Cartesian Genetic Programming:
Why No Bloat?

Andrew James Turner and Julian Francis Miller

Electronics Department
University of York
Heslington, York
YO10 5DD, UK

{andrew.turner, julian.miller}@york.ac.uk

Abstract. For many years now it has been known that Cartesian Ge-
netic Programming (CGP) does not exhibit program bloat. Two possible
explanations have been proposed in the literature: neutral genetic drift
and length bias. This paper empirically disproves both of these and thus,
reopens the question as to why CGP does not suffer from bloat. It has
also been shown for CGP that using a very large number of nodes consid-
erably increases the effectiveness of the search. This paper also proposes
a new explanation as to why this may be the case.

1 Introduction

Bloat, the uncontrolled growth in program size, is a serious issue for Genetic
Programming (GP) that has received much study [1] [2]. However, bloat does
not appear in Cartesian Genetic Programming (CGP) [3]. In the literature there
are two possible theories as to why CGP does not exhibit bloat; Neutral Genetic
Drift (NGD) [3] and length bias [4]. This paper introduces both of these theories
and then proceeds to empirically disprove them by removing the underlying
assumptions each of them make. This leaves us with no explanation for the lack
of bloat in CGP and opens the topic for further investigation.

The investigations also show that there is an evolutionary pressure to increase
the program size when the current program size is insufficient! to solve a given
task. Conversely we find empirically that there is no evolutionary pressure to
decrease the program size if the current program size is much larger than re-
quired to solve a given task. It therefore appears that using large program sizes
is not detrimental to CGP, in keeping with previous results [5] which show it
is actually beneficial. A new hypothesis is presented as to why this is the case.
When subject to a mutation operator, using a large number of nodes causes, on
average, the fitness of an individual to vary by a lesser degree than when using
a smaller number of nodes. Using a large number of nodes has smoothed out the
fitness landscape making it easier to navigate. This accords with the desirabil-
ity of synonymous redundancy in representations introduced by Goldberg and

! This is compatible with the length bias theory [4] as is discussed later.

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 222-233, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Cartesian Genetic Programming: Why No Bloat? 223

Rothlauf who propose that genotype representations should have the property
that mutational neighbours represent similar phenotypes [6].

The remainder of the paper is as follows: Section 2 describes CGP, Section 3
discusses bloat and past theoretical work surrounding bloat and CGP, Section
4 describes a series of experiments which empirically investigate the described
theories with the results given in Section 5 and finally Sections 6 and 7 provide
a discussion and closing conclusions.

2 Cartesian Genetic Programming

CGP [7] [8] is a form of GP which represents computational structures as di-
rected, usually acyclic graphs indexed by their Cartesian coordinates. Each node
may take its inputs from any previous node or program input. The program out-
puts are taken from the output of any internal node or program inputs. This
structure leads to many of the nodes described by the CGP chromosome not
contributing to the final operation of the phenotype, these inactive, or “junk”,
nodes have been shown to greatly aid the evolutionary search [5] [9] [10].

The nodes described by CGP chromosomes are arranged in a rectangular
r x ¢ grid of nodes, where r and c respectively denote the user-defined number
of rows and columns. In CGP, nodes in the same column are not allowed to
be connected together. It is important to note that any architecture (limited
by the number of nodes) can be constructed by arranging the nodes in a 1 x n
format where the n represents the maximum number of nodes (columns). Using
this representation the user does not need to specify the topology, which is then
automatically evolved along with the program.

-
Ol

, Crro Carro O
. @wl @wﬂ +cr+1 .
é Cl.ﬂ: Cr+l.ﬂ: C’cr+l,ﬂ: E
’ Crrl.O 1 Cz»l.o o1 C(c+1)r—l,0 (D o :
()t @ﬁr- + SR + eyl Ou iy

C. Cora Cerpra

(c+Dr-La

Focop""Co,aFlcm“"C """"""" E

La

C(c+1)r-1,u' v 'C(c+1)r-l,a 0,0;::--On

(c+Dyr-1

Fig. 1: Depiction of a Cartesian Genetic Programs structure with chromosome
encoding below, taken from [§]

Figure 1 gives the general form of a CGP showing that a CGP chromosome
can describe multiple input multiple output programs with a range of node

224 A.J. Turner and J.F. Miller

transfer functions and arities. In the chromosome string, also given in Figure 1,
F; denote the function operation at each node, C; index where the node gathers
its inputs and each O; denote which nodes provide the outputs of the program.
It should be noted that CGP is not limited to only one data type, it may be
used for Boolean values, floats, images, audio files, videos etc. CGP generally
uses the Evolutionary Strategy (ES) algorithm (1 4+ A)-ES. In this algorithm
each generation contains 1+ X\ candidates and the fittest is chosen as the parent.
The next generation is formed by this parent and A offspring obtained through
mutation of the parent. It is important to note that if no offspring are fitter
than the parent, but at least one has the same fitness as the parent, then the
offspring is chosen as the new parent. In CGP, the A\ value is commonly set
as four. The connection genes in the chromosomes are initialised with random
values that obey the constraints imposed by the CGP structural parameters r
and c. The function genes are randomly chosen from the allowed values in the
function lookup table. The output genes O; are randomly initialised to refer to
any node or input in the graph. The standard mutation operator used in CGP
works by randomly choosing valid alleles at a randomly chosen gene locations.
The reason why both a simple operator and a simple evolutionary algorithm are
so effective is related to the presence of non-coding genes. Simple mutations can
connect or disconnect whole sub-programs. For a more detailed description of
CGP see [8].

3 Bloat and CGP

Bloat can be defined as “program growth without (significant) return in terms
of fitness” [11], that is, if program length is increasing disproportionately to fit-
ness improvements then bloat is said to be occurring. This definition has been
formally stated as a metric which measures the amount of bloat on any given
generation [12]. Here we use a variation on this bloat equation is given in Equa-
tion 1:

N(g) Alg) — A(0) F(0) ~ F(g)
)

(9) = Dlg)’ N(g) = —A0) D(g) = Fl0 (1)

Where B(g) is the bloat at generation g, A(g) is the number of active nodes used
by the fittest member of the population at generation g, A(0) is the average
number of active nodes used by the population at generation 0, F(0) is the
average fitness of the population at generation 0 and F (g) is the fitness of the
fittest member of the population at generation g. Equation 1 holds when the
target is to minimise the fitness to zero. When the fitness is to be maximised the
fitness values can be amended by subtracting the current fitness from the target
fitness; thus transforming the problem into a minimisation task. The equation
effectively gives the ratio of increase in program size to improvement in fitness. If
the program size is increasing disproportionately to fitness then the bloat value
will also increase, thus indicating bloat.

Cartesian Genetic Programming: Why No Bloat? 225

The bloat equation given in [12] was adapted here to show the amount of bloat
exhibited by the fittest member of the population; as opposed to the average
bloat of the population. There are two reasons for this alteration: 1) CGP uses a
(1 4+ M\)-ES without crossover, and so the only solution of interest is the current
fittest. 2) The small population sizes typically used by CGP leads to very noisy
average active nodes and fitness values which are hard to analyse graphically.

Figure 2 gives three examples of the unaltered bloat metric when used by the
original authors; see [12] for further details of their experiments. As can be seen
in Figure 2, bloat is easily detected by a high continuous increase in the bloat
metric.

15 30 40
25
30
10 20
© g 15 % 20
o o o
@ 5 o0 10 m
10
5
0 0 0
0 50 100 0 50 100 0 50 100
Generations Generations Generations
(a) f(z) = log(x) (b) %F (c) LD50

Fig. 2: The bloat metric comparing standard GP (light gray) and DynOpEq GP
(black) on (a) symbolic regression and (b)(c) two real world classification tasks.
Images taken from [12].

Although CGP uses fixed size genotypes, each genotype can encode pheno-
types (programs) of different lengths. This is because many of the genes in the
genotypes are typically inactive or “junk” and are therefore not decoded into the
phenotype. If bloat occurred in CGP it would via a disproportionate increase
in active nodes with respect to fitness. The following subsections introduce two
theories found in the literature which have been proposed to explain why CGP
does not bloat.

3.1 Neutral Genetic Drift

One of the many theories surrounding why GP in general suffers from bloat is the
drift hypothesis [13]. The drift hypothesis goes as follows. When a population is
trapped in a local optimum many of the parents children will have the same or
very similar fitness. A method often used by GP is to replace parents with their
children if their fitness is equal or very similar; with the aim to improve genetic

226 A.J. Turner and J.F. Miller

diversity and to escape local optima with future mutations. If adding or removing
a small number of nodes does not lessen the fitness of the child then the child
may be larger or smaller respectively. Additionally it has been shown that for
a given chromosome size there exist more solutions with the same fitness which
are larger than smaller [14]. Therefore there exists an evolutionary pressure to
increase the size of the program when trapped in local optima.

It is argued in [3] that CGP does not suffer from bloat due to the inactive
genes causing NGD [15]. Their argument is that when a population is trapped in
a local optimum the majority of the mutations which do not cause a reduction
in fitness will be mutations affecting inactive genes; as opposed to active genes.
Mutating inactive genes cannot alter the program size, therefore CGP does not
increase in length. However mutating inactive genes alone cannot help the pop-
ulation escape the local optima, but the activation of previously inactive genetic
material can. This effect is strengthened when the inactive genetic material is
continuously changing as it causes the possible phenotypes one mutation away
to also continuously change; meaning that a wide area of the search space can be
sampled generation to generation. The term given to this continuously changing
inactive genetic material is NGD and it is this, coupled with non-coding genes,
which is thought to be the cause of CGP not exhibiting bloat.

3.2 Length Bias

Length bias offers an alternative argument for why CGP does not suffer from
bloat [4]. Length bias shows that nodes positioned closer to the chromosome in-
puts are much more likely to be active than those positioned nearer the outputs.
This is because when CGP encodes feed-forward (acyclic) networks each node
can only gather its inputs from previous nodes i.e. those closer to the inputs.
This means that nodes closer to the inputs have a higher probability of being
active; as the probability of any given node being an active node is directly pro-
portional to the number of nodes which can connect to that node. This results
in a higher concentration of active nodes towards the inputs. This bias towards
small networks is why CGP does not suffer from bloat.

4 Experiments

The aim of the experiments presented is to identify if NGD, length bias or
another factor is responsible for the lack of bloat in CGP. This is achieved by
removing the main assumption behind each theory as to why CGP does not
suffer from bloat. For the NGD theory this is achieved by preventing NGD from
occurring and for the length bias theory this is achieved by removing the length
bias. The results obtained on each task are also compared to a neutral search,
to ensure that the fitness functions used are not producing a pressure to create
small programs.

All of the experiments are investigated using the six bit parity and the Pagiel
[16] symbolic regression tasks. The parity task uses AND NAND OR and NOR

Cartesian Genetic Programming: Why No Bloat? 227

node functions? and the fitness is calculated as the number of incorrect outputs
produced when all possible inputs are swept. The Pagiel task, Equation 2, uses
+ — x % €™ and In(|n|) node functions and the fitness is calculated as the sum
of the absolute differences between the correct and actual outputs when both
inputs are swept from —5 to 5 in 0.4 increments. In all cases, unless otherwise
stated, the following parameters are used: (1+ 4)-ES, three percent probabilistic
mutation®, one hundred columns, one row and allowed ten thousand generations
before terminating the search. Each experiment is repeated fifty times in order
to produce reliable averages.

1 n 1
1+t 1+:1c§4

(2)

y(xlv‘%?) =

4.1 Regular CGP

The first experiment is to apply regular unaltered feed-forward CGP to the two
tasks. This is to confirm the result that CGP does not exhibit bloat [3] and
provide results to which the other experiments can be compared against.

4.2 No Neutral Genetic Drift

The NGD theory as to why CGP does not suffer from bloat is reliant upon
CGP actually exhibiting NGD. NGD can be prevented in CGP by only allowing
active genes to be mutated. This causes the inactive genetic material to become
static and thus cannot drift. Inactive nodes can still become active however if
an active node connects to them when mutated. By only allowing active genes
to be mutated, CGP is functionally equivalent but without NGD.

If CGP without NGD is shown not to exhibit bloat then NGD cannot be the
cause of CGP not bloating. Conversely if CGP without NGD is shown to exhibit
bloat then NGD must be the cause of CGP not bloating.

Interestingly the method of only allowing active genes to be mutated has the
opposite goal of accumulating mutation [17], a CGP mutation method designed
to heighten NGD.

4.3 Recurrent CGP

The length bias theory as to why CGP does not suffer from bloat is reliant upon
CGP exhibiting a length bias. Length bias occurs as nodes can only connect to
previous nodes in the network. However, if this restraint is removed then length
bias no longer applies. This restraint can be removed by placing no restrictions
on where each node can gather its inputs i.e. by allowing recurrent as well as
feed forward connections. This form of CGP is referred to as recurrent CGP as
it allows for recurrent connections. Allowing recurrent connections means that

2 The XOR gate is omitted to increase the difficulty of the tasks.
3 Where each gene is mutated with a given probability.

228 A.J. Turner and J.F. Miller

the probability of a given node being active is no longer a function of its position
within the genotype. Therefore length bias has been removed.

The implementation of recurrent CGP is identical to that of feed-forward CGP
except that no restraints are placed on where each node can connect its inputs.
Under these conditions it is possible for a node to be used as an input to another
node before it has calculated its own output value. Therefore, before each fitness
evaluation all of the active nodes are initialised to output zero. During the fitness
functions the outputs are read from the program in the same way as for regular
feed-forward CGP: 1) apply a set of inputs 2) update every active node once
from inputs to outputs (allowing the clocked feedback) 3) the program results
are read from the output nodes.

If recurrent CGP does not suffer from bloat then the cause of feed-forward
CGP not exhibiting bloat cannot be due to length bias. However if recurrent
CGP does suffer from bloat then the cause of feed-forward CGP not exhibiting
bloat must be due to length bias.

4.4 Neutral Search

It is possible that the fitness functions used to investigate bloat may themselves
produce a pressure to create small program sizes; for instance if they require
small program sizes to solve the given task. Although this is unlikely, it should
be investigated and found to be untrue in order for the results of the other
experiments to be valid.

This is achieved by comparing the percentage of active nodes used by the
six bit parity and Pagiel tasks with the percentage used by a neutral search.
A neutral search is where the fitness is set to zero regardless of the programs
functionality i.e. it is a neutral fitness landscape. If it is shown that the six
bit parity and Pagiel tasks use a lower percentage of active nodes than that
used by a neutral search then it would indicate that these tasks are applying an
evolutionary pressure to produce small program sizes which could be responsible
for CGP not bloating.

In order to make a fair comparison between the percentage of active nodes
used by neutral search and the six bit parity and Pagiel tasks, the number of
inputs and outputs of the evolved programs must be consistent. That is, when
comparing neutral search to the six bit parity task the neutral search must also
evolve solutions with six inputs and one output; and equivalently for the Pagiel
task. This is because the number of inputs and outputs is likely to influence the
percentage of active nodes.

The experiment is investigated for 1, 5, 10, 50, 100, 500 and 1000 nodes
(columns with rows set to one), to identify if the results vary over a range of
topology limits.

5 Results

The results of the described experiments are now presented. In all but the neu-
tral search experiments, the results are given graphically showing the fitness,

Cartesian Genetic Programming: Why No Bloat? 229

number of active nodes and bloat values of the best member of the population
at each generation averaged over the fifty runs. The bloat value is calculated
using Equation 1. The technique is identified as bloating if the bloat value rises
continuously throughout evolutionary time.

5.1 Regular CGP

The results of applying regular feed-forward CGP to the six bit parity and Pagiel
tasks are given in Figure 3. Here it can be seen that CGP is not exhibiting bloat
during evolution with the bloat value actually falling in the six bit parity case.
Although it can be seen that the number of active nodes does increase over
evolutionary time, it does so only when the fitness also improves and is therefore
not bloat as defined in Section 3.

The initial high values of bloat seen in Figure 3 for the six bit parity task is
thought to be because of the high increase in active nodes during the beginning
of the search. It appears that the initial randomly generated chromosomes have
too few active nodes to solve the task. This causes a sharp increase in the number
of active nodes during the first few generations. This appears in the bloat value
until these additional active nodes causes a significant increase in fitness at which
point the bloat value starts to fall.

50

2 9 1000
£ 407 1 2 so00f
. 30 i

0 2000 4000 6000 8000 10000 % 2000 4000 6000 8000 10000
3 @
5 40 820 : : : :
= 2
o 20,’/A-W—~_’_"’ S 157 i
= >
3 0 L L L L g 10 L L L L

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

. . . . 1 . .

- 20] -
g <_g o W
o 10 4 o

0 ; ; : ; _ . . , .

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Generation Generation
(a) Six Bit Parity (b) Pagiel

Fig. 3: Regular feed-forward CGP

5.2 No Neutral Genetic Drift

The results of applying CGP without NGD are given in Figure 4 for both the
six bit parity and Pagiel tasks. Here it can be seen that CGP without NGD is
still not exhibiting bloat and so NGD cannot be the cause of CGPs lack of bloat.

5.3 Recurrent CGP

The results of applying recurrent CGP are given in Figure 5 for both the six
bit parity and Pagiel tasks. Here it can be seen that recurrent CGP is still not
exhibiting bloat and so length bias cannot be the cause of CGPs lack of bloat.

230 A.J. Turner and J.F. Miller
50
2 5 1000
£ 407 1 2 s00f 1
T i ~—]
0 2000 4000 6000 8000 10000 % 2000 4000 6000 8000 10000
a"’) 73
340 T T T T 220
z 2
@ 20] T T T e 15WWWWWWWWM
2 2
3 0 B 10
< 0 2000 4000 6000 8000 10000 < 0 2000 4000 6000 8000 10000
. . . . 1
= 20 g =
g g OWWWW
o 10 1 o
; ; ; : -1 : : . .
% 2000 2000 5000 8000 10000 0 2000 4000 6000 8000 10000
Generation Generation
(a) Six Bit Parity (b) Pagiel
Fig. 4: Feed-forward CGP without NGD
5 60 ﬁ_/_/;’ ,, 1000
2
£40 1 2 so0f 1
i T
20 ’ ’
0 2000 4000 6000 8000 10000 0o 2000 4000 6000 8000 10000
a0 ‘ ‘ ‘ ; a5
2 2
2" 2 57 Al APty o
2 2
3 70 3 75 .) . .
<o 2000 4000 6000 8000 10000 <0 2000 4000 6000 8000 10000
0.2 0.1
3 B N by by o e b S
% 0.1 2 0
0 -0.1
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Generation Generation
(a) Six Bit Parity (b) Pagiel

Fig. 5: Recurrent CGP

5.4 Neutral Search

Figure 6 gives a comparison between the percentage of active nodes, over a
range of available nodes*, for the neutral and guided search problems®. The
figure clearly shows that for small numbers of available nodes the percentage of
active nodes used by the guided searches far exceeds the percentage used by the
neutral searches. However, for higher numbers of available nodes the percentage
of active nodes used by the guided searches approach that used by the neutral
searches. Therefore it can be concluded that the six bit parity and Pagiel tasks
are not producing an evolutionary pressure to create small program sizes and are
therefore not responsible for the observed lack of bloat in the previous results.

4 Where available nodes refers to the product of the rows and columns. As rows was
always set as one however available nodes and columns are equivalent.
5 Where a guided search is the opposite to a neutral search i.e. toward a real task.

Cartesian Genetic Programming: Why No Bloat? 231

100 100
— 6 Bit Parity — Pagiel
- - -Neutral Search - - -Neutral Search
80r b 80 b
1] 1]
S S
5 60 3 60
= =
(] (]
2 =
< 40 < 40
B B
20 201!
O L L L L O L L L L -
0 200 400 600 800 1000 0 200 400 600 800 1000
Num Nodes Num Nodes
(a) Six Bit Parity (b) Pagiel

Fig. 6: Regular feed-forward CGP applied to the two tasks and equivalent neu-
tral searches

6 Discussion

As is seen in Section 5.2, CGP without NGD does not exhibit bloat and so
NGD is unlikely to be the cause of CGP not exhibiting bloat. However it is
important to note that this result does not suggest that the presence of inactive
genes themselves are not responsible. It was shown in Section 5.3 that recurrent
CGP also does not suffer from bloat, and as length bias only applies to feed-
forward CGP it therefore cannot be the cause of CGP not exhibiting bloat. It
was also shown in Section 5.4 that the tasks used to study CGP and bloat did
not themselves produce a bias towards small program lengths; strengthening the
conclusions.

Interestingly it is reported in [4] that CGP struggles to increase the number
of active nodes during evolution even when a given task requires it; due to
length bias. In Section 5.4 however it can be seen that CGP consistently used
more active nodes on both tasks than for the neutral searches when given a low
number of available nodes. This indicates that CGP is increasing the number of
active nodes when the task requires it. This effect is also seen in the increasing
number of active nodes during evolution in Sections 5.1 and 5.2. This however is
in keeping with the results found in [4] which investigated the effect of length bias
in extreme cases where it was required that CGP used a very high percentage of
active nodes; here the experiments were for real tasks typical of the applications
of CGP.

It has been shown previously for CGP that using a large number of available
nodes aids the search considerably [5]. This was thought to be because large
numbers of available nodes produced a high percentage of inactive nodes aiding
the search through NGD. However it was later shown in [4] that length bias
causes very few inactive nodes to be present among the active nodes, weakening
the effect. Interestingly, the results given in Section 6 show that when CGP is
allowed a very large number of nodes there is no evolutionary pressure to use less

232 A.J. Turner and J.F. Miller

active nodes than that used by a neutral search i.e. there is no pressure to increase
smaller program sizes. Based on this result the authors propose an alternative
explanation. Consider a genotype for which the phenotype consists of a small
number of active nodes, any single connection gene mutation is likely to have a
large effect on the operation of that phenotype. If however a genotype encodes
a phenotype with a high number of active nodes, any single connection gene
mutation is likely, on average, to have a much smaller effect on the operation
of the overall phenotype. Therefore, using a high number of nodes creates a
search space in which the fitness changes more gradually with a given number of
connection gene mutations. This smoother search space is likely to be easier for
evolution to navigate and hence make for a more efficient search. The reason this
does not result in CGP evolving larger and larger program sizes is because these
larger programs are not fitter, they are more evolvable and therefore there is no
direct pressure to increase the program size. However, this hypothesis currently
has no empirical evidence and is left for future investigation.

Another interesting result is that recurrent CGP outperformed feed-forward
CGP on the six bit parity task®; a task which does not require recurrent con-
nections. This is due to the fixed order of inputs applied to each circuit when
evaluating the fitness function. Recurrent CGP was producing the correct out-
puts based on the current inputs and previous inputs, not on the current inputs
alone. Although these evolved circuits would therefore not operate correctly as
parity generators, it does show the ingenuity of evolution and how using recur-
rent programs for feed-forward tasks can provide an unexpected, albeit unfair,
advantage.

7 Conclusion

Although this paper does not give a possible cause of CGP not exhibiting bloat,
it does help disprove two previous explanations found in the literature; namely
NGD and length bias. Additionally it has been shown that CGP increases the
number of active nodes when a given task requires it; although this effect has
limitations as shown in [4]. A new hypothesis has also been presented as to
why using large numbers of available nodes is beneficial for CGP. That is, using
large program sizes could help smooth out the search space making for easier
navigation.

References

1. Luke, S., Panait, L.: A comparison of bloat control methods for genetic program-
ming. Evolutionary Computation 14(3), 309-344 (2006)

2. Silva, S., Costa, E.: Dynamic limits for bloat control in genetic programming and
a review of past and current bloat theories. Genetic Programming and Evolvable
Machines 10(2), 141-179 (2009)

6 After ten thousand generations feed-forward CGP scored an average fitness of 49.22
whereas recurrent CGP scored an average fitness of 58.62.

10.

11.

12.

13.

14.

15.

16.

17.

Cartesian Genetic Programming: Why No Bloat? 233

Miller, J.: What bloat? Cartesian genetic programming on Boolean problems. In:
2001 Genetic and Evolutionary Computation Conference Late Breaking Papers,
pp. 295-302 (2001)

Goldman, B.W., Punch, W.F.: Length bias and search limitations in Cartesian ge-
netic programming. In: Proceeding of the Fifteenth Annual Conference on Genetic
and Evolutionary Computation Conference, pp. 933-940. ACM (2013)

Miller, J., Smith, S.: Redundancy and computational efficiency in Cartesian genetic
programming. IEEE Transactions on Evolutionary Computation 10(2), 167-174
(2006)

Rothlauf, F., Goldberg, D.E.: Representations for Genetic and Evolutionary Algo-
rithms. Physica-Verlag (2002)

Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf,
W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000.
LNCS, vol. 1802, pp. 121-132. Springer, Heidelberg (2000)

Miller, D.J.F. (ed.): Cartesian Genetic Programming. Springer (2011)

Vassilev, V.K., Miller, J.F.: The Advantages of Landscape Neutrality in Digital
Circuit Evolution. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C.
(eds.) ICES 2000. LNCS, vol. 1801, pp. 252-263. Springer, Heidelberg (2000)

Yu, T., Miller, J.F.: Neutrality and the evolvability of boolean function landscape.
In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon,
W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 204-217. Springer, Heidelberg
(2001)

Poli, R., Langdon, W.W.B., McPhee, N.F., Koza, J.R.: A field guide to ge-
netic programming (2008), Published via, http://lulu.com and freely available
at http://www.gp-field-guide.org.uk

Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional
complexity in genetic programming. In: Proceedings of the 12th Annual Conference
on Genetic and Evolutionary Computation, pp. 877-884. ACM (2010)

Soule, T., Heckendorn, R.B.: An analysis of the causes of code growth in genetic
programming. Genetic Programming and Evolvable Machines 3(3), 283-309 (2002)
Langdon, W., Soule, T., Poli, R., Foster, J.: The evolution of size and shape.
Advances in Genetic Programming 3, 163 (1999)

Kimura, M.: The neutral theory of molecular evolution. Cambridge University
Press (1984)

McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L.,
Jaskowski, W., Krawiec, K., Harper, R., De Jong, K., et al.: Genetic programming
needs better benchmarks. In: Proceedings of the Fourteenth International Confer-
ence on Genetic and Evolutionary Computation Conference, pp. 791-798. ACM
(2012)

Goldman, B.W., Punch, W.F.: Reducing wasted evaluations in cartesian genetic
programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.S., Hu, B.
(eds.) EuroGP 2013. LNCS, vol. 7831, pp. 61-72. Springer, Heidelberg (2013)

http://lulu.com
http://www.gp-field-guide.org.uk

	Cartesian Genetic Programming:Why No Bloat?
	Introduction
	Cartesian Genetic Programming
	Bloat and CGP
	Neutral Genetic Drift
	Length Bias

	Experiments
	Regular CGP
	No Neutral Genetic Drift
	Recurrent CGP
	Neutral Search

	Results
	Regular CGP
	No Neutral Genetic Drift
	Recurrent CGP
	Neutral Search

	Discussion
	Conclusion

