
Language Representation Progression in Genetic Programming

Astro Teller
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

astro@cs.cmu.edu

Abstract

The signal-to-symbol problem is the task of con-
verting raw sensor data into a set of symbols that
Artificial Intelligence systems can reason about.
We have developed a method for directly learn-
ing and combining algorithms that map signals-
into symbols. This new method is based on Ge-
netic Programming (GP). Previous papers have
focused on PADO, our learning architecture. We
showed how PADO applies to the general signal-
to-symbol task and in particular the positive re-
sults it brings to natural image object recogni-
tion. Originally, PADO’s programs were writ-
ten in a Lisp-like language formulated in (Teller
1994b). PADO’s programs are now written in
a very different language. Using this new lan-
guage, PADO’s performance has increased sub-
stantially on several domains including two vi-
sion domains this paper will mention. This pa-
per will discuss these two language representa-
tions, the results they produced, and some anal-
ysis of the performance improvement. The higher
level goals of this paper are to give some justifi-
cation for PADO’s specific language progression,
some explanation for the improved performance
this progression generated, and to offer PADO’s
new language representation as an advancement
in GP.

Introduction

PADO (Parallel Algorithm Discovery and Orchestra-
tion) is a system that has been designed and built to
learn arbitrary signal understanding tasks for any sig-
nal size or type. The heart of PADO’s architecture
is an extension of Genetic Programming (GP) to the
space of algorithms. This extension of GP to the space
of algorithms required initially a small change to the
traditional s-expression language. A natural question
to ask is "Now that we’re evolving algorithms instead
of functions, is a more radical change to the language
called for?"

The Architecture Section starts by giving a very
short overview of PADO’s architecture. This is given
to situate the reader, not to give a full explanation

of how PADO operators. The next two Sections de-
scribe two different PADO languages for evolution.
The first is PADO’s original language, inspired by the
s-expressions of traditional GP (Koza 1992). The sec-
ond is PADO’s new language, specifically designed to
be more appropriate for evolving algorithms. The Re-
lated Work Section gives some relation to other GP
work that has informed PADO’s evolution. Results
from two previous papers will be compared in the
Results Section to give empirical basis for the claim
that PADO’s new language representation is an im-
provement. Finally the Discussion Section will give
some motivation behind this new language design and
some intuition about why this new language has such
a marked positive effect on PADO’s performance.

The PADO Architecture

The goal of the PADO architecture is to learn to take
signals as input and output correct labels. When there
are C classes to choose from, PADO starts by learning
g different systems. Systemz is responsible for tak-
ing a signal as input and returning a confidence that
class Z is the correct label. Clearly, if all g systems
worked perfectly, labeling each signal correctly would
be as simple as picking the unique non-zero confidence
value. If, for example, system ‘7 returned a non-zero
confidence value, then the correct label would be ,7.
In the real world, none of the g systems will work per-
fectly. This leads us to the recurring two questions of
the PADO architecture: "How does PADO learn good
components (systems or programs)?" and "How does
PADO orchestrate them for maximum effect?" First,
let’s touch on how one of these systems is built.

Systemz is built out of several programs. Each of
these programs does exactly what the system as a
whole does: it takes a signal as input and returns a
confidence value that label 27 is the correct label. The
reason for this seeming redundancy has been justified
and discussed in (Teller & Veloso 1995a).

Systemz is built from the S programs that best
(based on the training results from that generation)
learned to recognize objects from class 27. The S re-
sponses that the S programs return on seeing a partic-

106

From: AAAI Technical Report FS-95-01. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved. 



ular image are all weighted, and their weighted aver-
age of responses is interpreted as the confidence that
Systemz has that the image in question contains an
object from class 2". How the responses are obtained
in each language will be explained later. PADO does
object recognition by orchestrating the responses of the
C systems. On a particular test case, the function F
(e.g., MAX) takes the weighted confidences from each
Systemz and selects one class as the image object class.
See (Teller &: Veloso 1995a) for how these weights are
obtained. Figure 1 pictures this orchestration learning
process.

Programs learned by PADO are written in an algo-
rithmic language that is PAD0-specific. During the
training phase of learning, these programs are inter-
preted, not compiled. So like Lisp, the programs can be
compiled or interpreted, but during the "construction"
phase they are simply interpreted. At the beginning of
a learning session, the main population is filled with
7) programs that have been randomly generated using
a grammar for the legal syntax of the language. All
programs in this language are constrained by the syn-
tax to "return" a number that is interpreted as a con-
fidence value between some minimum confidence and
some maximum confidence.

At the beginning of a new generation, each program
in the population is presented with 7- training signals
and the 7- confidences it returns are recorded. Then
the population is divided into C distinct groups of size
7~/C. The programs in group Z are (within the size
constraint) the programs that recognized class Z better
than any other class in the sense that they maximized
a reward function Reward (see figure 2) when K = 
(K is the class to which PADO is considering assigning
program U).

On images that the program should return Max-
Conf for, the reward is multiplied by C - 1 so that,
even though this only happens once in C times, these
images will account for half the reward. This seems
reasonable since it should be as important to say YES
when appropriate as to say NO when appropriate since
these two cases are respectively coverage and accuracy.

int Reward(program U, class K, int Guess[ ])
R=O;
Loop j = 1 to MaxResponses
If (K = ObjectClas~j]) Then

R = R + ((C - 1) ̄  G.es~[~]b]);
Else

R = n- aues~Ulb’];
return R;

Guess[U][j] ¢s the confidence program U returned for image j.
R is the reward,
C ks the number of classes.

ObjectClass[j] is the object type that appears in image j.

Figure 2: PADO’s Class-Relative Reward Function.

Each group is then sorted by increasing fitness and
each program is ranked accordingly. C "mating pools"
(temporary groups) are created by putting a copy 
Programj from Group/into MatingPoolz with prob-
ability 2 * rank(J)/(P/C) (rank selection).

The Libraries are programs reference-able from all
programs. After the division of the population, the
libraries are updated according to how widely and how
often they were used. These statistics are weighted by
the fitnesses of the programs that called them (Teller 
Veloso 1995a; 1995b). See (Angeline & Pollack 1993)
for a similar concept.

Finally, 85 percent of the programs within each mat-
ing pool are subjected to crossover and another 5 per-
cent are subjected to mutation. All crossovers take
place between two programs in the same mating pool.
That means they are both recognizers of the same
class. Crossover in PADO is more complicated than
its standard form in genetic algorithms or genetic pro-
gramming.

In PADO two programs are chosen and given to a
"SMART crossover" algorithm (Teller 1996). This al-
gorithm examines the two programs and chooses two
sub-parts in each. Then one subpart from each pro-
grams is exchanged. The new pairs of sub-parts are
reconnected, creating two new programs. These two
new programs replace the two old programs in the pop-
ulation. The "SMART Mutation" in PADO is also
more complicated than the general case described in
the previous section. One program is chosen and an
"intelligently" chosen subpart is replaced with an "in-
telligently" generated new element. This changed pro-
gram then replaces the old program in the new popula-
tion. Both the SMART operators are co-evolved with
the main population; their "smartness" evolves (Teller
1996). It is not preprogrammed.

At this point we merge the C mating pools back
into a new total population and the next generation
begins. To extract programs to use in the systems,
we can pause the process after the evaluation step of
a generation and copy out those programs that scored
best or near best in each group 2:. So this architecture
is an anytime learning system: at any time we can

107



generate a system for signal classification using what
we have learned so far.

The Old PADO Program Language

Each PADO program was made up of three impor-
tant parts: a main loop, an ADF, and an Indexed
Memory. Both the main loop and the ADF (Auto-
matically Defined Function) were written in a PADO-
specific Lisp-like language. The main loop was repeat-
edly applied for a fixed time limit; there was no fixed
number of iterations. A weighted average of the re-
sponses the program returned on each iteration (eval-
uation) was computed and interpreted as the answer.
The weight of a response at time t i was i. Later re-
sponses counted more towards the total response of the
program. PADO’s programs were guaranteed to halt
and respond in a fixed amount of time.

Repeat

(READ (ADF (NOT (Li-
brary77 (Library4 (LEAST
(WRITE 169 (Libraryl6
189 125 147 27 ) ) 91 192
(IF-THEN-ELSE (NOT 
) 66 67 ) ) (SUB (EQUAL
228 56 ) 109 ) 181 
) (VARIANCE 139 (Li-
brary7 (NOT 152 ) (READ
(READ 18)) 255 (ADF 

Until Time threshold

The indexed memory is an array of integers indexed
by the integers. Each program has the ability to ac-
cess any element of its memory, either to read from it
or to write to it (Teller 1994a). This memory scheme,
in conjunction with the main loop described above has
been shown to be Turing complete (Teller 1994b). In-
dexed memory can been seen as the simplest mem-
ory structure that can practically support all other
memory structures. Indeed, indexed memory has been
successfully used to build up complex data structures
and mental models of local geography (Langdon 1995;
Teller 1994a).

The ADF is a function definition that evolves along
with the main loop (Koza 1994a). This ADF may 
called as often as desired in the main loop but may
not call itself. While each program has a private main
loop, a private ADF, and a private indexed memory,
there are a number of Library functions that may be
called by the entire population of programs (Teller 
Veloso 1995a; 1995b).

As a Lisp-like language, PADO programs were com-
posed of nested functions. These functions acted on
the results of the functions nested inside them and any
terminals that made up their parameters. Terminals
are the zero arity functions like constants and vari-
ables. In the main loop, the terminals are the integer

values 0 thru 255. In the ADF and library functions,
the terminals are the integer values 0 thru 255 plus the
parameters X, Y, U, and V (see the Language Primi-
tives Section).

The New PADO Program Language

Figure 3 sketches the structure of a PADO program.
Each program is constructed as an arbitrary directed
graph of nodes. As an arbitrary directed graph of N
nodes, each node can have as many as N outgoing arcs.
These arcs indicate possible flows of control in the pro-
gram. In a PADO program each node has two main
parts: an action and a branch-decision. Each program
has an implicit stack and an indexed memory. All ac-
tions pop their inputs from this implicit stack and push
their result back onto the implicit stack. These actions
are the equivalent of GP’s terminals and non-terminals.
For example, the action "6" simply pushes 6 onto the
parameter stack. The action "Write" pops art1 and
arg2 off the stack and writes argl into Memory[art2]
after pushing Memory[art2] onto the stack. Evaluat-
ing a GP tree is effectively a post-order traversal of the
tree. Because there are many arcs coming into a partic-
ular node in the PADO language we evaluate a part of
the graph (indeed, the whole graph) as chronological,
not structural, post-order traversal of the graph.

Main Program Private ADF(s)

e iii ©

"*-. ...................

Indexed Memory

Figure 3: The general structure of a new PADO program.

After the action at node i is executed, an arc is
taken to a new node. The branch-decision function
at the current node makes this decision. Each node
has its own branch-decision function that may use the
stack top, the temporally previous node action type,
the memory, and constants to pick an arc.

If this new representation were allowed only
one arc per node it would be a postfix notation of
a function (with possible loops). Through this 
can see that the new PADO language representa-
tion is a superset of the standard GP representa-
tion.
There are several special nodes shown in Figure 3.

Node q is the start node. It is special in no other way
than it is always the first node to be executed when
a program begins. Node X is the stop node. When
this node is reached, its action is executed and then

108



the program halts. When a program halts or is halted
at the time-threshold, its response is considered to be
the current value residing in some particular memory
location (e.g., response = Memory[0]). If a program
halts sooner than a pre-set time threshold, it is started
again at its start node (without erasing its memory or
stack) to give it a chance to revise its confidence value.
A weighted average of the responses that the program
gives on a particular execution is computed and inter-
preted as the answer. However, when no self-halting
criteria is enforced by generation 100 only about 1% of
the MAIN programs transition to their stop node even
once during a particular execution.

Node A executes the private ADF program (start-
ing at q,n) as its action. It then executes its branch-
decision function as normal. The ADF programs as-
sociated with each Main program bear similarity to
the concept of ADF’s (automatically defined func-
tions) (Koza 1994a). However, PADO ADFs do 
take a specific number of arguments but evolve to use
what it they need from the incoming argument stack.
In addition, they have internal loops and recursion.
The private ADF programs may be called at any point
in the main program and they evolves along with the
main program. ADF programs are in every way nor-
mal PADO programs; their size is not constrained to
be smaller than the main programs. The ADF pro-
grams may recursively call themselves or the globally
available Library programs, just like a main program
may.

The Library programs (e.g., L91 in Figure 3) are
globally available programs (public ADFs) that can 
executed at any time and from anywhere just like the
ADF programs. But unlike the ADF programs, where
each ADF may be run only during the execution of the
PADO program of which it is a part, the Library pro-
grams are publicly available to the entire population.
The method by which these Library programs change
can be seen in some detail in (Teller & Veloso 1995a;
1995b). While the creation and destruction of these Li-
brary programs is different from the module concept,
the maintenance of such a pool of public encapsulations
of code is not (Angeline & Pollack 1993).

The Language Primitives

Here is a brief summary of the language primitives and
their effects. These primitives are the ones in the ex-
periments mentioned latter, but the general language
progression this paper presents is independent of any
particular set of language primitives. For the old lan-
guage, the evaluation result is simply "passed up" to
be used by the primitive that called it. In the new
language, the result is placed on the stack. This is a
more flexible implementation of what is implicit in the
old language.
Algebraic Primitives: {+ - * / NOT MAX MIN}
These functions allow basic manipulation of the inte-
gers. All values are constrained to the range 0 to 255.

For example, DIV(X,0) results in 255 and NOT(X)
maps {1..255} to 0 and {0} to 1.
Memory Primitives: {READ WRITE}
These two functions access the memory of the pro-
gram via the standard indexed memory scheme (Teller
1994a). The memory is cleared (all positions set 
zero) at the beginning of a program execution.
Branching Primitives: {IF-THEN-ELSE PIFTE}
In both cases the primitive takes 3 parameters (X,Y,
and Z) and then returns either Y or Z (not both) 
pending on the value of X. For IF-THEN-ELSE the
test is (X greater than 0). PIFTE is a probabilistic
IF-THEN-ELSE that takes 3 arguments. A random
number is chosen and if it is less than X then Y is
returned, else Z is returned.
Signal Primitives: {PIXEL LEAST MOST AVERAGE
VARIANCE DIFFERENCE}
These are the language functions that can access the
signals. In order to demonstrate PADO’s power and
flexibility, the same primitives have been used for both
image and sound data (Teller ~ Veloso 1995c)! PIXEL
returns the intensity value at the point in the image
specified by its two parameters. The other five "signal
functions" each take 4 parameters. These four num-
bers are interpreted as (XI,Y1) and (X2,Y2) specifying
a rectangle in the image. If the points specified a neg-
ative area then the opposite interpretation was taken
and the function was applied to the positive area rect-
angle. LEAST, MOST, AVERAGE, VARIANCE, and
DIFFERENCE return the respective functions applied
to that region in the image. DIFFERENCE is the dif-
ference between the average values along the first and
second half of the line (X1,Y1,X2,Y2).
Old Routine Primitives: {ADF LIBRARY[i]}
¯ (ADF X Y U V) This fu nction was pr ivate to the

individual that used it and could be called as many
times as desired from the main loop (Koza 1994a).
Each individual had exactly one ADF which evolved
along with the main loop. The ADF differed from
the main loop in two ways. It was not allowed to
call ADF or Library functions, and it had 4 extra
legal terminals: X, Y, U, and V. These extra ter-
minals were local variables that took on the values
of the four sub-expressions that were used in each
particular call to ADF from the main loop.

¯ (LIBRARY[i] X Y U V) : There were 150 Library
functions. The i is not really a parameter. Instead a
call to a Library function from some program’s main
loop might have looked like (Library57 56 (ADD 
99) 0 (WRITE 3 19)). All 150 Library functions 
available to all programs in the population. How
these Library functions were created and changed
has been discussed in (Teller & Veloso 1995a; 1995b).

New Routine Primitives: {ADF LIBRARY[i]}
These are programs that can be called from the Main
program. In addition, they may be called from each
other. Because they are programs, and not simple
functions, the effect they will have on the stack and

109



memory before completion (if they ever stop) is un-
known.
¯ ADF : This ADF program is private to the MAIN

program that uses it and can be called as many
times as desired from this MAIN program. Because
each ADF is an arbitrarily complex program, it has
an arbitrary number of "parameters" which it can
pull of the stack. In general, a MAIN program
could have many ADF programs for its private use.
The only distinctions between MAIN and ADF pro-
grams, other than the mechanism of referring to (i.e.,
calling) an ADF, is that ADF programs may become
Library programs. MAIN programs currently may
not.

* LIBRARY[i] : There are 150 library programs.
The i is not really a parameter. Instead an Ac-
tion calling a Library program from some program’s
MAIN, ADF, or from another Library program
might look like Librm’y57. Like the ADF programs,
the Library programs take an unknown number of
parameters by "popping" the parameters they want
off the parameter "stack". All 150 Library programs
are available to all programs in the population. How
these library programs are created and changed has
been discussed in (Teller & Veloso 1995a).

Genetic Programming Related Work

There has been previous work that involved graphs in
evolutionary computation. This work has ranged from
graph searches (e.g., (Tamaki 1994)) to building 
works (e.g., (Sushil 1994)). Clearly, tree graphs 
DAGs have been thoroughly investigated in GP. At
least graphically, a PADO program in the new repre-
sentation is reminiscent of Turing machines and Finite
State Automata. The indebtitness of ours to the idea
of graphs as representation for programs is wider and
deeper than we can cite here. So far, however, the
programming of completely general graph-structured
programs by evolution has been largely unexplored.

One work worth mentioning as an example is Karl
Simms’ work on evolving arbitrary graph structures
that represent the morphologies of virtual animals.
In (Simms 1994), for example, the question of how 
"crossover" two graphs is addressed and dealt with in
a simple and static way. In (Teller 1996) we tackle this
issue in search of more intelligent solutions.

While this particular conception of an evolvable pro-
gram is new, the idea of using a stack to keep track of
information in an evolving system is not (Keith & Mar-
tin 1994),(Perkis 1994). We mention this because 
stack mentioned in the New Language Section is not in
itself a departure from GP, but, like stack-based GP,
is simply an easier way of telling the same story.

Issues related to halting and the effective use of re-
sources in a limit time have been investigated (Siegel
Chaffee 1995). While PADO’s Libraries and Angeline’s
Modules have several important differences, (Angeline
& Pollack 1993) was an important influence on our

work. Some GP experiments have evolved "programs"
(e.g., within a context like sorting (Kinnear 1993)).

This paper has mentioned, though not detailed,
PADO’s SMART operators. The idea that evolvability
is something our systems must evolve has been success-
fully argued as an important field of future research
(Altenberg 1994). There have been some different im-
plementations that attempt to respond to this chal-
lenge in a variety of ways. Tackett proposes brood
selection as an alternative method for helping the evo-
lutionary process to hill-climb more effectively (Tackett
1995). Koza’s work on operators has also been influ-
ential in this area (Koza 1994b).

Results
So far this paper has explained and contrasted two
consecutive language representations used by PADO.
The summary of a few experiments will help bring our
PADO language progression effort into focus. The ex-
perimental results below come from a pair of image
classification experiments. This paper makes no pre-
tense to explain or justify these experiments, but sim-
ply mentions them. For a detailed account of the ex-
periments, see (Teller ~¢ Veloso 1995a; 1995b).

