Skip to main content

A Study of Diversity in Multipopulation Genetic Programming

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2936))

Abstract

In this work we study how using multiple communicating populations instead of a single panmictic one may help in maintaining diversity during GP runs. After defining suitable genotypic and phenotypic diversity measures, we apply them to three standard test problems. The experimental results indicate that using multiple populations helps in maintaining phenotypic diversity. We hypothesize that this could be one of the reasons for the better performance observed for distributed GP with respect to panmictic GP. Finally, we trace a sort of history of the optimum individual for a set of distributed GP runs, trying to understand the dynamics that help in maintaining diversity in distributed GP.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andre, D., Koza, J.R.: Parallel genetic programming: A scalable implementation using the transputer network architecture. In: Angeline, P., Kinnear, K. (eds.) Advances in Genetic Programming 2, pp. 317–337. The MIT Press, Cambridge (1996)

    Google Scholar 

  2. Burke, E., Gustafson, S., Kendall, G.: A survey and analysis of diversity measures in genetic programming. In: Langdon, W.B., et al. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 716–723. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  3. Burke, E., Gustafson, S., Kendall, G., Krasnogor, N.: Advanced population diversity measures in genetic programming. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 341–350. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Chopard, B., Pictet, O., Tomassini, M.: Parallel and distributed evolutionary computation for financial applications. Parallel Algorithms and Applications 15, 15–36 (2000)

    MathSciNet  Google Scholar 

  5. de Jong, E.D., Watson, R.A., Pollack, J.B.: Reducing bloat and promoting diversity using multi-objective methods. In: Spector, L., et al. (eds.) Proceedings of the genetic and evolutionary computation conference GECCO 2001, pp. 11–18. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  6. Deb, K., Goldberg, D.E.: An investigation of niche and species formation in genetic function optimization. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms, pp. 42–50. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  7. Ekárt, A., Németh, S.Z.: Maintaining the diversity of genetic programs. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 162–171. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Fernández, F., Tomassini, M., Vanneschi, L.: An empirical study of multipopulation genetic programming. Genetic Programming and Evolvable Machines 4(1), 21–52 (2003)

    Article  MATH  Google Scholar 

  9. Galeano, G., Fernández, F., Tomassini, M., Vanneschi, L.: Studying the influence of synchronous and asynchronous parallel GP on programs length evolution. In: Congress on Evolutionary Computation (CEC 2002), pp. 1727–1732. IEEE Press, Piscataway (2002)

    Google Scholar 

  10. Koza, J.R.: Genetic Programming. The MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  11. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Berlin (2002)

    MATH  Google Scholar 

  12. McPhee, N.F., Hopper, N.J.: Analysis of genetic diversity through population history. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1112–1120. Morgan Kaufmann, Orlando (1999)

    Google Scholar 

  13. Stoffel, K., Spector, L.: High-performance, parallel, stack-based genetic programming. In: Koza, J.R., et al. (eds.) Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford University, pp. 224–229. MIT Press, Cambridge (1996)

    Google Scholar 

  14. Tomassini, M., Vanneschi, L., Fernández, F., Galeano, G.: Experimental investigation of three distributed genetic programming models. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 641–650. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tomassini, M., Vanneschi, L., Fernández, F., Galeano, G. (2004). A Study of Diversity in Multipopulation Genetic Programming. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2003. Lecture Notes in Computer Science, vol 2936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24621-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24621-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21523-3

  • Online ISBN: 978-3-540-24621-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics