.com www.weather.com
www.nytimes.com www.godaddy.com
www.microsoft.com www.nbcnews.com
www.whitehouse.gov www.foxnews.com
www.adobe.com www.bankofamerica.com
www.huffingtonpost.com www.spiegel.de
espn.go.com www.aweber.com
www.mediafire.com www.chase.com
www.1advice.com amazonaws.com

Table 6.6: Lists of 20 domains used to select the maximum crawling depth.

in other words, it is not a legitimate web site to which an illegitimate
content has been added. In the latter case, the attack is manifestly not
hidden, since it resides at the root of the domain.

Second, we dropped from the list all the fraudulent URLs that are
not hidden. We should consider that an URL is hidden if it is never
reachable while crawling the site. Clearly, crawling an entire site is often
not feasible. We hence marked an URL as hidden if it is not found by
crawling the corresponding web site within up to the third level of depth.
In order to justify this choice, in particular the choice of the third level
of depth, we performed the following quantitative analysis. We selected
a set W of 20 web sites extracted from the top 500 web sites ranking
provided by Alexa7. We excluded from this selection: (i) web sites pro-
viding different content depending on whether the user is authenticated,
(ii) social network web sites, (iii) search engines. Table 6.6 shows the 20
selected web sites. For each web site wi ∈ W , we crawled the site up
to the 10th level of depth and saved all the URLs obtained in the list
U−. We also determined, for each level l, the number of URLs ni,l found
by crawling up to that level. Then, we computed the crawling coverage
Ci,l =

ni,l

ni,10
as the fraction of URLs found by crawling up to level 10

which were also found by crawling up to level l. Figure 6.2 shows crawl-
ing coverage, averaged across all 30 web sites, vs. the level l: it can be
seen that the curve has a clear slope change at l = 3 and tends to be flat
for highest values of l. In other words, crawling up to the third level is
an acceptable compromise between coverage (which is, on the average,
88% for l = 3) and easiness of obtaining the data.

We now describe how we populated the sets necessary for our eval-
uation. Concerning the sets UP− and UD− of legitimate pages belonging
to sites that are trusted but also host fraudulent URLs, we procedeed

7http://www.alexa.com/topsites

http://www.alexa.com/topsites

117 Hidden fraudulent URL detection

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10

cr
aw

li
n

g
co

ve
ra

g
e
C

(%
)

depth level l

×

×

× × × × × × × ×

Figure 6.2: Crawling coverage C vs. depth level l.

as follows. For each ui ∈ UP , we crawled the corresponding domain di
up to the third level of depth and added all the obtained URLs to the
(initially empty) set UP− . We repeated the same procedure on UD and
obtained UD− .

Concerning the sets UP+ and UD+ of hidden fraudulent pages, we pro-
cedeed as follows. For each ui ∈ UP , we added ui to the (initially empty)
set UP+ if, and only if, it was not found in the crawl described above. We
repeated the same procedure on UD and obtained UD+ .

Finally, the set U− of legitimate pages belonging to trusted and (as
far as we can tell) uncompromised sites, consisted of all the URLs found
while crawling the 20 web sites in Table 6.6 up to the 10th depth level.

We collected this data during months July to November, 2012 and
obtained 6564, 78388, 2144, 94370, 3713 URLS respectively in UP+ , UP− ,
UD+ , UD− and U−. The dataset is publicly available on our lab web site8.

6.2.4 Experiments

We performed two suites of experiments in order to evaluate our approach
effectiveness separately on the two hidden URLs categories, i.e., phishing
and defacement.

For the purpose of the experimental evaluation, we built, for each
category, a labeled and balanced dataset, as follows. For the phishing
category, we set UPe to the set containing all UP+ URLs, 3282 URLs ran-
domly extracted from UP− and 3282 URLs randomly extracted from U−;
we also set the corresponding labels LP accordingly. For the defacement
category, we set UDe to the set containing all UD+ URLs, 1072 URLs ran-
domly extracted from UD− and 1072 URLs randomly extracted from U−;
we also set the corresponding labels LD accordingly.

8http://machinelearning.inginf.units.it/data-and-tools/hidden-fraudulent-urls-dataset

http://machinelearning.inginf.units.it/data-and-tools/hidden-fraudulent-urls-dataset

6. Web Security 118

We assessed the our approach effectiveness in terms of the following
performance indexes (for the sake of clarity, we here show index names
only for the phishing category):

• accuracy, i.e., the ratio between correctly classified URLs and all
the processed URLs;

• false negative rate (FNR on UP+);

• false positive rate, calculated only on URLs of UP− (FPR on UP−);

• false positive rate, calculated only on URLs of U− (FPR on U−).

For each variant of our method, we repeated 5 times the following
procedure, collecting for each execution the four performance indexes
explained before (we here consider the phishing category): (i) we ran-
domly split UPe in a training set and testing set, 90% of URLs used for
training and the remaining 10% for testing (we preserved the proportion
of URLs coming from UP+ , UP− and U−), (ii) we trained the SVM classifier
on the training set and, finally, (iii) we applied the trained classifier on
each URL of the testing set.

Method
Accuracy (%) FNR on UP+ (%)

Avg. Dev. Std. Avg. Dev. Std.

Lexical 92.50 0.62 9.80 0.85
Lexical+headers 95.34 0.48 4.93 1.05
Lexical+headers+age 95.57 0.37 4.87 1.06

Method
FPR on UP− (%) FPR on U− (%)
Avg. Dev. Std. Avg. Dev. Std.

Lexical 5.20 0.84 4.93 1.21
Lexical+headers 4.38 0.62 0.79 0.70
Lexical+headers+age 3.98 0.52 0.73 0.73

Table 6.7: Results for the phishing category.

Tables 6.7 and 6.8 report the performance indexes, averaged across
the five repetitions, for the three variants of our method applied on the
phishing and defacement categories, respectively.

The accuracy of our system, using the lexical+headers+age variant,
is greater than 99% and 95% for defacement and phishing categories,
respectively.

As expected, the off-line variant (lexical) has a lower accuracy (98%
for defacement and 92% for phishing): on the other hand, this variant
requires just less than a millisecond to classify an URL, whereas the other

119 Hidden fraudulent URL detection

Method
Accuracy (%) FNR on UD+ (%)

Avg. Dev. Std. Avg. Dev. Std.

Lexical 98.37 0.68 0.93 0.74
Lexical+headers 99.35 0.3 0.37
Lexical+headers+age 99.26 0.3 0.47 0.66

Method
FPR on UD− (%) FPR on U− (%)
Avg. Dev. Std. Avg. Dev. Std.

Lexical 2.32 0.87 2.41 1.92
Lexical+headers 0.93 0.57 0.93 0.65
Lexical+headers+age 1.02 0.61 0.93 0.65

Table 6.8: Results for the defacements category.

on-line variants require to perform one or two HTTP requests, which can
result in several seconds of elapsed time.

Another key finding is that FPR on U− is lower than 1% for both
categories, when using the on-line variants of our method. Only for
the phishing category FPR on UP− is slightly higher (about 4%): this
result is somewhat justified because UP− are negative URLs belonging to
compromised web sites and could hence resemble fraudulent URLs.

Concerning FNR, the experimental evaluation shows that it is higher
for the phishing category (about 5%) than for the defacement category
(less than 1%). The reason is because an attacker who puts in place a
phishing attack will purposely shape all components of the attack (i.e.,
including the URL of the fraudulent page) so as to make it as much
unnoticed as possible. An attacker which hides a defacement page will
likely not care too much of whether the attack URL is easily detectable.

The time needed for the URL classification is smaller than 1 msec,
800 msec and 1600 msec respectively for lexical, lexical+headers and
lexical+headers+age, on average. Note, however that the lexical variant
can work off-line (i.e., without any access to the Internet). The actual
computation time is < 1 msec for classifying an URL; 2 sec and 60 sec
are required for the initial tuning, respectively on a training set of about
4300 defacement and about 13000 phishing URLs. We executed all our
experiments on a machine powered with a quad-core Intel Xeon X3323
(2.53 GHz) and 2GB of RAM, with an high-speed academic connection
to the Internet.

Bibliography

[1] Digital Agenda: Commission outlines action plan to boost Europe’s
prosperity and well-being. May 2010. [cited at p. 97]

[2] Verizon RISK Team. 2012 Data Breach Investigation Report. Tech-
nical report, 2012. [cited at p. 97]

[3] I. Ahmadullin, J. Allebach, N. Damera-Venkata, J. Fan, S. Lee,
Q. Lin, J. Liu, and E. O’Brien-Strain. Document visual similarity
measure for document search. In Proceedings of the 11th ACM
symposium on Document engineering, DocEng ’11, pages 139–142,
New York, NY, USA, 2011. ACM. [cited at p. 23]

[4] M. Aiello, C. Monz, L. Todoran, and M. Worring. Document un-
derstanding for a broad class of documents. International Jour-
nal on Document Analysis and Recognition, 5(1):1–16, Nov. 2002.
[cited at p. 22]

[5] C. Alippi, F. Pessina, and M. Roveri. An adaptive system for
automatic invoice-documents classification. In IEEE International
Conference on Image Processing, 2005. ICIP 2005, volume 2, 2005.
[cited at p. 23]

[6] A. Amano, N. Asada, M. Mukunoki, and M. Aoyama. Table
form document analysis based on the document structure gram-
mar. International Journal on Document Analysis and Recognition,
8(2):201–213, June 2006. [cited at p. 22, 49]

[7] R. Babbar. Clustering Based Approach to Learning Regular Ex-
pressions over Large Alphabet for Noisy Unstructured. the 19th
ACM conference on Conference on information and knowledge
management CIKM 10, pages 43–50, 2010. [cited at p. 64, 65]

121

BIBLIOGRAPHY 122

[8] D. Barbosa, L. Mignet, and P. Veltri. Studying the xml web: Gath-
ering statistics from an xml sample. World Wide Web, 9:187–212,
2006. 10.1007/s11280-006-8437-6. [cited at p. 83]

[9] L. Barbosa, J. Freire, and A. Silva. Organizing Hidden-Web
Databases by Clustering Visible Web Documents. 2007 IEEE
23rd International Conference on Data Engineering, pages 326–
335, 2007. [cited at p. 21]

[10] D. Barrero, D. Camacho, and M. R-Moreno. Automatic Web Data
Extraction Based on Genetic Algorithms and Regular Expressions.
Data Mining and Multi-agent Integration, pages 143–154, 2009.
[cited at p. 63, 68]

[11] A. Bartoli, G. Davanzo, A. De Lorenzo, M. Mauri, E. Medvet, and
E. Sorio. Automatic generation of regular expressions from exam-
ples with genetic programming. In Proceedings of the fourteenth
international conference on Genetic and evolutionary computation
conference companion, pages 1477–1478. ACM, 2012. [cited at p. 13,

15, 85, 88]

[12] A. Bartoli, G. Davanzo, and E. Medvet. The Reaction Time to
Web Site Defacements. Internet Computing, IEEE, 13(4):52–58,
July 2009. [cited at p. 97, 111]

[13] A. Bartoli, G. Davanzo, and E. Medvet. A Framework for Large-
Scale Detection of Web Site Defacements. ACM Transactions on
Internet Technology, 10(3), Oct. 2010. [cited at p. 97, 111]

[14] A. Bartoli, G. Davanzo, E. Medvet, and E. Sorio. Improving fea-
tures extraction for supervised invoice classification. In Proceedings
of the 10th IASTED International Conference, volume 674, page
401, 2010. [cited at p. 12, 15]

[15] A. Bartoli, G. Davanzo, E. Medvet, and E. Sorio. Semisupervised
wrapper choice and generation for print-oriented documents. IEEE
Transactions on Knowledge and Data Engineering, page 1, 2012.
[cited at p. 12, 15]

[16] M. Becchi, C. Wiseman, and P. Crowley. Evaluating regular expres-
sion matching engines on network and general purpose processors.
In Proceedings of the 5th ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, pages 30–39. ACM,
2009. [cited at p. 61]

123 BIBLIOGRAPHY

[17] S. M. Beitzel, E. C. Jensen, and D. A. Grossman. Retrieving ocr
text: A survey of current approaches. In Symposium on Document
Image Understanding Technologies (SDUIT, 2003. [cited at p. 49]

[18] Y. Belaid and A. Belaid. Morphological tagging approach in docu-
ment analysis of invoices. In Proceedings of the Pattern Recognition,
17th International Conference on (ICPR’04) Volume 1 - Volume
01, pages 469–472. IEEE Computer Society, 2004. [cited at p. 22, 49]

[19] G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren. Learning
Deterministic Regular Expressions for the Inference of Schemas
from XML Data. ACM Transactions on the Web, 4(4):1–32, Sept.
2010. [cited at p. 61, 65, 84, 90]

[20] G. J. Bex, F. Neven, T. Schwentick, and S. Vansummeren. Infer-
ence of concise regular expressions and DTDs. ACM Transactions
on Database Systems, 35(2):1–47, Apr. 2010. [cited at p. 61, 65]

[21] G. J. Bex, F. Neven, and S. Vansummeren. Inferring XML schema
definitions from XML data, volume 29, pages 998–1009. VLDB
Endowment, 2007. [cited at p. 85]

[22] A. Blum, B. Wardman, T. Solorio, and G. Warner. Lexical feature
based phishing URL detection using online learning. Proceedings
of the 3rd ACM workshop on Artificial intelligence and security -
AISec ’10, page 54, 2010. [cited at p. 111, 112]

[23] F. Brauer, R. Rieger, A. Mocan, and W. Barczynski. Enabling in-
formation extraction by inference of regular expressions from sam-
ple entities. In Proceedings of the 20th ACM international confer-
ence on Information and knowledge management, pages 1285–1294.
ACM, 2011. [cited at p. 61, 64, 65, 69, 70, 72, 74]

[24] A. Bràzma. Efficient identification of regular expressions from rep-
resentative examples. In Proceedings of the sixth annual conference
on Computational learning theory, volume 1, pages 236–242. ACM,
1993. [cited at p. 63, 85]

[25] M. Bronzi, V. Crescenzi, P. Merialdo, and P. Papotti. Wrapper
generation for overlapping web sources. In Web Intelligence and
Intelligent Agent Technology (WI-IAT), 2011 IEEE/WIC/ACM
International Conference on, volume 1, pages 32 –35, aug. 2011.
[cited at p. 18, 21]

[26] M. J. Cafarella, A. Halevy, and N. Khoussainova. Data integration
for the relational web. Proc. VLDB Endow., 2(1):1090–1101, Aug.
2009. [cited at p. 18, 21]

BIBLIOGRAPHY 124

[27] D. Canali, M. Cova, G. Vigna, and C. Kruegel. Prophiler: A Fast
Filter for the Large-Scale Detection of Malicious Web Pages. In
World Wide Web Conference. [cited at p. 111]

[28] F. Cesarini, E. Francesconi, M. Gori, and G. Soda. Analysis
and understanding of multi-class invoices. International Journal
on Document Analysis and Recognition, 6(2):102–114, Oct. 2003.
[cited at p. 22, 24, 46, 49]

[29] A. Cetinkaya. Regular expression generation through grammatical
evolution. In Proceedings of the 2007 GECCO conference compan-
ion on Genetic and evolutionary computation, GECCO ’07, pages
2643–2646, New York, NY, USA, 2007. ACM. [cited at p. 63, 68, 69, 70,

78, 79]

[30] C. H. Chang, M. Kayed, R. Girgis, and K. F. Shaalan. A
Survey of Web Information Extraction Systems. IEEE Trans-
actions on Knowledge and Data Engineering, 18(10):1411–1428,
2006. [cited at p. 18, 22]

[31] C.-C. Chen, K.-H. Yang, C.-L. Chen, and J.-M. Ho. BibPro: A
Citation Parser Based on Sequence Alignment. IEEE Transactions
on Knowledge and Data Engineering, 24(2):236–250, Feb. 2012.
[cited at p. 61]

[32] K. Chen, G. Gu, J. Zhuge, J. Nazario, and X. Han. Webpatrol:
automated collection and replay of web-based malware scenarios.
In Proceedings of the 6th ACM Symposium on Information, Com-
puter and Communications Security, pages 186–195. ACM, 2011.
[cited at p. 61]

[33] N. Chen and D. Blostein. A survey of document image clas-
sification: problem statement, classifier architecture and perfor-
mance evaluation. International Journal on Document Analysis
and Recognition, 10(1):1–16, June 2007. [cited at p. 23]

[34] B. Chidlovskii. Schema extraction from xml data: A grammatical
inference approach. In KRDB’01 Workshop (Knowledge Represen-
tation and Databases, 2001. [cited at p. 85]

[35] S. L. Chuang, K. C. C. Chang, and C. X. Zhai. Context-aware
wrapping: synchronized data extraction. In Proceedings of the 33rd
international conference on Very large data bases, VLDB ’07, pages
699–710. VLDB Endowment, 2007. [cited at p. 18, 21]

125 BIBLIOGRAPHY

[36] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: Nsga-ii. Evolutionary Computa-
tion, IEEE Transactions on, 6(2):182 –197, apr 2002. [cited at p. 68]

[37] B. Dunay, F. Petry, and B. Buckles. Regular language induction
with genetic programming. In Evolutionary Computation, 1994.
IEEE World Congress on Computational Intelligence., Proceedings
of the First IEEE Conference on, volume 1, pages 396–400. IEEE,
1994. [cited at p. 63]

[38] H. Elmeleegy, J. Madhavan, and A. Halevy. Harvesting relational
tables from lists on the web. Proceedings of the VLDB Endowment,
2(1):209–226, 2009. [cited at p. 22]

[39] H. Fernau. Algorithms for learning regular expressions from pos-
itive data. Information and Computation, 207(4):521–541, Apr.
2009. [cited at p. 64, 85]

[40] E. Ferrara, G. Fiumara, and R. Baumgartner. Web Data Extrac-
tion , Applications and Techniques : A Survey. ACM Computing
Surveys, V(June):1–20, 2010. [cited at p. 18, 22]

[41] S. Flesca, E. Masciari, and A. Tagarelli. A fuzzy logic approach to
wrapping pdf documents. Knowledge and Data Engineering, IEEE
Transactions on, 23(12):1826–1841, Dec. 2011. [cited at p. 24]

[42] D. Florescu. Managing semi-structured data. Queue, 3(8):18–24,
Oct. 2005. [cited at p. 84]

[43] J. Friedl. Mastering Regular Expressions. O’Reilly Media, Inc.,
2006. [cited at p. 65]

[44] A. Fujiyoshi, M. Suzuki, and S. Uchida. Syntactic detection and
correction of misrecognitions in mathematical ocr. In Proceedings
of the 2009 10th International Conference on Document Analysis
and Recognition, ICDAR ’09, pages 1360–1364, Washington, DC,
USA, 2009. IEEE Computer Society. [cited at p. 50]

[45] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim.
XTRACT: A System for Extracting Document Type Descriptors
from XML Documents. pages 165–176, 2000. [cited at p. 84]

[46] A. González-Pardo, D. Barrero, D. Camacho, and M. R-Moreno. A
case study on grammatical-based representation for regular expres-
sion evolution. In Y. Demazeau, F. Dignum, J. Corchado, J. Bajo,
R. Corchuelo, E. Corchado, F. Fernández-Riverola, V. Julián,

BIBLIOGRAPHY 126

P. Pawlewski, and A. Campbell, editors, Trends in Practical Appli-
cations of Agents and Multiagent Systems, volume 71 of Advances
in Intelligent and Soft Computing, pages 379–386. Springer Berlin
/ Heidelberg, 2010. [cited at p. 63, 68]

[47] Z. Gyongyi and H. Garcia-Molina. Web spam taxonomy. In First
International Workshop on Adversarial Information Retrieval on
the Web (AIRWeb 2005), April 2005. [cited at p. 98]

[48] H. Hamza, Y. Belaid, A. Belaid, and B. Chaudhuri. Incremen-
tal classification of invoice documents. In Pattern Recognition,
2008. ICPR 2008. 19th International Conference on, pages 1–4,
8-11 2008. [cited at p. 23]

[49] H. Hamza, Y. Beläıd, and A. Beläıd. Case-Based reasoning for in-
voice analysis and recognition. In Case-Based Reasoning Research
and Development, pages 404–418. 2007. [cited at p. 46, 47]

[50] T. Hassan. User-guided wrapping of pdf documents using graph
matching techniques. In Document Analysis and Recognition,
2009. 10th International Conference on, pages 631–635, 2009.
[cited at p. 24]

[51] H. He, W. Meng, C. Yu, and Z. Wu. Automatic integration of
Web search interfaces with WISE-Integrator. The VLDB Journal,
13(3):1–29, 2004. [cited at p. 18, 21]

[52] J. Hegewald, F. Naumann, and M. Weis. Xstruct: Efficient schema
extraction from multiple and large xml documents. 22nd Inter-
national Conference on Data Engineering Workshops ICDEW06,
pages 81–81, 2006. [cited at p. 85]

[53] T. Hruby, K. van Reeuwijk, and H. Bos. Ruler: high-speed
packet matching and rewriting on npus. In Proceedings of the 3rd
ACM/IEEE Symposium on Architecture for networking and com-
munications systems, pages 1–10. ACM, 2007. [cited at p. 61]

[54] H. Huang, L. Qian, and Y. Wang. A SVM-based Technique to
Detect Phishing URLs. Information Technology Journal, 2012.
[cited at p. 111]

[55] J. J. Hull and S. N. Srihari. Experiments in text recognition with
binary n-gram and viterbi algorithms. IEEE Trans. Pattern Anal.
Mach. Intell., 4:520–530, May 1982. [cited at p. 49]

127 BIBLIOGRAPHY

[56] L. Invernizzi and P. M. Comparetti. Evilseed: A guided approach
to finding malicious web pages. Security and Privacy, IEEE Sym-
posium on, 0:428–442, 2012. [cited at p. 99, 103]

[57] R. Khare, Y. An, and I.-Y. Song. Understanding Deep Web Search
Interfaces : A Survey. ACM SIGMOD Record, 39(1):33–40, 2010.
[cited at p. 19, 20]

[58] E. Kinber. Learning regular expressions from representative exam-
ples and membership queries. Grammatical Inference: Theoretical
Results and Applications, pages 94–108, 2010. [cited at p. 64]

[59] B. Klein, S. Agne, and A. Dengel. Results of a study on Invoice-
Reading systems in Germany. In Document Analysis Systems VI,
pages 451–462. 2004. [cited at p. 45]

[60] N. Kroes. A European Strategy for Internet Security. Mar. 2012.
[cited at p. 97]

