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Abstract The rest of this paper is organized as follows.   Section 2 

describes traditional System Identification and introduces 
the use of Particle Swarm Optimization (PSO) for 
determining the coefficients of a simple autoregressive 
moving average model (SwARMA).  Section 3 explains 
Particle Swarm Optimization.   Section 4 describes the 
results of using PSO for determining the ARMA model 
parameter (SwARMA) for an example problem.  Section 
5 introduces and explains the Group Method of Data 
Handling (GMDH)  and the extension of the GMDH 
algorithms using PSO.  Section 6 describes the results of 
using the GMDH combined with PSO for two example 
problems and an additional example problem that 
illustrates nodal selection criterion. The paper ends with 
the primary conclusions we draw from the results. 

A new methodology for Emergent System 
Identification is proposed in this paper. The new 
method applies the self-organizing Group 
Method of Data Handling (GMDH) functional 
networks, Particle Swarm Optimization (PSO), 
and Genetic Programming (GP) that is effective 
in identifying complex dynamic systems.  The 
focus of the paper will be on how Particle 
Swarm Optimization (PSO) is applied within 
Group Method of Data Handling (GMDH) which 
is used as the modeling framework.    

1 INTRODUCTION 
The methodology of System Identification was developed 
for the extraction of mathematical models from system 
data. Evolutionary System Identification has been used to 
designate the use of evolutionary computation for the 
determination of the approximate mathematical model 
from experimental data.  Evolutionary systems rely on a 
notion of competition among a population of individuals 
that compete to reproduce to form future generations.  
Emergence is used to describe the self-organization (order 
for free) exhibited by Complex Dynamic Systems.  
Emergent systems rely on the self-organization properties 
of the underlying system (information) (Holland, 1998).  
These emergent systems use iterative stochastic 
methodologies to discover the underlying connections 
implied by the system data.  From this perspective, 
evolutionary methodologies are also emergent, but the 
opposite is not always true.  The methodology of 
Emergent System Identification that is proposed here is 
concerned with extending the concept of Evolutionary 
System Identification by combining the methodologies of 
System Identification (Pandit, 1984) self-organizing 
functional networks (GMDH) (Ivakhnenko, 1968a, 
1971b; Madala and Ivakhnenko, 1994), Particle Swarm 
Optimization (PSO) (Kennedy and Eberhart, 2001a) and 
Genetic Programming (GP) (Iba and Kurita, 1994).  

2 SYSTEM IDENTIFICATION 
Generally speaking, the discipline of system Identification 
is concerned with the derivation of mathematical models 
from experimental data.  When given a data set one 
typically applies a set of candidate models and chooses 
one of the models based on a set of rules by which the 
models can be assessed.  One of the simplest System 
Identification models is the Autoregressive Moving 
Average  (ARMA) model as shown in equation 1.  
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are the parameters for an 
ARMA(n,m) model.  For a given ARMA(n,m) model the 
model parameters φ  and jθ  are selected such that 
equation (2) is minimized, 
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where,     

                     N =  number of data points.  (3) 

  



ARMA models are numerically efficient due to their 
ability to utilize traditional parameter estimation methods 
and typically employ non-linear least squares for the 
determination of their parameters.  In this paper it is 
shown that Particle Swarm Optimization (PSO) can be 
used to determine the parameters for ARMA models.  The 
use of PSO to determine the constants of the ARMA 
model is denoted by what the authors are calling 
SwARMA.  It will be shown that SwARMA was able to 
determine a better parameterization for the ARMA model 
than the IMSL (International Mathematical and Statistical 
Libraries) routines. 

3.1 PSO EQUATIONS 
The ith particle is represented as,  

                          1 2( , ,..., )I i i iDX x x x=  (4)  

where D is the dimensionality of the problem. The rate of 
the position change (velocity) of the ith particle is 
represented by,   

                          1 2( , ,..., )I i i iDv vV v=  (5) 

where  is the velocity for dimension “k” for particle 
“i”. The best previous position (the position giving the 
best fitness value) of the ith particle is represented as, 

ikv

3 PARTICLE SWARM OPTIMIZATION                           1 2( , ,..., )I i i iDP p p p=  (6) 

The Particle Swarm Algorithm is an adaptive algorithm 
based on a social-psychological metaphor (Kennedy and 
Eberhart, 2001a). A population of individuals adapt by 
returning stochastically towards previously successful 
regions in the search space, and are influenced by the 
successes of their topological neighbors.  Most particle 
swarms are based on two sociometric principles.  Particles 
fly through the solution space and are influenced by both 
the best particle in the particle population and the best 
solution that a current particle has discovered so far.  The 
best particle in the population is typically denoted by   
(global best), while the best position that has been visited 
by the current particle is denoted by   (local best).  The   
(global best) individual conceptually connects all 
members of the population to one another.  That is, each 
particle is influenced by the very best performance of any 
member in the entire population. The (local best) 
individual is conceptually seen as the ability for particles 
to remember past personal successes. 

The best previous position so far achieved by any of the 
particles (the position giving the best fitness value) of the 
ith particle is recorded and represented as,  

                          1 2( , ,..., )G g g gDP p p p=  (7) 

On each iteration the velocity for each dimension of each 
particle is updated by, 

     { } { }1 1 2 2 , 1, 2,...,ik k ik ik gkv c p c p k g Dϕ ϕ= + + ∈v w  (8) 

where  is the inertia weight that typically ranges from 
0.9 to 1.2. 1  and 2  are constant values typically in the 
range of 2 to 4.  These constants are multiplied by 

kw
c c

ϕ  (a 
uniform random number between 0 and 1) and a measure 
of how far the particle is from its personal best and the 
best particle so far. From a social point of view, the 
particle moves based on its current direction ( ), its 
memory of where it found its personal best (

kw
ikp ), and a 

desire to be like the best particle in the population ( gkp ).  

 
3.2 PSO – POSITION UPDATE RULE 

Particle Swarm Optimization is a relatively new addition 
to the evolutionary computation methodology, but the 
performance of PSO has been shown to be competitive 
with more mature methodologies (Eberhart and Shi, 
1998a; Kennedy and Spears, 1998).  Since it is relatively 
straightforward to extend PSO by attaching mechanisms 
employed by other evolutionary computation methods 
that increase their performance; PSO has the potential to 
become an excellent framework for building custom high-
performance stochastic optimizers (Løvbjerg, et al., 
2001).  It is interesting to note that PSO can be considered 
as a form of continuous valued Cellular Automata.  This 
allows its hybridizations to extend into areas other than 
computational intelligence (Kennedy and Eberhart, 2001). 

After a new velocity for each particle is calculated, each 
particle's position is updated according to: 

                             ik ik ikx x v= +  (9) 

It typically takes a particle swarm a few hundred to a few 
thousand updates for convergence depending on the 
parameter selections within the PSO algorithm (Eberhart 
and Shi, 1998b). 

3.3 RESULTS: PSO+ARMA 
Particle Swarm Optimization was used to determine the 
ARMA parameters for the Wolfer Sunspot Data (1770-
1869).  The results from the study are shown in Fig. 1.  
This model was chosen to demonstrate the use of PSO on 
a well understood System Identification problem. The 
authors were somewhat surprised at the results.   The 
particle swarm converged after a few thousand iterations 
in less that a minute on a 200 Mhz Pentium PC.  In all 
cases the solution found was substantially better than 
those found using the IMSL Libraries.   

 
 
 
 
 
 



For both the ARMA(2,1) and ARMA(4,2) models the 
PSO solution was better than the IMSL solution. In light 
of these results the authors chose to call the combination 
of PSO with ARMA: SwARMA (Voss and Feng, 2001). 
These results suggest some interesting future research 
with regards to traditional System Identification. 
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Wolfer Sunspot Data (1770-1869)
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Fig. 2. GHDH forward feed functional network 

 
The inputs to the input layer are determined by taking all 
combinations (taken two at a time) of the input vector 
“xi“.  Each combination of inputs forms an input node that 
tries to model the corresponding system output using a 
second order polynomial surface specified by the 
polynomial in equation 11. 

Fig. 1.  Wolfer Sunspot Data.  
Static SwARMA models.  Weight = 0.7. 

