Skip to main content
Log in

Barrier Trees on Poset-Valued Landscapes

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

Fitness landscapes have proved to be a valuable concept in evolutionary biology, combinatorial optimization, and the physics of disordered systems. Usually, a fitness landscape is considered as a mapping from a configuration space equipped with some notion of adjacency, nearness, distance, or accessibility, into the real numbers. In the context of multi-objective optimization problems this concept can be extended to poset-valued landscapes. In a geometric analysis of such a structure, local Pareto points take on the role of local minima. We show that the notion of saddle points, barriers, and basins can be extended to the poset-valued case in a meaningful way and describe an algorithm that efficiently extracts these features from an exhaustive enumeration of a given generalized landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Azencott, Simulated Annealing, John Wiley & Sons: New York, 1992.

    Google Scholar 

  2. O. Catoni, “Simulated annealing algorithms and Markov chains with rate transitions,” in Seminaire de probabilities XXXIII, vol. 709 of Lecture Notes in Mathematics, J. Azema, M. Emery, M. Ledoux, and M. Yor (eds.), Springer: Berlin/Heidelberg, pp. 69–119.

  3. C. A. Coello, “An updated survey of GA-based multiobjective optimization techniques,” ACM Comput. Surveys vol. 32, pp. 109–143, 2000.

    Google Scholar 

  4. P. Dasgupta, P. P. Chakrabarti, and S. C. DeSakar, Multiobjective Heuristic Search, Vieweg: Braunschweig, Germany, 1999.

    Google Scholar 

  5. B. A. Davey and H. A. Priestley, Introduction to Lattice and Order, Cambridge Univ. Press: Cambridge, UK, 1990.

    Google Scholar 

  6. K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, Wiley: Chichester, NY, 2001.

    Google Scholar 

  7. M. Ehrgott and X. Gandibleux, “A survey and annotated bibliography of multiobjective combinatorial optimization,” OR Spektrum vol. 22, pp. 425–460, 2000.

    Google Scholar 

  8. O. Etzioni, S. Hanks, T. Jiang, R. M. Karp, O. Madari, and O. Waarts, “Efficient information gathering on the Internet,” in 37th Annual Symposium on Foundations of Computer Science, Burlington, VI, 14–16 October 1996, pp. 234–243.

  9. C. Flamm, W. Fontana, I. Hofacker, and P. Schuster, “RNA folding kinetics at elementary step resolution,” RNA vol. 6, pp. 325–338, 2000.

    Google Scholar 

  10. C. Flamm, I. L. Hofacker, and P. F. Stadler, “RNA in silico: the computational biology of RNA secondary structures,” Adv. Complex Syst. vol. 2, pp. 65–90, 1999.

    Google Scholar 

  11. C. Flamm, I. L. Hofacker, P. F. Stadler, and M. T. Wolfinger, “Barrier trees of degenerate landscapes,” Z. Phys. Chem. vol. 216, pp. 155–173, 2002.

    Google Scholar 

  12. C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multi-objective optimization: formulation, discussion, and generalization,” in Proceedings of the Fifth International Conference on Genetic Algorithms, S. Forrest (ed.), San Francisco, CA, pp. 416–423, 1993.

  13. W. Grüner, R. Giegerich, D. Strothmann, C. M. Reidys, J. Weber, I. L. Hofacker, P. F. Stadler, and P. Schuster, “Analysis of RNA sequence structure maps by exhaustive enumeration. I. Neutral networks,” Monath. Chem. vol. 127, pp. 355–374, 1996.

    Google Scholar 

  14. P. Iacob, “Saddle point duality theorem for Pareto optimization,” Anal. Num. Theorie Approx. vol. 15, pp. 37–40, 1986.

    Google Scholar 

  15. H. T. Kung, F. Luccio, and F. P. Preparata, “On finding the maxima of a set of vectors,” J. Assoc. Comp. Mach. vol. 22, pp. 469–476, 1975.

    Google Scholar 

  16. M. G. Lagoudakis, “The 0–1 knapsack problem—An introductory survey,” citeseer.nj.nec.com/151553.html, 1996.

  17. S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations. Wiley: Chichester, England, 1990.

    Google Scholar 

  18. D. Mathews, J. Sabina, M. Zucker, and H. Turner, “Expanded sequence dependence of thermodynamic parameters provides robust prediction of RNA secondary structure,” J. Mol. Biol. vol. 288, pp. 911–940, 1999.

    Google Scholar 

  19. K. Nemoto, “Metastable states of the SK spin glass model,” J. Phys. A vol. 21, pp. L287-L294, 1988.

    Google Scholar 

  20. R. Rammal, G. Toulouse, and M. A. Virasoro, “Ultrametricity for physicists.” Rev. Mod. Phys., vol. 58, pp. 765–788, 1986.

    Google Scholar 

  21. C. M. Reidys and P. F. Stadler, “Combinatorial landscapes.” SIAM Review, vol. 44, pp. 3–54, 2002.

    Google Scholar 

  22. D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary algorithms: Analyzing the state-of-the-art,” Evol. Comp. vol. 8, pp. 125–147, 2000.

    Google Scholar 

  23. D. J. Wales, M. A. Miller, and T. R. Walsh, “Archetypal energy landscapes.” Nature vol. 394, pp. 758–760, 1998.

    Google Scholar 

  24. M. Zuker and D. Sankoff, “RNA secondary structures and their prediction,” Bull. Math. Biol. vol. 46, pp. 591–621, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadler, P.F., Flamm, C. Barrier Trees on Poset-Valued Landscapes. Genetic Programming and Evolvable Machines 4, 7–20 (2003). https://doi.org/10.1023/A:1021821009420

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021821009420

Navigation