[61] K. Kukich. Techniques for automatically correcting words in text.
ACM Comput. Surv., 24:377–439, December 1992. [cited at p. 49]

[62] W. B. Langdon, J. Rowsell, and A. P. Harrison. Creating reg-
ular expressions as mrna motifs with gp to predict human exon
splitting. In Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, GECCO ’09, pages 1789–1790, New
York, NY, USA, 2009. ACM. [cited at p. 65, 68]

[63] A. Le and A. Markopoulou. PhishDef: URL Names Say It All. In
Proceedings IEEE INFOCOM, 2010. [cited at p. 111]

[64] E. Lee and T.-h. Kim. Automatic generation of XForms code using
DTD. Fourth Annual ACIS International Conference on Com-
puter and Information Science (ICIS’05), pages 210–214, 2005.
[cited at p. 85]

[65] N. Leontiadis and T. Moore. Measuring and analyzing search-
redirection attacks in the illicit online prescription drug trade.
Proc. USENIX Security, 2011. [cited at p. 98]

[66] D. Lewis, G. Agam, S. Argamon, O. Frieder, D. Grossman, and
J. Heard. Building a test collection for complex document infor-
mation processing. In Proceedings of the 29th annual international
ACM SIGIR conference on Research and development in infor-
mation retrieval, pages 665–666, Seattle, Washington, USA, 2006.
ACM. [cited at p. 43]

BIBLIOGRAPHY 128

[67] Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and
A. Arbor. Regular Expression Learning for Information Extraction.
Computational Linguistics, (October):21–30, 2008. [cited at p. 64, 65,

69, 70, 72, 74]

[68] Y. Li, R. Krishnamurthy, S. Vaithyanathan, and H. V. Jagadish.
H.v.jagadish. getting work done on the web: Supporting transac-
tional queries. In In SIGIR, 2006. [cited at p. 70]

[69] W. Liu, X. Meng, and W. Meng. Vide: A vision-based approach
for deep web data extraction. IEEE Transactions on Knowledge
and Data Engineering, 22(3):447 –460, march 2010. [cited at p. 18, 20,

21]

[70] J. Ma, L. Saul, S. Savage, and G. Voelker. Beyond blacklists: learn-
ing to detect malicious web sites from suspicious URLs. Proceedings
of the 15th ACM . . . , 2009. [cited at p. 111]

[71] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Learning to
detect malicious URLs. ACM Transactions on Intelligent Systems
and Technology, 2(3), 2011. [cited at p. 111]

[72] E. Medvet and A. Bartoli. Brand-related events detection, classi-
fication and summarization on twitter. In Proceedings of the 2011
IEEE/WIC/ACM International Conferences on Web Intelligence
and Intelligent Agent Technology - Volume 01, WI-IAT ’12. IEEE
Computer Society, 2012, to appear. [cited at p. 70]

[73] E. Medvet, A. Bartoli, and G. Davanzo. A probabilistic approach
to printed document understanding. International Journal on Doc-
ument Analysis and Recognition IJDAR, 2010. [cited at p. 18, 25, 32,

40, 49]

[74] E. Medvet, A. Bartoli, and G. Davanzo. A probabilistic approach to
printed document understanding. International Journal on Docu-
ment Analysis and Recognition, 14:335–347, 2011. 10.1007/s10032-
010-0137-1. [cited at p. 70]

[75] L. Mignet, D. Barbosa, and P. Veltri. The xml web: a first study.
In Proceedings of the 12th international conference on World Wide
Web, WWW ’03, pages 500–510, New York, NY, USA, 2003. ACM.
[cited at p. 83]

[76] D. Miller, S. Boisen, R. Schwartz, R. Stone, and R. Weischedel.
Named entity extraction from noisy input: Speech and ocr. In In
Proceedings of the 6th Applied Natural Language Processing Con-
ference, pages 316–324, 2000. [cited at p. 49]

129 BIBLIOGRAPHY

[77] J.-K. Min, J.-Y. Ahn, and C.-W. Chung. Efficient extraction
of schemas for XML documents. Information Processing Letters,
85(1):7–12, 2003. [cited at p. 85]

[78] E. Minkov, R. C. Wang, and W. W. Cohen. Extracting personal
names from email: applying named entity recognition to informal
text. In Proceedings of the conference on Human Language Technol-
ogy and Empirical Methods in Natural Language Processing, HLT
’05, pages 443–450, Stroudsburg, PA, USA, 2005. Association for
Computational Linguistics. [cited at p. 70]

