
GRACE: Generative Robust Analog Circuit
Exploration

Michael A. Terry, Jonathan Marcus, Matthew Farrell, Varun Aggarwal,
Una-May O’Reilly

Computer Science and Artificial Intelligence Lab (CSAIL)
Massachusetts Institute of Technology

Cambridge, MA, USA
m terry@alum.mit.edu, unamay@csail.mit.edu

Abstract. We motivate and describe an analog evolvable hardware de-
sign platform named GRACE (i.e. Generative Robust Analog Circuit Ex-
ploration). GRACE combines coarse-grained, topological circuit search
with intrinsic testing on a Commercial Off-The-Shelf (COTS) field pro-
grammable device, the Anadigm AN221E04. It is suited for adaptive,
fault tolerant system design as well as CAD flow applications.

1 Introduction

With our Generative Robust Analog Ciruit Exploration (GRACE) tool we are
investigating whether it is possible to evolve circuits that can be realized effi-
ciently and in a routine manner. We are focusing upon the domain of analog
circuit design. Our decision is motivated by the lack of automation in analog de-
sign as compared to digital design. We intend to investigate whether evolvable
hardware (EHW) approaches can contribute to the complex, human-intensive
activity domain of analog design.

The goal of this paper is to describe how we arrived at GRACE. By com-
bining the exploitation of coarse grained elements with intrinsic testing, we
think GRACE sits in an interesting and novel space. It allows a distinctive
foray into on-line adaptive and fault tolerant evolvable hardware circuits since
it uses a COTS (Commercial-Off-The-Shelf) device and standard components.
This should make its results more acceptable to industry. It also allows an eco-
nomical and time efficient foray into the broad domain of VLSI and CAD with its
use of elements that are conversant with human design. We proceed thus: In Sec-
tion 2 we describe how we reached a decision to select the Anadigm AN221E04
as GRACE’s reconfigurable device. In Section 3 we give an overview of GRACE.
In Section 4 we describe GRACE’s genetic representation of a circuit and its
search algorithms. In Section 5 we design a controller for a plant using GRACE
to demonstrate its ability to evolve circuits. We conclude with a summary.

2 Choosing GRACE’s Reconfigurable Device

For GRACE, the choice of its reconfigurable device was driven by three criteria
(see [1] for a related discussion):

1. A desire to work at an abstraction level where the human design principles
are inherent in the building blocks so that GRACE will derive conventional,
human-competent, portable and robust circuits;

2. Availability of a reconfigurable device that matched the project’s budget of
$5K;

3. Flexibility that would allow design elements to be chosen depending upon
the design problem, (i.e. level of hierarchy in the analog design flow).

Among the devices we assessed for our purposes were the class of custom designed
Field Programmable Transistor Arrays (FPTA), the Lattice Semiconductor isp-
PAC10 field programmable analog array (FPAA, e.g. [2]), and the Anadigm
FPAA family ([3]).

With respect to Criterion 1, there are open questions regarding the suitability
of an FPTA for evolving conventional, human-competent circuits:

1. Can an FPTA be configured to respect certain design principles so that in-
terconnections of the transistor-switched cells and inter-cell topology will
constitute circuits that a human engineer will trust? Some of these design
principles such as no floating gates could be encoded in the circuit construc-
tion and circuit modification functions of an evolutionary algorithm. How-
ever, not all expectations/insights (such as parasitic insensitive connections)
can be mapped into rules.

2. Can the non-idealities arising from the switching elements in the FPTAs be
circumvented to avoid reliability, portability and engineering acceptance is-
sues? The FPTAs require electronic switches that are implemented by trans-
mission gates. This adds parasitic non-linear resistance and capacitance,
which results in delay, de-amplification and alteration in frequency domain
properties. While some of the evolved circuits to date use these non-idealities
of switches as an integral feature of the design [4], realistically this makes
the evolved design idiosyncratic (i.e. unportable) and unreliable since the
behavior of its switches is neither characterizable or replicable.

3. Is there sufficient flexibility for sizing? Industry practice is to explore sizing
options as a means of balancing functional goals and specifications. Because
it only has one size of transistor, the FPTA-2 ([1])is constrained in this
respect.

FPTAs are well suited for the exploration of non-conventional realms of cir-
cuit design such as polymorphic circuits, extreme temperature electronics and
fault tolerant circuits [5–7]. However, they are not well suited to our desire to
explore robust, novel topologies of interpretable and portable circuits.

Circuit synthesis with opamps has straightforward and methodical design
rules (which can be easily incorporated in the evolutionary algorithm) to ensure

that the evolved circuit is interpretable and robust. The IsPAC10 and Anadigm
FPAA have circuit elements based on opamps. The IsPAC10, see Figure 1 right,
consists of 4 programmable analog modules (4 opamps, and 8 input amplifiers
total) interconnected with programmable switching networks. Configuration of
the IsPAC10 is a proprietary process [2] . The Anadigm AN221E04, see Fig-
ure 1 left (and described in more detail in Section 2.1), also provides opamp
based circuits as building blocks. It uses switched-capacitor technology which is
inherently robust and portable.

With respect to Criterion 2, the cost of an FPTA is beyond $5K. The de-
velopment board of an IsPAC10 or Anadigm AN221E04 has a cost in the low
hundreds of dollars. Integrated with a conventional computer and other signal
processing devices, they facilitate a system with cost below $5K.

Wth respect to Criterion 3, each device we assessed offers a different level
of circuit element granularity. The FPTAs are very flexible, fine-grained devices
The U. of Heidelberg’s FPTA ([8], henceforth called FPTA-H) is a switched
network of 256 (16 X 16) programmable CMOS transistors (half NMOS and
half PMOS) arranged in a checkerboard pattern.

The FPTA-1 designed at JPL ([4, 9]) is composed of 12 cells, where each cell
contains 8 CMOS transistors interconnectable via 24 switches. The transistors
are fixed size and the switches are electronically programmable. The FPTA-1
appears to have been a prototype device for FPTA-2. The FPTA-2 ([1]) contains
an 8X8 matrix of 64 reconfigurable cells, where each cell consists of 14 transistors
interconnectable via 44 switches. The transistors are fixed size. Each cell also
contains three capacitors, two reconfigurable resistors and photodetectors. It
fits into the Evolution-Oriented Reconfigurable Architecture (EORA) and is
integrated with a DSP processor running the evolutionary algorithm to form the
SABLES (Stand-Alone Board-Level Evolvable System).

FPTA-H is more versatile than FPTA-2 with respect to interconnection and
sizing of transistors. In FPTA-H, in general any transistor can connect to any
other transistor, while in FPTA-2, transistors are arranged in a particular topol-
ogy with switches to realize different circuits. Even though the FPTA-2 cell has
44 switches which creates a large space of possible realizable topologies, there
are human-conceivable designs which cannot be directly synthesized using it. In
FPTA-H, 75 different aspect ratios could be chosen for each transistor, while the
FPTA-2 uses fixed length transistors. This flexibility of FPTA-H comes at the
cost of space (equivalent to the number of transistors that can be fabricated on
the same chip). The FPTA-2 has 3.5 times more transistors on the same chip as
compared to FPTA-H. This difference may also be attributed to the fact that
FPTA-2 uses 0.18µm process, while FPTA-H uses 0.6µm process.

The IsPAC10 and Anadigm AN221E04 exemplify a tradeoff between flexibil-
ity and appropriate building block abstraction. The opamp is a building block
that can be combined with passive components to arrive at variety of human-
designed circuits such as amplifiers, integrators, differentiators, sum-difference
amplifiers, or filters. However, it is not as flexible as a switched transistor array.
On the IsPAC10, there is very limited interconnect between a small quantity of

resources. The Anadigm AN221E04 provides a fixed abstraction level of opamp
based circuits but supports very flexible interconnection.

After our assessment, we chose the Anadigm AN221E04 over the IsPAC10 or
an FPTA. In a nutshell, we have forgone a large degree of flexibility by choosing
a fixed abstraction level (of opamp based circuits) in order to ensure robustness,
portability and reliability. Nonetheless we are content given that there are a
number of analog design problems (such as PID controllers, ADCs and filters)
which can be addressed by the given design abstraction. More details of the
Anadigm AN221E04 are provided in the next section.

Fig. 1. Reconfigurable FPAA Architectures: Anadigm(Left), Lattice ispPAC10(right)

2.1 The Anadigm FPAA

For detailed description of the Anadigm Vortex family of devices, see [3].

Resources: The Anadigm AN221E04 is an array of CABs (configurable analog
blocks), each of which contain two opamps, 8 capacitors, a comparator, and a
Successive Approximation Register (SAR) that performs 8-bit analog-to-digital
conversion of signals. The device also contains one programmable lookup table
that can be used to store information about the generation of arbitrary wave-
forms, and is shared amongst the CABs. The architecture is illustrated in the left
hand block diagram of Figure 1. Any signal can be routed to the I/O pins of the
device through 4 programmable I/O interface blocks and two dedicated outputs,
each of which can also act as a filter or amplifier. The option for expanding the
number of resources is to daisy chain multiple devices.

Configurable Elements: Despite the existence of opamps and switched ca-
pacitors, the Anadigm AN221E04 does not support circuit design at this level
of granularity. Instead, a circuit must be specified at the abstraction of coarser

grained building blocks termed Configurable Analog Modules (CAMs) that are
interconnected by wires. CAMs come predefined by Anadigm. See Table 1 for the
set of available CAMs. Among the broad set is a flexible selection of filters, ampli-
fiers and rectifiers that designers frequently use. Each CAM has programmable
options and parameters. For example, the SumDiff CAM has a set of 4 options
which decide upon clock phase, optional use of inputs 3 and 4, and inversion of
each input. Its parameters are its two or more gains. To insert a CAM, the GUI
must be able to fully allocate its resources from one CAB. To track how many
resources are available as a circuit is defined, we reverse engineered the resource
allocation strategy of the Anadigm software for GRACE.

Configuration Technology: The Anadigm FPAA uses the ’switched capaci-
tor’ technology ([10]). A switched capacitor implements an equivalent resistance
by alternately opening and closing the terminals of a capacitor. Macroscopic
resistance is controlled by the frequency of switching. This frequency, of course,
is limited to the maximum clock frequency. Microscopic resistance is tuned by
changing the capacitance value. The disadvantage of switched capacitor tech-
nology is that it performs the signal processing in discrete time domain. Thus,
it requires anti-aliasing and reconstructions filters. Also, the device can only
handle signals whose frequency is half its switching frequency, which is 16MHz
maximum. For all blocks of the FPAA, the input and output are valid either for
one of the two phases of clock or both phases. This implies a constraint on the
connection of components, since a component whose output is valid on phase
1 cannot be connected to a component whose input is sampled at phase 2 of
the clock and vice versa. Each internal capacitor in the Anadigm AN221E04 is
drawn from a bank of capacitors. Although the software allows for the gener-
ation and routing of signals between CAMs at design time, the software only
allows dynamic reconfiguration of the options and parameters of a circuit, not
the reconfiguration of a circuit topology. The actual configuration process and
mapping of the configuration bitstream is proprietary. The configuration bit-
stream is stored in SRAM, which is more reliable than other FPAAs based on
EEPROM technology.

Configuration from GRACE: The configuration process of the Anadigm
AN221E04 is proprietary. With the assistance of a colleague [11] and through a
special agreement with Anadigm, we obtained a non-commerical software pack-
age that had been developed to test the GUI during product development. With
this package and a Microsoft C++ compiler, GRACE sends designs from its
EA module to the GUI by translating them to a series of “build commands”
dispatched to the GUI. A subsequent “configure” command downloads the con-
figuration to the device. This takes about a second which is not ideal but not
prohibitive either.

While we are restricted to low to medium frequency range, we nonetheless
are content. An industry segment also works in this domain due to the use of
switched capacitor technology so there an industry target for whom evolutionary
techniques may be useful exists.

CAM CAM CAM

Voltage Transfer Function Inverting Differentiator Divider

Half cycle inverting Gain Stage Biquadratic Filter Half Cycle Gain Stage

Half Cycle Sum/Difference Stage DC Voltage Source Inverting Gain Stage

Gain Stage: Switchable inputs Bilinear Filter Integrator

Gain Stage: Polarity Control Half Cycle Rectifier Half Cycle Gain Stage

Gain Stage - Output V Limiting Inverting Sum Stage Multiplier

Rectifier with Low Pass Filter Sample & Hold Sinewave Oscillator

Transimpedance Amplifier Waveform Generator

Table 1. Anadigm AN221E04 CAMs

3 GRACE: The system

GRACE is depicted in Figure 2 which shows an adaptive controller on the FPAA
that controls a third order plant. The evolutionary algorithm (EA) runs on an
Pentium P4 machine. It reconfigures the Anadigm AN221E04 to build new con-
trollers, evaluate their efficiency in controlling the plant and thus guide the search
to find better controllers. A summary of the components is given in Table 2.

EHW@CSAIL

Controller

ConfigurationEvolutionary

Algorithm

-

PLANT

Configured

Controller

FPAA

SRAM

V
in

Vout

Vreft

D
A
Q

serial

Fig. 2. GRACE Architecture.

The Anadigm AN221E04 is configured by the EA via the serial port. The EA
sends inputs to the hardware and extract outputs via National Instrument’s PCI-
6221 multifunction data acquisition card (DAQ). (The PCI-6221 DAQ board
provides up to 80 analog inputs and 4 analog outputs giving GRACE scalabil-
ity). The DAQ provides both analog to digital and digital to analog conversion
with 16-bit resolution (for a voltage range of -10V to 10V). The reference signal
to the testbench is specified by the algorithm to the DAQ as a digital waveform.
The DAQ converts it to an analog signal and sends it to the testbench. Simul-
taneously, the DAQ converts the plant’s analog output signal to a digital signal
for the evolutionary algorithm to compare with the reference signal. Our sys-
tem actually duplicates the reference signal sent to the controller to be matched
with the plant output. This yields a time synchronized comparison between the
reference and plant signals.

Component Specifications Procured From Price

Dell Dimension 8400 3.6GHz P4 CPU, 2GB
RAM

Dell Computers $2200 + cost
of monitor

FPAA Development
Kit

PCB with FPAA and 2
Signal Conditioning Dual-
opamps

Anadigm $200

AnadigmDesigner2 Configuration Software For
Win32 Platform

Anadigm free

AutomationDoc Documentation for
Anadigm GUI Script-
ing

Anadigm Support free

NI 6221 DAQ Multifunction DAQ with
analog output, PCI Card

National Instru-
ments

$430

NI Connect Block and
Cable

Shielded Connection Block
with Cable to Interface to
PCI DAQ card

National Instru-
ments

$350

Table 2. GRACE: System Components, specifications, sources and cost.

4 Choosing a Genetic Representation

The genetic representations of the evolvable hardware community have ranged
from directly expressing the configuration bitstream to expressing a circuit com-
ponent representation. A prominent example of the first extreme are the projects
by A. Thompson [12] and his co-authors who used the Xilinx 6216. At the other
is the “circuit constructing tree” which is a developmental encoding, e.g. [13]. In
contrast, in GRACE a subset of the Anadigm CAM’s are the functions in the
sense of genetic programming. All CAMs with valid output for only one of the
clock phases had their outputs connected to a ”Sample and Hold” component.
The GRACE genome is a cyclic graph (see Figure 3) in which each node is an
instance of a CAM and directional links define the topology. A circuit has a
variable number of CAMs but we implement the graph as a fixed length vector.
Each element of the vector is a structure which specifies a CAM, its options,
parameters and input source(s). Each instance of a CAM has a variable number
of programmable options and parameters. For example, the SumDiff CAM has 4
options and 2 gain parameters while the simple “Half cycle Gain Stage” has only
2 options and 1 gain parameter. The genome stores in each structure another
two vectors of data that the genome-to-circuit translation process interprets as
parameters and options. Each vector is a fixed length. If the parameters and
attributes of the CAM are fewer than the vector length, the extra values are
ignored. Like the redundant nodes and links of the circuit which do not connect
input to output, this redundant information is maintained in the genome.

The encoding of coarse grained components in the genome makes GRACE
reminiscent of Koza’s genetic programming tree representation, e.g. in [14]. The
obvious difference is the cyclic graph versus the tree. Another difference is the
genome length – fixed in GRACE’s case and variable in Koza’s. The physical
limitation of resource quantities on the device demand that GRACE not evolve
a genome that requires more resources than on the device. This is ensured by

C

Type: gain_inv

Parms[1.1,0.4]

Options:{0,0,1,1}

Inputs [!
2
]

Type: sumDiff2*

Parms: [0.05,0.1]

Options:{1,0,1,1}

Inputs [I1,I2]
-G

!
2

!
3

-G

!
2

!
3

I1

I2

I2
!

!
C

Type: gain_inv

Parms[1.1,0.4,0.0,0.1]

Options:{0,0,1,1}

Inputs [!
2
]

Type: sumDiff2*

Parms: [0.05,0., 0.0, 0.01]

Options:{1,0,1,1}

Inputs [I1,I2]
-G

!
2

!
3

-G

!
2

!
3

I1

I2

I2
!

!

Fig. 3. Left: A circuit in GRACE is a graph. Nodes are components and edges are
wires. Right: This graph is stored in a fixed length linear genome. Each object of the
genome is a structure describing component, options, parameters and inputs.

the fixed length genome and by the decoding algorithm that maps the genome
to a series of build commands. The decoding algorithm makes use of a resource
manager to account for resources that will be used on the device as it translates
the genome into “build” commands. If it ever encounters a CAM (i.e. node)
for which the resources cannot be allocated, it replaces this node with a wire.
GRACE’s genome is also influenced by Miller’s Cartesian Genetic Programming
(CGP), [15]. The CGP genome is also a graph mapped to a matrix of varying
component with links between and among columns.

The search algorithms: We use the standard generation based process-
ing loop of an EA to conduct topology search. At initialization, a population of
random genomes is created. Each genome is mapped to a circuit topology with
each instance of a CAM specified using its input list, options and parameter
values. Serially each genome is configured on the device and given a test signal.
The resulting output signal is captured and evaluated in comparison to a de-
sired output signal. The error is mapped to a genome fitness. After the entire
current generation is tested, tournament selection supplies parents for the next
generation. Each parent is copied to create an offspring in the next generation.
Offspring are mutated before being added to the population of the next gener-
ation. Mutation can be applied in two ways to the genome: to a CAM instance
by changing its type and, to the input(s) of a CAM by changing a link in the
graph.

Given a topology, finding the parameters of the CAM is a numerical opti-
mization problem. Recently, Particle Swarm Optimization (PSO) has emerged
as an efficient approach to do fast numerical optimization to find the global op-
timum [16]. We use PSO to set the parameters of CAMs rather than evolving
it together with the topology by the EA. We believe that performing the steps
of topology search and component optimization separately makes the problem
more tractable for the EA. These two steps of topology search using an EA and
component optimization using PSO can be combined in various ways which shall
effect the efficiency and speed of the algorithm. For the current set of experi-
ments, we run PSO on each individual in the EA population and assign the best
of swarm fitness to the individual. Intuitively, this approach assigns the topology
fitness according to its best performance given the most suitable parameter val-

ues. Other approaches which trade speed for efficiency and vice-versa are under
study.

5 GRACE in Action: Evolving a Controller

We have initially used GRACE to evolve a controller for the simple first order
plant shown in Figure 4 (left). The plant has bandwidth of 338.6Hz and a steady
state gain of 2.5. The CAMs in the primitive set for the given problem can
be found in Table 3 along with their respective parameters and options. These
CAMs are capable of creating any transfer function (realizable given the capacity
of the FPAA) including the ubiquitous Proportional-Integral-Differential control.
The population size was 15 with tournament selection of size 3 and elitism for
3 individuals. A run was 10 generations with the probability of mutating a
CAM 0.45 and a wire 0.45. The PSO ran 6 iterations every generation on every
individual with a swarm size of 4.

