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Lee Spector

This chapter shows how a genetic programming system can be used to simultaneously evolve pro-
grams and their control structures. Koza has previously shown that the performance of a genetic pro-
gramming system can sometimes be improved by allowing for the simultaneous evolution of a main
program and a collection of automatically defined functions (ADFs). This chapter shows how related
techniques can be used to simultaneously evolve a main program and a collection of automatically
defined macros (ADMs). Examples are provided to show how the use of ADMs can lead to the pro-
duction of useful new control structures during evolution, and data is presented to show that ADMs
sometimes provide a greater benefit than do ADFs. The chapter includes a discussion of characteris-
tics of problems that may benefit most from the use of ADMs or from architectures that include both
ADFs and ADMs. It is suggested that ADMs are likely to be useful for evolving intelligent action
systems for complex environments, and data is presented to show that this is the case for one such
application. The chapter concludes with a discussion of several directions for further research.

7.1 Introduction

Modern programming languages support the production of structured, modular programs
through several mechanisms including subroutines, coroutines, and macros. Koza has pre-
viously shown that the power of a genetic programming system can often be enhanced by
allowing for the simultaneous evolution of a main program and a collection of subroutines
[Koza 1994a]. Additional studies have investigated factors underlying the performance of
Koza’s automatically defined functions (ADFs) along with alternative techniques for the
automatic generation of subroutines. For example, Angeline and Pollack developed an al-
ternative technique called Module Acquisition (MA) [Angeline and Pollack 1992, Angeline
1994] and Kinnear compared the utility of ADFs with that of MA [Kinnear 1994]. Addi-
tional alternatives have also been proposed [Iba et al. 1993, Rosca and Ballard 1995].

While subroutines promote program modularity and code reuse, they do not normally
provide programmers with the tools needed to produce new control structures or to other-
wise enhance the structure of their programming languages. Many languages provide an
alternative mechanism, macros, to support this need [Kernighan and Ritchie 1988, Steele
1990].

This chapter shows how a genetic programming system can simultaneously evolve a pro-
gram and its control structures; that is, it shows how a genetic programming system can
simultaneously evolve a main program and a collection of automatically defined macros
(ADMs). Experiments on a variant of Koza’s obstacle-avoiding robot problem are pre-
sented to show that ADMs are in some cases more useful than ADFs. For other problems,
however, ADFs are more useful than ADMs. ADFs and ADMs serve different purposes —
as do functions and macros in common programming languages — and we can therefore
expect architectures that include both ADFs and ADMs to provide the best support for the
evolution of programs in certain complex domains.



Sections 7.2 and 7.3 briefly describe the genetic programming framework and the use of
ADFs in genetic programming. Sections 7.4 and 7.5 discuss the use of macros to define new
control structures and show how a genetic programming system can simultaneously evolve
a main program and a set of ADMs that are used by the main program. The remainder of
the chapter presents data from case studies, a discussion of the results, and directions for
future research.

7.2 Genetic Programming

Genetic programming is a technique for the automatic generation of computer programs by
means of natural selection [Koza 1992]. The genetic programming process starts by creat-
ing a large initial population of programs that are random combinations of elements from
problem-specific function and terminal sets. Each program in the initial population is then
assessed for fitness. This is usually accomplished by running each program on a collection
of inputs called fitness cases, and by assigning numerical fitness values to the output of each
of these runs; the resulting values are then combined to produce a single fitness value for
the program.

The fitness values are used in producing the next generation of programs via a variety
of genetic operations including reproduction, crossover, and mutation. Individuals are ran-
domly selected for participation in these operations, but the selection function is biased to-
ward highly fit programs. The reproduction operator simply selects an individual and copies
it into the next generation. The crossover operation introduces variation by selecting two
parents and by generating from them two offspring; the offspring are produced by swap-
ping random fragments of the parents. The mutation operator produces one offspring from
a single parent by replacing a randomly selected program fragment with a newly generated
random fragment.

Over many generations of fitness assessment, reproduction, crossover, and mutation, the
average fitness of the population may tend to improve, as may the fitness of each best-of-
generation individual. After a preestablished number of generations, or after the fitness im-
proves to some preestablished level, the best-of-run individual is designated as the result
and is produced as the output from the genetic programming system.

The impact of alternative approaches to genetic programming can only be assessed by
measuring performance over a large number of runs. This is because the algorithm includes
random choices at several steps; in any particular run the effects of the random choices may
easily obscure the effects of the alternative approaches.

To analyze the performance of a genetic programmingsystem over a large number of runs
one can first calculate P(M,i), the cumulative probability of success by generation i using
a population of size M. For each generation i this is simply the total number of runs that
succeeded on or before the ith generation, divided by the total number of runs conducted.
The more steeply the graph of P(M,i) rises, the better the system is performing.



Given P(M,i) one can calculate I(M,i,z), the number of individuals that must be processed
to produce a solution by generation i with probability greater than z.1 I(M,i,z) can be cal-
culated using the following formula:

I(M; i; z) = M � (i+ 1) �

�
log(1� z)

log(1� P (M; i))

�

The more steeply the graph of I(M,i,z) falls, and the lower its minimum, the better the
system is performing. Koza defines the minimum of I(M,i,z) as the “computational effort”
required to solve the problem with the given system.2

7.3 Automatically Defined Functions

Koza has shown that the performance of a genetic programming system, as measured by
the number of individuals that must be processed to produce a solution with a probability of
99%, can often be improved by allowing for the simultaneous evolution of a main program
and a collection of subroutines [Koza 1994a]. He implements the evolution of subroutines
by considering one part of an evolved program to be a main program (or “result produc-
ing branch”) while other parts are treated as definitions for automatically defined functions
(ADFs). Each ADF may have its own function and terminal set, and hierarchical references
between ADFs are allowed. Koza showed that the use of ADFs allows a genetic program-
ming system to exploit regularities of problem domains, improving system performance.
As mentioned in the Introduction above, alternative techniques have also been proposed
for the automatic generation of subroutines.

7.4 Macros

The term “macro” is used in this chapter to refer to operators that perform source code trans-
formations. Many programming languages provide macro definition facilities, although
the power of such facilities varies widely. For example, C provides substitution macros
by means of a preprocessor [Kernighan and Ritchie 1988], while Common Lisp allows the
full power of the programming language to be used in the specification of macros [Steele
1990]. A macro “call” is textually transformed into new source code prior to compilation
or interpretation; this process is often called macro expansion.

Macros, like subroutines, can assist in the modularization of complex programs and in
the exploitation of domain regularities. In certain circumstances macros can be more useful
than subroutines.3 In particular, one can implement new control structures with macros.

1For the analyses in this chapter a value of z=99% is always used.
2The P(M,i) and I(M,i,z) measures were developed by Koza and are discussed on pages 99 through 103 of [Koza

1994a].
3A good discussion of related issues can be found in [Graham 1994].



One does this by writing macros that expand into code fragments that include the arguments
to the macro call, unevaluated, in one or more places. If the bodies of code that appear as
arguments to the macro work by side effect or are sensitive to their calling contexts, then
the macro call can produce an effect not obtainable with subroutines. For example, consider
the following Common Lisp definition for a macro called do-twice4:

(defmacro do-twice (code)
`(progn ,code ,code))

Consider the case in which we have a global variable accumulator and a function
accumulate that takes one numeric argument and has the side effect of adding the value
of the argument to accumulator. The call (do-twice (accumulate 23)) will
expand into (progn (accumulate 23) (accumulate 23)) and will cause the
side effect to be produced twice; 46 will be added to accumulator. Do-twice could
not have been implemented as a Common Lisp function because the arguments in a function
call are evaluated before being passed. A do-twice function would, in this context, re-
ceive only the result of (accumulate 23), not the code; it therefore could not produce
the effect of two calls to (accumulate 23).

More generally, the utility of macros stems in part from the fact that they control the eval-
uation of their own arguments. This allows one to use macros to implement control struc-
tures that perform multiple evaluation or conditional evaluation of bodies of code.

One often builds new macros that leverage the utility of pre-existing macros or built-in
control structure syntax. For example, one could use an existing if structure to build an
arithmetic-if control structure that branches to one of many bodies of code on the
basis of the result of a specified numerical calculation. Similarly, one could use an existing
while structure, along with problem-specific operators for a robot control domain, to build
a while-no-obstacles control structure that causes a body of code to be repeatedly
evaluated until an obstacle is sensed.

There are many domains in which problem-specific control structures are useful. In a
robot control domain one might want to use a control structure that causes an action to be
repeated until a condition in the world becomes true. For example, the following macro
causes the robot to turn until the given sense-expression returns non-nil, and returns
the value of the given value-expression in its final orientation:

(defmacro where-sensed (sense-expression value-expression)
`(progn (while (not ,sense-expression)

(turn))
,value-expression))

4The “backquote” syntax used in this definition is documented in [Steele 1990]. Briefly, a backquote specifies that
the following expression is a template; the expression is returned literally, except that sub-expressions preceded
by a comma are evaluated.



This macro would be most useful when the bodies of code specified for sense-ex-
pression and value-expression depend on the orientation of the robot. If the do-
main provides many opportunities for the construction of such expressions then where-
sensed may provide a useful behavioral abstraction that could not be obtained with ordi-
nary subroutines.

7.5 Automatically Defined Macros

It is possible to simultaneously evolve a main program and a set of automatically defined
macros (ADMs) that may be used by the main program. In the experiments described be-
low, only the simplest sort of substitution macros are used; each macro specifies a tem-
plate for the code into which macro calls will expand. Each ADM definition is treated as
if it was defined with defmacro, with its body preceded by a backquote, and with an im-
plicit comma before each occurrence of a parameter. Conceptually, macro expansion is per-
formed by replacing the call with the template, and by then replacing occurrences of the
macro’s parameters with the bodies of code that appear in the call. While languages such
as Common Lisp allow one to write macros that specify more general code transformations,
substitution macros can nonetheless be quite useful.5

In practice one can avoid full expansion of substitution macros by expanding the ADMs
incrementally during evaluation. Incrementally expanded substitution ADMs are easy to
implement through minor modifications to Koza’s publicly available ADF Lisp code [Koza
1994a]. In Koza’s code an ADF call is evaluated by binding the ADF’s parameter symbols
to the (evaluated) arguments passed to the ADF, and by then calling fast-eval on the
evolved ADF code tree. For ADMs one can changefast-eval so that it treats ADMs like
pseudo-macros, passing them unevaluated code trees as arguments. One can then evaluate
an ADM call by substituting the unevaluated argument code trees for the parameter symbols
in the evolved ADM code tree, and by then calling fast-eval on the result:

(defun adm0 (a0)
(fast-eval (subst a0 ’arg0 *adm0*)))

Zongker’s C-based lil-gp system provides an even simpler way to implement substi-
tution ADMs [Zongker 1995]. One simply specifies the automatically defined modules to
be of type EVAL EXPR (rather than EVAL DATA, which is used for normal ADFs), and
ADM semantics result. This is achieved by changing the runtime interpretation of each pa-
rameter symbol to branch to the code tree passed as an argument; actual expansion of the
macro call is thereby avoided altogether.

More complex implementation strategies are required for ADMs that perform non-sub-
stitutional transformations of their arguments. In some cases it may be necessary to fully

5Examples of macros that perform more exotic code transformations can be found in [Graham 1994].



expand the ADMs prior to evaluation; this may lead to long macro-expansion delays and
to very large expansions. All of the experiments described in this chapter used substitu-
tion ADMs and therefore took advantage of one of the simple implementation techniques
described above.

Koza has previously made limited use of macro expansion in genetic programming; he
used it as a means for deleting elements of programs during the simultaneous evolution of
programs and their architectures [Koza 1994b]. The present work argues for the more gen-
eral use of macro semantics through the evolution of ADMs.

While ADMs and ADFs are in fact compatible and may be used together, the present
study highlights the differences between ADFs and ADMs by using each to the exclusion
of the other, and by contrasting the results. The simultaneous use of ADFs and ADMs is
suggested as an area for future research.

7.6 The Dirt-Sensing, Obstacle-Avoiding Robot

Among the domains in which we expect ADMs to have utility are those that include opera-
tors that work by producing side effects, operators that are sensitive to their calling contexts,
or pre-existing macros. Koza’s obstacle-avoiding robot problem (hereafter “OAR”) has all
of these elements. The problem as expressed by Koza is quite difficult, and he was only
able to solve it by using an unusually large population (4,000). A somewhat simpler ver-
sion of OAR can be produced by adding an additional sensor function (IF-DIRTY); with
this change the problem can easily be solved with a population as small as 500.

The goal in the dirt-sensing, obstacle-avoiding robot problem (hereafter “DSOAR”) is
to find a program for controlling the movement of an autonomous floor-mopping robot in
a room containing harmless but time-wasting obstacles. The problem is an extension of
OAR, which Koza describes as follows:

In this problem, an autonomous mobile robot attempts to mop the floor in a
room containing harmless but time-wasting obstacles (posts). The obstacles
do not harm the robot, but every failed move or jump counts toward the overall
limitation on the number of operations available for the task.

. . . the state of the robot consists of its location in the room and the direction in
which it is facing. Each square in the room is uniquely identified by a vector
of integers modulo 8 of the form (i; j), where 0 � i; j � 7. The robot starts at
location (4,4), facing north. The room is toroidal, so that whenever the robot
moves off the edge of the room it reappears on the opposite side.

Six non-touching obstacles are randomly positioned in a room laid out on an
8-by-8 grid. . . .

The robot is capable of turning left, of moving forward one square in the direc-
tion in which it is currently facing, and of jumping by a specified displacement



in the vertical and horizontal directions. Whenever the robot succeeds in mov-
ing onto a new square (by means of either a single move or a jump), it mops
the location of the floor onto which it moves. [Koza 1994a, p. 365]

OAR uses terminal sets consisting of the 0-argument function (MOP), the 0-argument
function (LEFT), random vector constants modulo 8 (<v8), and the names of arguments
for ADFs. The same terminal sets are used in DSOAR.
(MOP) moves the robot in the direction it is currently facing, mops the floor at the new

location, and returns the vector value (0,0). If the destination contains an obstacle then the
robot does not move, but the operation still counts toward the limit on the number of move-
ment operations that may be performed in a run. (LEFT) turns the robot 90� to the left and
returns the vector value (0,0).

The OAR function set consists of the operators IF-OBSTACLE, V8A, FROG,PROGN,
and the names of the ADFs. DSOAR uses the same function set (substituting the names of
ADMs when appropriate) and adds one new operator, IF-DIRTY.
PROGN is a 2-argument sequencing operator that returns the value of its second argument.

IF-OBSTACLE is a 2-argument conditional branching operator that evaluates its first ar-
gument if an obstacle is immediately in front of the robot; it evaluates its second argument
otherwise. IF-OBSTACLE is implemented as a pseudo-macro. V8A is a 2-argumentvector
addition function that adds vector components modulo 8. FROG is a 1-argument movement
operator that jumps the robot to the coordinate produced by adding (modulo 8) its vector
argument to the robot’s current location. FROG acts as the identity operator on its argument,
and fails in the same way as MOP when the destination contains an obstacle. IF-DIRTY is
a 2-argument conditional branching operator that evaluates its first argument if the square
immediately in front of the robot is dirty; it evaluates its second argument if the square has
been mopped or if it contains an obstacle. IF-DIRTY is implemented as a pseudo-macro.

Two fitness cases, shown in Figure 7.1, are used for the DSOAR problem. Each program
is evaluated once for each fitness case, and each evaluation is terminated prematurely if the
robot executes either 100 (LEFT) operations or 100 movement operations ((MOP) and
FROG operations combined). The raw fitness of each program is the sum of the squares
mopped over the two fitness cases. A program is considered to have solved the problem if,
over the two fitness cases, it successfully mops 112 of the total of 116 squares that do not
contain obstacles.

7.6.1 Results

200 runs of a genetic programming system were performed on this problem, half with ADFs
and half with ADMs. Each program in each population had an architecture consisting of
a result-producing branch and two modules (either ADF0 and ADF1 or ADM0 and ADM1).
ADF0 andADM0 each took 1 argument andADF1 andADM1 each took 2 arguments.6 ADF1

6Koza used a 0-argument ADF0 and a 1-argument ADF1 for OAR.
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Figure 7.1
The fitness cases used for the DSOAR problem.

and ADM1 could call ADF0 and ADM0, respectively, and result producing branches could
call both of the automatically defined modules. The population size was 500 and the max-
imum number of generations per run was 51. Tournament selection was used with a tour-
nament size of 7.

Figure 7.2 shows a summary of the results as a graph of P(M,i), the cumulative prob-
ability of success by generation. The probability of producing a solution to this problem
using a population size M=500 by any given generation is generally greater with ADMs
than with ADFs; this can be seen by noting that the ADM line rises faster than the ADF
line. Figure 7.3 shows a summary of the results as a graph of I(M,i,z), the number of indi-
viduals that must be processed to produce a solution with probability greater than z=99%.
The number of individuals that must be processed is lower for ADMs than for ADFs; this
can be seen by noting that the ADM line falls faster than the ADM line, and that it reaches a
lower minimum. The minimum, defined by Koza as the “computational effort” required to
solve the problem, is 26,000 when ADFs are used; the computational effort is 21,000 when
ADMs are used instead.

The results show that for DSOAR, with the given parameters, ADMs are somewhat more
useful than ADFs; the number of individuals that must be processed to produce a solution
using ADMs is lower than the number needed to produce a solution using ADFs.

7.7 The Lawnmower Problem

A related but negative result was obtained for Koza’s 64-square Lawnmower problem. The
Lawnmower problem is identical to OAR (described above) except that there are no ob-
stacles and the IF-OBSTACLE operator is not used. Note that this domain includes no
pre-existing macros and no operators that are sensitive to the robot’s environment. It does,
however, include operators that work by side effect, so one might expect ADMs to be more
useful than ADFs.

200 runs of a genetic programmingsystem were performed on the 64-square Lawnmower
problem, half with ADFs and half with ADMs. Aside from the switch to ADMs for half of
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Figure 7.2
P(M,i) for ADFs and ADMs on the DSOAR problem. Population size M=500, number of runs N=100.

the runs, these runs used the same parameters as did Koza’s [Koza 1994a]. The results are
shown in Figures 7.4 and 7.5. Figure 7.4 shows P(M,i) for ADFs and for ADMs on this
problem; it is not obvious from casual inspection of this graph that either type of module
provides greater benefit. Figure 7.5 shows I(M,i,z), from which it is clear that ADMs are
more of a hindrance than a help on this problem; the computational effort (minimum for
I(M,i,z)) is 18,000 for ADMs, but only 12,000 for ADFs.

7.8 When Are ADMs Useful?

The semantics of ADFs and of substitution ADMs are equivalent when all operators in the
domain are purely functional. The only difference between an ADF and an ADM in such
a case is that the ADM may take more runtime to evaluate, since the code trees appearing
as arguments to the ADM may have to be evaluated multiple times. It is therefore clear
that substitution ADMs can only be more useful than ADFs in environments that include
operators that are not purely functional — that is, operators that work by side effect or are
sensitive to their calling environments.
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Figure 7.3
I(M,i,z) for ADFs and ADMs on the DSOAR problem. Population size M=500, number of runs N=100, desired
probability of success z=99%.

Even when a domain includes operators that work by side effect, there is no guarantee that
the use of ADMs will result in less individuals being processed than will the use of ADFs.
The negative result on the Lawnmower problem is a testament to this fact. Informally we
may speculate that the “less functional” a domain is, the more likely that ADMs will be
useful in that domain. If context-sensitive and side-effecting operators play an important
role in a given domain, then it is likely that new and/or problem-specific control structures
will be useful; we can therefore expect a genetic programming system to take advantage
of automatically defined macros to produce control structures that help in evolving a solu-
tion to the problem. DSOAR includes two critical context-sensitive operators that are not
present in the Lawnmower problem (IF-OBSTACLE and IF-DIRTY). It is therefore not
surprising that ADMs are more useful in DSOAR than in the Lawnmower problem.

Although ADFs and ADMs have been contrasted above for expository purposes, they are
in fact completely compatible with one another. Just as a human programmer may wish to
define both new functions and new control structures while solving a difficult programming
problem, it may be advantageous for genetic programming to define a collection of ADFs
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Figure 7.4
P(M,i) for ADFs and ADMs on the Lawnmower problem. Population size M=1,000, number of runs N=100.

and a collection of ADMs. Functions may be most helpful for some aspects of a problem
domain, while macros may be most helpful for others. Since the optimal number of ADFs
and ADMs may not be clear from the outset, it may also be advantageous to simultaneously
evolve programs and their macro-extended architectures, in the style of [Koza 1994b].

A reasonable speculation is that architectures that include ADMs, or some combination
of ADFs and ADMs, will be particularly useful in application areas that have traditionally
made use of exotic control structures. One such application area is “intelligent action sys-
tems,” in which systems are built to reason and act in complex environments.7 Compu-
tational architectures for intelligent action systems tend to use multiple control “levels,”
blackboard-based opportunistic control structures, “monitor” processes, and other complex
and unusual control structures [Dean and Wellman 1991]. A genetic programming system
with ADMs should be capable of evolving and refining such control structures to suit par-
ticular problem environments. The next section describes work on the “wumpus world”
environment [Russell and Norvig 1995] from which it is clear that ADMs can indeed be
useful for the evolution of intelligent action systems.

7The names “reactive planning” and “dynamic-world planning” are also sometimes used for this research area.
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Figure 7.5
I(M,i,z) for ADFs and ADMs on the Lawnmower problem. Population size M=1,000, number of runs N=100,
desired probability of success z=99%.

7.9 Wumpus World

Russell and Norvig have written an Artificial Intelligence textbook in which the concept of
an “intelligent agent” serves as a unifying theme [Russell and Norvig 1995]. In order to mo-
tivate their discussions of knowledge representation and reasoning procedures they present
an environment called “wumpus world” that “provides plenty of motivation for logical rea-
soning” (p. 153). Although wumpus world is much simpler than most real-world environ-
ments, it is nonetheless more complex than the problem environments discussed above.

Wumpus world is cave represented as a grid of squares (6 by 6 in the experiments de-
scribed below) surrounded by walls. The agent’s task is to start in a particular square, to
move through the world to find and to pick up the piece of gold, to return to the start square,
and to climb out of the cave. The cave is also inhabited by a “wumpus” — a beast that will
eat anyone who enters its square. The wumpus produces a stench that can be perceived by
the agent from adjacent (but not diagonal) squares. The agent has a single arrow that can
be used to kill the wumpus. When hit by the arrow the wumpus screams; this can be heard



anywhere in the cave. The wumpus still produces a stench when dead, but it is harmless.
The cave also contains bottomless pits that will trap unwary agents. Pits produce breezes
that can be felt in adjacent (but not diagonal) squares. The agent perceives a bump when it
walks into a wall, and a glitter when it is in the same square as the gold.

The wumpus world agent can perform only the following actions in the world: go for-
ward one square; turn left 90�; turn right 90�; grab an object (e.g., the gold) if it is in the
same square as the agent; release a grabbed object; shoot the arrow in the direction in which
the agent is facing; climb out of the cave if the agent is in the start square.

The agent’s program is invoked by the simulator to produce a single action for each time-
step of the simulation. The program itself has no side effects on the world — it simply re-
turns the name of one of the valid actions and the simulator then causes that action, and any
secondary effects, to happen in the world. The agent’s program may nonetheless contain
side-effect-producing operators. This is because the agent may have persistent state and
because its program may contain operators that access and modify that state. Since Russell
and Norvig present wumpus world as an example of an environment that demands logical
reasoning about acquired world knowledge, we can assume that side effects on the agent’s
state are important for success. One might expect a successful wumpus world agent to use
its persistent state to maintain knowledge about visited squares, and to support the deduc-
tion of hidden properties of the world (e.g., the locations of pits from breezes).

The agent’s program has a single parameter, a “percept” that encodes all of the sensory
information available to the agent. The agent’s program can refer to the components of the
percept arbitrarily many times during its execution; that is, sensing is free.

A variety of function and terminal sets might be used for wumpus world agents. For the
present experiments the seven valid actions were simply mapped onto the integers from
zero to six (inclusive) and the function set consists of arithmetic operators that manipulate
and return numbers in this range.8 The agent’s persistent state is implemented as a two-
dimensional (7 by 7) indexed memory [Teller 1994], each element of which holds a single
number.

The terminal set consists of the integers from zero to six, a zero-argument operator that
returns a random number in the same range (rand7), the names of arguments for any
ADFs or ADMs, and five sensor variables that are set from the agent’s percept. Each of
these variables (*stench*, *breeze*, *glitter*, *bump*, and *sound*) is set to one if the
percept contains the corresponding feature, or to zero otherwise.

The function set includes the names of ADFs and ADMs, when appropriate, and the op-
erators listed in Table 7.1.

An agent is assessed on the basis of its performance in four randomly generated worlds.
In each world the agent is allowed to perform a maximum of 50 actions. Since the arrange-
ment of gold, pits, and wumpus in each world can vary considerably, success in four ran-
domly generated worlds requires a robust agent. In fact, since the gold may sometimes be

8The actual mapping from integers to actions is as follows: 0 = forward, 1 = turn right, 2 = turn left, 3 = shoot,
4 = grab, 5 = release, 6 = climb.



Table 7.1
Wumpus World Operators

Name # of arguments description

and 2 A conjunction operator; returns 1 if both arguments are non-zero, or zero
otherwise.

or 2 A disjunction operator; returns 1 if either or both arguments are non-zero, or zero
otherwise.

not 1 A negation operator; returns 1 if the argument is zero, or zero otherwise.

progn2 2 A sequencing operator; returns the value of the second argument.

ifz 3 “If zero,” A conditional pseudo-macro; returns the result of evaluating the sec-
ond argument if the first argument evaluates to zero; returns the result of evalu-
ating the third argument otherwise.

iflte 4 “If less than or equal,” a conditional pseudo-macro; returns the result of eval-
uating the third argument if the first argument evaluates to a value less than or
equal to the second argument; returns the result of evaluating the fourth argu-
ment otherwise.

- 2 A subtraction operator; returns the difference of the arguments modulo seven.

+ 2 An addition operator; returns the sum of the arguments modulo seven.

* 2 A multiplication operator; returns the product of the arguments modulo seven.

read 2 A memory accessor for a two dimensional indexed memory; returns the contents
of the memory location indexed by the arguments. Memory locations contain
zero if they have not yet been written to.

write 3 A memory modifier for a two dimensional indexed memory; returns the previous
contents of the memory location indexed by the first two arguments, and then
fills the memory location with the third argument.

placed in a pit or in a square surrounded by pits, success may sometimes be impossible.
Russell and Norvig score wumpus world agents as follows: 1,000 points are awarded for

obtaining the gold, there is a 1-point penalty for each action taken,9 and there is a 10,000-
point penalty for getting killed. While it is be possible to use such scores as fitness values
for genetic programming, they are not sufficiently informative to reliably drive the genetic
programming system to promising regions of the search space. For this reason Russell and
Norvig’s scoring system was modified for the present experiments as follows: 100 points
are awarded for obtaining the gold, there is a 1-point penalty for each action taken, there is a
100-point penalty for getting killed, and there is a 100-point penalty for each unit of distance
between the agent and the gold at the end of the run.10 Standardized fitness is calculated as
the average score in four newly-generated random worlds, subtracted from 100. An agent
is considered to have solved the problem when its average score in four random worlds is
greater than zero. To have obtained such a score an agent must have grabbed the gold in
at least one and usually two or more of the four random worlds, and it can have died in at

9The simulation ends when the agent climbs out of the cave or dies, or when 50 actions have been performed.
10Note that neither of these scoring systems explicitly rewards an agent for climbing out of the cave, although less
action penalties will be accumulated if an agent climbs out and thereby ends the simulation.



0

0.05

0.1

0.15

0 5 10 15 20

P(M,i) with ADMs

P(M,i) with ADFs

Generation

C
um

ul
at

iv
e 

P
ro

ba
bi

li
ty

 o
f 

S
uc

ce
ss

 (
%

)

Figure 7.6
P(M,i) for ADFs and ADMs on the wumpus world problem. Population size M=1,000, number of runs N=115.

most one of the four random worlds.
230 runs of a genetic programming system were performed on the wumpus world prob-

lem, half with ADFs and half with ADMs. The wumpus world simulator code provided
by Russell and Norvig was used for fitness evaluation, with all parameters except for those
described above left at their default values. As with DSOAR above, each program in each
population had an architecture consisting of a result-producing branch and two modules
(either ADF0 and ADF1 or ADM0 and ADM1). ADF0 and ADM0 each took 1 argument, and
ADF1 and ADM1 each took 2 arguments. ADF1 and ADM1 could call ADF0 and ADM0, re-
spectively, and result producing branches could call both of the automatically defined mod-
ules. The population size was 1,000 and the maximum number of generations per run was
21.11 Tournament selection was used with a tournament size of 7.

The results are shown in Figures 7.6 and 7.7. Figure 7.6 shows P(M,i) for ADFs and for
ADMs on this problem, while Figure 7.7 shows I(M,i,z). It is evident from both of these
graphs that ADMs provide a greater benefit. The computational effort is 882,000 for ADFs

11The lower number of generations was used because the wumpus world simulator is quite slow, and because the
difficulty of the problem suggested that a large number of runs should be performed.
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I(M,i,z) for ADFs and ADMs on the wumpus world problem. Population size M=1,000, number of runs N=115,
desired probability of success z=99%.

and 580,000 for ADMs.
The evolved agent programs appear to be reasonably robust. It should be noted that a

large number of deaths are to be expected even for the most intelligent agents in this envi-
ronment. For example, suppose that an agent is born into a square with a breeze. The agent
does not yet have any other information about neighboring squares, and therefore could not
possibly infer the direction of the pit. The first move in such situations will be deadly at least
25% of the time regardless of the agent’s strategy. Even at later points in a simulation, when
the agent has more knowledge, it may be necessary to risk death in order to navigate to the
gold. And as noted above, the gold may in some cases be unreachable.

Russell and Norvig provide the code for a single wumpus world agent in their code. Al-
though they call it “stupid-wumpus-agent” it is considerably better than random. It will
consistently grab the gold when it sees it, turn around when it bumps into something, and
attempt (poorly) to avoid pits and the wumpus. In 1,000 test runs on random worlds stupid-
wumpus-agent managed to stay alive 158 times and to grab the gold 22 times. By compar-
ison, one of the agents evolved with ADMs, chosen arbitrarily from the set of successful
best-of-run programs, managed to stay alive 479 times and to grab the gold 64 times.



7.10 Future Work

With respect to wumpus world, it should be noted that while many of the successful pro-
grams appeared to use complex, memory-based strategies, others used simple, reactive,
memory-free strategies. This might indicate that the success criterion was too weak; per-
haps the successful reactive programs were “lucky” in the selection of random worlds, and
would show their weaknesses if subjected to more fitness cases. On the other hand, it may
be the case that the “knowledge and reasoning” demands of the wumpus world are less than
expected. Further experiments and analysis will be required to sort this out.

Several avenues for future work remain in applying ADMs to additional problems, and
in refining our understanding of the types of problems for which ADMs will be useful. Ex-
periments with combinations of ADFs and ADMs, and with the simultaneous evolution of
programs and their macro-extended architectures (the number of ADF/Ms and the number
of arguments that each takes), should also help to shed light on the utility of ADMs.

Even when ADMs decrease the number of individuals that must be processed to solve a
problem, the runtime costs of ADMs may cancel any savings in problem solving time. Such
costs include the time spent on redundant re-evaluation of purely functional code fragments,
and, depending on the techniques used to implement ADMs, macro-expansion costs. Fur-
ther studies must be conducted on the trade-offs involved.

The ADMs considered in this chapter are all substitution macros, but it should also be
possible to evolve more powerful code transforming operators. In addition, macros are
useful in more ways than were sketched above; for example, they can be used to establish
variable bindings or, like setf in Common Lisp, to implement “generalized variables.”
These uses of macros, and the benefits of richer macro definition facilities, should also be
explored.

7.11 Conclusions

The human programmer’s toolkit includes several module-building tools, each of which can
be useful in certain circumstances. Genetic programming systems should have access to a
similar toolkit. In particular, they should have access to macro-definition facilities so that
they can evolve control structures appropriate to particular problems. Automatically de-
fined macros (ADMs) can improve the performance of a genetic programming system, but
more work must be done to refine our understanding of the conditions under which ADMs,
or combinations of ADFs and ADMs, are likely to be helpful. One heuristic, consistent
with the experiments reported in this chapter, is that ADMs are likely to be useful in en-
vironments within which context-sensitive or side-effect-producing operators play impor-
tant roles. Another heuristic, also consistent with the experiments reported in this chapter,
is that ADMs are likely to be useful in domains that have traditionally made use of ex-
otic control structures; for example, intelligent action systems. Perhaps the best strategy,



given sufficient computational resources, is to simultaneously evolve programs and their
macro-extended architectures (the number of ADF/Ms and the number of arguments that
each takes). This strategy is currently under investigation.
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