[79] C.-h. Moh, E.-p. Lim, and W.-k. Ng. DTD-Miner: a tool for
mining DTD from XML documents. Proceedings Second Inter-
national Workshop on Advanced Issues of E-Commerce and Web-
Based Information Systems. WECWIS 2000, (Xml):144–151, 2000.
[cited at p. 85]

[80] P. Muncaster. Cyber gang made £30 million from fake gov certs.
Technical report, 2012 http://www.theregister.co.uk/2012/07/26/
fake qualifications scam busted. [cited at p. 109]

[81] Y. Navon, E. Barkan, and B. Ophir. A generic form processing
approach for large variant templates. In Proceedings of the 2009
10th International Conference on Document Analysis and Recog-
nition, ICDAR ’09, pages 311–315, Washington, DC, USA, 2009.
IEEE Computer Society. [cited at p. 22, 25, 49]

[82] E. Oro and M. Ruffolo. XONTO: An Ontology-Based System
for Semantic Information Extraction from PDF Documents. 2008
20th IEEE International Conference on Tools with Artificial Intel-
ligence, (i):118–125, Nov. 2008. [cited at p. 24]

[83] R. Paleari, L. Martignoni, E. Passerini, D. Davidson, M. Fredrik-
son, J. Giffin, and S. Jha. Automatic generation of remediation
procedures for malware infections. In Proc. of the 19th Usenix
Security Symposium, Washington, DC, 2010. [cited at p. 61]

[84] H. Peng, F. Long, and Z. Chi. Document image recognition
based on template matching of component block projections.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(9):1188–1192, 2003. [cited at p. 23]

[85] P. Prakash, M. Kumar, R. Kompella, and M. Gupta. Phishnet:
Predictive blacklisting to detect phishing attacks. In INFOCOM,
2010 Proceedings IEEE, pages 1 –5, march 2010. [cited at p. 61]

http://www.theregister.co.uk/2012/07/26/fake_qualifications_scam_busted
http://www.theregister.co.uk/2012/07/26/fake_qualifications_scam_busted

BIBLIOGRAPHY 130

[86] P. Prasse, C. Sawade, N. Landwehr, and T. Scheffer. Learn-
ing to Identify Regular Expressions that Describe Email Cam-
paigns. In Proceedings International Conference on Machine Learn-
ing (ICML), 2012. [cited at p. 65]

[87] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All
your iframes point to us. In Proceedings of the 17th conference on
Security symposium, SS’08, pages 1–15, Berkeley, CA, USA, 2008.
USENIX Association. [cited at p. 97]

[88] B. Ross. Probabilistic pattern matching and the evolution of
stochastic regular expressions. Applied Intelligence, pages 285–300,
2000. [cited at p. 63]

[89] H. Sako, M. Seki, N. Furukawa, H. Ikeda, and A. Imaizumi. Form
reading based on form-type identification and form-data recogni-
tion. In Proceedings of the Seventh International Conference on
Document Analysis and Recognition - Volume 2, page 926. IEEE
Computer Society, 2003. [cited at p. 22, 45]

[90] L. K. Saul, S. Savage, G. M. Voelker, and L. Jolla. Identifying
Suspicious URLs: An Application of Large-Scale Online Learning.
In Proceedings of the 26th International Conference on Machine
Learning, 2009. [cited at p. 111]

[91] F. Schulz, M. Ebbecke, M. Gillmann, B. Adrian, S. Agne, and
A. Dengel. Seizing the treasure: Transferring knowledge in invoice
analysis. In Proceedings of the 2009 10th International Conference
on Document Analysis and Recognition - Volume 00, pages 848–
852. IEEE Computer Society, 2009. [cited at p. 45]

[92] H. Shiu, J. Fong, and R. Biuk-Aghai. Recovering data semantics
from XML documents into DTD graph with SAX. In Proceedings of
the 5th WSEAS . . . , volume 2006, pages 491–496, 2006. [cited at p. 85]

[93] E. Sorio, A. Bartoli, G. Davanzo, and E. Medvet. Open world
classification of printed invoices. In Proceedings of the 10th ACM
symposium on Document engineering, DocEng ’10, pages 187–190,
New York, NY, USA, 2010. ACM. [cited at p. 12, 15, 18, 23, 25, 27]

[94] E. Sorio, A. Bartoli, G. Davanzo, and E. Medvet. A domain
knowledge-based approach for automatic correction of printed in-
voices. In Information Society (i-Society), 2012 International Con-
ference on, pages 151–155. IEEE, 2012. [cited at p. 13, 15]

131 BIBLIOGRAPHY

[95] E. Sorio, A. Bartoli, and E. Medvet. A look at hidden web pages
in italian public administrations. In Computational Aspects of So-
cial Networks (CASoN), 2012 Fourth International Conference on,
pages 291–296. IEEE, 2012. [cited at p. 14, 15, 109]

