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Abstract

This paper is a preliminary report on auto-
constructive evolution, a framework for evo-
lutionary computation in which the machin-
ery of reproduction and diversification (and
thereby the machinery of evolution) evolves
within the individuals of an evolving pop-
ulation of problem solvers. Autoconstruc-
tive evolution is illustrated with Pushpop, an
evolving population of programs expressed in
the Push programming language. The Push
programming language can also be used in a
more traditional genetic programming frame-
work and may have unique benefits when so
employed; the PushGP system, which uses
traditional genetic programming techniques
to evolve Push programs, is also described.

1 INTRODUCTION

Autoconstructive evolution is a framework for evolu-
tionary computation in which the machinery of repro-
duction and diversification (and thereby the machinery
of evolution) evolves within the individuals of an evolv-
ing population of problem solvers. In this paper auto-
constructive evolution is introduced and illustrated
with Pushpop, an evolving population of programs ex-
pressed in the Push programming language.

The paper begins with a section describing the moti-
vation and historical precedents for autoconstructive
evolution. It then introduces Push, a new stack-based
programming language that can also be useful in a tra-
ditional genetic programming framework. Push sup-
ports multiple data types without imposing syntax re-
strictions and it allows for arbitrary inter-mixing of
operations on objects of different types. A code data
type permits explicit code manipulation that can be

used to implement subroutines, macros, and recursion,
all without syntax restrictions. Examples of Push pro-
grams are presented below, including Push programs
evolved within a traditional-style genetic programming
system called PushGP (which is also described).

The paper then describes Pushpop, an autoconstruc-
tive evolution system built on top of Push. The
evolutionary dynamics of Pushpop are complex, and
although Pushpop can be used to solve computa-
tional problems it often reaches sub-optimal equilib-
ria. Analysis of this behavior engages issues raised
in the literatures of evolutionary biology and artificial
life. The paper concludes with prospects for the use of
PushGP, Pushpop, and autoconstructive evolution in
general as problem solving technologies.

2 AUTOCONSTRUCTIVE
EVOLUTION

In traditional genetic algorithms (Holland, 1992) and
genetic programming systems (Koza, 1992) the mecha-
nisms of reproduction and diversification are designed
by human programmers and do not themselves evolve
as the systems run. Fit individuals are reproduced,
mutated, and recombined according to pre-specified
algorithms and with pre-specified parameters such as
mutation rates. These algorithms and parameters may
or may not be well suited to their tasks, and their ef-
fectiveness depends on the ways in which individuals
are represented and on the fitness landscapes of the
problems to which the systems are being applied.

In contrast, natural evolution presumably began with-
out the imposition of pre-specified mechanisms for
reproduction and diversification. These mechanisms
presumably co-evolved with the mechanisms under-
lying all of the other functions of the earliest organ-
isms, including those for metabolizing energy sources.
Through this co-evolution the mechanisms for repro-



duction and diversification adapted to the materials
and energy sources of the early Earth, giving rise to
the robust evolutionary process that produced our bio-
sphere (Margulis et al., 2000).

Is it possible to follow nature’s lead and to pro-
duce evolutionary computation systems that adap-
tively construct their own mechanisms of reproduction
and diversification, and thereby their mechanisms of
evolution, as they run? There are at least two mo-
tivations for exploring the development of such auto-
constructive evolution systems. The first is that such a
system might eventually reach a state in which its evo-
lutionary mechanisms are better suited to a particular
problem than any that might be constructed by hand.
That is, we can hypothesize that autoconstructive evo-
lution systems will eventually out-perform traditional
evolutionary computation systems by adapting their
reproductive mechanisms to their representations and
problem environments. The second motivation is that
such systems may exhibit properties similar to those of
biological evolutionary systems, providing useful data
for research in evolutionary biology and artificial life.

Several researchers have previously explored the use of
adaptive or self-adaptive genetic operators in genetic
algorithms, genetic programming, and other forms of
evolutionary computation such as “evolution strate-
gies” (Angeline, 1995a, 1996; Bäck, 1992; Stephens,
1998; Hart, 2000). In most previous work, how-
ever, the algorithms for reproduction and diversifica-
tion have been essentially fixed, with only the numer-
ical parameters (such as mutation rates) subject to
adaptation. A more radical approach was taken by
Edmonds in his “Meta-Genetic Programming” frame-
work, in which the genetic operators (e.g. reproduc-
tion, mutation, and crossover) that act on the main
population are themselves evolved in an independent,
co-evolving population (Edmonds, 1998). Edmonds
noted that there is a potential regress here, as genetic
operators are required for the evolution of his evolved
operators, and he proposed several approaches to this
problem including recursive strategies in which opera-
tors act on the populations in which they are evolved.
Edmonds reported mixed success with his system and
described problems with the maintenance of diversity
and sensitivity to the details of the special-purpose
code-manipulation functions used in genetic operators.
Teller had earlier reported work on similar ideas but in
a less conventional, graph-based programming frame-
work (Teller, 1994). More recently, Kantschik and col-
leagues have extended Teller’s ideas and reported suc-
cess with a meta-genetic programming system operat-
ing on graph-based programs (Kantschik et al., 1999).

The work described in this paper aims to take one step
closer to the natural model, requiring that evolving in-
dividuals themselves be responsible for the production
of their own children. Just as natural organisms are
responsible both for “making a living” in the world
(e.g., acquiring and metabolizing food) and for pro-
ducing children, the individuals in an autoconstruc-
tive evolution system are responsible both for solving
a problem and for producing new programs for the
following generation. The problem-solving and child-
producing components of the individuals may be in-
tegrated and interdependent, and they may use arbi-
trary computational processes built in an expressive,
Turing-complete programming language.

Autoconstructive evolution has precedents in the arti-
ficial life literature, most specifically in the Tierra and
Avida systems. In Tierra, programs expressed in an
assembly-like language compete for execution time and
evolve on a simulated MIMD parallel computer (Ray,
1991). The evolving “creatures” in Tierra are indeed
responsible for their own reproduction and their repro-
ductive mechanisms can and do adapt over evolution-
ary time, but Tierra must be seeded with a hand-coded
replicator and it also relies on externally specified mu-
tation mechanisms for evolutionary progress. Further,
the creatures in Tierra do not evolve to produce an-
swers to computational problems; while it is useful
for the study of evolution it is not a problem-solving
technology. The Avida system extends the ideas of
Tierra in several ways and it incorporates a mechanism
for guiding evolution to solve problems (Adami and
Brown, 1995). This mechanism, however, has been ap-
plied only to simple problems (such as summing two
numbers) and it requires that the user run the sys-
tem in stages of increasing task difficulty. Like Tierra,
Avida requires hand seeding and externally specified
mutation mechanisms, and it provides no mechanisms
for sexual recombination (e.g. crossover). Nonethe-
less, Avida exhibits interesting properties akin to those
of natural living systems, and it has served as the ba-
sis for inter-disciplinary studies of genome complexity
and genetic interactions (Lenski et al, 1999).1

The artificial life literature contains additional re-
lated work. For example, Dittrich and Banzhaf have
shown that “algorithmic reaction systems” (sometimes
also called “artificial chemistries”) are capable of self-
evolution in which “the components responsible for the
evolutionary behavior are (only) the individuals of the
population system itself” (Dittrich and Banzhaf, 1998,
p. 204). The Dittrich and Banzhaf system exhibits
complex evolutionary dynamics without hand seeding

1Another recent related system is SeMar (Suzuki, 2000).



but, like Tierra, is not designed to solve computational
problems; indeed one of the goals of the project was
to produce evolutionary dynamics without any explicit
fitness functions or artificial selection procedures.

Many studies have been conducted on general princi-
ples of self-replication, beginning with von Neumann’s
work in the 1940’s ((Sipper 1998) contains a survey).
Koza has used genetic programming to evolve self-
replicating computer programs, but the replication
processes that he evolved were independent of the re-
productive mechanisms of the genetic programming
system (which were hand coded) (Koza, 1992). Few
of the prior studies consider in detail the issues in-
volved in simultaneously evolving self-replication and
additional problem-solving functionality.

The particular approach to autoconstructive evolution
described in this paper relies upon the use of a pro-
gramming language for the evolving programs with
certain unusual properties. Push, the programming
language developed to fill this need, can also be used
in a more traditional genetic programming framework
and may provide independent benefits when so em-
ployed. For example it may ease the evolution of pro-
grams that use multiple data types, automatically de-
fined functions, and recursion. The next section intro-
duces the Push programming language and provides
some examples of its use. This is followed by a section
describing PushGP, a traditional-style genetic pro-
gramming system that evolves Push programs. The
paper then returns to autoconstructive evolution and
describes Pushpop, an autoconstructive population of
Push programs.

3 PUSH

The Push programming language was designed to have
a completely uniform syntax (to simplify the evo-
lution of code-manipulating code) while nonetheless
supporting multiple data types and high-level con-
trol structures such as recursion and named subrou-
tines. It achieves these goals by extending the concepts
of stack-based programming languages such as Forth
(Salman, 1984); such languages have played a role in
previous genetic programming systems and a survey
is included in (Bruce, 1997). This section presents
the major features of the Push language and provides
some illustrative examples, but space limitations do
not permit a complete description of the language to
be presented here (see (Spector and Robinson, Forth-
coming)).

A Push program is a string of instructions, constants,
and parentheses, with the only syntax rule being that

parentheses must be balanced. As in other stack-
based languages, instructions take their arguments
from global stacks (one of which exists for each data
type) and place their outputs on global stacks. The
notation is a form of postfix; for example the following
code computes “2 + 3”:

(integer 2 3 +)

When the constant 2 is executed its value is pushed
onto the integer stack. Similarly for the constant 3.
The + instruction takes two arguments from the inte-
ger stack, sums them, and pushes the result (5) back
onto the integer stack. Like all Push instructions, the
+ instruction is simply skipped if there are insufficient
arguments on the stack when it is executed. The ini-
tial integer in this program is a type constant. type
is a built-in data type in Push and therefore has its
own stack; when integer is executed it is pushed onto
the type stack. The + instruction, like most Push in-
structions, consults (but does not pop) the type stack
to determine which data type’s + method to execute.
The built-in float data type also has a + method, and
operations on integers and floats can be combined in a
variety of ways; all of the following produce identical
results:

(integer 2 3 + float 2.72 3.14 +)
(2 3 2.72 3.14 integer + float +)
(2.72 integer 2 3.14 3 + float +)

The type stack has a pre-defined “bottom” that pro-
vides type defaults when the executing program pro-
vides no appropriate type constants (or when it pops
all appropriate type constants that it does provide).
The current type stack bottom, listed from top to bot-
tom, is integer, boolean, code, type, name. If an
instruction that is being executed is not implemented
for the type on the top of the type stack then the in-
terpreter searches down through the type stack until it
finds a type for which the instruction is implemented.
Because the pre-defined type stack bottom must in-
clude at least one type that implements each instruc-
tion, an appropriate type will always be found.

Generic stack manipulation instructions such as pop
(remove the top element of a stack), dup (push a du-
plicate of the top element), and swap (swap the top
two elements) are implemented for all data types. A
convert instruction converts between the two topmost
types on the type stack; convert methods are pro-
vided for all pairs of the data types installed in the
system (for example, floats are converted to integers
by truncation).

Parentheses generally have no effect on execution,
so for example (+ 2 3), (+ (2 3)), and ((+) 2



((3))) all produce identical results. Parentheses serve
only to group and provide hierarchical structure to
code, which can be of great utility when code is ma-
nipulated as data (and possibly later executed). Code
manipulation is accomplished via the code data type,
which inherits functionality from the expression data
type. A rich set of list-manipulation instructions, in-
spired by those that form the core of the Lisp pro-
gramming language (Graham, 1996), allows for ar-
bitrary symbolic manipulation of expressions. The
quote instruction is an essential ingredient of code-
manipulation expressions and it is handled as a spe-
cial case by the interpreter. When quote is executed
a flag is set in the interpreter that will cause the next
piece of code submitted for execution (which may be
a parenthesized sub-program) to be pushed onto the
most current expression stack rather than being exe-
cuted. The do instruction recursively invokes the inter-
preter on the expression on the top of the code stack
(while leaving its code argument on the stack until
the recursive execution is complete; do* pops the code
argument first). So for example the following is a com-
plicated way to add 2 and 3:

(code quote (integer 2 3 +) do)

When code is submitted to the top level interpreter
for execution it is pushed on the code stack prior to
execution. This provides a convenient way to write
recursive code, such as the following code which recur-
sively computes the factorial of an input provided on
the integer stack:

(code quote
(quote (pop 1)
quote (code dup integer dup 1 - do *)
integer dup 2 < if)

do)

This code also uses the if instruction, which executes
one of the top two items on the code stack (and dis-
cards the other), depending on what is found on the
top of the boolean stack. In this case the item on top
of the boolean stack will have been left there by the
integer method for the < instruction, which will have
compared the input to 2.

Note that the code manipulation features of Push
make it easy to write self-modifying programs. Such
programs might have “morphological” phases during
which they develop into “mature” code which is then
executed to solve a problem. Alternatively, such pro-
grams might continue to develop as they run, exhibit-
ing “ontogeny” more in the manner of living organ-
isms. Prior work on morphogenic evolutionary compu-
tation and on ontogenetic programming required un-
usual mechanisms to achieve these effects (Angeline,

1995b; Spector and Stoffel, 1996a, 1996b), whereas
systems based on Push may get them “for free” via
the code manipulation features of the language.

The recursive execution capabilities of do, do*, if,
and map (which is an iterator similar to Lisp’s mapcar)
introduce the possibility of nontermination. For this
reason one can specify an upper bound on the number
of instructions that can be executed for a single top-
level call of the interpreter. If this bound is exceeded
then execution terminates immediately and the calling
program can either use or discard the “results” that
have been left on the stacks at that time.

A name data type, in conjunction with set and get in-
structions, provides variables that can be used to hold
items of any type (including code for named subrou-
tines). Any symbol that is not an instruction name or
constant of any other sort (including type constants) is
considered a name constant and is pushed on the name
stack for use with subsequent calls to set or get. For
example, the following is a version of the factorial pro-
gram with a named subroutine:

(code factorial
quote

(code
quote (pop 1)
quote (dup 1 - code factorial get do *)
integer dup 2 < if)

set do)

Figure 1 shows the Push type hierarchy and some of
the currently implemented instructions for each type.

4 PUSHGP

Push is a flexible language that can be used either in
an autoconstructive evolution framework or in a tradi-
tional genetic programming framework. This section
describes PushGP, a traditional genetic programming
system that evolves Push programs.

The basic algorithm of PushGP is the same as that
for standard genetic programming. PushGP begins by
generating a population of random programs.2 Each
of these is evaluated for fitness. If a sufficiently fit
program is found it is printed and the system halts.
Otherwise a new generation of programs is produced
by applying reproduction, mutation, and crossover op-
erators to the more-fit programs in the current gen-
eration. PushGP uses tournament selection and rea-
sonably standard genetic operators; mutation replaces

2In principle any of the random program generation
techniques used for genetic programming could be trivially
adapted for PushGP. For details on the techniques used in
PushGP see (Spector and Robinson, Forthcoming).



- push-base-type:
dup, pop, swap, rep, =[boolean], set[name],
get[name], convert[type], pull[integer],
noop

- number: +, -, *, /, >[boolean], <[boolean]
- integer: rand, pull, /
- float: rand

- boolean: not, and, or, nand, nor, rand
- expression:

quote, car, cdr, cons, list, append, subst,
container, length[integer], size[integer],
atom[boolean], null[boolean], nth[integer],
nthcdr[integer], member[boolean],
position[integer], contains[boolean],
insert[integer], extract[integer],
instructions[type], perturb[integer],
other[integer], other-tag[float],
elder[integer], neighbor[integer],
rand[integer]

- code: do, do*, if[boolean], map
- child:

- type: rand
- name: rand

Figure 1: The Push type hierarchy and some of the
currently implemented instructions for each type. A
type name in square brackets means that the preced-
ing instruction accesses the named stack in addition
to the stack of the type to which the instruction is be-
ing applied. Sub-types inherit instructions from their
super-types, though they may override the implemen-
tation of these instructions with more specific meth-
ods. The type hierarchy can be easily extended. Some
of the runs described in this paper use a subset of the
type hierarchy or a subset of the instructions shown
here.

a randomly chosen sub-expression with a new ran-
dom subexpression, and crossover replaces a randomly
chosen sub-expression with a randomly chosen sub-
expression from another individual.3 The process con-
tinues until a solution is found or until the maximum
number of generations has been exceeded.

4.1 AN ODD SOLUTION TO THE ODD
PROBLEM

One of the strengths of the Push language is that it
allows for the flexible integration of code that manip-
ulates data of different types. The more traditional
approach to the evolution of programs with multi-

3For the experiments described in this paper nodes were
chosen for mutation and crossover using uniform random
selection. A more recent version of the system allows
for node selection to be biased in favor of internal nodes
(as opposed to leaves), as is common practice in genetic
programming.

ple data types, strongly typed genetic programming,
imposes syntax restrictions to ensure that functions
are passed data only of the types that they require
(Montana, 1995). This complicates the construction
(or evolution) of genetic operators and has other im-
pacts on evolution, for example by limiting options for
crossover. Push allows for an approach free from such
complications. Whether or not this will ultimately be
advantageous, in terms of the computational effort re-
quired to evolve large, multiple-type programs, is an
open, empirical question that is not addressed in this
paper. Here we aim only to illustrate the approach
and some of its possibilities.

As a rudimentary demonstration of its multiple-type
capabilities PushGP was given the task of evolving a
program for the odd problem. In this problem the
program receives as input a single integer and is re-
quired to produce as output a boolean value indicat-
ing whether the input is an odd number; the answer
should be T if the input is odd and NIL otherwise.4

PushGP was run on this problem with a population of
1000, tournament size 5, and genetic operator rates
of 40% crossover, 40% mutation, and 20% straight
reproduction. The maximum size for programs was
100 points, initial random programs were limited to 15
points, and the execution step limit was 100.5 Each
program was evaluated for fitness on the twenty inte-
gers from 0 to 19. In the fifth generation the following
correct solution was produced:

((nth) atom (insert) pull)

This is a most unusual solution that uses no arithmetic
instructions, even though the language’s full comple-
ment of arithmetic instructions were available. This
solution can be understood by considering the follow-
ing:

• The nth instruction takes an expression and an
integer and pushes onto the appropriate expres-
sion stack the element of the expression indexed
by the integer.6

• In this case the appropriate expression stack is the
4The current version of Push is implemented in Lisp and

therefore inherits Lisp’s conventions for the representation
of true and false (Graham, 1996).

5Each instruction, constant, or pair of parentheses
counts as one point. These parameters were chosen ar-
bitrarily; there is no particular justification for their values
and they were not optimized. A study of the effects of dif-
ferent values for these parameters is currently in progress.

6If the item on top of the appropriate expression stack
is just an atom then a list containing just that atom is used
instead.



code stack, as specified in the type stack bottom.

• nth is zero-based; the first item in the expression
is item 0, the second is item 1, and so on.

• nth “wraps around” to the beginning of the ex-
pression if its integer input is greater than the
length of the expression.

• The atom instruction pushes NIL (meaning
“false”) onto the boolean stack if its input is sur-
rounded by parentheses, and T (meaning “true”)
otherwise.

Recall that the program starts with its integer input
on the integer stack. The execution of the nth in-
struction accesses the program’s own code and pushes
onto the top of the code stack the component of the
program indexed by the integer input. Note that this
component will be an “atom” (that is, not surrounded
by parentheses) if and only if the input number is an
odd number. The next instruction, atom, will therefore
leave T on top of the boolean stack if the input num-
ber is odd, and NIL on top of the boolean stack oth-
erwise, correctly solving the problem. The remaining
two instructions have no effect on the boolean stack
and can therefore be ignored, aside from noting that
they maintain the pattern of alternating atoms upon
which the program relies. For this reason the program
can be simplified to: ((nth) atom).

This remarkably concise program, which uses its own
code as an auxiliary data structure, nicely illustrates
that multiple data types can sometimes be used in
unexpected ways, providing synergistic advantages.

4.2 PARITY AND MODULARITY

Another strength of the Push language is that it per-
mits the expression, without syntax restrictions, of
modules such as functions and macros. The more
traditional approaches to the evolution of programs
with subroutines (automatically defined functions, or
ADFs (Koza, 1994)) and macros (automatically de-
fined macros, or ADMs (Spector, 1996)) require that
one specify in advance how many such modules are to
be used and how many arguments they will receive.
Syntax restrictions are also imposed by the definitions
of the modules, complicating the expression of genetic
operators and in some cases limiting the possibilities of
crossover. A more refined approach using architecture
altering operations eliminates the need for prespecifica-
tion of the numbers of modules and arguments, but it
does so at the expense of additional complexity (Koza
et al., 1999). Similarly to the case of multiple-data
types described above, Push allows for an approach

free from such complications. Again, whether or not
this will ultimately be advantageous, in terms of the
computational effort required to evolve large, modular
programs, is an open, empirical question that is not
addressed in this paper (but see (Spector and Robin-
son, Forthcoming)). Here we aim only to illustrate the
approach and some of its possibilities.

Parity problems have been used widely to test and
demonstrate genetic programming systems, and in
particular they have been used to demonstrate the
utility of modularity (Koza, 1994). As a rudimentary
demonstration of its ability to automatically evolve
novel control structures, PushGP was given the task
of evolving a program for the even 4-parity problem.
The input for this problem consists of four Boolean
values, and the output, also a Boolean value, should
be T (true) if the number of T inputs is even (and NIL
otherwise). For this run we eliminated numerical types
and limited the Boolean instructions to and, or, nand,
and nor (to conform to the function set used in (Koza,
1994)).

PushGP was run on this problem with a population of
10000, tournament size 5, and genetic operator rates
of 40% crossover, 40% mutation, and 20% straight
reproduction. The maximum size for programs was
50 points, initial random programs were limited to 25
points, and the execution step limit was 200.7 Each
program was evaluated for fitness on all 16 possible
combinations of 4 Boolean inputs. In the 71st gen-
eration a correct 45-point solution was produced, a
simplified (41-point) version of which follows:

(quote (x x (x ((x) x)))
(list (x) ((x) (x quote (dup nand) if) nil)
(x x) ((quote) ((x) x x) x (map nor))))

In this version the name constant x was substituted
for instructions that have no effect on the program’s
output, but which cannot be removed because they
play a structural role in the program’s execution. As
with the odd program above, this program uses its own
code as an auxiliary data structure, but in this case
the mode of operation of the program is not so clear.
Indeed it is quite difficult to explain how this program
works, and a full explanation will not be included here.

Is this solution modular? In some respects it clearly
is. For example, it is recursive (calling itself via map,
an instruction that iteratively executes a body of code
on each element of a list of expressions). Further, al-
though the text of the program contains only one in-
stance of the nor function, each run of the program

7Again, these parameters were chosen arbitrarily and
were not optimized.



executes nor four times. The same holds for list,
map, and if. nand also occurs only once in the text of
the program but is executed 1, 2, 3, or 4 times depend-
ing on the input to the program. The same is true of
dup. So the program is clearly re-using code, which
is one of the hallmarks of modularity. On the other
hand, this is probably not the sort of modularity that
any human would employ.

5 PUSHPOP

5.1 PRODUCTION OF CHILDREN

Pushpop can perhaps best be understood by beginning
with PushGP and specifying that individual programs
will be responsible for the production of their own chil-
dren. One way to do this would be to declare that
whatever is left on top of the code stack at the end
of a program’s execution should count as a potential
child. Because a program is typically executed several
times for each fitness evaluation (once for each input
or “fitness case”) this would produce several potential
children for each program from each fitness evalua-
tion. This is essentially the strategy used in Pushpop,
with the refinement that a dedicated expression type
(with a stack), called child, is provided for the pur-
pose of child production. This prevents complications
that otherwise might occur from using the same code
stack both for child production and for other purposes
(such as recursion).

5.2 SELECTION

Since children are produced by the individual pro-
grams as they are evaluated for fitness, there is no
role for the standard genetic operators of mutation,
crossover, and reproduction. But something must
come in their stead, not to produce but to filter the
children that will be admitted to the next generation.
This is necessary both to keep the population size lim-
ited and to provide selective pressure; only by allowing
more of the children of the better parents to survive
does Pushpop encourage the development of fitter pro-
grams. The filtering is accomplished via tournaments:
for each position in the next generation n random in-
dividuals are picked from the current generation, and
a random child of the best of these n individuals is
chosen to survive. The tournament size n is an envi-
ronmental constant (currently 2) that can be used to
adjust the selection pressure.

5.3 SEX

Sexual recombination, involving any number of indi-
viduals and any method of code recombination, can be
expressed in Pushpop as long as there is some mech-
anism that allows the code of one individual to refer
to the code of other individuals. The current version
of Push provides four instructions with this capability,
each of which pushes the code of another program onto
the current expression stack:

• neighbor: Takes an integer n and returns the
code of the individual distance n in the population
from the current individual. The population has
a linear structure with siblings grouped together;
low n will likely return a close relative and high n
will likely return an unrelated program.

• elder: Takes an integer that is used as a tourna-
ment size for a tournament among the individuals
of the previous generation. The program of the
winning individual is returned.

• other: Takes an integer tournament size and per-
forms a tournament among individuals of the cur-
rent generation, comparing individuals with re-
spect to their parents’ fitnesses (since their own
fitnesses will in general not yet be known).

• other-tag: Takes a floating-point tag and
searches for a program in the current generation
containing the tag. This is slow and is therefore
usually disabled. Programs can achieve a simi-
lar effect through combinations of neighbor and
expression comparison instructions.

5.4 DIVERSITY MANAGEMENT

As noted by Edmonds in his prior work (Edmonds,
1998), it can be difficult to maintain diversity in a
system with evolving genetic operators. Perfect repli-
cation operators, for example, can quickly homoge-
nize a population, as can other operators that in-
sufficiently diversify their outputs. Because we have
limited resources (particularly compared to those that
were available for the one known prior instance of com-
pletely autoconstructive evolution: the evolution of life
on Earth) and must therefore limit ourselves to rela-
tively small populations, we must take strong measures
to ensure that the population remains sufficiently di-
verse. Pushpop maintains diversity through a combi-
nation of syntactic and semantic diversity constraints.
The syntactic diversity constraints specify that chil-
dren cannot be identical to their parents and that a
population can never contain any completely identi-
cal programs. Semantic diversity can be encouraged



through a variety of mechanisms. One form of seman-
tic diversity constraint built into Pushpop limits the
number of children that can be produced by parents
with a particular fitness value (the limit is a system
parameter called “semantic niche size”). In another
scheme the weighting of the various fitness cases is var-
ied across the population, creating different ecological
pressures in different “geographical” areas and thereby
discouraging semantic homogeneity.

5.5 REPRODUCTIVE COMPETENCE

At the beginning of a run one must first achieve diver-
sifying recursive replication; in other words one must
obtain individuals that make diverse children that are
themselves capable of making diverse children (which
can in turn make diverse children, etc.). Once such
individuals arise their descendents will fill the popu-
lation; selection will then come into play, favoring the
survival of the children of the more-fit parents. Until
such reproductive competence has been achieved there
will be too few “naturally born” children to fill the
population, so the population is padded with newly
generated random individuals. In order to speed the
achievement of reproductive competence one can for-
tify the primordial soup by increasing the probability
that instructions and constants useful for diversifying
reproduction (such as child, neighbor, and rand) are
included in random programs. Note that this is quite
different from the way in which systems like Tierra
are seeded with hand-coded replicators, since none of
the instructions in the fortified soup is reproductively
competent on its own.

5.6 RESULTS AND REFINEMENTS

Pushpop has been run on a range of symbolic regres-
sion problems (Koza, 1992), with a range of values for
environmental parameters (including population size,
instruction set, tournament size, and semantic niche
size). Under most conditions the population quickly
achieves reproductive competence and soon thereafter
improves in fitness. Often there are a number of subse-
quent improvements in fitness, and sometimes a com-
pletely correct solution is found. More often than
not, however, a stable (though diverse) equilibrium is
reached before the target problem is solved.

This should not come as a great surprise, as many
studies have questioned the “progressiveness” of the
natural evolutionary processes that autoconstructive
evolution aims to emulate. A recent study by Tur-
ney suggests that evolution can indeed exhibit global
progressive trends and that the primary trend is to-
ward increasing “evolutionary versatility” (Turney,

2000). Turney’s computational experiments further
imply that a key requirement for unbounded evolution-
ary versatility is a highly dynamic fitness landscape.
This accords well with arguments in evolutionary bi-
ology about the role of climate change in evolutionary
progression, and suggests a straightforward refinement
to Pushpop that may encourage continued progress.
This refinement, fitness case rotation, involves gradu-
ally changing the set of fitness cases used for fitness
evaluation from generation to generation. In the sim-
plest case with an even number n of fitness cases one
can use cases 1 through n

2 in the first generation, cases
2 through n

2 + 1 in the second generation, etc., wrap-
ping around to case 1 after case n. This has been im-
plemented in Pushpop and while the results are still
preliminary it seems to have a beneficial effect in pro-
moting continued fitness improvement.

Other ideas from evolutionary biology may also be
helpful. For example Turney notes that Gould explains
apparent evolutionary progress as the result of random
variation coupled with a minimum level of complexity
required for life. This notion has been incorporated
into Pushpop as an optional requirement that an in-
dividual’s fitness must be better than some minimum
value (for example the fitness of a null program) for
its children to survive. Further study is required to
determine the effect of this restriction.

The complex evolutionary dynamics of Pushpop pro-
vide a rich source of data for other connections to evo-
lutionary biology. For example, a symbolic regression
run with the target equation y = x3 +x2 +x produced
the following correct solution:

(size perturb < integer convert convert dup dup *

rand subst (extract) (subst) (+ code *) ((pop)

(set t child +) (convert convert) (null 0.011))

nil * set erc-var-193802 /)

This solution scores perfectly on the fitness test but
reproduces asexually. Further analysis shows that
there were large spikes in the usage of instructions re-
quired for sexual recombination (elder, other, and
neighbor) shortly after the population reached repro-
ductive competence (at generation 75) and through
the subsequent period of major fitness improvement.
By generation 550, however, when the solution above
was produced, these instructions were being called
only about once every three program executions (down
from a high of about four such calls per program exe-
cution). It appears that sexual reproduction played a
major role in the initial improvement of the population
but that later generations relied on incremental asex-



ual strategies based on the perturb instruction.8 Fur-
ther study of the adaptation of reproductive strategies
in Pushpop and their relation to adaptations in biolog-
ical reproduction may eventually provide insights that
will improve Pushpop and/or shed light on biological
evolutionary processes.

6 CONCLUSIONS

This is a preliminary report on a recently developed
line of research and the conclusions are therefore tenta-
tive. The Push programming language has been shown
to have several features that can support novel evolu-
tionary computation systems. PushGP, a traditional-
style genetic programming system that evolves Push
programs, may offer advantages in the evolution of
complex programs using multiple data types and con-
trol structures; further study is required to assess its
strengths and weaknesses. Pushpop is an autocon-
structive evolution system consisting of Push programs
that construct their own children while solving compu-
tational problems. Further study is required to deter-
mine if Pushpop can fulfill the hypothesized promise of
autoconstructive evolution systems to out-perform tra-
ditional evolutionary computation systems by adapt-
ing their reproductive mechanisms to their representa-
tions and problem environments (Spector and Robin-
son, Forthcoming).
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