Fitness Function Though a simple step function would seem to be all that
is required to evaluate a controller, we used a more complex signal to ensure that
GRACE did not evolve a signal generator regardless of the input. The signal and
a candidate circuit’s response is shown on the right in Figure 4. The signal has
six voltage levels (-1.5V, -0.75V, -0.375, 0.375, 0.75V. and 1.5V) and changes
state every 4.16ms. We sampled the signal at 125 KHz. The fitness of a circuit
is the weighted sum of squared errors between the circuit’s output signal and
the test signal. The fitness function weights can be tuned to trade-off criteria of
settling time, peak overshoot and steady state error. For instance, more weight
to the error in latter part of the step response shall bias the search towards
controllers with lower steady state error and shall care less for rise time and
peak overshoot. For the current set of experiments, we used the time-weighted
least squares, which increases the weights linearly with time. It is postulated in
[17], such a fitness function is ideal for judging the efficiency of a controller.

Evolved Solutions The system evolved solutions with high fitness value
(validated by visual inspection of generated waveforms) that instantiate various
control strategies, for instance, proportional control, integral control or lossy
integral control. Evolution also found interesting ways to build solutions, like
use of a differentiator in feedback to evolve a lossy integrator and using multiple
feedback to realize different gains (including high gain through positive feedback)
for proportional control.

Analysis of one of the best-of-run controller showed how evolution can think
out-of-the-box. Figure 5 shows the controller as seen in the Anadigm GUI on the
left and the equivalent simple block diagram on the right. Simple hand-analysis
shows that the solution is a filter. The summing-integrator filter topology is
a well-known approach to synthesize filters. It is counter-intuitive why a filter
would be a good controller. Evolution exploits the high integration-constant (of
the order of Mega per second) realizable by the integrator. It evolves a high
gain filter with a large bandwidth that has an integrator in both the forward
and feedback paths. This effectively behaves like proportional control with a

large gain. The high gain of the P-control reduces the steady-state error thus
contributing to high fitness. This solution has not been included in discussion for
its usefulness in a real scenario, but due to illustrate the ability of algorithm to
synthesize interesting topologies and the capability of evolution to explore realms
of unconventional design even when it uses coarse-grained building blocks.

Work is underway to study the solutions generated and use a carefully crafted
fitness function to better capture the characteristics of the controller. With an
effective fitness function instantiated in the system, we shall determine the use-
fulness of the circuits evolved and compare them with those evolved on other
platforms such as the FPTAs. We also plan to study how variation in the evolu-
tionary algorithm (method/parameters) affects its ability to search for a solution
in the given problem domain.

CAM Parameter(s) # In

SumDiff-2* inputs gain value(s) 2

SumDiff-3* inputs gain value(s) 3

Inverting Differentiator diff. constant (us) 1

Integrator gain 1

Gain Inverter gain 1

Gain* gain 1

Wire 0 1
Table 3. CAMs used in the GRACE Function Set for Controller Evolution. Asterisk
indicates output is connected to sample and hold block for two clock phase results.

Fig. 4. Left: Plant for evolved controller, Right: Fitness function test signal (square
wave) with example circuit’s output signal for the controller experiment.

6 Summary

By combining the exploitation of coarse grained elements with intrinsic testing
on a COTS device, we think GRACE comprises a distinctive approach to analog
EHW. This paper’s goal has been to elucidate our decision process in engineering
GRACE. We feel our decision to use the Anadigm AN221E04 forges GRACE’s

Fig. 5. Left: An evolved filter solution displayed from GUI , Right: Schematic of same
solution.

identity. It is a COTS rather than custom device. The proprietary nature of
its configuration process can be circumvented for practicality. It uses SRAM
to hold a configuration. This makes it suited as a component of an adaptive,
fault tolerant system. It exploits switched capacitor technology. This allows its
evolved designs to conform with industry specifications and be realizable. This
will facilitate the ultimate placement of evolved circuits in the field.

Finally, in using the Anadigm AN221E04, it offers coarse grained elements.
Coarse granularity makes GRACE contrast with FPTA approaches by exchang-
ing flexibility with higher level building block abstraction. We think that GRACE
enables a parallel set of investigations that will provide interesting comparisons
between the non-linear design space of the FPTA and the human oriented, con-
ventional design space. We believe our choices additionally provide us with trac-
tion into both adaptive, robust hardware evolution and the more traditional
pursuit of analog CAD. This will be the direction of our future research using
GRACE.

Acknowledgements

We would like to thank Anadigm, Dimitri Berensen, Garrison Greenwood, David
Hunter, Didier Keymeulen, Adrian Stoica, and Eduardo Torres-Jara for their
contributions to the development of GRACE.

References

1. Stoica, A., Zebulum, R.S., Keymeulen, D.: Progress and challenges in building
evolvable devices. In: Evolvable Hardware. (2001) 33–35

2. Greenwood, G., Hunter, D.: Fault recovery in linear systems via intrinsic evolution.
In Zebulum, R., Gwaltney, D., Hornby, G., Keymeulen, D., Lohn, J., Stoica, A.,
eds.: Proceedings of the NASA/DoD Conference on Evolvable Hardware, Seattle,
Washington, IEEE Computer Society (2004) 115–122

3. Anadigm: AN221E04 datasheet: Dynamically reconfigurable fpaa.
http://www.anadigm.com/doc/DS030100-U006.pdf (2004)

4. Stoica, A., Zebulum, R., Keymeulen, D., Tawel, R., Daud, T., Thakoor, A.: Re-
configurable vlsi architectures for evolvable hardware: from experimental field pro-
grammable transistor arrays to evolution-oriented chips. IEEE Transactions on
VLSI Systems, Special Issue on Reconfigurable and Adaptive VLSI Systems 9(1)
(2001) 227–232

5. Stoica, A., Zebulum, R.S., Keymeulen, D.: Polymorphic electronics. In Liu, Y.,
Tanaka, K., Iwata, M., Higuchi, T., Yasunaga, M., eds.: ICES. Volume 2210 of
Lecture Notes in Computer Science., Springer (2001) 291–302

6. Keymeulen, D., Stoica, A., Zebulum, R.: Fault-tolerant evolvable hardware using
field programmable transistor arrays. IEEE Transactions on Reliability, Special
Issue on Fault-Tolerant VLSI Systems 49(3) (2000) 305–316

7. Stoica, A., Keymeulen, D., Zebulum, R.S.: Evolvable hardware solutions for ex-
treme temperature electronics. In: Evolvable Hardware, IEEE Computer Society
(2001) 93–97

8. Langeheine, J., Becker, J., Fölling, S., Meier, K., Schemmel, J.: Initial studies of
a new vlsi field programmable transistor array. In Liu, Y., Tanaka, K., Iwata, M.,
Higuchi, T., Yasunaga, M., eds.: Evolvable Systems: From Biology to Hardware:
Proceedings of 4th International Conference, ICES 2001. Volume 2210 of Lecture
Notes in Computer Science., Tokyo, Japan, Springer-Verlag (2001)

9. Stoica, A., Zebulum, R., Ferguson, M., Keymeulen, D., Duong, V.: Evolving cir-
cuits in seconds: Experiments with a stand-along board-level evolvable system. In
Stoica, A., Lohn, J., Katz, R., Keymeulen, D., Zebulum, R.S., eds.: Proceedings of
the NASA/DoD Conferenece on Evolvable Hardware, Alexandria, Virginia, IEEE
Computer Society (2002) 129–130

10. Allen, P.E., Sanchez-Sinencio, E.: Switched Capacitor Circuits. VanNostrand Rein-
hold Company (1984)

11. Berenson, D.: Personal communication. email: January 18, 2005 (2005)
12. Thompson, A.: Hardware Evolution: Automatic design of electronic circuits in

reconfigurable hardware by artificial evolution. Springer-Verlag (1998)
13. Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A.: Four problems for which

a computer program evolved by genetic programming is competitive with human
performance. In: Proceedings of the 1996 IEEE International Conference on Evo-
lutionary Computation. Volume 1., IEEE Press (1996) 1–10

14. Koza, J.R., Kean, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Ge-
netic Programming IV:Routine Human-Competitive Machine Intelligence. Kluwer
Academic Publishers (2003)

15. Miller, J.F., Thompson, P.: Cartesian genetic programming. In: Proceedings of
Third European Conference on Genetic Programming, Springer-Verlag (2000) 121–
132

16. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
Fourth IEEE International Conference on Neural Networks, IEEE Press (1995)

17. Krohling, R.A., Jaschek, H., Rey, J.: Designing PI/PID controllers for a motion
control system based on genetic algorithms. In: Proceedings of the 12th IEEE
International Symposium on Intelligent Control. (1997) 125–130

