
Genetic Programming and Its
Application to HEP

Computing in High Energy
and Nuclear Physics 2004

30 September 2004

Eric W. Vaandering
ewv@fnal.gov

Vanderbilt University

and

FOCUS Collaboration

Eric Vaandering – Genetic Programming and Its Application to HEP – p.1/42

Overview
• Introduction to Genetic Programming

• Populations and Generations
• Mutation and Crossover
• Fitness and Natural Selection

• Genetic Programming applied to the doubly Cabibbo
suppressed decay D+ → K+π+π−

Eric Vaandering – Genetic Programming and Its Application to HEP – p.2/42

What is Genetic Programming
Genetic programming is a machine learning algorithm based on
two assumptions:

To find the best solution to a problem, maybe we should take a
clue from biology and the evolutionary process. (→ Genetic
Algorithms)

Since we will use computer programs to implement our
solutions, the form of our solution should be a computer
program. (→ Genetic Programming)

Genetic Programming applies a biological model which includes
reproduction, mutation, and survival of the fittest to
automatically discover computer programs.

Eric Vaandering – Genetic Programming and Its Application to HEP – p.3/42

Genetic Programming: Defined
Genetic Programming is a probabilistic search algorithm that
iteratively transforms a set (population) of programs, each with
an associated fitness value, into a new population of offspring
programs using the Darwinian principle of natural selection and
operations that mimic naturally occurring genetic operations,
such as sexual recombination (crossover) and mutation.

• Pioneered by John Koza in 1989
• Reference: Genetic Programming: On the Programming of

Computers by Natural Selection (1992)
• Since 1992, more than 3,000 papers applied to a wide range

of problems in many disciplines

Eric Vaandering – Genetic Programming and Its Application to HEP – p.4/42

Populations and Generations
Genetic Programming works by transforming one group of
individuals (programs) in generation n into another group of
individuals in generation n + 1. There are typically a few
hundred to a few thousand programs per generation.

The initial programs in the 0th generation are generated
completely randomly.

Typically the number of individuals in each generation is the
same. Usually no duplication is allowed in the 0th generation.
Duplication is allowed in later generations. (Diversity decreases.)

Eric Vaandering – Genetic Programming and Its Application to HEP – p.5/42

Gene Cross-over and Mutation
Biological

(DNA)
Cross-over

Mutations in nature change the genetic code for a small region of
DNA. Usually are harmful or neutral; occasionally helpful
(creates a better/different protein).

Mutations can restore lost (or never present) diversity.

These two processes, combined with natural selection,
drive biological evolution.

Eric Vaandering – Genetic Programming and Its Application to HEP – p.6/42

Preparatory Steps
To prepare to solve a problem with Genetic Programming, two
steps are necessary:

• Define a series of functions
• Some functions may return a variable or input
• Other functions may perform an operation

• +, −, >, < are all “functions”
• So are IF-THEN-ELSE and DO (FOR) constructs

• Define the fitness of the program. Examples:
• How many events does it classify correctly?
• In how many cases does it provide the correct output?
• How well does it fit the data?

Eric Vaandering – Genetic Programming and Its Application to HEP – p.7/42

Tree Representation
Genetic Programming fundamentals are easier to illustrate if we
adopt a “Tree” representation of a program. An example of this
representation:

C code: Program tree

float myfunc(float x, float y) {
float val;
if (x > y) {

val = x*x + y;
} else {

val = y*y + x;
}
return val;

}

IF

>

x y

+

×

x x

y

+

×

y y

x

Eric Vaandering – Genetic Programming and Its Application to HEP – p.8/42

Tree Representation, cont.
From a fraction of our tree, we can see a few things:

+

×

x x

y

Two kinds of “nodes”
• There are functions (IF, >, +, ∗)
• There are “terminals” (x, y)
• A function can have any number of

arguments (IF has three, sin x has
one)

If we allow any function or terminal at any position, then all
operations must be allowed:

• IF (float), x + (y > x)

• Divide by zero (if we use division)
• I do this by using floats. True ≡ 1, False ≡ 0

Eric Vaandering – Genetic Programming and Its Application to HEP – p.9/42

Crossover (Recombination)
Two programs and crossover points within them are chosen.
Sub-trees are removed and swapped between trees, giving two
new “children”

−

+

x 1

y

+

1 ×

x x

→

−

x y

+

1 ×

+

x 1

x

It may combine the best aspects of both parents into one child (of
course, we are just as likely to end up with the worst aspects in
one child).

Eric Vaandering – Genetic Programming and Its Application to HEP – p.10/42

Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

−

y y

Pick a parent & mutation point

Eric Vaandering – Genetic Programming and Its Application to HEP – p.11/42

Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

Pick a parent & mutation point
Remove the subtree

Eric Vaandering – Genetic Programming and Its Application to HEP – p.12/42

Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

−

x +

y x

Pick a parent & mutation point
Remove the subtree
Finish the new subtree as if it
were a “root” tree

Mutation can often be very destructive in Genetic Programming
Remember, both crossover and mutation are random processes.

Eric Vaandering – Genetic Programming and Its Application to HEP – p.13/42

Survival of the Fittest
In nature, we know that the more fit an organism is for it’s
environment, the more likely it is to reproduce. This is one of the
basic tenets of evolutionary theory.

The Genetic Programming method mimics this by determining a
fitness for each individual. Which individuals reproduce is based
on that fitness.

• The better (lower) the fitness, the better the solution
• The problem must allow for inexact solutions. There may

be a single correct solution, but there must be a way to
distinguish between increasingly incorrect solutions.

Eric Vaandering – Genetic Programming and Its Application to HEP – p.14/42

Reproduction Probabilities
To select which individuals are chosen to help populate the next
generation, they are randomly chosen according to their fitness.
The standard method is called “fitness proportionate,” sort of a
roulette wheel where the size of the slot is proportional to the
fitness.

Good Fitness

Bad Fitness

• The best individual is most likely to be chosen
• The best individual is not guaranteed to be chosen
• The worst individual may be chosen

Eric Vaandering – Genetic Programming and Its Application to HEP – p.15/42

Running the GP
Putting it all together, we are ready to “run” the GP (find a
solution).

• User has defined functions and definition of fitness
• Generate a population of programs (few hundred to few

thousand) to be tested
• Test each program against fitness definition
• Choose genetic operation (crossover/mutation) and

individuals to create next generation
• Chosen randomly according to fitness

• Repeat process for next generation
• Often tens of generations are needed to find the best

solution
• At the end, we have a large number of solutions; we look at

the best few

Eric Vaandering – Genetic Programming and Its Application to HEP – p.16/42

Application to HEP
OK, so all this is interesting to computer scientists, but how does
it apply to physics, specifically HEP?

In FOCUS, we typically select interesting (signal, we hope)
events from background processes using cuts on interesting
variables. That is, we construct variables we think are
interesting, and then require that an event pass the AND of a set
of selection criteria.

Instead, what if we give a Genetic Programming framework
some variables we think might be interesting, and allow it to
construct a filter for the events?

• If an AND of cuts is the best solution, the GP can find that

Eric Vaandering – Genetic Programming and Its Application to HEP – p.17/42

What’s it good for?
• Replace or supplement cuts
• Allow us to include indicators of interesting decays in the

selection process
• These indicators can include variables we can’t cut on

(too low efficiency)
• Can form correlations we might not think of

• Has already had this benefit

Eric Vaandering – Genetic Programming and Its Application to HEP – p.18/42

Questions
When considering an approach like this, some questions
naturally arise:

• How do we know it’s not biased?
• The tree can grow large with useless information.
• Does it do as well as normal cut methods do?
• Is it evolving or randomly hitting on good combinations?
• What about units? Can you add a momentum and a mass?

• All numbers are defined to be unit-less

Eric Vaandering – Genetic Programming and Its Application to HEP – p.19/42

Evaluating the GP
We choose to work with doubly Cabibbo suppressed decay
D+ → K+π+π− vs. D+ → K−π+π+. Two nearly identical
decays → less stringent systematics.
For each program the GP framework suggests, we have to tell the
framework how good the program is:

• All functions must be well defined for all input values, so
> → 1 (true) or 0 (false), log of neg. number, etc.

• Evaluate the tree for each event, which gives a single value
• Select events for which Tree > 0

• Initial sample has as loose cuts as possible
• Return a fitness to framework
• ∝

√
SPred-DCS + BDCS/SPred-DCS (framework wants to

minimize)
• S are predicted signals. B is from fit to DCS BG (masking

out signal region). Eric Vaandering – Genetic Programming and Its Application to HEP – p.20/42

An Example Tree
Let’s look at a simple tree. This one will require that the
momentum (p) divided by the time resolution (σt) is greater than
5.

>

/

p σt

5

This filter is then applied to each event in my sample and the
fitness is determined from the selected events.

Eric Vaandering – Genetic Programming and Its Application to HEP – p.21/42

After skim (pre-GP) signals

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

10000

20000

30000

40000

50000

60000

Skim criteria / ndf 2χ 906.6 / 35
Prob 0
p0 533± 6.656e+04
p1 287± -3.004e+04
p2 659± 2.532e+05
p3 0.000± 1.872
p4 0.00003± 0.01032

Skim criteria

Fit shows D+ → K−π+π+ normalizing mode
“Linear” histogram is DCS candidates

Eric Vaandering – Genetic Programming and Its Application to HEP – p.22/42

Evolutionary Trajectory

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

0 5 10 15 20 25 30 35 40
Generation

Fi
tn

es
s

0

10

20

30

40

50

60

70
0 5 10 15 20 25 30 35 40

Circles: average, Stars: best, Line: avg. size

Eric Vaandering – Genetic Programming and Its Application to HEP – p.23/42

Expansion of best trees

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0 5 10 15 20 25 30 35 40

Stars are the best tree, still evolving at generation 40

Eric Vaandering – Genetic Programming and Its Application to HEP – p.24/42

CF and DCSD signals

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

2000

4000

6000

8000

10000

12000

Selected CF & DCS / ndf 2χ 1158 / 35
Prob 0
p0 61.3± 1826
p1 32.8± -892.1
p2 256± 6.244e+04
p3 0.000± 1.872
p4 0.00004± 0.01056

Selected CF & DCS

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

20

40

60

80

100

120

140

160

180

Selected DCS / ndf 2χ 48.95 / 37
Prob 0.09043
p0 47.8± 866.1
p1 25.6± -417.6
p2 36.3± 466.1
p3 0.000± 1.872
p4 0.00000± 0.01056

Selected DCS

• Retains 62K of 253K original CF events
• DCS background reduced a factor > 150

• DCS mass and width are fixed to CF values

Eric Vaandering – Genetic Programming and Its Application to HEP – p.25/42

Best tree (40 generations)
min

AND

×

×

<

<=>

ln

#τ

/

p σt

×

XOR

#τ POT

+

XOR

#τ Iso2

min

OoT πcon2

NOT

POT

+

σM ×

Iso1 POT

OoT

AND

NOT

Iso2

ln

−

ln

∆πK 1

OSCL

Eric Vaandering – Genetic Programming and Its Application to HEP – p.26/42

Comparison with Cut Method
How does this compare with our normal method?

• From hep-ex/0407014, measured BR of D + → K+π+π−

• Not a direct comparison, not optimized on S/
√

S + B

invariant mass K+ π- π+

0

20

40

60

80

100

120

140

160

180

1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1
GeV/c2

ev
en

ts
/1

0
M

eV

D+
s

also shown

• Similar signal to noise
• Cuts: Yield = 189 ± 24 events
• GP: Yield = 466 ± 36 events

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

20

40

60

80

100

120

140

160

180

Selected DCS / ndf 2χ 48.95 / 37
Prob 0.09043
p0 47.8± 866.1
p1 25.6± -417.6
p2 36.3± 466.1
p3 0.000± 1.872
p4 0.00000± 0.01056

Selected DCS

Eric Vaandering – Genetic Programming and Its Application to HEP – p.27/42

What about bias?
We put in a penalty (0.5%) for each node to make sure added
nodes are valuable. Then, to evaluate bias, we optimize on only
half the events (at left).

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

1000

2000

3000

4000

5000

6000

CF Optimized / ndf 2χ 609.8 / 35
Prob 0
p0 43.5± 910.1
p1 23.3± -444.2
p2 181± 3.125e+04
p3 0.000± 1.872
p4 0.00006± 0.01057

CF Optimized

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

1000

2000

3000

4000

5000

6000

CF Unoptimized / ndf 2χ 585.9 / 35
Prob 0
p0 42.8± 926.6
p1 22.8± -454.2
p2 181± 3.12e+04
p3 0.000± 1.872
p4 0.00006± 0.01055

CF Unoptimized

31250 ± 180 events 31200 ± 180 events

No evidence of selection induced bias here.
Doubly Cabibbo suppressed distributions are also similar: 2135
(optimized) vs. 2123 (unoptimized) events in whole plot.

Eric Vaandering – Genetic Programming and Its Application to HEP – p.28/42

Tuning GP parameters
Start: 20 CPUs, 1000 trees/CPU, 6 gen. Doubled each parameter

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

0 2 4 6 8 10 12
Generation

Fi
tn

es
s

20x1000x6 20x2000x6

40x1000x6 20x1000x12

• Points: avg & RMS, dots: best
• More generations is only clear improvement
• Plots in analysis section from 20x1500x40

Eric Vaandering – Genetic Programming and Its Application to HEP – p.29/42

Conclusions
This method shows promise, but there are some caveats

• More challenging for modeling
• Perhaps best used where statistical errors dominate
• Trees are very complex and any attempt to understand the

whole thing may be pointless

However
• Worthwhile to try to understand parts of trees
• Combination CLP - Iso1 occurred often

• Now being used in other analyses
• Even simpler trees do better than the cuts they suggest

We think this novel method at least deserves further exploration

Eric Vaandering – Genetic Programming and Its Application to HEP – p.30/42

Thank you for listening

Eric Vaandering – Genetic Programming and Its Application to HEP – p.31/42

Backup slides

Backup slides

Eric Vaandering – Genetic Programming and Its Application to HEP – p.32/42

f (n) function
A threshold function used in neural networks:

f(n) =
1

1 + e−n

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1/(1+exp(-x))

Eric Vaandering – Genetic Programming and Its Application to HEP – p.33/42

SW Mechanics & Conclusions
Is interfacing to an existing experiment’s code difficult?

