Skip to main content

Hybrid Approach of Genetic Programming and Quantum-Behaved Particle Swarm Optimization for Modeling and Optimization of Fermentation Processes

  • Conference paper
  • First Online:
  • 513 Accesses

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 23))

Abstract

This paper proposes a novel method for modeling and optimization of fermentation process with a hybrid approach of genetic programming (GP) and quantum-behaved particle swarm optimization (QPSO). In this method, the GP algorithm is first used to model the process, with the parameters of the model selected randomly within a given interval, while the population of models evolves. Then, the parameters of the model obtained by the GP are tuned by the QPSO algorithm in order to increase the fitting accuracy. Finally, the values of the independent variables of the model representing the culture conditions are optimized by the QPSO in order to maximize the dependent variable, which generally represents the yield of the fermentation product. The proposed method is applied to the fermentation process of the hyaluronic acid (HA) production by Streptococcus zooepidemicus. The experimental results show the efficiency of the GP-QPSO approach in the modeling and optimization of this fermentation process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kennedy, M., Krouse, D.: Strategies for improving fermentation medium performance: a review. J. Ind. Microbiol. Biotechnol. 23, 456–475 (1999)

    Article  Google Scholar 

  2. Dutta, J.R., Dutta, P.K., Banerjee, R.: Optimization of culture parameters for extracellular protease production from a newly isolated pseudomonas SP. Using response surface and artificial neural network models. Process Biochem. 39, 2193–2198 (2004)

    Article  Google Scholar 

  3. Sim, J.H., Kamaruddin, A.H.: Optimization of acetic acid production from synthesis gas by chemolithotrophic bacterium—Clostridium aceticum using statistical approach. Bioresour. Technol. 99, 2724–2735 (2008)

    Article  Google Scholar 

  4. Ceylan, H., Kubilay, S., Aktas, N., Sahiner, N.: An approach for prediction of optimum reaction conditions for laccase-catalyzed bio-transformation of 1-naphthol by response surface methodology (RSM). Bioresour. Technol. 99, 2025–2031 (2008)

    Article  Google Scholar 

  5. Chang, S.W., Shaw, J.F., Yang, K.H., Chang, S.F., Shieh, C.J.: Studies of optimum conditions for covalent immobilization of Candida rugosa lipase on poly (Gamma-Glutamic Acid) by RSM. Bioresour. Technol. 99, 2800–2805 (2008)

    Article  Google Scholar 

  6. Kunamneni, A., Singh, S.: Response surface optimization of enzymatic hydrolysis of maize starch for higher glucose production. Biochem. Eng. J. 27, 179–190 (2005)

    Article  Google Scholar 

  7. Ustok, F.I., Tari, C., Gogus, N.: Solid-state production of polygalacturonase by Aspergillus sojae ATCC 20235. J. Biotechnol. 127, 322–334 (2007)

    Article  Google Scholar 

  8. Cramer, N.L.: A representation for the adaptive generation of simple sequential programs. In: Grefenstette, J.J. (ed.) Proceedings of an International Conference on Genetic Algorithms and the Applications. Carnegie Mellon University (1985)

    Google Scholar 

  9. Koza, J.R.: Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems. Stanford University Computer Science Department, technical report STAN-CS-90-1314 (1990)

    Google Scholar 

  10. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    Google Scholar 

  11. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)

    Google Scholar 

  12. Koza, J.R., Bennett, F.H., Andre, D., Keane, M.A.: Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  13. Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, Boston (2003)

    Google Scholar 

  14. Mckay, B., Chen, S.-H., Nguyen, X.H.: Genetic programming: an emerging engineering tool. Int. J. Knowl Based Intell. Eng. Syst. 12(1), 1–2 (2008)

    Google Scholar 

  15. Korns, M.: Large-scale, time-constrained, symbolic regression-classification. In: Genetic Programming Theory and Practice V. Springer, New York (2007)

    Google Scholar 

  16. Korns, M.: Symbolic regression of conditional target expressions. In: Genetic Programming Theory and Practice VII. Springer, New York (2009)

    Google Scholar 

  17. Korns, M.: Abstract expression grammar symbolic regression. In: Genetic Programming Theory and Practice VIII. Springer, New York (2010)

    Google Scholar 

  18. Sun, J., Feng, B., Xu, W.-B.: Particle swarm optimization with particles having quantum behavior. In: Proceedings of the 2004 Congress on Evolutionary Computation, pp. 326–331. IEEE Press (2004)

    Google Scholar 

  19. Sun, J., Xu, W.-B., Feng, B.: A global search strategy of quantum-behaved particle swarm optimization. In: Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems, pp. 111–116. IEEE Press (2004)

    Google Scholar 

  20. Kennedy, J.: Bare bones particle swarms. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, pp. 80–87. IEEE Press, Indianapolis, IN, April 2003

    Google Scholar 

  21. Kennedy, J.: Probability and dynamics in the particle swarm. In: Proceedings of the 2004 Congress on Evolutionary Computation, vol. 1, pp. 340–347. IEEE Press, June 2004

    Google Scholar 

  22. Fang, W., Sun, J., Ding, Y., Wu, X., Xu, W.: A review of quantum-behaved particle swarm optimization. IETE Tech. Rev. 27, 336–348 (2010)

    Article  Google Scholar 

  23. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction. Morgan Kaufmann, San Francisco (1998)

    Book  MATH  Google Scholar 

  24. Koza, J.R.: Genetic Programming, vol. I. MIT Press, New York (1992)

    MATH  Google Scholar 

  25. Langdon, W.B.: Data Structures and Genetic Programming, Advances in Genetic Programming 2. MIT Press, Cambridge (1996)

    Google Scholar 

  26. Kennedy, J. Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, pp. 1942–1948. Piscataway, NJ (1995)

    Google Scholar 

  27. Jones, K.O.: Comparison of genetic algorithm and particle swarm optimization. In: Proceedings of the 2005 International Conference on Computer System and Technologies, pp. IIIA1-6 (2005)

    Google Scholar 

  28. Kennedy, J.: The behavior of particle. In: Proceedings of the 7th Annual Conference on Evolutionary Programming, pp. 581–589 (1998)

    Google Scholar 

  29. Ozcan, E., Mohan, C.K.: Particle swam optimization: surfing the waves. In: Proceedings of the 1999 IEEE Congress on Evolutionary Computation, pp. 1939–1944 (1999)

    Google Scholar 

  30. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(2), 58–73 (2002)

    Article  Google Scholar 

  31. Kadirkamanathan, V., Selvarajah, K., Fleming, P.J.: Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans. Evol. Comput. 10(3), 245–255 (2006)

    Article  Google Scholar 

  32. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69–73 (1998)

    Google Scholar 

  33. Clerc, M.: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation, vol. 3, pp. 1951–1957 (1999)

    Google Scholar 

  34. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Proceedings of the 2007 IEEE Swarm Intelligence Symposium, pp. 120–127 (2007)

    Google Scholar 

  35. Suganthan, P.N.: Particle warm optimizer with neighborhood operator. In: Proceedings of the 1999 Congress on Evolutionary Computation, pp. 1958–1961 (1999)

    Google Scholar 

  36. Liang, J.J., Suganthan, P.N.: Dynamic multiswarm particle swarm optimizer (DMS-PSO). In: Proceedings of the 2005 IEEE Swarm Intelligence Symposium, pp. 124–129 (2005)

    Google Scholar 

  37. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

    Article  Google Scholar 

  38. Van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

    Article  Google Scholar 

  39. Poli, R.: Analysis of the publications on the applications of particle swarm optimisation. J. Artif. Evol. Appl. 2008, 1–10 (2008)

    Google Scholar 

  40. Sun, J., Fang, W., Wu, X., Palade, V., Xu, W.: Quantum-behaved particle swarm optimization: analysis of the individual particle behavior and parameter selection. Evol. Comput. 20(3), 349–393 (2012)

    Article  Google Scholar 

  41. Sun, J., Wu, X., Palade, V., Fang, W., Lai, C.-H., Xu, W.: Convergence analysis and improvements of quantum-behaved particle swarm optimization. Inf. Sci. 193, 81–103 (2012)

    Article  MathSciNet  Google Scholar 

  42. Sun, J., Fang, W., Palade, V., Wu, X., Xu, W.: Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point. Appl. Math. Comput. 218(7), 3763–3775 (2011)

    Article  MATH  Google Scholar 

  43. Bitter, H., Muir, H.M.: A modified uronic acid carbazole reaction. Anal. Biochem. 4, 330–334 (1962)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Natural Science Foundation of China (NSFC), under grant number 601190117 and 60975080, by the Program for New Century Excellent Talents in University, and by the Natural Science Foundation of Jiangsu Province, China (Project Number: BK2010143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, J., Palade, V., Wang, Z., Wu, X. (2013). Hybrid Approach of Genetic Programming and Quantum-Behaved Particle Swarm Optimization for Modeling and Optimization of Fermentation Processes. In: Hatzilygeroudis, I., Palade, V. (eds) Combinations of Intelligent Methods and Applications. Smart Innovation, Systems and Technologies, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36651-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36651-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36650-5

  • Online ISBN: 978-3-642-36651-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics