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Overview
• Introduction to Genetic Programming

• Populations and Generations
• Mutation and Crossover
• Fitness and Natural Selection

• Genetic Programming applied to the doubly Cabibbo
suppressed decay D+ → K+π+π−
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What is Genetic Programming
Genetic programming is a machine learning algorithm based on
two assumptions:

To find the best solution to a problem, maybe we should take a
clue from biology and the evolutionary process. (→ Genetic
Algorithms)

Since we will use computer programs to implement our
solutions, the form of our solution should be a computer
program. (→ Genetic Programming)

Genetic Programming applies a biological model which includes
reproduction, mutation, and survival of the fittest to
automatically discover computer programs.
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Genetic Programming: Defined
Genetic Programming is a probabilistic search algorithm that
iteratively transforms a set (population) of programs, each with
an associated fitness value, into a new population of offspring
programs using the Darwinian principle of natural selection and
operations that mimic naturally occurring genetic operations,
such as sexual recombination (crossover) and mutation.

• Pioneered by John Koza in 1989
• Reference: Genetic Programming: On the Programming of

Computers by Natural Selection (1992)
• Since 1992, more than 3,000 papers applied to a wide range

of problems in many disciplines
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Populations and Generations
Genetic Programming works by transforming one group of
individuals (programs) in generation n into another group of
individuals in generation n + 1. There are typically a few
hundred to a few thousand programs per generation.

The initial programs in the 0th generation are generated
completely randomly.

Typically the number of individuals in each generation is the
same. Usually no duplication is allowed in the 0th generation.
Duplication is allowed in later generations. (Diversity decreases.)
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Gene Cross-over and Mutation
Biological

(DNA)
Cross-over

Mutations in nature change the genetic code for a small region of
DNA. Usually are harmful or neutral; occasionally helpful
(creates a better/different protein).

Mutations can restore lost (or never present) diversity.

These two processes, combined with natural selection,
drive biological evolution.
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Preparatory Steps
To prepare to solve a problem with Genetic Programming, two
steps are necessary:

• Define a series of functions
• Some functions may return a variable or input
• Other functions may perform an operation

• +, −, >, < are all “functions”
• So are IF-THEN-ELSE and DO (FOR) constructs

• Define the fitness of the program. Examples:
• How many events does it classify correctly?
• In how many cases does it provide the correct output?
• How well does it fit the data?
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Tree Representation
Genetic Programming fundamentals are easier to illustrate if we
adopt a “Tree” representation of a program. An example of this
representation:

C code: Program tree

float myfunc(float x, float y) {
float val;
if (x > y) {

val = x*x + y;
} else {

val = y*y + x;
}
return val;

}

IF

>

x y

+

×

x x

y

+

×

y y

x
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Tree Representation, cont.
From a fraction of our tree, we can see a few things:

+

×

x x

y

Two kinds of “nodes”
• There are functions (IF, >, +, ∗)
• There are “terminals” (x, y)
• A function can have any number of

arguments (IF has three, sin x has
one)

If we allow any function or terminal at any position, then all
operations must be allowed:

• IF (float), x + (y > x)

• Divide by zero (if we use division)
• I do this by using floats. True ≡ 1, False ≡ 0
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Crossover (Recombination)
Two programs and crossover points within them are chosen.
Sub-trees are removed and swapped between trees, giving two
new “children”

−

+

x 1

y

+

1 ×

x x

→

−

x y

+

1 ×

+

x 1

x

It may combine the best aspects of both parents into one child (of
course, we are just as likely to end up with the worst aspects in
one child).
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Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

−

y y

Pick a parent & mutation point
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Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

Pick a parent & mutation point
Remove the subtree
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Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

−

x +

y x

Pick a parent & mutation point
Remove the subtree
Finish the new subtree as if it
were a “root” tree

Mutation can often be very destructive in Genetic Programming
Remember, both crossover and mutation are random processes.
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Survival of the Fittest
In nature, we know that the more fit an organism is for it’s
environment, the more likely it is to reproduce. This is one of the
basic tenets of evolutionary theory.

The Genetic Programming method mimics this by determining a
fitness for each individual. Which individuals reproduce is based
on that fitness.

• The better (lower) the fitness, the better the solution
• The problem must allow for inexact solutions. There may

be a single correct solution, but there must be a way to
distinguish between increasingly incorrect solutions.
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Reproduction Probabilities
To select which individuals are chosen to help populate the next
generation, they are randomly chosen according to their fitness.
The standard method is called “fitness proportionate,” sort of a
roulette wheel where the size of the slot is proportional to the
fitness.

Good Fitness

Bad Fitness

• The best individual is most likely to be chosen
• The best individual is not guaranteed to be chosen
• The worst individual may be chosen
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Running the GP
Putting it all together, we are ready to “run” the GP (find a
solution).

• User has defined functions and definition of fitness
• Generate a population of programs (few hundred to few

thousand) to be tested
• Test each program against fitness definition
• Choose genetic operation (crossover/mutation) and

individuals to create next generation
• Chosen randomly according to fitness

• Repeat process for next generation
• Often tens of generations are needed to find the best

solution
• At the end, we have a large number of solutions; we look at

the best few
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Application to HEP
OK, so all this is interesting to computer scientists, but how does
it apply to physics, specifically HEP?

In FOCUS, we typically select interesting (signal, we hope)
events from background processes using cuts on interesting
variables. That is, we construct variables we think are
interesting, and then require that an event pass the AND of a set
of selection criteria.

Instead, what if we give a Genetic Programming framework
some variables we think might be interesting, and allow it to
construct a filter for the events?

• If an AND of cuts is the best solution, the GP can find that
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What’s it good for?
• Replace or supplement cuts
• Allow us to include indicators of interesting decays in the

selection process
• These indicators can include variables we can’t cut on

(too low efficiency)
• Can form correlations we might not think of

• Has already had this benefit
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Questions
When considering an approach like this, some questions
naturally arise:

• How do we know it’s not biased?
• The tree can grow large with useless information.
• Does it do as well as normal cut methods do?
• Is it evolving or randomly hitting on good combinations?
• What about units? Can you add a momentum and a mass?

• All numbers are defined to be unit-less
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Evaluating the GP
We choose to work with doubly Cabibbo suppressed decay
D+ → K+π+π− vs. D+ → K−π+π+. Two nearly identical
decays → less stringent systematics.
For each program the GP framework suggests, we have to tell the
framework how good the program is:

• All functions must be well defined for all input values, so
> → 1 (true) or 0 (false), log of neg. number, etc.

• Evaluate the tree for each event, which gives a single value
• Select events for which Tree > 0

• Initial sample has as loose cuts as possible
• Return a fitness to framework
• ∝

√
SPred-DCS + BDCS/SPred-DCS (framework wants to

minimize)
• S are predicted signals. B is from fit to DCS BG (masking
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An Example Tree
Let’s look at a simple tree. This one will require that the
momentum (p) divided by the time resolution (σt) is greater than
5.

>

/

p σt

5

This filter is then applied to each event in my sample and the
fitness is determined from the selected events.
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After skim (pre-GP) signals
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Skim criteria  / ndf 2χ  906.6 / 35
Prob       0
p0        533± 6.656e+04 
p1        287± -3.004e+04 
p2        659± 2.532e+05 
p3        0.000± 1.872 
p4        0.00003± 0.01032 

Skim criteria

Fit shows D+ → K−π+π+ normalizing mode
“Linear” histogram is DCS candidates
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Evolutionary Trajectory
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Expansion of best trees
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CF and DCSD signals

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
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Selected CF & DCS  / ndf 2χ   1158 / 35
Prob       0
p0        61.3±  1826 
p1        32.8± -892.1 
p2        256± 6.244e+04 
p3        0.000± 1.872 
p4        0.00004± 0.01056 

Selected CF & DCS

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

20

40

60

80

100

120

140

160

180

Selected DCS  / ndf 2χ  48.95 / 37
Prob   0.09043
p0        47.8± 866.1 
p1        25.6± -417.6 
p2        36.3± 466.1 
p3        0.000± 1.872 
p4        0.00000± 0.01056 

Selected DCS

• Retains 62K of 253K original CF events
• DCS background reduced a factor > 150

• DCS mass and width are fixed to CF values
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Best tree (40 generations)
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Comparison with Cut Method
How does this compare with our normal method?

• From hep-ex/0407014, measured BR of D + → K+π+π−

• Not a direct comparison, not optimized on S/
√

S + B

invariant mass K+ π- π+
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• Similar signal to noise
• Cuts: Yield = 189 ± 24 events
• GP: Yield = 466 ± 36 events
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Selected DCS  / ndf 2χ  48.95 / 37
Prob   0.09043
p0        47.8± 866.1 
p1        25.6± -417.6 
p2        36.3± 466.1 
p3        0.000± 1.872 
p4        0.00000± 0.01056 

Selected DCS
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What about bias?
We put in a penalty (0.5%) for each node to make sure added
nodes are valuable. Then, to evaluate bias, we optimize on only
half the events (at left).
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CF Optimized  / ndf 2χ  609.8 / 35
Prob       0
p0        43.5± 910.1 
p1        23.3± -444.2 
p2        181± 3.125e+04 
p3        0.000± 1.872 
p4        0.00006± 0.01057 

CF Optimized
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CF Unoptimized  / ndf 2χ  585.9 / 35
Prob       0
p0        42.8± 926.6 
p1        22.8± -454.2 
p2        181± 3.12e+04 
p3        0.000± 1.872 
p4        0.00006± 0.01055 

CF Unoptimized

31250 ± 180 events 31200 ± 180 events

No evidence of selection induced bias here.
Doubly Cabibbo suppressed distributions are also similar: 2135
(optimized) vs. 2123 (unoptimized) events in whole plot.
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Tuning GP parameters
Start: 20 CPUs, 1000 trees/CPU, 6 gen. Doubled each parameter
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• More generations is only clear improvement
• Plots in analysis section from 20x1500x40
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Conclusions
This method shows promise, but there are some caveats

• More challenging for modeling
• Perhaps best used where statistical errors dominate
• Trees are very complex and any attempt to understand the

whole thing may be pointless

However
• Worthwhile to try to understand parts of trees
• Combination CLP - Iso1 occurred often

• Now being used in other analyses
• Even simpler trees do better than the cuts they suggest

We think this novel method at least deserves further exploration
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Thank you for listening

Eric Vaandering – Genetic Programming and Its Application to HEP – p.31/42



Backup slides

Backup slides
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f (n) function
A threshold function used in neural networks:

f(n) =
1

1 + e−n
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1/(1+exp(-x))
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SW Mechanics & Conclusions
Is interfacing to an existing experiment’s code difficult?

• Genetic programming framework
• C language based lilgp from MSU Garage group
• Modified for parallel use (PVM) by Vanderbilt Med

Center group
• Parallel version allows sub-population exchange

• Physics variables start with standard FOCUS analysis
• Write HBOOK ntuples, convert to Root Trees
• Write a little C++ code to access Trees, fill and fit

histograms (using MINUIT) and return the fit
information to the lilgp framework

• This is actually pretty easy
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Genetic Programming Process

Create Initial
Population

Evaluate Fitness
of Individuals

Full?
Population

Is
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End

Select
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End
Run
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Insert into
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Yes

No
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Crossover (90%)

Copy (10%)

Mutate (1%)
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Building a tree
Trees are randomly built up one node at a time.

IF Root node ’IF’ has 3 args.
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Building a tree
Trees are randomly built up one node at a time.

IF

>

x y

Root node ’IF’ has 3 args.
’>’ chosen for 1st arg.
x and y terminate ’>’
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Building a tree
Trees are randomly built up one node at a time.

IF

>

x y

+

*

x x

y

+

*

y y

x

Root node ’IF’ has 3 args.
’>’ chosen for 1st arg.
x and y terminate ’>’
Remaining branches grown
Tree is complete
(all branches terminated)
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Parallelizing the GP
Each test takes a while (10–60 sec on a 2 GHz P4) so spread over
multiple computers

• Adopt a South Pacific island type model
• A population on each island (CPU)
• Every few generations, migrate the best individuals

from each island to each other island
• Lots of parameters to be tweaked, like size of programs,

probabilities of reproduction methods, exchanges, etc.
• None of them seem to matter all that much, process is

robust
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Parallelizing the GP
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Practical considerations
Obviously, a tree can grow nearly infinite in size. This is usually
undesirable. There are ways to control this:

• Set limits on number of nodes
• Set limits on depth of nodes
• Create initial topologies of specified depth

A common approach is to allow half of the initial population to
grow completely randomly and to create the other half at a range
of (shallow) depths. In the latter case, pick functions for all nodes
< desired depth, pick terminals for all nodes at desired depth.
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Data vs. MC comparisons
Since these decays are nearly identical, what is important is that
the efficiency of the tree for CF and DCS modes is the same (or
modeled by our MC). What is less important is the absolute
efficiency on a single mode.

But studies of absolute tree efficiencies are encouraging. We can
study

εtree

εoriginal selection

for both the MC and the normalization mode. We typically find
deviations . 10%.

Highly dependent on the quality of the simulation package.
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