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ABSTRACT 

Previous work has demonstrated that genetic programming can 
automatically create analog electrical circuits, controllers, and other 
devices that duplicate the functionality and, in some cases, partially or 
completely duplicate the exact structure of inventions that were patented 
between 1917 and 1962. This paper reports on a project in which we 
browsed patents of analog circuits issued after January 1, 2000 on the 
premise that recently issued patents represent current research that is 
considered to be of practical and scientific importance. The paper 
describes how we used genetic programming to automatically create 
circuits that duplicate the functionality or structure of five post-2000 
patented inventions. This work employed four new techniques (motivated 
by the theory of genetic algorithms and genetic programming) that we 
believe increased the efficiency of the runs. When an automated method 
duplicates a previously patented human-designed invention, it can be 
argued that the automated method satisfies a Patent-Office-based variation 
of the Turing test.  

 

1 Introduction 
Genetic programming can automatically create both the topology and sizing 
(numerical component values) for a wide variety of analog electrical circuits, 
controllers, and other devices such as sorting networks merely by specifying the 
device's high-level behavior [1-3].  Seven of the analog circuits and two of the 
controllers that have been automatically created by genetic programming infringe 
patents on that were issued between 1917 and 1962 (i.e., exactly duplicate the 
structure of the patented invention). Other genetically evolved results duplicate the 
functionality of 20th Century patented inventions in a novel way. One genetically 
evolved device (a sorting network) was an improvement over the invention described 
in the patent.  



This paper reports on a project in which we browsed patents of analog circuits 
issued after January 1, 2000 on the premise that recently issued patents represent 
current research that is considered to be of practical and scientific importance. The 
paper describes how we used genetic programming to automatically create circuits 
that infringe, partially infringe, or duplicate the functionality of five post-2000 
inventions that were patented by major commercial and university research 
institutions. Table 1 shows 14 patented inventions that have been duplicated by 
genetic programming, including the five inventions described in this paper.  
 
Table 1. Fourteen patented inventions duplicated by genetic programming  

Invention Date Inventor Place 
PID (proportional, 
integrative, and 
derivative) controller 

1939 Albert Callender and 
Allan Stevenson 

Imperial Chemical 
Limited 

Second-derivative 
controller 

1942 Harry Jones Brown Instrument 
Company 

Darlington emitter-
follower section 

1953 Sidney Darlington Bell Telephone 
Laboratories 

Ladder filter 1917 George Campbell American Telephone 
and Telegraph 

Crossover filter 1925 Otto Julius Zobel American Telephone 
and Telegraph 

"M-derived half 
section" filter 

1925 Otto Julius Zobel American Telephone 
and Telegraph 

Elliptic filter 1934 
- 36 

Wilhelm Cauer Gottingen, Germany 

Philbrick circuit 1956 George Philbrick George A. Philbrick 
Researches 

Sorting network 1962 Daniel G. O'Connor 
and Raymond J. 
Nelson 

General Precision, Inc. 

Mixed analog-digital 
integrated circuit for 
producing variable 
capacitance 

2000 Turgut Sefket Aytur Lucent Technologies 
Inc. 

Voltage-current 
converter 

2000 Akira Ikeuchi and 
Naoshi Tokuda 

Mitsumi Electric Co., 
Ltd. 

Cubic function 
generator 

2000 Stefano Cipriani and 
Anthony A. 
Takeshian 

Conexant Systems, Inc. 

Low-voltage high-
current transistor 
circuit for testing a 
voltage source 

2001 Timothy Daun-
Lindberg and Michael 
Miller 

International Business 
Machines Corporation 

Low-voltage balun 
circuit 

2001 Sang Gug Lee Information and 
Communications 
University 



2 Overall Method 
We used genetic programming to breed a population of circuit-constructing program 
trees. Each constructing program tree is converted into a circuit by means of a 
developmental process that starts with a simple embryo. The functions in the circuit-
constructing program trees include (1) component-creating functions that insert 
components (i.e., resistors, capacitors, and transistors) into a developing circuit, (2) 
topology-modifying functions (e.g., series division, parallel division, via between 
nodes, via to ground, via to power) that alter the topology of a developing circuit, (3) 
development-controlling functions (e.g., end, safe cut) that control development.  

With the exceptions described in section 4 herein, we used the methods described 
in [1]. 

The embryo used on all five problems herein consisted of a single modifiable 
wire.  

We used the same embryo, program architecture, function set, terminal set, 
control parameters, termination criteria, and computing machinery for all five 
problems. All runs were made on a home-built Beowulf-style [4] parallel cluster 
computer system consisting of 1,000 350 MHz Pentium II processors (each with 64 
megabytes of RAM).  

The only two differences between the runs of genetic programming for the five 
problems were that we used  

(1) different (appropriate) types (models) of transistors for each problem, and  
(2) a different fitness measure (and test fixture) for each problem.  

3 Fitness Measures for Five Problems 
The fitness measure specifies what time-domain or frequency-domain output values 
are desired, given various inputs. For each specific problem, a test fixture consisting 
of certain fixed components (such as a source resistor, a load resistor) is connected to 
the desired input port(s) and the desired output port(s) to measure the output.  
3.1 Voltage-Current Conversion Circuit 
The purpose of the voltage-current conversion circuit patented by Ikeuchi and 
Tokuda (U. S. patent 6,166,529) is to take two voltages as input and to produce as 
output a stable current whose magnitude is proportional to the difference of the 
voltages [5]. As a fitness measure for this problem, we employed four time-domain 
input signals (fitness cases). We included a time-varying voltage source beneath the 
output probe point to ensure that the output current produced by the circuit was stable 
with respect to any subsequent circuitry to which the output of the circuit might be 
attached. The weight of each fitness case was defined as the reciprocal of the patented 
circuit’s error for that fitness case, so that the patent circuit was defined to have a 
fitness of 1.0.  
3.2 Balun Circuit 
The purpose of a “balun” (balance/unbalance) circuit, such as that described in U. S. 
patent 6,265,908, is to divide an input signal into two half-amplitude signals which 
are 180 degrees out of phase from each other [6]. Additionally, the circuit described 
in the patent is noteworthy in that it operates using a power supply of only 1 Volt. 
Our fitness measure for this problem consisted of a (1) frequency sweep analysis 
designed to ensure the correct magnitude and phase at the two outputs of the circuit 
and (2) a Fourier analysis designed to penalize harmonic distortion. 



3.3 Cubic Signal Generator 
U. S. patent 6,160,427 covers a “Compact cubic function generator” [7]. This is a 
computational circuit designed to produce as output the cube of an input signal. The 
patented circuit is “compact” in the sense that it requires a voltage drop across no 
more than two transistors at any point in the circuit. Our fitness measure for this 
problem consisted of four time-domain fitness cases using various input signals and 
time scales. The compactness constraint was enforced by allowing the evolutionary 
process access to only a 2-Volt power supply. 
3.4 Register-Controlled Variable Capacitor 
U. S. patent 6,013,958 covers a circuit whose behavior is equivalent to that of a 
capacitor whose capacitance is controlled by the value stored in a digital register [8]. 
For this problem, we used 16 time-domain fitness cases. The 16 fitness cases ranged 
over all eight possible values of a 3-bit digital register for two different input signals.  
3.5 High-Current Load Circuit 
U. S. patent 6,211,726 covers a circuit designed to sink a time-varying amount of 
current in response to a control signal. Toward this end, Daun-Lindberg and Miller of 
IBM employed a number of FET transistors arranged in a parallel structure, each of 
which sinks a small amount of the desired current [9]. Our fitness measure for this 
problem consisted of two time-domain simulations, each representing a different 
control signal. Each fitness case was weighted by the reciprocal of the patented 
circuit’s error on that fitness case, so that the patent circuit was defined to have a 
fitness of 1.0. 

4 Four New Techniques Employed in This Work 
Broadly speaking, we used the methods for the automatic synthesis of circuits 
described in [1]. However, we employed four new techniques in these runs. Two of 
the new techniques were designed to increase the degree to which local substructures 
are preserved during the developmental process.  
4.1 New Function for Connecting Distant Points 
Most electrical circuits cannot be laid out in a plane. Instead, practical circuits require 
connections between distant points. The connections typically cannot be achieved in a 
totally planar circuit. Our previous work with the automatic synthesis of electrical 
circuits employed functions such as VIA and PAIR_CONNECT (described in [1]) to 
connect distant points in a developing circuit.  

The premise of the crossover operation in genetic algorithms and genetic 
programming is that individuals that have comparatively high fitness are likely to 
have useful substructures. The VIA and PAIR_CONNECT functions have the 
disadvantage that when a subtree of one circuit-constructing program tree is swapped 
with a subtree of another circuit-constructing program tree, the connectivity of points 
within both the crossover fragment and the remainder is, almost always, very 
dramatically altered in a rather arbitrary and unpredictable way. That is, crossover 
usually significantly disrupts preexisting connections within a local area of the 
developing circuit (thereby disrupting the very local structures that probably 
contributed to the individual's comparatively high fitness and to the individual's 
selection to participate in the genetic operation in the first place).  



To the extent that crossover dramatically alters the characteristics of the swapped 
genetic material, it acquires the characteristics of the mutation operation and its 
effectiveness in solving the problem approaches that of blind random search.  

We addressed this problem concerning the VIA and PAIR_CONNECT functions 
in the runs described herein by employing a new two-argument function. The new 
NODE function replaces one modifiable wire (or component) with a series 
composition consisting of one modifiable wire, a port that can potentially be 
connected to other point(s) in the circuit, and a second modifiable wire. Prior to the 
execution of the developmental process, the circuit-constructing program tree is 
examined to identify the set of NODE functions that are not ancestors of any NODE 
function higher in the program tree. The NODE functions in this set are called "top-
most NODE functions." For each such top-most NODE function, all the ports (if any) 
associated with NODE functions that are ancestors of the top-most NODE function are 
connected together. When the crossover operation moves any subtree within the 
subtree rooted by a particular top-most NODE function into another circuit-
constructing program tree, all the ports of the moved subtree remain connected 
together. Moreover, all the ports in the unmoved remainder of the original remain 
connected together. We believe that this new approach based on local information 
encourages the preservation of building blocks and thereby increases the efficiency of 
the crossover operation.  
4.2 New Symmetry-Breaking Procedure using Geometric Coordinates 
Parts in conventional schematic diagrams of electronic circuits carry unique (and 
consecutive) parts numbers. In earlier work, we used the unique part number (created 
when a component is first inserted into the developing circuit during the 
developmental process) to break symmetries and thereby determine the behavior of 
certain circuit-constructing functions. For example, the way in which the 
PARALLEL_0 and PARALLEL_1 topology-modifying functions carry out the 
parallel division was determined by referring to the unique parts numbers of 
neighboring components. Similarly, when a transistor was inserted into a developing 
circuit, its base, collector, and emitter were permuted by referring to the parts 
numbers of neighboring components.  

The overall circuit-constructing program tree, of course, changes throughout the 
run of genetic programming. Thus, when neighboring parts change, the behavior of 
various circuit-constructing functions is dramatically altered in a rather arbitrary and 
unpredictable way (thereby disrupting the very local structures that probably 
contributed to the individual's comparatively high fitness and to the individual's 
selection to participate in the genetic operation in the first place).  

To the extent that the genetic operations do not preserve locality, they acquire the 
characteristics of the mutation operation and their effectiveness in solving the 
problem begins to approach that of blind random search.  

We addressed this problem in the runs described herein by breaking symmetry 
using the geometric coordinates of each node in the developing circuit (instead of the 
unique consecutive parts number). Specifically, the positive end of the single 
embryonic modifiable wire is defined to be at coordinate location (0,0), and its 
negative end is defined to be at coordinate location (1,0). The coordinate locations of 
new nodes that are created by functions that entail symmetry breaking (and those 
created by all other functions) are defined in terms of the coordinate locations of the 



existing nodes by recursively dividing the pre-existing modifiable wires into smaller 
and smaller new wires. In this way, the behavior of the functions that previously 
relied on the unique consecutive parts number can be defined in terms of information 
that is local to the region of the circuit where the symmetry-breaking is performed 
(instead of in terms of the circuit-wide information represented by component 
numbers). Again, we believe that this new approach based on local information 
encourages the preservation of building blocks and thereby increases the efficiency of 
the crossover operation.  
4.3 New Function for Inserting Two-Leaded Components 
The three-argument TWO_LEAD function replaces one modifiable wire (or 
component) with a series composition consisting of one modifiable wire, a two-
leaded component (capacitor or resistor here), and a second modifiable wire. The 
third argument of the TWO_LEAD function consists of a subtree that contains a one-
argument capacitor-inserting function or a one-argument resistor-creating function 
(both of which possess a single numerical parameter indicating the component value). 
The possibilities for the third argument are under control of a constrained syntactic 
structure which limits the choice to a resistor or capacitor. The remaining two 
arguments are the construction-continuing subtrees for each of the two modifiable 
wires created by this function.  
4.4 New Transistor-Inserting Function 
The six-argument Q function inserts a transistor into a developing circuit, with both 
the model and orientation of the transistor specified as parameters to the function. 
The first argument to the function specifies which transistor model is to be used. The 
set of available transistor models is specific to the problem at hand. The second 
argument establishes which end (polarity) of the preexisting modifiable wire will be 
bifurcated (if necessary) in inserting the transistor. It can take on the values 
BIFURCATE_POSITIVE or BIFURCATE_NEGATIVE. The third argument 
specifies which of six possible permutations of the transistor's three leads (base, 
collector, and emitter) are to be used. It can take on the values B_C_E, B_E_C, . . . 
E_C_B. That is, together, there are 12 possible ways of inserting a transistor. The 
remaining three arguments are the construction-continuing subtrees for each of the 
three modifiable wires created by this function.  

5 Results 
5.1 Voltage-Current Conversion Circuit 
A circuit (Figure 1) emerged on generation 109 of our run of this problem with a 
fitness of 0.619. That is, the evolved circuit has roughly 62% of the average 
(weighted) error of the patented circuit. The evolved circuit was subsequently tested 
on unseen fitness cases which were not part of the fitness measure, and outperformed 
the patented circuit on these new fitness cases.  
5.2 Balun circuit 
The best-of-run evolved circuit (Figure 2) was produced in generation 84 and has a 
fitness of 0.429. The patent circuit had a total fitness of 1.72. That is, the evolved 
circuit achieves roughly a fourfold improvement over the patented circuit in terms of 
our fitness measure. The evolved circuit is superior to the patented circuit both in 
terms of its frequency response and its harmonic distortion. 



5.3 Cubic Signal Generator 
The best-of-run evolved circuit (Figure 3) was produced generation 182 and has an 
average error of 4.02 mV. The patented circuit had an average error of 6.76 mV. 
That, the evolved circuit has approximately 59% of the error of the patented circuit 
over our four fitness cases.  
5.4 Register-Controlled Variable Capacitor 
Over our 16 fitness cases, the patented circuit had an average error of 0.803 mV. In 
generation 95, a circuit emerged with average error of 0.808 mV, or approximately 
100.6% of the average error of the patented circuit. During the course of this run, we 
harvested the smallest individuals produced on each processing node (deme) which 
were compliant with a certain maximum level of error. Examination of these 
harvested individuals revealed a circuit created in generation 98 which matched the 
topology of the patented circuit. This circuit is presented in Figure 4.  
5.5 High-Current Load Circuit 
Our run for this problem eventually reached a plateau and produced a circuit that 
sunk the desired current into one of the negative power supplies (rather than to 
ground). This "cheating" circuit was not in the spirit of the patented invention. 
However, on generation 114 of this run (before the cheating solution appeared), a 
circuit emerged that duplicated Daun-Lindberg and Miller’s parallel FET transistor 
structure. This circuit had a fitness (weighted error) of 1.82, or 182% of the weighted 
error for the patented circuit. This circuit is presented in Figure 5.  
 

 
Figure 1. Best-of-run voltage-current-conversion circuit from generation 109 

 

 
Figure 2. Best evolved balun circuit from generation 84 

 



 
Figure 3. Best-of-run cubic signal generation circuit from generation 182 

 

 
Figure 4. Smallest compliant register-controlled capacitor circuit from generation 98 

 

 
Figure 5. Best-of-run high current load circuit from generation 114 

 

6 Genetic Programming’s High-Yield and Routineness 
Methods for getting computers to solve problems automatically can be ranked by 
their “AI ratio.”  The AI ratio is the ratio of that which is delivered by the artificial 
system to the amount of intelligence that is supplied by the humans employing the 
method. The aim, of course, is to get computers to solve problems automatically with 
a high A-to-I ratio.   

The defeat of the then-reigning human world chess champion by the Deep Blue 
system is an outstanding human-competitive result in the field of machine 
intelligence.  However, there was a enormous of “I” provided by a team that worked 
on developing Deep Blue’s software and hardware for many years in relation to the 
relatively small amount of “A” delivered by the system. Thus, Deep Blue has a very 
low A-to-I ratio. Most results produced in the fields of artificial intelligence, machine 



learning, and automated reasoning also have low AI ratios (regardless of whether the 
results are human-competitive). 

Similarly, methods for getting computers to solve problems automatically can be 
ranked by their routineness. The word “routine” includes the connotation of “general 
purpose.” However, “routine” is more demanding.  When we use the term "routine" 
to describe a method for getting computers to solve problems automatically, we mean 
that there is a relatively effortless transition required to get the method to successfully 
handle additional problems within a particular domain and additional problems from 
a different domain. 

Would the transition required to apply Deep Blue’s methods to bridge be routine? 
Would the transition required to apply Deep Blue’s methods to the problem of getting 
a robot to mop the floor of an obstacle-laden room be routine?  What fraction of Deep 
Blue’s methods could be brought to bear on programming a cellular automaton to 
perform a specific calculation?  Classifying protein sequences?  Designing an 
amplifier circuit?  Devising a algorithm to solve a mathematical problem?   

As can be seen in this paper, there was a relatively effortless transition required to 
get genetic programming to successfully handle additional problems within a 
particular domain.  As we moved from problem to problem, we changed the 
specification of “what needs to be done” based on the inventor’s statement of desired 
performance as stated in each patent. 

As is apparent from much previous work in the field of genetic programming, a 
relatively effortless transition is required to get genetic programming to successfully 
handle additional problems from entirely different domains.  Thus, we think it is fair 
to say that genetic programming is now capable of routinely delivering high-yield 
human-competitive machine intelligence. 

7 Patent-Office-Based Variation of the Turing Test 
In 1950, Turing proposed a three-person "imitation game" that might be used to 
determine whether machine intelligence had been achieved [10]. In the "imitation 
game," a judge tries to decide whether typewritten replies to questions came from a 
man or a woman. Turing's original test has been paraphrased in various ways over the 
years. One popular restatement of Turing's original test for machine intelligence is a 
two-person game in which a judge receives messages "over a wall" and tries to decide 
whether the messages came from a human or a machine.  

Patent Offices in various countries have been in the business of performing a 
similar kind of "over the wall" test for over 200 years. For example, the U. S. Patent 
Office receives written descriptions of human-designed inventions and judges 
whether they satisfy the statutory requirement of being "[un]obvious … to a person 
having ordinary skill in the art to which said subject matter pertains."  

The Patent Office operates at arms-length and does not know who (or what) 
actually conceived the proposed invention when it passes judgment on a patent 
application. The inventor could be an exceptionally creative human or it could be 
something else (e.g., an automated process). If an automated method were able to 
duplicate a previously patented human-created invention, the fact that the original 
human-designed version satisfied the Patent Office's criteria of patent-worthiness 
means that the automatically created duplicate would also have satisifed the Patent 
Office's criteria. Thus, whenever an automated method duplicates a previously 



patented human-designed invention, the automated method can be viewed as 
satisfying a Patent-Office-based variation of the Turing test.  

The original Turing test (and many of the popular restatements of it) deal with 
inconsequential chit chat. When an institution or individual allocates time and money 
to invent something and then also embarks on the time-consuming and expensive 
process of obtaining a patent, it has made a judgment that the work is of some 
practical or scientific importance. Moreover, the Patent Office also applies a statutory 
test of utility as a precondition to issuing a patent. Thus, the above Patent-Office-
based variation of the Turing test differs from the original Turing test in that patented 
inventions represent non-trivial work by exceptionally creative humans.  

8 Conclusions 
Genetic programming was used to automatically create analog circuits that infringe, 
partially infringe, or duplicate the functionality of five post-2000 patented inventions. 
This work employed several new techniques (motivated by the theory of genetic 
algorithms and genetic programming). The paper also argued that when an automated 
method duplicates a previously patented human-designed invention, the automated 
method can be viewed as satisfying a Patent-Office-based variation of the Turing test.  
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