There are two sets of 256x256 8-bit greyscale im-
ages, Sets A and T. Each of these two sets contains
images from seven different classes. This means that
by guessing randomly, a classification rate of 14.28%
could be achieved (as shown by the dotted line in Fig-
ure 4). Both image sets have been shown to be non-
trivial classification domains (Teller ~ Veloso 1995a;
19955).

1oo

8O

6O

4O

2O

PADO success: Object Recognition % Correct
I I I I I I I

Set-T New Language[]
Set-A New Language)K
Set-TOld Languageo
Set-A Old Language

_l._..

0 I I I I I I I

0 10 20 30 40 50 60 70 80
Generations

Figure 4: Object recognition rates on Sets A and T.

The curves in Figure 4 clearly show that PADO,
using either language representation, can achieve clas-
sification rates far above random for both image sets.
As with the details of these experiments, the justifi-

Ii0



cation of these results as significant is tangent to this
paper and is expanded upon in (Teller ~ Veloso 1995a;
1995b). The feature of these curves that make it rele-
vant for this paper is the relative heights for the same
image set and the alternate language representations.
For both image sets, the new language representation
yields a significant improvement in performance. The
first purpose of this paper is to describe the alternate
language representations (Sections 4 and 5). The sec-
ond purpose of this paper is to discuss why the new
language representations made such a difference.

Discussion

Because the rest of the PADO architecture and the
actions were not changed, there must be something
important about the language representation change.
Is it possible, the reader may wonder, that on other
domains, the new language is less of an improvement?
The answer is that similar comparisons have been done
on other domains and the difference was as notice-
able. Another reasonable question might be "Is it
the case that the new language does better on aver-
age (as shown in figure 4) but on some runs it does
worse than the old language?" Again, the answer is
no. The new language representation is very consis-
tently better than the old representation. Is it possible
that this new language representation is "just better"
for expressing programs than the s-expression inspired
representation? The answer may or may not be yes,
but more explanation is certainly in order.

ADFs often help considerably in GP problem do-
mains. This full graph representation allows an arbi-
trary number of "sub-parts" (densely connected sub-
parts of the full program-graph) to be constructed
and "used for different reasons" (entered from differ-
ent arcs) and with different "parameters" (since the
stack holds the "parameters" and is constantly chang-
ing). This could certainly be an advantage over the old
representation which was decomposable and reusable
only at the ADF level. Because these sub-parts can
be reused through the internal loops in the arcs, an
N node graph in the new representation can express a
program that might take 2N, N2, or even more nodes
to express in the old representation.

Graph-structured ADFs are full programs, where as
the ADFs in the old representation were only func-
tions. Because the PADO architecture turns the ADFs
of highly fit programs into Library elements, the Li-
brary elements are now full programs (because the
ADFs are now full programs) and may refer to other
Library programs. This means that PADO’s new lan-
guage supports and evolves recursion and mutual re-
cursion in the ADFs and Library elements. In the old
representation, the ADFs were not allowed to refer to
themselves or to Library elements. This difference is
also a candidate reason for the noticeable performance
change. ADFs take an arbitrary and dynamic num-
ber of parameters. Because this was not the case for

the old representation’s ADF’s, this also stands as a
potentially important change.

On a more general level, the looping that happened
in the old representation was at the tree-evaluation
level (Repeat Main Loop Until ...) and was not ex-
plicitly controllable by the evolutionary process. In
other words, most of the loops taking place in the old
representation were semanticly derived from the mem-
ory, rather than corresponding directly to the syntactic
shape of the program. The new representation allows
arbitrary looping and it can be done at exactly the
granularity desired. This representation change does
not change the theoretical power of the language, but
in practice it may make a big difference.

Another important reason, we believe, lies in the
original motivation for changing the PADO language
representation. The language was changed to better
suit the needs of the co-evolved SMART operators that
perform the genetic recombination in PADO (Teller
1996). The SMART operators in PADO examine one
(Mutation) or more (Crossover) programs from 
main population and decide how to change or recom-
bine them in useful ways. Clearly, the language rep-
resentation has a big effect not only on how these
SMART operators act, but on how easy it is for them
to understand and recombine the programs they ex-
amine.

One of the possible problems with the new represen-
tation is that it is much denser than the old represen-
tation (as mentioned above). This may make it harder
for the SMART operators to examine the main popu-
lation programs and understand what they do and how
to change them most effectively. On the other hand,
there are aspects of the new representation that are
much more friendly to the SMART operators. For ex-
ample, the looping is largely explicit in the new repre-
sentation; it was all implicit in the old representation
(as mentioned above). The explicitness of a PADO
program’s structure almost surely makes it easier for
the SMART operators to suggest changes that have
a better than random chance of producing highly fit
offspring.

Another example of the new language’s benefit to
the SMART operators is in the program’s method of
specifying a response. Having the root of the "tree" re-
turn its value each time it is evaluated is explicit, but
the value return must be done there and only there. In
the new language, when the program writes its "An-
swer" to a memory position this write is independent
of where it occurs in the program. This flexibility of
expression gives many more options to a SMART oper-
ator trying to change one aspect of a program without
disrupting others.

This same change in how the programs specify their
responses certainly also has a positive effect directly
on the main population. Simply, if a program has any
sub-graph that computes a good idea (the nugget of its
intended response) then all it has to do in the new rep-

iii



resentation is (WRITE X <SUB-GRAPH>). This is much
less likely to be disrupted than when some sub-tree
in the old representation computes a good idea. This
sub-tree is dependent on every node from its sub-tree-
root up the path to the root of the whole tree. If any
of these nodes change, the good idea is likely to be
corrupted on the way up. This makes crossover much
more destructive (without being more constructive) 
the old representation. Now of course, this strategy of
expecting the answer from a variable or memory po-
sition rather than the top of the tree could be imple-
mented in a traditional tree-GP format. But since it
wasn’t in the old representation this is likely to be one
of the contributing factors to the overall performance
boost the new representations seems to provide.

A final point is that the SMAl~T operators existed in
both the old and new representations. Not only is there
a difference for them because the syntax they have to
examine changes between the two representations, but
theirsyntax changes as well. So it is possible that some
of the general performance improvement from the lan-
guage progression comes from the SMART operators
and that some of that improvement is due to the fact
that the SMART operators are written in (and there-
fore evolve in) this apparently superior representation

New Language Representation
Advantages

¯ Many, possibly interlocking, possibly nested, loops
of various sizes

¯ Programs can update their "responses" at any time
during arbitrary computation

¯ ADFs and Library’s take arbitrary numbers of pa-
rameters

¯ ADFs and Library’s are themselves full programs
with recursion and mutual recursion.

¯ Arbitrary variety of sub-part reuse within a program

¯ Explicitness of the language (particularly looping
structures) simplifies the SMART operators’ job.

¯ If the new representation is advantageous, the
SMART operators may improve their performance
because they too are now written in and evolve in
the new representation.

Conclusions
The goal of this paper has been to describe and justify
the progression of PADO’s language representation.
Sections and described this representation progres-
sion. The Results Section gave empirical justification
for this language progression; the results graphed in
figure 4 show how identical experiments in two other
papers differ as a result of the language change. Empir-
ical justification is convincing, but seeking a theoret-
ical foundation is also useful. The Discussion Section
gave some insight into possible reasons why PADO’s

language progression caused a significant jump in per-
formance, even across domains. A still more scientific,
theoretical understanding of the relationship between
language representation and evolution performance is
part of our ongoing research.

What should the reader learn from this paper? The
clearest message should be that the representation we
choose has an important effect on how our evolution-
ary computation continues. Because PADO’s new lan-
guage works better then PADO’s old language, we
can assume that there are some positive lessons to be
learned from this change. The Discussion section pro-
poses some likely positive lessons, but without further
investigations, these are proposals, not proofs.

There are a plethora of open questions in language
representation for GP. This paper is not a general
scheme for improving representations. The new PADO
representations has much to recommend it, but is
surely not the best language for all GP tasks. One
of the main contributions of the PADO work so far
is, we believe, the creation of this new representation.
The new PADO representation has been specifically
designed for the evolution of algorithms and the co-
evolution of intelligent genetic recombination opera-
tors. We believe that this new language will prove to
be of value to the general GP community in the near
future. Whether still better languages can be made
(or learned) and what they will look like is a story for
another day.

References
Altenberg, L. 1994. The evolution of evolvability in ge-
netic programming. In Kenneth E. Kinnear, J., ed., Ad-
vances In Genetic Programming. MIT Press. 47-74.
Angeline, P., and Pollack, J. 1993. Evolutionary module
acquisition. In Fogel, D., ed., Proceedings of the Second
Annual Conference on Evolutionary Programming, 154-
163. Evolutionary Programming Society.
Keith, M. J., and Martin, M. C. 1994. Genetic pro-
gramming in c-t-W: Implementation issues. In Kenneth
E. Kinnear, J., ed., Advances In Genetic Programming.
MIT Press. 285-310.
Kinnear, K. 1993. Generality and difficulty in genetic
programming: Evolving a sort. In Proceedings of the Fifth
International Conference on Genetic Algorithms. San Ma-
teo, CA: Morgan Kaufmann.
Koza, J. 1992. Genetic Programmin9. MIT Press.
Koza, J. 1994a. Genetic Programming IL MIT Press.
Koza, J. R. 1994b. Architecture-altering operations for
evolving the architecture of a multi-part prograan in ge-
netic programming. Technical Report STAN-CS-TR-94-
1528, Computer Science Department, Stanford.
Langdon, W. 1995. Evolving data structures with genetic
programming. In Forrest, S., ed., Proceedings of the Sixth
International Conference on Genetic Algorithms. Morgan
Kauffman.
Perkis, T. 1994. Stack-based genetic programming. In
Proceedings of the First IEEE International Conference
on Evolutionary Computation, 148-153. IEEE Press.

112



Siegel, E., and Chaffee, A. 1995. Evolutionary optimiza-
tion of computation time of evolved algorithms. Unpub-
lished report, Computer Science Department, Columbia.

Simms, K. 1994. Evolving virtual creatures. In Proceed-
ings of the 21st International SIGGRAPH Conference.
ACM Press.
Sushil, L. 1994. Using genetic algorithms to design struc-
tures. In Proceedings of the 7th annual FLAIRS, 120-127.
IEEE Press.

Tackett, W. A. 1995. Greedy recombination and genetic
search on the space of computer programs. In Whitley, L.,
and Vose, M., eds., Proceedings of the Third International
Conference on Foundations of Genetic Al9orithms, 118-
130. Morgan Kauffman.

Tamaki, H. 1994. A comparison study of genetic codings
for the traveling salesman problem. In Proceedings of the
First International Conference on Evolutionary Compu-
tation, 1-6. IEEE Press.
Teller, A., and Veloso, M. 1995a. PADO: A new learning
architecture for object recognition. In Ikeuchi, K., and
Veloso, M., eds., Symbolic Visual Learning. Oxford Uni-
versity Press.

Teller, A., and Veloso, M. 1995b. PADO: Learning
tree structured algorithms for orchestration into an ob-
ject recognition system. Technical Report CMU-CS-95-
101, Department of Computer Science, Carnegie Mellon
Unversity.
Teller, A., and Veloso, M. 1995c. Program evolution for
data mining. In Louis, S., ed., The International Jour-
nal of Expert Systems. Third Quarter. Special Issue on
Genetic Algorithms and Knowledge Bases. JAI Press.

Teller, A. 1994a. The evolution of mental models. In
Kenneth E. Kinnear, J., ed., Advances In Genetic Pro-
gramming. MIT Press. 199-220.

Teller, A. 1994b. Turing completeness in the language of
genetic programming with indexed memory. In Proceed-
ings of the First IEEE World Congress on Computational
Intelligence, 136-146. IEEE Press.

Teller, A. 1996. Evolving programmers: The co-evolution
of intelligent recombination operators. In Kinnear, K.,
and Angeline, P., eds., Advances in Genetic Programming
1I. MIT Press.

113




