Skip to main content

Cooperative Evolution on the Intertwined Spirals Problem

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2610))

Abstract

This paper examines the evolution cooperation on the intertwined spirals problem. Multiple cooperation mechanisms are tested. Cooperation evolves fairly easily for each of the cooperation mechanisms, producing compact, successful team based solutions. Importantly, the team members’ fitness is relatively poor.

This research supported by a University of Idaho Seed Grant and an NIH Grant NCRR P20 RR16448. The experiments were performed on a Beowulf cluster built with funds from NSF grant EPS80935 and a generous hardware donation from Micron Technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simon Raik and Bohdan Durnota. The evolution of sporting strategies. In Russel J. Stonier and Xing Huo Yu, editors, Complex Systems: Mechanisms of Adaption, pages 85–92. IOS Press, 1994.

    Google Scholar 

  2. Thomas Haynes, Sandip Sen, Dale Schoenefeld, and Roger Wainwright. Evolving a team. In Eric V. Siegel and John Koza, editors, Working Notes of the AAAI-95 Fall Symposium on GP, pages 23–30. AAAI Press, 1995.

    Google Scholar 

  3. Sean Luke and Lee Spector. Evolving teamwork and coordination with genetic programming. In John R. Koza, David E. Goldberg, David B. Fogel, and Rick R. Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual Conference on Genetic Programming, pages 150–156. Cambridge, MA: MIT Press, 1996.

    Google Scholar 

  4. Kim Harries and Peter Smith. Exploring alternative operators and search strategies in genetic programming. In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick R. Riolo, editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 147–155. San Francisco, CA: Morgan Kaufmann, 1997.

    Google Scholar 

  5. Hitoshi Iba. Multiple-agent learning for a robot navigation task by genetic programming. In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick R. Riolo, editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 195–200. San Francisco, CA: Morgan Kaufmann, 1997.

    Google Scholar 

  6. Terence Soule. Voting teams: A cooperative approach to non-typical problems. In Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation Conference, pages 916–922, Orlando, Florida, USA, 13–17 July 1999. Morgan Kaufmann.

    Google Scholar 

  7. Mitchell A. Potter and Kenneth A. DeJong. Cooperative coevolution: An architecture for evolving coadapted subcomponenets. Evolutionary Computation, 8(1):1–30, 2000.

    Article  Google Scholar 

  8. Terence Soule. Heterogeneity and specialization in evolving teams. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), pages 778–785, Las Vegas, Nevada, USA, 2000. Morgan Kaufmann.

    Google Scholar 

  9. Markus Brameier and Wolfgang Banzhaf. Evolving teams of predictors with linear genetic programming. Genetic Programming and Evolvable Machines, 2(4):381–408, 2001.

    Article  MATH  Google Scholar 

  10. K. Imamura, Robert B. Heckendorn, Terence Soule, and James A. Foster. N-version genetic programming via fault masking. In James A. Foster, Evelyne Lutton, Julian F. Miller, Conor Ryan, and Andrea Tettamanzi, editors, Genetic Programming, 5th European Conference, EuroGP 2002, 2002.

    Google Scholar 

  11. John Koza. A genetic approach to the truck backer upper problem and the intertwined spiral problem. In Proceedings of IJCNN International Joint Conference on Neural Networks, pages 310–318. IEEE Press, 1992.

    Google Scholar 

  12. John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. Cambridge, MA: The MIT Press, 1994.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Soule, T. (2003). Cooperative Evolution on the Intertwined Spirals Problem. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds) Genetic Programming. EuroGP 2003. Lecture Notes in Computer Science, vol 2610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36599-0_41

Download citation

  • DOI: https://doi.org/10.1007/3-540-36599-0_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00971-9

  • Online ISBN: 978-3-540-36599-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics