
Automatic Generation of Adaptive Programs

by Lee Spector and Kilian Sto�el

Full citation:

Spector, L., and K. Sto�el. 1996. Automatic Generation of
Adaptive Programs. In From Animals to Animats 4: Proceedings

of the Fourth International Conference on Simulation of Adaptive

Behavior (SAB-96). P. Maes, M. Mataric, J.-A. Meyer, J. Pollack,
and S.W. Wilson (editors). Cambridge, MA: The MIT Press.



Automatic Generation of Adaptive Programs

Lee Spector*y

lspector@hampshire.edu

*School of Cognitive Science and Cultural Studies

Hampshire College

Amherst, MA 01002

Kilian Sto�el y

sto�el@cs.umd.edu

yDepartment of Computer Science

University of Maryland

College Park, MD 20742

Abstract
This paper shows how ontogenetic program-

ming, an enhancement to the genetic program-
ming methodology, allows for the automatic gen-
eration of adaptive programs. Programs pro-
duced by ontogenetic programming may include
calls to self-modi�cation operators. By permit-
ting runtime program self-modi�cation, these op-
erators allow evolved programs to further adapt
to their environments. In this paper the onto-
genetic programming methodology is described
and two examples of its use are presented, one
for binary sequence prediction and the other for
action selection in a virtual world. In both cases
the inclusion of self-modi�cation operators has
a clear positive impact on the ability of genetic
programming to produce successful programs.

1 Introduction

Genetic programming is a methodology for the au-
tomatic generation of computer programs by means
of biologically-inspired processes of recombination and
natural selection (Koza, 1992). Genetic program-
ming systems process populations of computer pro-
grams. The initial populations typically consist of pro-
grams that are random combinations of elements from
problem-speci�c function and terminal sets. The pro-
grams are assessed for �tness, usually by running them
on representative sets of inputs, and the resulting �t-
ness values are used in producing the next generation
of programs. A variety of genetic operations, including
�tness-proportionate reproduction, crossover, and mu-
tation may be employed in constructing programs for
the next generation. After a preestablished number of
generations, or after the best �tness improves to some
preestablished level, the best-of-run individual is desig-
nated as the result and is produced as the output from
the genetic programming system.
Genetic programming systems are adaptive insofar

as they support the adaptation of a population of pro-

grams to a particular �tness test throughout the course
of evolution. In many problem environments it may also
be advantageous for the evolved programs to themselves

be adaptive. For example, it may be useful for evolved
programs to perform on-line learning about complex en-
vironments, to adjust their own parameters as dynamic
environments change over time, or even to adopt en-
tirely new algorithms on the basis of environmental in-
put. These sorts of runtime adaptive capabilities can
be critical for achieving good performance in many real-
world environments.

There are two obvious ways in which genetic program-
ming systems could support runtime adaptation. The
�rst involves the runtime manipulation of dynamic data
structures upon which program execution may depend.
Indexed memory (Teller, 1994) and memory terminals
(Iba et al., 1995) both provide the required functional-
ity; programs that use these mechanisms may acquire
and store information from their environments at run-
time, and they may use this information to guide future
behavior.

A second, more direct mechanism is described in this
paper: program self-modi�cation operators are included
in the set of functions that may be used by evolved pro-
grams. By use of these operators, evolved programs can
dynamically change their own structure|and thereby
their future behavior|during the course of a run. A
program's self-modi�cation strategy is itself evolved; it
may be arbitrarily complex and it may be conditional-
ized on runtime environmental inputs.

Biologists refer to the developmental progression of
an individual through its life span as ontogeny. The in-
clusion of program self-modi�cation operators in a ge-
netic programming function set allows for the evolution-
ary production of programs with rich ontogenetic com-
ponents. For this reason, the technique is called onto-

genetic programming, and the program self-modi�cation
operators are called ontogenetic operators.

Some other evolutionary computation frameworks al-
ready allow for runtime adaptation. This is generally



read/write
head

I2I1 I3 I4 I5 I6 I7

input tape (instructions)

finite state
control

value stack

read head

...

...
Figure 1: The HiGP virtual stack machine

accomplished by using an underlying adaptive mecha-
nism that is only partially pre-con�gured by evolution-
ary processes; additional con�guration and adaptation
is accomplished by the underlying adaptive mechanism
as it confronts its environment. For example, genetic
algorithms have been used to evolve the initial param-
eter vectors for dynamical neural networks that inte-
grate runtime sensor information to modify their own
future behavior (Yamauchi and Beer, 1994). In these
sorts of systems the runtime adaptive mechanisms (e.g.,
learning procedures for neural networks) are �xed; by
contrast, ontogenetic programming allows for the simul-
taneous evolution of runtime adaptive mechanisms and
the programs that use them.

The remainder of this paper demonstrates the au-
tomatic generation of adaptive programs using ontoge-
netic programming. The HiGP genetic programming
system, which operates on linear programs for a stack-
based virtual machine, is used for this demonstration.
Program modi�cation mechanisms for linear programs
are particularly simple, but the technique is not lim-
ited to systems with linear programs; see (Spector and
Sto�el, 1996) for a discussion of ontogenetic program-
ming with more traditional S-expression-based repre-
sentations. After the description of the technique two
examples are provided: a simple but illustrative binary
sequence prediction problem, and a more complex ac-
tion selection problem. The paper concludes with a brief
description of work yet to be done.

2 Ontogenetic HiGP

HiGP is a high-performance genetic programming en-
gine that combines techniques from string-based ge-
netic algorithms, S-expression-based genetic program-
ming systems, and high-performance parallel computing
systems (Sto�el and Spector, 1996). It is a fast, 
exi-
ble, and portable system with an e�cient parallel imple-
mentation that scales nearly linearly with the number

of available processors. HiGP produces and manipu-
lates linear programs for a stack-based virtual machine
(as in (Perkis, 1994)), rather than the tree-structured
S-expressions used in traditional genetic programming.

The HiGP virtual machine is similar to standard
pushdown automata models (see, e.g., (Kain, 1972))
and to the execution model of the FORTH program-
ming language (Brodie, 1981). It consists of an input
tape containing a linear program to be executed, a push-
down stack for function arguments and return values,
and a �nite-state control unit that controls the execu-
tion of the program (see Figure 1). The program on the
input tape must be composed of words that have been
pre-de�ned as HiGP operators. To execute a program,
the �nite-state control unit simply reads the program
from the input tape and executes the de�ned function
call for each operator. Operators may be de�ned to
perform arbitrary computations and to manipulate the
values on the stack. They may also reposition the read
head on the input tape, thereby allowing for conditional
branch operators and loops. The stack is usually ini-
tially empty, although for some applications it may be
pre-loaded with inputs for the program. Program exe-
cution halts when the last operator on the input tape
has been processed, or when a pre-established maximum
number of operators have been processed. Program re-
sults are read from the top of the stack at the end of
program execution. Note that while HiGP evolves pro-
grams for the virtual machine, the machine itself never
changes|it is simply the execution model for the evolv-
ing programs, much as a Lisp-like S-expression evalu-
ator is the execution model for standard genetic pro-
gramming (Koza, 1992). Further details about HiGP
and the HiGP virtual machine can be found in (Sto�el
and Spector, 1996).

One normally provides a family of push operators
that correspond to the terminal set in a traditional ge-
netic programming system; each push operator pushes
a pre-determined value onto the stack. Because all pro-
grams in the system have the same length, and because
we do not wish to pre-determine the number of actual
problem-solving operators that should appear in solu-
tion programs, a noop operator is also usually included.
With the inclusion of the noop operator, which does
nothing, the �xed program size becomes a size limit,
analogous to the depth limits used in S-expression-
based genetic programming systems. In other words,
\shorter" programs can be encoded by �lling in extra
program steps with noops.

Additional operators may be easily added to the sys-
tem. The only restrictions are that they must take their
arguments from the stack and that they must push their
results back onto the stack. When there are not enough
values on the stack to serve as arguments for an opera-



tor it is skipped by the �nite-state control unit and the
stack remains untouched (as in (Perkis, 1994)).
A simple example may help to clarify the operation

of the virtual stack machine. Consider the following
program:

push-x noop push-y * push-x push-z noop - +

noop noop

The noops in the program have no e�ect and the re-
mainder is equivalent to the C expression:

(x * y) + (x - z)

The ontogenetic version of HiGP results from adding
the following program self-modi�cation operators to the
function set:

segment-copy copies a part of the program over an-
other part of the program. The function takes three
arguments from the stack, all of which are coerced
to integers in the appropriate ranges: the start posi-
tion of the segment to copy (relative to the current
instruction), the length of the segment, and the posi-
tion to which the segment should be copied (relative
to the current instruction). If there are not three
values on the stack the instruction is skipped.

shift-left rotates the program to the left. The call
takes one argument from the stack, which is coerced
to a positive integer if necessary: the distance by
which the program is to be rotated. If there is no
value on the stack the program is rotated by one
instruction to the left.

shift-right rotates the program to the right. The call
takes one argument from the stack, which is coerced
to a positive integer if necessary: the distance by
which the program is to be rotated. If there is no
value on the stack the program is rotated by one
instruction to the right.

The position of the current instruction pointer is not
changed by the execution of an ontogenetic operator.
For example, if instruction #23 is a segment-copy, then
after its execution instruction #24 will be executed, re-
gardless of the fact that the old instructions #23 and
#24 may now have been moved elsewhere.

3 Example 1: Binary Sequence Predic-

tion

The ontogenetic version of HiGP can solve problems
that cannot be solved by the ordinary version of HiGP.
This section demonstrates the application of ontoge-
netic programming to a binary sequence prediction
problem for which this is the case. Because indexed

memory also provides a runtime adaptive capability, one
might conjecture that the use of indexed memory would
be su�cient for the solution of this problem. But this
section shows that this is not the case; the addition of
indexed memory to the ordinary version of HiGP is not
su�cient to produce solutions to the described prob-
lem. In other words, the ontogenetic extensions provide
bene�ts that indexed memory does not.

Consider the sequential regression problem, a variant
of the symbolic regression problem (Koza, 1992). As
in ordinary symbolic regression, the goal in sequential
regression is to produce a program that returns the ap-
propriate y value for each x value in a data set. In the
sequential regression problem it is additionally stipu-
lated that the x values will be presented in a particular
order. Programs are run multiple times, one for each
x value in the �tness-testing range, and they always
encounter these x values in the same order. Runtime
adaptation during the course of a program's progres-
sion through the x range may be useful for sequential
regression problems because di�erent programs may be
most appropriate for di�erent ranges of the target func-
tion. Further, transitions from one value to the next
may be better mediated by ontogenetic operators than
by domain operators.

Consider a binary sequential regression problem with
a target function that repeats the values [0 1 0 0 0 1] as x
increases. We will call this problem the binary sequence
prediction problem. The goal is to produce a program
that returns the appropriate y value from the sequence
for each x (index) value; the program will be run once
for each x value, and the x values will be presented in or-
der from 0 to some number n. Several related sequence
prediction problems have been described in the litera-
ture. In particular, Iba et al. describe a related binary
oscillation task (Iba et al., 1995).

For our experiments we assessed �tness by testing
each program on the range [0{17]. Positive return val-
ues were mapped to 1, and negative return values were
mapped to 0; it was therefore su�cient for a program
to return either 0 or any negative number in place of
each 0, and any positive number in place of each 1. Fit-
ness was calculated as the number of incorrect answers;
lower �tness values therefore indicated better programs,
and a �tness value of 0 indicated a completely correct
program. We used a function set consisting of the 2-
argument addition function +, the 2-argument subtrac-
tion function -, the 2-argument multiplication function
*, the 2-argument protected division function % (Koza,
1992), and the 0-argument push-x function for the inde-
pendent variable x.1 In addition, we included the stack

1In previous experiments we also included push-0 and push-1

in the function set (Spector and Sto�el, 1996). Surprisingly, their

removal had almost no e�ect on the results.



manipulation function dup, which pushes a duplicate of
the top element onto the stack, and noop. A copy of
x was pre-loaded onto the stack prior to each program
execution.
100 runs of the ordinary (non-ontogenetic) version

of HiGP were conducted on this problem with a pop-
ulation size of 100, a maximum program size of 30, a
crossover rate of 90%, a reproduction rate of 10%, and
a maximum of 20 generations per run. No correct so-
lutions were produced by any of the 100 runs. One can
conclude that the problem cannot reliably be solved by
ordinary HiGP and the given parameters. Small num-
bers of runs were also conducted with varied parameters
(for example, with mutation and with larger popula-
tions), but no correct solutions were ever produced.
100 runs of the ontogenetic version of HiGP were then

conducted on this problem (adding the segment-copy,
shift-right and shift-left functions to the func-
tion set). The population size and other parameters
were the same as those described above. 12 completely
correct solutions were produced by the 100 runs. 10 of
these solutions appeared to be general; although �tness
was assessed only over the range [0{17], these programs
produced correct results over the range [0{39], and they
appeared to be correct to any limit. The following is a
correct evolved program:

+ push-x - noop - shift-left shift-right

push-x segment-copy shift-left shift-right

* + segment-copy + % * * noop noop

shift-right + % shift-left shift-right

noop noop - noop *

Because the ontogenetic operators modify programs
as they run, it is di�cult to trace program execution or
to get an intuitive feel for program self-transformation
strategies. Nonetheless, it is sometimes interesting to
look at some of forms through which a program passes.
The above program looks as follows after the completion
of 9 full executions:

- shift-left + % * * noop noop shift-right %

shift-left noop noop - noop * + push-x - noop

- shift-left + % * * noop noop shift-right %

At the end of 18 executions it appears more similar
to, but still di�erent from, its initial state:

+ push-x - noop - shift-left shift-right

segment-copy shift-left * + segment-copy + %

* * noop noop shift-right % shift-left noop

noop - noop * + push-x - noop

Although equivalent programs do recur through the
18 executions of the �tness-test range, no obvious align-
ment of these recurrences to the 6-element sequence
value pattern is evident.

2

4

6

8

10

F
it

ne
ss

0 5 10 15 20

Generation

Indexed Memory Average Best

Indexed Memory Average Average

Ontogenetic Average Best

Ontogenetic Average Average

Non-ontogenetic Average Best

Non-ontogenetic Average Average

Figure 2: Average and best �tnesses by generation, averaged over

the 100 runs for each condition, for the binary sequence prediction

problem.

Because indexed memory also provides a limited run-
time adaptive capability, 100 runs of HiGP with indexed
memory were also conducted on this problem. A 30-
element indexed memory was added, with a 2-argument
write function that stores the value of one argument in
the location indexed by the other, and a 1-argument
read function that pushes the indexed element of the
memory onto the stack. The population size and other
parameters were the same as those described above. No
correct solutions were produced by any of the 100 runs.
One can conclude that indexed memory does not pro-
vide su�cient runtime adaptive power for HiGP to re-
liably solve this problem with the given parameters.

Figure 2 shows graphs of average and best �tnesses
by generation, averaged over the 100 runs conducted
for each condition (non-ontogenetic, ontogenetic, and
indexed memory). From this graph it is clear that the
advantage provided by the ontogenetic operators is in-
deed signi�cant. Note that in all conditions the average
average �tness appears to converge to a value close to



the average best �tness. Note also that indexed mem-
ory actually makes matters worse; the system performs
better without it.

4 Example 2: Action Selection in Wum-

pus World

Wumpus world (Russell and Norvig, 1995) is an envi-
ronment in which an agent must select actions to avoid
death and to achieve goals. The use of genetic pro-
gramming for the evolution of Wumpus world agents
has been previously described (Spector, 1996). In this
section we brie
y describe the Wumpus world problem
and the results of experiments that use ontogenetic pro-
gramming to produce Wumpus world agents.

Wumpus world is cave represented as a grid of squares
surrounded by walls. The agent's task is to start in a
particular square, to move through the world to �nd
and to pick up a piece of gold, to return to the start
square, and to climb out of the cave. The cave is also
inhabited by a \wumpus"|a beast that will eat anyone
who enters its square. The wumpus produces a stench
that can be perceived by the agent from adjacent (but
not diagonal) squares. The agent has a single arrow that
can be used to kill the wumpus. When hit by the arrow
the wumpus screams; this can be heard anywhere in the
cave. The wumpus still produces a stench when dead,
but it is harmless. The cave also contains bottomless
pits that will trap unwary agents. Pits produce breezes
that can be felt in adjacent (but not diagonal) squares.
The agent perceives a bump when it walks into a wall,
and a glitter when it is in the same square as the gold.

The wumpus world agent can perform only the fol-
lowing actions in the world: go forward one square; turn
left 90�; turn right 90�; grab an object (e.g., the gold) if
it is in the same square as the agent; release a grabbed
object; shoot the arrow in the direction in which the
agent is facing; climb out of the cave if the agent is in
the start square.

