An Engineering Approach to Evolutionary Art

J.I. van Hemert M.L.M. Jansen

jvhemert@cs.leidenuniv.nl mjansen@cs.leidenuniv.nl

June 19, 2001

Abstract

We present a general system that evolves art on the Internet. The
system runs on a server which enables it to collect information about its
usage world wide; its core uses operators and representations from genetic
programming. The output consists of images that are decoded from tree
structures. We show how this general system can be used to evolve two
types of art: A Mondriaan like art and a type known as mandala. Both
types are implemented with the mind of an engineer.

1 Introduction

In evolutionary art we let a set of images, i.e., pieces of art, evolve using prin-
ciples from evolutionary computation. We generate new pieces of art using
genetic operators. At the same time a user of our system will steer the course
of evolution by influencing the selection process. In evolutionary computation
terminology: Our user represents the fitness function

For a user to be able to select images she likes we need an interface that
shows her all possible choices. In a previous study we created a C++ program
with a graphical user interface (van Hemert and Eiben, 1999). Here we adopt
a different approach by removing this strong coupling, replacing it with a much
more flexible web interface.

The general system as presented here can be applied to evolve any two
dimensional picture limited by memory and by representation as binary trees.
We have chosen two forms of art to show how the system works. First, an
abstract style that mimics art by a Dutch painter named Mondriaan. Second,
a less well defined form of art known as mandala.

We outline the rest of the paper. First we explain how our system fits in the
field of evolutionary art. Then we present the general system from the viewpoint
of a user in Section 3. In Section 4 we take a look at the inner workings of the
system. Two examples show how the general system can be put to work in
Section 5. Then, in Section 6 we state our findings and we finish with future
remarks in Section 7.

2 Evolutionary Art

In evolutionary art we strive for a system that creates art using the principle of
evolution: The survival of the fittest, or in this case, the survival of the most
beautiful. Often this goal is achieved using an evolutionary algorithm of some
form. Many different types of art have been created this way, starting about
ten years ago with Karl Sims (Sims, 1991). Nowadays, some people have turned
it into a business (World, 1996). All systems share a common feature: Human
intervention to determine what is nice and what is ugly, in other words, a human
fitness function.

A variety of art created by evolution in the computer exists from visual to
audio, but here we restrict ourselves to two dimensional visual art. When ex-
amining other systems that also produce visual art we notice that these systems
are often based on fractals. Just by looking at galleries of pictures produced by
these fractal driven system we get a feeling for the immense size of the space
of possible pictures. The way these systems work resembles an artificial life
approach: By creating simple rules incredible complex behaviour, in this case
pictures, can emerge. We take the opposite approach by first visualising what
our art should look like, then we take genetic programming and try to map its
tree structures such that we achieve our art. The role of the user stays the same:
To search for pieces of art that are aesthetically pleasing.

Most evolutionary art systems run on a single machine, which, in itself, is
not a striking property, but the main restrictions these systems have is that
they interact solely with the person behind the same machine. Even if such a
system would be popular its output will not go beyond the user and her machine.
Here we strive for a system that is accessible for many people at the same time,
gathering information about the decisions these people make. All of this is made
possible through the Internet and the common gateway interface (CGI).

The fact that the system is on-line all of the time helps us, the researchers,
to get the assistance of many people. This type of research is based largely
on subjective decisions. To be able to make statements on these decisions we
require a large amount of data. Normally we would have to search actively
for subjects that are willing to assist in these experiments, but here they can
voluntarily and anonymously visit the page and use the system.

3 Art on the Web

When you tell your browser to surf to one of the art pages of the system you will
be presented with a set of images that have been created randomly, similar to the
screen captured in Figure 1. To the left of this set, let us call this your breeding
ground, is another set that is smaller. This smaller set is the top selection, which
we will discuss later. The images in your breeding ground are all laid out on
the page and every one of them is accompanied by a button. The buttons hold
the key to the selection process whereby you can steer the evolutionary process
of creating new images.

You can enable or disable the button that belongs to an image. This action
is equivalent to stating if you like or respectively, do not like a particular image.
By pressing generate new paintings the system is told to generate a new set
of paintings using the button settings of the user. In a nutshell, this is the main
functionality of the system.

After a request for new paintings, the screen that is presented has two im-
portant features. First, the paintings that had their button enabled reappear
at the same location, with their button still enabled. Second, all the other
paintings are replaced by new paintings that, in most cases, look similar to the
paintings with enabled buttons. The latter is precisely why a user is able to
steer towards images that have properties she likes.

At any time it is possible to change the number of images presented. If the
number is increased new images randomly generated are added. Decreasing the
number of images just results in deleting current images from the bottom.

The way in which the images are stored internally makes them suitable for
presentation in any size. On the main page a user can view images using five
scales. By clicking on one of the images a new page is loaded with the chosen
image presented in a large scale that will fill a browser’s window in most cases.

The top selection represents the most often selected images by everyone
that has been playing around with the system. Your selections are also used to
update this set of stored images, thereby influencing the dynamic way in which
these images are selected for presentation to you and other users.

Art by Evolution on the Web
Pieter Cornelis Mondriaan

top 3 selection & HI E
ﬂ:ﬁ]] |

—

Ll

a

A= »
J Ly

O

a: ‘ generate new paintings

a
scale2 — | | 9paintings —

Figure 1: Screenshot taken from a browser with the system producing Mondri-
aan like art

4 Behind the Scenes

The core of the system is developed in Perl using two modules. The first module,
Simple Common Gateway Interface Class (cGI), handles all the Internet related
functions. The second module, Database Independent Interface for Perl (DBI),
provides the link between the system and the database where we store images,
more precisely we store the coded versions. The whole system, Perl and MySql
database, runs on a Pentium II class machine with Linux as its operating system.

Basically, the core of the system consists of two parts. First, an evolutionary
algorithm that creates new images according to a user’s preferences. Second, a
database that is used to store images and related information. Below we present
first the evolutionary algorithm followed by a coding scheme that we need, then
we explain the usage of the database.

4.1 Evolutionary Algorithm

The evolutionary algorithm used here is a crossing between a genetic program
and a generic evolutionary algorithm. Most of its features are from genetic
programming (Koza, 1992), but it does not share the main paradigm of creating
executable material that can be applied to many different inputs. However, the
system can easily be extended to run on input data if required, thereby making
it fully compliant to genetic programming.

The genotype consists of a n-ary tree and two integers. The tree is used
to create the composition and the colouring, while the integers provide the
dimensions of the final image. Although the exact meaning of the elements in
the tree depends on the type of art that we want to create we can safely say
that in most cases the terminal and function set both have a separate role. The
elements of the function set are used to create a composition, i.e., a placement
of objects, whereas the terminals are used to determine objects to be placed.

The integers of the genotype determine the width and height of the canvas
on which we are about to create an image. The actual image is created by
doing a pre-order walk of the tree, creating the composition and objects therein
recursively. The phenotype is then a two dimensional image. The precise map-
ping from genotype to phenotype is determined by the type of art we want to
create. Two different types shall be discussed in Section 5.

To initialise the genotype we have to perform two steps. First we determine
the value of the two integers by generating two uniform random numbers from
the integer domain {10, ...,17}. Then we generate a tree with a maximum depth
of six using a method based on the grow method (Koza, 1992). Every time we
generate a node we first determine of which type, function or terminal, it will be.
The chance that the node is selected from the function set is 1/current depth.
The rationale here is that the chance of creating nodes is higher at the top,
while at the bottom we have more chance of creating leafs. Eventually at the
maximum level we only create leafs.

We use two genetic operators, both taken from genetic programming. Cros-
sover is used to create one offspring out of two parents by swapping two subtrees

from the parents. Mutation is a bit different than in the literature, we use a
single point mutation as described in (Banzhaf et al., 1998), but we mutate
every node in the tree with a chance of 1/number of nodes. Besides the tree we
also pass on the dimensions. With equal chance offspring receives the height of
one of the parents, we repeat the same procedure for the width. Then we change
the offsprings dimensions by choosing randomly a number from {—2,—1,0, 1,2}
and adding it to the dimension. We enforce that the resulting values lie in the
interval {1,...,30}.

The fitness function is induced by a user. Basically, she determines the
parent set directly because the fitness function is boolean. She either likes or
does not like an individual which is translated into the parent selection process
as a chance to become parent or no chance at all to become a parent. This is
similar to the deterministic selection process in evolution strategies.

The parents are selected randomly from those individuals that have been
selected by a user. The other individuals are all replaced by offspring created
using the two aforementioned genetic operators. If there is only one parent, no
crossover is performed and all the other individuals are replaced by randomly
generated ones.

4.2 Flat Trees

As our system runs over the Internet we need to examine some of the aspects
of the evolutionary algorithm. Normally in an evolutionary algorithm we have,
at any time during a run, a certain state of all the data structures. This can be
implicit, such as the number of evaluations performed, or explicit, the current
population. Our system is stopped after each generation, showing its state as
images on a web-page. If the user wants to continue the algorithm for another
generation the system will need information on its current state. The passing
through of the current state happens using CGI variables. These variables con-
tain values for each member of the population and a couple of visual attributes,
such as the number of images and the scale at which images are shown.

A problem hides in using CGI variables as they can only hold strings. Our
system uses n-ary trees to do its evolutionary computing. Thus we require a
certain coding and decoding of our tree structures, but as our system is running
online a user could be waiting for output. Thus our coding and decoding needs
to be fast. Instead of dealing with this we circumvent the problem by never
dealing with trees as we are used to. We deal with the trees coded as a linear
structure, never representing them as a pointer structure. This is one of the five
different approaches to programming trees Keith and Martin looked at (Keith
and Martin, 1994).

We call a linear coded tree a flat tree. Let us look at what kind of operations
we might need to perform on a flat tree. First of all we will have to be able
to generate them randomly using the initialisation method described above.
Very important for the decision of our coding is the mapping that we want to
use. In the two art forms in this paper we benefit most from a pre-order walk.
Lastly, we need to perform genetic operations on the structure. Taking these

constraints into consideration we have opted for a pre-order walk of the tree,
where we process the node as we visit it (Knuth, 1968).

Generating a random flat tree is not much different from a pointer version.
Instead of creating the pointers we just output the node using a recursive func-
tion that first creates the root of a subtree, then the children from left to right.
Decoding the tree to an image is trivial as we want to do a pre-order walk thus
we need to run through the structure linearly. Mutation is also easily performed
linearly, using the length as the number of nodes. Crossover however, is more
complicated.

To perform a subtree exchange we first have to identify where the subtrees
lie inside the linear structures. Algorithm 1 shows a simple way of finding the
index that corresponds to the right most leaf of the subtree. Basically, all that
we need to remember while walking through the linear structure from left to
right is how many leafs we still need to complete a subtree. Every time we
advance to a node we decrease this number with one and, in the case of an
internal node, we increase this number again by the arity of the function. As
soon as we reach zero we have a whole subtree. An example of the result of this
process is in Figure 2.

Algorithm 1 Finding the end of a subtree in a flat tree that represents a
pre-order walk

Require: t is a flat tree and s denotes the start of a subtree of a n-ary tree
Ensure: s is now the index of the end of the supplied subtree
if ¢[s] is a function then
n < arity(t[s])

else
n<=0

end if

while n # 0 do
s<=s+1
n<n-—1

if t[s] is a function then
n < n + arity(t[s])
end if
end while

Performing a crossover is nothing more than choosing a random node in-
side each parent as usual (s; and s2), followed by running Algorithm 1 on
both parents with these random nodes to find the end of both subtrees e; =
end-subtree(parent,,s;) and e; = end-subtree(parent,,se) and finally we
swap the linear pieces from both parents parent,[s; ...e1] and parents[sa ... ea].

Our mutation operator looks at every element in the structure and changes
it with a chance of 1/size. If an element is to be changed we replace it by
an element randomly chosen of the same type (terminal or function). Also,
functions are always replaced with functions of the same arity to make sure
that the tree structure stays intact.

[1 2345678910 11]

Figure 2: A tree (left) coded as a flat tree (right) with the same subtree selected
in both

The decoding of a flat tree is straightforward by recursion. The linear struc-
ture is already a pre-order walk of a binary tree and that is exactly what we
need in the applications described later. The elements in the tree have almost
no meaning to the core system, in that all it knows is how to distinguish func-
tions from terminals, which is necessary to maintain correct tree structures. The
semantics of these elements are determined by the decoding algorithm, which
we describe in Section 5.

4.3 An On-line Gene Bank

The system presented so far does not provide us with much information as all of
the interaction is between one user and the system, which is not stored. Thus,
as soon as a user is bored and decides to point her browser to another page, we
loose something valuable as users are hard to find and it is even more difficult
to keep their attention. If we want to gain information on what the average
person likes and dislikes, we need to record the select actions of many visitors.
Hence, we connect the system to a database that stores the paintings that are
seen by visiting users.