[96] I. Sourdis, J. a. Bispo, J. a. M. P. Cardoso, and S. Vassiliadis.
Regular Expression Matching in Reconfigurable Hardware. Journal
of Signal Processing Systems, 51(1):99–121, 2007. [cited at p. 61]

[97] B. Svingen. Learning Regular Languages Using Genetic Pro-
gramming. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb,
M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba,
and R. Riolo, editors, Genetic Programming 1998 Proceedings of
the Third Annual Conference, pages 374–376. Morgan Kaufmann,
1998. [cited at p. 63, 85]

[98] K. Taghva, R. Beckley, and J. Coombs. The effects of ocr error on
the extraction of private information. In H. Bunke and A. Spitz,
editors, Document Analysis Systems VII, volume 3872 of Lecture
Notes in Computer Science, pages 348–357. Springer Berlin / Hei-
delberg, 2006. 10.1007/11669487 31. [cited at p. 49]

[99] K. Thompson. Programming techniques: Regular expression
search algorithm. Commun. ACM, 11:419–422, June 1968.
[cited at p. 61]

[100] M. Tomita. Dynamic construction of finite automata from exam-
ples using hill-climbing. Proceedings of the fourth annual cognitive
science conference, pages 105–108, 1982. [cited at p. 63]

[101] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. Markatos, and
S. Ioannidis. Regular expression matching on graphics hardware
for intrusion detection. In E. Kirda, S. Jha, and D. Balzarotti,
editors, Recent Advances in Intrusion Detection, volume 5758 of
Lecture Notes in Computer Science, pages 265–283. Springer Berlin
/ Heidelberg, 2009. 10.1007/978-3-642-04342-0 14. [cited at p. 61]

[102] M. Villegas and N. Bel. From DTD to relational dB. An automatic
generation of a lexicographical station out off ISLE guidelines. In
Language Resources and Evaluation 2002, pages 694–700, 2002.
[cited at p. 85]

[103] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition).
[cited at p. 83]

[104] W3C. W3C XML Schema Definition Language (XSD) 1.1.
[cited at p. 83]

BIBLIOGRAPHY 132

[105] C. Whittaker, B. Ryner, and M. Nazif. Large-Scale Automatic
Classification of Phishing Pages. In Network and IT Security Con-
ference: NDSS 2010, 2008. [cited at p. 111, 112]

[106] M. L. Wick, M. G. Ross, and E. G. Learned-Miller. Context-
sensitive error correction: Using topic models to improve ocr. In
ICDAR’07, pages 1168–1172, 2007. [cited at p. 49]

[107] Wikipedia. Codice fiscale — Wikipedia, the free encyclopedia,
2011. [Online; accessed 22-december-2011]. [cited at p. 51]

[108] T. Wu and W. Pottenger. A semi-supervised active learning al-
gorithm for information extraction from textual data. Journal
of the American Society for Information Science and Technology,
56(3):258–271, 2005. [cited at p. 64]

[109] T.-F. Wu, C.-J. Lin, and R. C. Weng. Probability estimates for
multi-class classification by pairwise coupling. J. Mach. Learn.
Res., 5:975–1005, December 2004. [cited at p. 29]

[110] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu. Fully au-
tomatic wrapper generation for search engines. Proceedings of
the 14th international conference on World Wide Web WWW 05,
WWW ’05: P:66, 2005. [cited at p. 18, 20, 21]

	Abstract
	Riassunto
	Introduction
	Thesis outline
	Publication list

	Document processing
	Overview
	Related work
	Multi-source web information extraction
	Information extraction from printed documents

	Our Framework
	Wrapper choice
	Human Intervention

	Blocks location
	Overview
	Matching probability
	Wrapper generation
	Human Intervention

	Experiments and Results
	Prototype
	Dataset
	Experiments
	Results

	Remarks

	OCR error correction
	Overview
	Our approach
	System overview
	Single element
	Correlated element fixing

	Experiments and results
	Dataset
	Performance evaluation

	Remarks

	Textual document processing
	Overivew
	Related work
	Our approach
	User experience
	Implementation
	Observations

	Experiments
	Extraction tasks and datasets
	Methodology
	Results

	Remarks

	Structured document processing
	Overview
	Related work
	XML and DTD
	Our approach
	Pre-processing
	Expressions generation
	Post-processing

	Experiments
	Datasets
	Methodology
	Results

	Remarks

	Web Security
	Analysis of PA Web Sites
	Our methodology
	Discussion
	Remarks

	Hidden fraudulent URL detection
	Related work
	Our approach
	Dataset
	Experiments

	Bibliography

