Skip to main content

Fitness Distance Correlation in Structural Mutation Genetic Programming

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2610))

Abstract

A new kind of mutation for genetic programming based on the structural distance operators for trees is presented in this paper. We firstly describe a new genetic programming process based on these operators (we call it structural mutation genetic programming). Then we use structural distance to calculate the fitness distance correlation coefficient and we show that this coefficient is a reasonable measure to express problem difficulty for structural mutation genetic programming for the considered set of problems, i.e. unimodal trap functions, royal trees and MAX problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Altenberg. Fitness distance correlation analysis: an instructive counterexample. In T. Back, editor, Seventh International Conference on Genetic Algorithms, pages 57–64. Morgan Kaufmann, 1997.

    Google Scholar 

  2. P. J. Angeline. Subtree crossover: Building block engine or macromutation? In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 9–17, Stanford University, CA, USA, 1997. Morgan Kaufmann.

    Google Scholar 

  3. E. Burke, S. Gustafson, G. Kendall, and N. Krasnogor. Advanced population diversity measures in genetic programming. In J. J. Merelo, P. Adamidis, H. G. Beyer, J.-L. Fernández-Villacanas, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature-PPSN VII, volume 2439 of Lecture Notes in Computer Science, pages 341–350. Springer-Verlag, Heidelberg, 2002.

    Chapter  Google Scholar 

  4. K. Chellapilla. Evolutionary programming with tree mutations: Evolving computer programs without crossover. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 431–438, Stanford University, CA, USA, 1997. Morgan Kaufmann.

    Google Scholar 

  5. M. Clergue, P. Collard, M. Tomassini, and L. Vanneschi. Fitness distance correlation and problem difficulty for genetic programming. In Proceedings of the genetic and evolutionary computation conference GECCO’02, pages 724–732, San Francisco, CA, 2002. Morgan Kaufmann.

    Google Scholar 

  6. P. Collard, M. Clergue, and F. Bonnin. Misleading functions designed from alternation. In Congress on Evolutionary Computation (CEC’2000), pages 1056–1063. IEEE Press, Piscataway, NJ, 2000.

    Google Scholar 

  7. P. Collard, A. Gaspar, M. Clergue, and C. Escazut. Fitness distance correlation as statistical measure of genetic algorithms difficulty, revisited. In European Conference on Artificial Intelligence (ECAI’98), pages 650–654, Brighton, 1998. John Witley & Sons, Ltd.

    Google Scholar 

  8. K. Deb and D. E. Goldberg. Analyzing deception in trap functions. In D. Whitley, editor, Foundations of Genetic Algorithms, 2, pages 93–108. Morgan Kaufmann, 1993.

    Google Scholar 

  9. A. Ekárt and S. Z. Németh. Maintaining the diversity of genetic programs. In J. A. Foster, E. Lutton, J. Miller, C. Ryan, and A. G. B. Tettamanzi, editors, Genetic Programming, Proceedings of the 5th European Conference, EuroGP 2002, volume 2278 of LNCS, pages 162–171, Kinsale, Ireland, 3–5 April 2002. Springer-Verlag.

    Google Scholar 

  10. C. Gathercole and P. Ross. An adverse interaction between crossover and restricted tree depth in genetic programming. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual Conference, pages 291–296, Stanford University, CA, USA, 28–31 July 1996. MIT Press.

    Google Scholar 

  11. T. Jones. Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis, Uiversity of New Mexico, Albuquerque, 1995.

    Google Scholar 

  12. R. Keller and W. Banzhaf. Explicit maintenance of genotypic diversity on genospaces. Unpublished, 1994. http://ls11-www.informatik.uni-dortmund.de/people/banzhaf/gp.html.

  13. W. B. Langdon and R. Poli. An analysis of the max problem in genetic programming. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second Annual Conference on Genetic Programming, pages 222–230, San Francisco, CA, 1997. Morgan Kaufmann.

    Google Scholar 

  14. N.F. McPhee and N.J. Hopper. Analysis of genetic diversity through population history. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation Conference, volume 2, pages 1112–1120, Orlando, Florida, USA, 13–17 July 1999. Morgan Kaufmann.

    Google Scholar 

  15. U.-M. O’Reilly. An Analysis of Genetic Programming. PhD thesis, Carleton University, Ottawa, Ontario, Canada, 1995.

    Google Scholar 

  16. B. Punch, D. Zongker, and E. Goodman. The royal tree problem, a benchmark for single and multiple population genetic programming. In P. Angeline and K. Kinnear, editors, Advances in Genetic Programming 2, pages 299–316, Cambridge, MA, 1996. The MIT Press.

    Google Scholar 

  17. R.J. Quick, V.J. Rayward-Smith, and G.D. Smith. Fitness distance correlation and ridge functions. In Fifth Conference on Parallel Problems Solving from Nature (PPSN’98), pages 77–86. Springer-Verlag, Heidelberg, 1998.

    Google Scholar 

  18. V. Slavov and N. I. Nikolaev. Fitness landscapes and inductive genetic programming. In Proceedings of International Conference on Artificial Neural Networks and Genetic Algorithms (ICANNGA97), University of East Anglia, Norwich, UK, 1997. Springer-Verlag KG, Vienna.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vanneschi, L., Tomassini, M., Collard, P., Clergue, M. (2003). Fitness Distance Correlation in Structural Mutation Genetic Programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds) Genetic Programming. EuroGP 2003. Lecture Notes in Computer Science, vol 2610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36599-0_43

Download citation

  • DOI: https://doi.org/10.1007/3-540-36599-0_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00971-9

  • Online ISBN: 978-3-540-36599-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics