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Abstract. Push is a programming language designed for the expression of evolving programs within
an evolutionary computation system. This article describes Push and illustrates some of the opportuni-
ties that it presents for evolutionary computation. Two evolutionary computation systems, PushGP and
Pushpop, are described in detail. PushGP is a genetic programming system that evolves Push programs
to solve computational problems. Pushpop, an “autoconstructive evolution” system, also evolves Push
programs but does so while simultaneously evolving its own evolutionary mechanisms.
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1. Introduction

Several forms of genetic and evolutionary computation produce computer programs
through evolutionary processes. The Push programming language was designed as
a language for the programs that evolve in such systems.
Previous work has evolved programs in many forms including Lisp expressions

[18], machine code strings [26], purely functional expressions [48, 50], graph-based
constructions [45], object hierarchies [9], fuzzy rule systems [46, 29], logic programs
[27], and specialized assembly languages [1, 31], among others. Each of these rep-
resentations has advantages and disadvantages but the wide scope of this past work,
covering nearly every well-known programming paradigm, is impressive. One would
be justified in assuming that this ground has been covered and that little is to be
gained from yet another program representation for evolved programs.
This article will argue, to the contrary, that a new language for evolved programs

can make a substantial difference. It can improve existing evolutionary computation
methods and it can also enable the development of entirely new methods with novel
properties.
In particular we describe a language called Push which, when used in an other-

wise ordinary genetic programming system (called PushGP), automatically provides
advanced genetic programming facilities (multiple data types, automatically defined
subroutines, control structures and architecture) without extra machinery or user
configuration. We also show how Push supports a new, radically self-adaptive form
of evolutionary computation called autoconstructive evolution (defined in Section 2.4
below) that we illustrate with the Pushpop system.
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In the Section 2 we describe the general goals of the Push project and the spe-
cific goals motivating the development of PushGP and Pushpop. Section 3 is a
detailed introduction to the Push programming language with several code exam-
ples. Section 4 describes PushGP and presents evidence that it automatically evolves
programs that capitalize on the modularity of the problems that they were evolved
to solve. Section 5 describes Pushpop and presents initial data documenting the
self-adaptive evolution of its reproductive mechanisms. A brief language reference
for Push is provided following our conclusions.

2. Motivation

2.1. Towards autonomous evolution

Evolutionary computation is still a “black art,” the successful application of which
requires considerable experience and knowledge. Such reliance on human expertise
is antithetical to the general goals of the field; we seek automatic techniques that
learn or evolve solutions to problems with minimal human intervention.
Autonomy is clearly important when evolutionary computation is used in an effort

to understand the nature of biological evolution; indeed, autonomy may be the
single most characteristic feature of the natural systems that we seek to model. But
it is also important when evolutionary computation is used as a method for solving
practical problems, as we seek an engineering methodology that requires as little as
possible from the human user.
The Push project was initially driven not by an interest in programming lan-

guages per se but by the goal of making evolutionary computation systems more
autonomous. This is a goal shared with many other recent projects in the field
(usually labeled “self-adaptive”—see, for example, [2, 4, 6, 16, 41]). The particu-
lar self-adaptive concept at the core of the Push project, autoconstructive evolution
(defined in Section 2.4 below), requires that evolving programs contain the code for
their own reproduction and diversification. This, it turns out, puts heavy demands
on the language in which the programs are expressed. At very least such a lan-
guage must support general code manipulation and there are other requirements
as well (see Section 3.1 below). The Push language was developed in response to
this demand, to support the development of the autoconstructive evolution system
called Pushpop.
Conveniently, the features of Push that support autoconstructive evolution can

also provide self-adaptive capabilities to more traditional forms of evolutionary com-
putation. When used within a standard genetic programming system Push provides
several forms of self-adaptation including the automatic evolution of modules and
program architecture. The system that we have built to test these ideas, PushGP,
appears to have promise as a problem-solving technology independent of its con-
nection to autoconstructive evolution.
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2.2. Evolution of multi-type programs

Complex programs usually manipulate data of more than one type. If one were
to survey garden-variety “real world” programs one would probably find that the
overwhelming majority manipulate integers, floating point numbers, Boolean values,
and strings of characters. A smaller majority undoubtedly use many more types,
including hierarchically defined types such as “arrays of arrays of integers.”
With the availability of multiple types comes the danger that operations can be

applied to inappropriate data. In a world containing only integers, for example, one
could confidently apply + to anything, but in a world containing, say, hierarchical
lists of symbols one must be more careful; addition (of the normal sort) simply
isn’t applicable to such data. In most popular languages syntax restrictions help to
prevent operations on inappropriate data. In some languages and in some circum-
stances runtime type checks catch type errors that survive the syntax checks, and
modern languages also provide “exception handling” facilities that allow for grace-
ful recovery from these and other errors.
Because of these complications the first programs evolved by genetic program-

ming manipulated data of only one type. In genetic programming one “slices and
dices” code in random ways during mutation and crossover, and it is important that
the scrambled code can be counted on to parse correctly, to terminate properly, and
to produce potentially meaningful results. This is most easily achieved by adopting
a uniform syntax (Lisp symbolic expressions in standard genetic programming) and
by restricting all values (including the inputs and possible outputs of all functions
that can appear in evolved programs) to the same type.
Montana has developed a popular strategy for incorporating multiple data types

in evolving programs called strongly typed genetic programming [25]. In strongly typed
genetic programming the user is required to specify the types of all values, function
inputs, and function outputs, and the program generation, mutation, and crossover
algorithms are modified to obey these type restrictions. Strongly typed genetic pro-
gramming has been used in a wide range of practical applications. It complicates the
development of genetic operators but this is normally a modest cost considering the
benefits gained. It also certainly affects the shape of the program search space (for
example by restricting crossover points) and it presumably thereby affects evolution-
ary dynamics, but it is not yet clear under what circumstances this may be beneficial
or detrimental. If one is attempting to evolve genetic operators, however, then it is
clear that syntax restrictions, including those required by strongly typed genetic pro-
gramming, are problematic. In Push multiple data types are accommodated without
syntax restrictions or the attendant impacts on code generation, genetic operators,
or the program search space, and the evolution of genetic operators is also greatly
simplified.

2.3. Evolution of modularity, recursion, and control structure

Complex programs are usually modular. In most programs many operations are
performed many times, executing identical code each time (though possibly with
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different parameters). It therefore usually makes sense to collect repeated code
into subroutines that can be defined once and then used many times. This kind
of modularization is widely recognized as a central pillar of good programming
practice; it contributes not only to more concise code but also to programs that
are easier to write, understand, debug, and extend. Many advances in software
engineering (for example object-oriented design and programming) are essentially
applications of the general concepts of modularity.
As with the mechanisms for multiple data types described above, most mech-

anisms for defining and using modules involve syntax restrictions; for this reason
early genetic programming systems evolved only un-modularized programs. Sev-
eral researchers later showed that the ability to evolve modules greatly extends the
power of genetic programming, and several different schemes for evolving mod-
ules were developed including the genetic library builder [5], automatically defined
functions [19], automatically defined macros [37], and adaptive representation through
learning [33]. All of these schemes required modifications to the genetic program-
ming algorithm and most required pre-specification of the architecture (number of
modules, number of inputs to each module, etc.) of the evolved programs. Later
work by Koza et al. [20] on architecture-altering operations eliminated the need for
architecture pre-specification for automatically defined functions but did so at the
cost of additional complexity of the genetic programming algorithm.
Push’s uniform syntax, in conjunction with its facilities for handling multiple data

types, provides a new and elegant solution to these problems. In particular, a CODE
data type, handled similarly to all other types, allows Push programs to define and
to execute modules as they run, without imposing syntax restrictions. Modularity
comes “for free” with the CODE type and any module architecture can be expressed.
Recursion also comes “for free” but of course the possibility of non-terminating
recursive code requires that we limit runtime [8, 50].1

2.4. Evolution of evolutionary mechanisms

In genetic algorithms and genetic programming the methods of reproduction and
diversification are designed by human programmers; the reproductive systems do
not themselves evolve. High-performing individuals are reproduced, mutated, and
recombined using pre-specified algorithms with pre-specified parameters (like muta-
tion rates). These algorithms and parameters may not be optimal, and their effec-
tiveness depends on the ways in which individuals are represented and on the fitness
landscapes of the problems to which the systems are being applied.
In contrast, the evolution of life on Earth presumably began without the imposi-

tion of pre-specified mechanisms for reproduction and diversification. Reproductive
systems co-evolved with the mechanisms underlying all of the other functions of the
earliest organisms, including those for finding and making use of energy sources.
Through this co-evolution the mechanisms for reproduction and diversification
adapted to the materials and energy sources of the early Earth, giving rise to the
robust evolutionary process that produced our biosphere [23].
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We define an autoconstructive evolution system to be any evolutionary computation
system that adaptively constructs its own mechanisms of reproduction and diversi-
fication as it runs. Note that such systems thereby evolve their own evolutionary
mechanisms, much as early life on Earth must have evolved its own evolutionary
mechanisms.
There are at least two motivations for exploring the development of autocon-

structive evolution systems. The first is that such systems might evolve evolutionary
mechanisms that are better adapted to particular classes of problems than hand-
designed mechanisms. We can hypothesize that autoconstructive evolution systems,
if designed well, may be capable of out-performing traditional evolutionary compu-
tation systems by adapting their reproductive mechanisms to their representations
and problem environments. The second motivation is that such systems are unique
as models of natural evolution and that they may thereby provide useful data for
research in evolutionary biology and artificial life.
Several researchers have previously explored the use of adaptive or self-adaptive

genetic operators in genetic algorithms, genetic programming, and other forms of
evolutionary computation such as “evolution strategies” [2, 4, 6, 16, 41]. In most
previous work, however, the algorithms for reproduction and diversification have
been essentially fixed, with only the numerical parameters (such as mutation rates)
subject to adaptation. Edmonds, in his “Meta-Genetic Programming” framework,
took a more radical approach in which the genetic operators (e.g. reproduction,
mutation, and crossover) that act on the main population are themselves evolved in
an independent, co-evolving population [12]. As Edmonds noted, there is a poten-
tial regress here, as genetic operators are required for the evolution of his evolved
operators. Edmonds proposed several approaches to the regress problem includ-
ing recursive strategies in which operators act on the populations in which they are
evolved. He reported mixed success with his system and described problems with
the maintenance of diversity and sensitivity to the details of the special-purpose
code-manipulation functions used in genetic operators. Teller had earlier reported
work on similar ideas but in a less conventional, graph-based programming frame-
work [45]. More recently, Kantschik and colleagues have extended Teller’s ideas and
reported success with a meta-genetic programming system operating on graph-based
programs [17].
Autoconstructive evolution takes one step closer to the natural model by requir-

ing that evolving individuals themselves be responsible for the production of their
own children. Just as natural organisms are responsible both for “making a living”
in the world (e.g., acquiring and metabolizing food) and for producing children,
the individuals in an autoconstructive evolution system are responsible both for
solving a problem and for producing new programs for the following generation.
Problem-solving and child-producing components of individuals may be integrated
and interdependent, and they may use arbitrary computational processes built in an
expressive, Turing-complete programming language.
Autoconstructive evolution has precedents in the artificial life literature includ-

ing work on the Tierra, Avida, and Amoeba systems. In Tierra, assembly language
programs compete for execution time and evolve on a simulated MIMD parallel
computer [31]. The evolving “creatures” in Tierra are responsible for their own



12 spector and robinson

reproduction and their reproductive mechanisms can and do adapt over evolution-
ary time, but Tierra must be seeded with a hand-coded replicator and it also relies
on externally specified mutation mechanisms for evolutionary progress. Further, the
creatures in Tierra do not evolve to produce answers to computational problems;
while it is useful for the study of evolution it is not a problem-solving technology.
The problem-solving orientation of autoconstructive evolution (and of Avida—see
below) obviously improves the prospects for the practical application of the tech-
nology, but it also serves a purpose when these systems are used to study principles
of biological evolution. This is because progress in solving a difficult computational
problem can serve as an indicator of the capacity of a system for adaptive evolution.
The Avida system extends the ideas of Tierra in several ways, one being that

it incorporates a mechanism for guiding evolution to solve problems [1]. In pub-
lished reports this has been applied only to simple logical or arithmetic problems
and it requires that the user run the system in stages of increasing task difficulty.
Like Tierra, Avida requires hand seeding and relies on externally specified muta-
tion mechanisms. It also provides no mechanisms for sexual recombination (e.g.,
crossover). Nonetheless, Avida exhibits interesting properties akin to those of nat-
ural living systems and it has served as the basis for inter-disciplinary studies of
genome complexity and genetic interactions [22]. One recent application of Avida
tested a prediction of quasi-species models that high mutation rates can favor the
“survival of the flattest”—that is, that low-performance individuals can out-compete
high-performance individuals if they are more robust to mutations [49].
The Amoeba system is similar both to Tierra and to Avida but it uses a simplified

instruction set. This allows for the spontaneous generation of replicators without
hand seeding, but it does so at the cost of computational universality [28].
The artificial life literature contains additional related work. For example,

Dittrich and Banzhaf have shown that algorithmic reaction systems (sometimes
also called “artificial chemistries”) are capable of self-evolution in which “the
components responsible for the evolutionary behavior are (only) the individuals
of the population system itself” [11, p. 204]. The Dittrich and Banzhaf system
exhibits complex evolutionary dynamics without hand seeding but, like Tierra, is
not designed to solve computational problems; indeed one of the goals of the
project was to produce evolutionary dynamics without any explicit fitness functions
or artificial selection procedures.2

Many studies have been conducted on general principles of self-replication, begin-
ning with von Neumann’s work in the 1940’s ([35] contains a survey; an acces-
sible introduction is [36]). Koza has used genetic programming to evolve self-
replicating computer programs, but the replication processes that he evolved were
independent of the reproductive mechanisms of the genetic programming system
(which were hand coded) [18]. Few of the prior studies consider in detail the issues
involved in simultaneously evolving self-replication and additional problem-solving
functionality.
As mentioned above, the particular approach to autoconstructive evolution

described in this work relies upon the use of a programming language for the
evolving programs with certain unusual properties. The next section introduces
Push, the programming language developed to fill this need, and provides some
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examples of its use. This is followed by a section describing PushGP, a traditional-
style genetic programming system that evolves Push programs. We then return to
autoconstructive evolution and describe Pushpop, an autoconstructive population
of Push programs.

3. The Push programming language

This section describes the Push programming language and presents some examples
of Push programs. The Appendix at the end of the article is a language reference
that provides more details, including descriptions of all Push instructions.

3.1. General design goals

The motivations laid out in the previous section lead to several design goals for our
programming language. In particular we want a language that is:

expressive We seek a language in which it is easy to represent programs that
include:

• multiple data types,
• modules,
• complex control structures including recursion.

self-manipulating For autoconstructive evolution it is necessary, by definition,
that programs manipulate and produce other programs. Facilities for code
manipulation can also help to provide some of the “expressive” features listed
above.

syntactically uniform Uniformity is particularly helpful in easing the develop-
ment of self-manipulating code, as described above, but it also simplifies other
operations in genetic programming.

The Push language meets these design goals by extending concepts of stack-based
programming languages that have been used in prior genetic programming research.

3.2. Stack-based programming

Push is a stack-based programming language that might be viewed as a descendant
of Forth [34]. Other stack-based languages, including Forth, have been used in
previous genetic programming systems; see [10] for a survey.
The defining feature of a stack-based language is that arguments are passed to

instructions via global data stacks. This contrasts with argument passing techniques
based on registers or activation records. Stack-based argument passing leads nat-
urally to a postfix syntax in which the programmer first specifies (or computes)



14 spector and robinson

arguments that are pushed onto the stack and then executes an instruction that
uses those arguments. For example, the following is a postfix representation of the
addition of 2 and 3:

2 3 +

This code specifies that 2 and then 3 should be pushed onto the stack and that
the + instruction should then be executed. The + instruction removes the top two
elements of the stack, adds them together, and pushes the result (5) back onto the
stack.
If extra arguments are present they are ignored automatically—each instruction

takes only the arguments that it needs from the top of the stack. For example the
following will also leave 5 on top of the stack but in this case the 5 will be on top
of a 1 that is ignored by +:

1 2 3 +

Longer calculations can often be expressed in a variety of ways. For example each
of the following lines sums the integers from 1 to 4:

1 2 3 4 + + +

1 2 + 3 + 4 +

1 2 + 3 4 + +

1 2 3 + 4 + +

What if the stack contains too few arguments for an instruction? Under normal
circumstances, with a human programmer, a reasonable response would be to signal
a run-time error and to transfer control to a debugger. In such circumstances a
stack underflow is probably a programming mistake that should be corrected. In an
evolutionary computation system, however, this need not be the case.
One approach to stack underflow in an evolutionary computation context would

be to ensure that programs with underflows are never executed in the first place.
This can be done by restricting code generation and code transformation operators
like mutation and crossover [44].
In keeping with the design goal of syntactic uniformity described above, Push

instead follows a “permissive execution” precedent established in previous stack-
based genetic programming work (e.g. [30, 42]). In Push an instruction with insuf-
ficient arguments is simply ignored (treated as a NOOP). For example the program
“3 +” would leave 3 on top of the stack; the + instruction would have no effect
because it requires two arguments and only one is present.

3.3. Multiple data types

Push handles multiple data types by providing a stack for each type. There is a
stack for integers, a stack for floating point numbers, a stack for Boolean values,
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and so forth. Each instruction takes the inputs that it requires from whichever stack
or stacks are appropriate and pushes outputs onto whichever stack or stacks are
appropriate. The Boolean AND instruction, for example, takes two Boolean values
from the BOOLEAN stack and pushes one Boolean value (TRUE if both of the popped
arguments were TRUE and FALSE otherwise) back onto the same stack. The integer +
instruction, on the other hand, takes its inputs from and pushes its output onto the
INTEGER stack. The integer comparison function < takes its inputs from the INTEGER
stack but pushes its output (TRUE if the second popped integer is less than the first
popped integer and FALSE otherwise) onto the BOOLEAN stack.
Literals appearing in code (for example “TRUE” or “3.14”) are pushed onto the

appropriate stacks; a simple set of parsing rules serves to recognize the appropriate
type for each literal.
Push, like many modern programming languages, organizes its types hierarchically

and allows sub-types to inherit functionality from their super-types. Push is not sig-
nificantly “object-oriented” aside from this hierarchical type system and occasional
uses of object-oriented terminology; for example we call different type-specific ver-
sions of an instruction the methods of the instruction.
Push disambiguates different methods of an instruction by consulting the TYPE

stack. TYPE in Push is a type like any other and as such it has its own stack. Type
literals (the names of the types, for example INTEGER, BOOLEAN, and TYPE) are
defined for all Push types and these are the items that can be pushed on the TYPE
stack. When an instruction with multiple methods is executed the TYPE stack is
consulted (but not popped) to determine which method to execute. For example,
consider the following code:

1 2 3.0 4.0 INTEGER + FLOAT *

Push includes both integer and floating point versions of both the + (addition)
and ∗ (multiplication) operators. When the interpreter sees the INTEGER type literal
it pushes it onto the TYPE stack. When it then sees the + instruction it consults the
TYPE stack, notes that the top item is INTEGER, and executes the integer method
for +. By the time it gets to ∗ the type on top of the TYPE stack will be FLOAT, so
a floating point multiplication is performed. The result is that after executing this
line of code the top item on the INTEGER stack will be 3 and the top item on the
FLOAT stack will be 12.0.
Several generic stack-manipulation instructions, like POP and DUP (duplicate the

top element) are defined for PUSH-BASE-TYPE, the root of the type hierarchy, and
are therefore available for use on all types.
Because the system consults but does not pop the TYPE stack when deciding which

method to execute, a single type literal suffices to specialize an arbitrarily long string
of instructions. Of course the TYPE stack can be popped explicitly if this is desired,
using the code “TYPE REP POP”.
Sometimes the type on top of the TYPE stack will not be appropriate for the cur-

rent instruction; for example in the code “INTEGER 1 2 BOOLEAN +” BOOLEAN will
be on top of the TYPE stack when the + instruction is executed. In such circum-
stances the interpreter looks further down in the TYPE stack until it finds a type for
which the current instruction has a defined method.
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To ensure that a method can always be chosen for any instruction a predefined
“type stack bottom” is appended to the TYPE stack whenever it is consulted. If the
running program did not push appropriate type literals onto the TYPE stack, or if
it popped all of the appropriate type literals off of the TYPE stack before getting
to the current instruction, then the type stack bottom will provide the necessary
default types.
A provided CONVERT instruction is implemented for all pairs of types—it operates

on the top two types on the TYPE stack. For many pairs of types the conversion rules
are obvious (e.g. floating point numbers are truncated for conversion to integers)
but in other cases they are necessarily ad hoc. See the Appendix for details.
The types that have been implemented in Push to date are simply those that have

been needed for the problems on which we have worked; this is not a “complete”
set of types in any sense and we intend to add new types as the need arises. The lan-
guage’s implementation (and in particular the hierarchical type system) makes such
extensions relatively easy. Push does not currently include a mechanism whereby
new, derived or composite types can be constructed on the fly within Push code
(analogously to Lisp’s DEFTYPE or similar mechanisms in many other languages)
but one can imagine how such a construct might be added to Push and it would be
fully consistent with Push’s design goals to do so. Such a mechanism would conceiv-
ably allow for the evolution of new data structures, as Langdon has done with more
conventional techniques [21], which attain the status of complete data types (with
their own stacks and instructions). Of course even without such a mechanism one
can leverage certain types to implement other data structures; for example, one
could use the currently implemented EXPRESSION type (see below) to implement
general lists, stacks, queues, etc.

3.4. Code structure

Parentheses in Push have no direct effect on execution, so for example (+ 2 3),
(+ (2 3)), and ((+) 2 ((3))) all produce identical results. Parentheses can have
indirect effects, however, as they serve to group and provide hierarchical structure
to code. This can be of great utility when code is manipulated as data (and possibly
later executed—see below).
Comments can be inserted in Push code using the Common Lisp syntax [15]: a

semicolon (“;”) indicates that the remainder of the line is a comment, and block
comments are started with “#|” and ended with “|#”.

3.5. The code type

Many of Push’s most sophisticated features stem from the treatment of code as
data that can be manipulated and possibly executed. CODE is a type like any other in
Push, and it therefore has its own stack. CODE inherits functionality from the more
general EXPRESSION type. A rich set of list-manipulation instructions, inspired by
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those that form the core of the Lisp programming language, allows for arbitrary
symbolic manipulation of expressions.
The QUOTE instruction is an essential ingredient of code-manipulation expressions

and it is handled as a special case by the interpreter. When QUOTE is executed a
flag is set in the interpreter that will cause the next piece of code submitted for
execution (which may be a parenthesized sub-program) to be pushed onto the most
current EXPRESSION stack rather than being executed. The DO instruction recursively
invokes the interpreter on the expression on the top of the CODE stack (leaving the
CODE argument on the stack until the recursive execution is complete; DO∗ is the
same except that it pops the CODE argument first).3 So for example the following is
a complicated way to add 2 and 3:

(CODE QUOTE (INTEGER 2 3 +) DO)

When code is submitted to the top level interpreter for execution it is pushed on
the CODE stack prior to execution. This provides a convenient way to write recursive
code, such as the following program which recursively computes the factorial of an
input provided on the INTEGER stack:

(QUOTE (POP 1)

QUOTE (DUP 1 - DO *)

DUP 2 < IF)

This code also uses the IF instruction, which executes one of the top two items on
the CODE stack (and discards the other), depending on what is found on the top of
the BOOLEAN stack. In this case the item on top of the BOOLEAN stack will have been
left there by the < instruction, which will have compared the input to 2. When the
input is less than 2 it is popped and replaced with 1, the proper answer for the base
case of the recursion. When the input is greater than or equal to 2 the interpreter
will execute the expression “(DUP 1 - DO*)” and it will do so in an environment in
which the entire program is once again on top of the CODE stack. The DO instruction
will therefore execute the entire program again, but with a decremented input, and
the * instruction will multiply the input by the result of the recursive call.
Note that the code manipulation features of Push make it easy to write self-

modifying programs. Such programs might have “morphological” phases during
which they develop into “mature” code which is then executed to solve a prob-
lem. Alternatively, such programs might continue to develop as they run, exhibiting
“ontogeny” more in the manner of living organisms. Prior work on morphogenic
evolutionary computation and on ontogenetic programming required unusual mech-
anisms to achieve these effects [3, 39, 40], whereas systems based on Push may get
them “for free” via the code manipulation features of the language.
The recursive execution capabilities of DO, DO∗, IF, and MAP (which is an itera-

tor similar to Lisp’s MAPCAR) introduce the possibility of nontermination. For this
reason one can specify an upper bound on the number of instructions that can be
executed for a single top-level call of the interpreter. If this bound is exceeded then
execution terminates immediately and the calling program can either use or discard
the “results” that have been left on the stacks at that time.
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3.6. The name type

The NAME data type, in conjunction with SET and GET instructions, provides variables
that can be used to hold items of any type (including code for named subroutines
and control structures). Any symbol that is not an instruction name or literal of any
other type (including type literals) is considered a NAME literal and is pushed on the
NAME stack for use with subsequent calls to SET or GET. For example, the following
code stores 3.14 in a variable named PI which is then used to compute the area of
a circle with radius provided on the FLOAT stack:

FLOAT ;; specialize following code for floating point
3.14 PI SET ;; set the PI variable to 3.14
DUP ∗ PI GET ∗ ;; compute PI ∗ Rˆ2

In this case the use of a named variable provides no real economy, but in cases
when a value must be used many times or when stack-based storage is awkward the
mechanism for named variables can be of considerable value.
A single name can be bound to different values for different types; the interpreter

maintains an independent name/binding space for each type. Names can be used in
conjunction with the CODE type to provide named subroutines or control structures.
For example, the following code defines a named factorial subroutine:

CODE QUOTE (QUOTE (POP 1)
QUOTE (INTEGER DUP 1 −

CODE FACTORIAL GET DO
*)

INTEGER DUP 2 < IF)
FACTORIAL SET

After executing this definition the FACTORIAL subroutine can be called as follows:

5 ;; input
CODE FACTORIAL GET DO ;; call

This call will leave the factorial of 5 (that is, 120) on top of the INTEGER stack.
This module-definition technique can be used not only to define ordinary subrou-

tines but also to define new control structures that would ordinarily require “macro”
definition facilities [37]. For example, suppose that a programmer wants a “while”
loop structure similar to those provided in many other programming languages. In
Push the natural idiom for applying such a control structure would be to push a
piece of code representing the loop body onto the CODE stack, followed by a piece
of code representing the loop condition. One would then retrieve and execute the
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definition of WHILE. The following definition of WHILE would make this possible:

CODE
QUOTE (CODE CONDITION SET BODY SET ;; bind arguments

CODE BODY GET CONDITION GET ;; re-push arguments for
recursion

BODY GET WHILE GET APPEND ;; push body and recursive
call

QUOTE (CODE POP POP) ;; push cleanup code for
termination

CONDITION GET DO ;; execute condition
IF) ;; branch appropriately

WHILE SET

After this definition one could use the WHILE structure as follows:

1 ; input
QUOTE (INTEGER 2 *) ; loop body
QUOTE (INTEGER DUP 50 < ) ; loop condition
CODE WHILE GET DO* ; execute while loop

This example starts with 1 on the INTEGER stack and then repeatedly doubles the
number on top of the INTEGER stack as long as it remains less than 50. When the
loop terminates the number on top of the INTEGER stack will be 64.
The definition of WHILE provided above is not perfect. As in most languages,

one must be careful to avoid “variable capture” in macro definitions [14], and the
definition above does not do this. In fact the situation here is particularly bad since
Push’s name bindings are all global. This means that calls to WHILE cannot be nested
if WHILE is defined as above. One can fix this either by ensuring that unique variable
names are used for each recursive call (using ‘‘NAME RAND’’) or by using the stack,
rather than named variables, to store all of the arguments. Push allows for both of
these solutions but the code for a more robust WHILE structure will probably be
more complex.

4. Genetic programming with PushGP

4.1. PushGP

The Push programming language may be useful in a range of evolutionary computa-
tion systems. Later in this article we show how it can be used in an autoconstructive
evolution system in which evolving programs are responsible for the production of
their own offspring. In the present section we show how it can be used in a more
conventional way, as the target language for an otherwise-ordinary genetic program-
ming system called PushGP.
The basic algorithm of PushGP is the same as that for standard genetic program-

ming [18]. PushGP begins by generating a population of random programs, using
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the algorithm listed in Table 1.4 Each of the randomly generated programs is then
evaluated for fitness with respect to the target problem. If a sufficiently fit program
(a solution to the target problem) is found then it is printed and the system halts.
Otherwise a new generation of programs is produced by applying reproduction,
mutation, and crossover operators to the more-fit programs in the current genera-
tion. The process continues until a solution is found or until the maximum number
of generations has been exceeded.
PushGP uses tournament selection [7] and reasonably standard genetic operators

although the flexibility of the Push syntax invites the development of novel oper-
ators as well. In most of our experiments we use a traditional mutation operator
that replaces a randomly chosen sub-expression with a new random subexpression.
We also use a traditional crossover operator that replaces a randomly chosen sub-
expression with a randomly chosen sub-expression from another individual. Nodes
are chosen for both of these operators using uniform random selection. Alternative
operators that we have explored include mutation operators that only replace atoms
(instructions or literals) with other atoms and crossover operators that maintain the
structure of one parent while performing uniform crossover on atoms that make up
the parents.5 Some of our experiments with alternative operators are documented
in [32].

Table 1. Pseudocode for the Push random code generator

Function RANDOM-CODE (input: MAX-POINTS)
Set ACTUAL-POINTS to a number between 1 and MAX-POINTS,
chosen randomly with a uniform distribution.

Return the result of RANDOM-CODE-WITH-SIZE called with input
ACTUAL-POINTS.

End

Function RANDOM-CODE-WITH-SIZE (input: POINTS)
If POINTS is 1 then choose a random element of the instruction

set. If this is an ephemeral random constant then return a
randomly-chosen value of the appropriate type; otherwise
return the chosen element.

Otherwise set SIZES-THIS-LEVEL to the result of DECOMPOSE
called with both inputs (POINTS - 1). Return a list
containing the results, in random order, of
RANDOM-CODE-WITH-SIZE called with all inputs in
SIZES-THIS-LEVEL.

End

Function DECOMPOSE (inputs: NUMBER, MAX-PARTS)
If NUMBER is 1 or MAX-PARTS is 1 then return a list

containing NUMBER
Otherwise set THIS-PART to be a random number between 1 and

(NUMBER - 1). Return a list containing THIS-PART and
all of the items in the result of DECOMPOSE with inputs
(NUMBER - THIS-PART) and (MAX-PARTS - 1)

End



the push programming language 21

4.2. Illustrative examples

In this section we briefly present two examples of PushGP solving simple problems.
These examples were chosen to highlight the unique features of the Push language
and to demonstrate the ability of PushGP to evolve programs that make use of
these features.6

4.2.1. An odd solution to the ODD problem. One of the strengths of the Push lan-
guage is that it allows for the flexible integration of code that manipulates data
of different types. As a rudimentary demonstration of its multiple-type capabilities
PushGP was given the task of evolving a program for the ODD problem. In this
problem the program receives as input a single INTEGER and is required to pro-
duce as output a BOOLEAN value indicating whether the input is an odd number; the
answer should be T if the input is odd and NIL otherwise.7

PushGP was run on this problem with a population of 1000, tournament size 5,
and genetic operator rates of 40% crossover, 40% mutation, and 20% straight repro-
duction. The maximum size for programs was 100 points, initial random programs
were limited to 15 points, and the execution step limit was 100.8 Each program was
evaluated for fitness on the twenty integers from 0 to 19. In the fifth generation the
following correct solution was produced:

((NTH) ATOM (INSERT) PULL)

This is a most unusual solution that uses no arithmetic instructions, even though
the language’s full complement of arithmetic instructions were available. This solu-
tion can be understood by considering the following:

• The NTH instruction takes an expression and an integer and pushes onto the
appropriate expression stack the element of the expression indexed by the
integer.9

• In this case the appropriate expression stack is the CODE stack, as specified in the
TYPE stack bottom.

• NTH is zero-based; the first item in the expression is item 0, the second is item 1,
and so on.

• NTH “wraps around” to the beginning of the expression if its integer input is
greater than the length of the expression.

• The ATOM instruction pushes NIL (meaning “false”) onto the BOOLEAN stack if its
input is surrounded by parentheses, and T (meaning “true”) otherwise.

Recall that the program starts with its integer input on the INTEGER stack. The
execution of the NTH instruction accesses the program’s own code and pushes onto
the top of the CODE stack the component of the program indexed by the integer
input. Note that this component will be an “atom” (that is, not surrounded by
parentheses) if and only if the input number is an odd number. The next instruction,
ATOM, will therefore leave T on top of the BOOLEAN stack if the input number is odd,
and NIL on top of the BOOLEAN stack otherwise, correctly solving the problem. The



22 spector and robinson

remaining two instructions have no effect on the BOOLEAN stack and can therefore
be ignored, aside from noting that they maintain the pattern of alternating atoms
upon which the program relies. For this reason the program can be simplified to:
((NTH) ATOM).
This remarkably concise program, which uses its own code as an auxiliary data

structure, nicely illustrates that multiple data types can sometimes be used in unex-
pected ways, providing synergistic advantages.

4.2.2. Parity and modularity. Another strength of the Push language is that it per-
mits the expression, without syntax restrictions, of modules such as functions and
macros. Parity problems have been used widely to test and demonstrate genetic pro-
gramming systems, and in particular they have been used to demonstrate the utility
of modularity [19]. As a rudimentary demonstration of its ability to automatically
evolve novel control structures, PushGP was given the task of evolving a program
for the even 4-parity problem. The input for this problem consists of four Boolean
values, and the output, also a Boolean value, should be T (true) if the number of
T inputs is even (and NIL otherwise). For this run we eliminated numerical types
and limited the Boolean instructions to AND, OR, NAND, and NOR. This was done as
a first step toward conformance with the function set used in [19], although other
elements in our instruction set (e.g., those for code manipulation) make this con-
formance less than complete. See Section 4.3 below for a more careful comparison
of PushGP and traditional genetic programming systems on parity problems.
PushGP was run on this problem with a population of 10000, tournament size 5,

and genetic operator rates of 40% crossover, 40% mutation, and 20% straight repro-
duction. The maximum size for programs was 50 points, initial random programs
were limited to 25 points, and the execution step limit was 200.10 Each program was
evaluated for fitness on all 16 possible combinations of 4 Boolean inputs. In the 71st
generation a correct 45-point solution was produced, a simplified (41-point) version
of which follows:

(QUOTE (X X (X ((X) X)))

(LIST (X) ((X) (X QUOTE (DUP NAND) IF) NIL)

(X X) ((QUOTE) ((X) X X) X (MAP NOR))))

In this version the name literal X was substituted for instructions that have no
effect on the program’s output, but which cannot be removed because they play a
structural role in the program’s execution. As with the ODD program above, this
program uses its own code as an auxiliary data structure, but in this case the mode
of operation of the program is not so clear. Indeed it is quite difficult to explain
how this program works.
Is this solution modular? In some respects it clearly is. For example, it is recursive

(calling itself via MAP, an instruction that iteratively executes a body of code on each
element of a list of expressions). Further, although the text of the program contains
only one instance of the NOR function, each run of the program executes NOR four
times. The same holds for LIST, MAP, and IF. NAND also occurs only once in the
text of the program but is executed 1, 2, 3, or 4 times depending on the input to the
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program. The same is true of DUP. So the program is clearly re-using code, which
is one of the hallmarks of modularity. On the other hand, this is probably not the
sort of modularity that any human would employ.

4.3. Comparison to standard genetic programming with respect to modularity and
scaling on parity problems

Koza [19] selected even parity problems as a benchmark for genetic programming
with and without automatically defined functions (ADFs) for several reasons:

• Parity problems are easily scaled in difficulty just by changing the arity (the size
of N). Furthermore, as the problem scales in difficulty the fundamental nature
of the problem remains the same. There is less reason, therefore, to think that
differences in the performance at higher arity parity are the results of odd changes
in the representation or dynamics at that particular arity.

• Parity problems are difficult for machine learning systems in general, not just
genetic programming.

• Parity problems can be solved via modularization, and the modularization of a
parity problem makes it much easier to solve from a human standpoint. Typically,
parity solutions of high arity are calculated with the aid of lower order parity
functions. If ADFs provide an effective method for evolving modularity, then
their computational advantage should be measurable on the parity problem.

It is the last point that makes parity particularly interesting as a test of the modu-
larity of PushGP. If PushGP can evolve modularity, and thereby scale well in solving
parity problems, then it might also be expected to scale well on other, more com-
plex problems. It is for the sake of this comparison to standard genetic programming
with respect to modularity and scaling that we investigate the parity problem and,
in particular, Koza’s parity results; the use of genetic programming for parity prob-
lems has been studied extensively by others since Koza’s pioneering work (see for
example [50]) but it matters little for our present purposes that Koza’s work on this
topic is no longer state-of-the-art.

4.3.1. Koza’s work with even-parity. Koza selected the even-parity problem to
demonstrate the potential positive effects of allowing genetic programming to evolve
modular programs. This was done by solving even-parity problems of increasing ari-
ties, both with and without ADFs, and comparing the amount of computational
effort required in the two conditions.11 In order to allow the most direct compari-
son between conditions all GP parameters were kept constant except for the fitness
cases and the presence of ADFs.
Since the calculation of computational effort requires that at least some runs

complete successfully, it was necessary to use parameters which allowed GP without
ADFs to solve the most difficult parity problem; therefore, a large population size
of 16,000 was used. This number was more than necessary for GP with ADFs, but
was not, in fact, large enough to allow GP without ADFs to solve even-six-parity
within the amount of machine time available.
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The terminals used for this problem were each of the Boolean inputs for the
current arity, and the functions were AND, OR, NAND, and NOR. The fitness cases
consisted of each possible combination of Boolean true and Boolean false for the
arity of the problem (i.e., 16 combinations for even-4-parity, and 32 for even-5-
parity, etc.). Fitness was the sum of the number of incorrectly classified fitness
cases. The success criterion for this problem was 0 fitness. A variety of statistics
were collected on several runs of genetic programming on this problem, including
the computational effort measure that Koza defined.
Koza obtained the computational effort results shown in Table 2. Note that for

Arity 6, no successful programs were found without ADFs. The results are based
upon programs that came closest to solving the problem—any successful run would
almost certainly require more computational effort. Koza’s results, including addi-
tional data not reproduced here, show that adding ADFs (that is, allowing GP to
evolve modular solutions) had three distinct benefits:

• Less computational effort, by orders of magnitude, as the problems become
harder.

• Fewer generations of evolution required to find solutions.
• Smaller programs.

4.3.2. Evaluating the modularity produced by pushGP on even-parity problems.
PushGP was used to solve even-parity problems using similar settings as those
used by Koza. The goal was to determine if PushGP exhibits the same sorts of
performance gains as GP with ADFs via the generation of modular code.
PushGP can potentially create modular code via a number of mechanisms.

Because the removal of those mechanisms would severely limit the functionality of
the language (and in particular the ability to create and execute modules), we used
a large and rich instruction set for all of our runs. The assessment, then, of whether
PushGP’s ability to create modular code is beneficial must be measured in terms of
how the computational effort scales with harder problems. Genetic programming
with ADFs drastically reduced the additional amount of effort required to solve
higher arity problems relative to genetic programming without ADFs. If PushGP’s
methods of building modularity are effective then its computational effort should
scale at similar rates.
We ran PushGP’s on even-parity problems of arity 3, 4, 5, and 6, using the instruc-

tion set listed in Table 3. Note that we cannot use an instruction set that is equivalent
to Koza’s in any significant way while still allowing for the evolution of modularity

Table 2. Computational effort for even-parity problems found by Koza [19]

Arity Effort without ADFs Effort with ADFs

3 96,000 64,000
4 384,000 176,000
5 6,528,000 464,000
6 70,000,000 1,344,000
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Table 3. PushGP instruction set used for even-parity problems

Instructions:
DO DO* IF MAP QUOTE ATOM NULL CAR CDR CONS LIST APPEND NTH NTHCDR
MEMBER POSITION SUBST CONTAINS CONTAINER REPLACE-ATOMS INSERT
EXTRACT LENGTH SIZE DISCREPANCY NAND NOR AND OR NOT PULL / + - *
< > DUP POP SWAP REP = NOOP SET GET CONVERT

Type literals:
CHILD CODE NAME TYPE BOOLEAN FLOAT INTEGER

Ephemperal random constant specifiers:
EPHEMERAL-RANDOM-SYMBOL EPHEMERAL-RANDOM-BOOLEAN EPHEMERAL-RANDOM-FLOAT
EPHEMERAL-RANDOM-INTEGER

Note. See the Appendix for descriptions of individual instructions. NAND and NOR were each included
twice in the function set, thereby increasing their prevalence in randomly generated code.

in PushGP; this is because modularity in PushGP emerges through the action of a
wide range of instructions (including code-manipulation instructions) that actually
occur in evolving programs, rather than through the imposition of modular struc-
ture by the genetic programming system. For this and other reasons we must be
particularly careful in drawing comparisons between Koza’s results and the PushGP
results presented here. The other parameters of our runs are listed in Table 4. The
results of the runs are listed in Table 5.
It is clear that providing the PushGP instruction set in Table 3 for these runs

gave PushGP a considerable advantage over the instruction set used by Koza. In all
but the easiest problem, PushGP performed better than standard genetic program-
ming with or without ADFs. Indeed, the PushGP instruction set was so well suited
to the problems that a large number of solutions were found in the initial random
populations (the second column of the table), particularly for arity 3. Again, there-
fore, we must caution against any simple-minded comparison with standard genetic
programming.
Table 5 nonetheless contains data suggesting that PushGP is successfully discov-

ering opportunities for modularity provided by parity problems. The fourth column
of the table lists the percentage of successful programs that use the DO or DO∗
instructions, which are among the most useful PushGP instructions for modularity.
While only one in five solutions to even-3-parity used DO or DO∗, more than half of
the solutions to the larger arity problems used these instructions. The apparently

Table 4. Parameters for PushGP runs on even-parity problems

Fitness cases All possible combinations of the 3, 4, 5, or 6 Boolean inputs
Fitness The number of incorrectly classified fitness cases
Termination condition Fitness = 0
Population size 16,000
Maximum generations 100
Maximum program length 100 points
Execution limit 200 points
Genetic operators 45% crossover,45% mutation, 10% exact reproduction
Number of runs 100 for each arity
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Table 5. Results of PushGP runs on even-parity problems with the instruction set in Table 3

Effort relative Effort relative
% random % using to Koza to Koza

Arity Effort solutions DO or DO* without ADFs with ADFs

3 80,000 49 20 1.2X 1.5X
4 96,000 23 62 0.25X 0.55X
5 352,000 3 56 0.54X 0.76X
6 160,000 4 63 0.002X 0.12X

Note. Each row was calculated on the basis of 100 independent runs.

anomalous fact that even-5-parity was more difficult than even-6-parity seems to be
due to a better fit between the instruction set and even (as opposed to odd) arities
of this problem; multiple equality operators alone solve even arity parity problems,
while odd arity parity requires equality operators and also negation.
Perhaps the most useful information is provided in the final two columns of

Table 5. Because of the different instruction sets the absolute comparison of com-
putational efforts is not meaningful, but the way in which the effort grows for larger
arities is indeed suggestive. Note that PushGP’s performance improves more dra-
matically than standard genetic programming as the arity of the parity problem is
increased. The striking improvement in scaling relative to Koza’s experiments with-
out ADFs was expected and suggests that PushGP is building modules well-suited
to the problem. The improvement relative to Koza’s experiments with ADFs is also
quite striking (over an order of magnitude) and this was more of a surprise. This
improvement may indicate that PushGP is particularly good at discovering oppor-
tunities for modularization but we must be careful in drawing such conclusions;
another interpretation is that our use of a different and more powerful instruction
set simply makes the problem different and coincidentally easier to scale.
We explored this alternative interpretation in some detail by studying the evolved

programs. We discovered that the PushGP equality instruction is extremely useful
in determining even parity in this representation. We had included the equality
operator (which is implemented for all Push types) because it has general utility, for
example in bounding loops, but in retrospect we realize that the equality instruction,
when applied to the BOOLEAN type, provides a Boolean function that fundamentally
transforms the parity problem and that was not in Koza’s function set. We therefore
ran our tests again without including equality instructions in the instruction set. We
removed all equality instructions rather than just the equality instruction for the
BOOLEAN type since Boolean equality could easily be constructed from other forms
of equality in conjunction with the CONVERT instruction.
Table 6 shows the results of the runs without equality instructions. (This table

again represents the results of 100 runs in each condition, with the parameters
listed in Table 4.) As expected, the problem without equality is more difficult and
we did not find a significant number of solutions in the initial random populations.
(We found only one, in a run on even-3-parity.) Again, as the arity of the problems
increase, the percentage of solutions that appear to use modularity increases. In
addition, while the overall performance of PushGP suffered without the equality
instructions the trend with respect to scaling was maintained: in comparison to
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Table 6. Results of PushGP runs on even-parity problems without equality instructions

% using % using Effort relative to Effort relative to
Arity Effort IF DO or DO* Koza without ADFs Koza with ADFs

3 1,440,000 100 38 15X 22.5X
4 3,360,000 100 50 8.75X 19X
5 7,392,000 82 69 1.1X 16X
6 9,216,000 83 62 0.13X 6.9X

Note. Each row was calculated on the basis of 100 independent runs.

Koza’s results PushGP still scales better, in terms of computational effort, as the
arity of the problems increases.
No longer provided with an equality operator, PushGP solves even-parity prob-

lems primarily via the creation of nested if-else structures that respond to the
Boolean inputs. The construction of if-else structures appears to become more pon-
derous as the arity of the problems increase, and at arity five and above programs
appear that use addition and subtraction of Boolean values converted into inte-
gers, the results of which are fed into list index instructions. In some senses IF is
yet another Boolean operator, and for reasons like those described above we were
interested in the performance of PushGP without either equality or IF.
Table 7 shows the results of the final experiments in this sequence. These runs

were identical to those described previously except that neither the equality instruc-
tions nor IF were included in the function set. While PushGP requires a very large
amount of effort to solve the even-3-parity problem, the amount of increase for
higher arities is very low. Again, we see excellent scaling behavior that significantly
outpaces standard genetic programming even with ADFs. Interestingly, even though
the IF instruction was used extensively in the first set of experiments without the
equality instruction, implying that its presence was useful in solving even parity,
the computational effort actually improved after removing both equality and IF for
arities above 3.

5. Autoconstructive evolution with Pushpop

We call our Push-based autoconstructive evolution system Pushpop, for Push pro-
gram population. Our current version of Pushpop inherits the skeleton of its algo-
rithm from traditional genetic programming—it is a generation-based algorithm in
which individuals are executed sequentially and in which the higher-performance

Table 7. Results of PushGP runs on even-parity problems without equality instructions or IF

Effort relative to
% Using runs without = Effort relative to Effort relative to

Arity Effort DO or DO* but with IF Koza without ADFs Koza with ADFs

3 3,072,000 92 2.1X 32X 48X
4 3,312,000 96 0.98X 8.6X 18X
5 3,696,000 95 0.5X 0.56X 8X
6 5,760,000 98 0.6X 0.08X 4.2X

Note. Each row was calculated on the basis of 100 independent runs.
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individuals are allowed to contribute more children to the following generation.
This is not essential to the concept of autoconstructive evolution, however, and one
could easily imagine a version of Pushpop which instead used a Tierra-like scheme
of time-slicing the execution of all of the individuals in a population. As in Tierra,
reproduction could happen during the execution of the individuals and without syn-
chronization to a generational clock. Natural selection would then operate not only
on the basis of problem-solving performance (enforced by a “reaper” as in Tierra)
but also on the basis of replication efficiency.
Indeed, we are considering development of such a version Pushpop at some point

in the future. For the sake of simplicity, however, our first version sticks as close as
possible the basic genetic programming algorithm, deviating only where necessary
to implement autoconstructive evolution.

5.1. Production of children

Pushpop can perhaps best be understood by beginning with PushGP and specifying
that individual programs will be responsible for the production of their own chil-
dren. One way to do this would be to declare that whatever is left on top of the
CODE stack at the end of a program’s execution should count as a potential child.
Because a program is typically executed several times for each fitness evaluation
(once for each input or “fitness case”) this would produce several potential chil-
dren for each program from each fitness evaluation. This is essentially the strategy
used in Pushpop, with the refinement that a dedicated EXPRESSION type (with a
stack), called CHILD, is provided for the purpose of child production. This prevents
complications that otherwise might occur from using the same CODE stack both for
child production and for other purposes (such as recursion).

5.2. Selection

Children are produced by the individual programs as they are evaluated for fit-
ness, so there is no role for the standard genetic operators of mutation, crossover,
and reproduction. We must nonetheless filter the children that will be admitted
to the next generation, both to keep the population size limited and to provide
selective pressure—only by allowing more of the children of the better parents to
survive does Pushpop encourage the development of fitter programs. The filtering
is accomplished via tournaments: for each position in the next generation n ran-
dom individuals are picked from the current generation, and a random child of
the best of these n individuals is chosen to survive. The tournament size n is an
environmental constant that can be used to adjust the selection pressure.

5.3. Sex

Sexual recombination, involving any number of individuals and any method of code
recombination, can be expressed in Pushpop as long as there is some mechanism
that allows the code of one individual to refer to the code of other individuals. The
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current version of Push provides four instructions with this capability, each of which
pushes the code of another program onto the current EXPRESSION stack:

• NEIGHBOR: Takes an integer n and returns the code of the individual distance n in
the population from the current individual. The population has a linear structure
with siblings grouped together; low n will likely return a close relative and high
n will likely return an unrelated program.

• ELDER: Takes an integer that is used as a tournament size for a tournament
among the individuals of the previous generation. The program of the winning
individual is returned.

• OTHER: Takes an integer tournament size and performs a tournament among
individuals of the current generation, comparing individuals with respect to their
parents’ fitnesses (since their own fitnesses will in general not yet be known).

• OTHER-TAG: Takes a floating-point tag and searches for a program in the cur-
rent generation containing the tag. This is slow and is therefore usually disabled.
Programs can achieve a similar effect through combinations of NEIGHBOR and
expression comparison instructions.

Various mate selection strategies are enabled by these instructions. Since the code
of the “mate” is pushed onto the running program’s stack it is available for inspec-
tion using generic expression-manipulation instructions; this enables genotype-based
mate selection strategies beyond those directly supported by OTHER-TAG. Phenotype-
based mate selection strategies are less richly supported but some are available
through the tournament mechanisms underlying ELDER and OTHER. Because distance
in the population and relatedness are correlated, NEIGHBOR allows for relatedness-
based mate selection strategies.

5.4. Diversity management

As Edmonds noted in his prior work it can be difficult to maintain diversity in a
system with evolving genetic operators [12]. Perfect replication operators, for exam-
ple, can quickly homogenize a population, as can other operators that insufficiently
diversify their outputs. Because we have limited resources (particularly compared
to those that were available for the one known prior instance of completely auto-
constructive evolution: the evolution of life on Earth) and must therefore limit our-
selves to relatively small populations, we must take strong measures to ensure that
the population remains sufficiently diverse. Pushpop maintains diversity through a
combination of syntactic and semantic diversity constraints. The syntactic diversity
constraints specify that children cannot be identical to their parents and that a pop-
ulation can never contain any completely identical programs.
We have found these syntactic diversity constraints to be necessary in almost

all circumstances to avoid premature convergence. Usually they suffice, although
they do not rule out the possibility of programs that produce functionally identi-
cal children that vary only in some small piece of unexecuted code. If this form of
semantic convergence becomes problematic then semantic diversity can be encour-
aged through a variety of mechanisms. One form of semantic diversity constraint
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we have used limits the number of children that can be produced by parents with
a particular fitness value (the limit is a system parameter called “semantic niche
size”). In another scheme the weighting of the various fitness cases is varied across
the population, creating different ecological pressures in different “geographical”
areas and thereby discouraging semantic homogeneity.

5.5. Reproductive competence

At the beginning of a Pushpop run the system must first achieve diversifying recur-
sive replication; in other words the system must produce (via random search) indi-
viduals that make diverse children that are themselves capable of making diverse
children (which can in turn make diverse children, etc.). Once such individuals arise
their descendents will fill the population. Selection will then come into play, favoring
the survival of the children of the more-fit parents. Until such reproductive compe-
tence has been achieved there will be too few “naturally born” children to fill the
population, so the population is padded with newly generated random individuals.
In order to speed the achievement of reproductive competence one can fortify the
primordial soup by increasing the probability that instructions useful for diversify-
ing reproduction (such as CHILD, NEIGHBOR, and RAND) are included in random pro-
grams. Note that this is quite different from the way in which systems like Tierra are
seeded with hand-coded replicators, since none of the instructions in the fortified
soup is reproductively competent on its own and since there are many qualitatively
different ways to achieve reproductive competence with the Push instruction set.

5.6. Results

Pushpop has been run on a range of symbolic regression problems [18], with a range
of values for environmental parameters (including population size, instruction set,
tournament size, and semantic niche size). Under most conditions the population
quickly achieves reproductive competence and soon thereafter improves in fitness.
Often there are a number of subsequent improvements in fitness, and sometimes
a completely correct solution is found. Often, however, a stable (though diverse)
equilibrium is reached before the target problem is solved.
Sub-optimal equilibria should not come as a great surprise, as many studies have

questioned the “progressiveness” of the natural evolutionary processes that auto-
constructive evolution aims to emulate. A recent study by Turney suggests that
evolution can indeed exhibit global progressive trends and that the primary trend
is toward increasing “evolutionary versatility” [47]. Turney’s computational experi-
ments further imply that a key requirement for unbounded evolutionary versatility
is a highly dynamic fitness landscape. This accords well with arguments in evolu-
tionary biology about the role of climate change in evolutionary progression, and
suggests a straightforward refinement to Pushpop that may encourage continued
progress. This refinement, fitness case rotation (a technique related to dynamic sub-
set selection [13]), involves gradually changing the set of fitness cases used for fitness
evaluation from generation to generation. In the simplest case with an even number
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n of fitness cases one can use cases 1 through n/2 in the first generation, cases 2
through n/2+ 1 in the second generation, etc., wrapping around to case 1 after case
n. This has been implemented in Pushpop and while the results are still preliminary
it seems to have a beneficial effect in promoting continued fitness improvement.
Other ideas from evolutionary biology may also be helpful. For example Turney

notes that Gould explains apparent evolutionary progress as the result of random
variation coupled with a minimum level of complexity required for life. This notion
has been incorporated into Pushpop as an optional requirement that an individual’s
fitness must be better than some minimum value (for example the fitness of a null
program) for its children to survive. Further study is required to determine the effect
of this restriction.
Although our work on the biological implications of Pushpop is still at an early

stage we believe that the evolutionary dynamics of Pushpop will provide a rich
source of data. In previous work we described anecdotal observations of transitions
between sexual and asexual reproduction strategies in successful Pushpop runs and
speculated about their connections to biological phenomena [38]. In more recent
work we have examined the diversity of successful parents over the course of a suc-
cessful run and noted certain recurring patterns. For example, as shown in Figure 1

Figure 1. Error of the best program and diversity of successful parents over the course of a Pushpop run
on a symbolic regression problem with the target function y = 5x2 + x− 2. Diversity of two individuals
was calculated as the sum, over all unique expressions in either of the individuals, of the difference
between the number of occurrences of the expression in the two individuals. The graphed diversity
measure is the sum of the diversities of all pairs of individuals in a randomly selected set of 128 successful
parents from each generation. When less than 128 parents were successful (in some generations before
reproductive competence, which occurred here at generation 32) the graph repeats the value from the
previous generation. This run used a population size of 2048, a tournament size of 32, 16 fitness cases
(0–15), and a maximum program size of 64 points.
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we sometimes see diversity climb during periods in which there is no improve-
ment in fitness (error), followed by fitness improvements which then trigger dips in
diversity. These data provide a new window into connections between diversity and
adaptation such as those studied with Avida [49]. In Avida one manually sets the
mutation rate and can then observe the effects on adaptation (including “survival of
the flattest”), but in Pushpop diversification is endogenous and the effective muta-
tion rate (the diversity) is a dynamic, emergent feature of the evolving system. This
allows one to explore a host of new questions about the stability of diversification
and about the effects that different diversification patterns have on adaptation.

6. Conclusions

The Push programming language has been described in detail and shown to have
several features that can support novel evolutionary computation systems. PushGP,
a traditional-style genetic programming system that evolves Push programs, may
offer advantages in the evolution of complex programs using multiple data types
and control structures; we presented several examples demonstrating the power
and flexibility of PushGP and initial data suggesting that it can automatically dis-
cover good modularizations and thereby scale up to complex problems. Pushpop
is an autoconstructive evolution system consisting of Push programs that construct
their own children while solving computational problems. Further study is required
to determine if Pushpop can fulfill the hypothesized promise of autoconstructive
evolution systems to out-perform traditional evolutionary computation systems by
adapting their reproductive mechanisms to their representations and problem envi-
ronments.
Source code is available for research versions of the Push interpreter and PushGP.

This code is available for non-commercial educational and research uses only; see
http://hampshire.edu/lspector/push.html.

Appendix: Push language reference

The documentation here aims to convey the essential features of the language but
it cannot be 100% complete—for full details please consult the source code that
can be found at http://hampshire.edu/lspector/push.html.

Types and instructions

This section documents the Push types and instructions that were implemented at
the time of this writing. The language can be easily extended and this set of types
and instructions should not be considered complete or final. Conversely, the entire
language need not be used for any particular run of PushGP or Pushpop.
Unless otherwise noted all arguments used by instructions are popped from their

stacks. Each type inherits all instructions from its parent and ancestors, with locally
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defined instructions taking precedence. The type to which an instruction will be
applied is determined by consulting (but not popping) the TYPE stack.

• Type: PUSH-BASE-TYPE (no parent)
Instructions:
DUP Push a duplicate of the top item onto the stack.
POP Remove the top item of the stack.
SWAP Swap the top two items of the stack.
REP Replace the second item with the first (in other words, delete the second
item).

= Pop the top two items and push T on the BOOLEAN stack if they are equal (or
NIL otherwise).

NOOP Do nothing.
PULL Remove an item from deep in the stack and push it on top; the index of
the item is popped from the INTEGER stack.

PULLDUP Like PULL but does not remove the pulled item.
SET Associate the top item with the top NAME.
GET Push the item associated with the top NAME.
CONVERT Convert a value from the type that is second on the TYPE stack to the
type that is first on the TYPE stack.

• Type: NUMBER (parent: PUSH-BASE-TYPE)
Instructions:
+ Push the sum of the top two items.
− Push the difference of the top two items.
∗ Push the product of the top two items.
/ Push the quotient of the top two items; division by zero produces zero.
< Push T on the BOOLEAN stack if the second item is less than the first item (or
NIL otherwise).

> Push T on the BOOLEAN stack if the second item is greater than the first item
(or NIL otherwise).

• Type: INTEGER (parent: NUMBER)
Instructions:
RAND Push a random integer onto the stack; the range is user configurable.
PULL Like the more generic PULL but more complicated since the index must
come from the target stack (the index is the first popped value).

PULLDUP Like the more generic PULLDUP but more complicated since the index
must come from the target stack (the index is the first popped value).

/ Like the more generic / but truncates the result to produce and integer.
• Type: FLOAT (parent: NUMBER)
Instructions:
RAND Push a random floating point number onto the stack; the range is user
configurable.

• Type: BOOLEAN (parent: PUSH-BASE-TYPE)
Instructions:
AND Push the result of the logical AND of the top two items.
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OR Push the result of the logical OR of the top two items.
NOT Push the result of the logical NOT of the top item.
NAND Push the result of the logical NAND of the top two items.
NOR Push the result of the logical NOR of the top two items.

• Type: TYPE (parent: PUSH-BASE-TYPE)
Instructions: (none)

• Type: NAME (parent: PUSH-BASE-TYPE)
Instructions:
RAND Push a new, unique name onto the stack.

• Type: EXPRESSION (parent: PUSH-BASE-TYPE)
Instructions: (Note for all EXPRESSION instructions: if an argument is supposed
to be a list but is instead an atom then a list containing the atom is used instead.)
QUOTE Push the next form passed to the evaluator onto the stack without eval-
uation.

ATOM Push T onto the BOOLEAN stack if the top item is an atom (not surrounded
by parentheses), or NIL otherwise.

NULL Push T onto the BOOLEAN stack if the top item is an empty list, or NIL
otherwise.

CAR Push the first element of the top item onto the stack.
CDR Push the tail (all but the first element) of the top item onto the stack.
CONS Push a list consisting of the second item added to the front of the first
item.

LIST Push a list consisting of the second and first items.
APPEND Push a list formed from the contents of the second and first items.
NTH Push the element of the top item (a list) indexed by the item on top of the
INTEGER stack. Indexing is zero-based and is taken modulo the length of the
list.

NTHCDR Like NTH but pushes the tail of the list so indexed.
MEMBER Push T onto the BOOLEAN stack if the second item occurs within the
first at the top level (and NIL otherwise).

POSITION Push the position of the second item within the first item onto the
INTEGER stack; pushes −1 if no match is found.

SUBST Push the result of substituting the third item for the second item in the
first item.

RAND Push a random expression; the INTEGER stack provides a size limit (in
points).

CONTAINS Push T onto the BOOLEAN stack if the second item occurs within the
first at the any level (and NIL otherwise).

CONTAINER If CONTAINS would push T then push the expression that immedi-
ately encloses the match; otherwise push NIL (onto the relevant EXPRESSION
stack).

PERTURB Push a stochastically perturbed copy of the top item. Perturbation will
only replace atoms with other atoms. The degree of perturbation is controlled
by an integer which is popped from the INTEGER stack. A value of 0 for the
integer results in no perturbation. A value of n for n �= 0 means that each atom
has an abs� 1

n
� probability of being perturbed. This provides a powerful tool for

building mutation operators.
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REPLACE-ATOMS Push a copy of the top of item in which the atoms have been
replaced with the atoms from the second item (taken in order).

MIX-ATOMS Push a copy of the top of item in which the atoms have been
replaced with the atoms from the first and second items, with each atom being
chosen from one or the other item with a 50% probability. This provides a
powerful tool for building “uniform crossover” operators.

OTHER For Pushpop only. Push the code of another individual in the population.
See text for details.

ELDER For Pushpop only. Push the code of another individual in the population.
See text for details.

NEIGHBOR For Pushpop only. Push the code of another individual in the pop-
ulation. See text for details.

OTHER-TAG For Pushpop only. Push the code of another individual in the pop-
ulation. See text for details.

INSERT Push the result of inserting the second item into the first item. The
depth-first-traversal index of the insertion point is taken from the INTEGER
stack, modulo the number of points in the expression into which the insertion
is being made.

EXTRACT Push the subexpression of the top item with depth-first-traversal index
obtained from the INTEGER stack.

INSTRUCTIONS Push a list of the instructions that are implemented for the type
on top of the TYPE stack.

LENGTH Push the length of the top item (counting only top-level elements).
SIZE Push the number of points in the top item onto the INTEGER stack.
DISCREPANCY Push a measure of the difference between the top two items onto
the INTEGER stack. This is calculated as the sum, over all unique expressions in
either of the individuals, of the difference between the number of occurrences
of the expression in the two individuals.

• Type: CODE (parent: EXPRESSION)
Instructions:

DO Recursively invoke the interpreter on the top item. After evaluation the stack
is popped; normally this pops the expression that was just evaluated, but if the
expression itself manipulates the stack then this final pop may end up popping
something else.

DO* Like DO but pop the expression before evaluating it.
IF If the top item of the BOOLEAN stack is true then recursively evaluate the
second item; otherwise recursively evaluate the first item. In either case pop
both items (and the BOOLEAN value).

MAP Iterate the second item once for each element in the first item (a list). First
pop both items, then do the iterations (each time first pushing the appropriate
element) and collect all results (top items after execution) into a new list; push
this list after iteration is complete.

• Type: CHILD (parent: EXPRESSION)
Instructions: (none)
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The type stack bottom

For each instruction execution the TYPE stack must be consulted to determine
the type upon which the instruction will operate. To ensure that a method can
always be chosen for any instruction the following pre-defined “type stack bottom”
is appended to the TYPE stack whenever it is consulted:

(top)
INTEGER

BOOLEAN

CODE

CHILD

TYPE

NAME

(bottom)

Type conversion

The following listing specifies how values are converted between all pairs of cur-
rently implemented types:

• INTEGER ⇒ INTEGER: The same value.
• FLOAT ⇒ INTEGER: Truncation.
• BOOLEAN ⇒ INTEGER: T ⇒ 1, NIL ⇒ 0.
• TYPE ⇒ INTEGER: Position of the type in the list of all types (which are maintained
in the order that they were defined).

• NAME ⇒ INTEGER: 0.
• CODE ⇒ INTEGER: The top-level length of the expression.
• CHILD ⇒ INTEGER: The top-level length of the expression.
• INTEGER ⇒ FLOAT: The same value as a floating-point number.
• FLOAT ⇒ FLOAT: The same value.
• BOOLEAN ⇒ FLOAT: T ⇒ 1.0, NIL ⇒ 0.0.
• TYPE ⇒ FLOAT: Position of the type in the list of all types (which are maintained
in the order that they were defined) as a floating-point number.

• NAME ⇒ FLOAT: 0.0.
• CODE ⇒ FLOAT: The top-level length of the expression as a floating-point number.
• CHILD ⇒ FLOAT: The top-level length of the expression as a floating-point num-
ber.

• INTEGER ⇒ BOOLEAN: 0⇒ NIL, otherwise T.
• FLOAT ⇒ BOOLEAN: 0�0⇒ NIL, otherwise T.
• BOOLEAN ⇒ BOOLEAN: The same value.
• TYPE ⇒ BOOLEAN: NIL.
• NAME ⇒ BOOLEAN: NIL.
• CODE ⇒ BOOLEAN: Empty expression⇒ NIL, otherwise T.
• CHILD ⇒ BOOLEAN: Empty expression⇒ NIL, otherwise T.
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• INTEGER ⇒ TYPE: INTEGER.
• FLOAT ⇒ TYPE: FLOAT.
• BOOLEAN ⇒ TYPE: BOOLEAN.
• TYPE ⇒ TYPE: TYPE.
• NAME ⇒ TYPE: NAME.
• CODE ⇒ TYPE: CODE.
• CHILD ⇒ TYPE: CHILD.
• INTEGER ⇒ NAME: INTEGER.
• FLOAT ⇒ NAME: FLOAT.
• BOOLEAN ⇒ NAME: BOOLEAN.
• TYPE ⇒ NAME: TYPE.
• NAME ⇒ NAME: NAME.
• CODE ⇒ NAME: CODE.
• CHILD ⇒ NAME: CHILD.
• Anything⇒ CODE: The value, quoted literally.
• Anything⇒ CHILD: The value, quoted literally.
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Notes

1. An alternative to runtime limits is described in [24].
2. Another recent related system is SeMar [43].
3. All stacks are available as-is to the recursively executed code, and any changes to the stacks (except
changes to the top element of the CODE stack, which will be popped upon completion of a call to
DO) persist after the call to DO or DO∗.

4. This is the same algorithm used to implement the CODE RAND Push instruction. Each instruction,
constant, or pair of parentheses counts as one “point.”

5. In uniform crossover each atom in the child comes from one parent or the other with 50% proba-
bility.



38 spector and robinson

6. These examples and the accompanying discussion were first presented in [38]; the text here has been
adapted from that paper.

7. The current version of Push is implemented in Lisp and therefore inherits Lisp’s conventions for
the representation of true and false [15].

8. These parameters were chosen arbitrarily; there is no particular justification for their values and
they were not optimized.

9. If the item on top of the appropriate expression stack is just an atom then a list containing just that
atom is used instead.

10. Again, these parameters were chosen arbitrarily and were not optimized.
11. The algorithm for computing computational effort was developed by Koza and is described on pages

99 through 103 of [19]. Briefly, one conducts a large number of runs with the same parameters
(except random seeds) and begins by calculating P�M
 i�, the cumulative probability of success by
generation i using a population of size M . For each generation i this is simply the total number of
runs that succeeded on or before the ith generation, divided by the total number of runs conducted.
From P�M
 i� one can calculate I�M
 i
 z�, the number of individuals that must be processed to
produce a solution by generation i with probability greater than z. Following the convention in the
literature we use a value of z = 99%. I�M
 i
 z� can be calculated using the following formula:

I�M
 i
 z� = M ∗ �i+ 1� ∗
⌈

log�1− z�
log�1− P�M
 i��

⌉

The more steeply the graph of I�M
 i
 z� falls, and the lower its minimum, the better the genetic
programming system is performing. Koza defines the minimum of I�M
 i
 z� as the “computational
effort” required to solve the problem.
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