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Abstract
This research demonstrates that evolutionary pressure favoring robust solu-

tions has a significant impact on the evolutionary process. More robust solutions
are solutions that are less likely to be degraded by the genetic operators. This
pressure for robust solutions can be used to explain a number of evolutionary
behaviors. The experiments examine the effect of different types and rates of
genetic operators on the evolution of robust solutions. Previously robustness
was observed to occur through an increase in inoperative genes (introns). This
work shows that alternative strategies to increase robustness can evolve. The
results also show that different genetic operators lead to different strategies for
improving robustness. These results can be useful in designing genetic operators
to encourage particular evolutionary behaviors.
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1. Introduction and Background
The goal of this paper is to demonstrate that pressure for robust solutions is

a general phenomenon effecting more than just tree-based GP and that growth
is not the only evolutionary response to this pressure. The results show that
evolution may favor any of several different strategies to improve robustness
and that the strategy adopted depends significantly on the operators involved.

It is worth emphasizing that in this discussion robustness refers only to re-
sistance to change from variation operators such as crossover and mutation. In
a different context robustness might refer to other factors such as resistance
to noise or to changing environments. Further, pressure for robustness is not
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258 GENETIC PROGRAMMING THEORY AND PRACTICE

the only factor influencing evolution. Clearly selection produces considerable
pressure for more fit solutions and there may be other, as yet unidentified, pres-
sures as well.

In this paper the robustness (or stability) of a solution is a measure of the
solution’s average change in fitness under genetic operations such as crossover
and mutation. It has been theorized that there is significant evolutionary pres-
sure in favor of solutions that are more robust (Soule, 2002; Soule, 2002;
Streeter, 2002). The most outstanding evidence of pressure towards stabil-
ity is the phenomenon of code growth (or bloat) in genetic programming (GP)
(Koza, 1992; Blickle and Thiele, 1994; Nordin and Banzhaf, 1995; McPhee
and Miller, 1995; Soule, 1996; Soule, 1998; Luke, 2000c; Nordin and Banzhaf,
1995; Nordin et al., 1997; Nordin, 1997). Code bloat is a rapid increase in
code size that does not result in fitness improvements. The extra code usually
consists of inoperative code or introns (code that does not contribute to the pro-
gram’s fitness). It is generally accepted that in large part programs generated
with GP grow as a means of protecting the useful code within good solutions
against the potentially negative effects of crossover. By adding introns the use-
ful code (commonly known as operative code or exons) is less likely to be
affected by crossover.

Luke has argued that introns themselves are not the cause of code growth (Luke,
2000c). Smith and Harries have shown that growth can occur in code that does
influence fitness if the code has only a negligible effect on performance (Smith
and Harries, 1998). The author has recently shown that code growth can also
occur in exons that have a significant effect on fitness (Soule, 2002; Soule,
2002). It has also been shown that some forms of mutation can encourage code
growth (Langdon et al., 1999; Soule and Heckendorn, 2002). Finally, theoret-
ical and experimental research strongly suggests that code growth is a factor
in any evolutionary system using a variable sized representation (McPhee and
Miller, 1995; Soule, 1998; Langdon, 1997).

Whereas early code growth research focused on tree based GP, introns and
crossover, these recent results point to a more general phenomenon relating to
any evolutionary system with variable length representations, any genetic oper-
ators and both introns and exons. This supports the hypothesis that code growth
in GP is only one symptom of a general underlying evolutionary pressure fa-
voring robust individuals. To avoid the focus on tree based representations a
linear representation is used in these experiments.

The results presented here show that different operators create pressure for
different forms of solutions. In particular, two versions of crossover are com-
pared: with one version the pressure for robust solutions leads to growth and
with the other version it does not. It is also shown that with some genetic
operators a reduction in solution size is favored to make solutions more robust.
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Operator Choice and the Evolution of Robust Solutions 259

Finally, the results suggest rules for determining how a particular operator
will influence the evolutionary process by favoring robust solutions. The rules
will be particularly useful to a practitioner designing a new representation and
operators for a novel problem. These rules will make it possible for the practi-
tioner to begin to predict how the new operators will influence the evolutionary
process and thus will be useful in designing evolutionary algorithms and oper-
ators that guide the evolutionary process in specific directions.

Other Causes of Growth
In addition to protective growth, two other causes of growth in GP have

also been proposed: removal bias and drift. Because growth is an important
strategy for evolving robustness these additional causes need to be considered
in examining the data presented here.

Removal bias hypothesizes that growth occurs in part because the size of
the region removed during crossover is much more significant in determining
the offspring fitness than is the size of the added region (Soule and Foster,
1998). In particular, offspring created by removing a small region and adding
a larger region (such offspring will be larger than their parents) are much more
likely to maintain their fitness than offspring created by removing a large re-
gion and adding a small region (such offspring will be smaller than their par-
ents). Thus, in the selection step the larger than average individuals are more
likely to survive. Experimental data has confirmed that removal bias occurs
and is a significant factor in GP growth (Soule and Heckendorn, 2002; Luke,
2000c). Theoretical analysis suggests that removal bias will be most signifi-
cant when inviable and ‘near’ inviable regions (regions that have no effect or a
negligible effect on fitness when modified) are common.

The drift theory of code growth is based on the structure of the search
spaces. It has been experimentally observed that for many problems the num-
ber of solutions of a given fitness that are larger than a given size is much
greater than the number of solutions with the same fitness that are smaller than
the given size (Langdon et al., 1999; Langdon, 1999). E.g. given a solution
of fitness X and size Y there are many more solutions with fitness X that are
larger than Y than that are smaller than Y.

Because larger programs are more common it has been proposed that an
unbiased search is more likely to find larger solutions of a given fitness than it
is to find smaller solutions of that fitness, simply because there are more larger
solutions within the search space to be found. The general idea is that “... any
stochastic search technique, such as GP, will tend to find the most common
programs in the search space of the current best fitness” (Langdon, 1999) and
for any given fitness, larger programs are more common.
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260 GENETIC PROGRAMMING THEORY AND PRACTICE

It’s worth noting that these three views of growth (protection, removal bias
or drift) are not mutually exclusive. Nor would proving that any one of them is
correct invalidate the general notion of selective pressure for robust solutions.
In fact, as noted above, the protective view of growth can be taken as a special
case of the general pressure for robustness.

2. Experiment
A very simple problem is used to examine the importance of code and op-

erator types on a variable length, linear evolutionary algorithm. The goal is to
find a set of integers that sum to a given target value T. The allowed integers
are 0, 1 and 4. Individuals are variable length strings consisting of those three
integers.

The fitness of an individual is the absolute value of the difference between
the sum of the integers and the target value, i.e. fitness = |sum - T|. For the
individual: FJF�k
�kmFJF�kJkmF"� (16.1)

the sum is

FË½ìFÅ½Æk�½��Ë½Æk�½ FÅ½ FË½Æk�½Æk4½ FË½�� `lk�X (16.2)

and the fitness is á k�X � B á ] (16.3)

Clearly, a lower fitness is better.
Note that for these experiments there are effectively three types of “genes.”

Genes with a large effect on fitness: 4’s, genes with a smaller effect on fitness:
1’s and genes with no effect on fitness (inoperative genes): 0’s. This problem
is similar to those used in previous experiments, although a linear rather than a
tree-based representation is used here (Soule, 2002; Soule, 2002).

The evolutionary algorithm is generational, with a population size of 500,
elitism of 2 and is run for 1000 generations. The genetic operators, crossover
and mutation, are described below. Other details of the evolutionary algorithm
are shown in Table 16.1.

Crossover
Two-point crossover is used. Because the size of the individuals are vari-

able the two crossover points are chosen independently in each parent. Thus,
in general the sizes of the exchanged regions will be different. E.g.

Parents OffspringFJF á k
� á kmFJF�kJkmF"� ¶ FJF á FJF"�k á kmFJF�kJkmF"�
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F�k
��F á FJF"�k á F"� ¶ F�k
��F á k
� á F"�
Two methods of picking the crossover points are used. In the first method

both crossover points in an individual are chosen randomly. This is referred
to as proportional crossover because the length of the exchanged region is
proportional to the length of the parent. In general, for two randomly cho-
sen crossover points XJg�b of each parent will be selected for crossover. This
method is analogous to typical GA two-point crossover.

In second method the length c of the crossed region is chosen according to
the following algorithm:c = 2

While( c < V /2 AND random real < 0.5)c = c * 2
where V is the length of the parent individual. Thus, the size of the region
selected for crossover is 2 “genes” long 50% of the time, 4 genes long 25%
of the time, 8 genes long 12.5% of the time, etc. Thus, crossing short regions
is very common and crossing longer regions happens infrequently. Once the
length of the crossed region is generated, the left-hand crossover point is ran-
domly selected and the right-hand point is c beyond the left-hand point. This
form of crossover is referred to as constant crossover because the distribution
of lengths of the crossed region is constant, regardless of the parents’ sizes.

Constant crossover is analogous to crossover in tree-based GP. In standard
tree-based GP crossover a random point is chosen for crossover. For full bi-
nary trees this results in an average crossover branch consisting of two nodes
regardless of the tree size (Rosca and Ballard, 1996a; Soule and Foster, 1997).
Larger branches are exponentially less likely to be chosen for crossover. In
practice, GP usually leads to randomly shaped trees rather than full trees (Poli
and Langdon, 1997; Langdon, 1999). However, the distribution of crossover
points still heavily favors small branches (Soule and Heckendorn, 2002) and
using the 90/10 rule (choosing leaf nodes for crossover only 10% of the time)
only slightly shifts the distribution towards larger branches (Soule and Heck-
endorn, 2002). Thus, the distribution of crossover sizes with constant crossover
is comparable to those seen in tree-based GP; both emphasize exchanging
small branches.

Mutation
For a typical, fixed-length GA the mutation rate is proportional to the inverse

of the length of the individuals. However, with a variable-length representation
the inverse of the length is not the same for all members of the population.
Thus, several fixed mutation rates are chosen (0, 0.0001, 0.001, 0.005, 0.01)
and compared.
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262 GENETIC PROGRAMMING THEORY AND PRACTICETable 16.1. Summary of the evolutionary algorithm parameters.

Objective Find integers whose sum is T
Integer values 0, 1, 4
Population Size 500
Crossover Probability 0.9
Mutation Probability 0, 0.0001, 0.001, 0.005 or 0.01
Selection 3 member tournament
Run Time 1000 Generations
Maximum Size None
Elitism 2 copies of the best individual are preserved
Initial Population Random individuals of length 5 to 59
Number of trials 200
Crossover Proportional and Constant (see text)

3. Results
Three separate sets of results are presented in this paper. First, the effect of

the crossover operator on size is examined. It is shown that the different types
of crossover have distinctly different effects on size. Next, the evolved number
of gene’s (0’s, 1’s and 4’s) is examined. These results show that the pressure
for robustness favors 1’s over 4’s. Finally, the effect of incorporating mutation
is examined.

Growth
We begin by examining growth, as growth is the best understood strategy

for increasing robustness. Figure 16.1 shows the average size (length) of in-
dividuals evolved using proportional and constant crossover with no mutation.
Growth is quite pronounced with constant crossover and non-existent with pro-
portional crossover.

The explanation for these very different results seems fairly straightforward.
With proportional crossover the two crossover points are chosen randomly.
Thus, as noted previously, the exchanged regions of the chromosome are pro-
portional to the overall lengths of the chromosomes. The protective effect of
growth observed with tree-based GP doesn’t apply because adding inoperative
code (0’s) simply causes a larger region of the chromosome to be exchanged
during crossover. Thus, the probability of effecting operative code (1’s and 4’s)
doesn’t change when inoperative code (0’s) is added.

In contrast, with constant crossover the expected size of the exchanged re-
gions is constant regardless of the chromosome’s overall length. Thus, in this
case additional inoperative code does decrease the probability of effecting op-
erative code. This is exactly what is observed in GP, where the average size
of the exchanged branches during crossover does not grow proportionally with
the overall tree size and rapid growth is observed.

These results explain why growth has not been a significant problem in most
versions of evolutionary computation using variable length, linear represen-
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Figure 16.1. Average size (length) for individuals evolved using proportional and constant
crossover.

tations. Typical variable length, linear representations use the proportional
version of crossover, where the crossover points are picked randomly with a
uniform distribution. As these results demonstrate, this method of picking
crossover points does not encourage growth.

It is worth considering the other two proposed causes of growth: removal
bias and drift. Removal bias is not expected to cause growth in either of the
trials described above. The primary assumption of the removal bias hypothesis
is that growth occurs because of a bias regarding the size of the removed region
that does not apply to the added region during crossover. Normally this bias
occurs because there is a probability that the added region will fall within an
inviable region of the parent it is being added to. (For example, the added
section may be within an “if(false)” branch or may be multiplied by zero.)
However, with the current encoding there are no inviable regions; every added
1 or 4 has an effect. Thus, adding a large region is more likely to add 1’s
and 4’s and thus effect fitness just as removing a large region is more likely to
effect fitness by removing 1’s or 4’s. With no bias between removed and added
regions removal bias does not apply to these results.

In contrast, drift should occur with either type of crossover. The primary
assumption of the drift hypothesis is that there are more larger solutions of a
given fitness than there are smaller solutions of the same fitness. Thus, the
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Figure 16.2. Number of ‘genes’ (0’s, 1’s or 4’s) of each type when using proportional
crossover. The number of 1’s increases slowly, with a corresponding decrease in 4’s.

search naturally stumbles upon the larger solutions and growth occurs. For
this experiment this assumption certainly holds. (Consider a solution such as
010401, an infinite number of larger solutions of the same fitness can be made
by adding 0’s and, to a lesser extent, by replacing 4’s with 1’s. However, there
are only a few smaller solutions with the same fitness.) The fact that growth
does not occur with proportional crossover casts considerable doubt upon the
drift hypothesis.

Gene Choice
Although proportional crossover does not lead to growth, the pressure for

robust solutions still influences evolution. gene choice Given that the size of
the crossed regions is proportional to the length of the chromosome a more
robust solution can still be achieved by limiting the importance of the “genes”
exchanged during crossover. Clearly 1’s represent a less important gene than
4’s as an extra or missing 1 has a much less significant effect on fitness than an
extra or missing 4. Thus, we expect to see an increase in the number of 1’s and
a decrease in the number of 4’s.

Figure 16.2 shows the numbers of 0’s, 1’s and 4’s when proportional crossover
is used. As predicted there is a (slight) increase in the number of 1’s and a de-
crease in the number of 4’s. Although this difference is small, on average there
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Operator Choice and the Evolution of Robust Solutions 265

are two more 1’s than 4’s in the final generation, the difference in the final
generation is significant at the 1% level (Student’s 2-tailed, t-test,

¤ `CX:]aH ).
This shows that there is pressure for more robust solutions with proportional
crossover. The system is simply using a different (non-growth based) strategy
to increase robustness.
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Figure 16.3. Number of “genes” (0’s, 1’s or 4’s) of each type when using constant crossover.
The number of 1’s increases, with a corresponding decrease in 4’s.

In fact the same robustness strategy is also adopted with constant crossover.
Figure 16.3 shows the number of each type of genes with constant crossover;
the results are much more pronounced than with proportional crossover. There
is a pronounced shift away from 4’s and toward 1’s. In fact, by the final gen-
eration several of the trials showed no 4’s at all. The reason for the shift from
4’s to 1’s is the same as with proportional crossover-individuals with relatively
more 1’s are more robust with respect to crossover. Possibly there is stronger
pressure for the shift with constant crossover. Alternatively, constant crossover
or the growth it creates may make it “easier” to exchange 1’s for 4’s; the pres-
sure is the same in both cases, but the shift occurs more readily with the larger
individuals.

As expected Figure 16.3 shows that the growth observed with constant crossover
is primarily created by an increase in 0’s. Thus, with constant crossover two
evolutionary strategies are adopted to increase robustness, grow by adding 0’s
and increase the stability of the operative code by shifting from 4’s to 1’s.
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Figure 16.4. Average size (length) for individuals evolved using constant crossover with a
variety of different mutation rates.

Mutation and Reduced Size
The previous experiments looked only at the effect of crossover. Next we

examine the influence of mutation when constant crossover is used. Because
the length of the individuals varies using a fixed mutation rate of 1/length is not
possible. Instead several mutation rates are tried: 0.0001, 0.001, 0.005, 0.01.
Each of these are the chance per “gene” of a mutation occurring. Figure 16.4
shows the results of these experiments on the growth rate of the evolving in-
dividuals. Table 16.2 shows the average sizes and standard deviations for the
final generation. These differences are all significant at the 1% level.

Clearly the higher mutation rates limit growth. Again this can be explained
in terms of robustness. Because the mutation rate is per gene (or per site),
additional genes make the occurrence of a mutation event more likely. Because
there are no inviable genes every mutation has an effect on fitness. Thus a short
individual (one with fewer genes) is less likely to have a mutation event and is
more robust with regards to mutation.

This increased robustness with regards to mutation for shorter individuals
has to be balanced against the greater robustness for longer individuals with
regards to crossover. Thus, as the mutation rate increases the ideal length for
maximum robustness decreases. These results are particularly significant in
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Operator Choice and the Evolution of Robust Solutions 267Table 16.2. Average sizes and standard deviations in the final generation (1000) when using
constant crossover with a variety of different mutation rates.

Mutation Rate Average Size Std. Dev.
0.0 238.0 126.5
0.0001 221.9 90.36
0.001 158.2 38.20
0.005 82.50 7.967
0.01 56.93 5.253

that they appear to be the first time that pressure for robustness has been shown
to lead to a smaller overall solution length.

4. Discussion and Conclusions
These results further support the idea the pressure for robustness is an impor-

tant factor in the evolutionary process. The evolutionary process must balance
this pressure for more robust solutions with the pressure for more fit solutions
introduced by selection. Previous research has shown that robustness is often
increased via the growth of inoperative and/or inviable code. The present re-
sults show that other evolutionary strategies are also adopted to increase robust-
ness. In particular, we observed that increased robustness is achieved through
gene choice, in this case replacing 4’s with 1’s. Robustness also increased by
reducing the overall chromosome length (attenuation) in some cases.

Based on the results presented here it is possible to make predictions regard-
ing the effects of different types and frequencies of operations with regards to
“code” growth and gene selection. In general, changes that increase robustness
(decrease the probability of fitness changes) will be favored.

These results show that increased growth will lead to increased robustness
(and thus be evolutionarily favored) with respect to a given operator if that
operator is applied with a per individual, and not a per site, probability. (Where
“site” means nodes in a tree representation or loci in a linear representation.)
I.e., when the operator is applied to individuals uniformly regardless of size.
In these cases adding additional sites decreases the probability of any specific
site being effected.

Examples of per individual, rather than per site operations (which encourage
growth), include: GP crossover (one crossover per individual and the size of
the crossed branches is not directly proportional to the number of nodes in the
tree), mutation that is applied to a fixed number of sites per individual regard-
less of the individuals length, and the constant crossover operation described
in this paper.

Examples of per site operations (which do not encourage growth) include:
mutations with a per site probability (e.g. standard GA mutation) and the pro-
portional two-point crossover described above (as individuals get longer-have
more sites-the number of sites changed by crossover increases proportionally).
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268 GENETIC PROGRAMMING THEORY AND PRACTICE

Even in cases where the operators are designed or chosen so that they will
not encourage growth to increase robustness operators may have more subtle
effects. E.g. these experiments demonstrated that pressure for robustness can
effect “gene” choice.

The rules and examples presented in this paper can be used to predict the
effect of novel operators on the evolutionary process and thus can improve our
ability to design useful genetic operators. This is particularly beneficial to a
practitioner who must design a novel representation and associated operators
to solve a new problem. The rules described above can be used to design
operators that guide evolution in a desired direction.
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