Evolving Parallel

SISAL Programs Using GP

From: AAAI Technical Report FS-95-01. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved.

V. Rao Vemuri

and Patrick Miller

University of California

Lawrence

Introduction

The genetic programming (GP) paradigm is
an off shoot of genetic algorithms (GA). GP is
envisaged as an automatic method for generating
computer programs. In GP we use populations of
data structures (or, programs) that are evaluated by
some problem specific criterion. More fit structures
are propagated to future generations of populations
through genetic operations that are similar to those
used in GAs [Koza, 92, 94].

In the early implementations of the GP
paradigm, Lisp was the language of choice. The
program structures of GP are stored as Lisp
symbolic expressions (S-expressions) and are
manipulated such that better and better program
structures are evolved, preserved and propagated
until a desired structure capable of solving a given
problem is generated. That Lisp has been a
successful vehicle for the implementation of GP is
a proven fact [Koza, 92, 94].

The Case Against C

Lisp, although a common programming
language, is not well known outside the computer
science community. Even among computer
scientists, its popularity pales in front of other

languages like C. Perhaps a larger group would try.

GP if it can be implemented in a more popular
language like C or FORTRAN. Spurred by this
type of motivation there have been attempts to
implement GP in C (Andre and Hondl, 1994;
Zongker and Punch, 1995).

Our first desire was to try to implement GP
in C to gain some first hand experience. After some
initial thinking we soon abandoned that idea in
favor of SISAL. The reasons for our initial desire
to try C and subsequent switch from C to SISAL
are many. Suffice it to say that we felt that C, in
spite of its popularity, is not a good language for
GP implementations. "To be 'using C,' an
implementation must use as its chromosomal
material , C source code. It must store these
programs, be able to successfully perform the
operations of mating crossover, mutation (while
preserving each individual as a functioning C
program). The compositions of the sets of

Livermore

National Laboratory

terminals and the sets of operators must be
determined and specified. There are a great many
details to specify." (Alme, 1995).

"The C language, in source code form, has
a very rigid structure that must be obeyed. There
are many details that must be addressed: variables
must be declared and their data types specified,
function calls must have the correct number of
arguments, unary operators must operate on single
objects, binary operators on two, (sic) and so on.
The placement of parentheses and semicolons is
important. Unlike a Lisp expression, which is a
program, a C source file is simply a list of
instructions for the computer to generate a
program.” Finally we felt that C suffers from, for
the lack of a better term, "syntactic fragility." That
is performing GP operations in C source code,
without abstraction is unlikely to produce another
source file that will pass through the compiler
without error. Lisp expressions, on the other hand,
look like trees and there is a one-to-one
correspondence between the expressions that the
investigator sees and what the computer sees. This
is not the case for the C language."

We looked at two implementation attempts
(Andre and Hondl, 1994; Zongker and Punch,
1995) to understand what others are doing. We felt
that these two implementations did not address, to
the extent we understand them, the issues that were
raised here. Both implementations form a tree
where the terminal nodes and operators are
functions that are written in C, but they do not
directly manipulate the C source code. "Once the
source code for the pieces of the tree have been
written and successfully compiled, the program
will manipulate individuals whose smallest
components are the precompiled functions specified
by the investigator. While they are certainly
effective implementations that use the GP
technique, they do not conform to the specification
of 'using C.' They are written in C, but so is the
Lisp interpreter that manipulates the Lisp S-
expressions” (Alme, 1995).

Motivation for SISAL

This initial attempt and our subsequent lack
of conviction that C would be a good language

120



prodded us to look at other alternatives. One
immediate candidate happened to be SISAL, a
language developed by a team that included a group
from Lawrence Livermore National Laboratory.
The motivations for the selection of SISAL are
different from those behind the initial trials with C.
SISAL definitely is not a language that is in
widespread usage; it is still an experimental
language. The first version was designed in 1983.
At the time of this writing SISAL has been installed
at well over 70 sites internationally.

That we abandoned our effort with C and
embarked on an exploration of SISAL is no
absolute verdict against C or any other language.
Granted that SISAL is lot more obscure than Lisp.
Our desire to experiment with SISAL is motivated
because it is a parallel language. Although it can
run in a uniprocessor environment, its speed
advantage is fully realized when used on parallel
architectures. Finally, we wanted to learn the
fallacies and pitfalls of evolving parallel programs
and for this objective SISAL is as good as any
other parallel language.

SISAL (Streams and Iterations in a Single
Assignment Language) is a functional language that
takes advantage of parallel architectures (McGraw,
et al. 1985). It is a proven high performance,
parallel language system (Cann, 1992). The
SISAL 90 language (Feo, et. al. 1995) has added
higher order objects making the language capable
of defining and manipulating run-time structures.
SISAL defines and uses pure functions that map
input data to results. These would form the basis
for functional chromosomes much as with LISP.
Recursive composition of functions is
straightforward. SISAL has important capabilities
that may be important in GP. These include
iterative constructs that may be more effective than
recursion, automatic parallelization and
vectorization, a static typing system that makes
compilation more effective, and the tree based
intermediate form IF1 (Skedzielewski, et. al,
1985).

Unlike GP strategies in C where only small
atomic functions may be easily manipulated at the
source level, SISAL may be manipulated using its
hierarchical intermediate. This IF1 sub language is
conceptually identical to S-expressions in lisp.
Variable declarations are unnecessary because they
are implicit in its structure. Programs can be built
up from the language's atomic operations and user
functions (the genes) into complex chromosomal
structures within the intermediate’s hierarchical
operations (iteration, parallel do-across, and

alternation). GP generated programs in the
intermediate form can also be "uncompiled” into
SISAL source. We feel that the SISAL/ IF1
combination will be easier to manipulate than C and
will yield higher-performance, parallel programs
that are not obtainable using Lisp.

Acknowledgment:

The authors were benefited by discussions with
Tom DeBoni of Lawrence Livermore National
Laboratory. They thank Prof. John Koza for
inspiring us to undertake this work.

References

Alme, H. J. (1995) Computerized Darwinism:
Applying genetic programming to C source
code, Term paper submitted in partial
fulfillment of the requirements of AEL216G
taught by Prof. V. Vemuri in Winter 1995.

Andre, D. and Hondl, C. (1994) Dave's Genetic
Programming Code in C, Informal Report,
Stanford University, April 28, 1994.

Cann, D. C. "Retire FORTRAN: A Debate
Rekindled", CACM, August 1992

Feo, J. T. Miller, P. J. and Skedzielewski, S. K.
(1995) "SISAL90", Proc. High Performance
Paralle]l Computing '95, Denver, Colorado.
April 1995.

Koza, J. R. (1992) Genetic Programming: On the
Programming of Computers by Means of
Natural Selection, MIT Press, 1992.

Koza, J. R. (1994) Genetic Programming II:
Automatic Discovery of Reusable Programs,
MIT Press, 1994.

McGraw, J. Skedzielewski, S., Allan, S.
Oldehoeft, R., Glauert, J., Kirkham, C.,
Noyce, B. and Thomas, T. (1985) SISAL:
Streams and Iterations in a Single Assignment
Language: Reference Manual Version 1.2.
Manual M-146, Rev. 1, Lawrence Livermore
National Laboratory, Livermore, CA, March
1985.

Skedzielewski, S. and Glauert, J. (1985) IF1 - An
intermediate form for applicative languages,
Version 1.0, Manual M-170, Lawrence
Livermore National Laboratory, Livermore,
CA, July 1985.