Our database runs on MySq]l, a free database product that is designed to be
fast. As we have shown in the previous section our individuals are represented
by flat trees. These are essentially unique strings that can be stored without
any conversion into the database. We store every picture presented to a user
whenever she initiates a new generation of the evolutionary algorithm. An
individual is stored into a table corresponding with its type of art. The definition
of this table is in Table 1. Besides the flat tree and the dimensions we also store
the time and date when the individual was first inserted and when it was last
updated. Most important are the good and bad entries, because these number
represent the number of times a painting has been selected, respectively, not
selected.

Whenever we encounter an individual that is not present in the database
we call upon Algorithm 2. This is the moment when we store the flat tree
and dimensions, as well as set the creation date and time. If the individual is

Table 1: Table in database that stores the selected paintings, the database keys
are in bold font

name definition description

id varchar(250) chromosome (flat tree)

good bigint(8) number of times selected

bad bigint(8) number of times seen,
but not selected

sizex int(1) width of painting

size_y int(1) height of painting

changed timestamp last time selected

created datetime first time selected

currently selected we set a = 1 and b = 0, otherwise we set a =0 and b =1. In
other words, we give the first point for good xor bad.

Algorithm 2 Storing a new individual

insert into table (id, good, bad, sizex, sizey, created)
values (flat_tree, a, b, size-z, size-y, now())

Every time we do a step of the evolutionary algorithm we update all the
individuals that are in the current population and already present in the data-
base by updating the good or bad value. We increase its good value by one if
the individual was selected or its bad value by one if it was not selected. The
database system automatically sets its time stamp. Algorithm 3 shows how an
individual’s record is updated.

Algorithm 3 Updating the good value of an existing individual. Similar al-
gorithm in case of updating the bad value

update table

set good = good+1

where id = flat_tree and sizex = size-x
and sizey = size-y

We present the top selection of individuals using Algorithm 4. Every one of
them can be selected as an additional parent. Another possibility is to browse
through the whole set of stored individuals of a type. First all the paintings are
sorted in the same way as when selecting the top x and then we present them
25 per page. A seperate page on the web is used to browse through the whole
database.

Algorithm 4 Retrieving the top x individuals sorted first by -good then by
bad and then by the inverse of the changed time stamp

select id, sizex, sizey

from table

order by -good, bad, -changed
limit x

5 Two Art Forms

We show two different types of art that the system currently produces. Besides
these, currently two other types can be produced. One abstract style similar
to the paintings of Doesburg, an artist who had much influence on abstract art
in the Netherlands in the first half of the 20th century. Another style of art
that has been explored using evolution by Karl Sims (Sims, 1991) and later
by Tatsuo Unemi (Unemi, 1999), where we evolve equations that calculate the
colour of a pixel using the pixel’s coordinate as input.

The images are created using the Gd Graphics Library (GD) for Perl. This
library outputs images as Portable Network Graphics (PNG).

5.1 Mondriaan Art

Pieter Cornelis Mondriaan (1872-1944) (Deicher, 1995) is considered one of the
most prominent 20th century geometric painters. He is also known under the
name Mondrian because in 1910, when he moved to Paris, he discarded his
father’s name, replacing it with Piet Mondrian. Mondriaan’s art started out
as portraits of real life, most notably landscapes. These portraits gradually
became more abstract, conveying an idyllic and calm scene. After he returned
from Paris in 1914 he would only produce art in the spirit of pure form. Later,
he did a number of important contributions to the magazine “De Stijl”, wherein
Mondriaan published twelve chapters on his vision on new art. Around 1921 he
entered the final stage of his style by restricting his pallet to the colours yellow,
blue, red, white and black, while at the same time creating geometric shapes
using only straight black lines that intersect at right angles, which have become,
more or less, a trademark for Mondriaan art.

We will attempt to generate paintings from Mondriaan’s last period. These
paintings share common properties that make them easy to define inside a com-
puter. First, only a few colours are used. Second, horizontal and vertical black
lines are used that start and end at the edge of the canvas or at a perpendicular
black line. Third, planes that can be constructed with these black lines are filled
entirely with one colour.