• Genetic programming framework
• C language based lilgp from MSU Garage group
• Modified for parallel use (PVM) by Vanderbilt Med

Center group
• Parallel version allows sub-population exchange

• Physics variables start with standard FOCUS analysis
• Write HBOOK ntuples, convert to Root Trees
• Write a little C++ code to access Trees, fill and fit

histograms (using MINUIT) and return the fit
information to the lilgp framework

• This is actually pretty easy

Eric Vaandering – Genetic Programming and Its Application to HEP – p.34/42

Genetic Programming Process

Create Initial
Population

Evaluate Fitness
of Individuals

Full?
Population

Is

Criteria
Reached?

End

Select
Operation

End
Run

Population
Insert into

Start New
Population

Yes

No

Yes

No

Crossover (90%)

Copy (10%)

Mutate (1%)

Eric Vaandering – Genetic Programming and Its Application to HEP – p.35/42

Building a tree
Trees are randomly built up one node at a time.

IF Root node ’IF’ has 3 args.

Eric Vaandering – Genetic Programming and Its Application to HEP – p.36/42

Building a tree
Trees are randomly built up one node at a time.

IF

>

x y

Root node ’IF’ has 3 args.
’>’ chosen for 1st arg.
x and y terminate ’>’

Eric Vaandering – Genetic Programming and Its Application to HEP – p.37/42

Building a tree
Trees are randomly built up one node at a time.

IF

>

x y

+

*

x x

y

+

*

y y

x

Root node ’IF’ has 3 args.
’>’ chosen for 1st arg.
x and y terminate ’>’
Remaining branches grown
Tree is complete
(all branches terminated)

Eric Vaandering – Genetic Programming and Its Application to HEP – p.38/42

Parallelizing the GP
Each test takes a while (10–60 sec on a 2 GHz P4) so spread over
multiple computers

• Adopt a South Pacific island type model
• A population on each island (CPU)
• Every few generations, migrate the best individuals

from each island to each other island
• Lots of parameters to be tweaked, like size of programs,

probabilities of reproduction methods, exchanges, etc.
• None of them seem to matter all that much, process is

robust

Eric Vaandering – Genetic Programming and Its Application to HEP – p.39/42

Parallelizing the GP

Eric Vaandering – Genetic Programming and Its Application to HEP – p.40/42

Practical considerations
Obviously, a tree can grow nearly infinite in size. This is usually
undesirable. There are ways to control this:

• Set limits on number of nodes
• Set limits on depth of nodes
• Create initial topologies of specified depth

A common approach is to allow half of the initial population to
grow completely randomly and to create the other half at a range
of (shallow) depths. In the latter case, pick functions for all nodes
< desired depth, pick terminals for all nodes at desired depth.

Eric Vaandering – Genetic Programming and Its Application to HEP – p.41/42

Data vs. MC comparisons
Since these decays are nearly identical, what is important is that
the efficiency of the tree for CF and DCS modes is the same (or
modeled by our MC). What is less important is the absolute
efficiency on a single mode.

But studies of absolute tree efficiencies are encouraging. We can
study

εtree

εoriginal selection

for both the MC and the normalization mode. We typically find
deviations . 10%.

Highly dependent on the quality of the simulation package.

Eric Vaandering – Genetic Programming and Its Application to HEP – p.42/42

	Overview
	What is Genetic Programming
	Genetic Programming: Defined
	Populations and Generations
	Gene Cross-over and Mutation
	Preparatory Steps
	Tree Representation
	Tree Representation, cont.
	Crossover (Recombination)
	Mutation
	Mutation
	Mutation
	Survival of the Fittest
	Reproduction Probabilities
	Running the GP
	Application to HEP
	What's it good for?
	Questions
	Evaluating the GP
	An Example Tree
	After skim (pre-GP)
signals
	Evolutionary Trajectory
	Expansion of best trees
	CF and DCSD signals
	Best tree (40 generations)
	Comparison with Cut Method
	What about bias?
	Tuning GP parameters
	Conclusions
	
	Backup slides
	$f(n)$
function
	SW Mechanics & Conclusions
	Genetic Programming Process
	Building a tree
	Building a tree
	Building a tree
	Parallelizing the GP
	Parallelizing the GP
	Practical considerations
	Data vs. MC comparisons

