skip to main content
10.1145/3583131.3590472acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article
Open Access

Biological insights on grammar-structured mutations improve fitness and diversity

Published:12 July 2023Publication History

ABSTRACT

Grammar-Guided Genetic Programming (GGGP) employs a variety of concepts from evolutionary theory to autonomously design solutions for a given task. Recent insights from evolutionary biology can lead to further improvements in GGGP algorithms. In this paper, we propose a new mutation approach called Facilitated Mutation (FM) that is based on the theory of Facilitated Variation. We evaluate the performance of FM on the evolution of neural network optimizers for image classification, a relevant task in Evolutionary Computation, with important implications for the field of Machine Learning. We compare FM and FM combined with crossover (FMX) against a typical mutation approach to assess the benefits of the approach. We find that FMX provides statistical improvements in key metrics, creating a superior optimizer overall (+0.5% average test accuracy), improving the average quality of solutions (+53% average population fitness), and discovering more diverse high-quality behaviors (+523 high-quality solutions discovered on average). Additionally, FM and FMX reduce the number of fitness evaluations in an evolutionary run, reducing computational costs. FM's implementation cost is minimal and the approach is theoretically applicable to any algorithm where genes are associated witha grammar non-terminal, making this approach applicable in many existing GGGP systems.

Skip Supplemental Material Section

Supplemental Material

References

  1. P. Alberch and E. A. Gale. 1985. A developmental analysis of an evolutionary trend: digital reduction in amphibians. Evolution 39, 1 (1 1985), 8--23. Google ScholarGoogle ScholarCross RefCross Ref
  2. James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 13, null (feb 2012), 281--305. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. P. M. Brakefield and J. C. Roskam. 2006. Exploring Evolutionary Constraints Is a Task for an Integrative Evolutionary Biology. The American Naturalist 168, S6 (2006), S4--S13. arXiv:https://doi.org/10.1086/509049 PMID: 17109328. Google ScholarGoogle ScholarCross RefCross Ref
  4. Mónica Campillos, Christian Von Mering, Lars Juhl Jensen, and Peer Bork. 2006. Identification and analysis of evolutionarily cohesive functional modules in protein networks. Genome Research 16, 3 (3 2006), 374--382. Google ScholarGoogle ScholarCross RefCross Ref
  5. Pedro Carvalho. 2023. AutoLR Facilitated Mutation Grammar. https://github.com/soren5/autolr/blob/master/grammars/adaptive_autolr_grammar_mutate_level.txtGoogle ScholarGoogle Scholar
  6. Pedro Carvalho. 2023. AutoLR MNIST Model. https://github.com/soren5/autolr/blob/master/models/json/mnist_model.jsonGoogle ScholarGoogle Scholar
  7. Pedro Carvalho. 2023. AutoLR Original Grammar. https://github.com/soren5/autolr/blob/master/grammars/adaptive_autolr_grammar_original.txtGoogle ScholarGoogle Scholar
  8. Pedro Carvalho, Nuno Lourenço, and Penousal Machado. 2022. Evolving Adaptive Neural Network Optimizers for Image Classification. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 13223 LNCS (2022), 3--18. Google ScholarGoogle ScholarCross RefCross Ref
  9. Pedro Carvalho, Jessica Mégane, Nuno Lourenço, and Penousal Machado. 2023. Context Matters: Adaptive Mutation for Grammars. In Genetic Programming: 26th European Conference, EuroGP 2023, Held as Part of EvoStar 2023, Brno, Czech Republic, April 12--14, 2023, Proceedings. Springer, 117--132.Google ScholarGoogle Scholar
  10. Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Yao Liu, Kaiyuan Wang, Cho-Jui Hsieh, Yifeng Lu, and Quoc V Le. 2022. Evolved Optimizer for Vision. In First Conference on Automated Machine Learning (Late-Breaking Workshop). https://openreview.net/forum?id=jK_eS5BxOuuGoogle ScholarGoogle Scholar
  11. Jacob Cohen. 2013. Statistical power analysis for the behavioral sciences. Routledge.Google ScholarGoogle Scholar
  12. Alfonso Ortega de la Puente, Rafael Sánchez Alfonso, and Manuel Alfonseca Moreno. 2002. Automatic Composition of Music by Means of Grammatical Evolution. In Proceedings of the 2002 Conference on APL: Array Processing Languages: Lore, Problems, and Applications (Madrid, Spain) (APL '02). Association for Computing Machinery, New York, NY, USA, 148--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Lars Feuk, Andrew R. Carson, and Stephen W. Scherer. 2006. Structural variation in the human genome. Nature Reviews Genetics 2006 7:2 7, 2 (2 2006), 85--97. Google ScholarGoogle ScholarCross RefCross Ref