         (11) 2
0 1 1 2 2 3 1 2 4 1 5 2y c c x c x c x x c x c x= + + + + + 2

 
The nodes in the input layer that do the “best job” (shaded 
nodes) at modeling the system output are retained and 
form the input to the next layer.  The inputs for layer 1 are 
formed by taking all combinations of the surviving output 
approximations from the input layer nodes.  It is seen that 
at each layer the order of the approximation is increased 
by two.  The layer 2 nodes that do the “best job” at 
approximating the system output are retained and form 
the layer 3 inputs.  This process is repeated until the 
current layer’s best approximation is inferior to the 
previous layer’s best approximation.  The previous layer’s 
best approximation is then used as the final solution.  
Determining the method for ranking the nodes at a given 
layer is somewhat problem dependant.  Typically the data 
is spit into two groups.  One data group is used to train the 
network and the other data group is used to rank the nodes 
to determine which nodes survive to form the input to the 
next layer.  The GMDH can thus be seen as a 
methodology for distributed self-organizing computation. 

4 THE GROUP METHOD OF DATA 
HANDELING 

The group method of data handling (GMDH) was first 
proposed by Alexy G. Ivakhnenko (1968).  The traditional 
GMDH method is based on an underlying assumption that 
the data can be modeled by using an approximation of the 
Voltera Series or Kolmorgorov-Gabor polynomial as 
shown in the following equation, 
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Ivakhnenko accomplished this by using a feed-forward 
self-organizing polynomial functional network shown in 
Fig 2. 
 
 

 
 
 



4.1 EXTENDING THE GMDH 
Optimal Kolmorgorov Surface Fit 
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The GMDH can be used as an embryo for more complex 
methodologies for distributed self-organizing computation  
(Nikolaev,N. and Iba,H., 2001).  The methodology is 
modified here by substituting equation 12 in place of the 
traditional six term linear polynomial approximation, 
 

           (12) 
3 4
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This non-linear equation was designed to test the 
application of Particle Swarm Optimization for nodal 
optimization within a GMDH network.  The non-linear 
equation has one less parameter than the traditional 
polynomial approximation and does not admit the 
application of simple gradient based optimization 
methods due to the incorporation of the absolute value 
function.  The GMDH methodology has also been used as 
a starting point for many new approaches to the System 
Identification problem (Iba and Kurita, 1994).   Here it is 
demonstrated that it is practical to allow for low-level 
non-linear emergent nodal representations embedded in a 
higher-level self-organizing network.  This is the type 
hierarchical model that is necessary for the methodology 
of Emergent System Identification. 

 
Fig. 4. PSO - non-linear surface fit 

 

5.1 GMDH AND NON-LINEAR NODAL 
FUNCTIONAL REPRESENTATION 

For the purposes of determining the applicability of 
equation 6 a surface as shown in Fig. 3 was generated 
using 100 random values for x1 and x2 between 0 and 1 
using the following form of equation 11. 

5 RESULTS: PSO + GMDH       (13) 2
150 175 500 200 100 1751 2 1 2 1y x x x x x= − + − + − 2

2x
Three example problems were considered. The first 
problem was a test of the applicability of substituting 
equation 12 in place of equation 11 in a GMDH node.  
The second problem was a comparison of using equations 
11 and 12 for the System Identification of a simple string 
vibrating in a non-linear fluid, where the damping force 
was set proportional to the square of the velocity of the 
string movement.  The third problem was the prediction 
of natural gas flow for a location in the Midwest United 
States.  

The results for using Particle Swarm Optimization are 
shown in Fig. 4.   
 
The results were very good considering that the Particle 
Swarm Algorithm parameters where not optimized for 
solving this problem. These results lend support for the 
use of Particle Swarm Optimization in combination with 
non-linear formulations for the GMDH nodes (such as 
equation 12) within the GMDH methodology. 
 

 

1 2 3 4 5 6 7 8 9 10
S1

S5

S9

0

100

200

300

400

500

600

x1 data

x2 data

Random Kolmorgorov Surface 

500-600
400-500
300-400
200-300
100-200
0-100

 

5.2 VIBRATING STRING – GMDH AND NON-
LINEAR NODAL FUNCTIONAL 
REPRESENTATION 

Since we are investigating the application of Particle 
Swarm Optimization for its utility in optimizing non-
linear models within the GMDH nodes, the specifics of 
the discrete string model are not given here.  The inputs to 
the GMDH were the previous four amplitudes calculated 
at the center of a string vibrating in a non-linear fluid.  
The string was given an initial displacement of 1.0 and 
then released.  The previous four amplitudes were then 
used to predict the future position of the string at its 
central location.  The System Identification results for 
equation 11 and 12 are shown in Fig. 5. The particle 
swarm quickly converged for the two models with the 
results for the two equations almost equal.   

 
Fig. 3. Random Kolmorgorov Surface 
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Non-Linear Vibrating String
GMDH + Particle Swarm Optimization
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 Fig. 6. GMDH - Natural Gas: Alt. Test/Train. 

Fig. 5. GMDH - Non-linear vibrating string.  
 
This lends support for GMDH nodal equations of the 
form given in equation 12 since it requires one less degree 
of freedom than equation 11.  For models where training 
time is not critical these results support the use of PSO 
and non-linear functional representations within the 
GMDH nodes. 
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5.3 NATURAL GAS PREDICTION - GMDH 
In the last example we investigated the applicability of a 
traditional GMDH for predicting natural gas 
consumption. In Fig. 6 the GMDH network was trained 
on all 100 days in the data set.  Fig. 7 was trained and 
tested on alternating 10 day periods. 
 
For both gas consumption studies the temperature, wind 
and volume for the previous two days were used to 
predict today's required volume. No solid conclusions can 
be drawn from this study, but it does illustrate the trade-
off that is made with respect to choosing a criterion for 
selecting the surviving nodes at a given layer in a 
traditional GMDH network. The GMDH network, shown 
in Fig. 6., that was trained on 10 days with the next 10 
days used for selecting the surviving nodes within a layer 
does not do as good a job on average but never over or 
under predicts as much as the GMDH network trained on 
all the data.   

 
Fig. 7. GMDH - Natural Gas: Trained on all data. 

 
  
A more in depth study would have to be undertaken to 
determine the quality of these results as compared to 
traditional neural networks, but the results are promising 

The GMDH network trained on all the data shown in Fig. 
7 does a good job on almost all of the days except for day 
70 where the prediction is noticeably high.   



when one takes into account that these networks were 
trained in a few seconds. 
 
For both gas consumption studies the temperature, wind 
and volume for the previous two days were used to 
predict today's required volume. No solid conclusions can 
be drawn from this study, but it does illustrate the trade-
off that is made with respect to choosing a criterion for 
selecting the surviving nodes at a given layer in a 
traditional GMDH network. The GMDH network, shown 
in Fig. 6., that was trained on 10 days with the next 10 
days used for selecting the surviving nodes within a layer 
does not do as good a job on average but never over or 
under predicts as much as the GMDH network trained on 
all the data.  The GMDH network trained on all the data 
shown in Fig. 7 does a good job on almost all of the days 
except for day 70 where the prediction is noticeably high.  
A more in depth study would have to undertaken to 
determine the quality of these results as compared to 
traditional neural networks, but the results are promising 
when one takes into account that these networks were 
trained in a few seconds. 

6 CONCLUSION 
Preliminary studies indicate that Particle Swarm 
Optimization can be used to develop superior estimates 
for the ARMA model parameters for noisy (real world) 
data.  Since the run time for these studies was only a few 
minutes (at most) it can be inferred that Particle Swarm 
Optimization is competitive with traditional non-linear 
least squares algorithms for determining the parameters 
for many traditional System Identification tasks.  
Additionally, Particle Swarm Optimization does not need 
to exploit any mathematical properties that are specific to 
a particular system model. 
 
The practical use of Particle Swarm Optimization for 
training non-linear nodes within a GMDH network was 
demonstrated. This was illustrated using a non-linear 
equation that has one less parameter than the traditional 
polynomial approximation while producing competitive 
training results.  Since the non-linear nodal equation that 
was demonstrated is only one of many that can be used, 
this implies that families of non-linear functions could be 
trained for each node.  This would allow for GMDH 
networks that are self-organizing at multiple levels. The 
examples studied provide experimental support for the 
practical use of low-level non-linear emergent nodal 
representations embedded in a higher-level self-
organizing network. This hierarchical network (self-
organizing at many levels) forms the basis for the 
methodology that we are calling  Emergent System 
Identification. 
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