A painting is represented as a tree structure and two integers for the height
and width. A tree consists of nodes taken from a function set and leafs taken
from a terminal set. The functions will provide the composition by splitting up
the canvas, while the terminals will fill in the colours of the composition. Hence,
our function set exists of horizontal H and vertical V splitters and our terminal

set exists of Mondriaan’s pallet: white, yellow, blue and red. When decoding a
tree to a painting we start out with the whole canvas and, if the root of the tree
is taken from the function set, split the canvas either horizontally or vertically.
In the same way we continue with the two halves of the canvas. Eventually
we will encounter a terminal at which point we determine the colour we use to
fill in the corresponding part of the canvas. An example of such a decoding is
in Figure 3. This representation is also used in the work of Schnier and Gero
(Schnier and Gero, 1998).

Figure 3: Representation of the phenotype (left) and the genotype (right) of
Mondriaan like art

5.2 Mandala Art

Mandala is the Sanskrit word for circle, and it is used to symbolise wholeness.
Mandalas can be found in a lot of places. They are used mostly for meditation
and thus are part of several religions, but they also show up in science (Jung,
1968; Gontar, 2000) and in art. There is a direct link with several natural
phenomena, and some examples of these are: the solar system, the planet earth,
spider webs and flowers. All of these show the basic characteristic of a mandala:
a circle with a unifying centre.

As said above, mandalas are usually round figures. In addition, there is
usually also a high degree of regularity, which makes them ideal to be used as
an art form in this system. Everybody is able to make a mandala, since it is
a reflections of a person’s thoughts. This means that there is a lot of freedom
in creating mandalas. To make the task feasible for use in an evolutionary
algorithm, we have to make some simplifying assumptions, and all of these will
be reflected in the terminal and function sets.

The function set defines only one type of node, which we will call split nodes.
There are three of them, the only difference being the exact location where the
split is made. Splitting means dividing an area in two parts. Secondly, the
terminal set defines only two types of nodes, with each type having several
instances which define different parameters. The first type defines the so called
solid fill nodes, where each node assigns a colour to a specific area. The second

type defines what we will call fill type nodes, where we define a specific area to
be filled using a pattern of lines, where the appearance of a pattern is defined
by three parameters: the number of lines in the fill pattern, the angle at which
the first point of a figure is drawn, and the colour in which a pattern is drawn.
Every tree that represents an individual is of type binary, with nodes from the
function set as interior nodes, and nodes from the terminal set as leafs.

The mapping from a tree to a picture is as follows. The tree is represented
as a flat tree, as described earlier. We perform a pre-order walk of the binary
tree by traversing the linear structure from left to right. We start with a given
circular area of maximum radius, and the first node (if this is not a leaf) cuts this
area in two parts, where we repeat the procedure for both parts. By proceeding
this way, we end up with a circular area sliced up into several rings. For every
ring there is a corresponding leaf, and this leaf defines the way in which we
will fill the area. One point must be made clear here. Although every area is
actually ring-shaped, when we assign a colour to an area, we mean that we fill
the area from the outer boundary up to the centre, and not only up to the inner
boundary. This also implies that, for every interior node, its left subtree must
define the outer area and the right subtree the inner area. Figure 4 shows the
result of such a mapping.

Figure 4: Representation of the phenotype (left) and the genotype (right) of
mandala type art, the dotted lines are not shown in the final result

6 Conclusions

We presented a general system to evolve abstract art using tree based data
structures taken from genetic programming. The evolutionary and interface
part are linked with two simple examples of abstract art through a general
representation.

The system runs on a machine hooked up to the Internet and it uses the
common gateway interface to interact with humans. This opens up the system
and our research to a large pool of people that can explore the search space of
our implemented forms of abstract art.

To get the system to work through the common gateway interface we have
introduced flat tree structures with operators that work directly on them. Fur-
thermore, as these flat trees are essentially linear structures we can easily trans-
fer them to other systems, such as a database, where we can store them.

To learn what people find aesthetically pleasing we have extended the system
with memory. This memory is a database that stores every piece of art ever
seen by a user. Also, it keeps track of how often a piece is selected and not
selected. This database now contains a couple of thousend of pieces of art.

Although the database of selected images is constantly changing we provide
the piece of art that is currently the most often selected. Figure 5 shows a
Mondriaan like images which is ranked high in the gene bank. An often selected
Mandala is in Figure 6.

T

Figure 5: The most often selected Mondriaan image

Figure 6: The most often selected mandala

We invite the reader to visit our system on the Internet to fully experience
the dynamics. Its address is

http://www.liacs.nl/~jvhemert/eartweb/

7 Future Research

Now that we have a general system that handles the evolutionary and interface
part work starts on a more general notion of the decoding. This is a small
step towards the idea of Steven Rooke of having an open standard for coding
individuals. We start by extending the ways of producing abstract art presented
here into a more general form.

The uniform way of storing and handling the representation of the individu-
als makes it possible to exchange individuals between types of art. It would
be a nice extension if the system could show how an individual looks decoded
into different forms of art, thereby letting it compete in different environments
at once. The simplest approach is to use one table to store the individuals of
every type of art. The measurements of good and bad will have to be adjusted
to include for which type a certain individual was counted. Hopefully this leads
to individuals that are fit under more than one environment giving us a general
composition that people on average prefer.

As mentioned earlier, it is expensive and time consuming to perform ex-
periments that require subjective responses by humans. As our database is
gradually expanding we hope to devise a way of using the accumulated data to
automate the process of assigning good and bad values. Furthermore, we could
create a more refined fitness function using the counters good and bad.

Eventually we hope to link structures of our system to objects from our
physical world, such as the layout of a document or web page. This idea has
been used in work of Thorsten Schnier (Schnier, 1999) where an evolutionary
algorithm is used to create the floor plan of a building.

Careful observation of the description of the evolutionary algorithm reveals
that we are not talking about a genetic program as defined by Koza (Koza,
1992). The individuals are decoded to images, but every time the result will be
the same. For now there is no way of providing input to an individual such that
it will create a different image.

A Mandala Art in More Detail

The goal is to create an algorithm that uses genetic programming to create
mandala figures. Since a computer can not decide what looks nice or not, we
need the help of a human being. She selects images that please her, and based
on this selection the algorithm creates offspring that hopefully pleases her more.
All of this is done using common concepts from evolutionary computation, such
as crossover and mutation. We refer to (Koza, 1992) and (Banzhaf et al., 1998)
for an introduction. If we want all of this to work we must find a way to
represent mandala figures in the computer. The (internal) representation, and
the way to transform this representation into an actual figure, are explained in
the following subsection.

A.1 Data structure

Every individual (coding of a figure) must be coded using some convention. Here
we use binary trees to code individuals. This coding into binary trees is done
to allow easy use of methods such as crossover and mutation. Note that every
binary tree that is constructed represents a valid figure. A binary tree is one
where the bottom nodes are leafs, all other nodes are interior nodes and every
interior node has exactly two children. For an interior node the left subtree
defines the outer area, and the right subtree defines the inner area of that node.
Figure 7 shows an example.

Below we will describe the different types of interior nodes and leafs. We
will also define the function and terminal sets

A.1.1 Interior nodes and function set

The interior nodes divide an area at a given point, hence the name ’split’, see
(1). Their function is described here and Figure 7 illustrates the process of
splitting areas.

The function set is:

F = {split.3, split.5, split.7} (1)

An area is a ring-shaped part of a circle. Note that the root of the geno-
type of the individual in Figure 7 is an interior node. All individuals have a
pre-determined dimension, so the figure has a certain maximum radius, which
encloses the entire figure. What happens now is that the root node cuts the
area from the center to the border of the figure at a certain distance between
these two. The exact point at which the cut is made depends on the particular
type of interior node. The result of it all is that we end up with two new areas,
which together form the entire area. The so called inner area is still a circle,
though with a smaller radius than before cutting (its radius is the same as the
length from the center to the cutpoint). The outer area is ring-shaped, with
inner radius equal to the radius of the inner area and outer radius equal to the
maximum radius. Both areas can be subdivided further in the same way. This
is shown in the lower part of Figure 7 for the left subtree of the root node.

All nodes from (1) split areas, the only difference being the location where
the cut is made:

split.3 splits the corresponding circular area into two parts, at 1%—th the dis-
tance from the inner boundary

split.5 the same, but for % the distance

split.7 the same, but for %—th the distance

If we split several times, the circle we start with is divided into several ring-
shaped parts (with the exception of the innermost area, which is a circle). Every
part has two boundaries: an inner boundary and an outer boundary. For our

root node

Coleft -y
fsubtreel!
N ;

s/ first node of the

left subtree
/
/

“ this distance
— e is split in2
N equal pieces
foeft
'{subtree;’

Figure 7: Some examples of splitting an area

discussion of the leafs, it is easier to think of every area as being a circle, with
radius equal to the outer boundary.

A.1.2 Exterior nodes (Leafs) and terminal set

A leaf belongs to one area. Leafs determine in what way the corresponding
areas are filled.
The terminal set is:

T = {Uniform(color), Fill{n){color){angle) } (2)

where

e color € {Red, Green, Yellow, Blue}
enec {345}
e angle € {0, 45, 90, 180, 270}

Possibilities are to fill an area with a certain color, or to apply a filling pattern
to the area. Adopting the view defined at the end of the previous subsection,
the filling will run from the outer boundary up to the center. This will only
work if we start filling the areas from the biggest one down to the smallest one,
which can be achieved by performing a left to right, depth first tree-traversal,
as will be shown later.

The two different types of leafs can thus be described as:

Uniform <color> Fills the corresponding circular area using the given color.

Fill <n> <color> <angle> Draws a regular figure of n lines in the corres-
ponding circular area, using the given color. We start drawing at an offset
of angle degrees. For this we must agree on a convention for the positive
direction of rotation, as well as on the start (an angle of 0 degrees). This
is depicted in Figure 8.

+90
|
|

Y

|

- - -0
|
|

Figure 8: convention for the rotation axes

In the case of a Fill node, not all combinations of n and angle are allowed,
because this would lead to cases where the distinction would not be noticeable.
For example, in the case where n=4, angles of 45 and 90 would yield identical
figures. Figure 9 gives an overview of the viable combinations.

angle
0, 90, 180, 270
0, 45
0, 90, 180, 270

TUls w3

Figure 9: viable combinations of Fill node parameters

So we have 4 types of leafs for uniform fills, and 40 types of leafs that define
filling patterns, which adds to a total of 44 different leafs.

A.2 Transformation of genotype to phenotype

I will now show how to derive the phenotype from the genotype of an example
individual. The genotype of this individual is shown in Figure 10. Remember
that a genotype corresponds to the way in which figures are coded internally, and
that a phenotype defines the actual mandala figure, i.e. it is a real picture. The
translation from genotype to phenotype is done by performing a left to right,
depth first tree-traversal. This is done so that the resulting figure is constructed
from outside to inside, which is required because in this way the different parts
of the image are always drawn in the right order.

1. In the first step we have not examined any
nodes. We know however that the figure fits
within a predefined area (which is indicated
by a dashed circle: the maximum radius).

Fill3
Green

Fill4 Uni form
Bl ue Yel | ow
45 30

Figure 10: The genotype of the example individual

. We now start examining the binary tree.
The root node is of type split.5, so we
must divide the area into two parts, at half
the distance from center to the outermost
boundary (the dashed circle of step 1). This
new boundary is also shown as a dashed
circle.

. The next node is of type split.3, which

means that the outer area (which runs from

the dashed circle of step 2 to the dashed
3

circle of step 1) is split at 75-th this dis-

tance, measured from inside to outside.

. This node (which actually is a leaf) is the
first one to do some drawing. It draws a
blue square inside the outermost area. The
first point of the square is drawn at an angle
of 45°. Remember that only leafs do any
actual drawing.

. This leaf again does some drawing. This
time it paints the inner area of the split.3
node yellow.

6. The resulting leaf draws 3 green lines in the
inner area of the root node, starting at an
angle of 90°.

Bl ue

S

Q
N

Yel | ow

+H—— Geen

N\

Figure 11: The corresponding phenotype

Figure 11 shows what the resulting mandala figure looks like. Note that
if all leafs would have been of type Fill, the three filled circles that emerged
would have been drawn in the right order. This explains why the left subtree
of a node defines its outer area, and why performing a left to right, depth first
tree-traversal yields a correct phenotype.

A.3 Initialization method and maximum depth

Now that we have defined both the terminal and the function sets, it is fairly
straightforward to create some random trees to start the algorithm with. We will
use a method based on the grow method (Koza, 1992). Every time we generate
a node we first determine of which type, function or terminal, it will be. The
chance that the node is selected from the function set is 1/current depth. The
rationale here is that the chance of creating nodes is higher at the top, while at
the bottom we have more chance of creating leafs. Eventually at the maximum
level we only create leafs. We must still decide on a maximum depth parameter
(to keep the size of initial individuals within certain bounds), and a value of six
seems reasonable.

A.4 Genetic operators

We will use crossover and mutation in this algorithm, and both have their
distinctive features.

A.4.1 Crossover

The crossover method randomly selects a subtree in each parent and swaps
them. One important feature of the crossover operator used here, is that it only
produces one offspring. So in effect, one of the children is thrown away.

A.4.2 Mutation

Mutation works as follows for all nodes in the tree. With a certain chance
(1/number of nodes) we will change the node. If a node is changed, we randomly
select a new node of the same type. So an interior node will be replaced by an
interior node (this works since all nodes from the function set have an arity
of 2), and a leaf is replaced by a leaf. This type of mutation is called point
mutation (Banzhaf et al., 1998).

A.4.3 An example of crossover and mutation

Uni f or nj
Bl ue
60
Filla Fill3 Uni form Uni form

Fill3 Fill5
Yel | ow Red G een Yel | ow Bl ue Red
45 15 30 0 75 90

Figure 12: Two parents that are selected; the crossover points are indicated

using double lines

Fill4 Fill3 Fill3 Uni form
Yel | ow Red G een Yel | ow
45 15 30 0

Figure 13: After crossover; one node is selected for mutation (double lined)

Fill4 Fill3 Uni form Uni form
Yel | ow Red Bl ue Yel | ow
45 15 30 0

Figure 14: The resulting child

Figures 12-14 illustrate both genetic operators. In Figure 12 we see (the
genotypes) of two parents. The crossover operator is applied, and the result
is shown in Figure 13. Next, the mutation operator is applied. Note that the
node that is selected for mutation is a leaf (Figure 13). This leaf is replaced by
another leaf, which we choose randomly. In this case only two of the parameters
are changed. We switch from a filling pattern of 3 green lines to a uniform blue
area for the corresponding area.

A.5 user equals fitness function

The main difference between the approach we use here and the ’standard’ ap-
proach is that the fitness function is not an integral part of the algorithm.
Rather, for selection to take place, we need the help of a human being (the
user). She plays a significant role in every generation of the evolutionary pro-
cess. She decides, for every individual in a population in a certain generation,
whether the individual is fit or not. The user therefore defines the fitness func-
tion, which is of type boolean.

A.6 Selection method

For each crossover event, both parents are randomly selected from the set of
selected individuals. This set is composed by the user, since all individuals that
are selected end up in this set.

References

Banzhaf, W., Nordin, P., Keller, R., and Francone, F. (1998). Genetic Program-
ming: An Introduction. Morgan Kaufmann.

Deicher, S. (1995). Mondrian. Benedikt Taschen Verlag GmbH, Koln.

Gontar, V. (2000). Theoretical foundation of jung’s mandala symbolism based
on discrete chaotic dynamics of interacting neurons. Discrete Dynamics in
Nature and Society, 5(1):19-28.

van Hemert, J. and Eiben, A. (1999). Mondriaan art by evolution. In Postma, E.
and Gyssens, M., editors, Proceedings of the Eleventh Belgium/Netherlands
Conference on Artificial Intelligence (BNAIC’99), pages 291-292.

Jung, C. (1968). Collected works of C. G. Jung, volume 12. Princeton University
Press, 2nd edition.

Keith, M. and Martin, M. (1994). Genetic programming in C++: Implementa-
tion issues. In Kinnear Jr., K., editor, Advances in Genetic Programming,
chapter 13, pages 285-310. MIT Press, Cambridge, MA.

Knuth, D. (1968). The Art of Computer Programming, Fundamental Al-
gorithms, volume 1. Addison-Wesley, Reading, Mass.

Koza, J. (1992). Genetic Programming: On the Programming of Computer by
Means of Natural Selection. MIT Press.

Schnier, T. (1999). Evolved Representations and Their Use in Computational
Creativity. PhD thesis, Key Centre of Design Computing, Department
of Architectural and Design Science, University of Sydney, NSW, 2006,
Australia.

Schnier, T. and Gero, J. (1998). From Frank Lloyd Wright to Mondrian: Trans-
forming evolving representation. In Parmee, I. C., editor, Adaptive Com-
puting in Design and Manufacture, pages 207-219. Springer Verlag, Berlin.

Sims, K. (1991). Artificial evolution for computer graphics. Computer Graphics,
25(4):319-328.

Unemi, T. (1999). SBART2.4: Breeding 2D CG images and movies, and creating
a type of collage. In The Third International Conference on Knowledge-
based Intelligent Information Engineering Systems, pages 288-291.

World, L. (1996). Aesthetic selection: The evolutionary art of steven rooke.
IEEFE Computer Graphics and Applications, 16(1).