  14. Alexander Gajewski, Kenneth O. Stanley, Jeff Clune, and Joel Lehman. 2019. Evolvability ES: Scalable and direct optimization of evolvability. In GECCO 2019 - Proceedings of the 2019 Genetic and Evolutionary Computation Conference. Association for Computing Machinery, Inc, 107--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. John Gerhart and Marc Kirschner. 2007. The theory of facilitated variation. Proceedings of the National Academy of Sciences of the United States of America 104, SUPPL. 1 (5 2007), 8582--8589. Google ScholarGoogle ScholarCross RefCross Ref
  16. John Gerhart, Christopher Lowe, and Marc Kirschner. 2005. Hemichordates and the origin of chordates. Current Opinion in Genetics I& Development 15, 4 (2005), 461--467. Google ScholarGoogle ScholarCross RefCross Ref
  17. John C Gerhart and Marc W Kirschner. 1997. Cells, Embryos and Evolution. Blackwell Science 1997.Google ScholarGoogle Scholar
  18. Jens Gottlieb and Christoph Eckert. 2000. A Comparison of Two Representations for the fixed charge transportation problem. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 1917 (2000), 345--354. Google ScholarGoogle ScholarCross RefCross Ref
  19. Jens Gottlieb and Günther R. Raidl. 2000. Locality in decoder-based EAs for the multidimensional knapsack problem. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 1829 (2000), 38--52. Google ScholarGoogle ScholarCross RefCross Ref
  20. Frederic Gruau. 1994. Automatic definition of modular neural networks. Adaptive behavior 3, 2 (1994), 151--183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jonathan D. Gruber, Kara Vogel, Gizem Kalay, and Patricia J. Wittkopp. 2012. Contrasting properties of gene-specific regulatory, coding, and copy number mutations in saccharomyces cerevisiae: Frequency, effects, and dominance. PLoS Genetics 8, 2 (feb 2012). Google ScholarGoogle ScholarCross RefCross Ref
  22. Nikolaus Hansen, Dirk V Arnold, and Anne Auger. 2015. Evolution strategies. Springer handbook of computational intelligence (2015), 871--898.Google ScholarGoogle ScholarCross RefCross Ref
  23. Andrea Hartsock and W. James Nelson. 2008. Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton. Biochimica et Biophysica Acta (BBA) - Biomembranes 1778, 3 (2008), 660--669. Google ScholarGoogle ScholarCross RefCross Ref
  24. Martin Hemberg, Una-May O'Reilly, Achim Menges, Katrin Jonas, Michel da Costa Gonçalves, and Steven R Fuchs. 2008. Genr8: Architects' experience with an emergent design tool. In The Art of Artificial Evolution. Springer, 167--188. Google ScholarGoogle ScholarCross RefCross Ref
  25. Harald Hutter, Bruce E Vogel, John D Plenefisch, Carolyn R Norris, Rui B Proenca, John Spieth, Chaobo Guo, Surjeet Mastwal, Xiaoping Zhu, Jochen Scheel, et al. 2000. Conservation and Novelty in the Evolution of Cell Adhesion and Extracellular Matrix Genes. Science 287, 5455 (2000), 989--994. Google ScholarGoogle ScholarCross RefCross Ref
  26. John R. Koza. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA. Google ScholarGoogle ScholarCross RefCross Ref
  27. Michael A Lones. 2019. Instruction-level design of local optimisers using push GP. In Proceedings of the Genetic and Evolutionary Computation Conference Companion. ACM, 1487--1494. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Michael A. Lones. 2020. Optimising Optimisers with Push GP. In Lecture Notes in Computer Science. Springer International Publishing, 101--117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Michael A Lones. 2021. Evolving continuous optimisers from scratch. Genetic Programming and Evolvable Machines 22, 4 (2021), 395--428. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Nuno Lourenço, Francisco B. Pereira, and Ernesto Costa. 2016. Unveiling the properties of structured grammatical evolution. Genetic Programming and Evolvable Machines 17, 3 (9 2016), 251--289. Google ScholarGoogle ScholarCross RefCross Ref
  31. Iñigo Martincorena and Nicholas M. Luscombe. 2013. Non-random mutation: the evolution of targeted hypermutation and hypomutation. Bioessays 35, 2 (2 2013), 123--130. Google ScholarGoogle ScholarCross RefCross Ref
  32. Robert I McKay, Nguyen Xuan Hoai, Peter Alexander Whigham, Yin Shan, and Michael O'neill. 2010. Grammar-based genetic programming: a survey. Genetic Programming and Evolvable Machines 11, 3 (2010), 365--396. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Eric Medvet. 2017. A comparative analysis of dynamic locality and redundancy in grammatical evolution. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10196 LNCS (2017), 326--342. Google ScholarGoogle ScholarCross RefCross Ref
  34. J. Grey Monroe, Thanvi Srikant, Pablo Carbonell-Bejerano, Claude Becker, Mariele Lensink, Moises Exposito-Alonso, Marie Klein, Julia Hildebrandt, Manuela Neumann, Daniel Kliebenstein, Mao-Lun Weng, Eric Imbert, Jon Ågren, Matthew T. Rutter, Charles B. Fenster, and Detlef Weigel. 2022. Mutation bias reflects natural selection in Arabidopsis thaliana. Nature 2022 (1 2022), 1--5. Google ScholarGoogle ScholarCross RefCross Ref
  35. Merav Parter, Nadav Kashtan, and Uri Alon. 2008. Facilitated Variation: How Evolution Learns from Past Environments To Generalize to New Environments. PLoS Computational Biology 4, 11 (2008), 1000206. Google ScholarGoogle ScholarCross RefCross Ref
  36. Franz Rothlauf and Marie Oetzel. 2006. On the locality of grammatical evolution. In Genetic Programming: 9th European Conference, EuroGP 2006, Budapest, Hungary, April 10--12, 2006. Proceedings 9. Springer, 320--330.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1985. Learning internal representations by error propagation. Technical Report. California Univ San Diego La Jolla Inst for Cognitive Science. 318--362 pages. https://ieeexplore.ieee.org/document/6302929Google ScholarGoogle Scholar
  38. Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. 2017. Evolution Strategies as a Scalable Alternative to Reinforcement Learning. Open Ai (2017), 1--13. arXiv:1703.03864 http://arxiv.org/abs/1703.03864Google ScholarGoogle Scholar
  39. David L. Stern and Virginie Orgogozo. 2009. Is Genetic Evolution Predictable? Science 323, 5915 (2009), 746--751. arXiv:https://www.science.org/doi/pdf/10.1126/science.1158997 Google ScholarGoogle ScholarCross RefCross Ref
  40. Amos Tanay, Aviv Regev, and Ron Shamir. 2005. Conservation and evolvability in regulatory networks: The evolution of ribosomal regulation in yeast. Proceedings of the National Academy of Sciences of the United States of America 102, 20 (5 2005), 7203--7208. Google ScholarGoogle ScholarCross RefCross Ref
  41. Ulrich Tepass, Guy Tanentzapf, Robert Ward, and Richard Fehon. 2001. Epithelial Cell Polarity and Cell Junctions in Drosophila. Annual Review of Genetics 35, 1 (2001), 747--784. arXiv:https://doi.org/10.1146/annurev.genet.35.102401.091415 PMID: 11700298. Google ScholarGoogle ScholarCross RefCross Ref
  42. Tobias Uller, Armin P. Moczek, Richard A. Watson, Paul M. Brakefield, and Kevin N. Laland. 2018. Developmental bias and evolution: A regulatory network perspective. Genetics 209, 4 (2018), 949--966. Google ScholarGoogle ScholarCross RefCross Ref
  43. Günter P. Wagner, Mihaela Pavlicev, and James M. Cheverud. 2007. The road to modularity. Nature Reviews Genetics 8, 12 (2007), 921--931. Google ScholarGoogle ScholarCross RefCross Ref
  44. Richard A. Watson and Eörs Szathmáry. 2016. How Can Evolution Learn? Trends in Ecology and Evolution 31, 2 (2016), 147--157. Google ScholarGoogle ScholarCross RefCross Ref
  45. Carolyn A. Wessinger and Lena C. Hileman. 2016. Accessibility, constraint, and repetition in adaptive floral evolution. Developmental Biology 419, 1 (11 2016), 175--183. Google ScholarGoogle ScholarCross RefCross Ref
  46. Peter Alexander Whigham. 1996. Grammatical Bias for Evolutionary Learning. (1996). http://hdl.handle.net/1959.4/60693Google ScholarGoogle Scholar
  47. Peter A. Whigham, James MacLaurin, Grant Dick, and Caitlin A. Owen. 2015. Examining the "best of both worlds" of grammatical evolution. In GECCO 2015 - Proceedings of the 2015 Genetic and Evolutionary Computation Conference. Association for Computing Machinery, Inc, 1111--1118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Rasmus G. Winther. 2001. Varieties of modules: Kinds, levels, origins, and behaviors. Journal of Experimental Zoology 291, 2 (8 2001), 116--129. Google ScholarGoogle ScholarCross RefCross Ref
  49. Gregory A. Wray. 2007. The evolutionary significance of cis-regulatory mutations. Nature Reviews Genetics 2007 8:3 8, 3 (3 2007), 206--216. Google ScholarGoogle ScholarCross RefCross Ref
  50. Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Biological insights on grammar-structured mutations improve fitness and diversity

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        GECCO '23: Proceedings of the Genetic and Evolutionary Computation Conference
        July 2023
        1667 pages
        ISBN:9798400701191
        DOI:10.1145/3583131

        Copyright © 2023 Owner/Author(s)

        This work is licensed under a Creative Commons Attribution International 4.0 License.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 12 July 2023

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate1,669of4,410submissions,38%

        Upcoming Conference

        GECCO '24
        Genetic and Evolutionary Computation Conference
        July 14 - 18, 2024
        Melbourne , VIC , Australia
      • Article Metrics

        • Downloads (Last 12 months)107
        • Downloads (Last 6 weeks)3

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader