Skip to main content

Cartesian Genetic Programming: Some New Detections

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 439))

Included in the following conference series:

  • 1531 Accesses

Abstract

In this paper, we propose a variant of the fitness function for Cartesian Genetic Programming, called CGP-nMean. Besides, we also analyze systematically the dependence of this method on its experimental parameters to find the relationship between them and to define what is the best configuration. In order to evaluate the effectiveness of the proposed approach, we run experiments on eighteen symbolic regression problems. The experimental results show that (1) the generalizability of the learned model by CGP-nMean is significantly better than that of standard CGP on the most of tested problems; (2) the performance of CGP is significantly affected by experimental parameters, and controlling these parameters will give us the best configuration of CGP-nMean (CGP-nMean(Best)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller, J.F., et al.: An empirical study of the efficiency of learning boolean functions using a cartesian genetic programming approach. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1135–1142 (1999)

    Google Scholar 

  2. Miller, J.F., Thomson, P., Fogarty, T.: Designing electronic circuits using evolutionary algorithms. arithmetic circuits: a case study. In: Genetic Algorithms and Evolution Strategies in Engineering and Computer Science, pp. 105–131 (1997)

    Google Scholar 

  3. Miller, J.F.: Cartesian genetic programming. In: Cartesian Genetic Programming, pp. 17–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17310-3_2

  4. Miller, J.F.: Cartesian genetic programming: its status and future. Genet. Program. Evolvable Mach. 21, 129–168 (2019). https://doi.org/10.1007/s10710-019-09360-6

    Article  Google Scholar 

  5. Harding, S., Leitner, J., Schmidhuber, J.: Cartesian genetic programming for image processing. In: Genetic Programming Theory and Practice X, pp. 31–44. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6846-2_3

  6. Paris, P.C.D., Pedrino, E.C., Nicoletti, M.C.: Automatic learning of image filters using Cartesian genetic programming. Integrat. Comput.-Aided Eng. 22(2), 135–151 (2015)

    Article  Google Scholar 

  7. Sekanina, L., et al.: Image processing and CGP. In: Cartesian Genetic Programming, pp. 181–215. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17310-3_6

  8. Zafari, F., et al.: Evolving recurrent neural network using cartesian genetic programming to predict the trend in foreign currency exchange rates. Appl. Artif. Intell. 28(6), 597–628 (2014)

    Google Scholar 

  9. Ahmad, A.M., et al.: Breast cancer detection using cartesian genetic programming evolved artificial neural networks. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 1031–1038 (2012)

    Google Scholar 

  10. Ahmad, A.M., Muhammad Khan, G., Mahmud, S.A.: Classification of arrhythmia types using cartesian genetic programming evolved artificial neural networks. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds.) EANN 2013. CCIS, vol. 383, pp. 282–291. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41013-0_29

    Chapter  Google Scholar 

  11. Ahmad, A.M., Muhammad Khan, G., Mahmud, S.A.: Classification of mammograms using cartesian genetic programming evolved artificial neural networks. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) AIAI 2014. IAICT, vol. 436, pp. 203–213. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44654-6_20

    Chapter  Google Scholar 

  12. Ahmad, A.M., Khan, G.M.: Bio-signal processing using cartesian genetic programming evolved artificial neural network (cgpann). In: 2012 10th International Conference on Frontiers of Information Technology, pp. 261–268. IEEE (2012)

    Google Scholar 

  13. Ali, J., et al.: Future clients’ requests estimation for dynamic resource allocation in cloud data center using cgpann. In: 2013 12th International Conference on Machine Learning and Applications, pp. 331–334. IEEE (2013)

    Google Scholar 

  14. Khan, G.M., Khan, S., Ullah, F.: Short-term daily peak load forecasting using fast learning neural network. In: 2011 11th International Conference on Intelligent Systems Design and Applications, pp. 843–848. IEEE (2011)

    Google Scholar 

  15. Khan, G.M., et al.: Electrical load forecasting using fast learning recurrent neural networks. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2013)

    Google Scholar 

  16. Khan, G.M., Zafari, F., Mahmud, S.A.: Very short term load forecasting using Cartesian genetic programming evolved recurrent neural networks (CGPRNN). In: 2013 12th International Conference on Machine Learning and Applications, pp. 152–155. IEEE (2013)

    Google Scholar 

  17. Muhammad Khan, G., Ullah, F., Mahmud, S.A.: MPEG-4 internet traffic estimation using recurrent CGPANN. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds.) EANN 2013. CCIS, vol. 383, pp. 22–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41013-0_3

    Chapter  Google Scholar 

  18. Khan, N.M., Khan, G.M.: Audio signal reconstruction using Cartesian genetic programming evolved artificial neural network (CGPANN). In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 568–573. IEEE (2017)

    Google Scholar 

  19. Picek, S., et al.: Evolutionary algorithms for boolean functions in diverse domains of cryptography. Evol. Comput. 24(4), 667–694 (2016)

    Article  Google Scholar 

  20. Picek, S., et al.: Cryptographic Boolean functions: one output, many design criteria. Appl. Soft Comput. 40, 635–653 (2016)

    Article  Google Scholar 

  21. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)

    Article  Google Scholar 

  22. Wang, Y., Wagner, N., Rondinelli, J.M.: Symbolic regression in materials science. MRS Commun. 9(3), 793–805 (2019)

    Article  Google Scholar 

  23. Thuong, P.T., Hoai, N.X., Yao, X.: Combining conformal prediction and genetic programming for symbolic interval regression. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1001-1008 (2017)

    Google Scholar 

  24. Le, N.: Complexity measures in genetic programming learning: a brief review. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2409–2416. IEEE (2016)

    Google Scholar 

  25. Giacometto, F., et al.: Short term load forecasting using Cartesian genetic programming: an efficient evolutive strategy (2015)

    Google Scholar 

  26. Märtens, M., Kuipers, F., Van Mieghem, P.: Symbolic regression on network properties. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 131–146. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3_9

    Chapter  Google Scholar 

  27. Alyasiri, H., Clark, J.A., Kudenko, D.: Applying cartesian genetic programming to evolve rules for intrusion detection system. In: IJCCI, pp. 176–183 (2018)

    Google Scholar 

  28. Izzo, D., Biscani, F., Mereta, A.: Differentiable genetic programming. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 35–51. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3_3

    Chapter  Google Scholar 

  29. Drahosova, M., Sekanina, L., Wiglasz, M.: Adaptive fitness predictors in coevolutionary Cartesian genetic programming. Evol. Comput. 27(3), 497–523 (2019)

    Article  Google Scholar 

  30. Šikulová, M., Sekanina, L.: Coevolution in cartesian genetic programming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 182–193. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29139-5_16

    Chapter  Google Scholar 

  31. Turner, A.J., Miller, J.F.: Neutral genetic drift: an investigation using Cartesian Genetic Programming. Genet. Program. Evol. Mach. 16(4), 531–558 (2015). https://doi.org/10.1007/s10710-015-9244-6

    Article  Google Scholar 

  32. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)?-arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(3), 1247–1250 (2014)

    Article  Google Scholar 

  33. Mcdermott, J., et al.: Genetic programming needs better benchmarks. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 791–798 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thuong Pham Thi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thi, T.P. (2022). Cartesian Genetic Programming: Some New Detections. In: Arai, K. (eds) Advances in Information and Communication. FICC 2022. Lecture Notes in Networks and Systems, vol 439. Springer, Cham. https://doi.org/10.1007/978-3-030-98015-3_20

Download citation

Publish with us

Policies and ethics