The agent's program is invoked to select a single ac-
tion for each time-step of the simulation. The program
returns one of the valid actions and the simulator then
causes that action, and any secondary e�ects, to hap-
pen in the world. The agent can maintain information
between actions by use of a persistent memory system.
The agent's program has a single parameter, a \per-
cept" that encodes all of the sensory information avail-
able to the agent. The agent's program can refer to
the components of the percept arbitrarily many times
during its execution.

Agents are assessed on the basis of performance in
four worlds.2 In each world the agent is allowed to per-

2In (Spector, 1996) four new random worlds were generated

for each �tness test. This allowed very simple programs that were

Table 1: Wumpus World Operators
Name Args Description

+ 2 Pushes the sum of the arguments modulo

7 onto the stack.
- 2 Pushes the di�erence of the arguments

modulo 7.

* 2 Pushes the product of the arguments mod-

ulo 7.

and 2 Pushes 1 if both arguments are non-zero,

or 0 otherwise.

or 2 Pushes 1 if either or both arguments are

non-zero, or 0 otherwise.
not 1 Pushes 1 if the argument is 0, or 0

otherwise.

ifz 3 \If zero"|jumps forward the number of

instructions speci�ed in the second argu-

ment if the �rst argument is 0; jumps for-

ward the number of instructions speci�ed

in the third argument otherwise.

read 2 Pushes the contents of the 2-dimensional
indexed memory location indexed by the

arguments. Memory locations contain 0 if

they have not yet been written to.

write 3 Pushes the previous contents of the mem-

ory location indexed by the �rst two argu-

ments, and then �lls the memory location

with the third argument.
noop 0 Does nothing.

f0 { 6g 0 Each pushes the corresponding number.

rand7 0 Pushes a random integer between zero and

six (inclusive).

stench 0 Pushes 1 if the current percept includes a

stench (from the wumpus), or 0 otherwise.

breeze 0 Pushes 1 if the current percept includes a

breeze (from a pit), or 0 otherwise.
glitter 0 Pushes 1 if the current percept includes a

glitter (from the gold), or 0 otherwise.

bump 0 Pushes 1 if the current percept includes a

bump (from a wall), or 0 otherwise.

sound 0 Pushes 1 if the current percept includes a

sound (from the wumpus), or 0 otherwise.

form a maximum of 50 actions, and the agent's score
is determined as follows: 100 points are awarded for
obtaining the gold, there is a 1-point penalty for each
action taken, there is a 100-point penalty for getting
killed, and there is a 100-point penalty for each unit of
distance between the agent and the gold at the end of
the run. Agents are not explicitly rewarded for climb-
ing out of the cave, although less action penalties are
accumulated if an agent climbs out and thereby ends
the simulation. An agent is considered to have solved
the problem if its average score in four worlds is greater
than zero. To have obtained such a score an agent must

fortunate enough to be tested on appropriately simple worlds to

appear to be quite successful. In the experiments described in

this paper four random worlds were generated for each run of the

genetic programming system, and the same four worlds were used
for each �tness test. This appears to make the problem consider-

ably more di�cult, although it is possible that the resulting agents

will be over�tted to the particular four worlds and therefore less

robust than some of those produced by the previous technique.



150

200

250

300

350

400

F
it

ne
ss

0 5 10 15 20

Generation

Ontogenetic Average Best

Ontogenetic Average Average

Non-ontogenetic Average Best

Non-ontogenetic Average Average

Figure 3: Average and best �tnesses by generation, averaged over

the 200 runs for each condition, for the Wumpus world problem.

have grabbed the gold in at least one and usually two or
more of the worlds, and it can have died in at most one
of the four random worlds. This is di�cult; in many
cases it is necessary to risk death in order to navigate
to the gold, and in some cases the gold may be unob-
tainable because it is in a pit or in a square surrounded
by pits. \Standardized �tness" values (for which lower
values are better (Koza, 1992)) are the average of the
scores from the four worlds, subtracted from 100.

For the experiments reported here, the seven valid
actions were mapped onto the integers from zero to six
(inclusive), and a simple function set was used that con-
sists primarily of simple arithmetic operators that ma-
nipulate and return numbers in this range.3 The agent's
memory system was implemented as a two-dimensional
(7 by 7) indexed memory (Teller, 1994), each element
of which could hold a single number. The complete
function set is shown in Table 1.4 For the ontogenetic

3The mapping from integers to actions was: 0 = forward, 1 =

turn right, 2 = turn left, 3 = shoot, 4 = grab, 5 = release, 6 =

climb.
4This function set, developed for HiGP, di�ers slightly from

that used in (Spector, 1996), which used S-expression-based ge-

netic programming.

runs, the above-described shift-left, shift-right,
and segment-copy operators were also included. A
program's result was computed as the absolute value,
modulo 7, of the top element on the stack at the end of
program execution.
200 runs of the ordinary (non-ontogenetic) version

of HiGP were conducted on this problem with a pop-
ulation size of 200, a maximum program size of 100,
a crossover rate of 89.5%, a reproduction rate of 10%,
a mutation rate of 0.5%, tournament selection with a
tournament size of 3, and a maximum of 20 generations
per run. No correct solutions were produced by any of
the 200 runs. One can conclude that the problem can-
not reliably be solved by ordinary HiGP and the given
parameters. Note that the Wumpus world problem al-
ways includes an indexed memory, and thereby supports
some forms of runtime adaptation even without the use
of ontogenetic operators.
200 runs of the ontogenetic version of HiGP were

then run on this problem (adding the segment-copy,
shift-right and shift-left functions to the func-
tion set). The population size and other parameters
were the same as those described above. 10 solutions
were produced by the 200 runs. The following is one of
the evolved programs:

noop and 3 write - - not + and + 3 2 noop 6 *

write 5 4 1 ifz 1 + + 6 read 1 and + + 2

shift-right 1 stench breeze + or * 0 breeze +

or 1 2 4 shift-left 3 bump not 1 ifz 0 1 6

read glitter 5 segment-copy not 3 shift-left

shift-right write write * stench - 6 bump

sound - 6 noop bump glitter 0 3 - bump 0 0

sound bump stench 4 * or 1 ifz and 5 2 bump 5

* 5 write 6 and 1 -

Figure 3 shows graphs of average and best �tnesses
by generation, averaged over the 200 runs conducted for
each condition (non-ontogenetic and ontogenetic). This
graph shows that with the ontogenetic operators the
lowest average best �tness occurs early, around genera-
tion 4. Without the ontogenetic operators the average
best �tness is considerably worse, it never improves, and
it is nearly matched by the average average �tness|
that is, the populations appear to have converged on
non-solutions. It is therefore unlikely that longer runs
(over more generations) would produce solutions with-
out ontogenetic operators. It is clear from the graph
that a signi�cant advantage is provided by the ontoge-
netic operators.

5 Conclusions and Future Work

Ontogenetic programming, an enhancement to the ge-
netic programming methodology, allows for the auto-



matic generation of programs that adapt to their envi-
ronments at runtime through the use of program self-
modi�cation operators. The ontogenetic programming
methodology was described and applied to two exam-
ples: binary sequence prediction and action-selection in
a virtual world. Runtime adaptation turns out to be
useful for both of these problems, and the availability
of ontogenetic operators allowed for the evolution of so-
lutions in cases for which ordinary genetic programming
failed.

Much additional work must be completed to assess
the real value of this technique. Neither of the problems
described in this paper are real-world problems, and it is
not yet clear that the technique will scale well. It is not
even entirely clear what features of an environment are
related to the general utility of runtime adaptation. One
speculation is that unpredictable dynamism in an envi-
ronment favors runtime adaptation, but one can make
the case that neither of the environments described in
this paper have this feature. A program that solves the
binary sequence prediction problem must only master
a single �xed sequence. Although each program pre-

dicts the sequence dynamically, one element at a time,
the sequence itself does not change throughout a run.
Similarly, in the Wumpus world experiments described
here, each agent had only to contend with a �xed se-
quence of four essentially static worlds. But for both of
these problems runtime adaptation was nonetheless suf-
�ciently useful to allow for solutions in cases in which no
solutions could otherwise be produced. Additional ap-
plications of ontogenetic programming to agents in more
complex and dynamic real-world environments will help
to resolve some of these issues.

More work should also be conducted to examine the
self-modi�cation strategies actually employed by suc-
cessful programs. Many possibilities exist; for example,
programs might be copying segments of code into mul-
tiple program locations, thereby reusing code modules
and obtaining an e�ect similar to that obtained with
automatically de�ned functions (Koza, 1994) or auto-
matically de�ned macros (Spector, 1996). It would also
be interesting to trace the patterns of recurrence of par-
ticular program con�gurations as a program runs.

The ontogenetic programming technique can be var-
ied in many ways|for example, by changing the set of
provided ontogenetic operators. No systematic study
of such variations has yet been performed. The use of
ontogenetic programming with traditional S-expression-
based genetic programming systems has been described
(Spector and Sto�el, 1996), but the impact of program
representation on the utility of particular ontogenetic
operators has not yet been studied.

Considering the importance of adaptation in success-
ful complex systems, it seems reasonable to conjecture

that results presented in this paper will generalize in
some manner|that genetic programming systems that
adaptively generate adaptive programs will generally be
more useful than those that do not. Ontogenetic pro-
gramming provides the required capability, although
more research must be conducted on the e�cient ex-
ploitation of this capability.
More broadly, ontogenetic programming systems may

present new opportunities for the general study of in-
teractions between evolutionary and developmental pro-
cesses. Biological systems are adaptive at both evolu-
tionary (phylogenetic) and developmental (ontogenetic)
levels; computational models of such systems should be
adaptive at both levels as well.

Acknowledgments

Mark Feinstein helped to develop our initial interest in
ontogeny, and to re�ne our understanding of its role
in biological systems. Discussions at the 1995 AAAI
Fall Symposium on Genetic Programming (Siegel, 1995)
helped to further re�ne our approach to ontogenetic pro-
gramming. The comments of two anonymous review-
ers lead to several improvements in this paper. This
research was supported in part by grants from ONR
(N00014-J-91-1451), AFOSR (F49620-93-1-0065), and
ARPA contract DAST-95-C0037.

References

Brodie, L. 1981. Starting FORTH. Prentice Hall.

Iba, H., T. Sato, and H. de Garis. 1993. Temporal Data
Processing Using Genetic Programming. In Proceed-

ings of the 6th International Conference on Genetic

Algorithms, ICGA-95, edited by Larry J. Eshelman,
pp. 279{286. San Francisco: Morgan Kaufmann
Publishers, Inc.

Kain, R.Y. 1972. Automata Theory: Machines and

Languages. New York: McGraw-Hill Book Company.

Koza, J.R. 1992. Genetic Programming: On the Pro-

gramming of Computers by Means of Natural Selec-

tion. Cambridge, MA: The MIT Press.

Koza, J.R. 1994. Genetic Programming II: Automatic

Discovery of Reusable Programs. Cambridge, MA:
The MIT Press.

Perkis, T. 1994. Stack-Based Genetic Programming.
In Proceedings of the 1994 IEEE World Congress

on Computational Intelligence, pp. 148{153. IEEE
Press.

Russell, S.J., and P. Norvig. 1995. Arti�cial Intelli-

gence, A Modern Approach. Englewood Cli�s, NJ:
Prentice Hall.



Siegel, E.V., editor. 1995. Collective Brainstorming

at the AAAI Symposium on Genetic Programming,
http://www.cs.columbia.edu/~evs/gpsym95.html.

Spector, L. 1996. Simultaneous Evolution of Programs
and their Control Structures. In Advances in Genetic

Programming 2, edited by P.J. Angeline and K.E.
Kinnear, Jr., pp. 137{154. Cambridge, MA: The
MIT Press.

Spector, L., and K. Sto�el. 1996. Ontogenetic Pro-
gramming. In Proceedings of the Genetic Program-

ming 1996 Conference. Cambridge, MA: The MIT
Press. In press.

Sto�el, K. and L. Spector. 1996. High-Performance
Genetic Programming. In Proceedings of the Ge-

netic Programming 1996 Conference. Cambridge,
MA: The MIT Press. In press.

Teller, A. 1994. The Evolution of Mental Models. In
Advances in Genetic Programming, edited by Ken-
neth E. Kinnear, Jr., pp. 199{219. Cambridge, MA:
The MIT Press.

Yamauchi, B. and R. Beer. 1994. Integrating Reactive,
Sequential, and Learning Behavior using Dynamical
Neural Networks. In From Animals to Animats 3,
edited by D. Cli�, P. Husbands, J. Meyer, and S.W.
Wilson, pp. 382{391. Cambridge, MA: The MIT
Press.


