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Resumen

La estimación de la dificultad de problemas es un tema abierto en
Programación Genética (GP). El objetivo de este trabajo es generar mo-
delos que puedan predecir el desempeño esperado de un clasificador
basado en GP cuando este es aplicado a tareas de prueba. Los proble-
mas de clasificación son descritos usando caracterı́sticas de un dominio
especı́fico, algunas de las cuales son propuestas en nuestro trabajo y es-
tas caracterı́sticas son dadas como entrada a los modelos predictivos.
Nos referimos a estos modelos como predictores de desempeño espe-
rado (PEPs, por sus siglas en inglés). Extendimos este enfoque usando
un ensemble de predictores especializados (SPEPs, por sus siglas en
inglés), dividiendo problemas de clasificación en grupos especı́ficos y
elegimos su correspondiente SPEP. Los predictores propuestos son en-
trenados usando problemas de clasificación sintéticos de 2D con con-
junto de datos balanceados. Los modelos son entonces usados para pre-
decir el desempeño de un clasificador de GP en problemas del mundo
real antes no vistos los cuales son multidimensionales y desbalancea-
dos. Además, este trabajo es el primero en proveer una predicción de
rendimiento para un clasificador de GP sobre datos de prueba, mien-
tras en trabajos previos se han enfocado en predecir el rendimiento
para datos de entrenamiento. Por lo tanto, planteados como un prob-
lema de regresión simbólica son generados modelos predictivos exac-
tos los cuales son resueltos con GP. Estos resultados son alcanzados
usando caracterı́sticas altamente descriptivas e incluyendo un paso de
reducción de dimensiones el cual simplifica el proceso de aprendizaje y
prueba. El enfoque propuesto podrı́a ser extendido a otros algoritmos
de clasificación y usarlo como base de un sistema experto de selección
de algoritmos.

Palabras clave: Dificultad de problemas, Predicción de rendimiento
esperado, Programación genética, Aprendizaje supervisado.
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Abstract

The estimation of problem difficulty is an open issue in Genetic Pro-
gramming (GP). The goal of this work is to generate models that predict
the expected performance of a GP-based classifier when it is applied to
an unseen task. Classification problems are described using domain-
specific features, some of which are proposed in this work, and these
features are given as input to the predictive models. These models are
referred to as predictors of expected performance (PEPs). We extend
this approach by using an ensemble of specialized predictors (SPEP),
dividing classification problems into groups and choosing the corres-
ponding SPEP. The proposed predictors are trained using 2D synthetic
classification problems with balanced datasets. The models are then
used to predict the performance of the GP classifier on unseen real-
world datasets that are multidimensional and imbalanced. This work
is the first to provide a performance prediction of a GP system on test
data, while previous works focused on predicting training performance.
Accurate predictive models are generated by posing a symbolic regres-
sion task and solving it with GP. These results are achieved by using
highly descriptive features and including a dimensionality reduction
stage that simplifies the learning and testing process. The proposed ap-
proach could be extended to other classification algorithms and used
as the basis of an expert system for algorithm selection.

Keywords: Problem difficulty, Prediction of expected performance, Ge-
netic programming, Supervised learning.

iii



iv



To

my parents

v



vi



Acknowledgements

Thanks God for allow me live beautiful moments and experiences with
the people who love me.

I would like to thank all people who lived this dream with me.

To my dear parents, life is a constant struggle and becomes more com-
fortable hand of you, I have no words that represent how grateful I am for
letting me dream, fly and reach my goals, I love you.

To my brothers, for always supporting me and loving me so much, I love
you very much and I am very proud of you.

To my sister in a law, being like a sister, always listening to me, support-
ing me and giving me the most beautiful gift, my nephews.

To my nephews, they are the most beautiful thing happened to me, the
best gift of a brother, thank you for so much love my beautiful boys, Julito
and Cesarito.

To my dear grandparents, for their love, patience, so many beautiful
moments I hope to have them with me much longer time, I love you.

To my family, aunts, uncles and cousins, thanks for their support all
time.

To my friends, those who remain in good and bad times those that endure
over time.

To my boyfriend, thanks for your love, support and understanding, just
I love you.

I would like to thank my advisor, Dr. Leonardo Trujillo, for all his help
and guidance that he has given me over the past six years. Thanks for his
patience and for giving me always the best advices.

To Dr. Pierrick Legrand and family, for all your time, patience, advice
and support.

To my dear TREE-LAB, the best people! Leonardo, Pierrick, Enrique,
Emigdio, Luis, Victor, Perla, Uriel, Angel, Carlos and me.

vii



To Dr. Francisco Fernández, Dr. Francisco Chávez, Dra. Sara Silva,
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1
Introduction

Within the field of Evolutionary Computation (EC) (Eiben and
Smith, 2003) it is not yet clear if a particular algorithm will perform
well on a specific problem instance. The “No Free Lunch” (NFL) theo-
rem (Wolpert and Macready, 1997) has provided valuable theoretical
and conceptual insights, broadly stating that all search algorithms on
average are equivalent when they are evaluated over all possible prob-
lems. On the other hand, the NFL theorem does not apply to many
common domains of genetic programming (GP) (Poli et al., 2009), a
promising theoretical insight that drives research to develop the best
possible GP-based search. Nevertheless, it is by now evident that most
GP-based systems tend to perform well on some problem instances
while failing on others, with little understanding as to why or when
either of those two scenarios will arise (Graff et al., 2013a; Graff and
Poli, 2008; Martı́nez et al., 2012; Trujillo et al., 2011a,b).

The above issue can be described as the study of problem diffi-
culty, which has been studied in different ways in EC and GP litera-
ture. Some methods focus on analyzing the properties of a problem’s
fitness landscape (Kinnear, 1994). This can be done, for instance, by
defining specific classes of functions (He et al., 2015), or by extracting
high-level features (Graff et al., 2013a; Graff and Poli, 2008; Martı́nez
et al., 2012; Trujillo et al., 2011a,b) or statistical properties (Clergue
et al., 2002; Galván-López et al., 2008, 2010; Goldberg, 1987; Kimura,
1983; Rothlauf, 2006; Vanneschi et al., 2011; Verel et al., 2003) of
the fitness landscape. In the case of standard tree-based GP, where
search operators are applied in syntax space, the concept of a fitness
landscape is difficult to define given that there is no clear way of de-
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termining a general concept of neighborhood for GP representations
that are usually highly redundant, which limits the usefulness of such
approaches. While some methods have been successfully applied to
GP, these are mostly sampling-based techniques that attempt to in-
fer specific types of structures within the underlying fitness landscape,
such as: neutrality (Galván-López et al., 2008; Galván-López and Poli,
2006a,b; Poli and Galván-López, 2012; Yu and Miller, 2001), locality
(Galván-López et al., 2010, 2011), ruggedness (Vanneschi et al., 2011),
deception (Tomassini et al., 2005), fitness distance correlation (FDC)
(Clergue et al., 2002; Tomassini et al., 2005), fitness clouds (Vanneschi
et al., 2004) and negative slope coefficient (NSC) (Vanneschi et al., 2006,
2007). In this work, we refer to such methods as Evolvability Indicators
(EIs), which are extensively reviewed in Malan and Engelbrecht (2013)
and discussed in the following section.

One notable shortcoming of EIs is that they require an extensive
sampling of the search space in order to compute them (Altenberg,
1997; Quick et al., 1998; Vanneschi et al., 2003, 2009). This is an impor-
tant limitation: if we need to know when a particular problem is easy
or difficult for an algorithm to solve it may just be easier to run the
algorithm and observe its behavior and outcome. Therefore, some re-
searchers have proposed predictive models that take the problem data
(or a description of the data) as input, and produce as output a predic-
tion of expected performance, we will refer to such methods as Predic-
tors of Expected Performance (PEPs). Currently, the development of
PEPs represents a minority of research devoted to problem difficulty in
GP, with only a few recent works. In particular, Graff and Poli (Graff
et al., 2013a; Graff and Poli, 2008, 2010, 2011; Graff et al., 2013b) have
studied the development of such predictive models, for symbolic re-
gression, Boolean and time-series problems. While their original work
mostly focused on synthetic benchmarks (Graff and Poli, 2008), more
recent contributions extended their approach to performance predic-
tion in real-world problems (Graff et al., 2013a,b). However, in their
approach it is necessary to have an extensive knowledge of the real-
world problems in advance. Furthermore, their models are intended to
predict the performance of the best solution found by GP on the train-
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1.1 general objective

ing set of data, they did not address the prediction of performance on
unseen test cases.

This work is an extension of our previous work (Trujillo et al.,
2011a,b,c) where PEPs were first proposed for a GP classifier, making
several methodological and experimental contributions. First, the PEP
models are produced using only simple 2D synthetic datasets that are
randomly generated. Second, the PEP models are used to predict the
performance of the GP classifier on the test set of data, while previ-
ous works mostly focused on predicting performance on the training
or learning set (Graff et al., 2013a; Graff and Poli, 2008, 2010, 2011;
Graff et al., 2013b). Third, accurate predictions are obtained on un-
seen real-world problems that are multidimensional and contain im-
balanced data. On the other hand, previous works (Graff et al., 2013a;
Graff and Poli, 2008, 2010, 2011; Graff et al., 2013b; Trujillo et al.,
2011a,b,c) used the same type of problems (either synthetic or real) for
both training and testing. Fourth, to increase PEP accuracy this work
presents an ensemble approach using specialized PEP models called
SPEPs. Each SPEP is trained to predict performance within a specific
range of classification error. To do so, we use a two-tier approach,
where each problem is first classified into a specific group, and then
prediction is obtained from the corresponding SPEP which was trained
for that group of problems. Finally, it is reasonable to state that the
proposed approach could be applied to predict the performance of GP
on other learning problems.

1.1 General Objective

Build models to predict the expected performance and categorize
its difficulty into classification problems using Genetic Programming.

1.2 Particular Objectives

1. Characterize the classification problems using descriptive mea-
sures.
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2. Build models to predict the expected performance using syn-
thetic classification problems.

3. Categorize the classification problems (in easy or hard).

4. Evaluate the methodology on real-world classification problems,
a more interesting and realistic scenario.

1.3 Thesis Organization

The remainder of this thesis proceeds as follows.
Chapter 2 shows an overview about Genetic Programming.
Chapter 3 provides a short survey of GP-based classification and

presents two implementations of GP classifiers on real-world scenarios.
Chapter 4 reviews the state of art both Evolvability Indicators and

Predictors of Expected Performance.
The basic PEP strategy is outlined and evaluated in Chapter 5.
Afterwards, Chapter 6 introduces the proposed ensemble strategy

based on SPEPs and provides experimental results.
Chapter 7 presents a discussion related to results and contributions.
Finally, Chapter 8 contains conclusions and future work.
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2
Genetic Programming

The goal of having computers automatically solve problems is cen-
tral to artificial intelligence, machine learning and the broad area
encompassed by what Turing called “machine intelligence” (Turing,
1950). Machine learning pioneer Arthur Samuel, in his 1983 talk en-
titled “AI: Where It Has Been and Where It Is Going” (Samuel, 1983),
stated that the main goal of the fields of machine learning and artificial
intelligence is:

“to get machines to exhibit behaviour, which if done by humans, would be
assumed to involve the use of intelligence.”

Genetic Programming (GP) is an extension of Genetic Algorithms
(GA’s) and owes its origin to the work of John Koza (Koza, 1992). It ba-
sically works as GA’s, with the major difference that individuals to be
evolved are not fixed length strings of characters, but, generally speak-
ing, computer programs. GP is an evolutionary computation (EC) tech-
nique that automatically solves problems without requiring the user
to know or specify the form or structure of the solution in advance
(Poli and McPhee, 2008). At the most abstract level GP is a systematic,
domain-independent method for getting computers to solve problems
automatically starting from a high-level statement of what needs to be
done.

2.1 Representation, Initialization and Operators

In GP, programs are usually expressed as syntax trees rather than
as lines of code. For example Figure 2.1 shows the tree representation
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Figure 2.1: GP syntax tree representing max(x+ x,x+ 3 ∗ y).

of the program max(x + x,x + 3 ∗ y). The variables and constants in
the program (x,y and 3) are leaves of the tree. In GP they are called
terminals, whilst the arithmetic operations (+,∗ and max) are internal
nodes called functions. The sets of allowed functions and terminals to-
gether form the primitive set of a GP system. In more advanced forms
of GP, programs can be composed of multiple components (e.g., sub-
routines). In this case the representation used in GP is a set of trees
(one for each component) grouped together under a special root node
that acts as glue, as illustrated in Figure 2.2 we will call these (sub)trees
branches. The number and type of the branches in a program, together
with certain other features of their structure, form the architecture of
the program.

Like in other evolutionary algorithms, in GP the individuals in the
initial population are typically randomly generated. There are a num-
ber of different approaches to generating this random initial popula-
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Figure 2.2: Multi-component program representation.

tion. Here we will describe two of the simplest (and earliest) methods
(the full and grow methods), and a widely used combination of the two
known as Ramped half-and-half.

In both the full and grow methods, the initial individuals are gener-
ated so that they do not exceed a user specified maximum depth. The
depth of a node is the number of edges that need to be traversed to
reach the node starting from the tree’s root node (which is assumed to
be at depth 0). The depth of a tree is the depth of its deepest leaf (e.g.,
the tree in Figure 2.1 has a depth of 3). In the full method (so named
because it generates full trees, i.e. all leaves are at the same depth)
nodes are taken at random from the function set until the maximum
tree depth is reached. Figure 2.3 shows a series of snapshots of the con-
struction of a full tree of depth 2. The children of the ∗ and / nodes
must be leaves or otherwise the tree would be too deep. Thus, at both
steps t = 3, t = 4, t = 6 and t = 7 a terminal must be chosen (x,y,1 and
0, respectively). Although, the full method generates trees where all
the leaves are at the same depth, this does not necessarily mean that all
initial trees will have an identical number of nodes (often referred to as
the size of a tree) or the same shape. This only happens, in fact, when
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Figure 2.3: Creation of a full tree having maximum depth 2 using the
full initialization method (t = time).

all the functions in the primitive set have an equal arity. Nonetheless,
even when mixed-arity primitive sets are used, the range of program
sizes and shapes produced by the full method may be rather limited.
The grow method, on the contrary, allows for the creation of trees of
more varied sizes and shapes. Nodes are selected from the whole prim-
itive set (i.e., functions and terminals) until the depth limit is reached.
Once the depth limit is reached only terminals may be chosen (just as
in the full method). Figure 2.4 illustrates this process for the construc-
tion of a tree with depth limit 2. Here the first argument of the + root
node happens to be a terminal. This closes off that branch preventing
it from growing any more before it reached the depth limit. The other
argument is a function (−), but its arguments are forced to be terminals
to ensure that the resulting tree does not exceed the depth limit.

GP departs significantly from other evolutionary algorithms in
the implementation of the operators of crossover and mutation. The
most commonly used form of crossover is subtree crossover. Given
two parents, subtree crossover randomly (and independently) selects
a crossover point (a node) in each parent tree. Then, it creates the off-
spring by replacing the subtree rooted at the crossover point in a copy
of the first parent with a copy of the subtree rooted at the crossover
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Figure 2.4: Creation of a five node tree using the grow initialization
method with a maximum depth of 2 (t = time). A terminal is chosen at
t = 2, causing the left branch of the root to be closed at that point even
though the maximum depth had not been reached.

point in the second parent, as illustrated in Figure 2.5 Copies are used
to avoid disrupting the original individuals. This way, if selected mul-
tiple times, they can take part in the creation of multiple offspring pro-
grams. Note that it is also possible to define a version of crossover that
returns two offspring, but this is not commonly used. Often crossover
points are not selected with uniform probability. Typical GP primitive
sets lead to trees with an average branching factor (the number of chil-
dren of each node) of at least two, so the majority of the nodes will be
leaves. Consequently the uniform selection of crossover points leads to
crossover operations frequently exchanging only very small amounts
of genetic material (i.e., small subtrees); many crossovers may in fact
reduce to simply swapping two leaves. To counter this, Koza (1992)
suggested the widely used approach of choosing functions 90% of the
time and leaves 10% of the time. Many other types of crossover and
mutation of GP trees are possible.

The most commonly used form of mutation in GP (which we will
call subtree mutation) randomly selects a mutation point in a tree and
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Figure 2.5: Example of subtree crossover. Note that the trees on the left
are actually copies of the parents. So, their genetic material can freely
be used without altering the original individuals.

Figure 2.6: Example of subtree mutation.

substitutes the subtree rooted there with a randomly generated subtree.
This is illustrated in Figure 2.6. Subtree mutation is sometimes imple-
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mented as crossover between a program and a newly generated random
program; this operation is also known as “headless chicken” crossover
(Angeline, 1997). Another common form of mutation is point muta-
tion, which is GP’s rough equivalent of the bit-flip mutation used in ge-
netic algorithms (Goldberg, 1989). In point mutation, a random node
is selected and the primitive stored there is replaced with a different
random primitive of the same arity taken from the primitive set. If no
other primitives with that arity exist, nothing happens to that node (but
other nodes may still be mutated). When subtree mutation is applied,
this involves the modification of exactly one subtree. Point mutation,
on the other hand, is typically applied on a per-node basis. That is, each
node is considered in turn and, with a certain probability, it is altered
as explained above. This allows multiple nodes to be mutated indepen-
dently in one application of point mutation. The choice of which of
the operators described above should be used to create an offspring is
probabilistic. Operators in GP are normally mutually exclusive (unlike
other evolutionary algorithms where offspring are sometimes obtained
via a composition of operators). Their probability of application are
called operator rates. Typically, crossover is applied with the highest
probability, the crossover rate often being 90% or higher. On the con-
trary, the mutation rate is much smaller, typically being in the region
of 1%. When the rates of crossover and mutation add up to a value of
probability (τ) which is less than 100%, an operator called reproduc-
tion is also used, with a rate of 1− τ . Reproduction simply involves the
selection of an individual based on fitness and the insertion of a copy
of it in the next generation.

2.2 Selection

As with most evolutionary algorithms, genetic operators in GP are
applied to individuals that are probabilistically selected based on fit-
ness. That is, better individuals are more likely to have more child
programs than inferior individuals. The most commonly employed
method for selecting individuals in GP is tournament selection, which
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is discussed below, followed by fitness-proportionate selection, but any
standard evolutionary algorithm selection mechanism can be used. In
tournament selection a number of individuals are chosen at random
from the population. These are compared with each other and the best
of them is chosen to be the parent. When doing crossover, two par-
ents are needed and, so, two selection tournaments are made. Note
that tournament selection only looks at which program is better than
another. It does not need to know how much better. This effectively
automatically rescales fitness, so that the selection pressure on the pop-
ulation remains constant. Thus, a single extraordinarily good program
cannot immediately swamp the next generation with its children; if it
did, this would lead to a rapid loss of diversity with potentially disas-
trous consequences for a run. Conversely, tournament selection ampli-
fies small differences in fitness to prefer the better program even if it
is only marginally superior to the other individuals in a tournament.
An element of noise is inherent in tournament selection due to the ran-
dom selection of candidates for tournaments. So, while preferring the
best, tournament selection does ensure that even average-quality pro-
grams have some chance of having children. Since tournament selec-
tion is easy to implement and provides automatic fitness rescaling, it
is commonly used in GP. Considering that selection has been described
many times in the evolutionary algorithms literature, we will not pro-
vide details of the numerous other mechanisms that have been pro-
posed. Goldberg (1989), for example, describes fitness-proportionate
selection, stochastic universal sampling and several others.

2.3 Terminals and Functions

While it is common to describe GP as evolving programs, GP is not
typically used to evolve programs in the familiar Turing-complete lan-
guages humans normally use for software development. It is instead
more common to evolve programs (or expressions or formulae) in a
more constrained and often domain-specific language. The first two
preparatory steps, the definition of the terminal and function sets, spec-
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Table 2.1: Examples of primitives in GP terminal set.

Terminal Set
Kind of Primitive Example (s)

Variables x, y
Constant values 3, 0.45
0-arity functions rand, go left

.. ...

ify such a language. That is, together they define the ingredients that
are available to GP to create computer programs.

The terminal set may consist of:

the program’s external inputs. These typically take the form of
named variables (e.g.,x,y).

functions with no arguments. These may be included because they
return different values each time they are used, such as the func-
tion rand() which returns random numbers, or a function dist to
wall() that returns the distance to an obstacle from a robot that
GP is controlling. Another possible reason is because the func-
tion produces side effects. Functions with side effects do more
than just return a value: they may change some global data struc-
tures, print or draw something on the screen, control the motors
of a robot, etc.

constants. These can be pre-specified, randomly generated as part
of the tree creation process, or created by mutation.

Using a primitive such as rand can cause the behaviour of an indi-
vidual program to vary every time it is called, even if it is given the
same inputs. This is desirable in some applications. However, we more
often want a set of fixed random constants that are generated as part
of the process of initializing the population. This is typically accom-
plished by introducing a terminal that represents an ephemeral ran-
dom constant. Every time this terminal is chosen in the construction of
an initial tree (or a new subtree to use in an operation like mutation), a
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Table 2.2: Examples of primitives in GP function set.

Function Set
Kind of Primitive Example (s)

Arithmetic +, *, /
Mathematical sin, cos, exp

Boolean AND, OR, NOT
Conditional IF-THEN-ELSE

Looping FOR, REPEAT
.. ...

different random value is generated which is then used for that partic-
ular terminal, and which will remain fixed for the rest of the run. The
function set used in GP is typically driven by the nature of the prob-
lem domain. In a simple numeric problem, for example, the function
set may consist of merely the arithmetic functions (+,−,∗,/). How-
ever, all sorts of other functions and constructs typically encountered
in computer programs can be used. Tables 2.1 and 2.2 shows a sample
of some of the functions one sees in the GP literature. Sometimes the
primitive set includes specialized functions and terminals which are
designed to solve problems in a specific problem domain. For example,
if the goal is to program a robot to mop the floor, then the function set
might include such actions as move, turn, and swish-the-mop.

2.4 Fitness Function

The first two preparatory steps define the primitive set for GP, and
therefore indirectly define the search space GP will explore. This in-
cludes all the programs that can be constructed by composing the prim-
itives in all possible ways. However, at this stage, we still do not know
which elements or regions of this search space are good. I.e., which re-
gions of the search space include programs that solve, or approximately
solve, the problem. This is the task of the fitness measure, which is our
primary (and often sole) mechanism for giving a high-level statement
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of the problem’s requirements to the GP system. For example, suppose
the goal is to get GP to synthesize an amplifier automatically. Then the
fitness function is the mechanism which tells GP to synthesize a circuit
that amplifies an incoming signal. (As opposed to evolving a circuit
that suppresses the low frequencies of an incoming signal, or computes
its square root, etc. etc.) Fitness can be measured in many ways. For
example, in terms of: the amount of error between its output and the
desired output; the amount of time (fuel, money, etc.) required to bring
a system to a desired target state; the accuracy of the program in recog-
nising patterns or classifying objects; the payoff that a game-playing
program produces; the compliance of a structure with user-specified
design criteria.

2.5 GP Parameters

The most important control parameter is the population size. Other
control parameters include the probabilities of performing the genetic
operations, the maximum size for programs and other details of the
run. It is impossible to make general recommendations for setting op-
timal parameter values, as these depend too much on the details of the
application. However, genetic programming is in practice robust, and
it is likely that many different parameter values will work. As a con-
sequence, one need not typically spend a long time tuning GP for it
to work adequately. It is common to create the initial population ran-
domly using ramped half-and-half with a depth range of 2−6. The initial
tree sizes will depend upon the number of the functions, the number
of terminals and the arities of the functions. However, evolution will
quickly move the population away from its initial distribution. Tradi-
tionally, 90% of children are created by subtree crossover. However,
the use of a 50−50 mixture of crossover and a variety of mutations also
appears to work well.
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2.6 Training Set: fitness-cases

GP is widely used to generate mathematical functions, or operators,
that solve symbolic regression and classification problems, which can
be stated as follows. The goal is to search for the symbolic expression
K : Rp → R that best fits a particular training set T = {I1, I2, . . . , In},
where Ii = (υi ,νi) of n input-output pairs with υi ∈ Rp and νi ∈ R,
stated as

K ← arg min
K∈G

f (K(υi),νi) with i = 1, . . . ,n , (2.1)

where G is the solution or syntactic space defined by the primitive set
P of functions and terminals, f is the fitness function which is based on
the difference between a program’s output K(υi) and the desired out-
put νi . Each input-output pair (υi ,νi) is referred to as a fitness-case. As
stated above, GP traditionally uses the entire set of fitness-cases T to
determine a program’s fitness. Recent works, however, have focused on
evolving solutions by only using a subset of fitness-cases SG ⊆ T to de-
termine the fitness of each candidate solution K at a given generation G;
in some cases reducing the number of considered fitness-cases to a sin-
gle one. This, of course, can produce one obvious benefit, a reduction
in computational cost during fitness evaluation, which is usually the
main computational bottleneck in a GP system. However, the motiva-
tion for most approaches has been varied. For instance, some methods
focus on reducing computational costs during fitness evaluation (Gath-
ercole and Ross, 1994a,b) or reducing overfitting and improving gener-
alization (Gonçalves and Silva, 2013), others have addressed the issue
of problem modality (Spector, 2012) or attempted to promote novel so-
lutions that can solve every fitness case (Martı́nez et al., 2013), partic-
ularly the most difficult ones (Gathercole and Ross, 1994a,b; Martı́nez
et al., 2014).

GP traditionally uses the Entire Training Set (ETS) of fitness-cases T

to determine a program’s fitness. Recent works, however, have focused
on evolving solutions by only using a subset of fitness-cases SG ⊆ T

to determine the fitness of each candidate solution K at a given gen-
eration G; in some cases reducing the number of considered fitness-
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cases to a single one. This, of course, can produce one obvious bene-
fit, a reduction in computational cost during fitness evaluation, which
is usually the main computational bottleneck in a GP system. How-
ever, the motivation for most approaches has been varied. For instance,
some methods focus on reducing computational costs during fitness
evaluation (Gathercole and Ross, 1994a,b) or reducing overfitting and
improving generalization (Gonçalves and Silva, 2013), others have ad-
dressed the issue of problem modality (Spector, 2012) or attempted
to promote novel solutions that can solve every fitness case (Martı́nez
et al., 2013), particularly the most difficult ones (Gathercole and Ross,
1994a,b; Martı́nez et al., 2014). In what follows, we review these meth-
ods and describe their main details.

Dynamic Training Subset Selection (DTSS) was proposed in Gath-
ercole and Ross (1994a,b), and probably should be considered as the
first fitness-case sampling method proposed in GP literature. In their
original work, Gathercole and Ross (1994a,b) developed their method
for classification problems, outperforming the basic GP approach, but
it was only tested on a single problem instance. In each generation G
DTSS performs two passes through the entire training set of fitness-
cases. It assigns a weight wi to each fitness-case Ii computed by

wi(G) = Di(G)d +Ai(G)a (2.2)

where D is a function that measures the difficulty of Ii , A is an age
factor that measures the number of generations G since Ii was last se-
lected (D and A are reset to zero once Ii is selected), while a and d are
parameters that need to be set by the user. Afterwards a total of F
fitness are selected using a probability that is proportional to its associ-

ated weight, given by Φ =
wi∑n
j=1wj

with n the total number of fitness-

cases. In their original work, Di represented the total number of times
that a particular fitness case was misclassified by the individuals in the
population. While the authors reported strong results on some tests,
DTSS has not been extensively benchmarked on a variety of problems.
Moreover, there are several shortcomings with DTSS. In particular, it
requires several parameters to be tuned; the difficulty score is not triv-
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Algorithm 1: Interleaved Sampling (IS)
Deterministically interleaving between using a single or all
training fitness cases at each generation:

(1) Initialize:

(a) Entire training set T = {I1, I2...In}.

(2) First generation:

(a) Evaluate population using T.

(3) Loop on the remaining generations:

(a) Odd generations:

- Generate an integer random number r,
where r ∈ [1,n].

- Evaluate population using Ir .

(b) Even generations:

- Evaluate population using T.

ially extrapolated to other problems, particularly symbolic regression;
and, it is more computationally costly than standard GP since at every
generation the algorithm requires two passes over the entire training
set of fitness-cases.

2.6.1 Interleaved Sampling and related methods

Interleaved Sampling (IS) (Gonçalves and Silva, 2011) is a
deterministic-based sampling method, which uses the entire training
set to compute fitness in some generations and uses a single fitness-
case in others. This approach was motivated by the idea of balancing
learning and overfitting through the interleaving of fitness-cases, at-
tempting to elude local optima. Determining in which generation to
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Algorithm 2: Random Interleaved Sampling (RIS)
Probabilistically interleaving between using a single or all
training fitness cases at each generation:

(1) Initialize:

(a) Entire training set T = {I1, I2...In}.
(b) Interleave probability δ ∈ [0,1].

(2) Loop for every generation:

(a) Generate a real random number rn ∈ [0,1].

(b) If rn ≤ δ then

- Generate an integer random number r,
where r ∈ [1,n].

- Evaluate population using Ir .

(c) Otherwise

- Evaluate population using T.

use a single fitness-case, and in which one to use all of them, is an in-
tegral part of the algorithm design. In Gonçalves and Silva (2013), the
authors present two variants that achieved the best results, IS and Ran-
dom IS or RIS with the probability value of 75%. IS uses the entire
training set in odd numbered generations, and uses a single randomly
chosen fitness-case on even numbered generations, see the Algorithm
1. RIS, on the other hand, uses a probabilistic decision at the beginning
of each generation to determine if all of the fitness-cases are used or a
single randomly chosen fitness-case, see the Algorithm 2. In Gonçalves
and Silva (2013), RIS exhibited the best performance with the proba-
bility of using a single fitness case set to δ = 0.75. These methods are
related to the approach presented in Lasarczyk et al. (2004), that also
selects a different subset of fitness-cases at each generation.
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Algorithm 3: Lexicase Selection (LEX)
For parent selection:

(1) Initialize:

(a) Set candidates to be the entire population.

(b) Set cases to be a list of all of the fitness cases
in random order.

(2) Loop:

(a) Set candidates to be the subset of the current candidates
that have exactly the best fitness of any individual
currently in candidates for the first case in cases.

(b) If candidates or cases contains just a single element
then return the first individual in candidates.

(c) Otherwise remove the first case from cases and go to
Loop.

2.6.2 Lexicase Selection

Spector (2012) proposed the concept of modality to describe prob-
lems for which an optimal solution must exhibit different modes of
operations; i.e., solutions must exhibit distinct behaviors based on con-
textual information that is provided implicitly by the input data (Tru-
jillo et al., 2013). Spector (2012) points out that, in general, GP systems
are generally limited to problems for which solution programs perform
similar actions for all possible inputs, but real-world problems will
normally require more complex solutions, that change their behavior
depending on context.

To solve such problems, Spector (2012) presents the Lexicase Selec-
tion (LEX) method for parent selection, which allows each fitness case
to possibly be the main source of selective pressure at any given par-
ent selection event. During evolution, LEX selects parents by starting
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Algorithm 4: Keep-Worst Interleaved Sampling (KW-IS)
Deterministically interleaving between using a subset of the most
difficult or all fitness cases at each generation:

(1) Initialize:

(a) Entire training set T = {I1, I2...In}.
(b) Percentil value error ρ ∈ [1,100].

(2) First generation:

(a) Evaluate population using T.

(b) Construct the subset ϕ of the most difficult fitness cases
using the ρ value.

(3) Loop on the remaining generations:

(a) Odd generations:

- Evaluate population using ϕ.

(b) Even generations:

(a) Evaluate population using T.

(b) Construct the subset ϕ of the most difficult fitness
cases using the ρ value.

with a pool of candidate parents, and removing candidates based on
the performance achieved on a single fitness-case. LEX is elitist, all of
the individuals that do not achieve the best performance are removed.
This process is repeated using another fitness-case, until only one in-
dividual remains, which is then returned as the selected parent. In
the basic implementation, the initial pool of candidates is composed by
the entire population and the fitness-cases are ordered randomly each
time a parent is selected. LEX resembles a lexicographic ordering of
a character string, where the first fitness-case has the largest effect in
choosing the parent, then the next fitness-case acts as tie-breaker, and
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so on. This means that each fitness-case has a chance to be deciding
factor in determining which individuals are used to produce offspring
at any given parent selection event, see Algorithm 3.

2.6.3 Keep-Worst Interleaved Sampling

Based on Martı́nez et al. (2013) and Gonçalves and Silva (2013)
we proposed a new fitness-case sampling method called Keep-Worst
Interleaved Sampling (KW-IS) (Martı́nez et al., 2014). This proposed
method is based on the general methodology of the Novelty Search-
based ε − descriptor proposed in Martı́nez et al. (2013) but it is also
common in other learning paradigms such as AdaBoost, for example,
where solution design is adjusted based on the most difficult training
data samples. KW-IS is similar to IS, using the entire set of fitness-cases
in some generations, just like IS would. However, in the remaining gen-
erations, fitness-cases are not chosen randomly. Instead, the goal is
to bias selective pressure towards individuals that exhibit good perfor-
mance on the most difficult fitness-cases. Therefore, the fitness-cases
are ordered based on difficulty. Afterwards, the ρ value show the per-
centage of most difficult fitness-cases are used to determine fitness in
the next generation, see Algorithm 4. The best performance of this pa-
rameter was achieved with ρ = 90. For symbolic regression problems
the difficulty of a single fitness case is given by the average absolute
error of the entire population in a given generation. Where we take the
fitness-cases that have a larger error than the error found in the per-
centile given the value of ρ. On the other hand, for classification the
difficulty of a fitness-case is computed as done in DTSS, by the total
number of individuals in the population that misclassified it. There-
fore, in the same way we will take the fitness-cases that have been mis-
classified by ρ percent of the population.

KW-IS is closely related to DTSS, since it also focuses on reducing
the size of the training set used in each generation by concentrating
on a small subset of the most difficult fitness-cases. However, KW-IS
requires less parameters to tune, it only performs a single pass of the
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training set T at each generation G by relying on the estimated diffi-
culty given in generation G − 1, and it can be used directly on symbolic
regression problems.

2.6.4 Comparison of Fitness-Case Sampling Methods

In order to provide a comprehensive evaluation of the fitness case
sampling methods described above we perform experiments using a
tree-based GP algorithm with standard subtree crossover and subtree
mutation, as originally proposed by Koza (2010). With this GP sys-
tem, we test IS, RIS, LEX and KW-IS on two of the most common prob-
lems on which GP is used, symbolic regression and classification, using
benchmark and real-world problems. Moreover, a standard GP search
(GP-STD) is included as the control method.

None of the algorithms have been extensively studied or compared
besides our previous study reported in Martı́nez et al. (2014), however
that work only performed an informal comparison and only considered
symbolic regression problems. The algorithms are compared based on
the following criteria. First, performance of the best solution found
during training evaluated on the test set, a standard evaluation mea-
sure. Second is overfitting, here measured by the difference between
the training error of the best solutions and its respective test error. Fi-
nally, one of the most important open issues with GP is the bloat phe-
nomenon, where the average size of the population increases dispro-
portionately relative to the improvements achieved in terms of fitness
(Silva and Costa, 2009). Therefore, we also compare the methods based
on the average size of the population in the final generation, given by
the number of nodes of each tree.

In all problems a total of thirty independent runs are performed,
with different, and randomly chosen, training and testing sets. Results
are analyzed using rank statistics and nonparametric tests, since ma-
chine learning algorithms do not tend to produce normally distributed
samples (Trawinski et al., 2012; Derrac et al., 2011). Therefore, the
Friedman test multiple comparison (Friedman, 1937) is used to com-
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pare all of the algorithms on each problem, with the null hypothesis
that the mean rank of all methods is the same; the p-value of each test
is reported and the significance level is set at α = 0.05. Afterwards, a
post-hoc procedure is used, performing pairwise comparisons between
all methods using the Friedman test with the Bonferroni-Holm correc-
tion (Holm, 1979) of the p-value (considering six methods), under the
null hypothesis that each pair of samples share equal medians. The
results of all tests are presented in tables with the corresponding p-
values. Moreover, a summary of the medians of each measure (test
fitness, average size and overfitting) are presented, using bold to in-
dicate that a given method achieved the best performance on a given
problem. For instance, if the performance of all methods are presented
in bold, this means that no statistical difference was detected. Simi-
larly, if one (or several) result(s) is (are) in bold, this means that the
method(s) achieved significantly different performance compared to
the other (non-bold) methods. Box plots are used to graphically illus-
trate the behavior of each method. Finally, all algorithms were imple-
mented using the GPLab Matlab toolbox (Silva and Almeida, 2003) and
all statistical test were performed using the Matlab statistical toolbox.

2.6.4.1 Symbolic Regression Problems

Five benchmark problems are used for symbolic regression, origi-
nally published in Uy et al. (2011), and suggested in McDermott et al.
(2012) and Martı́nez et al. (2013); these problems are summarized in
Table 2.3. The experimental parameters used with these problems are
given in Table 2.4, and fitness is calculated as the root mean square er-
ror between predicted and expected outputs specified in the training
set.

Moreover, to get a better assessment of each method in more diffi-
cult scenarios, six problems are used to evaluate the algorithms; these
are: Toxicity, Plasma Protein Binding, Bioavailability, Concrete, Hous-
ing and Yacht. The first three problems are described in Gonçalves and
Silva (2013) and the remaining three from the University of Califor-
nia, Irvine (UCI) machine learning repository (Lichman, 2013), which
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Table 2.3: Five symbolic regression problems, originally published in
Uy et al. (2011), and suggested as benchmark regression problems in
McDermott et al. (2012) and Martı́nez et al. (2013).

Problem Function Fitness/Test cases
f1-Benchmark x4 + x3 + x2 + x 20 random points ⊆ [−1,1]
f2-Benchmark x5 + x4 + x3 + x2 + x 20 random points ⊆ [−1,1]
f3-Benchmark sin(x2) ∗ cos(x)− 1 20 random points ⊆ [−1,1]
f4-Benchmark log(x+1)+log(x2+1) 20 random points ⊆ [0,2]
f5-Benchmark 2sin(x) ∗ cos(y) 100 random points ⊆ [−1,1] ×

[−1,1]

Table 2.4: Table with the parameters for GP used for the benchmark
symbolic regression problems.

Parameter Description

Population size 200 individuals
Generations 100 generations
Initialization Ramped Half-and-Half,

with 6 levels of maximum depth
Operator probabilities Crossover pc = 0.9, Mutation pµ = 0.05
Function set ( + , − , × , ÷ , sin , cos , exp , log).
Terminal set υ,1 for single variable problems and υ,ν

for bivariable problem.
Maximum tree depth 20 levels
Selection Tournament selection of size 3
Elitism Best individual always survives

are characterized by a high-dimensionality and a difficult to model be-
havior. The experimental parameters used are the same as those in
Gonçalves and Silva (2013), summarized in Table 2.5. Fitness is calcu-
lated as the root mean square error between predicted and expected
outputs, and the data set is randomly divided before each run, using
50% for training and 50% for testing.

For the benchmark problems, the five box plots in Figure 2.7 show
the performance of of the best individual from each run evaluated with
the test set. Figure 2.8, shows the overfitting results for each method,
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Figure 2.7: Box plot comparison about the test performance of the
methods, from the best solution found for each benchmark symbolic
regression problem over all thirty runs.

and Figure 2.9 summarizes the effect on bloat for each method, cap-
tured by the average size of the population in the final generation. Sim-
ilar plots are shown for the real-world problems in Figures 2.10, 2.11
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Figure 2.8: Box plot comparison about the overfitting performance of
the methods, from the best solution found for each benchmark sym-
bolic regression problem over all thirty runs.

and 2.12, for test performance, overfitting and average population size
respectively.

To summarize these results a numerical comparison of the methods
is provided in Table 2.6, showing the median values of each method,
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Figure 2.9: Box plot comparison about the average size performance of
the methods, from the solutions found for each benchmark symbolic
regression problem over all thirty runs.

on each problem and for each measure. Here, bold indicates statisti-
cally different results with respect to the other (non-bold) values. Table
2.7, shows the p-values with the Bonferroni-Holm correction for the
pairwise comparisons on each problem where bold values indicate that
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Table 2.5: Table with the parameters for GP used for symbolic regres-
sion real-world problems.

Parameter Description

Population size 500 individuals
Generations 200 generations
Initialization Ramped Half-and-Half,

with 6 levels of maximum depth
Operator probabilities Crossover pc = 0.9, Mutation pµ = 0.05
Function set {+ , − , × , ÷}
Terminal set Input variables,

constants −1.0,−0.5,0,0.5 and 1.0
Maximum tree depth 17 levels
Selection Tournament selection of size 10
Elitism Best individual always survives

the null hypothesis is rejected at the α = 0.05 significance level. The
results on symbolic regression reveal several interesting trends.

First, considering test performance the following can be observed.
For all benchmark problems none of the fitness-case sampling meth-
ods outperform GP-STD. In fact, only LEX can compare on test perfor-
mance, while RIS achieves the worst results of all methods. On the
other hand, for the real-world problems GP-STD is outperformed by
at least 2 fitness-case sampling methods, and in two problems by six
of them. In these problems, LEX and KW-IS clearly show the best per-
formance, while IS outperforms GP-STD on two of the six problems
(Toxicity and Plasma). Again, RIS clearly is the worst of all fitness-case
sampling methods.

Based on overfitting, IS shows the best performance, on both the
synthetic benchmarks and the real-world problems. Similarly, RIS
shows strong performance on the real-world cases. The performance
of IS and RIS is consistent with those reported in Gonçalves and Silva
(2013). On the other hand, GP-STD and LEX do not seem to overfit on
synthetic problems, but clearly do so on the real-world cases. In partic-
ular, GP-STD clearly shows the worst performance among all methods

29



genetic programming

2000

4000

6000

8000

10000

12000

14000

16000

18000

GP−STD IS RIS LEX KW−IS

T
e
s
ti
n
g

(a) Toxicity

0

50

100

150

200

250

300

350

GP−STD IS RIS LEX KW−IS

T
e
s
ti
n
g

(b) Plasma Protein Binding

40

60

80

100

120

140

160

GP−STD IS RIS LEX KW−IS

T
e
s
ti
n
g

(c) Bioavailability

0

10

20

30

40

50

60

70

80

GP−STD IS RIS LEX KW−IS

T
e
s
ti
n
g

(d) Concrete

10

20

30

40

50

GP−STD IS RIS LEX KW−IS

T
e
s
ti
n
g

(e) Housing

5

10

15

20

25

GP−STD IS RIS LEX KW−IS

T
e
s
ti
n
g

(f) Yacht

Figure 2.10: Box plot comparison about the test performance of the
methods, from the best solution found for each real-world regression
problem over all thirty runs.

on the real-world problems. KW-IS shows the weakest performance
among all fitness-case sampling methods.

Finally if we consider size, some interesting results can be seen. On
synthetic problems there appears to be small differences between the
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Figure 2.11: Box plot comparison about the overfitting performance of
the methods, from the best solution found for each real-world regres-
sion problem over all thirty runs.

methods, where only can see difference statistically significant in the
second problem. However, on the real-world cases more interesting re-
sults are obtained. First, the reason for the bad test performance of RIS
can be attributed to the fact that the evolved trees are basically a single
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Figure 2.12: Box plot comparison about the average size performance
of the methods, from the solutions found for each real-world regression
problem over all thirty runs.

terminal (variable) in three of the six cases. Second, GP-STD consis-
tently produces the larger trees, in some cases one order of magnitude
larger than the fitness-case sampling methods. Third, if we consider
size and test fitness, then we can say that IS, LEX and KW-IS produce
smaller trees with better performance than GP-STD.
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Table 2.6: Table show the median of 30 executions for testing, overfit-
ting and size; bold indicates best.

Testing

GP-STD IS RIS LEX KW-IS
f1-Benchmark 0.0031 0.0000 0.0000 0.0207 0.0468
f2-Benchmark 0.0418 0.0000 0.2990 0.0000 0.0286
f3-Benchmark 0.0079 0.0616 0.0569 0.0166 0.0496
f4-Benchmark 0.0126 0.1172 0.1733 0.0180 0.0691
f5-Benchmark 0.0342 0.0695 0.0756 0.0180 0.0455

Toxicity 4206.99 2217.21 2555.48 2089.20 2267.04
Plasma Protein Binding 39.47 31.21 45.47 32.00 30.31

Bioavailability 40.16 42.23 45.15 33.49 37.12
Concrete 8.56 11.84 30.72 9.87 8.67
Housing 5.08 5.96 11.26 5.26 4.93

Yacht 2.31 4.45 14.96 4.21 3.27

Overfitting

f1-Benchmark 0.0010 0.0000 0.0000 0.0039 0.0184
f2-Benchmark 0.0052 0.0000 0.0366 0.0000 0.0023
f3-Benchmark 0.0013 0.0065 0.0111 0.0044 0.0078
f4-Benchmark 0.0039 0.0159 0.0362 0.0041 0.0109
f5-Benchmark 0.0036 0.0025 0.0036 0.0011 0.0036

Toxicity 2645.66 81.56 65.03 115.32 629.16
Plasma Protein Binding 21.19 2.08 1.21 4.67 1.25

Bioavailability 17.40 2.01 0.94 1.50 5.64
Concrete 0.2541 0.2950 0.3609 0.4100 0.3486
Housing 0.9882 0.3800 0.2519 0.4918 0.7668

Yacht 0.7244 0.6957 0.2884 0.6293 0.5997

Size

f1-Benchmark 95 89 74 78 63
f2-Benchmark 90 85 48 72 55
f3-Benchmark 69 76 71 75 64
f4-Benchmark 71 63 85 83 78
f5-Benchmark 65 52 61 50 61

Toxicity 274 52 1 80 102
Plasma Protein Binding 212 54 1 100 54

Bioavailability 308 65 57 87 199
Concrete 206 172 74 111 198
Housing 171 145 1 94 159

Yacht 222 164 5 146 209

2.6.4.2 Classification Problems

Synthetic binary classification problems were randomly generated
using Gaussian mixture models (GMM’s). Examples of the classifica-
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Table 2.7: Results of the Friedman test for the classification problems,
showing the p-value after the Bonferroni-Holm correction for each pair-
wise comparison; bold indicates that the test rejects the null hypothesis
at the α = 0.05 significance level.
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2.6 training set: fitness-cases

tion problems generated showed in Figure 2.13; which depicts sample
points of two different classes (circles and crosses) scattered over the R2

plane. Problems are generated with unimodal or multimodal classes,
with different amounts of class overlap. All class samples lie within the
closed 2-D interval υ1,υ2 ∈ [−10,10], and 200 sample points were ran-
domly generated for each class. The parameters for the GMM of each
class were also randomly chosen using the following ranges of values:

1. Number of Gaussian components: {1,2,3}.

2. Median of each Gaussian component for each feature dimension:
[−3,3].

3. Each element of the covariant matrix of each Gaussian compo-
nent: (0,2].

4. The rotation angle of each covariance matrix: [0,2π].

5. The proportion of sample points generated with each Gaussian
component: [0,1].

Afterwards, five problem were chosen, showed in Figure 2.13, that
are used to evaluate the algorithms tested here. Additionally, six real-
world problems from the University of California, Irvine (UCI) ma-
chine learning repository were chosen (Lichman, 2013), summarized
in Table 5.5. These problems have a more complex nature and there-
fore will be interesting test cases for the sampling methods

In this work, was used a GP classifier called static range selection
(SRS) (Zhang and Smart, 2006). For a two class problem and real-
valued GP outputs, the SRS decision rule is simple: if the program
output for input pattern υ is greater than zero then the pattern is la-
beled as belonging to class A, otherwise its labeled as a class B pattern.
The experimental parameters are given in Table 2.9, and fitness is given
by the classification error.

For the synthetic problems, Figures 2.14, 2.15 and 2.16 illustrate
the performance of each method on test fitness, overfitting and average
size. Similarly, Figures 2.17, 2.18 and 2.19 show the same information
for the real-world problems.
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Figure 2.13: Synthetic binary classification problems randomly gener-
ated using Gaussian mixture models with different amounts of class
overlap, scattered over 2 dimensional space.

To summarize these results a numerical comparison of the methods
is provided in Table 2.10, showing the median values of each method,
on each problem and for each measure. Here, bold indicates statisti-
cally different results with respect to the other (non-bold) values. Table

36



2.6 training set: fitness-cases

Table 2.8: Real-world classification problems from Irvine (UCI) ma-
chine learning repository.

No. Problem Classes Features Instances Description
1 Breast Cancer Wisconsin 2 8 699 Original Wisconsin Breast

Cancer Database.
2 Parkinson’s 2 22 195 Oxford Parkinson’s Disease

Detection Dataset
3 Pima Indians Diabetes 2 8 768 From National Institute of

Diabetes
4 Indian Liver Patient 2 10 579 Contains 416 liver patient

records and 167 non liver pa-
tient records

5 Retinopathy 2 19 1151 Contains features extracted
from the Messidor image set,
to predict signs of diabetic
retinopathy or not

6 Vertebral Column 2C 2 6 310 Biomedical data set built by
Dr. Henrique da Mota

Table 2.9: Table with the parameters for GP used for the classification
problems.

Parameter Description
Runs 30
Size of population 200 individuals
Generations 100 generations
Initialization Ramped Half-and-half with mamixum

depth level of 6
Operator probabilities Crossover pc = 0.8, mutation pµ = 0.2
Function set (+,−,×,÷, sin,cos,exp, log, if )
Terminal set input variables
Maximum tree depth 20 levels
Selection Size 3 tournament
Elitism Best individual always survives

2.11, shows the p-values with the Bonferroni-Holm correction for the
pairwise comparisons on each problem where bold values indicate that
the null hypothesis is rejected at the α = 0.05 significance level.

Based on test performance, three algorithms consistently show the
best results, GP-STD, LEX and KW-IS. On the other hand, RIS and IS
are clearly the worst methods, in some cases their performance shows
twice the error as the best methods (Breast Cancer Wisconsin and P2-
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Table 2.10: Table show the median of 30 executions over testing, over-
fitting and size; bold indicates best.

Testing

GP-STD IS RIS LEX KW-IS
P1-Synthetic 0.0000 0.0000 0.0000 0.0000 0.0000
P2-Synthetic 0.0938 0.1937 0.1750 0.1000 0.1000
P3-Synthetic 0.1375 0.2062 0.1875 0.1375 0.1375
P4-Synthetic 0.2750 0.2500 0.3000 0.2625 0.2750
P5-Synthetic 0.3875 0.3750 0.3438 0.3688 0.3875

Breast Cancer Wisconsin 0.1023 0.2045 0.1932 0.0795 0.0909
Parkinson’s 0.1795 0.2564 0.2564 0.1538 0.2308

Pima Indians Diabetes 0.2727 0.3506 0.3506 0.2630 0.2955
Indian Liver Patient 0.2832 0.2920 0.2832 0.2832 0.2832

Retinopathy 0.2860 0.3362 0.4214 0.3166 0.2729
Vertebral Column 2C 0.1855 0.2258 0.2258 0.2097 0.2258

Overfitting

P1-Synthetic 0.0000 0.0000 0.0000 0.0000 0.0000
P2-Synthetic 0.0359 0.0547 0.0344 0.0328 0.0203
P3-Synthetic 0.0469 0.0312 0.0312 0.0500 0.0281
P4-Synthetic 0.0859 0.0344 0.0344 0.0625 0.0375
P5-Synthetic 0.1063 0.0656 0.0516 0.0859 0.0609

Breast Cancer Wisconsin 0.0428 0.0360 0.0335 0.0312 0.0454
Parkinson’s 0.0385 0.0128 0.0128 0.0385 0.0321

Pima Indians Diabetes 0.0398 0.0021 0.0081 0.0291 0.0219
Indian Liver Patient 0.0536 0.0216 0.0038 0.0082 0.0077

Retinopathy 0.0401 0.0241 0.0214 0.0245 0.0215
Vertebral Column 2C 0.0565 0.0645 0.0444 0.0484 0.0504

Size

P1-Synthetic 149 147 124 20 143
P2-Synthetic 91 5 6 102 107
P3-Synthetic 82 6 5 94 103
P4-Synthetic 210 168 100 90 71
P5-Synthetic 215 162 78 128 66

Breast Cancer Wisconsin 50 3 4 41 59
Parkinson’s 16 2 3 17 48

Pima Indians Diabetes 70 4 3 66 13
Indian Liver Patient 165 108 65 79 57

Retinopathy 153 103 4 61 5
Vertebral Column 2C 162 118 88 112 51
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Figure 2.14: Box plot comparison about the test performance of the
methods, from the best solution found for each synthetic classification
problem over all thirty run.

Synthetic). Therefore, these results suggest that no performance im-
provement is obtained by using fitness-case sampling methods. Based
on overfitting, again IS and RIS show the best results, however given
their worse performance based on test fitness, they should not be pre-
ferred. Among the other methods, the best overfitting performance was
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Figure 2.15: Box plot comparison about the overfitting performance of
the methods, from the best solution found for each synthetic classifica-
tion problem over all thirty run.

exhibited by KW-IS, while GP-STD showed the worst. Finally, based on
size, again IS and RIS evolve the smaller trees, but the improvement in
program size is not justified by their poor performance. On the other
hand, LEX and KW-IS sometimes evolve smaller trees than GP-STD,
but in other cases their performance is similar or a bit worse. Given
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Figure 2.16: Box plot comparison about the average size performance of
the methods, from the solutions found for each synthetic classification
problem over all thirty run.

these results, it can be stated that the LEX and KW-IS do not improve
upon GP-STD, but they do not compromise performance either, while
IS and RIS negatively effect classifier performance.
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Table 2.11: Results of the Friedman test for the classification problems,
showing the p-value after the Bonferroni-Holm correction for each pair-
wise comparison; bold indicates that the test rejects the null hypothesis
at the α = 0.05 significance level.
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2.6 training set: fitness-cases
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Figure 2.17: Box plot comparison about the test performance of the
methods, from the best solution found for each real-world classification
problem over all thirty run.

discussion This experimental work presents the first extensive
comparative study between fitness-case sampling methods for GP, that
use only a subset of training instances in each generation to reduce com-
putational cost and possible improve generalization or reduce bloat. In
particular, four methods are evaluated Interleaved Sampling (IS), Ran-

43



genetic programming

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

GP−STD IS RIS LEX KW−IS

O
v
e
rf
it
ti
n
g

(a) Breast Cancer Wisconsin

0

0.05

0.1

0.15

GP−STD IS RIS LEX KW−IS

O
v
e
rf
it
ti
n
g

(b) Parkinson’s

0

0.02

0.04

0.06

0.08

0.1

0.12

GP−STD IS RIS LEX KW−IS

O
v
e
rf
it
ti
n
g

(c) Pima Indians Diabetes

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

GP−STD IS RIS LEX KW−IS

O
v
e
rf
it
ti
n
g

(d) Indian Liver Patient

0

0.02

0.04

0.06

0.08

0.1

0.12

GP−STD IS RIS LEX KW−IS

O
v
e
rf
it
ti
n
g

(e) Retinopathy

0

0.05

0.1

0.15

0.2

GP−STD IS RIS LEX KW−IS

O
v
e
rf
it
ti
n
g

(f) Vertebral Column 2C

Figure 2.18: Box plot comparison about the overfitting performance of
the methods, from the best solution found for each real-world classifi-
cation problem over all thirty run.

dom Interleaved Sampling (RIS), Lexicase Selection (LEX) and Keep-
Worst IS (KW-IS), all of them compared with a standard GP search.

Experimental work is extensive, considering symbolic regression
with 5 synthetic problems and 6 real-world problems, as well as super-
vised classification with 5 synthetic problems and 6 real-world datasets.
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Figure 2.19: Box plot comparison about the average size performance of
the methods, from the solutions found for each real-world classification
problem over all thirty run.

The algorithms were compared using three performance measures: test
error, overfitting and average program size. Statistical comparisons
were carried out using a non-parametric multigroup test, and a post
hoc non-parametric pairwise testing, in both cases at the 95% confi-
dence level.
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The results are illustrative and can be summarized as follows. For
symbolic regression the conclusions are dependent on the type of prob-
lem. For the simpler benchmark problems, none of the sampling meth-
ods outperform standard GP, and only LEX achieves equal performance
on all problems. However, when we increase difficulty and consider the
real-world problems, then we see the added benefit of the sampling ap-
proaches, with three of the methods (LEX, KW-IS and IS) significantly
improving upon the standard GP approach. The sampling techniques
also exhibit substantially smaller amounts of overfitting and also tend
to produce smaller trees than standard GP. Based on these results, it is
clear that for difficult real-world symbolic regression fitness-case sam-
pling can help improve performance, reduce overfitting and reduce
code growth. Furthermore, based on the presented experimental work,
the best methods to use are LEX and KW-IS, with IS also exhibiting
strong results, and RIS clearly showing the worst performance.

On the other hand, when we consider classification problems, the
results are not convincing in favor of the fitness-case sampling meth-
ods. In all problems, either synthetic or real-world, none of the tested
algorithms could improve upon the performance of standard GP. In
fact only two methods achieved the same performance, with LEX and
KW-IS never producing worse results. Moreover, while IS and RIS ex-
hibited the smallest amount of overfitting, this result was not satisfac-
tory since their test performance was significantly worse than GP, LEX
and KW-IS on most problems. Finally, an unexpected result was that
the fitness-case sampling methods showed the same amount of code
growth than standard GP, except for IS and RIS, an improvement that
is not desirable due to their low test performance.

In conclusion, the main recommendations that can be drawn from
these results are the following. First, LEX and KW-IS are useful fitness-
case sampling methods that can improve GP performance on difficult
real-world symbolic regression problems. Second, while IS and RIS
tend to reduce overfitting and bloat, this comes at the cost of worse
test performance, therefore they are not recommended for real-world
use. Third, for classification tasks standard GP is still recommended,
LEX and KW-IS will not degrade or improve performance in this do-

46



2.6 training set: fitness-cases

main. Therefore, a real-world GP-based tool should probably include
as a configurable option either LEX, KW-IS or both.
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3
Classification with GP

In machine learning one of the most common tasks is supervised
classification (Kotsiantis et al., 2006). The general task can be stated as
follows. Given a pattern υ ∈RP , assign the correct class label among C
distinct classes ω1, ...,ωC , using a training set T of P-dimensional pat-
terns with a known label. The idea is to build a mapping g(υ) : RP → C,
that assigns each pattern υ to a corresponding class ωi , where g is de-
rived based on the evidence provided by T. GP has been widely used
to address this problem (Muñoz et al., 2015; Sotelo et al., 2013; Tru-
jillo et al., 2011a; Z-Flores et al., 2015; Zhang and Smart, 2004, 2006).
In general, GP can be applied to classification following three general
approaches:

1. Feature selection and construction (Muharram and Smith, 2005;
Muñoz et al., 2015; Sherrah et al., 1997; Trujillo et al., 2011a;
Zhang and Smart, 2006).

2. Model extraction (Bentley, 2000; Tanigawa and Zhao, 2000;
Tsakonas, 2006; Z-Flores et al., 2015; Zhang and Smart, 2004).

3. Learning ensemble classifiers (Hengpraprohm and Chongstit-
vatana, 2008; Imamura et al., 2003; Langdon and Poli, 2002).

Feature selection and construction is also known as preprocessing
of the problem data. These approaches use GP to either select the most
interesting problem features or to construct new features that simplify
the classification problem. These techniques are often described as ei-
ther filter (Guo et al., 2005; Muharram and Smith, 2005; Trujillo et al.,
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2011a; Zhang and Smart, 2006) or wrapper approaches (Muñoz et al.,
2015; Sherrah et al., 1997; Smith and Bull, 2005). In the former, feature
construction is done independently of the model used to build the clas-
sifier, while in the latter fitness assignment is based on the performance
of a classifier. On the other hand, model extraction with GP is used to
build specific types of classifiers, such as decision trees (Tanigawa and
Zhao, 2000; Tsakonas, 2006), classification rules (Bentley, 2000; Qing-
Shan et al., 2007) and discriminant functions (Zhang and Smart, 2004).
Finally, ensemble classifiers are used to improve the quality of the clas-
sification task by using not only a single classifier, but a group of them,
each one providing a different output (Hengpraprohm and Chongstit-
vatana, 2008; Imamura et al., 2003; Langdon and Poli, 2002).

3.1 Real-World Applications of GP Classifiers

In order to improve understanding of the relevance of the GP classi-
fiers, we present a experimental work about two different approaches,
feature construction and model extraction. These experimental work
has been over the most interesting problems, real-world scenarios. The
goal is to detect the three main stages of an epileptic seizure (Pre-Ictal,
Ictal and Post-Ictal) given a short segment of a ECoG signal. This is
posed as a classification problem, where the signal segment represents
a pattern κ ∈Rn, with n the total number of sample points which is de-
pendent on the sampling rate and the signal duration. For instance,
since the sampling rate during recording is 256 Hz, if we take a 2
second signal then n = 512. Then, this can be defined as a super-
vised learning problem where a training set T of n-dimensional pat-
terns with a known classification are used to derive a mapping function
g(υ) : RP → C, where C are the three distinct epilepsy stages.

The proposal is to solve this problem using GP to derive the map-
ping function g. GP can be used in different ways to solve a supervised
classification tasks such as the one presented here, see for instance
(Koza, 1994; Eggermont et al., 2004). However, in this work we test
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3.1 real-world applications of gp classifiers

two GP classifiers that have achieved good results in difficult real-world
problems, proposed by Zhang and Smart (2006).

3.1.1 Static Range Selection GP Classifier (SRS-GPC)

The first approach is called the Static Range Selection GP Classi-
fier or SRS-GPC a model extraction approach. In this approach, R is
divided into C non-overlapping regions, one for each class. Then, GP
evolves a mapping g(υ) : RP → R, such that the region in R where
pattern υ is mapped to, determines the class to which it belongs. The
fitness function is simple, it consists on maximizing the total classifi-
cation accuracy of g. For the present problem, since there are three
classes (the three seizure stages), R is divided into the following three
ranges for each stage: Pre-Ictal (− inf,−1], Ictal [−1,1] and Post-Ictal
[1, inf). This is a very simple and straightforward GP implementation,
that is easy to setup and use. However, an obvious shortcoming is that
it requires an a priori definition of the order and size of the region
boundaries.

3.1.2 Probabilistic GP Classifier (PGPC)

We refer to the second approach as the Probabilistic GP Classifier,
or PGPC (Trujillo et al., 2011a; Zhang and Smart, 2006) a feature con-
struction approach. In PGPC, it is assumed that the behavior of h can
be modeled using multiple Gaussian distributions, each corresponding
to a single class (Zhang and Smart, 2006). The distribution of each class
N (µ,σ ) is derived from the examples provided for it in set Υ , by com-
puting the mean µ and standard deviation σ of the outputs obtained
from h on these patterns. Then, from the distribution N of each class
a fitness measure can be derived using Fisher’s linear discriminant; for
a two class problem it proceeds as follows. After the Gaussian distribu-
tion N for each class are derived, a distance is required. In Zhang and
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Smart (2006), Zhang and Smart propose a distance measure between
both classes as

d = 2 ∗
|µ1 −µ2|
σ1 + σ2

, (3.3)

where µ1 and µ2 are the means of the Gaussian distribution of each
class, and σ1 and σ2 their standard deviations. When this measure
tends to 0, it is the worst case scenario because the mapping of both
classes overlap completely, and when it tends to ∞, it represents the
optimal case with maximum separation. In order to rescale the above
measure, the fitness for an individual mapping h is given by

fd =
1

1+ d
. (3.4)

After executing the GP, the best individual found determines the pa-
rameters for the Gaussian distribution Ni associated to each class.
Then, a new test pattern υ is assigned to class i whenNi gives the max-
imum probability.

In summary, we use two different GP classifiers, SRS-GPC and
PGPC. Both are trained using the epilepsy signal recorded during a
single day, from a total of five different days, and then tested on the
remaining days. The signal from each day is divided into segments of
equal duration, here we build two different partitions, the first with 1
second signals and the other using 2 second signals. The next section
presents the experimental setup and main results.

3.1.3 Experiments and Results

The goal of the experimental work is to evaluate the accuracy of
intra-subject classification of epilepsy signals. In other words, to test
the performance of classifiers that are trained and tested with signal
samples from a single test subject.

data sets Epileptic signals were recorded from four different test
subjects (five rodents) on which the seizures are elicited and the sig-
nals recorded; call them subjects S1, S2, S3 and S4. For each subject,
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Figure 3.1: Median classification error plotted against day used for
training and amount of overlap for the SRS-GPC. Each row corresponds
to each subject (top row is S1 and bottom row S4) and each column cor-
responds to a different segment duration; leftmost row is 1 sec., middle
row 2 and rightmost 3.

53



classification with gp

Table 3.1: Parameters for the PGPC system used in the experimental
tests.

Parameter Description
Population size 200 individuals.
Generations 200 generations.
Initialization Ramped Half-and-Half,

with 6 levels of maximum depth.
Operator probabilities Crossover pc = 0.8; Mutation pµ = 0.2.
Function set

{
+,−,∗,/,√,sin,cos, log,xy , | · |, if

}
Terminal set υµ, υm, υσ , υmax, υmin, υs and υk
Bloat control Dynamic depth control.
Initial dynamic depth 6 levels.
Hard maximum depth 20 levels.
Selection Lexicographic

parsimony tournament
Survival Keep best elitism

a level-5 seizure is elicited and recorded on five consecutive days; call
them Day−1, Day−2, Day−3, Day−4 and Day−5. Afterwards, the sig-
nal is classified manually by a human expert, who specifies where each
epilepsy stage begins and ends. This manual classification establishes
the ground-truth for the supervised-learning problem. The signal is
divided into C segments, each constituting a sample from the corre-
sponding stage. We test three different segment durations: 1, 2 and 3
seconds. When the signal is divided, we allow for different amounts
of overlap between consecutive segments given by a percentage of sig-
nal duration. Five different overlaps are tested: 0%, 20%, 40%, 60%
and 80%. It is important to state that signal segments that lie on two
adjacent stages are removed from the data-sets.

gp implementation Both GP classifiers use a standard Koza style
tree based representation, with subtree-crossover and sub-tree muta-
tion. The basic parameters of both systems is presented in Table 3.1.
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3.1 real-world applications of gp classifiers

For both GP classifiers, the terminal elements are basic statistical fea-
tures computed for each signal segment x that is to be classified. Specif-
ically, the terminal set contains: mean value υµ, median υm, standard
deviation υσ , maximum υmax, minimum υmin, skewness υs and kur-
tosis υk . For each experimental configuration, 30 independent runs
of the GP system are executed. This is necessary, since GP is a non-
deterministic search process.

performance measures To gain a deeper understanding of the
GP-based classifiers, a detailed analysis of the results is presented us-
ing three standard performance measures computed on the test set of
data: classification error, sensitivity and specificity. The first measure
is explicit, while the latter two are derived from the confusion matrix
(true positives (TP), true negatives (TN), false positives (FP), false neg-
atives (FN)) generated by the classifier with respect to each class; given
by:

Sensitivity : S =
T P

T P + FP
. (3.5)

Specif icity : Sp =
TN

FN + TN
. (3.6)

intra-subject classification As stated above, the task of auto-
matic epileptic stage identification is posed a supervised learning prob-
lem. The training data used consists of all of the signal segments taken
from a single recording day. Then, for intra-subject classification the
evolved classifiers are tested on the signal segments from each addi-
tional recording day. This is done for all subjects (S1, S2, S3 and S4)
and all possible combinations of training and testing days, as well as
for all segment durations (1,2 or 3 seconds) and overlaps (0, 20, 40, 60
and 80%).

Figure 3.1 shows the median classification error achieved by the
SRS-GPC. The error is plotted with respect to the day used to train the
classifier and the amount of overlap. Each row corresponds to each
subject (top row is S1 and so on) and each column corresponds to a
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Figure 3.2: Median classification error plotted against day used for
training and amount of overlap for the PGPC. Each row corresponds
to each subject (top row is S1 and bottom row S4) and each column cor-
responds to a different segment duration; leftmost row is 1 sec., middle
row 2 and rightmost 3.
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3.1 real-world applications of gp classifiers

different segment duration (leftmost row is 1 sec. and so on). Figure
3.2 presents the same for PGPC.

Figures 3.3 and 3.4 present the results for the median sensitivity
and specificity respectively, for SRS-GPC. Similarly, figures 3.5 and 3.6
show the same results for PGPC.

discussion The plots shown in Figures 3.1 - 3.6 present an exten-
sive empirical evaluation of the proposed approach for stage identifica-
tion. The best way to read these plots is as follows. In all cases, the flat-
ness of the plotted surfaces is related to the robustness of the proposed
approach to the different data configurations. Moreover, for classifica-
tion error lower values are best, and for sensitivity and specificity the
converse is true.

The plots shown above illustrate strong statistical trends regarding
the behavior of the system, from which several noticeable implications
can be derived. First, overall the best performance is achieved by the
simpler SRS-GPC classifier, compared with PGPC. This was slightly un-
expected, given the strong assumptions made by the SRS-GPC method.
Nonetheless, across all configurations and all test subjects, SRS-GPC is
better based on all three performance measures. Second, it appears that
the segment length is an important determining factor in classification
performance. In particular, smaller segments (1 or 2 seconds) are easier
to classify than longer ones (3 s). Also, it appears that a higher amount
of overlap between segments can induces better results. A reasonable
explanation for both observations can be given based on the machine
learning approach followed by the proposal. In particular, shorter seg-
ments and a larger overlap produce more training data with which to
train the classifier and thus obtain a better supervised learning process.

Third, while the results described above hold for all test subjects,
there are still some subtle and important differences among them. The
GP classifiers achieve good results for three of the test subjects (S1, S2
and S3), evidenced by all three performance measures. However, the
performance is considerably worse for test subject S4. This result is co-
herent with the general observation that different subjects can produce
quite different signal patterns, even if all signals appear similar at a
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Figure 3.3: Median sensitivity plotted against the day-used for training
and the amount of overlap for the SRS-GPC. Each row corresponds to
each subject (top row is S1 and bottom row S4) and each column corre-
sponds to a different segment duration; leftmost row is 1 sec., middle
row 2 and rightmost 3.
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Figure 3.4: Median specificity plotted against the day used for training
and the amount of overlap for the SRS-GPC. Each row corresponds to
each subject (top row is S1 and bottom row S4) and each column corre-
sponds to a different segment duration; leftmost row is 1 sec., middle
row 2 and rightmost 3.
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Figure 3.5: Median sensitivity plotted against the day used for training
and the amount of overlap for the PGPC. Each row corresponds to each
subject (top row is S1 and bottom row S4) and each column corresponds
to a different segment duration; leftmost row is 1 sec., middle row 2 and
rightmost 3.

60



3.1 real-world applications of gp classifiers

0

20

40

60

80

1
2

3
4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap
Day

S
p
e
c
if
ic
it
y

(a) S1, 1s

0

20

40

60

80

1
2

3
4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap
Day

S
p
e
c
if
ic
it
y

(b) S1, 2s

0

20

40

60

80

1
2

3
4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap
Day

S
p
e
c
if
ic
it
y

(c) S1, 3s

0

20

40

60

80

1
2

3
4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap
Day

S
p
e
c
if
ic
it
y

(d) S2, 1s

0

20

40

60

80

1
2

3
4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap
Day

S
p
e
c
if
ic
it
y

(e) S2, 2s

0

20

40

60

80

1
2

3
4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap
Day

S
p
e
c
if
ic
it
y

(f) S2, 3s

0

20

40

60

80

1
2

3
4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap
Day

S
p
e
c
if
ic
it
y

(g) S3, 1s

0

20

40

60

80

1
2

3
4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap
Day

S
p
e
c
if
ic
it
y

(h) S3, 2s

0

20

40

60

80

1
2

3
4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap
Day

S
p
e
c
if
ic
it
y

(i) S3, 3s

0

20

40

60

80

1
2

3
4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap
Day

S
p
e
c
if
ic
it
y

(j) S4, 1s

0

20

40

60

80

1
2

3
4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap
Day

S
p
e
c
if
ic
it
y

(k) S4, 2s

0

20

40

60

80

1
2

3
4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap
Day

S
p
e
c
if
ic
it
y

(l) S4, 3s

Figure 3.6: Median specificity plotted against the day used for training
and the amount of overlap for the PGPC. Each row corresponds to each
subject (top row is S1 and bottom row S4) and each column corresponds
to a different segment duration; leftmost row is 1 sec., middle row 2 and
rightmost 3.
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coarser scale. Moreover, the plots show that classifier performance can
sometimes vary depending upon which training day is used. In effect,
this shows that, of course, the recorded signals should not be expected
to be homogenous given the different (even if slight) conditions under
which each recording session is done.

Finally, considering results obtained in previous work using GADs
(Sotelo et al., 2007, 2008), here we find that the ability to identify
epilepsy stages are substantivally better with the GP classifiers. The
results suggest that the time domain properties used in GP were more
efficient for stage classification than the signal complexity computed
from the time-frequency domain. Moreover, such features, and the
evolved classifiers, are of low computational complexity and could be
easily implemented on dedicated hardware.

Here is presented an automatic method for identifying the three
main stages of an epileptic seizure from ECoG signals. The proposal
is based on posing the problem as a supervised learning problem and
solving it with Genetic Programming. The results exhibit strong sta-
tistical tendencies of the GP classifiers that suggest that the approach
is able to solve the intra-patient classification problem. These results
are unique and show substantial improvement when compared with
previous methods (Sotelo et al., 2007, 2008, 2012).
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4
The estimation of problem difficulty: Related

Work

Determining problem difficulty has been an important issue in EC
for several years (McClymont et al., 2012). From an algorithmic per-
spective, problem difficulty can be related to the total runtime (or mem-
ory) required to find an optimal solution. Recently, He et al. (2015) took
this view one step further, to analytically define broad classes of fitness
functions which allowed them to demonstrate that easy functions de-
fine unimodal fitness landscapes, while hard functions define decep-
tive landscapes for a (1+1) ES. However, it is important to remember
that the difficulty of a particular problem depends upon the solution
method. Therefore, in what follows we will try to limit our overview to
GP-related research.

4.1 Evolvability Indicators

The fitness landscape has dominated the way geneticists think
about biological evolution and has been adopted by the EC commu-
nity as a way to visualize evolution dynamics (Wright, 1932). Formally,
a fitness landscape can be defined as a triplet ($,χ,f ), where $ is a set
of configurations, χ is a notion of neighborhood, distance or accessi-
bility on $, and f is a fitness function (Stadler, 2002). The local and
global structure of the fitness landscape describes the underlying diffi-
culty of a search. However, in the case of standard GP (Langdon and
Poli, 2002) the concept of a fitness landscape is not clearly defined (Kin-
near, 1994). To overcome this, some works have constructed synthetic
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problems; such as the Royal Tree problem (Punch et al., 1996) or the K-
landscapes model (Vanneschi et al., 2011), where the goal of the search
is defined as a particular tree structure with a specific syntax. Unfor-
tunately, such models are not realistic since the space of possible pro-
grams is highly redundant (Langdon and Poli, 2002) in most domains,
and the goal is not a particular syntax but a particular expected out-
put, also known as semantics (McPhee et al., 2008; Vanneschi et al.,
2014). Therefore, some researchers have proposed variants of GP that
explicitly account for program semantics. In semantic space the fitness
landscape is clearly defined and unimodal. This has lead researchers
to develop specialized search operators that modify program syntax
while geometrically bounding the semantics of the generated offspring,
this is known as geometric semantic GP (GSGP) (Moraglio et al., 2012).
Nevertheless, such approaches are still problematic since the size of the
evolved programs grows exponentially with every generation, a limita-
tion that is not easily solved (Silva and Costa, 2009). This work will fo-
cus on measures of problem difficulty for standard GP systems (Koza,
1992), but could be applied to other supervised learning systems in-
cluding GSGP.

In general, most meta-heuristics work under the assumption that
the fitness of a candidate solution, a point on the fitness landscape, is
positively correlated with the fitness of its (some) neighbors. Such a
property can be defined as the evolvability of a landscape (Altenberg,
1994; O’Neill et al., 2010). EIs extract a numerical indicator of a spe-
cific property of the fitness landscape to provide a measure of the evolv-
ability within the landscape. Malan and Engelbrecht (2013) presents a
comprehensive survey of EIs and other forms of fitness landscape anal-
ysis. Those that have been studied in GP literature include neutrality
(Galván-López et al., 2008; Kimura, 1983), locality (Galván-López et al.,
2010; Rothlauf, 2006), ruggedness (Kauffman and Levin, 1987; Van-
neschi et al., 2011), fitness distance correlation (FDC) (Clergue et al.,
2002; Jones and Forrest, 1995; Tomassini et al., 2005), fitness clouds
(Verel et al., 2003) and the negative slope coefficient (NSC) (Vanneschi
et al., 2004). While these approaches can sometimes provide good
estimates of problem difficult for GP, they suffer from two practical
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limitations. First, for each new problem instance they require a large
amount of data, by sampling the search space or performing several
runs. Second, they cannot estimate the actual quality of the solution
found, which can be important if we want to choose the best algorithm
to use for a new problem, and if such a choice must be made in real-
time. Indeed, Malan and Engelbrecht (2013) point out that a possible
way forward is to build a mapping that can estimate algorithm per-
formance based on a set of descriptive features of the problem, an ap-
proach that would provide a more practical measure of problem dif-
ficulty and allow us to choose the best algorithm for the specific task.
Malan and Engelbrecht (2014) attempted to find a link between EIs and
algorithm performance for particle swarm optimization.

4.2 Performance Prediction

PEPs predict the performance of a GP search on an unseen problem
instance without performing the search or sampling the solution space.
These models have been derived using a machine learning approach
(Graff et al., 2013a; Graff and Poli, 2008; Martı́nez et al., 2012; Trujillo
et al., 2011a,b). The performance of GP on a set of problems and a
description of those problems are used to pose a supervised learning
task. A promising feature of PEPs is that they are not only useful for GP,
they can also be used to predict the performance of other algorithms
(Graff and Poli, 2010; Trujillo et al., 2011b).

Graff and Poli (2010) proposed linear predictive models based on a
sampling of the fitness landscape, given by

Ψ (ν) ≈ a0 +
∑
ξ∈Ξ

aξ · d(ξ,ν) , (4.7)

where Ψ (ν) is the predicted performance, ν is the target functionality,
d(ξ,ν) is a distance measure1, Ξ is the set of all possible program out-
puts, also known as semantic space (Moraglio et al., 2012), and where

1 Such a distance measure is a common fitness function for many application domains
of GP, particularly for symbolic regression problems.
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each ξ represents the vector of program outputs obtained from the set
of fitness cases used to define a particular problem, also known as the
semantics of the program (McPhee et al., 2008). In other words, Graff
and Poli (2010) derive PEPs by sampling semantic space Ξ. These mod-
els were tested on symbolic regression and 4-input Boolean problems
with promising results.

The second and more recent approach towards building a PEP fo-
cuses on the problem data (Graff et al., 2013a; Graff and Poli, 2011;
Graff et al., 2013b; Martı́nez et al., 2012; Trujillo et al., 2011a, 2012,
2011b,c) and proceeds as follows. Assume we want to solve a super-
vised learning problem p with a GP search, where fitness is given by a
cost function that must be minimized, such as an error measure. Let
us define the performance of the GP algorithm as the associated error
of the best solution found during training when it is evaluated on a
particular set of fitness cases T , call this quantity FT (p). The goal is to
predict FT (p), so first we construct a feature vector β = (β1,β2, ...βN ) of
N distinct features that describe the main properties of p. Then, a PEP
is function K such that

FT (p) ≈ K(β) . (4.8)

Notice that the form of K is not a priori restricted in any way. Graff and
Poli (2011) use a linear function similar to the one used in their previ-
ous work (Graff and Poli, 2010). Using this approach the feature vector
β should be designed specifically for the domain of p. For example,
features designed for symbolic regression and Boolean problems are
proposed in Graff and Poli (2011), and the results show that the pre-
dictive accuracy surpasses that of the fitness-based models proposed in
Graff and Poli (2010). However, their work did not scale well to real-
world cases. For instance, in Graff et al. (2013a,b) the authors built
PEPs to predict performance on real-world problems, but require infor-
mation obtained from runs performed on similar problem instances,
models built with simpler synthetic problems could not be used. It
was not trivial to map multidimensional problems to the proposed fea-
ture space since the training problems were much simpler with a small
number of dimensions. It would be impractical to consider all possi-
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ble dimensionalities during training. This is an important limitation
in building PEPs, since it is not trivial to have all the possible versions
of the same problem. Moreover, in the proposals made by Graff et al.
(2013a); Graff and Poli (2011); Graff et al. (2013b) the models predicted
the performance of the GP system on the training set of fitness cases;
i.e., T was the training set. While certainly of importance, performance
on the training set may not be useful if the algorithm overfits the train-
ing examples, which happens often in real-world scenarios.

In previous work Trujillo et al. (2011a,b,c), we used a similar ap-
proach to predict the performance of a GP-classifier using descriptive
features that characterize the geometry of the data distribution in fea-
ture space. The PEPs where built using quadratic linear models and
non-linear GP models, the latter achieving the best performance on
synthetic problems. However, it was not clear how well the PEPs gen-
eralized to unseen problem instances, particularly to real-world prob-
lems with imbalanced datasets and larger feature spaces than those
used to train the models, a similar difficulty pointed out in Graff et al.
(2013a,b). The current work extends our previous contributions by per-
forming the learning process on 2D synthetic problems and testing on
a wide variety of real-world datasets. Moreover, an important contribu-
tion of this work is that the PEP models are used to predict the perfor-
mance of the best solution found by GP when it is evaluated on the test
set of data. To achieve improved performance this work also proposes
a two-tiered ensemble approach using specialized PEP models and a
preprocessing stage for dimensionality reduction.
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5

PEP: Predictor of Expected Performance

The general goal of this work is to build models that can predict the
performance of a GP-classifier (PGPC) without executing the search or
sampling the problem’s search space. The general proposal is depicted
in Figure 5.1, where for a given classification problem we do the follow-
ing. First, apply a preprocessing step to simplify the feature extraction
process and deal with multidimensional representations. Second, per-
form feature extraction to obtain an abstraction of the problem. Third,
use a PEP model that takes as input the extracted features and produces
as output the predicted classification error (PCE) on the testing set.

Moreover, to derive the PEP models we use a supervised learning
methodology, depicted in Figure 5.2. This process takes as input a set
of synthetic classification problems Q and produces as output the PEP
model as follows:

1. Compute the average classification error (CEµ) on the test data by
PGPC for each p ∈ Q.

2. Apply a preprocessing for dimensionality reduction using prin-
cipal component analysis (PCA), and take the first m principal
components to represent the problem data.

3. Perform feature extraction on the transformed data using statisti-
cal and complexity measures to build a feature vector β for each
p ∈ Q.
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Figure 5.1: Block diagram of the proposed PEP approach. Given a clas-
sification problem, the goal is to predict the performance of a GP clas-
sifier on the test data, in this case PGPC.
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Figure 5.2: The methodology used to build the PEP model. Given a set
Q of synthetic classification problems: (1) compute the CEµ of PGPC on
all problems; (2) apply a preprocessing for dimensionality reduction;
(3) extract the feature vector β from the problem data; and (4) learn the
predictive model using GP.

4. Finally, using the set of feature vector/performance pairs
{(βi ,CEµi)}, formulate a supervised symbolic regression problem
and solve it using GP.

5.1 Synthetic Classification Problems

A set of synthetic classification problems was generated to learn our
PEP models. Specifically, 500 binary classification problems were gen-
erated using Gaussian mixture models (GMMs) with either unimodal
or multimodal classes, with different amounts of class overlap. All class
samples lie within the closed 2-D interval υ,ν ∈ [−10,10], and 200 sam-
ple points were randomly generated for each class. The parameters for
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the GMM of each class were randomly chosen using a uniform distri-
bution in the following ranges:

1. Number of Gaussian components: {1,2,3}.

2. Median of each Gaussian component for each dimension: [−3,3].

3. Each element of the covariant matrix of each Gaussian compo-
nent: (0,2].

4. The rotation angle of each covariance matrix: [0,2π].

5. Proportion of samples generated with each Gaussian component:
[0,1].

5.2 PGPC Classification Error

For each problem p ∈ Q we perform 30 runs of PGPC, randomly
choosing the training and testing sets in each run. Then, the mean clas-
sification error CEµ is computed by the average of the test performance
achieved by the best solutions found in each run. The parameters of the
PGPC system are given in Table 5.1, a tree-based GP algorithm with dy-
namic depth bloat control (Silva and Costa, 2009), implemented using
Matlab and the GPLAB toolbox (Silva and Almeida, 2003). Figure 5.3
presents some examples, showing the problem data, the CEµ achieved
by PGPC and the standard deviation σ over all runs. The problems are
ordered from the lowest CEµ (easiest problem, depict in Fig. 5.3(a)) to
the highest, CEµ (hardest problem, depict in Fig. 5.3(f)).

Figure 5.4 summarizes PGPC performance over all 500 synthetic
problems in Q. Figure 5.4(a) plots the CEµ for each problem, or-
dered from the lowest to the highest error. On the other hand, Fig-
ure 5.4(b) shows an histogram of PGPC performance, quantifying how
many problems are solved with a particular CEµ. We arbitrarily set a
threshold such that problems in the range 0 ≤CEµ ≤ 0.15 are consid-
ered “easy” and the rest are considered to be “hard”. From this per-
spective the plot reveals that randomly generated problems produce a
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Figure 5.3: The scatter plots show examples of synthetic classification
problems, specifying the CEµ and standard deviation σ achieved by
PGPC. These ordered from the lowest CEµ (easiest depict in Fig. 5.3(a))
to the highest CEµ (hardest depict in Fig. 5.3(f)).

biased distribution, where most problems are easy to solve. Since we
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Table 5.1: Parameters for the PGPC algorithm.

Parameter Description

Population size 200 individuals
Generations 200 generations
Initialization Ramped half-and-half,

with 6 levels of maximum depth
Operator probabilities Crossover pc = 0.8; Mutation pµ = 0.2
Function set

{
+,−,∗,/,√,sin,cos, log,xy , | · |, if

}
Terminal set {υ1, ...,υi , ...,υP } where each υi is a

dimension of the data patterns υ ∈RP

Bloat control Dynamic depth control
Initial dynamic depth 6 levels
Hard maximum depth 20 levels
Selection Tournament, size 3
Survival Keep best elitism
Training Data 70%
Testing Data 30%
Runs 30

intend to use this set to pose a supervised learning task, this would
induce an unwanted bias. Therefore, we subsample Q to get a more
balanced distribution over CEµ. The new set consists of 300 problems,
and Figure 5.5 summarizes PGPC performance over this new set Q′.
Notice that the performance plot for Q′ ⊂ Q is similar to the one ob-
tained for Q (see Figure 5.5(a)), but now the distribution over CEµ is
flat (Figure 5.5(b)), providing a more balanced learning set.

5.3 Preprocessing

Previous work has found that PEP models can predict GP perfor-
mance accurately for small scale synthetic problems (Graff and Poli,
2008, 2010, 2011; Martı́nez et al., 2012; Trujillo et al., 2011a, 2012,
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Figure 5.4: Performance of PGPC over all 500 synthetic problems in Q;
where: (a) shows the CEµ for each problem, ordered from the easiest to
the hardest; and (b) shows the histogram over CEµ.
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Figure 5.5: Performance of PGPC over all 300 synthetic problems in
Q′ ⊂ Q; where: (a) shows the CEµ for each problem, ordered from the
easiest to the hardest; and (b) shows the histogram over CEµ.

2011b,c), but accuracy degrades for real-world problems with high di-
mensional data (Graff et al., 2013a,b). This is due to the fact that feature
extraction (the next step in the PEP approach) fails at extracting mean-
ingful information in high dimensional spaces (Graff et al., 2013a,b).
To deal with this issue, we apply a dimensionality reduction prepro-
cessing of the problem data using PCA (Duda et al., 2000). We propose
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5.4 feature extraction

to take the first m principal components to represent the data of each
problem. In particular, we set m = 2 in all experiments reported here.
In this way, all problems are reduced to the same number of dimensions
used in the synthetic training set.

5.4 Feature Extraction

The goal of this step is to extract a set of descriptive measures from
each problem. In this work, we use a subset of the features proposed
in Sohn (1999) and Ho and Basu (2002). Those works attempted to
develop meta-representations of classification problems. A wider set of
features was previously tested in Trujillo et al. (2011a, 2012, 2011b,c),
but the present work only uses those features that showed the highest
correlation with CEµ. We also propose three new descriptors based on
the Canberra distance; each measure is presented next.

geometric mean (sd) measures the homogeneity of covariances
(Michie et al., 1994; Sohn, 1999). This quantity is related to a test of
the hypothesis that all populations have a common covariance struc-
ture; i.e.. to the hypothesis H0 :

∑
1 =

∑
2, which can be tested via Box’s

M test statistic (MTS) (Anderson, 1958), that can be re-expressed as

SD = exp

 MTS

m
∑C
i=1(ni − 1)

 (5.9)

where C is the number of classes, ni is the number of the instances for
i-th class and m is the number of dimensions. The SD is strictly greater
than unity if the covariances differ, and is equal to unity if and only if
the MTS is zero.

feature efficiency (fe) measures the amount by which each fea-
ture dimension contributes to the separation of both classes. This mea-
sure is computed for the i − th dimension by

FEi =

(
1−

ηi
tp

)
(5.10)
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where ηi represent the number of points inside the overlapping region
and tp is the total number of sample points; as seen in Figure 5.6(a). Fi-
nally, we define FE =max({FEi}) with i = [1,m] for any given problem
with m dimensions.

class distance ratio (cdr) compares the dispersion within the
classes to the gap between the classes (Ho and Basu, 2002). For each
data sample, compute the Euclidean distance to its nearest neighbor
within the class (intraclass distance) and nearest-neighbor from the
other class (interclass distance), as shown in Figure 5.6(b). The CDR
is the ratio of the averages of all intraclass and interclass distances.

volume of overlap region (vor) provides an estimate of the
amount of overlap between both classes in feature dimension space (Ho
and Basu, 2002). The VOR is computed by finding, for each dimension,
the maximum and minimum value of each class and then calculating
the length of the overlap region. The length obtained from each dimen-
sion is then multiplied to measure the overlapping region, as depicted
in Figure 5.6(c). The VOR is zero when there is at least one dimension
in which the two classes do not overlap.

canberra distance (cd) provides a numerical measure of the dis-
tance between pairs of points in a vector space. Suppose a problem
has m feature dimensions, we take a rank statistic of the samples of
each class, call it υi for class 1 and νi for class 2, for the i-th dimen-
sion. This produces two vectors −→υ and −→ν , such that −→υ = (υ1, ...,υm)
and −→ν = (ν1, ...,νm). The CD is given by

CD(−→υ , −→ν ) = 1
m

m∑
i=1

|υi − νi |
|υi |+ |νi |

. (5.11)

In this work, we use the CD to describe the distance between both
classes using three rank statistics: (1) CD-1 uses the 1st quartile; (2)
CD-2 uses the median; and (3) CD-3 uses the 3rd quartile.

The set of descriptive measures discussed above helps to minimize
the information about each problem. Now, analyzing the algorithmic
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Figure 5.6: These figures depict the complexity features used to de-
scribe each classification problem as suggested in Ho and Basu (2002),
where: (a) Feature Efficiency (FE); (b) Class Distance Ratio (CDR); and
(c) Volume of Overlap Region (VOR).

complexity (big O notation) of the measures, these do not represent a
significant computational cost. For instance, the FE, VOR, CD-1, CD-2
and CD-3 features mainly depend on a sorting process, which can have
a complexity of O(nlogn) where n is the number of instances of the
problem. Moreover, the SD relies on computing the covariance matrix
of the data which has a complexity of O(n2). Similarly, to compute the
CDR feature we need to do all pairwise comparisons, which also has a
complexity of O(n2).

Figure 5.7 provides a visual description of the descriptive power of
each feature. The figure shows scatter plots where each point corre-
sponds to a single problem p ∈ Q′, the x-axis is a particular feature (SD,
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(a) SD: ρ = −0.42
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(b) FE: ρ = −0.78
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(c) CDR: ρ = −0.62
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(d) VOR: ρ = 0.72
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(e) CD-1: ρ = −0.62
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(f) CD-2: ρ = −0.03
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(g) CD-3: ρ = −0.61

Figure 5.7: Scatter plots show the relationship between the CEµ (x-axis)
and each descriptive feature (y-axis) for all problems p ∈ Q′, where ρ
specifies Pearson’s correlation coefficient.

FE, CDR, VOR, CD-1, CD-2 and CD-3) and the y-axis is the associated
CEµ. The legend of each plot also gives the Pearson’s correlation coeffi-
cient ρ. It is evident that all of the chosen features are correlated with
PGPC performance, in particular FE, VOR, CDR, CD-1 and CD-3 show
the highest correlation.
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5.5 supervised learning of pep models

5.5 Supervised Learning of PEP Models

It is now possible to pose a symbolic regression problem using the
set T = {(βi ,CEµi)}with i = 1, .., |Q′ |, where the goal is to evolve a model
K that can predict each CEµi using βi as input. Previous works have
used several types of linear models (Graff and Poli, 2011; Martı́nez
et al., 2012; Trujillo et al., 2011a, 2012, 2011b,c), but (Trujillo et al.,
2011a,b,c) showed that non-linear models evolved with GP achieved
higher prediction accuracy.

Therefore, in this work we use a tree-based GP, configured with the
parameters given in Table 5.2. Three versions of the problem are posed,
each with a different terminal set defined as subsets of all extracted
features (4F, 5F, 7F) as specified in Table 5.3. Set 4F uses the features
with the four highest correlation coefficients (FE, CDR, VOR and CD-1),
set 5F uses the features with the five highest correlation coefficients (SD,
FE, CDR, VOR and CD-1), and 7F uses all of the seven features. The
function set is defined as F =

{
+,−,∗,/,√,sin,cos, log,xy , | · |, if

}
. Finally

the fitness function is computed by the root mean squared error (RMSE)
between the predicted CE and the true CEµi , given by

f (K) =

√√√√√√√ n∑
i=1

(K(βi)−CEµi)2

n
. (5.12)

5.6 Testing the PEP models

For each version of the symbolic regression problem defined above
(with different feature sets), we performed 100 runs using two different
test scenarios: (1) train and test the PEP models using only synthetic
problems; and (2) train with synthetic problems and test with real-
world problems. In the first scenario, we use 70% of the problems for
training and the rest for testing, generating a random partition of the
set of problemsQ′ for each run. This is the simplest scenario, since both
the training and testing problems are generated in the same manner.
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pep: predictor of expected performance

Table 5.2: Parameters for the GP used to derive PEP models for PGPC
algorithm.

Parameter Description

Population size 200 individuals
Generations 100 generations
Initialization Ramped half-and-half,

with 6 levels of maximum depth
Operator probabilities Crossover pc = 0.8; Mutation pµ = 0.2
Hard maximum depth 12 levels
Selection Tournament, size 3
Survival Keep best elitism
Runs 100

Table 5.3: Three different features sets used as terminal elements for
the symbolic regression GP algorithm.

Feature vector β

4F FE, CDR, VOR and CD-1
5F SD, FE, CDR, VOR and CD-1
7F SD, FE, CDR, VOR, CD-1, CD-2 and CD-3

In the second scenario, we test the PEP models trained with synthetic
problems and evaluate their predictions on many real-world datasets,
a more challenging scenario since the real-world problems have high
dimensional data, imbalanced classes and different data distributions.

5.6.1 Testing on Synthetic Classification Problems

Table 5.4 summarizes the performance of the evolved PEPs, show-
ing the median of the RMSE of the best solution found in each run for
the training and testing sets, as well as the RMSE and Pearson’s corre-
lation coefficient ρ of the best solution found. The table presents three
rows of results, one for each feature set (PEP-4F, PEP-5F and PEP-7F).
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5.6 testing the pep models

Table 5.4: Prediction performance of the evolved PEPs applied on the
synthetic problems using each feature set (4F, 5F and 7F, see Table 5.3).
Performance is given based on the RMSE and Pearson’s correlation co-
efficient, with bold indicating the best performance.

median median
training RMSE testing RMSE best RMSE best correlation

PEP-4F 0.0320 0.0375 0.0318 0.9634
PEP-5F 0.0317 0.0362 0.0295 0.9688
PEP-7F 0.0326 0.0364 0.0317 0.9636

The numerical results are encouraging, suggesting that the PEP models
can accurately predict PGPC performance. Moreover, there is a very
small difference between training and testing performance, suggesting
that the PEP models are not overfitted.

Figure 5.8 shows plots in three rows, where in each row we plot
each feature set (PEP-4F, PEP-5F and PEP-7F). The plots on the left-
hand side column show the PCE of the best PEP model and the true
CEµ for all synthetic problems, specifying the RMSE. The plots on the
right-hand side column show the CEµ and PCE as scatter plots, speci-
fying the Pearson’s correlation coefficient ρ. The evolved PEPs produce
accurate predictions with all feature sets.

5.6.2 Testing on Real-World Classification Problems

This section presents the results of testing the best evolved PEPs
to predict the testing error of PGPC on real-world problems. To this
end, twenty-two real-world datasets are chosen from the University of
California Irvine (UCI) machine learning repository (Lichman, 2013),
summarized in Table 5.5. Since our PEPs only consider binary classifi-
cation, we use these datasets to build 40 binary classification problems.
The problems are summarized in Table 5.6, specifying the name of the
dataset and the classes used to define each problem, the number of to-
tal samples and the imbalance percentage of each problem computed
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(a) PEP-4F: RMSE = 0.0318
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(b) PEP-4F: ρ = 0.9634
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(c) PEP-5F: RMSE = 0.0295
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(d) PEP-5F: ρ = 0.9688

50 100 150 200 250 300

0

0.1

0.2

0.3

0.4

0.5

C
la

s
s
if

ic
a
ti

o
n

 E
r
r
o

r

Problem

 

 

CEµ

PCE

(e) PEP-7F: RMSE = 0.0317
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(f) PEP-7F: ρ = 0.9636

Figure 5.8: Figures show for synthetic problems, the performance pre-
diction of the best PEP models evolved with the different feature set,
each row belongs to each feature set: PEP-4F(top), PEP-5F(middle) and
PEP-7F(bottom).

as a−b
c where a and b are respectively the number of samples in the mi-

nority and majority class, and c is the total number of samples. Notice
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Table 5.5: Real-world datasets from the UCI machine learning reposi-
tory used in this work.

No. Problem Classes Dimensions Description

1 Balance scale 3 4 Balance scale weight and distance database.
2 Breast cancer wisconsin 2 8 Original Wisconsin Breast Cancer Database.
3 Breast tissue 6 9 Dataset with electrical impedance measurements

of freshly excised tissue samples from the breast.
4 Cardiotocography 3 23 Fetal cardiotocograms (CTGs) were

automatically processed and the respective
diagnostic features measured.

5 EEG eye state 2 15 All data is from one continuous EEG measurement
with the Emotiv EEG Neuroheadset.

6 Fertility 2 10 100 volunteers provide a semen sample analyzed
according to the WHO 2010 criteria.

7 Glass 6 10 From USA Forensic Science Service; 6 types of glass.
8 Indian liver patient 2 32 This data set contains 416 liver

patient records and 167 non liver patient records.
9 Ionosphere 2 32 Classification of radar returns from the ionosphere.

10 Iris 3 4 The data set contains 3 classes of 50 instances each,
where each class refers to a type of iris plant.

11 Parkinsons 2 22 Oxford Parkinson’s Disease Detection Dataset.
12 Pima indians diabetes 2 8 From National Institute of Diabetes

and Digestive and Kidney Diseases.
13 Retinopathy 2 19 This dataset contains features extracted from

the Messidor image set to predict whether an
image contains signs of diabetic retinopathy or not.

14 Red wine 6 11 The goal is to model wine quality based on
physicochemical tests.

15 Seed 3 7 The examined group comprised kernels belonging
to three different varieties of wheat.

16 Sonarall 2 60 The task is to train a network to discriminate
between sonar signals bounced off a metal cylinder
and those bounced off a roughly cylindrical rock.

17 Tae 3 5 The data consist of evaluations of teaching
performance; scores are “low”, “medium”, or “high”.

18 Vertebral-column 2C 2 6 Biomedical data set built by Dr. Henrique da Mota.
19 Vertebral-column 3C 3 6 Biomedical data set built by Dr. Henrique da Mota.
20 White wine 6 11 The goal is to model wine quality based on

physicochemical tests.
21 Wine 3 13 Using chemical analysis determine the origin of wines.
22 Zoo 7 3 Artificial, 7 classes of animals.

that the synthetic problems used to train the PEPs are completely bal-
anced and relatively small problems in terms of number of samples,
while the real-world problems are considerably more varied. In parti-
cular, considering class imbalance Figure 5.9 shows an histogram of the
number of problems with different amounts of imbalance percentage.

Before testing the evolved PEP models, we compute the CEµ
achieved by PGPC using 30 independent runs. PGPC performance is
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Table 5.6: The 40 real-world binary classification problems based on
the UCI datasets.

No. Problem Classes Instances Imbalance %

1 Balance scale 1-3 576 0
2 Breast cancer wisconsin 1-2 699 31
3 Breast tissue 1-2 36 17
4 Breast tissue 1-3 39 8
5 Breast tissue 1-4 37 14
6 Breast tissue 2-3 33 9
7 Breast tissue 2-4 31 3
8 Breast tissue 3-4 34 6
9 Cardiotocography 1-2 1950 70
10 Cardiotocography 1-3 1831 81
11 Cardiotocography 2-3 471 26
12 EEG eye state 1-2 8388 17
13 Fertility 1-2 100 76
14 Glass 1-2 146 4
15 Glass 1-6 99 41
16 Glass 2-6 105 45
17 Indian liver patient 1-2 579 43
18 Ionosphere 1-2 351 28
19 Iris 1-2 100 0
20 Iris 1-3 100 0
21 Iris 2-3 100 0
22 Parkinsons 1-2 195 51
23 Pima indians diabetes 1-2 768 30
24 Red wine 5-6 1319 3
25 Retinopathy 1-2 1151 6
26 Seeds 1-2 140 0
27 Seeds 1-3 140 0
28 Seeds 2-3 140 0
29 Sonarall 1-2 208 7
30 Tae 1-2 99 1
31 Tae 1-3 101 3
32 Tae 2-3 102 2
33 Vertebral column 2C 1-2 310 35
34 Vertebral column 3C 1-2 210 43
35 Vertebral column 3C 1-3 160 25
36 Vertebral column 3C 2-3 250 20
37 White wine 5-6 3655 20
38 Wine 1-2 130 9
39 Wine 1-3 107 10
40 Zoo 1-2 61 34

84



5.6 testing the pep models

0 20 40 60 80 100
0

4

8

12

16

Imbalance Percentage

F
re

c
u

e
n

c
y

IMBALANCED PROBLEMS

1. The PEP models were
trained with balanced
problems.

2. The real-world test
problems show a
varied amount of
imbalanced cases.

Figure 5.9: Histogram of imbalance percentage for the 40 real-world
classification problems.
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Figure 5.10: Performance of PGPC on the 40 real-world classification
problems; where: (a) shows the CEµ for each problem; and (b) shows
the histogram over CEµ.

summarized in Figure 5.10, showing: (a) the CEµ for each problem
and (b) the histogram over CEµ. Figures 5.11 presents scatter plots of
each descriptive feature (x-axis) and the CEµ (y-axis) of each problem,
specifying the corresponding Pearson’s correlation coefficient ρ in the
legend of each plot. The figures show that the best correlated features
with CEµ are FE and CD-1, respectively with ρ values of −0.73 and
−0.71. The rest of the features do not show particularly good correla-
tion values, with SD clearly being the worst.
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(a) SD: ρ = 0.09
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(b) FE: ρ = −0.73
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(c) CDR: ρ = −0.40
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(d) VOR: ρ = 0.43
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(e) CD-1: ρ = −0.71
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(f) CD-2: ρ = −0.46
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(g) CD-3: ρ = −0.30

Figure 5.11: Scatter plots show for the real-world problems the rela-
tionship between the CEµ (x-axis) and each descriptive feature (y-axis).
The legend specifies Pearson’s correlation coefficient ρ.

These results are different to what was observed on the synthetic
problems. While VOR, CDR and CD-3 showed absolute correlation
values above 0.6 on synthetic datasets, they were all below 0.44 on the
real-world problems. This difference was particularly marked for SD,
on synthetic problems the correlation coefficient was −0.42 but on real-
world problems it is 0.09. In fact, only FE and CD-1 showed a good
correlation on both sets.
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Table 5.7: Prediction performance of the evolved PEPs applied on the
real-world problems using each feature set (4F, 5F and 7F, see Table
5.3). Performance is given based on the RMSE and Pearson’s correlation
coefficient, with bold indicating the best performance.

median RMSE best RMSE best correlation

PEP-4F 0.1522 0.0828 0.8634
PEP-5F 0.1583 0.0929 0.8823
PEP-7F 0.1676 0.0930 0.8046

Table 5.7 summarizes the performance of the evolved PEPs applied
on the real-world problems, showing the median of the RMSE of the
best solution found, as well as the RMSE and Pearson’s correlation co-
efficient ρ of the best solution. The table presents three rows of results,
one for each feature set (PEP-4F, PEP-5F and PEP-7F). In this case, the
best performance is achieved by PEP-4F, which was unexpected. How-
ever, if we contrast the results with those achieved on the set of syn-
thetic problems, shown in Table 5.4, a performance drop-off is evident,
based on both median and best performance.

Figure 5.12 shows three rows of plots, one for each feature set (PEP-
4F, PEP-5F and PEP-7F). The figures on the left-hand side column show
the PCE of the best PEP model and the true CEµ for all real-world prob-
lems, specifying the RMSE. The figures on the right-hand side column
show the CEµ and PCE as scatter plots, specifying the Pearson’s corre-
lation coefficient ρ. Again, these figures reveal that the evolved PEP
models provide less accurate prediction on real-world problems.

5.7 Comparative Study of EI and PEP

FDC is a measure for problem difficulty originally proposed for ge-
netic algorithms (GA’s) (Jones and Forrest, 1995) and later extended to
GP (Tomassini et al., 2005). The logic behind FDC proceeds as follows.
Assume that we can compute the genotypic distance between each valid
individual and the (global) optimum to a problem. If this distance is
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(a) PEP-4F: RMSE = 0.0828
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(b) PEP-4F: ρ = 0.8634
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(c) PEP-5F: RMSE = 0.0929
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(d) PEP-5F: ρ = 0.8823
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(e) PEP-7F: RMSE =0.0930
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(f) PEP-7F: ρ = 0.8046

Figure 5.12: Figures show for real-world problems, the performance
prediction of the best PEP models evolved with the different feature
set, each row belongs to each feature set: PEP-4F(top), PEP-5F(middle)
and PEP-7F(bottom).

negatively correlated with the fitness of each individual then the search
problem should be characterized as easy, and it should be characterized
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as difficult if no correlation is detected. Moreover, a problem should be
considered to be deceptive if the correlation is positive. While FDC has
shown to be reliable in many test cases, its more glaring weakness is
that the optimal solution must be known a priori, somewhat not realis-
tic for real-world problems.

Following the same general assumptions of FDC, Vanneschi et al.
(2004) propose the NSC. In the case of NSC, knowledge about the
global optimum is not required. Instead, NSC relies on the concept of
fitness clouds, a scatter plot where for each genotype υ a point is plotted
on a 2-D plane, where the horizontal axis corresponds with the fitness
of υ given by f (υ), and the vertical axis represents the fitness f (ν) of
a neighbouring genotype ν. The hypothesis behind NSC is that the fit-
ness cloud shape provides a meaningful description of the evolvability
of a problem for GP-based search. The NSC is computed by assuming
a piecewise linear relationship between f (υ) and f (ν) for a sample of
ζ individual genotypes and computing the slope of the scatter points
within a set of equally spaced segments of the f (υ) axis. In the orig-
inal implementation, individuals are sampled using the Metropolis-
Hastings algorithm, neighbours are generated using standard sub-tree
mutation, and the representative neighbour ν for each genotype υ is
chosen using tournament selection. The NSC is given in the range of
(−∞,0], where a value of 0 represents a highly evolvable (assumed to
be easy) problem, and a negative NSC indicates a less evolvable (more
difficult) problem.

One way to characterize problem difficulty is to attempt to predict
the expected performance that a GP search will achieve on a given prob-
lem instance, a more direct approach. Following this line of thought,
two approaches have been proposed in GP literature. We will use the
proposal presented in Trujillo et al. (2011a,b,c), where is predict the
performance of a GP-classifier using descriptive features that charac-
terize the geometry of the data distribution in feature space. The PEPs
where built using non-linear GP models.

After reviewing the basic methodology of EI’s and PEP’s, one practi-
cal and computational difference stands out. On the one hand, EI’s use
a very large sampling of the search space to derive an accurate measure.
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In effect, this means that for every new problem instance it is necessary
to perform this costly computational step. However, executing the ac-
tual GP search might in fact be faster. Therefore, the best use of EI’s
would be to characterize a whole class of problems, where the estimate
of search difficulty provided by the EI could generalize to the entire
class of problems.

On the other hand, a PEP model is used quite easily and directly for
each new problem instance. Practically, the only possible bottleneck
would be the computational cost of calculating the set of descriptive
features for each problem. However, in order to learn a new PEP a very
large number of experimental runs must be carried to derive the train-
ing data. Moreover, each PEP is strongly linked to a specific GP system
and implementation, and even small deviations from the configuration
of the GP system might cause the predictive model to break-down.

The goal of the experimental work is to evaluate and compare the
predictive accuracy of a state-of-the-art EI (NSC) and a PEP model for
a GP-based classifier PGPC. To this end, is it necessary:

1. Generate and solve with PGPC the set of synthetic classification
problems using PGPC.

2. Calculate the NSC over all synthetic classification problems.

3. Build the PEP models following the methodology proposed in
Trujillo et al. (2011b,c).

4. Analyze the results.

First, a large set of synthetic classification problems are generated
and solved with PGPC, executing 30 independent runs on each prob-
lem and computing the average classification error as the estimate of
the expected performance of PGPC. To evaluate the performance of
PGPC, 300 two-class classification problems are randomly generated
using Gaussian mixture models (GMM’s), these conform set Q. Then,
for every problem p ∈ Q the average test error of PGPC is computed
from 30 independent runs.
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Second, to compute the NSC on each of the classification problems
in set Q, the approach is quite straightforward, since it is possible to
directly apply the NSC algorithm to every problem. The algorithm de-
scribed in Vanneschi et al. (2004) is used here with the same parameters
except for the total amount of sampled individuals ζ. Whereas in Van-
neschi et al. (2004) ζ = 40,000, here ζ = 10,000, a practical choice to
reduce computation time; however, some informal tests showed that
the results are consistently similar for both values in the group of ex-
periments reported here. Figure 5.13 presents a scatter plot where the
horizontal axis is the average classification error and the vertical axis is
the NSC.
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Figure 5.13: Scatter plot of the average classification error achieved by
PGPC on each problem and the corresponding NSC value. Pearson’s
correlation coefficient ρ = 0.02.

The results clearly suggest that the NSC does not correlate with
PGPC performance, in particular we can see how many problems are
characterized as easy (with NSC equal or close to zero) even when the
performance achieved by PGPC is quite poor. This suggests that an EI
such as the NSC is limited as a predictor of GP performance since it
only considers the frame of reference of the search process; i.e., it can
only provide an approximate measure of the difficulty of the search but
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tells us very little regarding the difficulty of the underlying problem
that the GP is intended to solve.

Third, we show how a PEP estimates the performance of PGPC on
the set of classification problems presented above. The PEP is derived
following the approach described in Trujillo et al. (2011b). The sym-
bolic regression models are tested derived with GP (GP-PEP), reported
to achieve the best results in Trujillo et al. (2011b). In the case of the
GP-PEP models, the problem descriptors are used as terminal elements

T = {SD,VOR,FE,CDR} (5.13)

while the function set is defined as

F =
{
+,−,∗,/,√,sin,cos, log,xy , | · |, if

}
(5.14)

Moreover, fitness is computed by the RMSE calculated on a set of n
training problems, given by

f (K) =

√√√√√√√ n∑
i=1

(K(βi)− εi)2

n
. (5.15)

where βi is the vector of descriptive features and εi is the performance
estimate on a training problem i. Finally, the GP is executed for the set
Q of classification problems which is divided into a training set and a
testing set and 30 runs are executed with different random partitions.

In general, the PEP model exhibits a very good predictions, with
the median error around 5 and 7 percentage points of classification
accuracy. Another look at the predictive accuracy of the PEP models is
shown in the scatter plots of Figure 5.14. In these plots the predictive
classification error is plotted against the average error of PGPC on each
problem, using the best GP-PEP model. It is clear that the prediction
of the PEP models is strongly correlated with the average performance
of PGPC, and the Pearson’s correlation coefficient presented with each
plot confirms this observation.
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Figure 5.14: Scatter plots that show the average performance of PGPC
(x-axis) and the predicted performance of each PEP model (y-axis). The
legend specifies Pearson’s correlation coefficient ρ = 0.86.

Finally, two groups of problem difficulty prediction tools are ana-
lyzed, named Evolvability Indicators and Predictors of Expected Per-
formance. The former group of measures attempt to capture how
amenable the fitness landscape is to a GP, whereas the latter groups
takes as input a set of descriptive features of a problem and produces
as output an estimate of the expected performance of the GP search.
The key lessons of this study are the following. Firstly, while EIs (the
Negative Slope Coefficient is considered) can give a good estimation
of the difficulty of the search problem, they are not necessarily cor-
related with expected performance; Secondly, the results suggest that
PEPs achieve a highly accurate prediction of GP performance.
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6
SPEP: Specialist Predictors of Expected

Performance

The above results are encouraging, but for a real-world application
even small improvements in the quality of the predictions could have
non-negligible effects. Therefore, in this section we propose an ensem-
ble approach using several PEP models, each one referred to as an SPEP.
We propose an ensemble approach for two main reasons. First, previ-
ous works suggest that ensemble-based modeling can improve perfor-
mance in a variety of scenarios (Folino et al., 2010; Zhou, 2012). Sec-
ond, an ensemble approach allows us to obtain two types of predic-
tions, a numerical prediction of expected performance and a categori-
cal or fuzzy prediction based on the chosen ensemble component used
to compute the final prediction. The proposal is depicted in Figure 6.1,
an extension of the basic PEP approach shown in Figure 5.1. However,
in the SPEP approach before computing the PCE for a given problem,
each problem is classified into a specific group using its corresponding
feature vector β. Each group is associated to a particular SPEP in the
ensemble, hence if a problem is classified into the i-th group then the
i-th SPEP is used to compute the predicted PGPC performance on the
test set.

To implement this approach, several design choices must be speci-
fied. First, how to define a meaningful grouping of problems. Second,
train SPEPs that are specialized for each group in order to build the
ensemble. Third, chose the correct SPEP for a particular problem by
determining its group membership. Each of these issues are discussed
next.

95



spep: specialist predictors of expected
performance

���������	���
��������������	���
����� ����������
�����������
�����
�����
���������
����

��������
������������
����

������������������������

����������������

��������

����
�������
���

���
������������
���������	��
�������
������������
���������	��
����

��������
����������������
��������

������������

��
�

��������
�������������
�����

��������������

��������

������������

����������

������������

Figure 6.1: Block diagram showing the proposed SPEP approach. The
proposed approach is an extension of the basic PEP approach of Figure
5.1, with the additional ensemble approach, where problems are first
classified into prespecified groups and based on this a corresponding
specialized model (SPEP) is chosen to compute the PCE of PGPC on the
test set.

6.1 Grouping Problems based on PGPC Performance and Train-

ing SPEPs

The proposal is to group problems based on the performance of
PGPC given by CEµ. This can be seem as a categorical prediction,
where problems are grouped into general groups of different difficulty;
e.g. easy and hard problems. In particular, we propose two different
groupings based on CEµ, using either two or three groups as shown in
Figure 6.2. The groups were chosen in such a way that the number of
(synthetic) problems in each group would be approximately the same,
in this way posing a balanced classification task for the SPEP approach.
Figure 6.2 shows the ranges of PGPC performance for each group and
the number of synthetic problems (Figure 6.2(a)) and real-world prob-
lems (Figure 6.2(b)) that fall within each group. The plots on the top
divide the set of problems into two groups, while the plots on the bot-
tom divide the set of problems into three. Finally, for clarity, since the
two group division requires two SPEPs, we refer to a solution for this
task as an Ensemble-2, while a solution for the three group task is re-
ferred to as an Ensemble-3.
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Figure 6.2: The proposed groupings of classification problems used
with the SPEP approach, showing the ranges of PGPC performance and
the number of problems in each group.

For each group an SPEP is trained using the strategy described
in the previous section for PEPs. Except that instead of using all of
the synthetic problems, each SPEP is trained using the subset of syn-
thetic problems from the corresponding group, as depicted in Figure
6.2. Since we are interested in presenting the best possible prediction
of PGPC performance on real-world problems, we must select the best
predictive models. Therefore, the testing phase is performed using two
subsets of the real-world problems, one for validation and other for
testing.

6.2 SPEP Selection

As depicted in Figure 6.1, in order to choose an SPEP we must first
classify each problem to its corresponding group. This is a straightfor-
ward classification task, solved using each problem’s feature vector β
as the decision variables. Several classification algorithms are tested
(Duda et al., 2000), namely:

1. Euclidean distance classifier (EDC).

2. Mahalanobis distance classifier (MDC).

3. Naive Bayes classifier (NBC).
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4. Support Vector Machine (SVM), with Gaussian radial basis func-
tion kernel and a default scaling factor of 1.

5. K-Nearest Neighbor (KNN), using K = 5 neighbors.

6. Treebagger Classifier (TBC), using 3 trees.

7. Probabilistic Genetic Programming Classifier (PGPC), parame-
ters on Table 5.1.

Moreover, the classification task is posed using different subsets of the
features in β as previously described in Table 5.3. We apply all clas-
sifiers using all subsets of features on both the two-group and three-
group classification tasks.

As done for the SPEP models, in all cases the complete set of syn-
thetic problems Q′ is used to train the classifiers. The testing phase is
performed with two sets, 10% of the real-world problems are used as
a validation set while the remaining 90% of real-world problems are
used for testing. After performing 100 independent runs, the best so-
lution is chosen based on its validation set performance, and methods
are compared based on the performance on the testing set. If several
solutions achieve the best validation set performance, than the final
solution used in the ensemble is randomly chosen.

6.3 Evaluation of SPEP Ensembles

This section presents the performance of the evolved SPEP models,
and the performance of the complete ensembles, using both the true
problem groups (an oracle approach, where the correct SPEP is always
chosen) and the predicted group by the best classifier (a more realistic
testing scenario).

6.3.1 Ensemble-2 Solutions

To visualize the underlying difficulty of choosing the correct SPEP
for a given problem (i.e., determining the group to which it belongs to)
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(a) Synthetic Problems
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(b) Real-World Problems

Figure 6.3: Parallel coordinate plots dividing the set of problems into
two groups, where each coordinate is given by a feature in β. Plots
are shown for synthetic (a) and real-world problems (b). The plots on
the left show a single line for each problem, while the plots on the right
show the median values for each group. For clarity in the parallel plots,
the features SD and CDR were rescaled to values between [0,1].

Figure 6.3 presents a parallel coordinate plot dividing the set of prob-
lems into two groups, where each coordinate is given by a feature in
β. Plots are shown for synthetic (Figure 6.3(a)) and real-world prob-
lems (Figure 6.3(b)). The plots on the left show a single line for each
problem, while the plots on the right show the median values for each
group. For clarity in the parallel plots, the features SD and CDR were
rescaled to values between [0,1].

Table 6.1 summarizes the performance of the best SPEP models
used to build the Ensemble-2 solution. The first column specifies the
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Table 6.1: RMSE of the best evolved SPEP models, using different fea-
ture sets (first column). Performance is given based on training and
testing set. Moreover, each SPEP−i corresponds to the i − th problem
group but is tested on both problem groups, as specified in the fourth
column. Bold indicates the best performance on each group.

SPEP training Testing group testing

4F
SPEP-1 0.0201

1 0.0315
2 0.2470

SPEP-2 0.0341
1 0.1445
2 0.0919

5F
SPEP-1 0.0195

1 0.0380
2 0.1819

SPEP-2 0.0380
1 0.1119
2 0.0832

7F
SPEP-1 0.0212

1 0.0469
2 0.2096

SPEP-2 0.0332
1 0.1586
2 0.1014

feature subset used from β. The second column specifies the evaluated
SPEP, SPEP-1 was trained with synthetic problems from the first group
while SPEP-2 was trained with problems from the second group. The
training RMSE is given in column 3. Every SPEP was tested on real-
world problems from both groups, to illustrate the performance dif-
ference and specialization of each model; this is specified in the forth
column. The final column gives the testing RMSE on each group.

The results show that the SPEP models are specialized to their
groups, achieving error values below 0.1 when tested using problems
from their groups, while performing worse when tested on problems
from the other group. In general, performance on testing set is good,
particularly if we compare with the results achieved by the PEP mod-
els from the preceding section. Finally, performance is similar for all
feature sets when considering testing performance, with the best per-
formance on Group 1 achieved by using the set 4F and the best perfor-
mance on Group 2 with set 5F.
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Table 6.2: Performance on the SPEP selection problem for all tested
classifiers, showing the median classification error from 100 indepen-
dent runs. The performance is given on the training and testing sets.
Bold text indicates the best performance on each feature set.

Algorithm EDC MDC NBC SVM KNN TBC PGPC

4F
training 0.1533 0.0567 0.0200 0.0233 0.0133 0.0067 0.0100
testing 0.2500 0.1389 0.1111 0.1111 0.1389 0.1111 0.0833

5F
training 0.1533 0.0567 0.0200 0.0200 0.0200 0.0067 0.0100
testing 0.2778 0.1389 0.1389 0.1389 0.1667 0.1389 0.1111

7F
training 0.1533 0.0467 0.0200 0.0033 0.0200 0.0067 0.0100
testing 0.2778 0.1389 0.1389 0.2500 0.1667 0.1111 0.0972

Table 6.3: Performance on the SPEP selection problem for all tested
classifiers, showing the classification error of the best solution found,
evaluated over all real-world problems, with bold indicating the best
performance on each feature set.

Feature Set EDC MDC NBC SVM KNN TBC PGPC

4F 0.2500 0.1250 0.1000 0.1000 0.1250 0.1250 0.0500
5F 0.2750 0.1250 0.1250 0.1250 0.1500 0.1250 0.1000
7F 0.2750 0.1250 0.1250 0.2500 0.1500 0.1250 0.0250

The results in Table 6.1 represent the best possible performance if
the correct problem group is chosen, but also confirm that if the cor-
rect group is not chosen than prediction accuracy can decline. Table
6.2 summarizes the performance of all of the tested classifiers for the
two-group case, showing the median classification error achieved on
the training and testing sets. On these tests, PGPC achieves the best
performance based on test error.

Table 6.3 shows the performance of the best classifier obtained from
each method and chosen based on the validation set. In this table per-
formance is given using all real-world problems. Again, PGPC clearly
outperforms all other variants, with the best performance achieved us-
ing feature set 7F with a classification error of 0.0250.
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Table 6.4: Ensemble-2 prediction accuracy using each feature set (4F,
5F and 7F), using the best evolved SPEPs and the best classifiers with
each feature set. Performance is given based on the RMSE and Pearson’s
correlation coefficient when evaluated on the synthetic and real-world
problem sets; with bold indicating the best performance on real-world
problems.

Feature Set Synthetic Real-world
RMSE correlation RMSE correlation

4F 0.0284 0.9709 0.0818 0.8717
5F 0.0302 0.9984 0.0736 0.8981
7F 0.0276 0.9728 0.0897 0.8514

It is now possible to evaluate the performance of the complete
Ensemble-2 solutions, using the best evolved SPEPs and the best clas-
sifier. These results are summarized in Table 6.4, specifying the RMSE
and Pearson’s correlation coefficient when evaluated on the synthetic
and real-world problem sets. These tests show that the Ensemble-2 so-
lutions can achieve low predictive error and a high correlation with the
true PGPC performance, for both synthetic and real-world problems.
In particular, using feature set 5F correlation on synthetic problems is
close to unity, while performance on the real-world problems show the
lowest error and approximately 0.9 correlation.

Focusing on the real-world problems, Figure 6.4 summarizes the
performance of the Ensemble-2 predictors using each feature set (each
row of the figure). The column on the left-hand side shows plots of
the ground truth CEµ of each problem (triangles) and the Ensemble-
2 PCE. These plots show three types of PCE: (1) correctly classified
problems for which the appropriate SPEP was selected (CC-PCE); (2)
misclassified problems for which an incorrect SPEP was selected (MC-
PCE); and (3) for the misclassified problems the oracle SPEP prediction
(O-PCE), which is the PCE produced by the correct SPEP. The column
on the right-hand side of Figure 6.4 presents scatter plots of the true
CEµ and the PCE, using the same notation.
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These plots provide a graphical confirmation of the quality of the
performance prediction. It is important to highlight the impact of a
misclassified problem, shown as a black circle, compared to the predic-
tion on the same problem if the correct SPEP had been chosen (O-PCE).
For all problems for which the correct SPEP was chosen the PCE is
highly correlated with the ground truth with only marginal differences
in most cases.

6.3.2 Ensemble-3 Solutions

Figure 6.5 presents a parallel coordinate plot dividing the set of
problems into three groups, where each coordinate is given by a fea-
ture in β. Plots are shown for synthetic (Figure 6.5(a)) and real-world
problems (Figure 6.5(b)). The plots on the left show a single line for
each problem, while the plots on the right show the median values for
each group. For clarity, features SD and CDR were rescaled to values
between [0,1].

Table 6.5 summarizes the performance of the best SPEP models
used to build the Ensemble-3 solution. The first column, specifies the
feature subset used from β. The second column specifies the evaluated
SPEP. SPEP-1 was trained with synthetic problems from the first group,
SPEP-2 with problems from the second group and SPEP-3 with prob-
lems from the third group. The third column shows the training RMSE,
the fourth column shows the testing group and the final columns shows
the testing RMSE.

Again, the results show that the SPEP models are specialized to
their respective groups. Performance on the testing set is better than
the simple PEP models, but worse than the Ensemble-2 solution pre-
sented before. All feature sets produce similar performance on test-
ing set problems, with the best performance on Group 1 and Group 2
achieved by using set 4F, and the best performance on Group 3 with set
5F.

The results summarized in Table 6.5 represent the best possible per-
formance if the correct problem group is chosen, but also confirm that
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(a) 4F: RMSE = 0.0818
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(b) 4F: ρ = 0.8717
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(c) 5F: RMSE = 0.0736

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Classification Errror

P
r
e
d

ic
te

d
 C

la
s
s
if

ic
a
ti

o
n

 E
r
r
o

r

(d) 5F: ρ = 0.8981
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0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Classification Errror

P
r
e
d

ic
te

d
 C

la
s
s
if

ic
a
ti

o
n

 E
r
r
o

r

(f) 7F: ρ = 0.8514

Figure 6.4: Performance prediction of the best Ensemble-2 solutions
for each feature set: 4F(top), 5F(middle) and 7F (bottom).

if the correct group is not chosen than prediction accuracy can decline.
Table 6.6 summarizes the performance of all of the tested classifiers for
the three-group case, showing the median classification error achieved
on the training and testing sets. On these tests, TBC achieves the best
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(b) Real-World Problems

Figure 6.5: Parallel coordinate plots dividing the set of problems into
three groups, where each coordinate is given by a feature in β. Plots
are shown for synthetic (a) and real-world problems (b). The plots on
the left show a single line for each problem, while the plots on the right
show the median values for each group. For clarity in the parallel plots,
the features SD and CDR were rescaled to values between [0,1].

median performance. Table 6.7 focuses on the performance of the best
classifier evaluated over all real-world problems. Again, TBC outper-
forms all other variants, with the best performance achieved using fea-
ture set 5F with a classification error of 0.1750.

It is now possible to evaluate the performance of the complete
Ensemble-3 solutions, using the best evolved SPEPs and the best clas-
sifier. These results are summarized in Table 6.8, specifying the RMSE
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Table 6.5: RMSE of the best evolved SPEP models, using different fea-
ture sets (first column). Performance is given based on training and
testing set. Moreover, each SPEP−i corresponds to the i − th problem
group but is tested on all problem groups, as specified in column 4.
Bold text indicates best performance on each group.

SPEP training Testing group testing

4F

SPEP3-1 0.0201
1 0.0315
2 0.1312
3 0.2767

SPEP3-2 0.0303
1 0.1883
2 0.0302
3 0.1459

SPEP3-3 0.0264
1 0.3955
2 0.1349
3 0.0532

5F

SPEP3-1
0.0195

1 0.0380
2 0.2076
3 0.1602

SPEP3-2 0.0313
1 0.0931
2 0.0380
3 0.1245

SPEP3-3 0.0294
1 0.2691
2 0.1250
3 0.0525

7F

SPEP3-1
0.0212

1 0.0469
2 0.1723
3 0.2391

SPEP3-2 0.0285
1 0.1096
2 0.0352
3 0.1719

SPEP3-3 0.0277
1 0.1339
2 0.1133
3 0.0531

and Pearson’s correlation coefficient when evaluated on the synthetic
(training) and real-world (validation and testing) problem sets. These
tests show that the Ensemble-3 solutions can achieve low predictive er-
ror and a high correlation with the true PGPC performance, for both
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(b) 4F: ρ = 0.8685
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(c) 5F: RMSE = 0.0775
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(d) 5F: ρ = 0.8707
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(f) 7F: ρ = 0.8736

Figure 6.6: Performance prediction of the best Ensemble-3 solutions
for each feature set: 4F(top), 5F(middle) and 7F (bottom).

synthetic and real-world problems. In all feature sets the correlation
on synthetic problems is above 0.97, while the best performance on the
real-world problems is achieved using set 5F based on RMSE and set
7F based on correlation.
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Table 6.6: Performance on the SPEP selection problem for all tested
classifiers, showing the median classification error from 100 indepen-
dent runs. The performance is given on the training and testing sets,
with bold indicating the best performance on each feature set.

Algorithm EDC MDC NBC SVM KNN TBC PGPC

4F
training 0.2533 0.1967 0.0833 0.1067 0.0467 0.0167 0.0633
testing 0.4722 0.3056 0.3889 0.3611 0.3056 0.2778 0.3611

5F
training 0.2500 0.1933 0.0833 0.1033 0.0533 0.0200 0.0667
testing 0.5000 0.3056 0.4167 0.3611 0.3333 0.3056 0.3333

7F
training 0.2467 0.1867 0.0800 0.0533 0.0567 0.0167 0.0667
testing 0.5000 0.3056 0.3889 0.4444 0.3333 0.3333 0.3333

Table 6.7: Performance on the SPEP selection problem for all tested
classifiers, showing the classification error of the best solution found,
evaluated over all real-world problems, with bold indicating the best
performance on each feature set.

Feature Set EDC MDC NBC SVM KNN TBC PGPC

4F 0.4750 0.3000 0.4000 0.3500 0.3000 0.2250 0.2500
5F 0.5000 0.3000 0.4250 0.3500 0.3250 0.1750 0.2500
7F 0.5000 0.3000 0.3750 0.4500 0.3250 0.2500 0.3000

Focusing on the real-world problems, Figure 6.6 summarizes the
performance of the Ensemble-3 predictors using each feature set (each
row of the figure). These plots illustrate the performance of the
achieved prediction. As in the Ensemble-2 case, it is important to high-
light the impact of misclassified problems (shown as a black circle)
compared to the prediction on the same problem if the correct SPEP
had been chosen (O-PCE). In this case we can see more misclassifica-
tions. The reason is evident in Figure 6.5, since Group 2 and Group
3 are not so easily differentiated. However, the impact of the mis-
classified problems is not as large as it is for the Ensemble-2 solution,
given the comparatively similar RMSE of both the Ensemble-3 and the
Ensemble-2 solutions.
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Table 6.8: Ensemble-3 prediction accuracy using each feature set (4F,
5F and 7F), using the best evolved SPEPs and the best classifiers with
each feature set. Performance is given based on the RMSE and Pearson’s
correlation coefficient when evaluated on the synthetic and real-world
problem sets; with bold indicating the best performance on real-world
problems.

Feature Set Synthetic Real-world
RMSE correlation RMSE correlation

4F 0.0288 0.9704 0.0808 0.8685
5F 0.0300 0.9687 0.0775 0.8707
7F 0.0285 0.9714 0.0786 0.8736
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7

Discussion

This research presents three approaches towards solving the perfor-
mance prediction problem using the general PEP approach: a single
PEP, an Ensemble-2 solution (2 SPEPs) and an Ensemble-3 solution (3
SPEPs). Table 7.1 presents a comparison of the best results of each solu-
tion evaluated on the real-world test cases. While all solutions achieve
comparable results, it is clear that the Ensemble-2 solution achieves
the lowest RMSE and the highest correlation, particularly when us-
ing set 5F. These results provide two important insights. First, that
the ensemble approach is justified in this domain, with both ensem-
bles outperforming the single PEP models. Second, that grouping the
problem into useful subsets based on performance can be solved us-
ing two broad categories, what might be considered as easy and difficult
problems. However, differentiating problems further becomes difficult
given the underlying distribution of problems within feature space, as
shown in Figure 6.5 and confirmed by the lower performance of the
Ensemble-3 solution.

Starting with the relative importance of each feature used to pre-
dict performance. Since all PEPs and SPEPs where generated using
symbolic regression with GP, we use statistics over the GP runs to mea-
sure the importance of each feature. Figure 7.1 shows two plots that
quantify the frequency of feature use when the models were evolved
using the complete feature set (7F) over 100 independent runs. Figure
7.1(a) is a bar plot where the frequency is given by summing the num-
ber of times that each feature appeared as a terminal element in the
best symbolic regression solutions from each run. Figure 7.1(b) plots
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Table 7.1: A comparison of each predictor approach; where bold indi-
cates best performance.

PEP SPEP Ensemble-2 SPEP Ensemble-3
RMSE correlation RMSE correlation RMSE correlation

4F 0.0828 0.8634 0.0818 0.8717 0.0808 0.8685
5F 0.0929 0.8823 0.0736 0.8981 0.0775 0.8707
7F 0.0930 0.8046 0.0897 0.8514 0.0786 0.8736
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Figure 7.1: Feature selection by the symbolic regression GP used to
evolve all PEP and SPEP models, showing usage frequency over 100
runs: (a) bar plot of the total number of times that each feature ap-
peared as a terminal element in the best models; and (b) median of the
number of times that each feature appeared in each tree.

the median of the number of times that each feature appears in the best
solution from each run. In this plot each line corresponds to either a
single PEP or a particular SPEP from each ensemble; for instance, for
the Ensemble-2 solutions there are two SPEPs labeled as Ensemble-2-1
and Ensemble-2-2, and similarly for the Ensemble-3 models. Notice
that in this plot the lines for SPEP Ensemble-2-1 and SPEP Ensemble-
3-1 overlap since they correspond to the same problem group.

Figure 7.1 reveals some interesting facts of how the symbolic re-
gression system performs feature selection. As shown in Figure 5.11,
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the features with higher correlation to PGPC performance are FE, VOR,
CDR and CD-1, in that order. However, if we consider all evolved mod-
els (Figure 7.1(a)) FE is not the most widely used feature, the evolved
models consistently select VOR and CDR at a higher frequency. On the
other hand, the less correlated features SD, CD-2 and CD-3 are indeed
used less by GP.

If we consider feature frequency in finer detail by comparing the
frequency in the PEP models with the frequency in each SPEP, some
interesting trends appear, as shown in Figure 6.5(b). In this case it is
clear that some features are better predictors of PGPC performance on
particular problem groups. For instance, CDR and VOR are the most
used by the PEP models. On the other hand, FE is used with a higher
frequency when predicting performance on easier problems (Ensemble-
2-1, Ensemble-3-1) than for the hardest problems (Ensemble-3-3). This
is also the case for CDR and slightly for CD-2. Conversely, while CD-3
is rarely used in PEP models, it appears to be very useful in predict-
ing performance on the most difficult problems (Ensemble-3-3) and
the easiest (Ensemble-2-1 and Ensemble-3-1) problems.

It is also instructive to determine if the dimensionality reduction
applied as preprocessing has a negative effect with regards to perfor-
mance prediction. Our proposal is to use the first two principal compo-
nents of the data, in order to simplify the description of the real-world
problems. However, it is not clear if the percentage of the variance
described by such few components is enough to properly characterize
the problems. To analyze this, Figure 7.2 presents scatter plots of all
the real-world problems p ∈ Q′, showing the percentage of the total
variance of the data explained by the first two principal components
(x-axis) and the prediction error (PE) (y-axis) computed as the absolute
difference between CEµ and PCE. In particular, Figure 7.2(a) is based
on the PEP-4F model while Figure 7.2(b) is based on the SPEP-2-5F
model. The legend of each plot specifies the computed Pearson’s cor-
relation coefficient ρ between both measures. Notice that there is no
significant correlation, suggesting that the accuracy of the models does
not suffer from the proposed preprocessing.
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(a) PEP-4F: ρ = −0.16
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(b) SPEP-2-5F: ρ = −0.08

Figure 7.2: Scatter plots show the relationship between the percentage
of the total variance explained by two principal components (x-axis)
and the prediction error (y-axis), for all problems p ∈ Q′, where the
prediction error is the absolute difference between the CEµ and PCE,
figure on the left show the PEP-4F model and figure on the right SPEP-
2-5F, where ρ specifies Pearson’s correlation coefficient.

Finally, an implicit goal of the PEP and SPEP models is to obtain
accurate performance predictions in a fraction of the time required to
obtain those same estimates by actually performing the GP runs. Prag-
matically, one way to validate if this goal is achieved is to calculate
the running time for all problems, based on the employed PGPC im-
plementation and the complete SPEP process. These experiments were
conducted using MATLAB and the GPLAB toolbox (Silva and Almeida,
2003) running on a PC with Ubuntu 12.04 LTS using an Intel RXeon(R)
CPU E3-1270 v3 @ 3.50GHz x 8 processor with 15.6 GB of RAM. In
these tests, the minimum amount of time required to compute CEµ
(30 runs of PGPC) was 3360.96 seconds, while the maximum amount
of time required to compute the PCE (running the SPEP process) was
11.22 seconds. These results clearly show that PEP and SPEP models
can be used in real-world scenarios to obtain both accurate and efficient
estimations of GP performance 1.

1 It is important to state that our PGPC and SPEP implementations were not imple-
mented in any optimal way and that running times might be different.
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Conclusions

This work presents three main contributions. First, extensions of
the PEP approach originally proposed in Trujillo et al. (2011b,a,c), by
adding new descriptive measures and testing the PEP models built with
synthetic classification problems over a more challenging scenario, per-
formance prediction on real-world classification problems with differ-
ent dimensions and class imbalance. To achieve the latter we included
a preprocessing step for dimensionally reduction, something that pre-
vious proposals lacked. Second, the proposed models predict the per-
formance of the GP classifier when they are evaluated on the test set of
fitness cases, while previous works focused on predicting training per-
formance. For real-world scenarios, predicting the test performance of
a learning algorithm is more relevant since overfitting can appear on
difficult problem instances. Third, this work presents a new proposal
using an ensemble of SPEPs, where the problems are separated into
groups and specialized models were built for each group, improving
the prediction accuracy on unseen real-world problems.

The main conclusions derived from this work are the following.
First, the proposed dimensionality reduction was successful, it allowed
the system to learn the predictive models using simple 2D synthetic
problems and apply them on real-world problems with considerably
more dimensions. Second, the evolved PEP and SPEP models were able
to accurately predict PGPC performance on imbalanced datasets, with-
out the need of using imbalanced data during the training phase. Third,
the new descriptive measures proposed in this work (CD-1, CD-2, CD-
3) complemented the problem descriptors used in previous works to
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help improve predictive accuracy. Some of the proposed descriptors
(CD-1) were among the most correlated with PGPC performance; their
usefulness was confirmed when analyzing the feature selection per-
formed by GP. However, it’s important to note that all descriptors were
used in most evolved PEPs, even if some descriptors exhibited very
small amounts of correlation with PGPC performance. Finally, our en-
semble proposal provides two general perspectives of the prediction
task: categorical and numerical prediction. Where, a categorical pre-
diction is used to select specific SPEPs, while the numerical prediction
is given by the chosen SPEP. While not explored in this work, the cate-
gorical prediction might be sufficient for some applications, such as in
fuzzy inference systems.

Finally, possibles future work derived from this research includes
the following. The problem descriptors used in this work produced
good results, but defining the optimal set of descriptors is still an open
question. We will also use this methodology for many classifiers, de-
riving one PEP for each classifier, thus allowing us to create an expert
system for classifier selection. Another possibility is to use the PEPs
within a wrapper approach, where the PEP model could be used as
a surrogate fitness function for GP-based classifiers. Moreover, these
methodologies could be extended to predict the performance of a GP-
based symbolic regression system, building PEP models using a set of
descriptive measures that can characterize symbolic regression prob-
lems accurately. To do so, a proper dimensionality reduction step must
be developed.

116



Bibliography

Altenberg, L. (1994). The evolution of evolvability in genetic programming,
pages 47–74. MIT Press, Cambridge, MA, USA.

Altenberg, L. (1997). Fitness distance correlation analysis: An instruc-
tive counterexample. In In Proceedings of the Seventh International
Conference on Genetic Algorithms, pages 57–64. Morgan Kaufmann.

Anderson, T. W. (1958). Introduction to multivariate statistical analysis.
John Wiley & Sons, Inc., New York, NY, USA.

Angeline, P. J. (1997). Subtree crossover: Building block engine or
macromutation? In Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B.,
Garzon, M., Iba, H., and Riolo, R. L., editors, Genetic Programming
1997: Proceedings of the Second Annual Conference, pages 9–17, Stan-
ford University, CA, USA. Morgan Kaufmann.

Bentley, P. J. (2000). “Evolutionary, my dear Watson” Investigating
Committee-based Evolution of Fuzzy Rules for the Detection of Sus-
picious Insurance Claims. In Genetic and Evolutionary Computation
Conf.(GECCO-2000), pages 702–709.

Clergue, M., Collard, P., Tomassini, M., and Vanneschi, L. (2002). Fit-
ness distance correlation and problem difficulty for genetic program-
ming. In GECCO 2002: Proceedings of the Genetic and Evolutionary
Computation Conference, New York, USA, 9-13 July 2002, pages 724–
732.

Derrac, J., Garcı́a, S., Molina, D., and Herrera, F. (2011). A practical
tutorial on the use of nonparametric statistical tests as a methodol-
ogy for comparing evolutionary and swarm intelligence algorithms.
Swarm and Evolutionary Computation, 1(1):3–18.

117



bibliography

Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern Classification
(2Nd Edition). Wiley-Interscience.

Eggermont, J., Kok, J. N., and Kosters, W. A. (2004). Genetic program-
ming for data classification: partitioning the search space. In Pro-
ceedings of the 2004 ACM symposium on Applied computing, SAC ’04,
pages 1001–1005, New York, NY, USA. ACM.

Eiben, A. E. and Smith, J. E. (2003). Introduction to Evolutionary Com-
puting. SpringerVerlag.

Folino, G., Pizzuti, C., and Spezzano, G. (2010). An ensemble-based
evolutionary framework for coping with distributed intrusion detec-
tion. Genetic Programming and Evolvable Machines, 11(2):131–146.

Friedman, M. (1937). The Use of Ranks to Avoid the Assumption of
Normality Implicit in the Analysis of Variance. Journal of the Ameri-
can Statistical Association, 32(200):675–701.
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Gonçalves, I. and Silva, S. (2013). Balancing learning and overfitting
in genetic programming with interleaved sampling of training data.
In Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A., and Hu, B., edi-
tors, Genetic Programming, volume 7831 of Lecture Notes in Computer
Science, pages 73–84. Springer Berlin Heidelberg.

119



bibliography

Graff, M., Escalante, H. J., Cerda-Jacobo, J., and Gonzalez, A. A. (2013a).
Models of performance of time series forecasters. Neurocomputing,
122(0):375 – 385. Advances in cognitive and ubiquitous computing
Selected papers from the Sixth International Conference on Innova-
tive Mobile and Internet Services in Ubiquitous Computing (IMIS-
2012).

Graff, M. and Poli, R. (2008). Practical model of genetic programming’s
performance on rational symbolic regression problems. In EuroGP,
pages 122–133.

Graff, M. and Poli, R. (2010). Practical performance models of algo-
rithms in evolutionary program induction and other domains. Artif.
Intell., 174(15):1254–1276.

Graff, M. and Poli, R. (2011). Performance models for evolutionary pro-
gram induction algorithms based on problem difficulty indicators. In
Proceedings of the 14th European conference on Genetic programming,
EuroGP’11, pages 118–129, Berlin, Heidelberg. Springer-Verlag.

Graff, M., Poli, R., and Flores, J. J. (2013b). Models of performance of
evolutionary program induction algorithms based on indicators of
problem difficulty. Evolutionary Computation, 21(4):533–560.

Guo, H., Jack, L., and Nandi, A. (2005). Feature generation using
genetic programming with application to fault classification. Sys-
tems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,
35(1):89–99.

He, J., Chen, T., and Yao, X. (2015). On the easiest and hardest
fitness functions. Evolutionary Computation, IEEE Transactions on,
19(2):295–305.

Hengpraprohm, S. and Chongstitvatana, P. (2008). A genetic program-
ming ensemble approach to cancer microarray data classification. In
Innovative Computing Information and Control, 2008. ICICIC ’08. 3rd
International Conference on, pages 340–340.

120



bibliography

Ho, T. K. and Basu, M. (2002). Complexity measures of supervised
classification problems. IEEE Trans. Pattern Anal. Mach. Intell.,
24(3):289–300.

Holm, S. (1979). A simple sequentially rejective multiple test proce-
dure. Scandinavian Journal of Statistics, 6:65–70.

Imamura, K., Soule, T., Heckendorn, R., and Foster, J. (2003). Behav-
ioral diversity and a probabilistically optimal gp ensemble. Genetic
Programming and Evolvable Machines, 4(3):235–253.

Jones, T. and Forrest, S. (1995). Fitness distance correlation as a mea-
sure of problem difficulty for genetic algorithms. In Proceedings of
the 6th International Conference on Genetic Algorithms, pages 184–192,
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Kauffman, S. and Levin, S. (1987). Towards a general theory of adaptive
walks on rugged landscapes. Journal of Theoretical Biology, 128(1):11
– 45.

Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge
University Press.

Kinnear, K. E. (1994). Fitness landscapes and difficulty in genetic pro-
gramming. In Proceedings of the First IEEE Conference on Evolutionary
Computing, pages 142–147, Piscataway, NY. IEEE Press.

Kotsiantis, S. B., Zaharakis, I. D., and Pintelas, P. E. (2006). Machine
learning: A review of classification and combining techniques. Artif.
Intell. Rev., 26(3):159–190.

Koza, J. (2010). Human-competitive results produced by genetic pro-
gramming. Genetic Programming and Evolvable Machines, 11(3):251–
284.

Koza, J. R. (1992). Genetic Programming: On the Programming of Comput-
ers by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

121



bibliography

Koza, J. R. (1994). Genetic programming II: automatic discovery of reusable
programs. MIT Press, Cambridge, MA, USA.

Langdon, W. B. and Poli, R. (2002). Foundations of genetic programming.
Springer.

Lasarczyk, C. W. G., Dittrich, P. W. G., and Banzhaf, W. W. G. (2004).
Dynamic subset selection based on a fitness case topology. Evol. Com-
put., 12(2):223–242.

Lichman, M. (2013). UCI machine learning repository.

Malan, K. and Engelbrecht, A. P. (2014). Particle swarm optimisation
failure prediction based on fitness landscape characteristics. In 2014
IEEE Symposium on Swarm Intelligence, SIS 2014, Orlando, FL, USA,
December 9-12, 2014, pages 149–157.

Malan, K. M. and Engelbrecht, A. P. (2013). A survey of techniques for
characterising fitness landscapes and some possible ways forward.
Inf. Sci., 241:148–163.

Martı́nez, Y., Trujillo, L., Naredo, E., and Legrand, P. (2014). A compar-
ison of fitness-case sampling methods for symbolic regression with
genetic programming. In Tantar, A.-A. et al., editors, EVOLVE - A
Bridge between Probability, Set Oriented Numerics, and Evolutionary
Computation V, volume 288 of Advances in Intelligent Systems and
Computing, pages 201–212. Springer International Publishing.

Martı́nez, Y., Naredo, E., Trujillo, L., and López, E. G. (2013). Searching
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A
No Free Lunch Theorems (NFL)

Broadly speaking, there are two no free lunch theorems. One
for supervised machine learning Wolpert (1996) and one for
search/optimization (Wolpert and Macready, 1997). For an overview
of the (no) free lunch and associated theorems, see David Wolpert’s
What does dinner cost?

a.1 No Free Lunch for Supervised Machine Learning

Hume (1739–1740) pointed out that even after the observation of
the frequent or constant conjunction of objects, we have no reason
to draw any inference concerning any object beyond those of which
we have had experience. More recently, and with increasing rigour,
Mitchell (1980), Schaffer (1994) and Wolpert (1996) showed that bias-
free learning is futile.

Wolpert (1996) shows that in a noise-free scenario where the loss
function is the misclassification rate, if one is interested in off-training-
set error, then there are no a priori distinctions between learning algo-
rithms.

More formally, where
T = training set;
I = number of elements in training set;
ν = target input-output relationships;
h= hypothesis (the algorithm’s guess for ν made in response to T);
L= off-training-set loss associated with ν and h (generalization error)
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no free lunch theorems (nfl)

all algorithms are equivalent, on average, by any of the following
measures of risk: E(L |T),E(L | I),E(L | ν,T) or E(L | ν, I).

How well you do is determined by how aligned your learning algo-
rithm P (h |T) is with the actual posterior, P (ν |T).

Wolpert’s result, in essence, formalizes Hume, extends him and
calls the whole of science into question.

a.2 No Free Lunch for Search/Optimization

The no free lunch theorem for search and optimization (Wolpert
and Macready, 1997) applies to finite spaces and algorithms that do
not resample points. All algorithms that search for an extremum of a
cost function perform exactly the same when averaged over all possible
cost functions. So, for any search/optimization algorithm, any elevated
performance over one class of problems is exactly paid for in perfor-
mance over another class.
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